import sys import os from os.path import join from pathlib import Path import math import cv2 as cv import numpy as np import imutils import pickle os.environ['CUDA_VISIBLE_DEVICES'] = '' import keras from keras.layers import Conv2D, Input, MaxPool2D,Flatten, Dense, Permute, GlobalAveragePooling2D from keras.models import Model from keras.optimizers import adam import os.path from keras.models import Sequential from keras.applications.resnet50 import ResNet50 #from keras.applications.resnet50 import Dense from keras.layers import Dense from keras.optimizers import Adam from keras.layers import Dropout from app.utils import im_utils, logger_utils from app.models.bbox import BBox from app.settings import app_cfg as cfg from app.settings import types class FaceBeauty: # Estimates beauty using CNN def __init__(self, gpu=-1): # don't really need GPU, CPU is quick enough self.log = logger_utils.Logger.getLogger() resnet = ResNet50(include_top=False, pooling='avg') self.model = Sequential() self.model.add(resnet) self.model.add(Dense(5, activation='softmax')) self.model.layers[0].trainable = False fp_model = join(cfg.DIR_MODELS_KERAS, 'model-ldl-resnet.h5') self.model.load_weights(fp_model) def beauty(self, im, bbox_dim): '''Predicts facial "beauty" score based on SCUT-FBP attractiveness labels :param im: (numpy.ndarray) BGR image :param bbox_dim: (BBox) dimensioned BBox :returns (float) 0.0-1.0 with 1 being most attractive ''' face = bbox_dim.to_xyxy() self.log.debug(f'face: {face}') cropped_im = im[face[1]:face[3], face[0]:face[2]] im_resized = cv.resize(cropped_im, (224, 224)) # force size im_norm = np.array([(im_resized - 127.5) / 127.5]) # subtract mean # forward pass pred = self.model.predict(im_norm) # combines score to make final estimate? ldList = pred[0] score = 1 * ldList[0] + 2 * ldList[1] + 3 * ldList[2] + 4 * ldList[3] + 5 * ldList[4] return score/5.0 def score_mapping(self, score): '''(deprecated) ''' # if score <= 1.9: # score_mapped = ((4 - 2.5) / (1.9 - 1.0)) * (score-1.0) + 2.5 # elif score <= 2.8: # score_mapped = ((5.5 - 4) / (2.8 - 1.9)) * (score-1.9) + 4 # elif score <= 3.4: # score_mapped = ((6.5 - 5.5) / (3.4 - 2.8)) * (score-2.8) + 5.5 # elif score <= 4: # score_mapped = ((8 - 6.5) / (4 - 3.4)) * (score-3.4) + 6.5 # elif score < 5: # score_mapped = ((9 - 8) / (5 - 4)) * (score-4) + 8 # return score_mapped return False