From c8829966aec3e6d0ebf6f288c34bc87ff0ada3ae Mon Sep 17 00:00:00 2001 From: "jules@lens" Date: Thu, 30 May 2019 14:30:59 +0200 Subject: more brainwashing --- site/datasets/unknown/brainwash.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'site/datasets/unknown') diff --git a/site/datasets/unknown/brainwash.json b/site/datasets/unknown/brainwash.json index 1ecdb546..a584106d 100644 --- a/site/datasets/unknown/brainwash.json +++ b/site/datasets/unknown/brainwash.json @@ -1 +1 @@ -{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "citations": [{"id": "02caadae027f983261d93e40f4d9d1f785163db4", "title": "Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03891.pdf"], "doi": []}, {"id": "6f172b6635ad9e3d3e0ab65d931dcb354eb9ff73", "title": "Accurate Single Stage Detector Using Recurrent Rolling Convolution", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099570"]}, {"id": "34786071f672b55fcdb24213a95f2ee52623ff23", "title": "MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.07695.pdf"], "doi": []}, {"id": "439f6206480b3ce069d75a95b1ffed9417117a17", "title": "Representations, Analysis and Recognition of Shape and Motion from Imaging Data", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/978-3-030-19816-9"]}, {"id": "95addf732b584f7a2959f143d860863df3d1f320", "title": "Deep Learning on Attributed Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/95ad/df732b584f7a2959f143d860863df3d1f320.pdf"], "doi": []}, {"id": "5d49632f8c8cd06cd5ce66f007aa140f40c12c45", "title": "Bus-Crowdedness Estimation by Shallow Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8615907"]}, {"id": "b80a7bbde2986a0b3474258ec2fad0a75813d89f", "title": "Context Learning Network for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8637445"]}, {"id": "84afbf356669f544f6c7e19fdb273edc93bf93ee", "title": "Scatteract: Automated Extraction of Data from Scatter Plots", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06687.pdf"], "doi": []}, {"id": "bcdb697c9d748f7655859256b0228a51b19b6fee", "title": "Parallel RCNN: A deep learning method for people detection using RGB-D images", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302069"]}, {"id": "e586547a63400881c7a95d6ad6d5fa31ac237ca9", "title": "Variational Methods for Human Modeling", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e586/547a63400881c7a95d6ad6d5fa31ac237ca9.pdf"], "doi": []}, {"id": "99c1bc2b09210d016a252ddae051ca7cf7fe0a56", "title": "Abnormality Extraction in Crowd", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/99c1/bc2b09210d016a252ddae051ca7cf7fe0a56.pdf"], "doi": []}, {"id": "d488dad9fa81817c85a284b09ebf198bf6b640f9", "title": "FCHD: A fast and accurate head detector", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08766.pdf"], "doi": []}, {"id": "b8c51b9ad3da310b590629b050152460abf7effb", "title": "Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.03193.pdf"], "doi": []}, {"id": "f38a1edab9f0f0f36718778ac8d510fd25c41269", "title": "Adversarial Adaptation From Synthesis to Reality in Fast Detector for Smoke Detection", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8657935"]}, {"id": "6a0aaefce8a27a8727d896fa444ba27558b2d381", "title": "Relation Networks for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578476"]}, {"id": "82b1ca78b2fc7ae0459f5d7c61a78822b8a590d2", "title": "Deep Semantic Instance Segmentation of Tree-Like Structures Using Synthetic Data", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658794"]}, {"id": "9043df1de4f6e181875011c1379d1a7f68a28d6c", "title": "People Detection from Overhead Cameras", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9043/df1de4f6e181875011c1379d1a7f68a28d6c.pdf"], "doi": []}, {"id": "a4ffdc6f0811b5adbf41d20433a44fc546197b75", "title": "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03480.pdf"], "doi": []}, {"id": "750bc0d2c9105a352001875127d796599a994886", "title": "Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8464244"]}, {"id": "28cd46a078e8fad370b1aba34762a874374513a5", "title": "cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06436.pdf"], "doi": []}, {"id": "03a65d274dc6caea94f6ab344e0b4969575327e3", "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00123.pdf"], "doi": []}, {"id": "8935ffe454758e2e5def0b5190de6e28c350b3b8", "title": "Learning to Reconstruct Face Geometries Research", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ea06/abd83c491877f0ce04cc7780ce068578f282.pdf"], "doi": []}, {"id": "993acefc2e350f9661125bb74df136e2b614ea23", "title": "People detection on the Pepper Robot using Convolutional Neural Networks and 3D Blob detection", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/993a/cefc2e350f9661125bb74df136e2b614ea23.pdf"], "doi": []}, {"id": "d78b190f98f9630cab261eabc399733af052f05c", "title": "Unsupervised Deep Domain Adaptation for Pedestrian Detection", "year": "2016", "pdf": ["https://arxiv.org/pdf/1802.03269.pdf"], "doi": []}, {"id": "08e18921d7e405ad27956c75f2613230170997d5", "title": "Towards Variational Generation of Small Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a001/f2440fa49d1c137c9ca1b892857270096ef9.pdf"], "doi": []}]} \ No newline at end of file +{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "citations": [{"id": "02caadae027f983261d93e40f4d9d1f785163db4", "title": "Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03891.pdf"], "doi": []}, {"id": "6f172b6635ad9e3d3e0ab65d931dcb354eb9ff73", "title": "Accurate Single Stage Detector Using Recurrent Rolling Convolution", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099570"]}, {"id": "34786071f672b55fcdb24213a95f2ee52623ff23", "title": "MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.07695.pdf"], "doi": []}, {"id": "439f6206480b3ce069d75a95b1ffed9417117a17", "title": "Representations, Analysis and Recognition of Shape and Motion from Imaging Data", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/978-3-030-19816-9"]}, {"id": "95addf732b584f7a2959f143d860863df3d1f320", "title": "Deep Learning on Attributed Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/95ad/df732b584f7a2959f143d860863df3d1f320.pdf"], "doi": []}, {"id": "5d49632f8c8cd06cd5ce66f007aa140f40c12c45", "title": "Bus-Crowdedness Estimation by Shallow Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8615907"]}, {"id": "b80a7bbde2986a0b3474258ec2fad0a75813d89f", "title": "Context Learning Network for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8637445"]}, {"id": "84afbf356669f544f6c7e19fdb273edc93bf93ee", "title": "Scatteract: Automated Extraction of Data from Scatter Plots", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06687.pdf"], "doi": []}, {"id": "bcdb697c9d748f7655859256b0228a51b19b6fee", "title": "Parallel RCNN: A deep learning method for people detection using RGB-D images", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302069"]}, {"id": "e586547a63400881c7a95d6ad6d5fa31ac237ca9", "title": "Variational Methods for Human Modeling", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e586/547a63400881c7a95d6ad6d5fa31ac237ca9.pdf"], "doi": []}, {"id": "99c1bc2b09210d016a252ddae051ca7cf7fe0a56", "title": "Abnormality Extraction in Crowd", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/99c1/bc2b09210d016a252ddae051ca7cf7fe0a56.pdf"], "doi": []}, {"id": "d488dad9fa81817c85a284b09ebf198bf6b640f9", "title": "FCHD: A fast and accurate head detector", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08766.pdf"], "doi": []}, {"id": "b8c51b9ad3da310b590629b050152460abf7effb", "title": "Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.03193.pdf"], "doi": []}, {"id": "f38a1edab9f0f0f36718778ac8d510fd25c41269", "title": "Adversarial Adaptation From Synthesis to Reality in Fast Detector for Smoke Detection", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8657935"]}, {"id": "6a0aaefce8a27a8727d896fa444ba27558b2d381", "title": "Relation Networks for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578476"]}, {"id": "82b1ca78b2fc7ae0459f5d7c61a78822b8a590d2", "title": "Deep Semantic Instance Segmentation of Tree-Like Structures Using Synthetic Data", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658794"]}, {"id": "9043df1de4f6e181875011c1379d1a7f68a28d6c", "title": "People Detection from Overhead Cameras", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9043/df1de4f6e181875011c1379d1a7f68a28d6c.pdf"], "doi": []}, {"id": "a4ffdc6f0811b5adbf41d20433a44fc546197b75", "title": "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03480.pdf"], "doi": []}, {"id": "750bc0d2c9105a352001875127d796599a994886", "title": "Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8464244"]}, {"id": "28cd46a078e8fad370b1aba34762a874374513a5", "title": "cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06436.pdf"], "doi": []}, {"id": "03a65d274dc6caea94f6ab344e0b4969575327e3", "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00123.pdf"], "doi": []}, {"id": "8935ffe454758e2e5def0b5190de6e28c350b3b8", "title": "Learning to Reconstruct Face Geometries Research", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ea06/abd83c491877f0ce04cc7780ce068578f282.pdf"], "doi": []}, {"id": "993acefc2e350f9661125bb74df136e2b614ea23", "title": "People detection on the Pepper Robot using Convolutional Neural Networks and 3D Blob detection", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/993a/cefc2e350f9661125bb74df136e2b614ea23.pdf"], "doi": []}, {"id": "d78b190f98f9630cab261eabc399733af052f05c", "title": "Unsupervised Deep Domain Adaptation for Pedestrian Detection", "year": "2016", "pdf": ["https://arxiv.org/pdf/1802.03269.pdf"], "doi": []}, {"id": "08e18921d7e405ad27956c75f2613230170997d5", "title": "Towards Variational Generation of Small Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a001/f2440fa49d1c137c9ca1b892857270096ef9.pdf"], "doi": []}, {"id": "f6f4d887fb62d33a9a18cbb7bc58bd6247384a35", "title": "People detection in crowded scenes using hierarchical features", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8261462"]}, {"id": "0ceda9dae8b9f322df65ca2ef02caca9758aec6f", "title": "Context-Aware CNNs for Person Head Detection", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410688"]}, {"id": "9f25b9efd09cc08c1ae14f301c90b903614968d8", "title": "Deep People Detection: A Comparative Study of SSD and LSTM-decoder", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575768"]}]} \ No newline at end of file -- cgit v1.2.3-70-g09d2 From a7b940665c82b4710c73099d22f347fc30017e3c Mon Sep 17 00:00:00 2001 From: "jules@lens" Date: Thu, 30 May 2019 15:10:34 +0200 Subject: getting all those brainwash citations --- scraper/reports/report_coverage.html | 2 +- scraper/reports/report_index.html | 2 +- scraper/s2-final-report.py | 22 +++++++++++++--------- site/datasets/citations/brainwash.json | 2 +- site/datasets/final/brainwash.json | 2 +- site/datasets/unknown/brainwash.json | 2 +- site/datasets/verified/brainwash.json | 2 +- 7 files changed, 19 insertions(+), 15 deletions(-) (limited to 'site/datasets/unknown') diff --git a/scraper/reports/report_coverage.html b/scraper/reports/report_coverage.html index 093dcab3..42046952 100644 --- a/scraper/reports/report_coverage.html +++ b/scraper/reports/report_coverage.html @@ -1 +1 @@ -Coverage

Coverage

Paper IDMegapixels KeyMegapixels NameReport LinkPDF LinkJournalTypeAddressCountryLatLngCoverageTotal CitationsGeocoded CitationsUnknown CitationsEmpty CitationsWith PDFWith DOI
0e986f51fe45b00633de9fd0c94d082d2be51406afwAFWFace detection, pose estimation, and landmark localization in the wild[pdf]2012 IEEE Conference on Computer Vision and Pattern Recognition71%99970929035576422
162ea969d1929ed180cc6de9f0bf116993ff6e06vgg_facesVGG FaceDeep Face Recognition[pdf]Unknown65%99964635348558429
b5f2846a506fc417e7da43f6a7679146d99c5e96ucf_101UCF101UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[pdf]CoRR64%99964335656628362
370b5757a5379b15e30d619e4d3fb9e8e13f3256lfwLFWLabeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments[pdf]Unknown63%99963236759598382
5e0f8c355a37a5a89351c02f174e7a5ddcb98683cocoCOCOMicrosoft COCO: Common Objects in Context[pdf]Unknown61%99960839125722259
4d9a02d080636e9666c4d1cc438b9893391ec6c7cohn_kanade_plusCK+The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - WorkshopseduUniversity of PittsburghUnited States40.44415295-79.9624399361%99960739257470518
0ee1916a0cb2dc7d3add086b5f1092c3d4beb38avocVOCThe Pascal Visual Object Classes (VOC) Challenge[pdf]International Journal of Computer VisioncompanyMicrosoftUnited States47.64233180-122.1369302061%99960739128557422
026e3363b7f76b51cc711886597a44d5f1fd1de2kittiKITTIVision meets robotics: The KITTI dataset[pdf]I. J. Robotics Res.60%99960239736553462
f72f6a45ee240cc99296a287ff725aaa7e7ebb35caltech_pedestriansCaltech PedestriansPedestrian Detection: An Evaluation of the State of the Art[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748760%99959940069527466
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dpubfigPubFigAttribute and simile classifiers for face verification[pdf]2009 IEEE 12th International Conference on Computer Vision64%91458532947586316
6d96f946aaabc734af7fe3fc4454cf8547fcd5edar_facedbAR FaceThe AR face database[pdf]Unknown58%99957942058458530
31b58ced31f22eab10bd3ee2d9174e7c14c27c01tiny_imagesTiny Images80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence57%99957442589644337
10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5inria_personINRIA PedestrianHistograms of oriented gradients for human detection[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduINRIA Rhone-Alps, Montbonnot, FranceFrance45.217886005.8073690057%99957342641419509
18ae7c9a4bbc832b8b14bc4122070d7939f5e00efrgcFRGCOverview of the face recognition grand challenge[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduNISTUnited States39.14004000-77.2185060057%99956843085549442
18c72175ddbb7d5956d180b65a96005c100f6014yale_facesYaleFacesFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf]IEEE Trans. Pattern Anal. Mach. Intell.56%99956143866498462
2ad0ee93d029e790ebb50574f403a09854b65b7eyale_facesYaleFacesAcquiring linear subspaces for face recognition under variable lighting[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence55%99955444594495491
23fc83c8cfff14a16df7ca497661264fc54ed746cohn_kanadeCKComprehensive Database for Facial Expression Analysis[pdf]Unknown55%99955344669540439
b62628ac06bbac998a3ab825324a41a11bc3a988m2vtsdb_extendedxm2vtsdbXM2VTSDB : The extended M2VTS database[pdf]Unknown62%86453932537493404
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4celebaCelebADeep Learning Face Attributes in the Wild[pdf]2015 IEEE International Conference on Computer Vision (ICCV)eduChinese University of Hong KongChina22.41626320114.2109318057%91952639261694201
dc8b25e35a3acb812beb499844734081722319b4feretFERETThe FERET database and evaluation procedure for face-recognition algorithms[pdf]Image Vision Comput.52%999521478103591421
45c31cde87258414f33412b3b12fc5bec7cb3ba9jaffeJAFFECoding Facial Expressions with Gabor Wavelets[pdf]Unknown57%89950839151431451
55206f0b5f57ce17358999145506cd01e570358corlORLParameterisation of a stochastic model for human face identification[pdf]Unknown50%99950149894543427
4d423acc78273b75134e2afd1777ba6d3a398973cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
4d423acc78273b75134e2afd1777ba6d3a398973multi_pieMULTIPIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
2830fb5282de23d7784b4b4bc37065d27839a412h3dH3DPoselets: Body part detectors trained using 3D human pose annotations[pdf]2009 IEEE 12th International Conference on Computer Vision58%71641530159492222
6273b3491e94ea4dd1ce42b791d77bdc96ee73a8viperVIPeREvaluating Appearance Models for Recognition, Reacquisition, and Tracking[pdf]UnknowneduUniversity of California, Santa CruzUnited States36.99158470-122.0582771066%62441421033342276
6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3cuhk_campus_03CUHK03 CampusDeepReID: Deep Filter Pairing Neural Network for Person Re-identification[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition73%56841215619320235
2258e01865367018ed6f4262c880df85b94959f8motMOTEvaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics[pdf]EURASIP J. Image and Video Processing58%63236626444358264
4308bd8c28e37e2ed9a3fcfe74d5436cce34b410market_1501Market 1501Scalable Person Re-identification: A Benchmark[pdf]2015 IEEE International Conference on Computer Vision (ICCV)companyMicrosoftUnited States47.64233180-122.1369302077%4603551059263185
853bd61bc48a431b9b1c7cab10c603830c488e39casia_webfaceCASIA WebfaceLearning Face Representation from Scratch[pdf]CoRReduChinese Academy of SciencesChina40.00447950116.3702380071%47633913719290182
560e0e58d0059259ddf86fcec1fa7975dee6a868youtube_facesYouTubeFacesFace recognition in unconstrained videos with matched background similarity[pdf]CVPR 2011eduTel Aviv UniversityIsrael32.1119889034.8045970266%50933817023294216
3316521a5527c7700af8ae6aef32a79a8b83672ctud_campusTUD-CampusPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_crossingTUD-CrossingPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_pedestrianTUD-PedestrianPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
cc589c499dcf323fe4a143bbef0074c3e31f9b60bu_3dfeBU-3DFEA 3D facial expression database for facial behavior research[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)54%58831627144306282
95f12d27c3b4914e0668a268360948bce92f7db3helenHelenInteractive Facial Feature Localization[pdf]UnknowncompanyAdobeUnited States37.33077030-121.8940951085%352298548212146
4053e3423fb70ad9140ca89351df49675197196abio_idBioID FaceRobust Face Detection Using the Hausdorff Distance[pdf]Unknown57%51128922249329182
8a3c5507237957d013a0fe0f082cab7f757af6eemaflMAFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
8a3c5507237957d013a0fe0f082cab7f757af6eemtflMTFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
16c7c31a7553d99f1837fc6e88e77b5ccbb346b8pridPRIDPerson Re-identification by Descriptive and Discriminative Classification[pdf]Unknown68%38626312323204180
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorphMORPH CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorph_ncMORPH Non-CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
044d9a8c61383312cdafbcc44b9d00d650b21c70fiw_300300-W300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge[pdf]2013 IEEE International Conference on Computer Vision Workshops79%3232556815208120
2485c98aa44131d1a2f7d1355b1e372f2bb148adcas_pealCAS-PEALThe CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[pdf]IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans59%42925417538198234
3325860c0c82a93b2eac654f5324dd6a776f609empii_human_poseMPII Human Pose2D Human Pose Estimation: New Benchmark and State of the Art Analysis[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition66%3872541331929196
2a75f34663a60ab1b04a0049ed1d14335129e908mmi_facial_expressionMMI Facial Expression DatasetWeb-based database for facial expression analysis[pdf]2005 IEEE International Conference on Multimedia and Expo54%46425021445282188
75da1df4ed319926c544eefe17ec8d720feef8c0fddbFDDBFDDB: A benchmark for face detection in unconstrained settings[pdf]Unknown65%38024713316202164
3765df816dc5a061bc261e190acc8bdd9d47bec0rafdRaFDPresentation and validation of the Radboud Faces Database[pdf]Unknown48%48723425339342144
2724ba85ec4a66de18da33925e537f3902f21249cofwCOFWRobust Face Landmark Estimation under Occlusion[pdf]2013 IEEE International Conference on Computer VisioneduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748772%3252339212194133
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_buffyBuffy StickmenLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
9361b784e73e9238d5cefbea5ac40d35d1e3103foxford_town_centreTownCentreStable multi-target tracking in real-time surveillance video[pdf]CVPR 2011eduUniversity of OxfordUnited Kingdom51.75345380-1.2540099768%32822210613186140
a74251efa970b92925b89eeef50a5e37d9281ad0aflwAFLWAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduTU GrazAustria47.0707140015.4395040069%31821810027211107
13f06b08f371ba8b5d31c3e288b4deb61335b462eth_andreas_essETHZ PedestrianDepth and Appearance for Mobile Scene Analysis[pdf]2007 IEEE 11th International Conference on Computer VisioneduETH ZurichSwitzerland47.376313008.5476699063%32420312126193127
5981e6479c3fd4e31644db35d236bfb84ae46514motMOTLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduUniversity of Southern CaliforniaUnited States34.02241490-118.2863440761%32620012522190137
2acf7e58f0a526b957be2099c10aab693f795973bosphorusThe BosphorusBosphorus Database for 3D Face Analysis[pdf]Unknown56%35219815417162188
639937b3a1b8bded3f7e9a40e85bd3770016cf3cbfmBFMA 3D Face Model for Pose and Illumination Invariant Face Recognition[pdf]2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance57%34319414923223114
44484d2866f222bbb9b6b0870890f9eea1ffb2d0cuhk_campus_03CUHK03 CampusHuman Reidentification with Transferred Metric Learning[pdf]Unknown69%280194869139137
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0leeds_sports_poseLeeds Sports PoseClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0stickmen_buffyBuffy StickmenClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_multiviewTUD-MultiviewMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_stadtmitteTUD-StadtmitteMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
010f0f4929e6a6644fb01f0e43820f91d0fad292yfcc_100mYFCC100MYFCC100M: the new data in multimedia research[pdf]Commun. ACMeduCarnegie Mellon UniversityUnited States40.44416190-79.9427282664%2741769823172100
38b55d95189c5e69cf4ab45098a48fba407609b4cuhk_campus_03CUHK03 CampusLocally Aligned Feature Transforms across Views[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition64%2581649415136117
833fa04463d90aab4a9fe2870d480f0b40df446esun_attributesSUNSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduBrown UniversityUnited States41.82686820-71.4012314660%2641591052720656
1be498d4bbc30c3bfd0029114c784bc2114d67c0adienceAdienceAge and Gender Estimation of Unfiltered Faces[pdf]IEEE Transactions on Information Forensics and SecurityeduOpen University of IsraelIsrael32.7782416534.9956567387%1791562319880
140c95e53c619eac594d70f6369f518adfea12efijb_aIJB-APushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)66%237156811415976
2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9grazGraz PedestrianGeneric object recognition with boosting[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduTU GrazAustria47.0707140015.4395040053%2931551381619597
6204776d31359d129a582057c2d788a14f8aadebyoutube_celebritiesYouTube CelebritiesFace tracking and recognition with visual constraints in real-world videos[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduRutgers UniversityUnited States40.47913175-74.4316886857%26715111511125121
013909077ad843eb6df7a3e8e290cfd5575999d2fiw_300300-WA Semi-automatic Methodology for Facial Landmark Annotation[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops80%18414836812067
27a2fad58dd8727e280f97036e0d2bc55ef5424cduke_mtmcDuke MTMCPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
4c170a0dcc8de75587dae21ca508dab2f9343974face_tracerFaceTracerFaceTracer: A Search Engine for Large Collections of Images with Faces[pdf]Unknown64%225144811714677
27a2fad58dd8727e280f97036e0d2bc55ef5424cmotMOTPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
98bb029afe2a1239c3fdab517323066f0957b81bilids_mcts_vidiLIDS-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
98bb029afe2a1239c3fdab517323066f0957b81bsdu_vidSDU-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
e8de844fefd54541b71c9823416daa238be65546visual_phrasesPhrasal RecognitionRecognition using visual phrases[pdf]CVPR 2011eduUniversity of Illinois, Urbana-ChampaignUnited States40.11116745-88.2258766558%2461431031717068
291265db88023e92bb8c8e6390438e5da148e8f5mscelebMsCelebMS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition[pdf]UnknowncompanyMicrosoftUnited States47.64233180-122.1369302078%18014139812059
7808937b46acad36e43c30ae4e9f3fd57462853dbpadBPADDescribing people: A poselet-based approach to attribute classification[pdf]2011 International Conference on Computer Vision61%230140901416366
46a01565e6afe7c074affb752e7069ee3bf2e4efsdu_vidSDU-VIDLocal Descriptors Encoded by Fisher Vectors for Person Re-identification[pdf]Unknown67%197132651510888
0c91808994a250d7be332400a534a9291ca3b60egrazGraz PedestrianWeak Hypotheses and Boosting for Generic Object Detection and Recognition[pdf]Unknown56%2361311051716177
35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62coco_qaCOCO QAExploring Models and Data for Image Question Answering[pdf]Unknown61%206126801116239
570f37ed63142312e6ccdf00ecc376341ec72b9fstanford_droneStanford DroneSocial LSTM: Human Trajectory Prediction in Crowded Spaces[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)56%22412599314081
4e4746094bf60ee83e40d8597a6191e463b57f76leeds_sports_pose_extendedLeeds Sports Pose ExtendedLearning effective human pose estimation from inaccurate annotation[pdf]CVPR 2011eduUniversity of LeedsUnited Kingdom53.80387185-1.5524571271%16912049710865
52d7eb0fbc3522434c13cc247549f74bb9609c5dwider_faceWIDER FACEWIDER FACE: A Face Detection Benchmark[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduChinese University of Hong KongChina22.41626320114.2109318066%178118601111266
22ad2c8c0f4d6aa4328b38d894b814ec22579761gallagherGallagherClothing cosegmentation for recognizing people[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.9427282665%17811662710086
b1f4423c227fa37b9680787be38857069247a307afew_vaAFEW-VACollecting Large, Richly Annotated Facial-Expression Databases from Movies[pdf]IEEE MultiMediaeduAustralian National UniversityAustralia-35.27769990149.1185270064%1811156688797
c0387e788a52f10bf35d4d50659cfa515d89fbecmarsMARSMARS: A Video Benchmark for Large-Scale Person Re-Identification[pdf]Unknown68%1681155349769
32c801cb7fbeb742edfd94cccfca4934baec71daucf_crowdUCF-CC-50Multi-source Multi-scale Counting in Extremely Dense Crowd Images[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition76%1481133538065
18010284894ed0edcca74e5bf768ee2e15ef7841deep_fashionDeepFashionDeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)64%17611264211362
133f01aec1534604d184d56de866a4bd531dac87lfwLFWEffective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence60%183109741310377
0df0d1adea39a5bef318b74faa37de7f3e00b452mpii_gazeMPIIGazeAppearance-based gaze estimation in the wild[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)73%1491094039454
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0megafaceMegaFaceThe MegaFace Benchmark: 1 Million Faces for Recognition at Scale[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)76%13910633510037
10195a163ab6348eef37213a46f60a3d87f289c5imdb_wikiIMDB-WikiDeep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks[pdf]International Journal of Computer VisioneduETH ZurichSwitzerland47.376313008.5476699072%1451054099351
56ffa7d906b08d02d6d5a12c7377a57e24ef3391unbc_shoulder_painUNBC-McMaster PainPainful data: The UNBC-McMaster shoulder pain expression archive database[pdf]Face and Gesture 2011eduCarnegie Mellon UniversityUnited States40.44416190-79.9427282654%189103862110878
29a705a5fa76641e0d8963f1fdd67ee4c0d92d3dscfaceSCfaceSCface – surveillance cameras face database[pdf]Multimedia Tools and Applications56%17910178158889
5a5f0287484f0d480fed1ce585dbf729586f0edcdisfaDISFADISFA: A Spontaneous Facial Action Intensity Database[pdf]IEEE Transactions on Affective ComputingeduUniversity of DenverUnited States39.67665410-104.9622030054%18410084179689
1aad2da473888cb7ebc1bfaa15bfa0f1502ce005jpl_poseJPL-Interaction datasetFirst-Person Activity Recognition: What Are They Doing to Me?[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition67%1489949710543
3b5b6d19d4733ab606c39c69a889f9e67967f151qmul_gridGRIDMulti-camera activity correlation analysis[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103569%142984477764
8355d095d3534ef511a9af68a3b2893339e3f96bimdb_wikiIMDB-WikiDEX: Deep EXpectation of Apparent Age from a Single Image[pdf]2015 IEEE International Conference on Computer Vision Workshop (ICCVW)79%122962647548
4f93cd09785c6e77bf4bc5a788e079df524c8d21sotonSOTON HiDOn a Large Sequence-Based Human Gait Database[pdf]Unknown63%15095551710351
8b56e33f33e582f3e473dba573a16b598ed9bcdcfeiFEIA new ranking method for principal components analysis and its application to face image analysis[pdf]Image Vision Comput.55%1699376669102
e4754afaa15b1b53e70743880484b8d0736990fffiw_300300-W300 Faces In-The-Wild Challenge: database and results[pdf]Image Vision Comput.eduImperial College LondonUnited Kingdom51.49887085-0.1756079771%129923767455
066000d44d6691d27202896691f08b27117918b9psuPSUVision-Based Analysis of Small Groups in Pedestrian Crowds[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence54%1689177108579
0d3bb75852098b25d90f31d2f48fd0cb4944702bface_scrubFaceScrubA data-driven approach to cleaning large face datasets[pdf]2014 IEEE International Conference on Image Processing (ICIP)64%138894919541
2d3482dcff69c7417c7b933f22de606a0e8e42d4lfwLFWLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf]UnknowneduUniversity of MassachusettsUnited States42.38897850-72.5286987069%123853837151
5a4df9bef1872865f0b619ac3aacc97f49e4a035cuhk_train_stationCUHK Train Station DatasetUnderstanding collective crowd behaviors: Learning a Mixture model of Dynamic pedestrian-Agents[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduChinese University of Hong KongChina22.41626320114.2109318060%141845746075
0486214fb58ee9a04edfe7d6a74c6d0f661a7668chokepointChokePointPatch-based probabilistic image quality assessment for face selection and improved video-based face recognition[pdf]CVPR 2011 WORKSHOPS60%138835567663
2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e3dpes3DPeS3DPeS: 3D people dataset for surveillance and forensics[pdf]Unknown62%133825197358
b91f54e1581fbbf60392364323d00a0cd43e493cbp4d_spontanousBP4D-SpontanousA high-resolution spontaneous 3D dynamic facial expression database[pdf]2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduSUNY BinghamtonUnited States42.08779975-75.9706606652%154807468075
a0fd85b3400c7b3e11122f44dc5870ae2de9009amaflMAFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
a0fd85b3400c7b3e11122f44dc5870ae2de9009amtflMTFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
7f23a4bb0c777dd72cca7665a5f370ac7980217eduke_mtmcDuke MTMCImproving Person Re-identification by Attribute and Identity Learning[pdf]CoRR84%87731404342
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22lfwLFWLabeled Faces in the Wild: A Survey[pdf]UnknowneduStevens Institute of TechnologyUnited States40.74225200-74.0270949064%109703976643
66e6f08873325d37e0ec20a4769ce881e04e964esun_attributesSUNThe SUN Attribute Database: Beyond Categories for Deeper Scene Understanding[pdf]International Journal of Computer Vision60%1167046148431
2a4bbee0b4cf52d5aadbbc662164f7efba89566cpetaPETAPedestrian Attribute Recognition At Far Distance[pdf]Unknown75%88662215036
70c59dc3470ae867016f6ab0e008ac8ba03774a1vgg_faces2VGG Face2VGGFace2: A Dataset for Recognising Faces across Pose and Age[pdf]2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)80%83661736120
3394168ff0719b03ff65bcea35336a76b21fe5e4penn_fudanPenn FudanObject Detection Combining Recognition and Segmentation[pdf]Unknown61%105644195843
3b4ec8af470948a72a6ed37a9fd226719a874ebcsdu_vidSDU-VIDA Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification[pdf]2015 IEEE International Conference on Computer Vision (ICCV)66%95633265045
04c2cda00e5536f4b1508cbd80041e9552880e67hipsterwarsHipsterwarsHipster Wars: Discovering Elements of Fashion Styles[pdf]Unknown64%95613445935
06f02199690961ba52997cde1527e714d2b3bf8fcolumbia_gazeColumbia GazeGaze locking: passive eye contact detection for human-object interaction[pdf]UnknowneduColumbia UniversityUnited States40.84198360-73.9436897176%79601904934
4df3143922bcdf7db78eb91e6b5359d6ada004d2cfdCFDThe Chicago face database: A free stimulus set of faces and norming data.[pdf]Behavior research methods60%99594017321
0c4a139bb87c6743c7905b29a3cfec27a5130652feretFERETThe FERET Verification Testing Protocol for Face Recognition Algorithms[pdf]UnknowneduCity University of New YorkUnited States40.87228250-73.8948917151%115595687537
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7kin_faceUB KinFaceUnderstanding Kin Relationships in a Photo[pdf]IEEE Transactions on Multimedia63%94593513361
2ce2560cf59db59ce313bbeb004e8ce55c5ce928texas_3dfrdTexas 3DFRDAnthropometric 3D Face Recognition[pdf]International Journal of Computer Vision63%91573456031
5194cbd51f9769ab25260446b4fa17204752e799violent_flowsViolent FlowsViolent flows: Real-time detection of violent crowd behavior[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduOpen University of IsraelIsrael32.7782416534.9956567365%88573164544
3cd40bfa1ff193a96bde0207e5140a399476466ctvhiTVHIHigh Five: Recognising human interactions in TV shows[pdf]Unknown57%985642106628
2160788824c4c29ffe213b2cbeb3f52972d73f373d_rma3D-RMAAutomatic 3D face authentication[pdf]Image Vision Comput.54%100544686336
ae0aee03d946efffdc7af2362a42d3750e7dd48aput_facePut FaceThe put face database[pdf]Unknown55%99544555548
2edb87494278ad11641b6cf7a3f8996de12b8e14qmul_gridGRIDTime-Delayed Correlation Analysis for Multi-Camera Activity Understanding[pdf]International Journal of Computer VisioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103563%84533145133
0b84f07af44f964817675ad961def8a51406dd2eprwPRWPerson Re-identification in the Wild[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)68%77522514727
0dc11a37cadda92886c56a6fb5191ded62099c28stickmen_familyWe Are Family StickmenWe Are Family: Joint Pose Estimation of Multiple Persons[pdf]Unknown65%78512755423
0b440695c822a8e35184fb2f60dcdaa8a6de84aekinectfaceKinectFaceDBKinectFaceDB: A Kinect Database for Face Recognition[pdf]IEEE Transactions on Systems, Man, and Cybernetics: SystemseduUniversity of North Carolina at Chapel HillUnited States35.91139710-79.0504529061%82503262852
0a85bdff552615643dd74646ac881862a7c7072dpipaPIPABeyond frontal faces: Improving Person Recognition using multiple cues[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)companyFacebookUnited States37.39367170-122.0807262091%5449414112
c900e0ad4c95948baaf0acd8449fde26f9b4952aemotio_netEmotioNet DatabaseEmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)52%86454175429
f1af714b92372c8e606485a3982eab2f16772ad8mug_facesMUG FacesThe MUG facial expression database[pdf]11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10eduAristotle University of ThessalonikiGreece40.6298414522.9588935055%82453743447
636b8ffc09b1b23ff714ac8350bb35635e49fa3ccaltech_10k_web_facesCaltech 10K Web FacesPruning training sets for learning of object categories[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)70%63441944220
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4cafadAFADOrdinal Regression with Multiple Output CNN for Age Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%78433584431
2bf8541199728262f78d4dced6fb91479b39b738clothing_co_parsingCCPClothing Co-parsing by Joint Image Segmentation and Labeling[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition70%60421803428
1bd1645a629f1b612960ab9bba276afd4cf7c666brainwashBrainwashEnd-to-End People Detection in Crowded Scenes[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduStanford UniversityUnited States37.43131385-122.1693653561%67412534223
4793f11fbca4a7dba898b9fff68f70d868e2497ckin_faceUB KinFaceKinship Verification through Transfer Learning[pdf]Unknown58%71413022942
f41c7bb02fc97d5fb9cadd7a49c3e558a1c58a44pa_100kPA-100KHydraPlus-Net: Attentive Deep Features for Pedestrian Analysis[pdf]2017 IEEE International Conference on Computer Vision (ICCV)75%55411403617
faf40ce28857aedf183e193486f5b4b0a8c478a2iit_dehli_earIIT Dehli EarAutomated Human Identification Using Ear Imaging[pdf]Unknown50%80404063544
4d58f886f5150b2d5e48fd1b5a49e09799bf895dtexas_3dfrdTexas 3DFRDTexas 3D Face Recognition Database[pdf]2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)61%66402634027
31de9b3dd6106ce6eec9a35991b2b9083395fd0bferetFERETFERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results[pdf]Unknown52%75393655420
47aeb3b82f54b5ae8142b4bdda7b614433e69b9aam_fedAM-FEDAffectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops46%83384564339
22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2bsaivtSAIVT SoftBioA Database for Person Re-Identification in Multi-Camera Surveillance Networks[pdf]2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)58%65382764520
79828e6e9f137a583082b8b5a9dfce0c301989b8mapillaryMapillaryThe Mapillary Vistas Dataset for Semantic Understanding of Street Scenes[pdf]2017 IEEE International Conference on Computer Vision (ICCV)61%61372404316
3dc3f0b64ef80f573e3a5f96e456e52ee980b877georgia_tech_face_databaseGeorgia Tech FaceMaximum Likelihood Training of the Embedded HMM for Face Detection and Recognition[pdf]Unknown54%67363142928
6f3c76b7c0bd8e1d122c6ea808a271fd4749c951wardWARDRe-identify people in wide area camera network[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduUniversity of UdineItaly46.0810723013.2119474060%60362413821
fcc6fe6007c322641796cb8792718641856a22a7miwMIWAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
09d78009687bec46e70efcf39d4612822e61cb8craidRAiDConsistent Re-identification in a Camera Network[pdf]Unknown71%49351433413
fcc6fe6007c322641796cb8792718641856a22a7youtube_makeupYMUAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
51eba481dac6b229a7490f650dff7b17ce05df73imsituimSituSituation Recognition: Visual Semantic Role Labeling for Image Understanding[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)65%5234181466
8be57cdad86fdf8c8290df4ca3149592f3c46dd3m2vtsm2vtsThe M2VTS Multimodal Face Database (Release 1.00)[pdf]Unknown45%73334023933
31b05f65405534a696a847dd19c621b7b8588263umd_facesUMDUMDFaces: An annotated face dataset for training deep networks[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)eduUniversity of MarylandUnited States39.28996850-76.6219610379%4233923011
37d6f0eb074d207b53885bd2eb78ccc8a04be597vmuVMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
37d6f0eb074d207b53885bd2eb78ccc8a04be597youtube_makeupYMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
9c23859ec7313f2e756a3e85575735e0c52249f4facebook_100Facebook100Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
2161f6b7ee3c0acc81603b01dc0df689683577b9large_scale_person_searchLarge Scale Person SearchEnd-to-End Deep Learning for Person Search[pdf]CoRR70%46321402716
9c23859ec7313f2e756a3e85575735e0c52249f4pubfig_83pubfig83Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
18858cc936947fc96b5c06bbe3c6c2faa5614540pilot_parliamentPPBGender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification[pdf]Unknown53%59312804710
16e8b0a1e8451d5f697b94c0c2b32a00abee1d52umbUMBUMB-DB: A database of partially occluded 3D faces[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)66%47311622224
356b431d4f7a2a0a38cf971c84568207dcdbf189widerWIDERRecognize complex events from static images by fusing deep channels[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)70%44311312915
8b2dd5c61b23ead5ae5508bb8ce808b5ea26673010k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face photographs.[pdf]Journal of experimental psychology. General56%52292323614
28d4e027c7e90b51b7d8908fce68128d1964668amegafaceMegaFaceLevel Playing Field for Million Scale Face Recognition[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of WashingtonUnited States47.65432380-122.3080089472%3928112299
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3d3dfacsD3DFACSA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf]2011 International Conference on Computer Vision52%50262453118
47662d1a368daf70ba70ef2d59eb6209f98b675dfiaCMU FiAThe CMU Face In Action (FIA) Database[pdf]Unknown48%54262854016
298cbc3dfbbb3a20af4eed97906650a4ea1c29e0ferplusFER+Training deep networks for facial expression recognition with crowd-sourced label distribution[pdf]Unknown74%3425901816
e27ef52c641c2b5100a1b34fd0b819e84a31b4dfsarc3dSarc3DSARC3D: A New 3D Body Model for People Tracking and Re-identification[pdf]Unknown74%3425922112
57fe081950f21ca03b5b375ae3e84b399c015861cvc_01_barcelonaCVC-01Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection[pdf]Unknown51%47242312324
8875ae233bc074f5cd6c4ebba447b536a7e847a5voxceleb2VoxCeleb2VoxCeleb2: Deep Speaker Recognition.[pdf]Unknown71%342492312
758d7e1be64cc668c59ef33ba8882c8597406e53affectnetAffectNetAffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild[pdf]CoRR62%37231402511
d08cc366a4a0192a01e9a7495af1eb5d9f9e73aeb3d_acB3D(AC)A 3-D Audio-Visual Corpus of Affective Communication[pdf]IEEE Transactions on Multimedia55%42231922615
53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4bp4d_plusBP4D+Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%42231901726
1c2802c2199b6d15ecefe7ba0c39bfe44363de38youtube_posesYouTube PosePersonalizing Human Video Pose Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduOxford UniversityUnited Kingdom51.75208490-1.2516646064%3623132308
0cb2dd5f178e3a297a0c33068961018659d0f443ijb_bIJB-BIARPA Janus Benchmark-B Face Dataset[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduMichigan State UniversityUnited States42.71856800-84.4779157163%3522133258
41976ebc8ab76d9a6861487c97cc7fcbe3b6015fmoments_in_timeMoments in TimeMoments in Time Dataset: one million videos for event understanding[pdf]CoRReduColumbia UniversityUnited States40.84198360-73.9436897176%292272272
a0cc5f73a37723a6dd465924143f1cb4976d0169msmt_17MSMT17Person Transfer GAN to Bridge Domain Gap for Person Re-identification[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition92%242221204
fd8168f1c50de85bac58a8d328df0a50248b16aend_2006ND-2006Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition[pdf]2007 First IEEE International Conference on Biometrics: Theory, Applications, and SystemseduUniversity of Notre DameUnited States41.70456775-86.2382202663%35221331815
488e475eeb3bb39a145f23ede197cd3620f1d98aapisAPiS1.0Pedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
84fe5b4ac805af63206012d29523a1e033bc827eawe_earsAWE EarsEar Recognition: More Than a Survey[pdf]Neurocomputing77%2620601016
20388099cc415c772926e47bcbbe554e133343d1cafe#N/AThe Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults[pdf]54%3720173307
0ceda9dae8b9f322df65ca2ef02caca9758aec6fcasablancaCasablancaContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
0ceda9dae8b9f322df65ca2ef02caca9758aec6fhollywood_headsetHollywoodHeadsContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
0297448f3ed948e136bb06ceff10eccb34e5bb77ilids_mctsi-LIDS Multiple-CameraImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf]Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology57%35201522114
488e475eeb3bb39a145f23ede197cd3620f1d98asvsSVSPedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7deep_fashionDeepFashionFashion Landmark Detection in the Wild[pdf]Unknown73%2619711610
64e0690dd176a93de9d4328f6e31fc4afe1e7536duke_mtmcDuke MTMCTracking Multiple People Online and in Real Time[pdf]Unknown78%2318511210
221c18238b829c12b911706947ab38fd017acef7rap_pedestrianRAPA Richly Annotated Dataset for Pedestrian Attribute Recognition[pdf]CoRR69%2618801610
d818568838433a6d6831adde49a58cef05e0c89fagedbAgeDBAgeDB: The First Manually Collected, In-the-Wild Age Database[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduImperial College LondonUnited Kingdom51.49887085-0.1756079794%181710143
213a579af9e4f57f071b884aa872651372b661fdbbc_poseBBC PoseAutomatic and Efficient Human Pose Estimation for Sign Language Videos[pdf]International Journal of Computer Vision65%2617911611
4946ba10a4d5a7d0a38372f23e6622bd347ae273coco_actionCOCO-aDescribing Common Human Visual Actions in Images[pdf]Unknown68%251780232
d178cde92ab3dc0dd2ebee5a76a33d556c39448bjiku_mobileJiku Mobile Video DatasetThe jiku mobile video dataset[pdf]UnknowneduNational University of SingaporeSingapore1.29620180103.7768994471%241770619
2eb84aaba316b095d4bb51da1a3e4365bbf9ab1dkin_faceUB KinFaceGenealogical face recognition based on UB KinFace database[pdf]CVPR 2011 WORKSHOPSeduSUNY BuffaloUnited States42.93362780-78.8839447955%31171401121
ea050801199f98a1c7c1df6769f23f658299a3aempi_largeLarge MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
ea050801199f98a1c7c1df6769f23f658299a3aempi_smallSmall MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
1e3df3ca8feab0b36fd293fe689f93bb2aaac591immediacyImmediacyMulti-task Recurrent Neural Network for Immediacy Prediction[pdf]2015 IEEE International Conference on Computer Vision (ICCV)62%2616102216
71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6umd_facesUMDThe Do’s and Don’ts for CNN-Based Face Verification[pdf]2017 IEEE International Conference on Computer Vision Workshops (ICCVW)62%2616102168
19d1b811df60f86cbd5e04a094b07f32fff7a32ayork_3dUOY 3D Face DatabaseThree-dimensional face recognition: an eigensurface approach[pdf]2004 International Conference on Image Processing, 2004. ICIP '04.42%38162242413
b6c293f0420f7e945b5916ae44269fb53e139275erceERCeVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
b6c293f0420f7e945b5916ae44269fb53e139275tisiTimes Square IntersectionVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
2a171f8d14b6b8735001a11c217af9587d095848social_relationSocial RelationLearning Social Relation Traits from Face Images[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%231494167
5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725fpoq50 People One QuestionMerging Pose Estimates Across Space and Time[pdf]Unknown81%161330134
44d23df380af207f5ac5b41459c722c87283e1ebwider_attributeWIDER AttributeHuman Attribute Recognition by Deep Hierarchical Contexts[pdf]Unknown72%181350144
45e616093a92e5f1e61a7c6037d5f637aa8964afmalfMALFFine-grained evaluation on face detection in the wild[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)71%171250125
774cbb45968607a027ae4729077734db000a1ec5urban_tribesUrban TribesFrom Bikers to Surfers: Visual Recognition of Urban Tribes[pdf]Unknown67%181261126
a94cae786d515d3450d48267e12ca954aab791c4yawddYawDDYawDD: a yawning detection dataset[pdf]Unknown80%151231213
4e6ee936eb50dd032f7138702fa39b7c18ee8907dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf]52%2111102183
4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06distance_nighttimeLong Distance Heterogeneous FaceNighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching[pdf]Unknown50%22111131110
b71d1aa90dcbe3638888725314c0d56640c1fef1ifdbIFDBIranian Face Database with age, pose and expression[pdf]2007 International Conference on Machine VisioneduIslamic Azad UniversityIran34.8452999048.5596212048%2311122149
57178b36c21fd7f4529ac6748614bb3374714e91ijb_cIJB-CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf]2018 International Conference on Biometrics (ICB)79%141130121
ca3e88d87e1344d076c964ea89d91a75c417f5eeimfdbIMFDBIndian Movie Face Database: A benchmark for face recognition under wide variations[pdf]2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)eduBVBCET, Hubli, IndiaIndia15.3688332075.1213796065%171160115
25474c21613607f6bb7687a281d5f9d4ffa1f9f3faceplaceFace PlaceRecognizing disguised faces[pdf]Unknown34%29101901810
0f0fcf041559703998abf310e56f8a2f90ee6f21feretFERETThe FERET Evaluation Methodology for Face-Recognition Algorithms[pdf]Unknown34%2910193189
2f43b614607163abf41dfe5d17ef6749a1b61304hrt_transgenderHRT TransgenderInvestigating the Periocular-Based Face Recognition Across Gender Transformation[pdf]IEEE Transactions on Information Forensics and SecurityeduUniversity of North Carolina at WilmingtonUnited States34.22498270-77.8690774477%13103068
4563b46d42079242f06567b3f2e2f7a80cb3befevadanaVADANAVADANA: A dense dataset for facial image analysis[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduUniversity of DelawareUnited States39.68103280-75.7540184067%151050510
2624d84503bc2f8e190e061c5480b6aa4d89277aafew_vaAFEW-VAAFEW-VA database for valence and arousal estimation in-the-wild[pdf]Image Vision Comput.50%18990125
6403117f9c005ae81f1e8e6d1302f4a045e3d99dalert_airportALERT AirportA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence45%209110911
8d5998cd984e7cce307da7d46f155f9db99c6590chalearnChaLearnChaLearn looking at people: A review of events and resources[pdf]2017 International Joint Conference on Neural Networks (IJCNN)69%1394184
a8d0b149c2eadaa02204d3e4356fbc8eccf3b315hi4d_adsipHi4D-ADSIPHi4D-ADSIP 3-D dynamic facial articulation database[pdf]Image Vision Comput.60%15961411
bd26dabab576adb6af30484183c9c9c8379bf2e0scut_fbpSCUT-FBPSCUT-FBP: A Benchmark Dataset for Facial Beauty Perception[pdf]2015 IEEE International Conference on Systems, Man, and Cybernetics47%199102613
060820f110a72cbf02c14a6d1085bd6e1d994f6acaltech_crpCaltech CRPFine-grained classification of pedestrians in video: Benchmark and state of the art[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)47%1789098
2b926b3586399d028b46315d7d9fb9d879e4f79cfrav3dFRAV3DMultimodal 2D, 2.5D & 3D Face Verification[pdf]2006 International Conference on Image ProcessingeduUniversidad Rey Juan Carlos, SpainSpain40.33586610-3.8769432057%14860212
8f02ec0be21461fbcedf51d864f944cfc42c875fhda_plusHDA+The HDA+ Data Set for Research on Fully Automated Re-identification Systems[pdf]Unknown50%16881106
c570d1247e337f91e555c3be0e8c8a5aba539d9fmcgillMcGill Real WorldRobust semi-automatic head pose labeling for real-world face video sequences[pdf]Multimedia Tools and ApplicationseduMcGill UniversityCanada45.50397610-73.5749687044%188100137
041d3eedf5e45ce5c5229f0181c5c576ed1fafd6ucf_selfieUCF SelfieHow to Take a Good Selfie?[pdf]Unknown73%1183075
633c851ebf625ad7abdda2324e9de093cf623141appa_realAPPA-REALApparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database[pdf]2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)70%1073083
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
7f4040b482d16354d5938c1d1b926b544652bf5bnova_emotionsNovaemötions DatasetCompetitive affective gaming: winning with a smile[pdf]UnknowneduUniversidade NOVA de Lisboa, Caparica, PortugalPortugal38.66096400-9.2058130078%972054
4b4106614c1d553365bad75d7866bff0de6056edufiUFIUnconstrained Facial Images: Database for Face Recognition Under Real-World Conditions[pdf]Unknown50%1266046
22f656d0f8426c84a33a267977f511f127bfd7f3expwExpWFrom Facial Expression Recognition to Interpersonal Relation Prediction[pdf]International Journal of Computer Vision55%1165054
4af89578ac237278be310f7660a408b03f12d603geofacesGeoFacesLarge-scale geo-facial image analysis[pdf]EURASIP J. Image and Video Processing100%660042
2d45cfd838016a6e39f6b766ffe85acd649440c7mcgillMcGill Real WorldHierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos[pdf]Computer Vision and Image Understanding75%862053
1a40092b493c6b8840257ab7f96051d1a4dbfeb2sports_videos_in_the_wildSVWSports Videos in the Wild (SVW): A video dataset for sports analysis[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)86%761152
8627f019882b024aef92e4eb9355c499c733e5b7usedUSED Social Event DatasetUSED: a large-scale social event detection dataset[pdf]UnknowneduUniversity of TrentoItaly46.0658836011.1159894086%761034
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832elagLAGLarge age-gap face verification by feature injection in deep networks[pdf]Pattern Recognition Letters71%752034
9e5378e7b336c89735d3bb15cf67eff96f86d39aprecariousPrecariousExpecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)36%14590121
07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1uccsUCCSLarge scale unconstrained open set face database[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)companySecurics Inc., Colorado Springs, COUnited States38.83388160-104.8213634083%651042
d4f1eb008eb80595bcfdac368e23ae9754e1e745uccsUCCSUnconstrained Face Detection and Open-Set Face Recognition Challenge[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)100%550041
922e0a51a3b8c67c4c6ac09a577ff674cbd28b34v47V47Re-identification of pedestrians with variable occlusion and scale[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduKingston UniversityUnited Kingdom51.42930860-0.2684044056%954154
7ebb153704706e457ab57b432793d2b6e5d12592vgg_celebs_in_placesCIPFaces in Places: compound query retrieval[pdf]Unknown100%550032
56ae6d94fc6097ec4ca861f0daa87941d1c10b70cmdpCMDPDistance Estimation of an Unknown Person from a Portrait[pdf]Unknown44%945063
563c940054e4b456661762c1ab858e6f730c3159data_61Data61 PedestrianA Multi-modal Graphical Model for Scene Analysis[pdf]2015 IEEE Winter Conference on Applications of Computer Vision50%844053
287ddcb3db5562235d83aee318f318b8d5e43fb1erceERCeLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
dd65f71dac86e36eecbd3ed225d016c3336b4a13families_in_the_wildFIWVisual Kinship Recognition of Families in the Wild[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduUniversity of Massachusetts DartmouthUnited States41.62772475-71.0072450180%541023
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34hrt_transgenderHRT TransgenderIs the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)57%743135
9cc8cf0c7d7fa7607659921b6ff657e17e135eccmafaMAsked FAcesDetecting Masked Faces in the Wild with LLE-CNNs[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)80%541041
c72a2ea819df9b0e8cd267eebcc6528b8741e03dmegaageMegaAgeQuantifying Facial Age by Posterior of Age Comparisons[pdf]CoRR100%440040
23e824d1dfc33f3780dd18076284f07bd99f1c43mifsMIFSSpoofing faces using makeup: An investigative study[pdf]2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)eduINRIA MéditerranéeFrance43.615813107.0683800067%642015
22909dd19a0ec3b6065334cb5be5392cb24d839dpetsPETS 2017PETS 2017: Dataset and Challenge[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)44%945018
54983972aafc8e149259d913524581357b0f91c3reseedReSEEDReSEED: social event dEtection dataset[pdf]Unknown67%642115
287ddcb3db5562235d83aee318f318b8d5e43fb1tisiTimes Square IntersectionLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
9e31e77f9543ab42474ba4e9330676e18c242e72imdb_faceIMDb FaceThe Devil of Face Recognition is in the Noise[pdf]UnknowneduNanyang Technological UniversitySingapore1.34841040103.6829796550%633041
a7fe834a0af614ce6b50dc093132b031dd9a856bmarket_1501Market 1501Orientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
578d4ad74818086bb64f182f72e2c8bd31e3d426mr2MR2The MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf]Behavior research methods43%734070
ad01687649d95cd5b56d7399a9603c4b8e2217d7mrp_droneMRP DroneInvestigating Open-World Person Re-identification Using a Drone[pdf]Unknown43%734152
a7fe834a0af614ce6b50dc093132b031dd9a856bpku_reidPKU-ReidOrientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
3531332efe19be21e7401ba1f04570a142617236ufddUFDDPushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results[pdf]CoRR75%431040
17b46e2dad927836c689d6787ddb3387c6159ecegeofacesGeoFacesGeoFaceExplorer: exploring the geo-dependence of facial attributes[pdf]Unknown100%220011
e58dd160a76349d46f881bd6ddbc2921f08d1050gfwGrouping Face in the WildMerge or Not? Learning to Group Faces via Imitation Learning[pdf]Unknown100%220020
4eab317b5ac436a949849ed286baa3de2a541eeflaofiwLAOFIWTurning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings[pdf]Unknown100%220020
f6c8d5e35d7e4d60a0104f233ac1a3ab757da53fpku_reidPKU-ReidSwiss-System Based Cascade Ranking for Gait-Based Person Re-Identification[pdf]Unknown50%422012
4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b384613dddb_unconstrained3D DynamicA 3D Dynamic Database for Unconstrained Face Recognition[pdf]Unknown50%211011
a40f9bfd3c45658ee8da70e1f2dfbe1f0c744d434dfab4DFAB4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications[pdf]CoRR25%413022
65355cbb581a219bd7461d48b3afd115263ea760complex_activitiesOngoing Complex ActivitiesRecognition of ongoing complex activities by sequence prediction over a hierarchical label space[pdf]2016 IEEE Winter Conference on Applications of Computer Vision (WACV)33%312030
55c40cbcf49a0225e72d911d762c27bb1c2d14aaifadIFADIndian Face Age Database: A Database for Face Recognition with Age Variation[pdf]Unknown50%211020
c06b13d0ec3f5c43e2782cd22542588e233733c3nova_emotionsNovaemötions DatasetCrowdsourcing facial expressions for affective-interaction[pdf]Computer Vision and Image Understanding100%110010
2306b2a8fba28539306052764a77a0d0f5d1236aqmul_surv_faceQMUL-SurvFaceSurveillance Face Recognition Challenge[pdf]CoRReduQueen Mary University of LondonUnited Kingdom51.52472720-0.03931035100%110010
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9stair_actionsSTAIR ActionSTAIR Actions: A Video Dataset of Everyday Home Actions[pdf]CoRR100%110010
5ad4e9f947c1653c247d418f05dad758a3f9277bwlfdbWLFDBWLFDB : Weakly Labeled Face Databases[pdf]Unknown100%110001
7b92d1e53cc87f7a4256695de590098a2f30261eappa_realAPPA-REALFrom Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)100%000000
1dc35905a1deff8bc74688f2d7e2f48fd2273275caltech_pedestriansCaltech PedestriansPedestrian detection: A benchmark[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
15e1af79939dbf90790b03d8aa02477783fb1d0fduke_mtmcDuke MTMCUnlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro[pdf]2017 IEEE International Conference on Computer Vision (ICCV)100%000000
72a155c987816ae81c858fddbd6beab656d86220europersonsEuroCity PersonsThe EuroCity Persons Dataset: A Novel Benchmark for Object Detection[pdf]CoRR0%202020
670637d0303a863c1548d5b19f705860a23e285cface_tracerFaceTracerFace swapping: automatically replacing faces in photographs[pdf]Unknown100%000000
12ad3b5bbbf407f8e54ea692c07633d1a867c566grazGraz PedestrianObject recognition using segmentation for feature detection[pdf]Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.eduInst. of Comput. Sci., Univ. of Leoben, AustriaAustria47.3847372015.09302010100%000000
bd88bb2e4f351352d88ee7375af834360e223498hda_plusHDA+HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf]Unknown0%202012
0ab7cff2ccda7269b73ff6efd9d37e1318f7db25ibm_difIBM Diversity in FacesFacial Coding Scheme Reference 1 Craniofacial Distances[pdf]Unknown100%000000
066d71fcd997033dce4ca58df924397dfe0b5fd1ifdbIFDBIranian Face Database and Evaluation with a New Detection Algorithm[pdf]Unknown100%000000
21d9d0deed16f0ad62a4865e9acf0686f4f15492images_of_groupsImages of GroupsUnderstanding images of groups of people[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.94272826100%000000
140438a77a771a8fb656b39a78ff488066eb6b50lfpwLFPWLocalizing Parts of Faces Using a Consensus of Exemplars[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence100%000000
079a0a3bf5200994e1f972b1b9197bf2f90e87d4mit_cbclMIT CBCLComponent-Based Face Recognition with 3D Morphable Models[pdf]2004 Conference on Computer Vision and Pattern Recognition Workshop100%000000
2fda164863a06a92d3a910b96eef927269aeb730names_and_facesNews DatasetNames and faces in the news[pdf]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.100%000000
d3200d49a19a4a4e4e9745ee39649b65d80c834bscut_headSCUT HEADDetecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture[pdf]2018 24th International Conference on Pattern Recognition (ICPR)100%000000
8990cdce3f917dad622e43e033db686b354d057ctiny_facesTinyFaceLow-Resolution Face Recognition[pdf]CoRR100%000000
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_brusselsTUD-BrusselsMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_motionpairsTUD-MotionparisMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
01959ef569f74c286956024866c1d107099199f7vqaVQAVQA: Visual Question Answering[pdf]2015 IEEE International Conference on Computer Vision (ICCV)100%000000
9b9bf5e623cb8af7407d2d2d857bc3f1b531c182who_goes_thereWGTWho goes there?: approaches to mapping facial appearance diversity[pdf]UnknowneduUniversity of KentuckyUnited States38.03337420-84.50177580100%000000
36bccfb2ad847096bc76777e544f305813cd8f5bwildtrackWildTrackWILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition100%000000
\ No newline at end of file +Coverage

Coverage

Paper IDMegapixels KeyMegapixels NameReport LinkPDF LinkJournalTypeAddressCountryLatLngCoverageTotal CitationsGeocoded CitationsUnknown CitationsEmpty CitationsWith PDFWith DOI
0e986f51fe45b00633de9fd0c94d082d2be51406afwAFWFace detection, pose estimation, and landmark localization in the wild[pdf]2012 IEEE Conference on Computer Vision and Pattern Recognition71%99970929035576422
162ea969d1929ed180cc6de9f0bf116993ff6e06vgg_facesVGG FaceDeep Face Recognition[pdf]Unknown65%99964635348558429
b5f2846a506fc417e7da43f6a7679146d99c5e96ucf_101UCF101UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[pdf]CoRR64%99964335656628362
370b5757a5379b15e30d619e4d3fb9e8e13f3256lfwLFWLabeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments[pdf]Unknown63%99963236759598382
5e0f8c355a37a5a89351c02f174e7a5ddcb98683cocoCOCOMicrosoft COCO: Common Objects in Context[pdf]Unknown61%99960839125722259
4d9a02d080636e9666c4d1cc438b9893391ec6c7cohn_kanade_plusCK+The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - WorkshopseduUniversity of PittsburghUnited States40.44415295-79.9624399361%99960739257470518
0ee1916a0cb2dc7d3add086b5f1092c3d4beb38avocVOCThe Pascal Visual Object Classes (VOC) Challenge[pdf]International Journal of Computer VisioncompanyMicrosoftUnited States47.64233180-122.1369302061%99960739128557422
026e3363b7f76b51cc711886597a44d5f1fd1de2kittiKITTIVision meets robotics: The KITTI dataset[pdf]I. J. Robotics Res.60%99960239736553462
f72f6a45ee240cc99296a287ff725aaa7e7ebb35caltech_pedestriansCaltech PedestriansPedestrian Detection: An Evaluation of the State of the Art[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748760%99960039969527466
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dpubfigPubFigAttribute and simile classifiers for face verification[pdf]2009 IEEE 12th International Conference on Computer Vision64%91458532947586316
6d96f946aaabc734af7fe3fc4454cf8547fcd5edar_facedbAR FaceThe AR face database[pdf]Unknown58%99957942058458530
31b58ced31f22eab10bd3ee2d9174e7c14c27c01tiny_imagesTiny Images80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence57%99957442589644337
10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5inria_personINRIA PedestrianHistograms of oriented gradients for human detection[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduINRIA Rhone-Alps, Montbonnot, FranceFrance45.217886005.8073690057%99957342641419509
18ae7c9a4bbc832b8b14bc4122070d7939f5e00efrgcFRGCOverview of the face recognition grand challenge[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduNISTUnited States39.14004000-77.2185060057%99956843085549442
18c72175ddbb7d5956d180b65a96005c100f6014yale_facesYaleFacesFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf]IEEE Trans. Pattern Anal. Mach. Intell.56%99956143866498462
2ad0ee93d029e790ebb50574f403a09854b65b7eyale_facesYaleFacesAcquiring linear subspaces for face recognition under variable lighting[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence55%99955444594495491
23fc83c8cfff14a16df7ca497661264fc54ed746cohn_kanadeCKComprehensive Database for Facial Expression Analysis[pdf]Unknown55%99955344669540439
b62628ac06bbac998a3ab825324a41a11bc3a988m2vtsdb_extendedxm2vtsdbXM2VTSDB : The extended M2VTS database[pdf]Unknown62%86453932537493404
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4celebaCelebADeep Learning Face Attributes in the Wild[pdf]2015 IEEE International Conference on Computer Vision (ICCV)eduChinese University of Hong KongChina22.41626320114.2109318057%91952639261694201
dc8b25e35a3acb812beb499844734081722319b4feretFERETThe FERET database and evaluation procedure for face-recognition algorithms[pdf]Image Vision Comput.52%999521478103591421
45c31cde87258414f33412b3b12fc5bec7cb3ba9jaffeJAFFECoding Facial Expressions with Gabor Wavelets[pdf]Unknown57%89950839151431451
55206f0b5f57ce17358999145506cd01e570358corlORLParameterisation of a stochastic model for human face identification[pdf]Unknown50%99950149894543427
4d423acc78273b75134e2afd1777ba6d3a398973cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
4d423acc78273b75134e2afd1777ba6d3a398973multi_pieMULTIPIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
2830fb5282de23d7784b4b4bc37065d27839a412h3dH3DPoselets: Body part detectors trained using 3D human pose annotations[pdf]2009 IEEE 12th International Conference on Computer Vision58%71641530159492222
6273b3491e94ea4dd1ce42b791d77bdc96ee73a8viperVIPeREvaluating Appearance Models for Recognition, Reacquisition, and Tracking[pdf]UnknowneduUniversity of California, Santa CruzUnited States36.99158470-122.0582771066%62441421033342276
6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3cuhk_campus_03CUHK03 CampusDeepReID: Deep Filter Pairing Neural Network for Person Re-identification[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition73%56841215619320235
2258e01865367018ed6f4262c880df85b94959f8motMOTEvaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics[pdf]EURASIP J. Image and Video Processing58%63236626444358264
4308bd8c28e37e2ed9a3fcfe74d5436cce34b410market_1501Market 1501Scalable Person Re-identification: A Benchmark[pdf]2015 IEEE International Conference on Computer Vision (ICCV)companyMicrosoftUnited States47.64233180-122.1369302077%4603551059263185
853bd61bc48a431b9b1c7cab10c603830c488e39casia_webfaceCASIA WebfaceLearning Face Representation from Scratch[pdf]CoRReduChinese Academy of SciencesChina40.00447950116.3702380071%47633913719290182
560e0e58d0059259ddf86fcec1fa7975dee6a868youtube_facesYouTubeFacesFace recognition in unconstrained videos with matched background similarity[pdf]CVPR 2011eduTel Aviv UniversityIsrael32.1119889034.8045970266%50933817023294216
3316521a5527c7700af8ae6aef32a79a8b83672ctud_campusTUD-CampusPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_crossingTUD-CrossingPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_pedestrianTUD-PedestrianPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
cc589c499dcf323fe4a143bbef0074c3e31f9b60bu_3dfeBU-3DFEA 3D facial expression database for facial behavior research[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)54%58831627144306282
95f12d27c3b4914e0668a268360948bce92f7db3helenHelenInteractive Facial Feature Localization[pdf]UnknowncompanyAdobeUnited States37.33077030-121.8940951085%352298548212146
4053e3423fb70ad9140ca89351df49675197196abio_idBioID FaceRobust Face Detection Using the Hausdorff Distance[pdf]Unknown57%51128922249329182
8a3c5507237957d013a0fe0f082cab7f757af6eemaflMAFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
8a3c5507237957d013a0fe0f082cab7f757af6eemtflMTFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
16c7c31a7553d99f1837fc6e88e77b5ccbb346b8pridPRIDPerson Re-identification by Descriptive and Discriminative Classification[pdf]Unknown68%38626312323204180
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorphMORPH CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorph_ncMORPH Non-CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
044d9a8c61383312cdafbcc44b9d00d650b21c70fiw_300300-W300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge[pdf]2013 IEEE International Conference on Computer Vision Workshops79%3232556815208120
2485c98aa44131d1a2f7d1355b1e372f2bb148adcas_pealCAS-PEALThe CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[pdf]IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans59%42925417538198234
3325860c0c82a93b2eac654f5324dd6a776f609empii_human_poseMPII Human Pose2D Human Pose Estimation: New Benchmark and State of the Art Analysis[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition66%3872541331929196
2a75f34663a60ab1b04a0049ed1d14335129e908mmi_facial_expressionMMI Facial Expression DatasetWeb-based database for facial expression analysis[pdf]2005 IEEE International Conference on Multimedia and Expo54%46425021445282188
75da1df4ed319926c544eefe17ec8d720feef8c0fddbFDDBFDDB: A benchmark for face detection in unconstrained settings[pdf]Unknown65%38024713316202164
3765df816dc5a061bc261e190acc8bdd9d47bec0rafdRaFDPresentation and validation of the Radboud Faces Database[pdf]Unknown48%48723425339342144
2724ba85ec4a66de18da33925e537f3902f21249cofwCOFWRobust Face Landmark Estimation under Occlusion[pdf]2013 IEEE International Conference on Computer VisioneduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748772%3252339212194133
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_buffyBuffy StickmenLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
9361b784e73e9238d5cefbea5ac40d35d1e3103foxford_town_centreTownCentreStable multi-target tracking in real-time surveillance video[pdf]CVPR 2011eduUniversity of OxfordUnited Kingdom51.75345380-1.2540099768%32822210613186140
a74251efa970b92925b89eeef50a5e37d9281ad0aflwAFLWAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduTU GrazAustria47.0707140015.4395040069%31821810027211107
13f06b08f371ba8b5d31c3e288b4deb61335b462eth_andreas_essETHZ PedestrianDepth and Appearance for Mobile Scene Analysis[pdf]2007 IEEE 11th International Conference on Computer VisioneduETH ZurichSwitzerland47.376313008.5476699063%32420412026193127
5981e6479c3fd4e31644db35d236bfb84ae46514motMOTLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduUniversity of Southern CaliforniaUnited States34.02241490-118.2863440761%32620012522190137
2acf7e58f0a526b957be2099c10aab693f795973bosphorusThe BosphorusBosphorus Database for 3D Face Analysis[pdf]Unknown56%35219815417162188
639937b3a1b8bded3f7e9a40e85bd3770016cf3cbfmBFMA 3D Face Model for Pose and Illumination Invariant Face Recognition[pdf]2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance57%34319414923223114
44484d2866f222bbb9b6b0870890f9eea1ffb2d0cuhk_campus_03CUHK03 CampusHuman Reidentification with Transferred Metric Learning[pdf]Unknown69%280194869139137
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0leeds_sports_poseLeeds Sports PoseClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0stickmen_buffyBuffy StickmenClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_multiviewTUD-MultiviewMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_stadtmitteTUD-StadtmitteMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
010f0f4929e6a6644fb01f0e43820f91d0fad292yfcc_100mYFCC100MYFCC100M: the new data in multimedia research[pdf]Commun. ACMeduCarnegie Mellon UniversityUnited States40.44416190-79.9427282664%2741769823172100
38b55d95189c5e69cf4ab45098a48fba407609b4cuhk_campus_03CUHK03 CampusLocally Aligned Feature Transforms across Views[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition64%2581649415136117
833fa04463d90aab4a9fe2870d480f0b40df446esun_attributesSUNSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduBrown UniversityUnited States41.82686820-71.4012314660%2641591052720656
1be498d4bbc30c3bfd0029114c784bc2114d67c0adienceAdienceAge and Gender Estimation of Unfiltered Faces[pdf]IEEE Transactions on Information Forensics and SecurityeduOpen University of IsraelIsrael32.7782416534.9956567387%1791562319880
140c95e53c619eac594d70f6369f518adfea12efijb_aIJB-APushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)66%237156811415976
2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9grazGraz PedestrianGeneric object recognition with boosting[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduTU GrazAustria47.0707140015.4395040053%2931551381619597
6204776d31359d129a582057c2d788a14f8aadebyoutube_celebritiesYouTube CelebritiesFace tracking and recognition with visual constraints in real-world videos[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduRutgers UniversityUnited States40.47913175-74.4316886857%26715111511125121
013909077ad843eb6df7a3e8e290cfd5575999d2fiw_300300-WA Semi-automatic Methodology for Facial Landmark Annotation[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops80%18414836812067
27a2fad58dd8727e280f97036e0d2bc55ef5424cduke_mtmcDuke MTMCPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
4c170a0dcc8de75587dae21ca508dab2f9343974face_tracerFaceTracerFaceTracer: A Search Engine for Large Collections of Images with Faces[pdf]Unknown64%225144811714677
27a2fad58dd8727e280f97036e0d2bc55ef5424cmotMOTPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
98bb029afe2a1239c3fdab517323066f0957b81bilids_mcts_vidiLIDS-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
98bb029afe2a1239c3fdab517323066f0957b81bsdu_vidSDU-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
e8de844fefd54541b71c9823416daa238be65546visual_phrasesPhrasal RecognitionRecognition using visual phrases[pdf]CVPR 2011eduUniversity of Illinois, Urbana-ChampaignUnited States40.11116745-88.2258766558%2461431031717068
291265db88023e92bb8c8e6390438e5da148e8f5mscelebMsCelebMS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition[pdf]UnknowncompanyMicrosoftUnited States47.64233180-122.1369302078%18014139812059
7808937b46acad36e43c30ae4e9f3fd57462853dbpadBPADDescribing people: A poselet-based approach to attribute classification[pdf]2011 International Conference on Computer Vision61%230140901416366
46a01565e6afe7c074affb752e7069ee3bf2e4efsdu_vidSDU-VIDLocal Descriptors Encoded by Fisher Vectors for Person Re-identification[pdf]Unknown67%197132651510888
0c91808994a250d7be332400a534a9291ca3b60egrazGraz PedestrianWeak Hypotheses and Boosting for Generic Object Detection and Recognition[pdf]Unknown56%2361311051716177
35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62coco_qaCOCO QAExploring Models and Data for Image Question Answering[pdf]Unknown61%206126801116239
570f37ed63142312e6ccdf00ecc376341ec72b9fstanford_droneStanford DroneSocial LSTM: Human Trajectory Prediction in Crowded Spaces[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)56%22412599314081
4e4746094bf60ee83e40d8597a6191e463b57f76leeds_sports_pose_extendedLeeds Sports Pose ExtendedLearning effective human pose estimation from inaccurate annotation[pdf]CVPR 2011eduUniversity of LeedsUnited Kingdom53.80387185-1.5524571271%16912049710865
52d7eb0fbc3522434c13cc247549f74bb9609c5dwider_faceWIDER FACEWIDER FACE: A Face Detection Benchmark[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduChinese University of Hong KongChina22.41626320114.2109318066%178118601111266
22ad2c8c0f4d6aa4328b38d894b814ec22579761gallagherGallagherClothing cosegmentation for recognizing people[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.9427282665%17811662710086
b1f4423c227fa37b9680787be38857069247a307afew_vaAFEW-VACollecting Large, Richly Annotated Facial-Expression Databases from Movies[pdf]IEEE MultiMediaeduAustralian National UniversityAustralia-35.27769990149.1185270064%1811156688797
c0387e788a52f10bf35d4d50659cfa515d89fbecmarsMARSMARS: A Video Benchmark for Large-Scale Person Re-Identification[pdf]Unknown68%1681155349769
32c801cb7fbeb742edfd94cccfca4934baec71daucf_crowdUCF-CC-50Multi-source Multi-scale Counting in Extremely Dense Crowd Images[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition76%1481133538065
18010284894ed0edcca74e5bf768ee2e15ef7841deep_fashionDeepFashionDeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)64%17611264211362
133f01aec1534604d184d56de866a4bd531dac87lfwLFWEffective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence60%183109741310377
0df0d1adea39a5bef318b74faa37de7f3e00b452mpii_gazeMPIIGazeAppearance-based gaze estimation in the wild[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)73%1491094039454
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0megafaceMegaFaceThe MegaFace Benchmark: 1 Million Faces for Recognition at Scale[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)76%13910633510037
10195a163ab6348eef37213a46f60a3d87f289c5imdb_wikiIMDB-WikiDeep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks[pdf]International Journal of Computer VisioneduETH ZurichSwitzerland47.376313008.5476699072%1451054099351
56ffa7d906b08d02d6d5a12c7377a57e24ef3391unbc_shoulder_painUNBC-McMaster PainPainful data: The UNBC-McMaster shoulder pain expression archive database[pdf]Face and Gesture 2011eduCarnegie Mellon UniversityUnited States40.44416190-79.9427282654%189103862110878
29a705a5fa76641e0d8963f1fdd67ee4c0d92d3dscfaceSCfaceSCface – surveillance cameras face database[pdf]Multimedia Tools and Applications56%17910178158889
5a5f0287484f0d480fed1ce585dbf729586f0edcdisfaDISFADISFA: A Spontaneous Facial Action Intensity Database[pdf]IEEE Transactions on Affective ComputingeduUniversity of DenverUnited States39.67665410-104.9622030054%18410084179689
1aad2da473888cb7ebc1bfaa15bfa0f1502ce005jpl_poseJPL-Interaction datasetFirst-Person Activity Recognition: What Are They Doing to Me?[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition67%1489949710543
3b5b6d19d4733ab606c39c69a889f9e67967f151qmul_gridGRIDMulti-camera activity correlation analysis[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103569%142984477764
8355d095d3534ef511a9af68a3b2893339e3f96bimdb_wikiIMDB-WikiDEX: Deep EXpectation of Apparent Age from a Single Image[pdf]2015 IEEE International Conference on Computer Vision Workshop (ICCVW)79%122962647548
4f93cd09785c6e77bf4bc5a788e079df524c8d21sotonSOTON HiDOn a Large Sequence-Based Human Gait Database[pdf]Unknown63%15095551710351
8b56e33f33e582f3e473dba573a16b598ed9bcdcfeiFEIA new ranking method for principal components analysis and its application to face image analysis[pdf]Image Vision Comput.55%1699376669102
e4754afaa15b1b53e70743880484b8d0736990fffiw_300300-W300 Faces In-The-Wild Challenge: database and results[pdf]Image Vision Comput.eduImperial College LondonUnited Kingdom51.49887085-0.1756079771%129923767455
066000d44d6691d27202896691f08b27117918b9psuPSUVision-Based Analysis of Small Groups in Pedestrian Crowds[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence54%1689177108579
0d3bb75852098b25d90f31d2f48fd0cb4944702bface_scrubFaceScrubA data-driven approach to cleaning large face datasets[pdf]2014 IEEE International Conference on Image Processing (ICIP)64%138894919541
2d3482dcff69c7417c7b933f22de606a0e8e42d4lfwLFWLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf]UnknowneduUniversity of MassachusettsUnited States42.38897850-72.5286987069%123853837151
5a4df9bef1872865f0b619ac3aacc97f49e4a035cuhk_train_stationCUHK Train Station DatasetUnderstanding collective crowd behaviors: Learning a Mixture model of Dynamic pedestrian-Agents[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduChinese University of Hong KongChina22.41626320114.2109318060%141845746075
0486214fb58ee9a04edfe7d6a74c6d0f661a7668chokepointChokePointPatch-based probabilistic image quality assessment for face selection and improved video-based face recognition[pdf]CVPR 2011 WORKSHOPS60%138835567663
2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e3dpes3DPeS3DPeS: 3D people dataset for surveillance and forensics[pdf]Unknown62%133825197358
b91f54e1581fbbf60392364323d00a0cd43e493cbp4d_spontanousBP4D-SpontanousA high-resolution spontaneous 3D dynamic facial expression database[pdf]2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduSUNY BinghamtonUnited States42.08779975-75.9706606652%154807468075
a0fd85b3400c7b3e11122f44dc5870ae2de9009amaflMAFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
a0fd85b3400c7b3e11122f44dc5870ae2de9009amtflMTFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
7f23a4bb0c777dd72cca7665a5f370ac7980217eduke_mtmcDuke MTMCImproving Person Re-identification by Attribute and Identity Learning[pdf]CoRR84%87731404342
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22lfwLFWLabeled Faces in the Wild: A Survey[pdf]UnknowneduStevens Institute of TechnologyUnited States40.74225200-74.0270949064%109703976643
66e6f08873325d37e0ec20a4769ce881e04e964esun_attributesSUNThe SUN Attribute Database: Beyond Categories for Deeper Scene Understanding[pdf]International Journal of Computer Vision60%1167046148431
2a4bbee0b4cf52d5aadbbc662164f7efba89566cpetaPETAPedestrian Attribute Recognition At Far Distance[pdf]Unknown75%88662215036
70c59dc3470ae867016f6ab0e008ac8ba03774a1vgg_faces2VGG Face2VGGFace2: A Dataset for Recognising Faces across Pose and Age[pdf]2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)80%83661736120
3394168ff0719b03ff65bcea35336a76b21fe5e4penn_fudanPenn FudanObject Detection Combining Recognition and Segmentation[pdf]Unknown61%105644195843
3b4ec8af470948a72a6ed37a9fd226719a874ebcsdu_vidSDU-VIDA Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification[pdf]2015 IEEE International Conference on Computer Vision (ICCV)66%95633265045
04c2cda00e5536f4b1508cbd80041e9552880e67hipsterwarsHipsterwarsHipster Wars: Discovering Elements of Fashion Styles[pdf]Unknown64%95613445935
06f02199690961ba52997cde1527e714d2b3bf8fcolumbia_gazeColumbia GazeGaze locking: passive eye contact detection for human-object interaction[pdf]UnknowneduColumbia UniversityUnited States40.84198360-73.9436897176%79601904934
4df3143922bcdf7db78eb91e6b5359d6ada004d2cfdCFDThe Chicago face database: A free stimulus set of faces and norming data.[pdf]Behavior research methods60%99594017321
0c4a139bb87c6743c7905b29a3cfec27a5130652feretFERETThe FERET Verification Testing Protocol for Face Recognition Algorithms[pdf]UnknowneduCity University of New YorkUnited States40.87228250-73.8948917151%115595687537
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7kin_faceUB KinFaceUnderstanding Kin Relationships in a Photo[pdf]IEEE Transactions on Multimedia63%94593513361
2ce2560cf59db59ce313bbeb004e8ce55c5ce928texas_3dfrdTexas 3DFRDAnthropometric 3D Face Recognition[pdf]International Journal of Computer Vision63%91573456031
5194cbd51f9769ab25260446b4fa17204752e799violent_flowsViolent FlowsViolent flows: Real-time detection of violent crowd behavior[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduOpen University of IsraelIsrael32.7782416534.9956567365%88573164544
3cd40bfa1ff193a96bde0207e5140a399476466ctvhiTVHIHigh Five: Recognising human interactions in TV shows[pdf]Unknown57%985642106628
2160788824c4c29ffe213b2cbeb3f52972d73f373d_rma3D-RMAAutomatic 3D face authentication[pdf]Image Vision Comput.54%100544686336
ae0aee03d946efffdc7af2362a42d3750e7dd48aput_facePut FaceThe put face database[pdf]Unknown55%99544555548
2edb87494278ad11641b6cf7a3f8996de12b8e14qmul_gridGRIDTime-Delayed Correlation Analysis for Multi-Camera Activity Understanding[pdf]International Journal of Computer VisioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103563%84533145133
0b84f07af44f964817675ad961def8a51406dd2eprwPRWPerson Re-identification in the Wild[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)68%77522514727
0dc11a37cadda92886c56a6fb5191ded62099c28stickmen_familyWe Are Family StickmenWe Are Family: Joint Pose Estimation of Multiple Persons[pdf]Unknown65%78512755423
0b440695c822a8e35184fb2f60dcdaa8a6de84aekinectfaceKinectFaceDBKinectFaceDB: A Kinect Database for Face Recognition[pdf]IEEE Transactions on Systems, Man, and Cybernetics: SystemseduUniversity of North Carolina at Chapel HillUnited States35.91139710-79.0504529061%82503262852
0a85bdff552615643dd74646ac881862a7c7072dpipaPIPABeyond frontal faces: Improving Person Recognition using multiple cues[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)companyFacebookUnited States37.39367170-122.0807262091%5449414112
c900e0ad4c95948baaf0acd8449fde26f9b4952aemotio_netEmotioNet DatabaseEmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)52%86454175429
f1af714b92372c8e606485a3982eab2f16772ad8mug_facesMUG FacesThe MUG facial expression database[pdf]11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10eduAristotle University of ThessalonikiGreece40.6298414522.9588935055%82453743447
1bd1645a629f1b612960ab9bba276afd4cf7c666brainwashBrainwashEnd-to-End People Detection in Crowded Scenes[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduStanford UniversityUnited States37.43131385-122.1693653566%67442224223
636b8ffc09b1b23ff714ac8350bb35635e49fa3ccaltech_10k_web_facesCaltech 10K Web FacesPruning training sets for learning of object categories[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)70%63441944220
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4cafadAFADOrdinal Regression with Multiple Output CNN for Age Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%78433584431
2bf8541199728262f78d4dced6fb91479b39b738clothing_co_parsingCCPClothing Co-parsing by Joint Image Segmentation and Labeling[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition70%60421803428
4793f11fbca4a7dba898b9fff68f70d868e2497ckin_faceUB KinFaceKinship Verification through Transfer Learning[pdf]Unknown58%71413022942
f41c7bb02fc97d5fb9cadd7a49c3e558a1c58a44pa_100kPA-100KHydraPlus-Net: Attentive Deep Features for Pedestrian Analysis[pdf]2017 IEEE International Conference on Computer Vision (ICCV)75%55411403617
faf40ce28857aedf183e193486f5b4b0a8c478a2iit_dehli_earIIT Dehli EarAutomated Human Identification Using Ear Imaging[pdf]Unknown50%80404063544
4d58f886f5150b2d5e48fd1b5a49e09799bf895dtexas_3dfrdTexas 3DFRDTexas 3D Face Recognition Database[pdf]2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)61%66402634027
31de9b3dd6106ce6eec9a35991b2b9083395fd0bferetFERETFERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results[pdf]Unknown52%75393655420
47aeb3b82f54b5ae8142b4bdda7b614433e69b9aam_fedAM-FEDAffectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops46%83384564339
22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2bsaivtSAIVT SoftBioA Database for Person Re-Identification in Multi-Camera Surveillance Networks[pdf]2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)58%65382764520
79828e6e9f137a583082b8b5a9dfce0c301989b8mapillaryMapillaryThe Mapillary Vistas Dataset for Semantic Understanding of Street Scenes[pdf]2017 IEEE International Conference on Computer Vision (ICCV)61%61372404316
3dc3f0b64ef80f573e3a5f96e456e52ee980b877georgia_tech_face_databaseGeorgia Tech FaceMaximum Likelihood Training of the Embedded HMM for Face Detection and Recognition[pdf]Unknown54%67363142928
6f3c76b7c0bd8e1d122c6ea808a271fd4749c951wardWARDRe-identify people in wide area camera network[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduUniversity of UdineItaly46.0810723013.2119474060%60362413821
fcc6fe6007c322641796cb8792718641856a22a7miwMIWAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
09d78009687bec46e70efcf39d4612822e61cb8craidRAiDConsistent Re-identification in a Camera Network[pdf]Unknown71%49351433413
fcc6fe6007c322641796cb8792718641856a22a7youtube_makeupYMUAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
51eba481dac6b229a7490f650dff7b17ce05df73imsituimSituSituation Recognition: Visual Semantic Role Labeling for Image Understanding[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)65%5234181466
8be57cdad86fdf8c8290df4ca3149592f3c46dd3m2vtsm2vtsThe M2VTS Multimodal Face Database (Release 1.00)[pdf]Unknown45%73334023933
31b05f65405534a696a847dd19c621b7b8588263umd_facesUMDUMDFaces: An annotated face dataset for training deep networks[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)eduUniversity of MarylandUnited States39.28996850-76.6219610379%4233923011
37d6f0eb074d207b53885bd2eb78ccc8a04be597vmuVMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
37d6f0eb074d207b53885bd2eb78ccc8a04be597youtube_makeupYMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
9c23859ec7313f2e756a3e85575735e0c52249f4facebook_100Facebook100Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
2161f6b7ee3c0acc81603b01dc0df689683577b9large_scale_person_searchLarge Scale Person SearchEnd-to-End Deep Learning for Person Search[pdf]CoRR70%46321402716
9c23859ec7313f2e756a3e85575735e0c52249f4pubfig_83pubfig83Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
18858cc936947fc96b5c06bbe3c6c2faa5614540pilot_parliamentPPBGender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification[pdf]Unknown53%59312804710
16e8b0a1e8451d5f697b94c0c2b32a00abee1d52umbUMBUMB-DB: A database of partially occluded 3D faces[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)66%47311622224
356b431d4f7a2a0a38cf971c84568207dcdbf189widerWIDERRecognize complex events from static images by fusing deep channels[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)70%44311312915
8b2dd5c61b23ead5ae5508bb8ce808b5ea26673010k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face photographs.[pdf]Journal of experimental psychology. General56%52292323614
28d4e027c7e90b51b7d8908fce68128d1964668amegafaceMegaFaceLevel Playing Field for Million Scale Face Recognition[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of WashingtonUnited States47.65432380-122.3080089472%3928112299
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3d3dfacsD3DFACSA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf]2011 International Conference on Computer Vision52%50262453118
47662d1a368daf70ba70ef2d59eb6209f98b675dfiaCMU FiAThe CMU Face In Action (FIA) Database[pdf]Unknown48%54262854016
298cbc3dfbbb3a20af4eed97906650a4ea1c29e0ferplusFER+Training deep networks for facial expression recognition with crowd-sourced label distribution[pdf]Unknown74%3425901816
e27ef52c641c2b5100a1b34fd0b819e84a31b4dfsarc3dSarc3DSARC3D: A New 3D Body Model for People Tracking and Re-identification[pdf]Unknown74%3425922112
57fe081950f21ca03b5b375ae3e84b399c015861cvc_01_barcelonaCVC-01Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection[pdf]Unknown51%47242312324
8875ae233bc074f5cd6c4ebba447b536a7e847a5voxceleb2VoxCeleb2VoxCeleb2: Deep Speaker Recognition.[pdf]Unknown71%342492312
758d7e1be64cc668c59ef33ba8882c8597406e53affectnetAffectNetAffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild[pdf]CoRR62%37231402511
d08cc366a4a0192a01e9a7495af1eb5d9f9e73aeb3d_acB3D(AC)A 3-D Audio-Visual Corpus of Affective Communication[pdf]IEEE Transactions on Multimedia55%42231922615
53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4bp4d_plusBP4D+Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%42231901726
1c2802c2199b6d15ecefe7ba0c39bfe44363de38youtube_posesYouTube PosePersonalizing Human Video Pose Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduOxford UniversityUnited Kingdom51.75208490-1.2516646064%3623132308
0cb2dd5f178e3a297a0c33068961018659d0f443ijb_bIJB-BIARPA Janus Benchmark-B Face Dataset[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduMichigan State UniversityUnited States42.71856800-84.4779157163%3522133258
41976ebc8ab76d9a6861487c97cc7fcbe3b6015fmoments_in_timeMoments in TimeMoments in Time Dataset: one million videos for event understanding[pdf]CoRReduColumbia UniversityUnited States40.84198360-73.9436897176%292272272
a0cc5f73a37723a6dd465924143f1cb4976d0169msmt_17MSMT17Person Transfer GAN to Bridge Domain Gap for Person Re-identification[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition92%242221204
fd8168f1c50de85bac58a8d328df0a50248b16aend_2006ND-2006Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition[pdf]2007 First IEEE International Conference on Biometrics: Theory, Applications, and SystemseduUniversity of Notre DameUnited States41.70456775-86.2382202663%35221331815
488e475eeb3bb39a145f23ede197cd3620f1d98aapisAPiS1.0Pedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
84fe5b4ac805af63206012d29523a1e033bc827eawe_earsAWE EarsEar Recognition: More Than a Survey[pdf]Neurocomputing77%2620601016
20388099cc415c772926e47bcbbe554e133343d1cafe#N/AThe Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults[pdf]54%3720173307
0ceda9dae8b9f322df65ca2ef02caca9758aec6fcasablancaCasablancaContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
0ceda9dae8b9f322df65ca2ef02caca9758aec6fhollywood_headsetHollywoodHeadsContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
0297448f3ed948e136bb06ceff10eccb34e5bb77ilids_mctsi-LIDS Multiple-CameraImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf]Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology57%35201522114
488e475eeb3bb39a145f23ede197cd3620f1d98asvsSVSPedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7deep_fashionDeepFashionFashion Landmark Detection in the Wild[pdf]Unknown73%2619711610
64e0690dd176a93de9d4328f6e31fc4afe1e7536duke_mtmcDuke MTMCTracking Multiple People Online and in Real Time[pdf]Unknown78%2318511210
221c18238b829c12b911706947ab38fd017acef7rap_pedestrianRAPA Richly Annotated Dataset for Pedestrian Attribute Recognition[pdf]CoRR69%2618801610
d818568838433a6d6831adde49a58cef05e0c89fagedbAgeDBAgeDB: The First Manually Collected, In-the-Wild Age Database[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduImperial College LondonUnited Kingdom51.49887085-0.1756079794%181710143
213a579af9e4f57f071b884aa872651372b661fdbbc_poseBBC PoseAutomatic and Efficient Human Pose Estimation for Sign Language Videos[pdf]International Journal of Computer Vision65%2617911611
4946ba10a4d5a7d0a38372f23e6622bd347ae273coco_actionCOCO-aDescribing Common Human Visual Actions in Images[pdf]Unknown68%251780232
d178cde92ab3dc0dd2ebee5a76a33d556c39448bjiku_mobileJiku Mobile Video DatasetThe jiku mobile video dataset[pdf]UnknowneduNational University of SingaporeSingapore1.29620180103.7768994471%241770619
2eb84aaba316b095d4bb51da1a3e4365bbf9ab1dkin_faceUB KinFaceGenealogical face recognition based on UB KinFace database[pdf]CVPR 2011 WORKSHOPSeduSUNY BuffaloUnited States42.93362780-78.8839447955%31171401121
ea050801199f98a1c7c1df6769f23f658299a3aempi_largeLarge MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
ea050801199f98a1c7c1df6769f23f658299a3aempi_smallSmall MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
1e3df3ca8feab0b36fd293fe689f93bb2aaac591immediacyImmediacyMulti-task Recurrent Neural Network for Immediacy Prediction[pdf]2015 IEEE International Conference on Computer Vision (ICCV)62%2616102216
71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6umd_facesUMDThe Do’s and Don’ts for CNN-Based Face Verification[pdf]2017 IEEE International Conference on Computer Vision Workshops (ICCVW)62%2616102168
19d1b811df60f86cbd5e04a094b07f32fff7a32ayork_3dUOY 3D Face DatabaseThree-dimensional face recognition: an eigensurface approach[pdf]2004 International Conference on Image Processing, 2004. ICIP '04.42%38162242413
b6c293f0420f7e945b5916ae44269fb53e139275erceERCeVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
b6c293f0420f7e945b5916ae44269fb53e139275tisiTimes Square IntersectionVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
2a171f8d14b6b8735001a11c217af9587d095848social_relationSocial RelationLearning Social Relation Traits from Face Images[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%231494167
5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725fpoq50 People One QuestionMerging Pose Estimates Across Space and Time[pdf]Unknown81%161330134
44d23df380af207f5ac5b41459c722c87283e1ebwider_attributeWIDER AttributeHuman Attribute Recognition by Deep Hierarchical Contexts[pdf]Unknown72%181350144
45e616093a92e5f1e61a7c6037d5f637aa8964afmalfMALFFine-grained evaluation on face detection in the wild[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)71%171250125
774cbb45968607a027ae4729077734db000a1ec5urban_tribesUrban TribesFrom Bikers to Surfers: Visual Recognition of Urban Tribes[pdf]Unknown67%181261126
a94cae786d515d3450d48267e12ca954aab791c4yawddYawDDYawDD: a yawning detection dataset[pdf]Unknown80%151231213
4e6ee936eb50dd032f7138702fa39b7c18ee8907dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf]52%2111102183
4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06distance_nighttimeLong Distance Heterogeneous FaceNighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching[pdf]Unknown50%22111131110
b71d1aa90dcbe3638888725314c0d56640c1fef1ifdbIFDBIranian Face Database with age, pose and expression[pdf]2007 International Conference on Machine VisioneduIslamic Azad UniversityIran34.8452999048.5596212048%2311122149
57178b36c21fd7f4529ac6748614bb3374714e91ijb_cIJB-CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf]2018 International Conference on Biometrics (ICB)79%141130121
ca3e88d87e1344d076c964ea89d91a75c417f5eeimfdbIMFDBIndian Movie Face Database: A benchmark for face recognition under wide variations[pdf]2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)eduBVBCET, Hubli, IndiaIndia15.3688332075.1213796065%171160115
25474c21613607f6bb7687a281d5f9d4ffa1f9f3faceplaceFace PlaceRecognizing disguised faces[pdf]Unknown34%29101901810
0f0fcf041559703998abf310e56f8a2f90ee6f21feretFERETThe FERET Evaluation Methodology for Face-Recognition Algorithms[pdf]Unknown34%2910193189
2f43b614607163abf41dfe5d17ef6749a1b61304hrt_transgenderHRT TransgenderInvestigating the Periocular-Based Face Recognition Across Gender Transformation[pdf]IEEE Transactions on Information Forensics and SecurityeduUniversity of North Carolina at WilmingtonUnited States34.22498270-77.8690774477%13103068
4563b46d42079242f06567b3f2e2f7a80cb3befevadanaVADANAVADANA: A dense dataset for facial image analysis[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduUniversity of DelawareUnited States39.68103280-75.7540184067%151050510
2624d84503bc2f8e190e061c5480b6aa4d89277aafew_vaAFEW-VAAFEW-VA database for valence and arousal estimation in-the-wild[pdf]Image Vision Comput.50%18990125
6403117f9c005ae81f1e8e6d1302f4a045e3d99dalert_airportALERT AirportA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence45%209110911
8d5998cd984e7cce307da7d46f155f9db99c6590chalearnChaLearnChaLearn looking at people: A review of events and resources[pdf]2017 International Joint Conference on Neural Networks (IJCNN)69%1394184
a8d0b149c2eadaa02204d3e4356fbc8eccf3b315hi4d_adsipHi4D-ADSIPHi4D-ADSIP 3-D dynamic facial articulation database[pdf]Image Vision Comput.60%15961411
bd26dabab576adb6af30484183c9c9c8379bf2e0scut_fbpSCUT-FBPSCUT-FBP: A Benchmark Dataset for Facial Beauty Perception[pdf]2015 IEEE International Conference on Systems, Man, and Cybernetics47%199102613
060820f110a72cbf02c14a6d1085bd6e1d994f6acaltech_crpCaltech CRPFine-grained classification of pedestrians in video: Benchmark and state of the art[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)47%1789098
2b926b3586399d028b46315d7d9fb9d879e4f79cfrav3dFRAV3DMultimodal 2D, 2.5D & 3D Face Verification[pdf]2006 International Conference on Image ProcessingeduUniversidad Rey Juan Carlos, SpainSpain40.33586610-3.8769432057%14860212
8f02ec0be21461fbcedf51d864f944cfc42c875fhda_plusHDA+The HDA+ Data Set for Research on Fully Automated Re-identification Systems[pdf]Unknown50%16881106
c570d1247e337f91e555c3be0e8c8a5aba539d9fmcgillMcGill Real WorldRobust semi-automatic head pose labeling for real-world face video sequences[pdf]Multimedia Tools and ApplicationseduMcGill UniversityCanada45.50397610-73.5749687044%188100137
041d3eedf5e45ce5c5229f0181c5c576ed1fafd6ucf_selfieUCF SelfieHow to Take a Good Selfie?[pdf]Unknown73%1183075
633c851ebf625ad7abdda2324e9de093cf623141appa_realAPPA-REALApparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database[pdf]2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)70%1073083
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
7f4040b482d16354d5938c1d1b926b544652bf5bnova_emotionsNovaemötions DatasetCompetitive affective gaming: winning with a smile[pdf]UnknowneduUniversidade NOVA de Lisboa, Caparica, PortugalPortugal38.66096400-9.2058130078%972054
4b4106614c1d553365bad75d7866bff0de6056edufiUFIUnconstrained Facial Images: Database for Face Recognition Under Real-World Conditions[pdf]Unknown50%1266046
22f656d0f8426c84a33a267977f511f127bfd7f3expwExpWFrom Facial Expression Recognition to Interpersonal Relation Prediction[pdf]International Journal of Computer Vision55%1165054
4af89578ac237278be310f7660a408b03f12d603geofacesGeoFacesLarge-scale geo-facial image analysis[pdf]EURASIP J. Image and Video Processing100%660042
2d45cfd838016a6e39f6b766ffe85acd649440c7mcgillMcGill Real WorldHierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos[pdf]Computer Vision and Image Understanding75%862053
1a40092b493c6b8840257ab7f96051d1a4dbfeb2sports_videos_in_the_wildSVWSports Videos in the Wild (SVW): A video dataset for sports analysis[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)86%761152
8627f019882b024aef92e4eb9355c499c733e5b7usedUSED Social Event DatasetUSED: a large-scale social event detection dataset[pdf]UnknowneduUniversity of TrentoItaly46.0658836011.1159894086%761034
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832elagLAGLarge age-gap face verification by feature injection in deep networks[pdf]Pattern Recognition Letters71%752034
9e5378e7b336c89735d3bb15cf67eff96f86d39aprecariousPrecariousExpecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)36%14590121
07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1uccsUCCSLarge scale unconstrained open set face database[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)companySecurics Inc., Colorado Springs, COUnited States38.83388160-104.8213634083%651042
d4f1eb008eb80595bcfdac368e23ae9754e1e745uccsUCCSUnconstrained Face Detection and Open-Set Face Recognition Challenge[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)100%550041
922e0a51a3b8c67c4c6ac09a577ff674cbd28b34v47V47Re-identification of pedestrians with variable occlusion and scale[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduKingston UniversityUnited Kingdom51.42930860-0.2684044056%954154
7ebb153704706e457ab57b432793d2b6e5d12592vgg_celebs_in_placesCIPFaces in Places: compound query retrieval[pdf]Unknown100%550032
56ae6d94fc6097ec4ca861f0daa87941d1c10b70cmdpCMDPDistance Estimation of an Unknown Person from a Portrait[pdf]Unknown44%945063
563c940054e4b456661762c1ab858e6f730c3159data_61Data61 PedestrianA Multi-modal Graphical Model for Scene Analysis[pdf]2015 IEEE Winter Conference on Applications of Computer Vision50%844053
287ddcb3db5562235d83aee318f318b8d5e43fb1erceERCeLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
dd65f71dac86e36eecbd3ed225d016c3336b4a13families_in_the_wildFIWVisual Kinship Recognition of Families in the Wild[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduUniversity of Massachusetts DartmouthUnited States41.62772475-71.0072450180%541023
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34hrt_transgenderHRT TransgenderIs the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)57%743135
9cc8cf0c7d7fa7607659921b6ff657e17e135eccmafaMAsked FAcesDetecting Masked Faces in the Wild with LLE-CNNs[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)80%541041
c72a2ea819df9b0e8cd267eebcc6528b8741e03dmegaageMegaAgeQuantifying Facial Age by Posterior of Age Comparisons[pdf]CoRR100%440040
23e824d1dfc33f3780dd18076284f07bd99f1c43mifsMIFSSpoofing faces using makeup: An investigative study[pdf]2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)eduINRIA MéditerranéeFrance43.615813107.0683800067%642015
22909dd19a0ec3b6065334cb5be5392cb24d839dpetsPETS 2017PETS 2017: Dataset and Challenge[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)44%945018
54983972aafc8e149259d913524581357b0f91c3reseedReSEEDReSEED: social event dEtection dataset[pdf]Unknown67%642115
287ddcb3db5562235d83aee318f318b8d5e43fb1tisiTimes Square IntersectionLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
9e31e77f9543ab42474ba4e9330676e18c242e72imdb_faceIMDb FaceThe Devil of Face Recognition is in the Noise[pdf]UnknowneduNanyang Technological UniversitySingapore1.34841040103.6829796550%633041
a7fe834a0af614ce6b50dc093132b031dd9a856bmarket_1501Market 1501Orientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
578d4ad74818086bb64f182f72e2c8bd31e3d426mr2MR2The MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf]Behavior research methods43%734070
ad01687649d95cd5b56d7399a9603c4b8e2217d7mrp_droneMRP DroneInvestigating Open-World Person Re-identification Using a Drone[pdf]Unknown43%734152
a7fe834a0af614ce6b50dc093132b031dd9a856bpku_reidPKU-ReidOrientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
3531332efe19be21e7401ba1f04570a142617236ufddUFDDPushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results[pdf]CoRR75%431040
17b46e2dad927836c689d6787ddb3387c6159ecegeofacesGeoFacesGeoFaceExplorer: exploring the geo-dependence of facial attributes[pdf]Unknown100%220011
e58dd160a76349d46f881bd6ddbc2921f08d1050gfwGrouping Face in the WildMerge or Not? Learning to Group Faces via Imitation Learning[pdf]Unknown100%220020
4eab317b5ac436a949849ed286baa3de2a541eeflaofiwLAOFIWTurning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings[pdf]Unknown100%220020
f6c8d5e35d7e4d60a0104f233ac1a3ab757da53fpku_reidPKU-ReidSwiss-System Based Cascade Ranking for Gait-Based Person Re-Identification[pdf]Unknown50%422012
4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b384613dddb_unconstrained3D DynamicA 3D Dynamic Database for Unconstrained Face Recognition[pdf]Unknown50%211011
a40f9bfd3c45658ee8da70e1f2dfbe1f0c744d434dfab4DFAB4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications[pdf]CoRR25%413022
65355cbb581a219bd7461d48b3afd115263ea760complex_activitiesOngoing Complex ActivitiesRecognition of ongoing complex activities by sequence prediction over a hierarchical label space[pdf]2016 IEEE Winter Conference on Applications of Computer Vision (WACV)33%312030
55c40cbcf49a0225e72d911d762c27bb1c2d14aaifadIFADIndian Face Age Database: A Database for Face Recognition with Age Variation[pdf]Unknown50%211020
c06b13d0ec3f5c43e2782cd22542588e233733c3nova_emotionsNovaemötions DatasetCrowdsourcing facial expressions for affective-interaction[pdf]Computer Vision and Image Understanding100%110010
2306b2a8fba28539306052764a77a0d0f5d1236aqmul_surv_faceQMUL-SurvFaceSurveillance Face Recognition Challenge[pdf]CoRReduQueen Mary University of LondonUnited Kingdom51.52472720-0.03931035100%110010
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9stair_actionsSTAIR ActionSTAIR Actions: A Video Dataset of Everyday Home Actions[pdf]CoRR100%110010
5ad4e9f947c1653c247d418f05dad758a3f9277bwlfdbWLFDBWLFDB : Weakly Labeled Face Databases[pdf]Unknown100%110001
7b92d1e53cc87f7a4256695de590098a2f30261eappa_realAPPA-REALFrom Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)100%000000
1dc35905a1deff8bc74688f2d7e2f48fd2273275caltech_pedestriansCaltech PedestriansPedestrian detection: A benchmark[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
15e1af79939dbf90790b03d8aa02477783fb1d0fduke_mtmcDuke MTMCUnlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro[pdf]2017 IEEE International Conference on Computer Vision (ICCV)100%000000
72a155c987816ae81c858fddbd6beab656d86220europersonsEuroCity PersonsThe EuroCity Persons Dataset: A Novel Benchmark for Object Detection[pdf]CoRR0%202020
670637d0303a863c1548d5b19f705860a23e285cface_tracerFaceTracerFace swapping: automatically replacing faces in photographs[pdf]Unknown100%000000
12ad3b5bbbf407f8e54ea692c07633d1a867c566grazGraz PedestrianObject recognition using segmentation for feature detection[pdf]Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.eduInst. of Comput. Sci., Univ. of Leoben, AustriaAustria47.3847372015.09302010100%000000
bd88bb2e4f351352d88ee7375af834360e223498hda_plusHDA+HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf]Unknown0%202012
0ab7cff2ccda7269b73ff6efd9d37e1318f7db25ibm_difIBM Diversity in FacesFacial Coding Scheme Reference 1 Craniofacial Distances[pdf]Unknown100%000000
066d71fcd997033dce4ca58df924397dfe0b5fd1ifdbIFDBIranian Face Database and Evaluation with a New Detection Algorithm[pdf]Unknown100%000000
21d9d0deed16f0ad62a4865e9acf0686f4f15492images_of_groupsImages of GroupsUnderstanding images of groups of people[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.94272826100%000000
140438a77a771a8fb656b39a78ff488066eb6b50lfpwLFPWLocalizing Parts of Faces Using a Consensus of Exemplars[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence100%000000
079a0a3bf5200994e1f972b1b9197bf2f90e87d4mit_cbclMIT CBCLComponent-Based Face Recognition with 3D Morphable Models[pdf]2004 Conference on Computer Vision and Pattern Recognition Workshop100%000000
2fda164863a06a92d3a910b96eef927269aeb730names_and_facesNews DatasetNames and faces in the news[pdf]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.100%000000
d3200d49a19a4a4e4e9745ee39649b65d80c834bscut_headSCUT HEADDetecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture[pdf]2018 24th International Conference on Pattern Recognition (ICPR)100%000000
8990cdce3f917dad622e43e033db686b354d057ctiny_facesTinyFaceLow-Resolution Face Recognition[pdf]CoRR100%000000
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_brusselsTUD-BrusselsMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_motionpairsTUD-MotionparisMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
01959ef569f74c286956024866c1d107099199f7vqaVQAVQA: Visual Question Answering[pdf]2015 IEEE International Conference on Computer Vision (ICCV)100%000000
9b9bf5e623cb8af7407d2d2d857bc3f1b531c182who_goes_thereWGTWho goes there?: approaches to mapping facial appearance diversity[pdf]UnknowneduUniversity of KentuckyUnited States38.03337420-84.50177580100%000000
36bccfb2ad847096bc76777e544f305813cd8f5bwildtrackWildTrackWILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition100%000000
\ No newline at end of file diff --git a/scraper/reports/report_index.html b/scraper/reports/report_index.html index 6c04165f..4fc433e1 100644 --- a/scraper/reports/report_index.html +++ b/scraper/reports/report_index.html @@ -1 +1 @@ -All Papers

All Papers

Paper IDMegapixels KeyMegapixels NameReport LinkPDF LinkJournalTypeAddressCountryLatLngCoverageTotal CitationsGeocoded CitationsUnknown CitationsEmpty CitationsWith PDFWith DOI
3325860c0c82a93b2eac654f5324dd6a776f609empii_human_poseMPII Human Pose2D Human Pose Estimation: New Benchmark and State of the Art Analysis[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition66%3872541331929196
e4754afaa15b1b53e70743880484b8d0736990fffiw_300300-W300 Faces In-The-Wild Challenge: database and results[pdf]Image Vision Comput.eduImperial College LondonUnited Kingdom51.49887085-0.1756079771%129923767455
044d9a8c61383312cdafbcc44b9d00d650b21c70fiw_300300-W300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge[pdf]2013 IEEE International Conference on Computer Vision Workshops79%3232556815208120
2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e3dpes3DPeS3DPeS: 3D people dataset for surveillance and forensics[pdf]Unknown62%133825197358
a40f9bfd3c45658ee8da70e1f2dfbe1f0c744d434dfab4DFAB4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications[pdf]CoRR25%413022
31b58ced31f22eab10bd3ee2d9174e7c14c27c01tiny_imagesTiny Images80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence57%99957442589644337
d08cc366a4a0192a01e9a7495af1eb5d9f9e73aeb3d_acB3D(AC)A 3-D Audio-Visual Corpus of Affective Communication[pdf]IEEE Transactions on Multimedia55%42231922615
4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b384613dddb_unconstrained3D DynamicA 3D Dynamic Database for Unconstrained Face Recognition[pdf]Unknown50%211011
639937b3a1b8bded3f7e9a40e85bd3770016cf3cbfmBFMA 3D Face Model for Pose and Illumination Invariant Face Recognition[pdf]2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance57%34319414923223114
cc589c499dcf323fe4a143bbef0074c3e31f9b60bu_3dfeBU-3DFEA 3D facial expression database for facial behavior research[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)54%58831627144306282
22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2bsaivtSAIVT SoftBioA Database for Person Re-Identification in Multi-Camera Surveillance Networks[pdf]2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)58%65382764520
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3d3dfacsD3DFACSA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf]2011 International Conference on Computer Vision52%50262453118
563c940054e4b456661762c1ab858e6f730c3159data_61Data61 PedestrianA Multi-modal Graphical Model for Scene Analysis[pdf]2015 IEEE Winter Conference on Applications of Computer Vision50%844053
221c18238b829c12b911706947ab38fd017acef7rap_pedestrianRAPA Richly Annotated Dataset for Pedestrian Attribute Recognition[pdf]CoRR69%2618801610
013909077ad843eb6df7a3e8e290cfd5575999d2fiw_300300-WA Semi-automatic Methodology for Facial Landmark Annotation[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops80%18414836812067
3b4ec8af470948a72a6ed37a9fd226719a874ebcsdu_vidSDU-VIDA Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification[pdf]2015 IEEE International Conference on Computer Vision (ICCV)66%95633265045
6403117f9c005ae81f1e8e6d1302f4a045e3d99dalert_airportALERT AirportA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence45%209110911
0d3bb75852098b25d90f31d2f48fd0cb4944702bface_scrubFaceScrubA data-driven approach to cleaning large face datasets[pdf]2014 IEEE International Conference on Image Processing (ICIP)64%138894919541
b91f54e1581fbbf60392364323d00a0cd43e493cbp4d_spontanousBP4D-SpontanousA high-resolution spontaneous 3D dynamic facial expression database[pdf]2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduSUNY BinghamtonUnited States42.08779975-75.9706606652%154807468075
8b56e33f33e582f3e473dba573a16b598ed9bcdcfeiFEIA new ranking method for principal components analysis and its application to face image analysis[pdf]Image Vision Comput.55%1699376669102
2624d84503bc2f8e190e061c5480b6aa4d89277aafew_vaAFEW-VAAFEW-VA database for valence and arousal estimation in-the-wild[pdf]Image Vision Comput.50%18990125
2ad0ee93d029e790ebb50574f403a09854b65b7eyale_facesYaleFacesAcquiring linear subspaces for face recognition under variable lighting[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence55%99955444594495491
57fe081950f21ca03b5b375ae3e84b399c015861cvc_01_barcelonaCVC-01Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection[pdf]Unknown51%47242312324
758d7e1be64cc668c59ef33ba8882c8597406e53affectnetAffectNetAffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild[pdf]CoRR62%37231402511
47aeb3b82f54b5ae8142b4bdda7b614433e69b9aam_fedAM-FEDAffectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops46%83384564339
1be498d4bbc30c3bfd0029114c784bc2114d67c0adienceAdienceAge and Gender Estimation of Unfiltered Faces[pdf]IEEE Transactions on Information Forensics and SecurityeduOpen University of IsraelIsrael32.7782416534.9956567387%1791562319880
d818568838433a6d6831adde49a58cef05e0c89fagedbAgeDBAgeDB: The First Manually Collected, In-the-Wild Age Database[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduImperial College LondonUnited Kingdom51.49887085-0.1756079794%181710143
a74251efa970b92925b89eeef50a5e37d9281ad0aflwAFLWAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduTU GrazAustria47.0707140015.4395040069%31821810027211107
2ce2560cf59db59ce313bbeb004e8ce55c5ce928texas_3dfrdTexas 3DFRDAnthropometric 3D Face Recognition[pdf]International Journal of Computer Vision63%91573456031
633c851ebf625ad7abdda2324e9de093cf623141appa_realAPPA-REALApparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database[pdf]2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)70%1073083
0df0d1adea39a5bef318b74faa37de7f3e00b452mpii_gazeMPIIGazeAppearance-based gaze estimation in the wild[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)73%1491094039454
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dpubfigPubFigAttribute and simile classifiers for face verification[pdf]2009 IEEE 12th International Conference on Computer Vision64%91458532947586316
faf40ce28857aedf183e193486f5b4b0a8c478a2iit_dehli_earIIT Dehli EarAutomated Human Identification Using Ear Imaging[pdf]Unknown50%80404063544
2160788824c4c29ffe213b2cbeb3f52972d73f373d_rma3D-RMAAutomatic 3D face authentication[pdf]Image Vision Comput.54%100544686336
213a579af9e4f57f071b884aa872651372b661fdbbc_poseBBC PoseAutomatic and Efficient Human Pose Estimation for Sign Language Videos[pdf]International Journal of Computer Vision65%2617911611
fcc6fe6007c322641796cb8792718641856a22a7miwMIWAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
fcc6fe6007c322641796cb8792718641856a22a7youtube_makeupYMUAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
0a85bdff552615643dd74646ac881862a7c7072dpipaPIPABeyond frontal faces: Improving Person Recognition using multiple cues[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)companyFacebookUnited States37.39367170-122.0807262091%5449414112
2acf7e58f0a526b957be2099c10aab693f795973bosphorusThe BosphorusBosphorus Database for 3D Face Analysis[pdf]Unknown56%35219815417162188
37d6f0eb074d207b53885bd2eb78ccc8a04be597vmuVMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
37d6f0eb074d207b53885bd2eb78ccc8a04be597youtube_makeupYMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
8d5998cd984e7cce307da7d46f155f9db99c6590chalearnChaLearnChaLearn looking at people: A review of events and resources[pdf]2017 International Joint Conference on Neural Networks (IJCNN)69%1394184
2bf8541199728262f78d4dced6fb91479b39b738clothing_co_parsingCCPClothing Co-parsing by Joint Image Segmentation and Labeling[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition70%60421803428
22ad2c8c0f4d6aa4328b38d894b814ec22579761gallagherGallagherClothing cosegmentation for recognizing people[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.9427282665%17811662710086
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0leeds_sports_poseLeeds Sports PoseClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0stickmen_buffyBuffy StickmenClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
45c31cde87258414f33412b3b12fc5bec7cb3ba9jaffeJAFFECoding Facial Expressions with Gabor Wavelets[pdf]Unknown57%89950839151431451
b1f4423c227fa37b9680787be38857069247a307afew_vaAFEW-VACollecting Large, Richly Annotated Facial-Expression Databases from Movies[pdf]IEEE MultiMediaeduAustralian National UniversityAustralia-35.27769990149.1185270064%1811156688797
7f4040b482d16354d5938c1d1b926b544652bf5bnova_emotionsNovaemötions DatasetCompetitive affective gaming: winning with a smile[pdf]UnknowneduUniversidade NOVA de Lisboa, Caparica, PortugalPortugal38.66096400-9.2058130078%972054
079a0a3bf5200994e1f972b1b9197bf2f90e87d4mit_cbclMIT CBCLComponent-Based Face Recognition with 3D Morphable Models[pdf]2004 Conference on Computer Vision and Pattern Recognition Workshop100%000000
23fc83c8cfff14a16df7ca497661264fc54ed746cohn_kanadeCKComprehensive Database for Facial Expression Analysis[pdf]Unknown55%99955344669540439
09d78009687bec46e70efcf39d4612822e61cb8craidRAiDConsistent Re-identification in a Camera Network[pdf]Unknown71%49351433413
0ceda9dae8b9f322df65ca2ef02caca9758aec6fcasablancaCasablancaContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
0ceda9dae8b9f322df65ca2ef02caca9758aec6fhollywood_headsetHollywoodHeadsContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
c06b13d0ec3f5c43e2782cd22542588e233733c3nova_emotionsNovaemötions DatasetCrowdsourcing facial expressions for affective-interaction[pdf]Computer Vision and Image Understanding100%110010
8355d095d3534ef511a9af68a3b2893339e3f96bimdb_wikiIMDB-WikiDEX: Deep EXpectation of Apparent Age from a Single Image[pdf]2015 IEEE International Conference on Computer Vision Workshop (ICCVW)79%122962647548
5a5f0287484f0d480fed1ce585dbf729586f0edcdisfaDISFADISFA: A Spontaneous Facial Action Intensity Database[pdf]IEEE Transactions on Affective ComputingeduUniversity of DenverUnited States39.67665410-104.9622030054%18410084179689
10195a163ab6348eef37213a46f60a3d87f289c5imdb_wikiIMDB-WikiDeep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks[pdf]International Journal of Computer VisioneduETH ZurichSwitzerland47.376313008.5476699072%1451054099351
162ea969d1929ed180cc6de9f0bf116993ff6e06vgg_facesVGG FaceDeep Face Recognition[pdf]Unknown65%99964635348558429
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4celebaCelebADeep Learning Face Attributes in the Wild[pdf]2015 IEEE International Conference on Computer Vision (ICCV)eduChinese University of Hong KongChina22.41626320114.2109318057%91952639261694201
18010284894ed0edcca74e5bf768ee2e15ef7841deep_fashionDeepFashionDeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)64%17611264211362
6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3cuhk_campus_03CUHK03 CampusDeepReID: Deep Filter Pairing Neural Network for Person Re-identification[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition73%56841215619320235
13f06b08f371ba8b5d31c3e288b4deb61335b462eth_andreas_essETHZ PedestrianDepth and Appearance for Mobile Scene Analysis[pdf]2007 IEEE 11th International Conference on Computer VisioneduETH ZurichSwitzerland47.376313008.5476699063%32420312126193127
4946ba10a4d5a7d0a38372f23e6622bd347ae273coco_actionCOCO-aDescribing Common Human Visual Actions in Images[pdf]Unknown68%251780232
7808937b46acad36e43c30ae4e9f3fd57462853dbpadBPADDescribing people: A poselet-based approach to attribute classification[pdf]2011 International Conference on Computer Vision61%230140901416366
d3200d49a19a4a4e4e9745ee39649b65d80c834bscut_headSCUT HEADDetecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture[pdf]2018 24th International Conference on Pattern Recognition (ICPR)100%000000
9cc8cf0c7d7fa7607659921b6ff657e17e135eccmafaMAsked FAcesDetecting Masked Faces in the Wild with LLE-CNNs[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)80%541041
56ae6d94fc6097ec4ca861f0daa87941d1c10b70cmdpCMDPDistance Estimation of an Unknown Person from a Portrait[pdf]Unknown44%945063
84fe5b4ac805af63206012d29523a1e033bc827eawe_earsAWE EarsEar Recognition: More Than a Survey[pdf]Neurocomputing77%2620601016
133f01aec1534604d184d56de866a4bd531dac87lfwLFWEffective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence60%183109741310377
c900e0ad4c95948baaf0acd8449fde26f9b4952aemotio_netEmotioNet DatabaseEmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)52%86454175429
2161f6b7ee3c0acc81603b01dc0df689683577b9large_scale_person_searchLarge Scale Person SearchEnd-to-End Deep Learning for Person Search[pdf]CoRR70%46321402716
1bd1645a629f1b612960ab9bba276afd4cf7c666brainwashBrainwashEnd-to-End People Detection in Crowded Scenes[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduStanford UniversityUnited States37.43131385-122.1693653561%67412534223
6273b3491e94ea4dd1ce42b791d77bdc96ee73a8viperVIPeREvaluating Appearance Models for Recognition, Reacquisition, and Tracking[pdf]UnknowneduUniversity of California, Santa CruzUnited States36.99158470-122.0582771066%62441421033342276
2258e01865367018ed6f4262c880df85b94959f8motMOTEvaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics[pdf]EURASIP J. Image and Video Processing58%63236626444358264
9e5378e7b336c89735d3bb15cf67eff96f86d39aprecariousPrecariousExpecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)36%14590121
35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62coco_qaCOCO QAExploring Models and Data for Image Question Answering[pdf]Unknown61%206126801116239
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
75da1df4ed319926c544eefe17ec8d720feef8c0fddbFDDBFDDB: A benchmark for face detection in unconstrained settings[pdf]Unknown65%38024713316202164
31de9b3dd6106ce6eec9a35991b2b9083395fd0bferetFERETFERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results[pdf]Unknown52%75393655420
0e986f51fe45b00633de9fd0c94d082d2be51406afwAFWFace detection, pose estimation, and landmark localization in the wild[pdf]2012 IEEE Conference on Computer Vision and Pattern Recognition71%99970929035576422
560e0e58d0059259ddf86fcec1fa7975dee6a868youtube_facesYouTubeFacesFace recognition in unconstrained videos with matched background similarity[pdf]CVPR 2011eduTel Aviv UniversityIsrael32.1119889034.8045970266%50933817023294216
670637d0303a863c1548d5b19f705860a23e285cface_tracerFaceTracerFace swapping: automatically replacing faces in photographs[pdf]Unknown100%000000
6204776d31359d129a582057c2d788a14f8aadebyoutube_celebritiesYouTube CelebritiesFace tracking and recognition with visual constraints in real-world videos[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduRutgers UniversityUnited States40.47913175-74.4316886857%26715111511125121
4c170a0dcc8de75587dae21ca508dab2f9343974face_tracerFaceTracerFaceTracer: A Search Engine for Large Collections of Images with Faces[pdf]Unknown64%225144811714677
7ebb153704706e457ab57b432793d2b6e5d12592vgg_celebs_in_placesCIPFaces in Places: compound query retrieval[pdf]Unknown100%550032
0ab7cff2ccda7269b73ff6efd9d37e1318f7db25ibm_difIBM Diversity in FacesFacial Coding Scheme Reference 1 Craniofacial Distances[pdf]Unknown100%000000
8a3c5507237957d013a0fe0f082cab7f757af6eemaflMAFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
8a3c5507237957d013a0fe0f082cab7f757af6eemtflMTFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7deep_fashionDeepFashionFashion Landmark Detection in the Wild[pdf]Unknown73%2619711610
060820f110a72cbf02c14a6d1085bd6e1d994f6acaltech_crpCaltech CRPFine-grained classification of pedestrians in video: Benchmark and state of the art[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)47%1789098
45e616093a92e5f1e61a7c6037d5f637aa8964afmalfMALFFine-grained evaluation on face detection in the wild[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)71%171250125
1aad2da473888cb7ebc1bfaa15bfa0f1502ce005jpl_poseJPL-Interaction datasetFirst-Person Activity Recognition: What Are They Doing to Me?[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition67%1489949710543
7b92d1e53cc87f7a4256695de590098a2f30261eappa_realAPPA-REALFrom Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)100%000000
774cbb45968607a027ae4729077734db000a1ec5urban_tribesUrban TribesFrom Bikers to Surfers: Visual Recognition of Urban Tribes[pdf]Unknown67%181261126
22f656d0f8426c84a33a267977f511f127bfd7f3expwExpWFrom Facial Expression Recognition to Interpersonal Relation Prediction[pdf]International Journal of Computer Vision55%1165054
18c72175ddbb7d5956d180b65a96005c100f6014yale_facesYaleFacesFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf]IEEE Trans. Pattern Anal. Mach. Intell.56%99956143866498462
06f02199690961ba52997cde1527e714d2b3bf8fcolumbia_gazeColumbia GazeGaze locking: passive eye contact detection for human-object interaction[pdf]UnknowneduColumbia UniversityUnited States40.84198360-73.9436897176%79601904934
18858cc936947fc96b5c06bbe3c6c2faa5614540pilot_parliamentPPBGender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification[pdf]Unknown53%59312804710
2eb84aaba316b095d4bb51da1a3e4365bbf9ab1dkin_faceUB KinFaceGenealogical face recognition based on UB KinFace database[pdf]CVPR 2011 WORKSHOPSeduSUNY BuffaloUnited States42.93362780-78.8839447955%31171401121
2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9grazGraz PedestrianGeneric object recognition with boosting[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduTU GrazAustria47.0707140015.4395040053%2931551381619597
17b46e2dad927836c689d6787ddb3387c6159ecegeofacesGeoFacesGeoFaceExplorer: exploring the geo-dependence of facial attributes[pdf]Unknown100%220011
bd88bb2e4f351352d88ee7375af834360e223498hda_plusHDA+HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf]Unknown0%202012
a8d0b149c2eadaa02204d3e4356fbc8eccf3b315hi4d_adsipHi4D-ADSIPHi4D-ADSIP 3-D dynamic facial articulation database[pdf]Image Vision Comput.60%15961411
2d45cfd838016a6e39f6b766ffe85acd649440c7mcgillMcGill Real WorldHierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos[pdf]Computer Vision and Image Understanding75%862053
3cd40bfa1ff193a96bde0207e5140a399476466ctvhiTVHIHigh Five: Recognising human interactions in TV shows[pdf]Unknown57%985642106628
04c2cda00e5536f4b1508cbd80041e9552880e67hipsterwarsHipsterwarsHipster Wars: Discovering Elements of Fashion Styles[pdf]Unknown64%95613445935
10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5inria_personINRIA PedestrianHistograms of oriented gradients for human detection[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduINRIA Rhone-Alps, Montbonnot, FranceFrance45.217886005.8073690057%99957342641419509
041d3eedf5e45ce5c5229f0181c5c576ed1fafd6ucf_selfieUCF SelfieHow to Take a Good Selfie?[pdf]Unknown73%1183075
44d23df380af207f5ac5b41459c722c87283e1ebwider_attributeWIDER AttributeHuman Attribute Recognition by Deep Hierarchical Contexts[pdf]Unknown72%181350144
44484d2866f222bbb9b6b0870890f9eea1ffb2d0cuhk_campus_03CUHK03 CampusHuman Reidentification with Transferred Metric Learning[pdf]Unknown69%280194869139137
f41c7bb02fc97d5fb9cadd7a49c3e558a1c58a44pa_100kPA-100KHydraPlus-Net: Attentive Deep Features for Pedestrian Analysis[pdf]2017 IEEE International Conference on Computer Vision (ICCV)75%55411403617
57178b36c21fd7f4529ac6748614bb3374714e91ijb_cIJB-CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf]2018 International Conference on Biometrics (ICB)79%141130121
0cb2dd5f178e3a297a0c33068961018659d0f443ijb_bIJB-BIARPA Janus Benchmark-B Face Dataset[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduMichigan State UniversityUnited States42.71856800-84.4779157163%3522133258
0297448f3ed948e136bb06ceff10eccb34e5bb77ilids_mctsi-LIDS Multiple-CameraImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf]Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology57%35201522114
7f23a4bb0c777dd72cca7665a5f370ac7980217eduke_mtmcDuke MTMCImproving Person Re-identification by Attribute and Identity Learning[pdf]CoRR84%87731404342
55c40cbcf49a0225e72d911d762c27bb1c2d14aaifadIFADIndian Face Age Database: A Database for Face Recognition with Age Variation[pdf]Unknown50%211020
ca3e88d87e1344d076c964ea89d91a75c417f5eeimfdbIMFDBIndian Movie Face Database: A benchmark for face recognition under wide variations[pdf]2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)eduBVBCET, Hubli, IndiaIndia15.3688332075.1213796065%171160115
95f12d27c3b4914e0668a268360948bce92f7db3helenHelenInteractive Facial Feature Localization[pdf]UnknowncompanyAdobeUnited States37.33077030-121.8940951085%352298548212146
ad01687649d95cd5b56d7399a9603c4b8e2217d7mrp_droneMRP DroneInvestigating Open-World Person Re-identification Using a Drone[pdf]Unknown43%734152
2f43b614607163abf41dfe5d17ef6749a1b61304hrt_transgenderHRT TransgenderInvestigating the Periocular-Based Face Recognition Across Gender Transformation[pdf]IEEE Transactions on Information Forensics and SecurityeduUniversity of North Carolina at WilmingtonUnited States34.22498270-77.8690774477%13103068
066d71fcd997033dce4ca58df924397dfe0b5fd1ifdbIFDBIranian Face Database and Evaluation with a New Detection Algorithm[pdf]Unknown100%000000
b71d1aa90dcbe3638888725314c0d56640c1fef1ifdbIFDBIranian Face Database with age, pose and expression[pdf]2007 International Conference on Machine VisioneduIslamic Azad UniversityIran34.8452999048.5596212048%2311122149
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34hrt_transgenderHRT TransgenderIs the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)57%743135
0b440695c822a8e35184fb2f60dcdaa8a6de84aekinectfaceKinectFaceDBKinectFaceDB: A Kinect Database for Face Recognition[pdf]IEEE Transactions on Systems, Man, and Cybernetics: SystemseduUniversity of North Carolina at Chapel HillUnited States35.91139710-79.0504529061%82503262852
4793f11fbca4a7dba898b9fff68f70d868e2497ckin_faceUB KinFaceKinship Verification through Transfer Learning[pdf]Unknown58%71413022942
2d3482dcff69c7417c7b933f22de606a0e8e42d4lfwLFWLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf]UnknowneduUniversity of MassachusettsUnited States42.38897850-72.5286987069%123853837151
370b5757a5379b15e30d619e4d3fb9e8e13f3256lfwLFWLabeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments[pdf]Unknown63%99963236759598382
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22lfwLFWLabeled Faces in the Wild: A Survey[pdf]UnknowneduStevens Institute of TechnologyUnited States40.74225200-74.0270949064%109703976643
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832elagLAGLarge age-gap face verification by feature injection in deep networks[pdf]Pattern Recognition Letters71%752034
07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1uccsUCCSLarge scale unconstrained open set face database[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)companySecurics Inc., Colorado Springs, COUnited States38.83388160-104.8213634083%651042
4af89578ac237278be310f7660a408b03f12d603geofacesGeoFacesLarge-scale geo-facial image analysis[pdf]EURASIP J. Image and Video Processing100%660042
a0fd85b3400c7b3e11122f44dc5870ae2de9009amaflMAFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
a0fd85b3400c7b3e11122f44dc5870ae2de9009amtflMTFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
853bd61bc48a431b9b1c7cab10c603830c488e39casia_webfaceCASIA WebfaceLearning Face Representation from Scratch[pdf]CoRReduChinese Academy of SciencesChina40.00447950116.3702380071%47633913719290182
2a171f8d14b6b8735001a11c217af9587d095848social_relationSocial RelationLearning Social Relation Traits from Face Images[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%231494167
4e4746094bf60ee83e40d8597a6191e463b57f76leeds_sports_pose_extendedLeeds Sports Pose ExtendedLearning effective human pose estimation from inaccurate annotation[pdf]CVPR 2011eduUniversity of LeedsUnited Kingdom53.80387185-1.5524571271%16912049710865
287ddcb3db5562235d83aee318f318b8d5e43fb1erceERCeLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
287ddcb3db5562235d83aee318f318b8d5e43fb1tisiTimes Square IntersectionLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
5981e6479c3fd4e31644db35d236bfb84ae46514motMOTLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduUniversity of Southern CaliforniaUnited States34.02241490-118.2863440761%32620012522190137
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_buffyBuffy StickmenLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
28d4e027c7e90b51b7d8908fce68128d1964668amegafaceMegaFaceLevel Playing Field for Million Scale Face Recognition[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of WashingtonUnited States47.65432380-122.3080089472%3928112299
46a01565e6afe7c074affb752e7069ee3bf2e4efsdu_vidSDU-VIDLocal Descriptors Encoded by Fisher Vectors for Person Re-identification[pdf]Unknown67%197132651510888
140438a77a771a8fb656b39a78ff488066eb6b50lfpwLFPWLocalizing Parts of Faces Using a Consensus of Exemplars[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence100%000000
38b55d95189c5e69cf4ab45098a48fba407609b4cuhk_campus_03CUHK03 CampusLocally Aligned Feature Transforms across Views[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition64%2581649415136117
8990cdce3f917dad622e43e033db686b354d057ctiny_facesTinyFaceLow-Resolution Face Recognition[pdf]CoRR100%000000
c0387e788a52f10bf35d4d50659cfa515d89fbecmarsMARSMARS: A Video Benchmark for Large-Scale Person Re-Identification[pdf]Unknown68%1681155349769
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorphMORPH CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorph_ncMORPH Non-CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
291265db88023e92bb8c8e6390438e5da148e8f5mscelebMsCelebMS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition[pdf]UnknowncompanyMicrosoftUnited States47.64233180-122.1369302078%18014139812059
3dc3f0b64ef80f573e3a5f96e456e52ee980b877georgia_tech_face_databaseGeorgia Tech FaceMaximum Likelihood Training of the Embedded HMM for Face Detection and Recognition[pdf]Unknown54%67363142928
e58dd160a76349d46f881bd6ddbc2921f08d1050gfwGrouping Face in the WildMerge or Not? Learning to Group Faces via Imitation Learning[pdf]Unknown100%220020
5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725fpoq50 People One QuestionMerging Pose Estimates Across Space and Time[pdf]Unknown81%161330134
5e0f8c355a37a5a89351c02f174e7a5ddcb98683cocoCOCOMicrosoft COCO: Common Objects in Context[pdf]Unknown61%99960839125722259
41976ebc8ab76d9a6861487c97cc7fcbe3b6015fmoments_in_timeMoments in TimeMoments in Time Dataset: one million videos for event understanding[pdf]CoRReduColumbia UniversityUnited States40.84198360-73.9436897176%292272272
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_multiviewTUD-MultiviewMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_stadtmitteTUD-StadtmitteMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
3b5b6d19d4733ab606c39c69a889f9e67967f151qmul_gridGRIDMulti-camera activity correlation analysis[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103569%142984477764
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_brusselsTUD-BrusselsMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_motionpairsTUD-MotionparisMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
32c801cb7fbeb742edfd94cccfca4934baec71daucf_crowdUCF-CC-50Multi-source Multi-scale Counting in Extremely Dense Crowd Images[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition76%1481133538065
1e3df3ca8feab0b36fd293fe689f93bb2aaac591immediacyImmediacyMulti-task Recurrent Neural Network for Immediacy Prediction[pdf]2015 IEEE International Conference on Computer Vision (ICCV)62%2616102216
2b926b3586399d028b46315d7d9fb9d879e4f79cfrav3dFRAV3DMultimodal 2D, 2.5D & 3D Face Verification[pdf]2006 International Conference on Image ProcessingeduUniversidad Rey Juan Carlos, SpainSpain40.33586610-3.8769432057%14860212
53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4bp4d_plusBP4D+Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%42231901726
2fda164863a06a92d3a910b96eef927269aeb730names_and_facesNews DatasetNames and faces in the news[pdf]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.100%000000
4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06distance_nighttimeLong Distance Heterogeneous FaceNighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching[pdf]Unknown50%22111131110
3394168ff0719b03ff65bcea35336a76b21fe5e4penn_fudanPenn FudanObject Detection Combining Recognition and Segmentation[pdf]Unknown61%105644195843
12ad3b5bbbf407f8e54ea692c07633d1a867c566grazGraz PedestrianObject recognition using segmentation for feature detection[pdf]Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.eduInst. of Comput. Sci., Univ. of Leoben, AustriaAustria47.3847372015.09302010100%000000
4f93cd09785c6e77bf4bc5a788e079df524c8d21sotonSOTON HiDOn a Large Sequence-Based Human Gait Database[pdf]Unknown63%15095551710351
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4cafadAFADOrdinal Regression with Multiple Output CNN for Age Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%78433584431
a7fe834a0af614ce6b50dc093132b031dd9a856bmarket_1501Market 1501Orientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
a7fe834a0af614ce6b50dc093132b031dd9a856bpku_reidPKU-ReidOrientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
18ae7c9a4bbc832b8b14bc4122070d7939f5e00efrgcFRGCOverview of the face recognition grand challenge[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduNISTUnited States39.14004000-77.2185060057%99956843085549442
22909dd19a0ec3b6065334cb5be5392cb24d839dpetsPETS 2017PETS 2017: Dataset and Challenge[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)44%945018
56ffa7d906b08d02d6d5a12c7377a57e24ef3391unbc_shoulder_painUNBC-McMaster PainPainful data: The UNBC-McMaster shoulder pain expression archive database[pdf]Face and Gesture 2011eduCarnegie Mellon UniversityUnited States40.44416190-79.9427282654%189103862110878
55206f0b5f57ce17358999145506cd01e570358corlORLParameterisation of a stochastic model for human face identification[pdf]Unknown50%99950149894543427
0486214fb58ee9a04edfe7d6a74c6d0f661a7668chokepointChokePointPatch-based probabilistic image quality assessment for face selection and improved video-based face recognition[pdf]CVPR 2011 WORKSHOPS60%138835567663
488e475eeb3bb39a145f23ede197cd3620f1d98aapisAPiS1.0Pedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
488e475eeb3bb39a145f23ede197cd3620f1d98asvsSVSPedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
2a4bbee0b4cf52d5aadbbc662164f7efba89566cpetaPETAPedestrian Attribute Recognition At Far Distance[pdf]Unknown75%88662215036
f72f6a45ee240cc99296a287ff725aaa7e7ebb35caltech_pedestriansCaltech PedestriansPedestrian Detection: An Evaluation of the State of the Art[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748760%99959940069527466
1dc35905a1deff8bc74688f2d7e2f48fd2273275caltech_pedestriansCaltech PedestriansPedestrian detection: A benchmark[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
3316521a5527c7700af8ae6aef32a79a8b83672ctud_campusTUD-CampusPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_crossingTUD-CrossingPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_pedestrianTUD-PedestrianPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
27a2fad58dd8727e280f97036e0d2bc55ef5424cduke_mtmcDuke MTMCPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
27a2fad58dd8727e280f97036e0d2bc55ef5424cmotMOTPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
16c7c31a7553d99f1837fc6e88e77b5ccbb346b8pridPRIDPerson Re-identification by Descriptive and Discriminative Classification[pdf]Unknown68%38626312323204180
98bb029afe2a1239c3fdab517323066f0957b81bilids_mcts_vidiLIDS-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
98bb029afe2a1239c3fdab517323066f0957b81bsdu_vidSDU-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
0b84f07af44f964817675ad961def8a51406dd2eprwPRWPerson Re-identification in the Wild[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)68%77522514727
a0cc5f73a37723a6dd465924143f1cb4976d0169msmt_17MSMT17Person Transfer GAN to Bridge Domain Gap for Person Re-identification[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition92%242221204
1c2802c2199b6d15ecefe7ba0c39bfe44363de38youtube_posesYouTube PosePersonalizing Human Video Pose Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduOxford UniversityUnited Kingdom51.75208490-1.2516646064%3623132308
2830fb5282de23d7784b4b4bc37065d27839a412h3dH3DPoselets: Body part detectors trained using 3D human pose annotations[pdf]2009 IEEE 12th International Conference on Computer Vision58%71641530159492222
3765df816dc5a061bc261e190acc8bdd9d47bec0rafdRaFDPresentation and validation of the Radboud Faces Database[pdf]Unknown48%48723425339342144
636b8ffc09b1b23ff714ac8350bb35635e49fa3ccaltech_10k_web_facesCaltech 10K Web FacesPruning training sets for learning of object categories[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)70%63441944220
3531332efe19be21e7401ba1f04570a142617236ufddUFDDPushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results[pdf]CoRR75%431040
140c95e53c619eac594d70f6369f518adfea12efijb_aIJB-APushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)66%237156811415976
c72a2ea819df9b0e8cd267eebcc6528b8741e03dmegaageMegaAgeQuantifying Facial Age by Posterior of Age Comparisons[pdf]CoRR100%440040
922e0a51a3b8c67c4c6ac09a577ff674cbd28b34v47V47Re-identification of pedestrians with variable occlusion and scale[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduKingston UniversityUnited Kingdom51.42930860-0.2684044056%954154
6f3c76b7c0bd8e1d122c6ea808a271fd4749c951wardWARDRe-identify people in wide area camera network[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduUniversity of UdineItaly46.0810723013.2119474060%60362413821
54983972aafc8e149259d913524581357b0f91c3reseedReSEEDReSEED: social event dEtection dataset[pdf]Unknown67%642115
65355cbb581a219bd7461d48b3afd115263ea760complex_activitiesOngoing Complex ActivitiesRecognition of ongoing complex activities by sequence prediction over a hierarchical label space[pdf]2016 IEEE Winter Conference on Applications of Computer Vision (WACV)33%312030
e8de844fefd54541b71c9823416daa238be65546visual_phrasesPhrasal RecognitionRecognition using visual phrases[pdf]CVPR 2011eduUniversity of Illinois, Urbana-ChampaignUnited States40.11116745-88.2258766558%2461431031717068
356b431d4f7a2a0a38cf971c84568207dcdbf189widerWIDERRecognize complex events from static images by fusing deep channels[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)70%44311312915
25474c21613607f6bb7687a281d5f9d4ffa1f9f3faceplaceFace PlaceRecognizing disguised faces[pdf]Unknown34%29101901810
4053e3423fb70ad9140ca89351df49675197196abio_idBioID FaceRobust Face Detection Using the Hausdorff Distance[pdf]Unknown57%51128922249329182
2724ba85ec4a66de18da33925e537f3902f21249cofwCOFWRobust Face Landmark Estimation under Occlusion[pdf]2013 IEEE International Conference on Computer VisioneduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748772%3252339212194133
c570d1247e337f91e555c3be0e8c8a5aba539d9fmcgillMcGill Real WorldRobust semi-automatic head pose labeling for real-world face video sequences[pdf]Multimedia Tools and ApplicationseduMcGill UniversityCanada45.50397610-73.5749687044%188100137
e27ef52c641c2b5100a1b34fd0b819e84a31b4dfsarc3dSarc3DSARC3D: A New 3D Body Model for People Tracking and Re-identification[pdf]Unknown74%3425922112
bd26dabab576adb6af30484183c9c9c8379bf2e0scut_fbpSCUT-FBPSCUT-FBP: A Benchmark Dataset for Facial Beauty Perception[pdf]2015 IEEE International Conference on Systems, Man, and Cybernetics47%199102613
29a705a5fa76641e0d8963f1fdd67ee4c0d92d3dscfaceSCfaceSCface – surveillance cameras face database[pdf]Multimedia Tools and Applications56%17910178158889
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9stair_actionsSTAIR ActionSTAIR Actions: A Video Dataset of Everyday Home Actions[pdf]CoRR100%110010
833fa04463d90aab4a9fe2870d480f0b40df446esun_attributesSUNSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduBrown UniversityUnited States41.82686820-71.4012314660%2641591052720656
4308bd8c28e37e2ed9a3fcfe74d5436cce34b410market_1501Market 1501Scalable Person Re-identification: A Benchmark[pdf]2015 IEEE International Conference on Computer Vision (ICCV)companyMicrosoftUnited States47.64233180-122.1369302077%4603551059263185
9c23859ec7313f2e756a3e85575735e0c52249f4facebook_100Facebook100Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
9c23859ec7313f2e756a3e85575735e0c52249f4pubfig_83pubfig83Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
51eba481dac6b229a7490f650dff7b17ce05df73imsituimSituSituation Recognition: Visual Semantic Role Labeling for Image Understanding[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)65%5234181466
570f37ed63142312e6ccdf00ecc376341ec72b9fstanford_droneStanford DroneSocial LSTM: Human Trajectory Prediction in Crowded Spaces[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)56%22412599314081
23e824d1dfc33f3780dd18076284f07bd99f1c43mifsMIFSSpoofing faces using makeup: An investigative study[pdf]2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)eduINRIA MéditerranéeFrance43.615813107.0683800067%642015
1a40092b493c6b8840257ab7f96051d1a4dbfeb2sports_videos_in_the_wildSVWSports Videos in the Wild (SVW): A video dataset for sports analysis[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)86%761152
9361b784e73e9238d5cefbea5ac40d35d1e3103foxford_town_centreTownCentreStable multi-target tracking in real-time surveillance video[pdf]CVPR 2011eduUniversity of OxfordUnited Kingdom51.75345380-1.2540099768%32822210613186140
2306b2a8fba28539306052764a77a0d0f5d1236aqmul_surv_faceQMUL-SurvFaceSurveillance Face Recognition Challenge[pdf]CoRReduQueen Mary University of LondonUnited Kingdom51.52472720-0.03931035100%110010
f6c8d5e35d7e4d60a0104f233ac1a3ab757da53fpku_reidPKU-ReidSwiss-System Based Cascade Ranking for Gait-Based Person Re-Identification[pdf]Unknown50%422012
4d58f886f5150b2d5e48fd1b5a49e09799bf895dtexas_3dfrdTexas 3DFRDTexas 3D Face Recognition Database[pdf]2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)61%66402634027
6d96f946aaabc734af7fe3fc4454cf8547fcd5edar_facedbAR FaceThe AR face database[pdf]Unknown58%99957942058458530
2485c98aa44131d1a2f7d1355b1e372f2bb148adcas_pealCAS-PEALThe CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[pdf]IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans59%42925417538198234
47662d1a368daf70ba70ef2d59eb6209f98b675dfiaCMU FiAThe CMU Face In Action (FIA) Database[pdf]Unknown48%54262854016
4d423acc78273b75134e2afd1777ba6d3a398973cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
4d423acc78273b75134e2afd1777ba6d3a398973multi_pieMULTIPIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
4df3143922bcdf7db78eb91e6b5359d6ada004d2cfdCFDThe Chicago face database: A free stimulus set of faces and norming data.[pdf]Behavior research methods60%99594017321
20388099cc415c772926e47bcbbe554e133343d1cafe#N/AThe Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults[pdf]54%3720173307
4e6ee936eb50dd032f7138702fa39b7c18ee8907dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf]52%2111102183
9e31e77f9543ab42474ba4e9330676e18c242e72imdb_faceIMDb FaceThe Devil of Face Recognition is in the Noise[pdf]UnknowneduNanyang Technological UniversitySingapore1.34841040103.6829796550%633041
71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6umd_facesUMDThe Do’s and Don’ts for CNN-Based Face Verification[pdf]2017 IEEE International Conference on Computer Vision Workshops (ICCVW)62%2616102168
72a155c987816ae81c858fddbd6beab656d86220europersonsEuroCity PersonsThe EuroCity Persons Dataset: A Novel Benchmark for Object Detection[pdf]CoRR0%202020
4d9a02d080636e9666c4d1cc438b9893391ec6c7cohn_kanade_plusCK+The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - WorkshopseduUniversity of PittsburghUnited States40.44415295-79.9624399361%99960739257470518
0f0fcf041559703998abf310e56f8a2f90ee6f21feretFERETThe FERET Evaluation Methodology for Face-Recognition Algorithms[pdf]Unknown34%2910193189
0c4a139bb87c6743c7905b29a3cfec27a5130652feretFERETThe FERET Verification Testing Protocol for Face Recognition Algorithms[pdf]UnknowneduCity University of New YorkUnited States40.87228250-73.8948917151%115595687537
dc8b25e35a3acb812beb499844734081722319b4feretFERETThe FERET database and evaluation procedure for face-recognition algorithms[pdf]Image Vision Comput.52%999521478103591421
8f02ec0be21461fbcedf51d864f944cfc42c875fhda_plusHDA+The HDA+ Data Set for Research on Fully Automated Re-identification Systems[pdf]Unknown50%16881106
8be57cdad86fdf8c8290df4ca3149592f3c46dd3m2vtsm2vtsThe M2VTS Multimodal Face Database (Release 1.00)[pdf]Unknown45%73334023933
ea050801199f98a1c7c1df6769f23f658299a3aempi_largeLarge MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
ea050801199f98a1c7c1df6769f23f658299a3aempi_smallSmall MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
578d4ad74818086bb64f182f72e2c8bd31e3d426mr2MR2The MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf]Behavior research methods43%734070
f1af714b92372c8e606485a3982eab2f16772ad8mug_facesMUG FacesThe MUG facial expression database[pdf]11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10eduAristotle University of ThessalonikiGreece40.6298414522.9588935055%82453743447
79828e6e9f137a583082b8b5a9dfce0c301989b8mapillaryMapillaryThe Mapillary Vistas Dataset for Semantic Understanding of Street Scenes[pdf]2017 IEEE International Conference on Computer Vision (ICCV)61%61372404316
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0megafaceMegaFaceThe MegaFace Benchmark: 1 Million Faces for Recognition at Scale[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)76%13910633510037
0ee1916a0cb2dc7d3add086b5f1092c3d4beb38avocVOCThe Pascal Visual Object Classes (VOC) Challenge[pdf]International Journal of Computer VisioncompanyMicrosoftUnited States47.64233180-122.1369302061%99960739128557422
66e6f08873325d37e0ec20a4769ce881e04e964esun_attributesSUNThe SUN Attribute Database: Beyond Categories for Deeper Scene Understanding[pdf]International Journal of Computer Vision60%1167046148431
8b2dd5c61b23ead5ae5508bb8ce808b5ea26673010k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face photographs.[pdf]Journal of experimental psychology. General56%52292323614
d178cde92ab3dc0dd2ebee5a76a33d556c39448bjiku_mobileJiku Mobile Video DatasetThe jiku mobile video dataset[pdf]UnknowneduNational University of SingaporeSingapore1.29620180103.7768994471%241770619
ae0aee03d946efffdc7af2362a42d3750e7dd48aput_facePut FaceThe put face database[pdf]Unknown55%99544555548
19d1b811df60f86cbd5e04a094b07f32fff7a32ayork_3dUOY 3D Face DatabaseThree-dimensional face recognition: an eigensurface approach[pdf]2004 International Conference on Image Processing, 2004. ICIP '04.42%38162242413
2edb87494278ad11641b6cf7a3f8996de12b8e14qmul_gridGRIDTime-Delayed Correlation Analysis for Multi-Camera Activity Understanding[pdf]International Journal of Computer VisioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103563%84533145133
64e0690dd176a93de9d4328f6e31fc4afe1e7536duke_mtmcDuke MTMCTracking Multiple People Online and in Real Time[pdf]Unknown78%2318511210
298cbc3dfbbb3a20af4eed97906650a4ea1c29e0ferplusFER+Training deep networks for facial expression recognition with crowd-sourced label distribution[pdf]Unknown74%3425901816
4eab317b5ac436a949849ed286baa3de2a541eeflaofiwLAOFIWTurning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings[pdf]Unknown100%220020
b5f2846a506fc417e7da43f6a7679146d99c5e96ucf_101UCF101UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[pdf]CoRR64%99964335656628362
16e8b0a1e8451d5f697b94c0c2b32a00abee1d52umbUMBUMB-DB: A database of partially occluded 3D faces[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)66%47311622224
31b05f65405534a696a847dd19c621b7b8588263umd_facesUMDUMDFaces: An annotated face dataset for training deep networks[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)eduUniversity of MarylandUnited States39.28996850-76.6219610379%4233923011
8627f019882b024aef92e4eb9355c499c733e5b7usedUSED Social Event DatasetUSED: a large-scale social event detection dataset[pdf]UnknowneduUniversity of TrentoItaly46.0658836011.1159894086%761034
d4f1eb008eb80595bcfdac368e23ae9754e1e745uccsUCCSUnconstrained Face Detection and Open-Set Face Recognition Challenge[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)100%550041
4b4106614c1d553365bad75d7866bff0de6056edufiUFIUnconstrained Facial Images: Database for Face Recognition Under Real-World Conditions[pdf]Unknown50%1266046
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7kin_faceUB KinFaceUnderstanding Kin Relationships in a Photo[pdf]IEEE Transactions on Multimedia63%94593513361
5a4df9bef1872865f0b619ac3aacc97f49e4a035cuhk_train_stationCUHK Train Station DatasetUnderstanding collective crowd behaviors: Learning a Mixture model of Dynamic pedestrian-Agents[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduChinese University of Hong KongChina22.41626320114.2109318060%141845746075
21d9d0deed16f0ad62a4865e9acf0686f4f15492images_of_groupsImages of GroupsUnderstanding images of groups of people[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.94272826100%000000
15e1af79939dbf90790b03d8aa02477783fb1d0fduke_mtmcDuke MTMCUnlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro[pdf]2017 IEEE International Conference on Computer Vision (ICCV)100%000000
fd8168f1c50de85bac58a8d328df0a50248b16aend_2006ND-2006Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition[pdf]2007 First IEEE International Conference on Biometrics: Theory, Applications, and SystemseduUniversity of Notre DameUnited States41.70456775-86.2382202663%35221331815
4563b46d42079242f06567b3f2e2f7a80cb3befevadanaVADANAVADANA: A dense dataset for facial image analysis[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduUniversity of DelawareUnited States39.68103280-75.7540184067%151050510
70c59dc3470ae867016f6ab0e008ac8ba03774a1vgg_faces2VGG Face2VGGFace2: A Dataset for Recognising Faces across Pose and Age[pdf]2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)80%83661736120
01959ef569f74c286956024866c1d107099199f7vqaVQAVQA: Visual Question Answering[pdf]2015 IEEE International Conference on Computer Vision (ICCV)100%000000
b6c293f0420f7e945b5916ae44269fb53e139275erceERCeVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
b6c293f0420f7e945b5916ae44269fb53e139275tisiTimes Square IntersectionVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
5194cbd51f9769ab25260446b4fa17204752e799violent_flowsViolent FlowsViolent flows: Real-time detection of violent crowd behavior[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduOpen University of IsraelIsrael32.7782416534.9956567365%88573164544
026e3363b7f76b51cc711886597a44d5f1fd1de2kittiKITTIVision meets robotics: The KITTI dataset[pdf]I. J. Robotics Res.60%99960239736553462
066000d44d6691d27202896691f08b27117918b9psuPSUVision-Based Analysis of Small Groups in Pedestrian Crowds[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence54%1689177108579
dd65f71dac86e36eecbd3ed225d016c3336b4a13families_in_the_wildFIWVisual Kinship Recognition of Families in the Wild[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduUniversity of Massachusetts DartmouthUnited States41.62772475-71.0072450180%541023
8875ae233bc074f5cd6c4ebba447b536a7e847a5voxceleb2VoxCeleb2VoxCeleb2: Deep Speaker Recognition.[pdf]Unknown71%342492312
52d7eb0fbc3522434c13cc247549f74bb9609c5dwider_faceWIDER FACEWIDER FACE: A Face Detection Benchmark[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduChinese University of Hong KongChina22.41626320114.2109318066%178118601111266
36bccfb2ad847096bc76777e544f305813cd8f5bwildtrackWildTrackWILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition100%000000
5ad4e9f947c1653c247d418f05dad758a3f9277bwlfdbWLFDBWLFDB : Weakly Labeled Face Databases[pdf]Unknown100%110001
0dc11a37cadda92886c56a6fb5191ded62099c28stickmen_familyWe Are Family StickmenWe Are Family: Joint Pose Estimation of Multiple Persons[pdf]Unknown65%78512755423
0c91808994a250d7be332400a534a9291ca3b60egrazGraz PedestrianWeak Hypotheses and Boosting for Generic Object Detection and Recognition[pdf]Unknown56%2361311051716177
2a75f34663a60ab1b04a0049ed1d14335129e908mmi_facial_expressionMMI Facial Expression DatasetWeb-based database for facial expression analysis[pdf]2005 IEEE International Conference on Multimedia and Expo54%46425021445282188
9b9bf5e623cb8af7407d2d2d857bc3f1b531c182who_goes_thereWGTWho goes there?: approaches to mapping facial appearance diversity[pdf]UnknowneduUniversity of KentuckyUnited States38.03337420-84.50177580100%000000
b62628ac06bbac998a3ab825324a41a11bc3a988m2vtsdb_extendedxm2vtsdbXM2VTSDB : The extended M2VTS database[pdf]Unknown62%86453932537493404
010f0f4929e6a6644fb01f0e43820f91d0fad292yfcc_100mYFCC100MYFCC100M: the new data in multimedia research[pdf]Commun. ACMeduCarnegie Mellon UniversityUnited States40.44416190-79.9427282664%2741769823172100
a94cae786d515d3450d48267e12ca954aab791c4yawddYawDDYawDD: a yawning detection dataset[pdf]Unknown80%151231213
\ No newline at end of file +All Papers

All Papers

Paper IDMegapixels KeyMegapixels NameReport LinkPDF LinkJournalTypeAddressCountryLatLngCoverageTotal CitationsGeocoded CitationsUnknown CitationsEmpty CitationsWith PDFWith DOI
3325860c0c82a93b2eac654f5324dd6a776f609empii_human_poseMPII Human Pose2D Human Pose Estimation: New Benchmark and State of the Art Analysis[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition66%3872541331929196
e4754afaa15b1b53e70743880484b8d0736990fffiw_300300-W300 Faces In-The-Wild Challenge: database and results[pdf]Image Vision Comput.eduImperial College LondonUnited Kingdom51.49887085-0.1756079771%129923767455
044d9a8c61383312cdafbcc44b9d00d650b21c70fiw_300300-W300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge[pdf]2013 IEEE International Conference on Computer Vision Workshops79%3232556815208120
2e8d0f1802e50cccfd3c0aabac0d0beab3a7846e3dpes3DPeS3DPeS: 3D people dataset for surveillance and forensics[pdf]Unknown62%133825197358
a40f9bfd3c45658ee8da70e1f2dfbe1f0c744d434dfab4DFAB4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications[pdf]CoRR25%413022
31b58ced31f22eab10bd3ee2d9174e7c14c27c01tiny_imagesTiny Images80 Million Tiny Images: A Large Data Set for Nonparametric Object and Scene Recognition[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence57%99957442589644337
d08cc366a4a0192a01e9a7495af1eb5d9f9e73aeb3d_acB3D(AC)A 3-D Audio-Visual Corpus of Affective Communication[pdf]IEEE Transactions on Multimedia55%42231922615
4d4bb462c9f1d4e4ab1e4aa6a75cc0bc71b384613dddb_unconstrained3D DynamicA 3D Dynamic Database for Unconstrained Face Recognition[pdf]Unknown50%211011
639937b3a1b8bded3f7e9a40e85bd3770016cf3cbfmBFMA 3D Face Model for Pose and Illumination Invariant Face Recognition[pdf]2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance57%34319414923223114
cc589c499dcf323fe4a143bbef0074c3e31f9b60bu_3dfeBU-3DFEA 3D facial expression database for facial behavior research[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)54%58831627144306282
22646e00a7ba34d1b5fbe3b1efcd91a1e1be3c2bsaivtSAIVT SoftBioA Database for Person Re-Identification in Multi-Camera Surveillance Networks[pdf]2012 International Conference on Digital Image Computing Techniques and Applications (DICTA)58%65382764520
070de852bc6eb275d7ca3a9cdde8f6be8795d1a3d3dfacsD3DFACSA FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[pdf]2011 International Conference on Computer Vision52%50262453118
563c940054e4b456661762c1ab858e6f730c3159data_61Data61 PedestrianA Multi-modal Graphical Model for Scene Analysis[pdf]2015 IEEE Winter Conference on Applications of Computer Vision50%844053
221c18238b829c12b911706947ab38fd017acef7rap_pedestrianRAPA Richly Annotated Dataset for Pedestrian Attribute Recognition[pdf]CoRR69%2618801610
013909077ad843eb6df7a3e8e290cfd5575999d2fiw_300300-WA Semi-automatic Methodology for Facial Landmark Annotation[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops80%18414836812067
3b4ec8af470948a72a6ed37a9fd226719a874ebcsdu_vidSDU-VIDA Spatio-Temporal Appearance Representation for Video-Based Pedestrian Re-Identification[pdf]2015 IEEE International Conference on Computer Vision (ICCV)66%95633265045
6403117f9c005ae81f1e8e6d1302f4a045e3d99dalert_airportALERT AirportA Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence45%209110911
0d3bb75852098b25d90f31d2f48fd0cb4944702bface_scrubFaceScrubA data-driven approach to cleaning large face datasets[pdf]2014 IEEE International Conference on Image Processing (ICIP)64%138894919541
b91f54e1581fbbf60392364323d00a0cd43e493cbp4d_spontanousBP4D-SpontanousA high-resolution spontaneous 3D dynamic facial expression database[pdf]2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)eduSUNY BinghamtonUnited States42.08779975-75.9706606652%154807468075
8b56e33f33e582f3e473dba573a16b598ed9bcdcfeiFEIA new ranking method for principal components analysis and its application to face image analysis[pdf]Image Vision Comput.55%1699376669102
2624d84503bc2f8e190e061c5480b6aa4d89277aafew_vaAFEW-VAAFEW-VA database for valence and arousal estimation in-the-wild[pdf]Image Vision Comput.50%18990125
2ad0ee93d029e790ebb50574f403a09854b65b7eyale_facesYaleFacesAcquiring linear subspaces for face recognition under variable lighting[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence55%99955444594495491
57fe081950f21ca03b5b375ae3e84b399c015861cvc_01_barcelonaCVC-01Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection[pdf]Unknown51%47242312324
758d7e1be64cc668c59ef33ba8882c8597406e53affectnetAffectNetAffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild[pdf]CoRR62%37231402511
47aeb3b82f54b5ae8142b4bdda7b614433e69b9aam_fedAM-FEDAffectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild"[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops46%83384564339
1be498d4bbc30c3bfd0029114c784bc2114d67c0adienceAdienceAge and Gender Estimation of Unfiltered Faces[pdf]IEEE Transactions on Information Forensics and SecurityeduOpen University of IsraelIsrael32.7782416534.9956567387%1791562319880
d818568838433a6d6831adde49a58cef05e0c89fagedbAgeDBAgeDB: The First Manually Collected, In-the-Wild Age Database[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduImperial College LondonUnited Kingdom51.49887085-0.1756079794%181710143
a74251efa970b92925b89eeef50a5e37d9281ad0aflwAFLWAnnotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduTU GrazAustria47.0707140015.4395040069%31821810027211107
2ce2560cf59db59ce313bbeb004e8ce55c5ce928texas_3dfrdTexas 3DFRDAnthropometric 3D Face Recognition[pdf]International Journal of Computer Vision63%91573456031
633c851ebf625ad7abdda2324e9de093cf623141appa_realAPPA-REALApparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database[pdf]2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)70%1073083
0df0d1adea39a5bef318b74faa37de7f3e00b452mpii_gazeMPIIGazeAppearance-based gaze estimation in the wild[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)73%1491094039454
759a3b3821d9f0e08e0b0a62c8b693230afc3f8dpubfigPubFigAttribute and simile classifiers for face verification[pdf]2009 IEEE 12th International Conference on Computer Vision64%91458532947586316
faf40ce28857aedf183e193486f5b4b0a8c478a2iit_dehli_earIIT Dehli EarAutomated Human Identification Using Ear Imaging[pdf]Unknown50%80404063544
2160788824c4c29ffe213b2cbeb3f52972d73f373d_rma3D-RMAAutomatic 3D face authentication[pdf]Image Vision Comput.54%100544686336
213a579af9e4f57f071b884aa872651372b661fdbbc_poseBBC PoseAutomatic and Efficient Human Pose Estimation for Sign Language Videos[pdf]International Journal of Computer Vision65%2617911611
fcc6fe6007c322641796cb8792718641856a22a7miwMIWAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
fcc6fe6007c322641796cb8792718641856a22a7youtube_makeupYMUAutomatic facial makeup detection with application in face recognition[pdf]2013 International Conference on Biometrics (ICB)eduWest Virginia UniversityUnited States39.65404635-79.9647535571%49351411929
0a85bdff552615643dd74646ac881862a7c7072dpipaPIPABeyond frontal faces: Improving Person Recognition using multiple cues[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)companyFacebookUnited States37.39367170-122.0807262091%5449414112
2acf7e58f0a526b957be2099c10aab693f795973bosphorusThe BosphorusBosphorus Database for 3D Face Analysis[pdf]Unknown56%35219815417162188
37d6f0eb074d207b53885bd2eb78ccc8a04be597vmuVMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
37d6f0eb074d207b53885bd2eb78ccc8a04be597youtube_makeupYMUCan facial cosmetics affect the matching accuracy of face recognition systems?[pdf]2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)eduWest Virginia UniversityUnited States39.65404635-79.9647535562%53332001931
8d5998cd984e7cce307da7d46f155f9db99c6590chalearnChaLearnChaLearn looking at people: A review of events and resources[pdf]2017 International Joint Conference on Neural Networks (IJCNN)69%1394184
2bf8541199728262f78d4dced6fb91479b39b738clothing_co_parsingCCPClothing Co-parsing by Joint Image Segmentation and Labeling[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition70%60421803428
22ad2c8c0f4d6aa4328b38d894b814ec22579761gallagherGallagherClothing cosegmentation for recognizing people[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.9427282665%17811662710086
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0leeds_sports_poseLeeds Sports PoseClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
4b1d23d17476fcf78f4cbadf69fb130b1aa627c0stickmen_buffyBuffy StickmenClustered Pose and Nonlinear Appearance Models for Human Pose Estimation[pdf]Unknown66%285188971119793
45c31cde87258414f33412b3b12fc5bec7cb3ba9jaffeJAFFECoding Facial Expressions with Gabor Wavelets[pdf]Unknown57%89950839151431451
b1f4423c227fa37b9680787be38857069247a307afew_vaAFEW-VACollecting Large, Richly Annotated Facial-Expression Databases from Movies[pdf]IEEE MultiMediaeduAustralian National UniversityAustralia-35.27769990149.1185270064%1811156688797
7f4040b482d16354d5938c1d1b926b544652bf5bnova_emotionsNovaemötions DatasetCompetitive affective gaming: winning with a smile[pdf]UnknowneduUniversidade NOVA de Lisboa, Caparica, PortugalPortugal38.66096400-9.2058130078%972054
079a0a3bf5200994e1f972b1b9197bf2f90e87d4mit_cbclMIT CBCLComponent-Based Face Recognition with 3D Morphable Models[pdf]2004 Conference on Computer Vision and Pattern Recognition Workshop100%000000
23fc83c8cfff14a16df7ca497661264fc54ed746cohn_kanadeCKComprehensive Database for Facial Expression Analysis[pdf]Unknown55%99955344669540439
09d78009687bec46e70efcf39d4612822e61cb8craidRAiDConsistent Re-identification in a Camera Network[pdf]Unknown71%49351433413
0ceda9dae8b9f322df65ca2ef02caca9758aec6fcasablancaCasablancaContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
0ceda9dae8b9f322df65ca2ef02caca9758aec6fhollywood_headsetHollywoodHeadsContext-Aware CNNs for Person Head Detection[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%33201312311
c06b13d0ec3f5c43e2782cd22542588e233733c3nova_emotionsNovaemötions DatasetCrowdsourcing facial expressions for affective-interaction[pdf]Computer Vision and Image Understanding100%110010
8355d095d3534ef511a9af68a3b2893339e3f96bimdb_wikiIMDB-WikiDEX: Deep EXpectation of Apparent Age from a Single Image[pdf]2015 IEEE International Conference on Computer Vision Workshop (ICCVW)79%122962647548
5a5f0287484f0d480fed1ce585dbf729586f0edcdisfaDISFADISFA: A Spontaneous Facial Action Intensity Database[pdf]IEEE Transactions on Affective ComputingeduUniversity of DenverUnited States39.67665410-104.9622030054%18410084179689
10195a163ab6348eef37213a46f60a3d87f289c5imdb_wikiIMDB-WikiDeep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks[pdf]International Journal of Computer VisioneduETH ZurichSwitzerland47.376313008.5476699072%1451054099351
162ea969d1929ed180cc6de9f0bf116993ff6e06vgg_facesVGG FaceDeep Face Recognition[pdf]Unknown65%99964635348558429
6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4celebaCelebADeep Learning Face Attributes in the Wild[pdf]2015 IEEE International Conference on Computer Vision (ICCV)eduChinese University of Hong KongChina22.41626320114.2109318057%91952639261694201
18010284894ed0edcca74e5bf768ee2e15ef7841deep_fashionDeepFashionDeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)64%17611264211362
6bd36e9fd0ef20a3074e1430a6cc601e6d407fc3cuhk_campus_03CUHK03 CampusDeepReID: Deep Filter Pairing Neural Network for Person Re-identification[pdf]2014 IEEE Conference on Computer Vision and Pattern Recognition73%56841215619320235
13f06b08f371ba8b5d31c3e288b4deb61335b462eth_andreas_essETHZ PedestrianDepth and Appearance for Mobile Scene Analysis[pdf]2007 IEEE 11th International Conference on Computer VisioneduETH ZurichSwitzerland47.376313008.5476699063%32420412026193127
4946ba10a4d5a7d0a38372f23e6622bd347ae273coco_actionCOCO-aDescribing Common Human Visual Actions in Images[pdf]Unknown68%251780232
7808937b46acad36e43c30ae4e9f3fd57462853dbpadBPADDescribing people: A poselet-based approach to attribute classification[pdf]2011 International Conference on Computer Vision61%230140901416366
d3200d49a19a4a4e4e9745ee39649b65d80c834bscut_headSCUT HEADDetecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture[pdf]2018 24th International Conference on Pattern Recognition (ICPR)100%000000
9cc8cf0c7d7fa7607659921b6ff657e17e135eccmafaMAsked FAcesDetecting Masked Faces in the Wild with LLE-CNNs[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)80%541041
56ae6d94fc6097ec4ca861f0daa87941d1c10b70cmdpCMDPDistance Estimation of an Unknown Person from a Portrait[pdf]Unknown44%945063
84fe5b4ac805af63206012d29523a1e033bc827eawe_earsAWE EarsEar Recognition: More Than a Survey[pdf]Neurocomputing77%2620601016
133f01aec1534604d184d56de866a4bd531dac87lfwLFWEffective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence60%183109741310377
c900e0ad4c95948baaf0acd8449fde26f9b4952aemotio_netEmotioNet DatabaseEmotioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Million Facial Expressions in the Wild[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)52%86454175429
2161f6b7ee3c0acc81603b01dc0df689683577b9large_scale_person_searchLarge Scale Person SearchEnd-to-End Deep Learning for Person Search[pdf]CoRR70%46321402716
1bd1645a629f1b612960ab9bba276afd4cf7c666brainwashBrainwashEnd-to-End People Detection in Crowded Scenes[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduStanford UniversityUnited States37.43131385-122.1693653566%67442224223
6273b3491e94ea4dd1ce42b791d77bdc96ee73a8viperVIPeREvaluating Appearance Models for Recognition, Reacquisition, and Tracking[pdf]UnknowneduUniversity of California, Santa CruzUnited States36.99158470-122.0582771066%62441421033342276
2258e01865367018ed6f4262c880df85b94959f8motMOTEvaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics[pdf]EURASIP J. Image and Video Processing58%63236626444358264
9e5378e7b336c89735d3bb15cf67eff96f86d39aprecariousPrecariousExpecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)36%14590121
35b0331dfcd2897abd5749b49ff5e2b8ba0f7a62coco_qaCOCO QAExploring Models and Data for Image Question Answering[pdf]Unknown61%206126801116239
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
2cd7821fcf5fae53a185624f7eeda007434ae037geofacesGeoFacesExploring the geo-dependence of human face appearance[pdf]IEEE Winter Conference on Applications of Computer Vision88%871053
75da1df4ed319926c544eefe17ec8d720feef8c0fddbFDDBFDDB: A benchmark for face detection in unconstrained settings[pdf]Unknown65%38024713316202164
31de9b3dd6106ce6eec9a35991b2b9083395fd0bferetFERETFERET ( Face Recognition Technology ) Recognition Algorithm Development and Test Results[pdf]Unknown52%75393655420
0e986f51fe45b00633de9fd0c94d082d2be51406afwAFWFace detection, pose estimation, and landmark localization in the wild[pdf]2012 IEEE Conference on Computer Vision and Pattern Recognition71%99970929035576422
560e0e58d0059259ddf86fcec1fa7975dee6a868youtube_facesYouTubeFacesFace recognition in unconstrained videos with matched background similarity[pdf]CVPR 2011eduTel Aviv UniversityIsrael32.1119889034.8045970266%50933817023294216
670637d0303a863c1548d5b19f705860a23e285cface_tracerFaceTracerFace swapping: automatically replacing faces in photographs[pdf]Unknown100%000000
6204776d31359d129a582057c2d788a14f8aadebyoutube_celebritiesYouTube CelebritiesFace tracking and recognition with visual constraints in real-world videos[pdf]2008 IEEE Conference on Computer Vision and Pattern RecognitioneduRutgers UniversityUnited States40.47913175-74.4316886857%26715111511125121
4c170a0dcc8de75587dae21ca508dab2f9343974face_tracerFaceTracerFaceTracer: A Search Engine for Large Collections of Images with Faces[pdf]Unknown64%225144811714677
7ebb153704706e457ab57b432793d2b6e5d12592vgg_celebs_in_placesCIPFaces in Places: compound query retrieval[pdf]Unknown100%550032
0ab7cff2ccda7269b73ff6efd9d37e1318f7db25ibm_difIBM Diversity in FacesFacial Coding Scheme Reference 1 Craniofacial Distances[pdf]Unknown100%000000
8a3c5507237957d013a0fe0f082cab7f757af6eemaflMAFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
8a3c5507237957d013a0fe0f082cab7f757af6eemtflMTFLFacial Landmark Detection by Deep Multi-task Learning[pdf]Unknown70%40728312416252153
4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7deep_fashionDeepFashionFashion Landmark Detection in the Wild[pdf]Unknown73%2619711610
060820f110a72cbf02c14a6d1085bd6e1d994f6acaltech_crpCaltech CRPFine-grained classification of pedestrians in video: Benchmark and state of the art[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)47%1789098
45e616093a92e5f1e61a7c6037d5f637aa8964afmalfMALFFine-grained evaluation on face detection in the wild[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)71%171250125
1aad2da473888cb7ebc1bfaa15bfa0f1502ce005jpl_poseJPL-Interaction datasetFirst-Person Activity Recognition: What Are They Doing to Me?[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition67%1489949710543
7b92d1e53cc87f7a4256695de590098a2f30261eappa_realAPPA-REALFrom Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)100%000000
774cbb45968607a027ae4729077734db000a1ec5urban_tribesUrban TribesFrom Bikers to Surfers: Visual Recognition of Urban Tribes[pdf]Unknown67%181261126
22f656d0f8426c84a33a267977f511f127bfd7f3expwExpWFrom Facial Expression Recognition to Interpersonal Relation Prediction[pdf]International Journal of Computer Vision55%1165054
18c72175ddbb7d5956d180b65a96005c100f6014yale_facesYaleFacesFrom Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[pdf]IEEE Trans. Pattern Anal. Mach. Intell.56%99956143866498462
06f02199690961ba52997cde1527e714d2b3bf8fcolumbia_gazeColumbia GazeGaze locking: passive eye contact detection for human-object interaction[pdf]UnknowneduColumbia UniversityUnited States40.84198360-73.9436897176%79601904934
18858cc936947fc96b5c06bbe3c6c2faa5614540pilot_parliamentPPBGender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification[pdf]Unknown53%59312804710
2eb84aaba316b095d4bb51da1a3e4365bbf9ab1dkin_faceUB KinFaceGenealogical face recognition based on UB KinFace database[pdf]CVPR 2011 WORKSHOPSeduSUNY BuffaloUnited States42.93362780-78.8839447955%31171401121
2eed184680edcdec8a3b605ad1a3ba8e8f7cc2e9grazGraz PedestrianGeneric object recognition with boosting[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduTU GrazAustria47.0707140015.4395040053%2931551381619597
17b46e2dad927836c689d6787ddb3387c6159ecegeofacesGeoFacesGeoFaceExplorer: exploring the geo-dependence of facial attributes[pdf]Unknown100%220011
bd88bb2e4f351352d88ee7375af834360e223498hda_plusHDA+HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance[pdf]Unknown0%202012
a8d0b149c2eadaa02204d3e4356fbc8eccf3b315hi4d_adsipHi4D-ADSIPHi4D-ADSIP 3-D dynamic facial articulation database[pdf]Image Vision Comput.60%15961411
2d45cfd838016a6e39f6b766ffe85acd649440c7mcgillMcGill Real WorldHierarchical temporal graphical model for head pose estimation and subsequent attribute classification in real-world videos[pdf]Computer Vision and Image Understanding75%862053
3cd40bfa1ff193a96bde0207e5140a399476466ctvhiTVHIHigh Five: Recognising human interactions in TV shows[pdf]Unknown57%985642106628
04c2cda00e5536f4b1508cbd80041e9552880e67hipsterwarsHipsterwarsHipster Wars: Discovering Elements of Fashion Styles[pdf]Unknown64%95613445935
10d6b12fa07c7c8d6c8c3f42c7f1c061c131d4c5inria_personINRIA PedestrianHistograms of oriented gradients for human detection[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduINRIA Rhone-Alps, Montbonnot, FranceFrance45.217886005.8073690057%99957342641419509
041d3eedf5e45ce5c5229f0181c5c576ed1fafd6ucf_selfieUCF SelfieHow to Take a Good Selfie?[pdf]Unknown73%1183075
44d23df380af207f5ac5b41459c722c87283e1ebwider_attributeWIDER AttributeHuman Attribute Recognition by Deep Hierarchical Contexts[pdf]Unknown72%181350144
44484d2866f222bbb9b6b0870890f9eea1ffb2d0cuhk_campus_03CUHK03 CampusHuman Reidentification with Transferred Metric Learning[pdf]Unknown69%280194869139137
f41c7bb02fc97d5fb9cadd7a49c3e558a1c58a44pa_100kPA-100KHydraPlus-Net: Attentive Deep Features for Pedestrian Analysis[pdf]2017 IEEE International Conference on Computer Vision (ICCV)75%55411403617
57178b36c21fd7f4529ac6748614bb3374714e91ijb_cIJB-CIARPA Janus Benchmark - C: Face Dataset and Protocol[pdf]2018 International Conference on Biometrics (ICB)79%141130121
0cb2dd5f178e3a297a0c33068961018659d0f443ijb_bIJB-BIARPA Janus Benchmark-B Face Dataset[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)eduMichigan State UniversityUnited States42.71856800-84.4779157163%3522133258
0297448f3ed948e136bb06ceff10eccb34e5bb77ilids_mctsi-LIDS Multiple-CameraImagery Library for Intelligent Detection Systems (i-LIDS); A Standard for Testing Video Based Detection Systems[pdf]Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology57%35201522114
7f23a4bb0c777dd72cca7665a5f370ac7980217eduke_mtmcDuke MTMCImproving Person Re-identification by Attribute and Identity Learning[pdf]CoRR84%87731404342
55c40cbcf49a0225e72d911d762c27bb1c2d14aaifadIFADIndian Face Age Database: A Database for Face Recognition with Age Variation[pdf]Unknown50%211020
ca3e88d87e1344d076c964ea89d91a75c417f5eeimfdbIMFDBIndian Movie Face Database: A benchmark for face recognition under wide variations[pdf]2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)eduBVBCET, Hubli, IndiaIndia15.3688332075.1213796065%171160115
95f12d27c3b4914e0668a268360948bce92f7db3helenHelenInteractive Facial Feature Localization[pdf]UnknowncompanyAdobeUnited States37.33077030-121.8940951085%352298548212146
ad01687649d95cd5b56d7399a9603c4b8e2217d7mrp_droneMRP DroneInvestigating Open-World Person Re-identification Using a Drone[pdf]Unknown43%734152
2f43b614607163abf41dfe5d17ef6749a1b61304hrt_transgenderHRT TransgenderInvestigating the Periocular-Based Face Recognition Across Gender Transformation[pdf]IEEE Transactions on Information Forensics and SecurityeduUniversity of North Carolina at WilmingtonUnited States34.22498270-77.8690774477%13103068
066d71fcd997033dce4ca58df924397dfe0b5fd1ifdbIFDBIranian Face Database and Evaluation with a New Detection Algorithm[pdf]Unknown100%000000
b71d1aa90dcbe3638888725314c0d56640c1fef1ifdbIFDBIranian Face Database with age, pose and expression[pdf]2007 International Conference on Machine VisioneduIslamic Azad UniversityIran34.8452999048.5596212048%2311122149
137aa2f891d474fce1e7a1d1e9b3aefe21e22b34hrt_transgenderHRT TransgenderIs the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)57%743135
0b440695c822a8e35184fb2f60dcdaa8a6de84aekinectfaceKinectFaceDBKinectFaceDB: A Kinect Database for Face Recognition[pdf]IEEE Transactions on Systems, Man, and Cybernetics: SystemseduUniversity of North Carolina at Chapel HillUnited States35.91139710-79.0504529061%82503262852
4793f11fbca4a7dba898b9fff68f70d868e2497ckin_faceUB KinFaceKinship Verification through Transfer Learning[pdf]Unknown58%71413022942
2d3482dcff69c7417c7b933f22de606a0e8e42d4lfwLFWLabeled Faces in the Wild : Updates and New Reporting Procedures[pdf]UnknowneduUniversity of MassachusettsUnited States42.38897850-72.5286987069%123853837151
370b5757a5379b15e30d619e4d3fb9e8e13f3256lfwLFWLabeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments[pdf]Unknown63%99963236759598382
7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22lfwLFWLabeled Faces in the Wild: A Survey[pdf]UnknowneduStevens Institute of TechnologyUnited States40.74225200-74.0270949064%109703976643
0d2dd4fc016cb6a517d8fb43a7cc3ff62964832elagLAGLarge age-gap face verification by feature injection in deep networks[pdf]Pattern Recognition Letters71%752034
07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1uccsUCCSLarge scale unconstrained open set face database[pdf]2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)companySecurics Inc., Colorado Springs, COUnited States38.83388160-104.8213634083%651042
4af89578ac237278be310f7660a408b03f12d603geofacesGeoFacesLarge-scale geo-facial image analysis[pdf]EURASIP J. Image and Video Processing100%660042
a0fd85b3400c7b3e11122f44dc5870ae2de9009amaflMAFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
a0fd85b3400c7b3e11122f44dc5870ae2de9009amtflMTFLLearning Deep Representation for Face Alignment with Auxiliary Attributes[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence71%108773176644
853bd61bc48a431b9b1c7cab10c603830c488e39casia_webfaceCASIA WebfaceLearning Face Representation from Scratch[pdf]CoRReduChinese Academy of SciencesChina40.00447950116.3702380071%47633913719290182
2a171f8d14b6b8735001a11c217af9587d095848social_relationSocial RelationLearning Social Relation Traits from Face Images[pdf]2015 IEEE International Conference on Computer Vision (ICCV)61%231494167
4e4746094bf60ee83e40d8597a6191e463b57f76leeds_sports_pose_extendedLeeds Sports Pose ExtendedLearning effective human pose estimation from inaccurate annotation[pdf]CVPR 2011eduUniversity of LeedsUnited Kingdom53.80387185-1.5524571271%16912049710865
287ddcb3db5562235d83aee318f318b8d5e43fb1erceERCeLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
287ddcb3db5562235d83aee318f318b8d5e43fb1tisiTimes Square IntersectionLearning from Multiple Sources for Video Summarisation[pdf]International Journal of Computer Vision57%743043
5981e6479c3fd4e31644db35d236bfb84ae46514motMOTLearning to associate: HybridBoosted multi-target tracker for crowded scene[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduUniversity of Southern CaliforniaUnited States34.02241490-118.2863440761%32620012522190137
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_buffyBuffy StickmenLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
6dd0597f8513dc100cd0bc1b493768cde45098a9stickmen_pascalStickmen PASCALLearning to parse images of articulated bodies[pdf]Unknown62%36922714132237131
28d4e027c7e90b51b7d8908fce68128d1964668amegafaceMegaFaceLevel Playing Field for Million Scale Face Recognition[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduUniversity of WashingtonUnited States47.65432380-122.3080089472%3928112299
46a01565e6afe7c074affb752e7069ee3bf2e4efsdu_vidSDU-VIDLocal Descriptors Encoded by Fisher Vectors for Person Re-identification[pdf]Unknown67%197132651510888
140438a77a771a8fb656b39a78ff488066eb6b50lfpwLFPWLocalizing Parts of Faces Using a Consensus of Exemplars[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence100%000000
38b55d95189c5e69cf4ab45098a48fba407609b4cuhk_campus_03CUHK03 CampusLocally Aligned Feature Transforms across Views[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition64%2581649415136117
8990cdce3f917dad622e43e033db686b354d057ctiny_facesTinyFaceLow-Resolution Face Recognition[pdf]CoRR100%000000
c0387e788a52f10bf35d4d50659cfa515d89fbecmarsMARSMARS: A Video Benchmark for Large-Scale Person Re-Identification[pdf]Unknown68%1681155349769
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorphMORPH CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
9055b155cbabdce3b98e16e5ac9c0edf00f9552fmorph_ncMORPH Non-CommercialMORPH: a longitudinal image database of normal adult age-progression[pdf]7th International Conference on Automatic Face and Gesture Recognition (FGR06)eduNorth Carolina UniversityUnited States34.22398690-77.8701325059%43725817822228203
291265db88023e92bb8c8e6390438e5da148e8f5mscelebMsCelebMS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition[pdf]UnknowncompanyMicrosoftUnited States47.64233180-122.1369302078%18014139812059
3dc3f0b64ef80f573e3a5f96e456e52ee980b877georgia_tech_face_databaseGeorgia Tech FaceMaximum Likelihood Training of the Embedded HMM for Face Detection and Recognition[pdf]Unknown54%67363142928
e58dd160a76349d46f881bd6ddbc2921f08d1050gfwGrouping Face in the WildMerge or Not? Learning to Group Faces via Imitation Learning[pdf]Unknown100%220020
5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725fpoq50 People One QuestionMerging Pose Estimates Across Space and Time[pdf]Unknown81%161330134
5e0f8c355a37a5a89351c02f174e7a5ddcb98683cocoCOCOMicrosoft COCO: Common Objects in Context[pdf]Unknown61%99960839125722259
41976ebc8ab76d9a6861487c97cc7fcbe3b6015fmoments_in_timeMoments in TimeMoments in Time Dataset: one million videos for event understanding[pdf]CoRReduColumbia UniversityUnited States40.84198360-73.9436897176%292272272
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_multiviewTUD-MultiviewMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
436f798d1a4e54e5947c1e7d7375c31b2bdb4064tud_stadtmitteTUD-StadtmitteMonocular 3D pose estimation and tracking by detection[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern RecognitioneduTU DarmstadtGermany49.874827708.6563281060%31118612533208105
3b5b6d19d4733ab606c39c69a889f9e67967f151qmul_gridGRIDMulti-camera activity correlation analysis[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103569%142984477764
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_brusselsTUD-BrusselsMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
6ad5a38df8dd4cdddd74f31996ce096d41219f72tud_motionpairsTUD-MotionparisMulti-cue onboard pedestrian detection[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
32c801cb7fbeb742edfd94cccfca4934baec71daucf_crowdUCF-CC-50Multi-source Multi-scale Counting in Extremely Dense Crowd Images[pdf]2013 IEEE Conference on Computer Vision and Pattern Recognition76%1481133538065
1e3df3ca8feab0b36fd293fe689f93bb2aaac591immediacyImmediacyMulti-task Recurrent Neural Network for Immediacy Prediction[pdf]2015 IEEE International Conference on Computer Vision (ICCV)62%2616102216
2b926b3586399d028b46315d7d9fb9d879e4f79cfrav3dFRAV3DMultimodal 2D, 2.5D & 3D Face Verification[pdf]2006 International Conference on Image ProcessingeduUniversidad Rey Juan Carlos, SpainSpain40.33586610-3.8769432057%14860212
53ae38a6bb2b21b42bac4f0c4c8ed1f9fa02f9d4bp4d_plusBP4D+Multimodal Spontaneous Emotion Corpus for Human Behavior Analysis[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%42231901726
2fda164863a06a92d3a910b96eef927269aeb730names_and_facesNews DatasetNames and faces in the news[pdf]Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.100%000000
4156b7e88f2e0ab0a7c095b9bab199ae2b23bd06distance_nighttimeLong Distance Heterogeneous FaceNighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching[pdf]Unknown50%22111131110
3394168ff0719b03ff65bcea35336a76b21fe5e4penn_fudanPenn FudanObject Detection Combining Recognition and Segmentation[pdf]Unknown61%105644195843
12ad3b5bbbf407f8e54ea692c07633d1a867c566grazGraz PedestrianObject recognition using segmentation for feature detection[pdf]Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.eduInst. of Comput. Sci., Univ. of Leoben, AustriaAustria47.3847372015.09302010100%000000
4f93cd09785c6e77bf4bc5a788e079df524c8d21sotonSOTON HiDOn a Large Sequence-Based Human Gait Database[pdf]Unknown63%15095551710351
6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4cafadAFADOrdinal Regression with Multiple Output CNN for Age Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)55%78433584431
a7fe834a0af614ce6b50dc093132b031dd9a856bmarket_1501Market 1501Orientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
a7fe834a0af614ce6b50dc093132b031dd9a856bpku_reidPKU-ReidOrientation Driven Bag of Appearances for Person Re-identification[pdf]CoRR43%734044
18ae7c9a4bbc832b8b14bc4122070d7939f5e00efrgcFRGCOverview of the face recognition grand challenge[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)eduNISTUnited States39.14004000-77.2185060057%99956843085549442
22909dd19a0ec3b6065334cb5be5392cb24d839dpetsPETS 2017PETS 2017: Dataset and Challenge[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)44%945018
56ffa7d906b08d02d6d5a12c7377a57e24ef3391unbc_shoulder_painUNBC-McMaster PainPainful data: The UNBC-McMaster shoulder pain expression archive database[pdf]Face and Gesture 2011eduCarnegie Mellon UniversityUnited States40.44416190-79.9427282654%189103862110878
55206f0b5f57ce17358999145506cd01e570358corlORLParameterisation of a stochastic model for human face identification[pdf]Unknown50%99950149894543427
0486214fb58ee9a04edfe7d6a74c6d0f661a7668chokepointChokePointPatch-based probabilistic image quality assessment for face selection and improved video-based face recognition[pdf]CVPR 2011 WORKSHOPS60%138835567663
488e475eeb3bb39a145f23ede197cd3620f1d98aapisAPiS1.0Pedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
488e475eeb3bb39a145f23ede197cd3620f1d98asvsSVSPedestrian Attribute Classification in Surveillance: Database and Evaluation[pdf]2013 IEEE International Conference on Computer Vision Workshops71%2820801315
2a4bbee0b4cf52d5aadbbc662164f7efba89566cpetaPETAPedestrian Attribute Recognition At Far Distance[pdf]Unknown75%88662215036
f72f6a45ee240cc99296a287ff725aaa7e7ebb35caltech_pedestriansCaltech PedestriansPedestrian Detection: An Evaluation of the State of the Art[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748760%99960039969527466
1dc35905a1deff8bc74688f2d7e2f48fd2273275caltech_pedestriansCaltech PedestriansPedestrian detection: A benchmark[pdf]2009 IEEE Conference on Computer Vision and Pattern Recognition100%000000
3316521a5527c7700af8ae6aef32a79a8b83672ctud_campusTUD-CampusPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_crossingTUD-CrossingPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
3316521a5527c7700af8ae6aef32a79a8b83672ctud_pedestrianTUD-PedestrianPeople-tracking-by-detection and people-detection-by-tracking[pdf]2008 IEEE Conference on Computer Vision and Pattern Recognition59%54532422037330218
27a2fad58dd8727e280f97036e0d2bc55ef5424cduke_mtmcDuke MTMCPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
27a2fad58dd8727e280f97036e0d2bc55ef5424cmotMOTPerformance Measures and a Data Set for Multi-Target, Multi-Camera Tracking[pdf]UnknowneduDuke UniversityUnited States35.99905220-78.9290629085%16914425311354
16c7c31a7553d99f1837fc6e88e77b5ccbb346b8pridPRIDPerson Re-identification by Descriptive and Discriminative Classification[pdf]Unknown68%38626312323204180
98bb029afe2a1239c3fdab517323066f0957b81bilids_mcts_vidiLIDS-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
98bb029afe2a1239c3fdab517323066f0957b81bsdu_vidSDU-VIDPerson Re-identification by Video Ranking[pdf]Unknown68%20914366811197
0b84f07af44f964817675ad961def8a51406dd2eprwPRWPerson Re-identification in the Wild[pdf]2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)68%77522514727
a0cc5f73a37723a6dd465924143f1cb4976d0169msmt_17MSMT17Person Transfer GAN to Bridge Domain Gap for Person Re-identification[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition92%242221204
1c2802c2199b6d15ecefe7ba0c39bfe44363de38youtube_posesYouTube PosePersonalizing Human Video Pose Estimation[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduOxford UniversityUnited Kingdom51.75208490-1.2516646064%3623132308
2830fb5282de23d7784b4b4bc37065d27839a412h3dH3DPoselets: Body part detectors trained using 3D human pose annotations[pdf]2009 IEEE 12th International Conference on Computer Vision58%71641530159492222
3765df816dc5a061bc261e190acc8bdd9d47bec0rafdRaFDPresentation and validation of the Radboud Faces Database[pdf]Unknown48%48723425339342144
636b8ffc09b1b23ff714ac8350bb35635e49fa3ccaltech_10k_web_facesCaltech 10K Web FacesPruning training sets for learning of object categories[pdf]2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)70%63441944220
3531332efe19be21e7401ba1f04570a142617236ufddUFDDPushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results[pdf]CoRR75%431040
140c95e53c619eac594d70f6369f518adfea12efijb_aIJB-APushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)66%237156811415976
c72a2ea819df9b0e8cd267eebcc6528b8741e03dmegaageMegaAgeQuantifying Facial Age by Posterior of Age Comparisons[pdf]CoRR100%440040
922e0a51a3b8c67c4c6ac09a577ff674cbd28b34v47V47Re-identification of pedestrians with variable occlusion and scale[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduKingston UniversityUnited Kingdom51.42930860-0.2684044056%954154
6f3c76b7c0bd8e1d122c6ea808a271fd4749c951wardWARDRe-identify people in wide area camera network[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduUniversity of UdineItaly46.0810723013.2119474060%60362413821
54983972aafc8e149259d913524581357b0f91c3reseedReSEEDReSEED: social event dEtection dataset[pdf]Unknown67%642115
65355cbb581a219bd7461d48b3afd115263ea760complex_activitiesOngoing Complex ActivitiesRecognition of ongoing complex activities by sequence prediction over a hierarchical label space[pdf]2016 IEEE Winter Conference on Applications of Computer Vision (WACV)33%312030
e8de844fefd54541b71c9823416daa238be65546visual_phrasesPhrasal RecognitionRecognition using visual phrases[pdf]CVPR 2011eduUniversity of Illinois, Urbana-ChampaignUnited States40.11116745-88.2258766558%2461431031717068
356b431d4f7a2a0a38cf971c84568207dcdbf189widerWIDERRecognize complex events from static images by fusing deep channels[pdf]2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)70%44311312915
25474c21613607f6bb7687a281d5f9d4ffa1f9f3faceplaceFace PlaceRecognizing disguised faces[pdf]Unknown34%29101901810
4053e3423fb70ad9140ca89351df49675197196abio_idBioID FaceRobust Face Detection Using the Hausdorff Distance[pdf]Unknown57%51128922249329182
2724ba85ec4a66de18da33925e537f3902f21249cofwCOFWRobust Face Landmark Estimation under Occlusion[pdf]2013 IEEE International Conference on Computer VisioneduCalifornia Institute of TechnologyUnited States34.13710185-118.1252748772%3252339212194133
c570d1247e337f91e555c3be0e8c8a5aba539d9fmcgillMcGill Real WorldRobust semi-automatic head pose labeling for real-world face video sequences[pdf]Multimedia Tools and ApplicationseduMcGill UniversityCanada45.50397610-73.5749687044%188100137
e27ef52c641c2b5100a1b34fd0b819e84a31b4dfsarc3dSarc3DSARC3D: A New 3D Body Model for People Tracking and Re-identification[pdf]Unknown74%3425922112
bd26dabab576adb6af30484183c9c9c8379bf2e0scut_fbpSCUT-FBPSCUT-FBP: A Benchmark Dataset for Facial Beauty Perception[pdf]2015 IEEE International Conference on Systems, Man, and Cybernetics47%199102613
29a705a5fa76641e0d8963f1fdd67ee4c0d92d3dscfaceSCfaceSCface – surveillance cameras face database[pdf]Multimedia Tools and Applications56%17910178158889
d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9stair_actionsSTAIR ActionSTAIR Actions: A Video Dataset of Everyday Home Actions[pdf]CoRR100%110010
833fa04463d90aab4a9fe2870d480f0b40df446esun_attributesSUNSUN attribute database: Discovering, annotating, and recognizing scene attributes[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduBrown UniversityUnited States41.82686820-71.4012314660%2641591052720656
4308bd8c28e37e2ed9a3fcfe74d5436cce34b410market_1501Market 1501Scalable Person Re-identification: A Benchmark[pdf]2015 IEEE International Conference on Computer Vision (ICCV)companyMicrosoftUnited States47.64233180-122.1369302077%4603551059263185
9c23859ec7313f2e756a3e85575735e0c52249f4facebook_100Facebook100Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
9c23859ec7313f2e756a3e85575735e0c52249f4pubfig_83pubfig83Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook[pdf]CVPR 2011 WORKSHOPSeduHarvard UniversityUnited States42.36782045-71.1266665362%52322033813
51eba481dac6b229a7490f650dff7b17ce05df73imsituimSituSituation Recognition: Visual Semantic Role Labeling for Image Understanding[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)65%5234181466
570f37ed63142312e6ccdf00ecc376341ec72b9fstanford_droneStanford DroneSocial LSTM: Human Trajectory Prediction in Crowded Spaces[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)56%22412599314081
23e824d1dfc33f3780dd18076284f07bd99f1c43mifsMIFSSpoofing faces using makeup: An investigative study[pdf]2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)eduINRIA MéditerranéeFrance43.615813107.0683800067%642015
1a40092b493c6b8840257ab7f96051d1a4dbfeb2sports_videos_in_the_wildSVWSports Videos in the Wild (SVW): A video dataset for sports analysis[pdf]2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)86%761152
9361b784e73e9238d5cefbea5ac40d35d1e3103foxford_town_centreTownCentreStable multi-target tracking in real-time surveillance video[pdf]CVPR 2011eduUniversity of OxfordUnited Kingdom51.75345380-1.2540099768%32822210613186140
2306b2a8fba28539306052764a77a0d0f5d1236aqmul_surv_faceQMUL-SurvFaceSurveillance Face Recognition Challenge[pdf]CoRReduQueen Mary University of LondonUnited Kingdom51.52472720-0.03931035100%110010
f6c8d5e35d7e4d60a0104f233ac1a3ab757da53fpku_reidPKU-ReidSwiss-System Based Cascade Ranking for Gait-Based Person Re-Identification[pdf]Unknown50%422012
4d58f886f5150b2d5e48fd1b5a49e09799bf895dtexas_3dfrdTexas 3DFRDTexas 3D Face Recognition Database[pdf]2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI)61%66402634027
6d96f946aaabc734af7fe3fc4454cf8547fcd5edar_facedbAR FaceThe AR face database[pdf]Unknown58%99957942058458530
2485c98aa44131d1a2f7d1355b1e372f2bb148adcas_pealCAS-PEALThe CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[pdf]IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans59%42925417538198234
47662d1a368daf70ba70ef2d59eb6209f98b675dfiaCMU FiAThe CMU Face In Action (FIA) Database[pdf]Unknown48%54262854016
4d423acc78273b75134e2afd1777ba6d3a398973cmu_pieCMU PIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
4d423acc78273b75134e2afd1777ba6d3a398973multi_pieMULTIPIEThe CMU Pose, Illumination, and Expression (PIE) Database[pdf]Unknown59%76044931049404345
4df3143922bcdf7db78eb91e6b5359d6ada004d2cfdCFDThe Chicago face database: A free stimulus set of faces and norming data.[pdf]Behavior research methods60%99594017321
20388099cc415c772926e47bcbbe554e133343d1cafe#N/AThe Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults[pdf]54%3720173307
4e6ee936eb50dd032f7138702fa39b7c18ee8907dartmouth_childrenDartmouth ChildrenThe Dartmouth Database of Children’s Faces: Acquisition and Validation of a New Face Stimulus Set[pdf]52%2111102183
9e31e77f9543ab42474ba4e9330676e18c242e72imdb_faceIMDb FaceThe Devil of Face Recognition is in the Noise[pdf]UnknowneduNanyang Technological UniversitySingapore1.34841040103.6829796550%633041
71b7fc715e2f1bb24c0030af8d7e7b6e7cd128a6umd_facesUMDThe Do’s and Don’ts for CNN-Based Face Verification[pdf]2017 IEEE International Conference on Computer Vision Workshops (ICCVW)62%2616102168
72a155c987816ae81c858fddbd6beab656d86220europersonsEuroCity PersonsThe EuroCity Persons Dataset: A Novel Benchmark for Object Detection[pdf]CoRR0%202020
4d9a02d080636e9666c4d1cc438b9893391ec6c7cohn_kanade_plusCK+The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression[pdf]2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - WorkshopseduUniversity of PittsburghUnited States40.44415295-79.9624399361%99960739257470518
0f0fcf041559703998abf310e56f8a2f90ee6f21feretFERETThe FERET Evaluation Methodology for Face-Recognition Algorithms[pdf]Unknown34%2910193189
0c4a139bb87c6743c7905b29a3cfec27a5130652feretFERETThe FERET Verification Testing Protocol for Face Recognition Algorithms[pdf]UnknowneduCity University of New YorkUnited States40.87228250-73.8948917151%115595687537
dc8b25e35a3acb812beb499844734081722319b4feretFERETThe FERET database and evaluation procedure for face-recognition algorithms[pdf]Image Vision Comput.52%999521478103591421
8f02ec0be21461fbcedf51d864f944cfc42c875fhda_plusHDA+The HDA+ Data Set for Research on Fully Automated Re-identification Systems[pdf]Unknown50%16881106
8be57cdad86fdf8c8290df4ca3149592f3c46dd3m2vtsm2vtsThe M2VTS Multimodal Face Database (Release 1.00)[pdf]Unknown45%73334023933
ea050801199f98a1c7c1df6769f23f658299a3aempi_largeLarge MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
ea050801199f98a1c7c1df6769f23f658299a3aempi_smallSmall MPI Facial ExpressionThe MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions[pdf]52%3317164294
578d4ad74818086bb64f182f72e2c8bd31e3d426mr2MR2The MR2: A multi-racial, mega-resolution database of facial stimuli.[pdf]Behavior research methods43%734070
f1af714b92372c8e606485a3982eab2f16772ad8mug_facesMUG FacesThe MUG facial expression database[pdf]11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10eduAristotle University of ThessalonikiGreece40.6298414522.9588935055%82453743447
79828e6e9f137a583082b8b5a9dfce0c301989b8mapillaryMapillaryThe Mapillary Vistas Dataset for Semantic Understanding of Street Scenes[pdf]2017 IEEE International Conference on Computer Vision (ICCV)61%61372404316
96e0cfcd81cdeb8282e29ef9ec9962b125f379b0megafaceMegaFaceThe MegaFace Benchmark: 1 Million Faces for Recognition at Scale[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)76%13910633510037
0ee1916a0cb2dc7d3add086b5f1092c3d4beb38avocVOCThe Pascal Visual Object Classes (VOC) Challenge[pdf]International Journal of Computer VisioncompanyMicrosoftUnited States47.64233180-122.1369302061%99960739128557422
66e6f08873325d37e0ec20a4769ce881e04e964esun_attributesSUNThe SUN Attribute Database: Beyond Categories for Deeper Scene Understanding[pdf]International Journal of Computer Vision60%1167046148431
8b2dd5c61b23ead5ae5508bb8ce808b5ea26673010k_US_adult_faces10K US Adult FacesThe intrinsic memorability of face photographs.[pdf]Journal of experimental psychology. General56%52292323614
d178cde92ab3dc0dd2ebee5a76a33d556c39448bjiku_mobileJiku Mobile Video DatasetThe jiku mobile video dataset[pdf]UnknowneduNational University of SingaporeSingapore1.29620180103.7768994471%241770619
ae0aee03d946efffdc7af2362a42d3750e7dd48aput_facePut FaceThe put face database[pdf]Unknown55%99544555548
19d1b811df60f86cbd5e04a094b07f32fff7a32ayork_3dUOY 3D Face DatabaseThree-dimensional face recognition: an eigensurface approach[pdf]2004 International Conference on Image Processing, 2004. ICIP '04.42%38162242413
2edb87494278ad11641b6cf7a3f8996de12b8e14qmul_gridGRIDTime-Delayed Correlation Analysis for Multi-Camera Activity Understanding[pdf]International Journal of Computer VisioneduQueen Mary University of LondonUnited Kingdom51.52472720-0.0393103563%84533145133
64e0690dd176a93de9d4328f6e31fc4afe1e7536duke_mtmcDuke MTMCTracking Multiple People Online and in Real Time[pdf]Unknown78%2318511210
298cbc3dfbbb3a20af4eed97906650a4ea1c29e0ferplusFER+Training deep networks for facial expression recognition with crowd-sourced label distribution[pdf]Unknown74%3425901816
4eab317b5ac436a949849ed286baa3de2a541eeflaofiwLAOFIWTurning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings[pdf]Unknown100%220020
b5f2846a506fc417e7da43f6a7679146d99c5e96ucf_101UCF101UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild[pdf]CoRR64%99964335656628362
16e8b0a1e8451d5f697b94c0c2b32a00abee1d52umbUMBUMB-DB: A database of partially occluded 3D faces[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)66%47311622224
31b05f65405534a696a847dd19c621b7b8588263umd_facesUMDUMDFaces: An annotated face dataset for training deep networks[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)eduUniversity of MarylandUnited States39.28996850-76.6219610379%4233923011
8627f019882b024aef92e4eb9355c499c733e5b7usedUSED Social Event DatasetUSED: a large-scale social event detection dataset[pdf]UnknowneduUniversity of TrentoItaly46.0658836011.1159894086%761034
d4f1eb008eb80595bcfdac368e23ae9754e1e745uccsUCCSUnconstrained Face Detection and Open-Set Face Recognition Challenge[pdf]2017 IEEE International Joint Conference on Biometrics (IJCB)100%550041
4b4106614c1d553365bad75d7866bff0de6056edufiUFIUnconstrained Facial Images: Database for Face Recognition Under Real-World Conditions[pdf]Unknown50%1266046
08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7kin_faceUB KinFaceUnderstanding Kin Relationships in a Photo[pdf]IEEE Transactions on Multimedia63%94593513361
5a4df9bef1872865f0b619ac3aacc97f49e4a035cuhk_train_stationCUHK Train Station DatasetUnderstanding collective crowd behaviors: Learning a Mixture model of Dynamic pedestrian-Agents[pdf]2012 IEEE Conference on Computer Vision and Pattern RecognitioneduChinese University of Hong KongChina22.41626320114.2109318060%141845746075
21d9d0deed16f0ad62a4865e9acf0686f4f15492images_of_groupsImages of GroupsUnderstanding images of groups of people[pdf]2009 IEEE Conference on Computer Vision and Pattern RecognitioneduCarnegie Mellon UniversityUnited States40.44416190-79.94272826100%000000
15e1af79939dbf90790b03d8aa02477783fb1d0fduke_mtmcDuke MTMCUnlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in Vitro[pdf]2017 IEEE International Conference on Computer Vision (ICCV)100%000000
fd8168f1c50de85bac58a8d328df0a50248b16aend_2006ND-2006Using a Multi-Instance Enrollment Representation to Improve 3D Face Recognition[pdf]2007 First IEEE International Conference on Biometrics: Theory, Applications, and SystemseduUniversity of Notre DameUnited States41.70456775-86.2382202663%35221331815
4563b46d42079242f06567b3f2e2f7a80cb3befevadanaVADANAVADANA: A dense dataset for facial image analysis[pdf]2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)eduUniversity of DelawareUnited States39.68103280-75.7540184067%151050510
70c59dc3470ae867016f6ab0e008ac8ba03774a1vgg_faces2VGG Face2VGGFace2: A Dataset for Recognising Faces across Pose and Age[pdf]2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)80%83661736120
01959ef569f74c286956024866c1d107099199f7vqaVQAVQA: Visual Question Answering[pdf]2015 IEEE International Conference on Computer Vision (ICCV)100%000000
b6c293f0420f7e945b5916ae44269fb53e139275erceERCeVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
b6c293f0420f7e945b5916ae44269fb53e139275tisiTimes Square IntersectionVideo Synopsis by Heterogeneous Multi-source Correlation[pdf]2013 IEEE International Conference on Computer Vision52%29151421413
5194cbd51f9769ab25260446b4fa17204752e799violent_flowsViolent FlowsViolent flows: Real-time detection of violent crowd behavior[pdf]2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopseduOpen University of IsraelIsrael32.7782416534.9956567365%88573164544
026e3363b7f76b51cc711886597a44d5f1fd1de2kittiKITTIVision meets robotics: The KITTI dataset[pdf]I. J. Robotics Res.60%99960239736553462
066000d44d6691d27202896691f08b27117918b9psuPSUVision-Based Analysis of Small Groups in Pedestrian Crowds[pdf]IEEE Transactions on Pattern Analysis and Machine Intelligence54%1689177108579
dd65f71dac86e36eecbd3ed225d016c3336b4a13families_in_the_wildFIWVisual Kinship Recognition of Families in the Wild[pdf]IEEE Transactions on Pattern Analysis and Machine IntelligenceeduUniversity of Massachusetts DartmouthUnited States41.62772475-71.0072450180%541023
8875ae233bc074f5cd6c4ebba447b536a7e847a5voxceleb2VoxCeleb2VoxCeleb2: Deep Speaker Recognition.[pdf]Unknown71%342492312
52d7eb0fbc3522434c13cc247549f74bb9609c5dwider_faceWIDER FACEWIDER FACE: A Face Detection Benchmark[pdf]2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)eduChinese University of Hong KongChina22.41626320114.2109318066%178118601111266
36bccfb2ad847096bc76777e544f305813cd8f5bwildtrackWildTrackWILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection[pdf]2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition100%000000
5ad4e9f947c1653c247d418f05dad758a3f9277bwlfdbWLFDBWLFDB : Weakly Labeled Face Databases[pdf]Unknown100%110001
0dc11a37cadda92886c56a6fb5191ded62099c28stickmen_familyWe Are Family StickmenWe Are Family: Joint Pose Estimation of Multiple Persons[pdf]Unknown65%78512755423
0c91808994a250d7be332400a534a9291ca3b60egrazGraz PedestrianWeak Hypotheses and Boosting for Generic Object Detection and Recognition[pdf]Unknown56%2361311051716177
2a75f34663a60ab1b04a0049ed1d14335129e908mmi_facial_expressionMMI Facial Expression DatasetWeb-based database for facial expression analysis[pdf]2005 IEEE International Conference on Multimedia and Expo54%46425021445282188
9b9bf5e623cb8af7407d2d2d857bc3f1b531c182who_goes_thereWGTWho goes there?: approaches to mapping facial appearance diversity[pdf]UnknowneduUniversity of KentuckyUnited States38.03337420-84.50177580100%000000
b62628ac06bbac998a3ab825324a41a11bc3a988m2vtsdb_extendedxm2vtsdbXM2VTSDB : The extended M2VTS database[pdf]Unknown62%86453932537493404
010f0f4929e6a6644fb01f0e43820f91d0fad292yfcc_100mYFCC100MYFCC100M: the new data in multimedia research[pdf]Commun. ACMeduCarnegie Mellon UniversityUnited States40.44416190-79.9427282664%2741769823172100
a94cae786d515d3450d48267e12ca954aab791c4yawddYawDDYawDD: a yawning detection dataset[pdf]Unknown80%151231213
\ No newline at end of file diff --git a/scraper/s2-final-report.py b/scraper/s2-final-report.py index c9795680..63789d85 100644 --- a/scraper/s2-final-report.py +++ b/scraper/s2-final-report.py @@ -22,8 +22,8 @@ def s2_final_report(): verified_lookup, verified_totals = fetch_verified_paper_lookup() items = [] for key, item in megapixels.items(): - if key != 'brainwash': - continue + #if key != 'brainwash': + # continue ft_share = 'ft_share' in item['dataset'] and item['dataset']['ft_share'] == 'Y' nyt_share = 'nyt_share' in item['dataset'] and item['dataset']['nyt_share'] == 'Y' if ft_share or nyt_share: @@ -47,11 +47,11 @@ def s2_final_report(): # DIR_PUBLIC_CITATIONS + '/', # "s3://megapixels/v1/citations/", # ]) - #subprocess.call([ - # "s3cmd", "put", "-P", "--recursive", - # DIR_VERIFIED_CITATIONS + '/', - # "s3://megapixels/v1/citations/verified/", - #]) + subprocess.call([ + "s3cmd", "put", "-P", "--recursive", + DIR_VERIFIED_CITATIONS + '/', + "s3://megapixels/v1/citations/verified/", + ]) def process_paper(row, verified_lookup, verified_totals): aggregate_citations = {} @@ -75,8 +75,12 @@ def process_paper(row, verified_lookup, verified_totals): process_single_paper(row, 'search', addresses, aggregate_citations, unknown_citations) for paper_id in verified_lookup.keys(): - if paper_id not in aggregate_citations: - print('S2 API missing verified citation: {}'.format(paper_id)) + if paper_id in aggregate_citations: + pass + elif paper_id in unknown_citations: + print('Verified paper needs address: {}'.format(paper_id)) + else: + print('S2 API missing new verified citation: {}'.format(paper_id)) process_single_paper(row, 'verified', addresses, aggregate_citations, unknown_citations, verified_lookup.keys()) diff --git a/site/datasets/citations/brainwash.json b/site/datasets/citations/brainwash.json index 17db4acf..932e18ef 100644 --- a/site/datasets/citations/brainwash.json +++ b/site/datasets/citations/brainwash.json @@ -1 +1 @@ -{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "paper": {"key": "brainwash", "name": "Brainwash", "title": "End-to-End People Detection in Crowded Scenes", "year": "2016", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}]}, "citations": [{"id": "e35515f699b60472ac8f50d1da84fab3c55417d6", "title": "Key Parts Context and Scene Geometry in Human Head Detection", "addresses": [{"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451832"]}, {"id": "5d5d267416aeb2bbddaf06f703e8683753abdcd0", "title": "Exploiting Multispectral and Contextual Information to Improve Human Detection", "addresses": [{"name": "State University of New Jersey", "source_name": "The State University of New Jersey", "street_adddress": "Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5d5d/267416aeb2bbddaf06f703e8683753abdcd0.pdf"], "doi": []}, {"id": "0cf0ad8235929417d904acd1c672713ca4fdb105", "title": "Fusion of Head and Full-Body Detectors for Multi-object Tracking", "addresses": [{"name": "Technical University Munich", "source_name": "Technical University Munich", "street_adddress": "TUM, 21, Arcisstra\u00dfe, Bezirksteil K\u00f6nigsplatz, Stadtbezirk 03 Maxvorstadt, M\u00fcnchen, Obb, Bayern, 80333, Deutschland", "lat": "48.14955455", "lng": "11.56775314", "type": "edu", "country": "Germany"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.08314.pdf"], "doi": []}, {"id": "cab97d4dc67919f965cc884d80e4d6b743a256eb", "title": "Scale Mapping and Dynamic Re-Detecting in Dense Head Detection", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451653"]}, {"id": "8a6665bfe3ad126d84414280ee2f884818560063", "title": "Vehicle Detection in Urban Traffic Surveillance Images Based on Convolutional Neural Networks with Feature Concatenation", "addresses": [{"name": "China University of Mining and Technology", "source_name": "China University of Mining and Technology", "street_adddress": "China University of Mining and Technology, 1\u53f7, \u5927\u5b66\u8def, \u6cc9\u5c71\u533a (Quanshan), \u5f90\u5dde\u5e02 / Xuzhou, \u6c5f\u82cf\u7701, 221116, \u4e2d\u56fd", "lat": "34.21525380", "lng": "117.13985410", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/8a66/65bfe3ad126d84414280ee2f884818560063.pdf"], "doi": []}, {"id": "333880ee776d57555f54935978ccb2ce13cfdb07", "title": "Person classification leveraging Convolutional Neural Network for obstacle avoidance via Unmanned Aerial Vehicles", "addresses": [{"name": "Cranfield University", "source_name": "Cranfield University, UK", "street_adddress": "College Rd, Wharley End, Bedford MK43 0AL, UK", "lat": "52.07418180", "lng": "-0.62781230", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101662"]}, {"id": "f30bdc22fe454a28234cf858d5bf9de94701ee7a", "title": "Adaptive NMS: Refining Pedestrian Detection in a Crowd", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.03629.pdf"], "doi": []}, {"id": "976647b32fd7e1a5c8ee4a11792155903bb34e43", "title": "Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks", "addresses": [{"name": "University of Malaya, Kuala Lumpur", "source_name": "University of Malaya", "street_adddress": "UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia", "lat": "3.12267405", "lng": "101.65356103", "type": "edu", "country": "Malaysia"}, {"name": "Kingston University", "source_name": "Kingston University", "street_adddress": "Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK", "lat": "51.42930860", "lng": "-0.26840440", "type": "edu", "country": "United Kingdom"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359391"]}, {"id": "66a08ff2ea7447093624632e7069e3da16961d30", "title": "An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition", "addresses": [{"name": "Northwestern Polytechnical University", "source_name": "Northwestern Polytechnical University", "street_adddress": "\u897f\u5317\u5de5\u4e1a\u5927\u5b66 \u53cb\u8c0a\u6821\u533a, 127\u53f7, \u53cb\u8c0a\u897f\u8def, \u957f\u5b89\u8def, \u7891\u6797\u533a (Beilin), \u897f\u5b89\u5e02, \u9655\u897f\u7701, 710072, \u4e2d\u56fd", "lat": "34.24691520", "lng": "108.91061982", "type": "edu", "country": "China"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7605450"]}, {"id": "6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de", "title": "Crowd Counting via Scale-Adaptive Convolutional Neural Network", "addresses": [{"name": "Shanghai Jiaotong University", "source_name": "Shanghai Jiaotong University", "street_adddress": "China, Shanghai, Minhang, \u4e1c\u5ddd\u8def \u90ae\u653f\u7f16\u7801: 200240", "lat": "31.02522010", "lng": "121.43377840", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.04433.pdf"], "doi": []}, {"id": "e607b91f69ea2bff3194b07c5d22b4625bbe306e", "title": "Learning to See People Like People : Predicting Social Impressions of Faces", "addresses": [{"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e607/b91f69ea2bff3194b07c5d22b4625bbe306e.pdf"], "doi": []}, {"id": "737f3cf354f40a6a7fd8a2058fe2803b8dd6c56b", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/737f/3cf354f40a6a7fd8a2058fe2803b8dd6c56b.pdf"], "doi": []}, {"id": "3e667c54e848233db092b794f2cfbf47ea63b771", "title": "Combined convolutional and recurrent neural networks for hierarchical classification of images", "addresses": [{"name": "Northwestern University", "source_name": "Northwestern University", "street_adddress": "Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA", "lat": "42.05511640", "lng": "-87.67581113", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.09574.pdf"], "doi": []}, {"id": "a5c8fc1ca4f06a344b53dc81ebc6d87f54896722", "title": "Learning to see people like people", "addresses": [{"name": "University of California, San Diego", "source_name": "University of California, San Diego", "street_adddress": "UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA", "lat": "32.87935255", "lng": "-117.23110049", "type": "edu", "country": "United States"}, {"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.04282.pdf"], "doi": []}, {"id": "7a9c2524a157a6b5d0204c2f3b187cd67eb26b4c", "title": "SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection", "addresses": [{"name": "Hong Kong Polytechnic University", "source_name": "Hong Kong Polytechnic University", "street_adddress": "hong kong, 11, \u80b2\u624d\u9053 Yuk Choi Road, \u5c16\u6c99\u5480 Tsim Sha Tsui, \u6cb9\u5c16\u65fa\u5340 Yau Tsim Mong District, \u4e5d\u9f8d Kowloon, HK, 00000, \u4e2d\u56fd", "lat": "22.30457200", "lng": "114.17976285", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8478157"]}, {"id": "c7f4e18ec3a805b8aee1d3d7552364c8f5f6ca1d", "title": "An Auto-adaptive CNN for Crowd Counting in Monitor Image", "addresses": [{"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8525541"]}, {"id": "b1db174463b0bbc54a61fcc83acfb89ad3e3d18f", "title": "Loss Functions for Multiset Prediction", "addresses": [{"name": "New York University", "source_name": "New York University", "street_adddress": "NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA", "lat": "40.72925325", "lng": "-73.99625394", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.05246.pdf"], "doi": []}, {"id": "81ba5202424906f64b77f68afca063658139fbb2", "title": "Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "IDIAP Research Institute", "source_name": "IDIAP Research Institute", "street_adddress": "Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.10923700", "lng": "7.08453549", "type": "edu", "country": "Switzerland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09078.pdf"], "doi": []}, {"id": "830466596c0908399760f2009a09ce605e3121c9", "title": "Revisiting Perspective Information for Efficient Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "1d1a2387663cb3510d6f5c0651c1dc55e48dcabc", "title": "Joint Pedestrian and Body Part Detection via Semantic Relationship Learning", "addresses": [{"name": "Hebei University of Technology", "source_name": "Hebei University of Technology, Tianjin, P. R. China", "street_adddress": "8 Dingzigu 1st Rd, Hongqiao Qu, China, 300131", "lat": "39.17963500", "lng": "117.16588200", "type": "edu", "country": "China"}, {"name": "Chinese Academy of Sciences", "source_name": "Chinese Academy of Sciences", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "lat": "40.00447950", "lng": "116.37023800", "type": "edu", "country": "China"}, {"name": "Beijing Information Science and Technology University", "source_name": "Beijing Information Science and Technology University, Beijing, China", "street_adddress": "China, Beijing, Haidian, \u6e05\u6cb3\u56db\u62d4\u5b50", "lat": "40.04332040", "lng": "116.34181090", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/1d1a/2387663cb3510d6f5c0651c1dc55e48dcabc.pdf"], "doi": []}, {"id": "91d2f0b7c23239740fa15dff0b5893b992c0ab34", "title": "Sequence-to-Segment Networks for Segment Detection", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/91d2/f0b7c23239740fa15dff0b5893b992c0ab34.pdf"], "doi": []}, {"id": "8e7c647d8e8ba726b03f7e7c5cc395f86b9de9be", "title": "Parsing Pose of People with Interaction", "addresses": [{"name": "California Institute of Technology", "source_name": "California Institute of Technology", "street_adddress": "California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA", "lat": "34.13710185", "lng": "-118.12527487", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8e7c/647d8e8ba726b03f7e7c5cc395f86b9de9be.pdf"], "doi": []}, {"id": "2f02c1d4858d9c0f5d16099eb090560d5fa4f23f", "title": "Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545068"]}, {"id": "c43c3ec39005aaf1f0ad2f641d92f41021342217", "title": "Pedestrian Detection with Autoregressive Network Phases", "addresses": [{"name": "Michigan State University", "source_name": "Michigan State University", "street_adddress": "Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00440.pdf"], "doi": []}, {"id": "e1a784e360f2bf3911cffa30506d46c412659db5", "title": "MetaAnchor: Learning to Detect Objects with Customized Anchors", "addresses": [{"name": "Fudan University", "source_name": "Fudan University", "street_adddress": "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "lat": "31.30104395", "lng": "121.50045497", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00980.pdf"], "doi": []}, {"id": "9da3ade53bf91556fe46828b216aab20a4e72294", "title": "SNc Neuron Detection Method Based on Deep Learning for Efficacy Evaluation of Anti-PD Drugs", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8431470"]}, {"id": "cfa48bc1015b88809e362b4da19fe4459acb1d89", "title": "Learning to Filter Object Detections", "addresses": [{"name": "Max Planck Institute for Intelligent Systems", "source_name": "Max Planck Institute for Intelligent Systems", "street_adddress": "Heisenbergstra\u00dfe 3, 70569 Stuttgart, Germany", "lat": "48.74689390", "lng": "9.08051410", "type": "edu", "country": "Germany"}, {"name": "Microsoft", "source_name": "Microsoft Corporation, Redmond, WA, USA", "street_adddress": "One Microsoft Way, Redmond, WA 98052, USA", "lat": "47.64233180", "lng": "-122.13693020", "type": "company", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cfa4/8bc1015b88809e362b4da19fe4459acb1d89.pdf"], "doi": []}, {"id": "eb5780e49ad7e713e9f34cf067d45030fb29753e", "title": "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", "addresses": [{"name": "University Medical Center Utrecht", "source_name": "Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands", "street_adddress": "Vondellaan 94, 3521 GH Utrecht, Netherlands", "lat": "52.07869500", "lng": "5.11974690", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04383.pdf"], "doi": []}, {"id": "54c9343c247ce5a82bc52f83df84c2bbae737ce4", "title": "Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back. (L'apprentissage profond sur graphes attribu\u00e9s: Un voyage aller-retour aux plongements des graphes)", "addresses": [{"name": "INRIA Sophia Antipolis", "source_name": "INRIA Sophia Antipolis Meditérannée, Valbonne, France", "street_adddress": "2004 Route des Lucioles, 06902 Valbonne, France", "lat": "43.61581310", "lng": "7.06838000", "type": "edu", "country": "France"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.08296.pdf"], "doi": []}, {"id": "2d81cf3214281af85eb1d9d270a897d62302e88e", "title": "High density people estimation in video surveillance", "addresses": [{"name": "AvidBeam", "source_name": "AvidBeam", "street_adddress": "5 Wadi Al Nile, Maadi Al Khabiri Ash Sharqeyah, Al Maadi, Cairo Governorate 11728, Egypt", "lat": "29.95606300", "lng": "31.25547100", "type": "company", "country": "Egypt"}, {"name": "Faculty of Media Engineering & Technology German University in Cairo", "source_name": "Faculty of Media Engineering & Technology German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}, {"name": "German University in Cairo", "source_name": "Faculty of Media Engineering and Technology, German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8275348"]}, {"id": "d54d0dc1e7ef82f3ed0ee332e0777b6d73477a8c", "title": "Sidewalk-level People Flow Estimation Using Dashboard Cameras Based on Deep Learning", "addresses": [{"name": "Osaka University", "source_name": "Osaka University", "street_adddress": "\u5927\u962a\u5927\u5b66\u6e05\u660e\u5bee, \u670d\u90e8\u897f\u753a\u56db\u4e01\u76ee, \u8c4a\u4e2d\u5e02, \u5927\u962a\u5e9c, \u8fd1\u757f\u5730\u65b9, \u65e5\u672c", "lat": "34.80809035", "lng": "135.45785218", "type": "edu", "country": "Japan"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8653595"]}, {"id": "9607f88fe6298f754e3f610c3a587d8e10b1b0a9", "title": "Scene Text Detection with Recurrent Instance Segmentation", "addresses": [{"name": "National Laboratory of Pattern Recognition", "source_name": "National Laboratory of Pattern Recognition & Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, China", "street_adddress": "China, Beijing, Haidian, Zhongguancun South 1st Alley, \u4e2d\u5173\u6751\u5357\u4e00\u6761", "lat": "39.98177000", "lng": "116.33008600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545073"]}, {"id": "ed2ba6448db8cf945ca24d4df11916c2c5c3edd1", "title": "Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing", "addresses": [{"name": "University of Electronic Science and Technology of China", "source_name": "University of Electronic Science and Technology of China", "street_adddress": "2 Jianshe North Rd 2nd Section, Jianshe Road, Chenghua Qu, Chengdu Shi, Sichuan Sheng, China, 610054", "lat": "30.67272100", "lng": "104.09880600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://doi.org/10.1007/s11063-018-9837-1"]}, {"id": "deea683731f468c7234e1089f48c4546e7003b18", "title": "Multi-Task Vehicle Detection With Region-of-Interest Voting", "addresses": [{"name": "Alibaba Group, Hangzhou, China", "source_name": "Alibaba Group, Hangzhou, China", "street_adddress": "Alibaba Group, \u4e94\u5e38\u8857\u9053, \u4f59\u676d\u533a (Yuhang), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, \u4e2d\u56fd", "lat": "30.28106540", "lng": "120.02139087", "type": "edu", "country": "China"}, {"name": "Alibaba, Hangzhou, China", "source_name": "Alibaba, Hangzhou, China", "street_adddress": "699 Wangshang Rd, Binjiang Qu, Hangzhou Shi, Zhejiang Sheng, China", "lat": "30.18996400", "lng": "120.19210000", "type": "edu", "country": "China"}, {"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8066331", "http://doi.org/10.1109/TIP.2017.2762591", "https://www.ncbi.nlm.nih.gov/pubmed/29028197", "https://www.wikidata.org/entity/Q50063923"]}, {"id": "1303b3e9f4bffb87b6dd34f7849f7a57e00253d1", "title": "Point in, Box out: Beyond Counting Persons in Crowds", "addresses": [{"name": "Sichuan University, Chengdu", "source_name": "Sichuan Univ., Chengdu", "street_adddress": "\u56db\u5ddd\u5927\u5b66\uff08\u534e\u897f\u6821\u533a\uff09, \u6821\u4e1c\u8def, \u6b66\u4faf\u533a, \u6b66\u4faf\u533a (Wuhou), \u6210\u90fd\u5e02 / Chengdu, \u56db\u5ddd\u7701, 610014, \u4e2d\u56fd", "lat": "30.64276900", "lng": "104.06751175", "type": "edu", "country": "China"}, {"name": "INRIA", "source_name": "INRIA Grenoble Rhone-Alpes, Grenoble, France", "street_adddress": "655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France", "lat": "45.21788600", "lng": "5.80736900", "type": "edu", "country": "France"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01333.pdf"], "doi": []}, {"id": "4140ccbca5a585162420b82e9e4eeb9afbd1e7c2", "title": "Simulating Crowds in Egress Scenarios", "addresses": [{"name": "Pontifical Catholic University of Rio Grande do Sul", "source_name": "Pontifical Catholic University of Rio Grande do Sul", "street_adddress": "Av. Ipiranga, 6681 - Partenon, Porto Alegre - RS, 90619-900, Brazil", "lat": "-30.05934460", "lng": "-51.17349120", "type": "edu", "country": "Brazil"}, {"name": "University of Pennsylvania", "source_name": "University of Pennsylvania", "street_adddress": "Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA", "lat": "39.94923440", "lng": "-75.19198985", "type": "edu", "country": "United States"}, {"name": "Federal University of Rio Grande do Sul", "source_name": "Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil", "street_adddress": "Av. Paulo Gama, 110 - Farroupilha, Porto Alegre - RS, 90040-060, Brazil", "lat": "-30.03382480", "lng": "-51.21882800", "type": "edu", "country": "Brazil"}], "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1007/978-3-319-65202-3"]}, {"id": "5031a110219231ceaa820725c6e77f87f7b2fde2", "title": "Training with Confusion for Fine-Grained Visual Classification", "addresses": [{"name": "Harvard University", "source_name": "Harvard University", "street_adddress": "Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA", "lat": "42.36782045", "lng": "-71.12666653", "type": "edu", "country": "United States"}, {"name": "MIT", "source_name": "Massachusetts Institute", "street_adddress": "MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA", "lat": "42.35839610", "lng": "-71.09567788", "type": "edu", "country": "United States"}, {"name": "Brigham Young University", "source_name": "Brigham Young University, Provo, USA", "street_adddress": "Provo, UT 84602, USA", "lat": "40.25184350", "lng": "-111.64931560", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5031/a110219231ceaa820725c6e77f87f7b2fde2.pdf"], "doi": []}, {"id": "86c158ef6caaf247d5d14e07c5edded0147df8b7", "title": "Spatial Memory for Context Reasoning in Object Detection", "addresses": [{"name": "Carnegie Mellon University", "source_name": "Carnegie Mellon University Pittsburgh, PA - 15213, USA", "street_adddress": "Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA", "lat": "40.44416190", "lng": "-79.94272826", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.04224.pdf"], "doi": []}, {"id": "bba153ebdf11e6fb8716e35749c671ac96c14176", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.03686.pdf"], "doi": []}, {"id": "fe5679c183cb432894d111bf02cc3243c89762ca", "title": "Adaptive Scenario Discovery for Crowd Counting", "addresses": [{"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.02393.pdf"], "doi": []}, {"id": "11824658170994e4d4655e8f688bace16a0d3e48", "title": "Multi-person Head Segmentation in Low Resolution Crowd Scenes Using Convolutional Encoder-Decoder Framework", "addresses": [{"name": "Qatar University", "source_name": "Qatar University", "street_adddress": "Qatar University, Roindabout 3, Al Tarfa (68), \u0623\u0645 \u0635\u0644\u0627\u0644, 24685, \u200f\u0642\u0637\u0631\u200e", "lat": "25.37461295", "lng": "51.48980354", "type": "edu", "country": "Qatar"}, {"name": "University of Warwick", "source_name": "University of Warwick", "street_adddress": "University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK", "lat": "52.37931310", "lng": "-1.56042520", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1182/4658170994e4d4655e8f688bace16a0d3e48.pdf"], "doi": []}, {"id": "061356704ec86334dbbc073985375fe13cd39088", "title": "Very Deep Convolutional Networks for Large-Scale Image Recognition", "addresses": [{"name": "University of Oxford", "source_name": "University of Oxford", "street_adddress": "Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu", "country": "United Kingdom"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1409.1556.pdf"], "doi": []}, {"id": "14318685b5959b51d0f1e3db34643eb2855dc6d9", "title": "Going deeper with convolutions", "addresses": [{"name": "Google", "source_name": "Google, Inc.", "street_adddress": "1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA", "lat": "37.42199990", "lng": "-122.08405750", "type": "company", "country": "United States"}, {"name": "University of Michigan", "source_name": "University of Michigan", "street_adddress": "University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA", "lat": "42.29421420", "lng": "-83.71003894", "type": "edu", "country": "United States"}, {"name": "University of North Carolina", "source_name": "University of North Carolina", "street_adddress": "University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA", "lat": "35.90503535", "lng": "-79.04775327", "type": "edu", "country": "United States"}], "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298594"]}, {"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "title": "End-to-End People Detection in Crowded Scenes", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780624"]}, {"id": "7e915bb8e4ada4f8d261bc855a4f587ea97764ca", "title": "People detection in crowded scenes via regional-based convolutional network", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877809", "http://doi.org/10.1109/ICSP.2016.7877809"]}, {"id": "591a4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b", "title": "A Replacement Algorithm of Non-Maximum Suppression Base on Graph Clustering", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/591a/4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b.pdf"], "doi": []}, {"id": "b02d31c640b0a31fb18c4f170d841d8e21ffb66c", "title": "Localized region context and object feature fusion for people head detection", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532426", "http://doi.org/10.1109/ICIP.2016.7532426"]}, {"id": "68ea88440fc48d59c7407e71a193ff1973f9ba7c", "title": "Shoulder Keypoint-Detection from Object Detection", "addresses": [{"name": "University of Ottawa", "source_name": "University of Ottawa", "street_adddress": "University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/68ea/88440fc48d59c7407e71a193ff1973f9ba7c.pdf"], "doi": []}]} \ No newline at end of file +{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "paper": {"key": "brainwash", "name": "Brainwash", "title": "End-to-End People Detection in Crowded Scenes", "year": "2016", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}]}, "citations": [{"id": "e35515f699b60472ac8f50d1da84fab3c55417d6", "title": "Key Parts Context and Scene Geometry in Human Head Detection", "addresses": [{"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451832"]}, {"id": "5d5d267416aeb2bbddaf06f703e8683753abdcd0", "title": "Exploiting Multispectral and Contextual Information to Improve Human Detection", "addresses": [{"name": "State University of New Jersey", "source_name": "The State University of New Jersey", "street_adddress": "Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5d5d/267416aeb2bbddaf06f703e8683753abdcd0.pdf"], "doi": []}, {"id": "0cf0ad8235929417d904acd1c672713ca4fdb105", "title": "Fusion of Head and Full-Body Detectors for Multi-object Tracking", "addresses": [{"name": "Technical University Munich", "source_name": "Technical University Munich", "street_adddress": "TUM, 21, Arcisstra\u00dfe, Bezirksteil K\u00f6nigsplatz, Stadtbezirk 03 Maxvorstadt, M\u00fcnchen, Obb, Bayern, 80333, Deutschland", "lat": "48.14955455", "lng": "11.56775314", "type": "edu", "country": "Germany"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.08314.pdf"], "doi": []}, {"id": "cab97d4dc67919f965cc884d80e4d6b743a256eb", "title": "Scale Mapping and Dynamic Re-Detecting in Dense Head Detection", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451653"]}, {"id": "8a6665bfe3ad126d84414280ee2f884818560063", "title": "Vehicle Detection in Urban Traffic Surveillance Images Based on Convolutional Neural Networks with Feature Concatenation", "addresses": [{"name": "China University of Mining and Technology", "source_name": "China University of Mining and Technology", "street_adddress": "China University of Mining and Technology, 1\u53f7, \u5927\u5b66\u8def, \u6cc9\u5c71\u533a (Quanshan), \u5f90\u5dde\u5e02 / Xuzhou, \u6c5f\u82cf\u7701, 221116, \u4e2d\u56fd", "lat": "34.21525380", "lng": "117.13985410", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/8a66/65bfe3ad126d84414280ee2f884818560063.pdf"], "doi": []}, {"id": "333880ee776d57555f54935978ccb2ce13cfdb07", "title": "Person classification leveraging Convolutional Neural Network for obstacle avoidance via Unmanned Aerial Vehicles", "addresses": [{"name": "Cranfield University", "source_name": "Cranfield University, UK", "street_adddress": "College Rd, Wharley End, Bedford MK43 0AL, UK", "lat": "52.07418180", "lng": "-0.62781230", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101662"]}, {"id": "f30bdc22fe454a28234cf858d5bf9de94701ee7a", "title": "Adaptive NMS: Refining Pedestrian Detection in a Crowd", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.03629.pdf"], "doi": []}, {"id": "976647b32fd7e1a5c8ee4a11792155903bb34e43", "title": "Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks", "addresses": [{"name": "University of Malaya, Kuala Lumpur", "source_name": "University of Malaya", "street_adddress": "UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia", "lat": "3.12267405", "lng": "101.65356103", "type": "edu", "country": "Malaysia"}, {"name": "Kingston University", "source_name": "Kingston University", "street_adddress": "Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK", "lat": "51.42930860", "lng": "-0.26840440", "type": "edu", "country": "United Kingdom"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359391"]}, {"id": "66a08ff2ea7447093624632e7069e3da16961d30", "title": "An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition", "addresses": [{"name": "Northwestern Polytechnical University", "source_name": "Northwestern Polytechnical University", "street_adddress": "\u897f\u5317\u5de5\u4e1a\u5927\u5b66 \u53cb\u8c0a\u6821\u533a, 127\u53f7, \u53cb\u8c0a\u897f\u8def, \u957f\u5b89\u8def, \u7891\u6797\u533a (Beilin), \u897f\u5b89\u5e02, \u9655\u897f\u7701, 710072, \u4e2d\u56fd", "lat": "34.24691520", "lng": "108.91061982", "type": "edu", "country": "China"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7605450"]}, {"id": "6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de", "title": "Crowd Counting via Scale-Adaptive Convolutional Neural Network", "addresses": [{"name": "Shanghai Jiaotong University", "source_name": "Shanghai Jiaotong University", "street_adddress": "China, Shanghai, Minhang, \u4e1c\u5ddd\u8def \u90ae\u653f\u7f16\u7801: 200240", "lat": "31.02522010", "lng": "121.43377840", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.04433.pdf"], "doi": []}, {"id": "e607b91f69ea2bff3194b07c5d22b4625bbe306e", "title": "Learning to See People Like People : Predicting Social Impressions of Faces", "addresses": [{"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e607/b91f69ea2bff3194b07c5d22b4625bbe306e.pdf"], "doi": []}, {"id": "737f3cf354f40a6a7fd8a2058fe2803b8dd6c56b", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/737f/3cf354f40a6a7fd8a2058fe2803b8dd6c56b.pdf"], "doi": []}, {"id": "3e667c54e848233db092b794f2cfbf47ea63b771", "title": "Combined convolutional and recurrent neural networks for hierarchical classification of images", "addresses": [{"name": "Northwestern University", "source_name": "Northwestern University", "street_adddress": "Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA", "lat": "42.05511640", "lng": "-87.67581113", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.09574.pdf"], "doi": []}, {"id": "a5c8fc1ca4f06a344b53dc81ebc6d87f54896722", "title": "Learning to see people like people", "addresses": [{"name": "University of California, San Diego", "source_name": "University of California, San Diego", "street_adddress": "UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA", "lat": "32.87935255", "lng": "-117.23110049", "type": "edu", "country": "United States"}, {"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.04282.pdf"], "doi": []}, {"id": "7a9c2524a157a6b5d0204c2f3b187cd67eb26b4c", "title": "SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection", "addresses": [{"name": "Hong Kong Polytechnic University", "source_name": "Hong Kong Polytechnic University", "street_adddress": "hong kong, 11, \u80b2\u624d\u9053 Yuk Choi Road, \u5c16\u6c99\u5480 Tsim Sha Tsui, \u6cb9\u5c16\u65fa\u5340 Yau Tsim Mong District, \u4e5d\u9f8d Kowloon, HK, 00000, \u4e2d\u56fd", "lat": "22.30457200", "lng": "114.17976285", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8478157"]}, {"id": "c7f4e18ec3a805b8aee1d3d7552364c8f5f6ca1d", "title": "An Auto-adaptive CNN for Crowd Counting in Monitor Image", "addresses": [{"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8525541"]}, {"id": "b1db174463b0bbc54a61fcc83acfb89ad3e3d18f", "title": "Loss Functions for Multiset Prediction", "addresses": [{"name": "New York University", "source_name": "New York University", "street_adddress": "NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA", "lat": "40.72925325", "lng": "-73.99625394", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.05246.pdf"], "doi": []}, {"id": "81ba5202424906f64b77f68afca063658139fbb2", "title": "Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "IDIAP Research Institute", "source_name": "IDIAP Research Institute", "street_adddress": "Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.10923700", "lng": "7.08453549", "type": "edu", "country": "Switzerland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09078.pdf"], "doi": []}, {"id": "d488dad9fa81817c85a284b09ebf198bf6b640f9", "title": "FCHD: A fast and accurate head detector", "addresses": [{"name": "IIT Madras, India", "source_name": "IIT Madras, India", "street_adddress": "Indian Institute Of Technology, Chennai, Tamil Nadu 600036, India", "lat": "12.99149290", "lng": "80.23369070", "type": "edu", "country": "India"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08766.pdf"], "doi": []}, {"id": "830466596c0908399760f2009a09ce605e3121c9", "title": "Revisiting Perspective Information for Efficient Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "1d1a2387663cb3510d6f5c0651c1dc55e48dcabc", "title": "Joint Pedestrian and Body Part Detection via Semantic Relationship Learning", "addresses": [{"name": "Hebei University of Technology", "source_name": "Hebei University of Technology, Tianjin, P. R. China", "street_adddress": "8 Dingzigu 1st Rd, Hongqiao Qu, China, 300131", "lat": "39.17963500", "lng": "117.16588200", "type": "edu", "country": "China"}, {"name": "Chinese Academy of Sciences", "source_name": "Chinese Academy of Sciences", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "lat": "40.00447950", "lng": "116.37023800", "type": "edu", "country": "China"}, {"name": "Beijing Information Science and Technology University", "source_name": "Beijing Information Science and Technology University, Beijing, China", "street_adddress": "China, Beijing, Haidian, \u6e05\u6cb3\u56db\u62d4\u5b50", "lat": "40.04332040", "lng": "116.34181090", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/1d1a/2387663cb3510d6f5c0651c1dc55e48dcabc.pdf"], "doi": []}, {"id": "91d2f0b7c23239740fa15dff0b5893b992c0ab34", "title": "Sequence-to-Segment Networks for Segment Detection", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/91d2/f0b7c23239740fa15dff0b5893b992c0ab34.pdf"], "doi": []}, {"id": "8e7c647d8e8ba726b03f7e7c5cc395f86b9de9be", "title": "Parsing Pose of People with Interaction", "addresses": [{"name": "California Institute of Technology", "source_name": "California Institute of Technology", "street_adddress": "California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA", "lat": "34.13710185", "lng": "-118.12527487", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8e7c/647d8e8ba726b03f7e7c5cc395f86b9de9be.pdf"], "doi": []}, {"id": "2f02c1d4858d9c0f5d16099eb090560d5fa4f23f", "title": "Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545068"]}, {"id": "c43c3ec39005aaf1f0ad2f641d92f41021342217", "title": "Pedestrian Detection with Autoregressive Network Phases", "addresses": [{"name": "Michigan State University", "source_name": "Michigan State University", "street_adddress": "Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00440.pdf"], "doi": []}, {"id": "e1a784e360f2bf3911cffa30506d46c412659db5", "title": "MetaAnchor: Learning to Detect Objects with Customized Anchors", "addresses": [{"name": "Fudan University", "source_name": "Fudan University", "street_adddress": "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "lat": "31.30104395", "lng": "121.50045497", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00980.pdf"], "doi": []}, {"id": "9043df1de4f6e181875011c1379d1a7f68a28d6c", "title": "People Detection from Overhead Cameras", "addresses": [{"name": "Delft University of Technology", "source_name": "Delft University of Technology", "street_adddress": "TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland", "lat": "51.99882735", "lng": "4.37396037", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9043/df1de4f6e181875011c1379d1a7f68a28d6c.pdf"], "doi": []}, {"id": "9da3ade53bf91556fe46828b216aab20a4e72294", "title": "SNc Neuron Detection Method Based on Deep Learning for Efficacy Evaluation of Anti-PD Drugs", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8431470"]}, {"id": "cfa48bc1015b88809e362b4da19fe4459acb1d89", "title": "Learning to Filter Object Detections", "addresses": [{"name": "Max Planck Institute for Intelligent Systems", "source_name": "Max Planck Institute for Intelligent Systems", "street_adddress": "Heisenbergstra\u00dfe 3, 70569 Stuttgart, Germany", "lat": "48.74689390", "lng": "9.08051410", "type": "edu", "country": "Germany"}, {"name": "Microsoft", "source_name": "Microsoft Corporation, Redmond, WA, USA", "street_adddress": "One Microsoft Way, Redmond, WA 98052, USA", "lat": "47.64233180", "lng": "-122.13693020", "type": "company", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cfa4/8bc1015b88809e362b4da19fe4459acb1d89.pdf"], "doi": []}, {"id": "eb5780e49ad7e713e9f34cf067d45030fb29753e", "title": "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", "addresses": [{"name": "University Medical Center Utrecht", "source_name": "Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands", "street_adddress": "Vondellaan 94, 3521 GH Utrecht, Netherlands", "lat": "52.07869500", "lng": "5.11974690", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04383.pdf"], "doi": []}, {"id": "54c9343c247ce5a82bc52f83df84c2bbae737ce4", "title": "Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back. (L'apprentissage profond sur graphes attribu\u00e9s: Un voyage aller-retour aux plongements des graphes)", "addresses": [{"name": "INRIA Sophia Antipolis", "source_name": "INRIA Sophia Antipolis Meditérannée, Valbonne, France", "street_adddress": "2004 Route des Lucioles, 06902 Valbonne, France", "lat": "43.61581310", "lng": "7.06838000", "type": "edu", "country": "France"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.08296.pdf"], "doi": []}, {"id": "2d81cf3214281af85eb1d9d270a897d62302e88e", "title": "High density people estimation in video surveillance", "addresses": [{"name": "AvidBeam", "source_name": "AvidBeam", "street_adddress": "5 Wadi Al Nile, Maadi Al Khabiri Ash Sharqeyah, Al Maadi, Cairo Governorate 11728, Egypt", "lat": "29.95606300", "lng": "31.25547100", "type": "company", "country": "Egypt"}, {"name": "Faculty of Media Engineering & Technology German University in Cairo", "source_name": "Faculty of Media Engineering & Technology German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}, {"name": "German University in Cairo", "source_name": "Faculty of Media Engineering and Technology, German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8275348"]}, {"id": "d54d0dc1e7ef82f3ed0ee332e0777b6d73477a8c", "title": "Sidewalk-level People Flow Estimation Using Dashboard Cameras Based on Deep Learning", "addresses": [{"name": "Osaka University", "source_name": "Osaka University", "street_adddress": "\u5927\u962a\u5927\u5b66\u6e05\u660e\u5bee, \u670d\u90e8\u897f\u753a\u56db\u4e01\u76ee, \u8c4a\u4e2d\u5e02, \u5927\u962a\u5e9c, \u8fd1\u757f\u5730\u65b9, \u65e5\u672c", "lat": "34.80809035", "lng": "135.45785218", "type": "edu", "country": "Japan"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8653595"]}, {"id": "9607f88fe6298f754e3f610c3a587d8e10b1b0a9", "title": "Scene Text Detection with Recurrent Instance Segmentation", "addresses": [{"name": "National Laboratory of Pattern Recognition", "source_name": "National Laboratory of Pattern Recognition & Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, China", "street_adddress": "China, Beijing, Haidian, Zhongguancun South 1st Alley, \u4e2d\u5173\u6751\u5357\u4e00\u6761", "lat": "39.98177000", "lng": "116.33008600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545073"]}, {"id": "ed2ba6448db8cf945ca24d4df11916c2c5c3edd1", "title": "Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing", "addresses": [{"name": "University of Electronic Science and Technology of China", "source_name": "University of Electronic Science and Technology of China", "street_adddress": "2 Jianshe North Rd 2nd Section, Jianshe Road, Chenghua Qu, Chengdu Shi, Sichuan Sheng, China, 610054", "lat": "30.67272100", "lng": "104.09880600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://doi.org/10.1007/s11063-018-9837-1"]}, {"id": "03a65d274dc6caea94f6ab344e0b4969575327e3", "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "addresses": [{"name": "Megvii Inc. (Face++), China", "source_name": "Megvii Inc. (Face++), China", "street_adddress": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "company", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00123.pdf"], "doi": []}, {"id": "d78b190f98f9630cab261eabc399733af052f05c", "title": "Unsupervised Deep Domain Adaptation for Pedestrian Detection", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "University of Twente", "source_name": "University of Twente", "street_adddress": "University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland", "lat": "52.23801390", "lng": "6.85667610", "type": "edu", "country": "Netherlands"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1802.03269.pdf"], "doi": []}, {"id": "deea683731f468c7234e1089f48c4546e7003b18", "title": "Multi-Task Vehicle Detection With Region-of-Interest Voting", "addresses": [{"name": "Alibaba Group, Hangzhou, China", "source_name": "Alibaba Group, Hangzhou, China", "street_adddress": "Alibaba Group, \u4e94\u5e38\u8857\u9053, \u4f59\u676d\u533a (Yuhang), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, \u4e2d\u56fd", "lat": "30.28106540", "lng": "120.02139087", "type": "edu", "country": "China"}, {"name": "Alibaba, Hangzhou, China", "source_name": "Alibaba, Hangzhou, China", "street_adddress": "699 Wangshang Rd, Binjiang Qu, Hangzhou Shi, Zhejiang Sheng, China", "lat": "30.18996400", "lng": "120.19210000", "type": "edu", "country": "China"}, {"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8066331", "http://doi.org/10.1109/TIP.2017.2762591", "https://www.ncbi.nlm.nih.gov/pubmed/29028197", "https://www.wikidata.org/entity/Q50063923"]}, {"id": "1303b3e9f4bffb87b6dd34f7849f7a57e00253d1", "title": "Point in, Box out: Beyond Counting Persons in Crowds", "addresses": [{"name": "Sichuan University, Chengdu", "source_name": "Sichuan Univ., Chengdu", "street_adddress": "\u56db\u5ddd\u5927\u5b66\uff08\u534e\u897f\u6821\u533a\uff09, \u6821\u4e1c\u8def, \u6b66\u4faf\u533a, \u6b66\u4faf\u533a (Wuhou), \u6210\u90fd\u5e02 / Chengdu, \u56db\u5ddd\u7701, 610014, \u4e2d\u56fd", "lat": "30.64276900", "lng": "104.06751175", "type": "edu", "country": "China"}, {"name": "INRIA", "source_name": "INRIA Grenoble Rhone-Alpes, Grenoble, France", "street_adddress": "655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France", "lat": "45.21788600", "lng": "5.80736900", "type": "edu", "country": "France"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01333.pdf"], "doi": []}, {"id": "4140ccbca5a585162420b82e9e4eeb9afbd1e7c2", "title": "Simulating Crowds in Egress Scenarios", "addresses": [{"name": "Pontifical Catholic University of Rio Grande do Sul", "source_name": "Pontifical Catholic University of Rio Grande do Sul", "street_adddress": "Av. Ipiranga, 6681 - Partenon, Porto Alegre - RS, 90619-900, Brazil", "lat": "-30.05934460", "lng": "-51.17349120", "type": "edu", "country": "Brazil"}, {"name": "University of Pennsylvania", "source_name": "University of Pennsylvania", "street_adddress": "Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA", "lat": "39.94923440", "lng": "-75.19198985", "type": "edu", "country": "United States"}, {"name": "Federal University of Rio Grande do Sul", "source_name": "Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil", "street_adddress": "Av. Paulo Gama, 110 - Farroupilha, Porto Alegre - RS, 90040-060, Brazil", "lat": "-30.03382480", "lng": "-51.21882800", "type": "edu", "country": "Brazil"}], "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1007/978-3-319-65202-3"]}, {"id": "5031a110219231ceaa820725c6e77f87f7b2fde2", "title": "Training with Confusion for Fine-Grained Visual Classification", "addresses": [{"name": "Harvard University", "source_name": "Harvard University", "street_adddress": "Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA", "lat": "42.36782045", "lng": "-71.12666653", "type": "edu", "country": "United States"}, {"name": "MIT", "source_name": "Massachusetts Institute", "street_adddress": "MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA", "lat": "42.35839610", "lng": "-71.09567788", "type": "edu", "country": "United States"}, {"name": "Brigham Young University", "source_name": "Brigham Young University, Provo, USA", "street_adddress": "Provo, UT 84602, USA", "lat": "40.25184350", "lng": "-111.64931560", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5031/a110219231ceaa820725c6e77f87f7b2fde2.pdf"], "doi": []}, {"id": "86c158ef6caaf247d5d14e07c5edded0147df8b7", "title": "Spatial Memory for Context Reasoning in Object Detection", "addresses": [{"name": "Carnegie Mellon University", "source_name": "Carnegie Mellon University Pittsburgh, PA - 15213, USA", "street_adddress": "Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA", "lat": "40.44416190", "lng": "-79.94272826", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.04224.pdf"], "doi": []}, {"id": "bba153ebdf11e6fb8716e35749c671ac96c14176", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.03686.pdf"], "doi": []}, {"id": "fe5679c183cb432894d111bf02cc3243c89762ca", "title": "Adaptive Scenario Discovery for Crowd Counting", "addresses": [{"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.02393.pdf"], "doi": []}, {"id": "11824658170994e4d4655e8f688bace16a0d3e48", "title": "Multi-person Head Segmentation in Low Resolution Crowd Scenes Using Convolutional Encoder-Decoder Framework", "addresses": [{"name": "Qatar University", "source_name": "Qatar University", "street_adddress": "Qatar University, Roindabout 3, Al Tarfa (68), \u0623\u0645 \u0635\u0644\u0627\u0644, 24685, \u200f\u0642\u0637\u0631\u200e", "lat": "25.37461295", "lng": "51.48980354", "type": "edu", "country": "Qatar"}, {"name": "University of Warwick", "source_name": "University of Warwick", "street_adddress": "University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK", "lat": "52.37931310", "lng": "-1.56042520", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1182/4658170994e4d4655e8f688bace16a0d3e48.pdf"], "doi": []}, {"id": "061356704ec86334dbbc073985375fe13cd39088", "title": "Very Deep Convolutional Networks for Large-Scale Image Recognition", "addresses": [{"name": "University of Oxford", "source_name": "University of Oxford", "street_adddress": "Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu", "country": "United Kingdom"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1409.1556.pdf"], "doi": []}, {"id": "14318685b5959b51d0f1e3db34643eb2855dc6d9", "title": "Going deeper with convolutions", "addresses": [{"name": "Google", "source_name": "Google, Inc.", "street_adddress": "1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA", "lat": "37.42199990", "lng": "-122.08405750", "type": "company", "country": "United States"}, {"name": "University of Michigan", "source_name": "University of Michigan", "street_adddress": "University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA", "lat": "42.29421420", "lng": "-83.71003894", "type": "edu", "country": "United States"}, {"name": "University of North Carolina", "source_name": "University of North Carolina", "street_adddress": "University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA", "lat": "35.90503535", "lng": "-79.04775327", "type": "edu", "country": "United States"}], "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298594"]}, {"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "title": "End-to-End People Detection in Crowded Scenes", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780624"]}, {"id": "7e915bb8e4ada4f8d261bc855a4f587ea97764ca", "title": "People detection in crowded scenes via regional-based convolutional network", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877809", "http://doi.org/10.1109/ICSP.2016.7877809"]}, {"id": "591a4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b", "title": "A Replacement Algorithm of Non-Maximum Suppression Base on Graph Clustering", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/591a/4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b.pdf"], "doi": []}, {"id": "b02d31c640b0a31fb18c4f170d841d8e21ffb66c", "title": "Localized region context and object feature fusion for people head detection", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532426", "http://doi.org/10.1109/ICIP.2016.7532426"]}, {"id": "68ea88440fc48d59c7407e71a193ff1973f9ba7c", "title": "Shoulder Keypoint-Detection from Object Detection", "addresses": [{"name": "University of Ottawa", "source_name": "University of Ottawa", "street_adddress": "University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/68ea/88440fc48d59c7407e71a193ff1973f9ba7c.pdf"], "doi": []}]} \ No newline at end of file diff --git a/site/datasets/final/brainwash.json b/site/datasets/final/brainwash.json index 21300e93..b1d897fa 100644 --- a/site/datasets/final/brainwash.json +++ b/site/datasets/final/brainwash.json @@ -1 +1 @@ -{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "dataset": {"key": "brainwash", "name_short": "Brainwash", "name_display": "Brainwash Dataset", "name_full": "Brainwash Dataset", "purpose": "Head detection", "comment": "", "created_by": "Stanford University (US), Max Planck Institute for Informatics (DE)", "funded_by": "Max Planck Center for Visual Computing and Communication", "funded_by_short": "Max Planck Center for Visual Computing and Communication", "used_by": "", "license": "", "url": "https://purl.stanford.edu/sx925dc9385", "dl_im": "Y", "dl_meta": "", "dl_paper": "", "dl_web": "", "mp_pub": "Y", "ft_share": "Y", "nyt_share": "Y", "cooperative": "N", "indoor": "Y", "outdoor": "", "campus": "", "cyberspace": "", "parent": "", "source": "cctv_indoor", "usernames": "", "names": "", "flickr_meta": "", "year_start": "", "year_end": "", "year_published": "2015", "ongoing": "", "images": "11,917 ", "videos": "", "tracklets": "", "identities": "", "img_per_person": "", "num_cameras": "", "faces_or_persons": "91,146", "female": "", "male": "", "landmarks": "", "width": "640", "height": "480", "color": "Y", "gray": "", "tags": "fd", "size_gb": "4.1", "agreement": "", "agreement_signed": "", "flickr": "", "facebook": "", "youtube": "", "vimeo": "", "google": "", "bing": "", "adam": "", "berit": "", "charlie": "Y", "notes": "", "derivative_of": "", "": ""}, "paper": {"paper_id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "key": "brainwash", "title": "End-to-End People Detection in Crowded Scenes", "year": "2016", "pdf": [], "address": {"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, "name": "Brainwash", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780624"]}, "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "additional_papers": [], "citations": [{"id": "e35515f699b60472ac8f50d1da84fab3c55417d6", "title": "Key Parts Context and Scene Geometry in Human Head Detection", "addresses": [{"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451832"]}, {"id": "5d5d267416aeb2bbddaf06f703e8683753abdcd0", "title": "Exploiting Multispectral and Contextual Information to Improve Human Detection", "addresses": [{"name": "State University of New Jersey", "source_name": "The State University of New Jersey", "street_adddress": "Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5d5d/267416aeb2bbddaf06f703e8683753abdcd0.pdf"], "doi": []}, {"id": "0cf0ad8235929417d904acd1c672713ca4fdb105", "title": "Fusion of Head and Full-Body Detectors for Multi-object Tracking", "addresses": [{"name": "Technical University Munich", "source_name": "Technical University Munich", "street_adddress": "TUM, 21, Arcisstra\u00dfe, Bezirksteil K\u00f6nigsplatz, Stadtbezirk 03 Maxvorstadt, M\u00fcnchen, Obb, Bayern, 80333, Deutschland", "lat": "48.14955455", "lng": "11.56775314", "type": "edu", "country": "Germany"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.08314.pdf"], "doi": []}, {"id": "cab97d4dc67919f965cc884d80e4d6b743a256eb", "title": "Scale Mapping and Dynamic Re-Detecting in Dense Head Detection", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451653"]}, {"id": "8a6665bfe3ad126d84414280ee2f884818560063", "title": "Vehicle Detection in Urban Traffic Surveillance Images Based on Convolutional Neural Networks with Feature Concatenation", "addresses": [{"name": "China University of Mining and Technology", "source_name": "China University of Mining and Technology", "street_adddress": "China University of Mining and Technology, 1\u53f7, \u5927\u5b66\u8def, \u6cc9\u5c71\u533a (Quanshan), \u5f90\u5dde\u5e02 / Xuzhou, \u6c5f\u82cf\u7701, 221116, \u4e2d\u56fd", "lat": "34.21525380", "lng": "117.13985410", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/8a66/65bfe3ad126d84414280ee2f884818560063.pdf"], "doi": []}, {"id": "333880ee776d57555f54935978ccb2ce13cfdb07", "title": "Person classification leveraging Convolutional Neural Network for obstacle avoidance via Unmanned Aerial Vehicles", "addresses": [{"name": "Cranfield University", "source_name": "Cranfield University, UK", "street_adddress": "College Rd, Wharley End, Bedford MK43 0AL, UK", "lat": "52.07418180", "lng": "-0.62781230", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101662"]}, {"id": "f30bdc22fe454a28234cf858d5bf9de94701ee7a", "title": "Adaptive NMS: Refining Pedestrian Detection in a Crowd", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.03629.pdf"], "doi": []}, {"id": "976647b32fd7e1a5c8ee4a11792155903bb34e43", "title": "Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks", "addresses": [{"name": "University of Malaya, Kuala Lumpur", "source_name": "University of Malaya", "street_adddress": "UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia", "lat": "3.12267405", "lng": "101.65356103", "type": "edu", "country": "Malaysia"}, {"name": "Kingston University", "source_name": "Kingston University", "street_adddress": "Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK", "lat": "51.42930860", "lng": "-0.26840440", "type": "edu", "country": "United Kingdom"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359391"]}, {"id": "66a08ff2ea7447093624632e7069e3da16961d30", "title": "An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition", "addresses": [{"name": "Northwestern Polytechnical University", "source_name": "Northwestern Polytechnical University", "street_adddress": "\u897f\u5317\u5de5\u4e1a\u5927\u5b66 \u53cb\u8c0a\u6821\u533a, 127\u53f7, \u53cb\u8c0a\u897f\u8def, \u957f\u5b89\u8def, \u7891\u6797\u533a (Beilin), \u897f\u5b89\u5e02, \u9655\u897f\u7701, 710072, \u4e2d\u56fd", "lat": "34.24691520", "lng": "108.91061982", "type": "edu", "country": "China"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7605450"]}, {"id": "6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de", "title": "Crowd Counting via Scale-Adaptive Convolutional Neural Network", "addresses": [{"name": "Shanghai Jiaotong University", "source_name": "Shanghai Jiaotong University", "street_adddress": "China, Shanghai, Minhang, \u4e1c\u5ddd\u8def \u90ae\u653f\u7f16\u7801: 200240", "lat": "31.02522010", "lng": "121.43377840", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.04433.pdf"], "doi": []}, {"id": "e607b91f69ea2bff3194b07c5d22b4625bbe306e", "title": "Learning to See People Like People : Predicting Social Impressions of Faces", "addresses": [{"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e607/b91f69ea2bff3194b07c5d22b4625bbe306e.pdf"], "doi": []}, {"id": "737f3cf354f40a6a7fd8a2058fe2803b8dd6c56b", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/737f/3cf354f40a6a7fd8a2058fe2803b8dd6c56b.pdf"], "doi": []}, {"id": "3e667c54e848233db092b794f2cfbf47ea63b771", "title": "Combined convolutional and recurrent neural networks for hierarchical classification of images", "addresses": [{"name": "Northwestern University", "source_name": "Northwestern University", "street_adddress": "Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA", "lat": "42.05511640", "lng": "-87.67581113", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.09574.pdf"], "doi": []}, {"id": "a5c8fc1ca4f06a344b53dc81ebc6d87f54896722", "title": "Learning to see people like people", "addresses": [{"name": "University of California, San Diego", "source_name": "University of California, San Diego", "street_adddress": "UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA", "lat": "32.87935255", "lng": "-117.23110049", "type": "edu", "country": "United States"}, {"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.04282.pdf"], "doi": []}, {"id": "7a9c2524a157a6b5d0204c2f3b187cd67eb26b4c", "title": "SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection", "addresses": [{"name": "Hong Kong Polytechnic University", "source_name": "Hong Kong Polytechnic University", "street_adddress": "hong kong, 11, \u80b2\u624d\u9053 Yuk Choi Road, \u5c16\u6c99\u5480 Tsim Sha Tsui, \u6cb9\u5c16\u65fa\u5340 Yau Tsim Mong District, \u4e5d\u9f8d Kowloon, HK, 00000, \u4e2d\u56fd", "lat": "22.30457200", "lng": "114.17976285", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8478157"]}, {"id": "c7f4e18ec3a805b8aee1d3d7552364c8f5f6ca1d", "title": "An Auto-adaptive CNN for Crowd Counting in Monitor Image", "addresses": [{"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8525541"]}, {"id": "b1db174463b0bbc54a61fcc83acfb89ad3e3d18f", "title": "Loss Functions for Multiset Prediction", "addresses": [{"name": "New York University", "source_name": "New York University", "street_adddress": "NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA", "lat": "40.72925325", "lng": "-73.99625394", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.05246.pdf"], "doi": []}, {"id": "81ba5202424906f64b77f68afca063658139fbb2", "title": "Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "IDIAP Research Institute", "source_name": "IDIAP Research Institute", "street_adddress": "Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.10923700", "lng": "7.08453549", "type": "edu", "country": "Switzerland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09078.pdf"], "doi": []}, {"id": "830466596c0908399760f2009a09ce605e3121c9", "title": "Revisiting Perspective Information for Efficient Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "1d1a2387663cb3510d6f5c0651c1dc55e48dcabc", "title": "Joint Pedestrian and Body Part Detection via Semantic Relationship Learning", "addresses": [{"name": "Hebei University of Technology", "source_name": "Hebei University of Technology, Tianjin, P. R. China", "street_adddress": "8 Dingzigu 1st Rd, Hongqiao Qu, China, 300131", "lat": "39.17963500", "lng": "117.16588200", "type": "edu", "country": "China"}, {"name": "Chinese Academy of Sciences", "source_name": "Chinese Academy of Sciences", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "lat": "40.00447950", "lng": "116.37023800", "type": "edu", "country": "China"}, {"name": "Beijing Information Science and Technology University", "source_name": "Beijing Information Science and Technology University, Beijing, China", "street_adddress": "China, Beijing, Haidian, \u6e05\u6cb3\u56db\u62d4\u5b50", "lat": "40.04332040", "lng": "116.34181090", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/1d1a/2387663cb3510d6f5c0651c1dc55e48dcabc.pdf"], "doi": []}, {"id": "91d2f0b7c23239740fa15dff0b5893b992c0ab34", "title": "Sequence-to-Segment Networks for Segment Detection", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/91d2/f0b7c23239740fa15dff0b5893b992c0ab34.pdf"], "doi": []}, {"id": "8e7c647d8e8ba726b03f7e7c5cc395f86b9de9be", "title": "Parsing Pose of People with Interaction", "addresses": [{"name": "California Institute of Technology", "source_name": "California Institute of Technology", "street_adddress": "California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA", "lat": "34.13710185", "lng": "-118.12527487", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8e7c/647d8e8ba726b03f7e7c5cc395f86b9de9be.pdf"], "doi": []}, {"id": "2f02c1d4858d9c0f5d16099eb090560d5fa4f23f", "title": "Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545068"]}, {"id": "c43c3ec39005aaf1f0ad2f641d92f41021342217", "title": "Pedestrian Detection with Autoregressive Network Phases", "addresses": [{"name": "Michigan State University", "source_name": "Michigan State University", "street_adddress": "Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00440.pdf"], "doi": []}, {"id": "e1a784e360f2bf3911cffa30506d46c412659db5", "title": "MetaAnchor: Learning to Detect Objects with Customized Anchors", "addresses": [{"name": "Fudan University", "source_name": "Fudan University", "street_adddress": "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "lat": "31.30104395", "lng": "121.50045497", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00980.pdf"], "doi": []}, {"id": "9da3ade53bf91556fe46828b216aab20a4e72294", "title": "SNc Neuron Detection Method Based on Deep Learning for Efficacy Evaluation of Anti-PD Drugs", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8431470"]}, {"id": "cfa48bc1015b88809e362b4da19fe4459acb1d89", "title": "Learning to Filter Object Detections", "addresses": [{"name": "Max Planck Institute for Intelligent Systems", "source_name": "Max Planck Institute for Intelligent Systems", "street_adddress": "Heisenbergstra\u00dfe 3, 70569 Stuttgart, Germany", "lat": "48.74689390", "lng": "9.08051410", "type": "edu", "country": "Germany"}, {"name": "Microsoft", "source_name": "Microsoft Corporation, Redmond, WA, USA", "street_adddress": "One Microsoft Way, Redmond, WA 98052, USA", "lat": "47.64233180", "lng": "-122.13693020", "type": "company", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cfa4/8bc1015b88809e362b4da19fe4459acb1d89.pdf"], "doi": []}, {"id": "eb5780e49ad7e713e9f34cf067d45030fb29753e", "title": "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", "addresses": [{"name": "University Medical Center Utrecht", "source_name": "Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands", "street_adddress": "Vondellaan 94, 3521 GH Utrecht, Netherlands", "lat": "52.07869500", "lng": "5.11974690", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04383.pdf"], "doi": []}, {"id": "54c9343c247ce5a82bc52f83df84c2bbae737ce4", "title": "Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back. (L'apprentissage profond sur graphes attribu\u00e9s: Un voyage aller-retour aux plongements des graphes)", "addresses": [{"name": "INRIA Sophia Antipolis", "source_name": "INRIA Sophia Antipolis Meditérannée, Valbonne, France", "street_adddress": "2004 Route des Lucioles, 06902 Valbonne, France", "lat": "43.61581310", "lng": "7.06838000", "type": "edu", "country": "France"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.08296.pdf"], "doi": []}, {"id": "2d81cf3214281af85eb1d9d270a897d62302e88e", "title": "High density people estimation in video surveillance", "addresses": [{"name": "AvidBeam", "source_name": "AvidBeam", "street_adddress": "5 Wadi Al Nile, Maadi Al Khabiri Ash Sharqeyah, Al Maadi, Cairo Governorate 11728, Egypt", "lat": "29.95606300", "lng": "31.25547100", "type": "company", "country": "Egypt"}, {"name": "Faculty of Media Engineering & Technology German University in Cairo", "source_name": "Faculty of Media Engineering & Technology German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}, {"name": "German University in Cairo", "source_name": "Faculty of Media Engineering and Technology, German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8275348"]}, {"id": "d54d0dc1e7ef82f3ed0ee332e0777b6d73477a8c", "title": "Sidewalk-level People Flow Estimation Using Dashboard Cameras Based on Deep Learning", "addresses": [{"name": "Osaka University", "source_name": "Osaka University", "street_adddress": "\u5927\u962a\u5927\u5b66\u6e05\u660e\u5bee, \u670d\u90e8\u897f\u753a\u56db\u4e01\u76ee, \u8c4a\u4e2d\u5e02, \u5927\u962a\u5e9c, \u8fd1\u757f\u5730\u65b9, \u65e5\u672c", "lat": "34.80809035", "lng": "135.45785218", "type": "edu", "country": "Japan"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8653595"]}, {"id": "9607f88fe6298f754e3f610c3a587d8e10b1b0a9", "title": "Scene Text Detection with Recurrent Instance Segmentation", "addresses": [{"name": "National Laboratory of Pattern Recognition", "source_name": "National Laboratory of Pattern Recognition & Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, China", "street_adddress": "China, Beijing, Haidian, Zhongguancun South 1st Alley, \u4e2d\u5173\u6751\u5357\u4e00\u6761", "lat": "39.98177000", "lng": "116.33008600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545073"]}, {"id": "ed2ba6448db8cf945ca24d4df11916c2c5c3edd1", "title": "Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing", "addresses": [{"name": "University of Electronic Science and Technology of China", "source_name": "University of Electronic Science and Technology of China", "street_adddress": "2 Jianshe North Rd 2nd Section, Jianshe Road, Chenghua Qu, Chengdu Shi, Sichuan Sheng, China, 610054", "lat": "30.67272100", "lng": "104.09880600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://doi.org/10.1007/s11063-018-9837-1"]}, {"id": "deea683731f468c7234e1089f48c4546e7003b18", "title": "Multi-Task Vehicle Detection With Region-of-Interest Voting", "addresses": [{"name": "Alibaba Group, Hangzhou, China", "source_name": "Alibaba Group, Hangzhou, China", "street_adddress": "Alibaba Group, \u4e94\u5e38\u8857\u9053, \u4f59\u676d\u533a (Yuhang), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, \u4e2d\u56fd", "lat": "30.28106540", "lng": "120.02139087", "type": "edu", "country": "China"}, {"name": "Alibaba, Hangzhou, China", "source_name": "Alibaba, Hangzhou, China", "street_adddress": "699 Wangshang Rd, Binjiang Qu, Hangzhou Shi, Zhejiang Sheng, China", "lat": "30.18996400", "lng": "120.19210000", "type": "edu", "country": "China"}, {"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8066331", "http://doi.org/10.1109/TIP.2017.2762591", "https://www.ncbi.nlm.nih.gov/pubmed/29028197", "https://www.wikidata.org/entity/Q50063923"]}, {"id": "1303b3e9f4bffb87b6dd34f7849f7a57e00253d1", "title": "Point in, Box out: Beyond Counting Persons in Crowds", "addresses": [{"name": "Sichuan University, Chengdu", "source_name": "Sichuan Univ., Chengdu", "street_adddress": "\u56db\u5ddd\u5927\u5b66\uff08\u534e\u897f\u6821\u533a\uff09, \u6821\u4e1c\u8def, \u6b66\u4faf\u533a, \u6b66\u4faf\u533a (Wuhou), \u6210\u90fd\u5e02 / Chengdu, \u56db\u5ddd\u7701, 610014, \u4e2d\u56fd", "lat": "30.64276900", "lng": "104.06751175", "type": "edu", "country": "China"}, {"name": "INRIA", "source_name": "INRIA Grenoble Rhone-Alpes, Grenoble, France", "street_adddress": "655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France", "lat": "45.21788600", "lng": "5.80736900", "type": "edu", "country": "France"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01333.pdf"], "doi": []}, {"id": "4140ccbca5a585162420b82e9e4eeb9afbd1e7c2", "title": "Simulating Crowds in Egress Scenarios", "addresses": [{"name": "Pontifical Catholic University of Rio Grande do Sul", "source_name": "Pontifical Catholic University of Rio Grande do Sul", "street_adddress": "Av. Ipiranga, 6681 - Partenon, Porto Alegre - RS, 90619-900, Brazil", "lat": "-30.05934460", "lng": "-51.17349120", "type": "edu", "country": "Brazil"}, {"name": "University of Pennsylvania", "source_name": "University of Pennsylvania", "street_adddress": "Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA", "lat": "39.94923440", "lng": "-75.19198985", "type": "edu", "country": "United States"}, {"name": "Federal University of Rio Grande do Sul", "source_name": "Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil", "street_adddress": "Av. Paulo Gama, 110 - Farroupilha, Porto Alegre - RS, 90040-060, Brazil", "lat": "-30.03382480", "lng": "-51.21882800", "type": "edu", "country": "Brazil"}], "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1007/978-3-319-65202-3"]}, {"id": "5031a110219231ceaa820725c6e77f87f7b2fde2", "title": "Training with Confusion for Fine-Grained Visual Classification", "addresses": [{"name": "Harvard University", "source_name": "Harvard University", "street_adddress": "Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA", "lat": "42.36782045", "lng": "-71.12666653", "type": "edu", "country": "United States"}, {"name": "MIT", "source_name": "Massachusetts Institute", "street_adddress": "MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA", "lat": "42.35839610", "lng": "-71.09567788", "type": "edu", "country": "United States"}, {"name": "Brigham Young University", "source_name": "Brigham Young University, Provo, USA", "street_adddress": "Provo, UT 84602, USA", "lat": "40.25184350", "lng": "-111.64931560", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5031/a110219231ceaa820725c6e77f87f7b2fde2.pdf"], "doi": []}, {"id": "86c158ef6caaf247d5d14e07c5edded0147df8b7", "title": "Spatial Memory for Context Reasoning in Object Detection", "addresses": [{"name": "Carnegie Mellon University", "source_name": "Carnegie Mellon University Pittsburgh, PA - 15213, USA", "street_adddress": "Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA", "lat": "40.44416190", "lng": "-79.94272826", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.04224.pdf"], "doi": []}, {"id": "bba153ebdf11e6fb8716e35749c671ac96c14176", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.03686.pdf"], "doi": []}, {"id": "fe5679c183cb432894d111bf02cc3243c89762ca", "title": "Adaptive Scenario Discovery for Crowd Counting", "addresses": [{"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.02393.pdf"], "doi": []}, {"id": "11824658170994e4d4655e8f688bace16a0d3e48", "title": "Multi-person Head Segmentation in Low Resolution Crowd Scenes Using Convolutional Encoder-Decoder Framework", "addresses": [{"name": "Qatar University", "source_name": "Qatar University", "street_adddress": "Qatar University, Roindabout 3, Al Tarfa (68), \u0623\u0645 \u0635\u0644\u0627\u0644, 24685, \u200f\u0642\u0637\u0631\u200e", "lat": "25.37461295", "lng": "51.48980354", "type": "edu", "country": "Qatar"}, {"name": "University of Warwick", "source_name": "University of Warwick", "street_adddress": "University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK", "lat": "52.37931310", "lng": "-1.56042520", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1182/4658170994e4d4655e8f688bace16a0d3e48.pdf"], "doi": []}, {"id": "061356704ec86334dbbc073985375fe13cd39088", "title": "Very Deep Convolutional Networks for Large-Scale Image Recognition", "addresses": [{"name": "University of Oxford", "source_name": "University of Oxford", "street_adddress": "Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu", "country": "United Kingdom"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1409.1556.pdf"], "doi": []}, {"id": "14318685b5959b51d0f1e3db34643eb2855dc6d9", "title": "Going deeper with convolutions", "addresses": [{"name": "Google", "source_name": "Google, Inc.", "street_adddress": "1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA", "lat": "37.42199990", "lng": "-122.08405750", "type": "company", "country": "United States"}, {"name": "University of Michigan", "source_name": "University of Michigan", "street_adddress": "University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA", "lat": "42.29421420", "lng": "-83.71003894", "type": "edu", "country": "United States"}, {"name": "University of North Carolina", "source_name": "University of North Carolina", "street_adddress": "University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA", "lat": "35.90503535", "lng": "-79.04775327", "type": "edu", "country": "United States"}], "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298594"]}, {"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "title": "End-to-End People Detection in Crowded Scenes", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780624"]}, {"id": "7e915bb8e4ada4f8d261bc855a4f587ea97764ca", "title": "People detection in crowded scenes via regional-based convolutional network", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877809", "http://doi.org/10.1109/ICSP.2016.7877809"]}, {"id": "591a4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b", "title": "A Replacement Algorithm of Non-Maximum Suppression Base on Graph Clustering", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/591a/4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b.pdf"], "doi": []}, {"id": "b02d31c640b0a31fb18c4f170d841d8e21ffb66c", "title": "Localized region context and object feature fusion for people head detection", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532426", "http://doi.org/10.1109/ICIP.2016.7532426"]}, {"id": "68ea88440fc48d59c7407e71a193ff1973f9ba7c", "title": "Shoulder Keypoint-Detection from Object Detection", "addresses": [{"name": "University of Ottawa", "source_name": "University of Ottawa", "street_adddress": "University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/68ea/88440fc48d59c7407e71a193ff1973f9ba7c.pdf"], "doi": []}]} \ No newline at end of file +{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "dataset": {"key": "brainwash", "name_short": "Brainwash", "name_display": "Brainwash Dataset", "name_full": "Brainwash Dataset", "purpose": "Head detection", "comment": "", "created_by": "Stanford University (US), Max Planck Institute for Informatics (DE)", "funded_by": "Max Planck Center for Visual Computing and Communication", "funded_by_short": "Max Planck Center for Visual Computing and Communication", "used_by": "", "license": "", "url": "https://purl.stanford.edu/sx925dc9385", "dl_im": "Y", "dl_meta": "", "dl_paper": "", "dl_web": "", "mp_pub": "Y", "ft_share": "Y", "nyt_share": "Y", "cooperative": "N", "indoor": "Y", "outdoor": "", "campus": "", "cyberspace": "", "parent": "", "source": "cctv_indoor", "usernames": "", "names": "", "flickr_meta": "", "year_start": "", "year_end": "", "year_published": "2015", "ongoing": "", "images": "11,917 ", "videos": "", "tracklets": "", "identities": "", "img_per_person": "", "num_cameras": "", "faces_or_persons": "91,146", "female": "", "male": "", "landmarks": "", "width": "640", "height": "480", "color": "Y", "gray": "", "tags": "fd", "size_gb": "4.1", "agreement": "", "agreement_signed": "", "flickr": "", "facebook": "", "youtube": "", "vimeo": "", "google": "", "bing": "", "adam": "", "berit": "", "charlie": "Y", "notes": "", "derivative_of": "", "": ""}, "paper": {"paper_id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "key": "brainwash", "title": "End-to-End People Detection in Crowded Scenes", "year": "2016", "pdf": [], "address": {"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, "name": "Brainwash", "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780624"]}, "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "additional_papers": [], "citations": [{"id": "e35515f699b60472ac8f50d1da84fab3c55417d6", "title": "Key Parts Context and Scene Geometry in Human Head Detection", "addresses": [{"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451832"]}, {"id": "5d5d267416aeb2bbddaf06f703e8683753abdcd0", "title": "Exploiting Multispectral and Contextual Information to Improve Human Detection", "addresses": [{"name": "State University of New Jersey", "source_name": "The State University of New Jersey", "street_adddress": "Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA", "lat": "40.51865195", "lng": "-74.44099801", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5d5d/267416aeb2bbddaf06f703e8683753abdcd0.pdf"], "doi": []}, {"id": "0cf0ad8235929417d904acd1c672713ca4fdb105", "title": "Fusion of Head and Full-Body Detectors for Multi-object Tracking", "addresses": [{"name": "Technical University Munich", "source_name": "Technical University Munich", "street_adddress": "TUM, 21, Arcisstra\u00dfe, Bezirksteil K\u00f6nigsplatz, Stadtbezirk 03 Maxvorstadt, M\u00fcnchen, Obb, Bayern, 80333, Deutschland", "lat": "48.14955455", "lng": "11.56775314", "type": "edu", "country": "Germany"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.08314.pdf"], "doi": []}, {"id": "cab97d4dc67919f965cc884d80e4d6b743a256eb", "title": "Scale Mapping and Dynamic Re-Detecting in Dense Head Detection", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451653"]}, {"id": "8a6665bfe3ad126d84414280ee2f884818560063", "title": "Vehicle Detection in Urban Traffic Surveillance Images Based on Convolutional Neural Networks with Feature Concatenation", "addresses": [{"name": "China University of Mining and Technology", "source_name": "China University of Mining and Technology", "street_adddress": "China University of Mining and Technology, 1\u53f7, \u5927\u5b66\u8def, \u6cc9\u5c71\u533a (Quanshan), \u5f90\u5dde\u5e02 / Xuzhou, \u6c5f\u82cf\u7701, 221116, \u4e2d\u56fd", "lat": "34.21525380", "lng": "117.13985410", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/8a66/65bfe3ad126d84414280ee2f884818560063.pdf"], "doi": []}, {"id": "333880ee776d57555f54935978ccb2ce13cfdb07", "title": "Person classification leveraging Convolutional Neural Network for obstacle avoidance via Unmanned Aerial Vehicles", "addresses": [{"name": "Cranfield University", "source_name": "Cranfield University, UK", "street_adddress": "College Rd, Wharley End, Bedford MK43 0AL, UK", "lat": "52.07418180", "lng": "-0.62781230", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8101662"]}, {"id": "f30bdc22fe454a28234cf858d5bf9de94701ee7a", "title": "Adaptive NMS: Refining Pedestrian Detection in a Crowd", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.03629.pdf"], "doi": []}, {"id": "976647b32fd7e1a5c8ee4a11792155903bb34e43", "title": "Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks", "addresses": [{"name": "University of Malaya, Kuala Lumpur", "source_name": "University of Malaya", "street_adddress": "UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia", "lat": "3.12267405", "lng": "101.65356103", "type": "edu", "country": "Malaysia"}, {"name": "Kingston University", "source_name": "Kingston University", "street_adddress": "Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK", "lat": "51.42930860", "lng": "-0.26840440", "type": "edu", "country": "United Kingdom"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8359391"]}, {"id": "66a08ff2ea7447093624632e7069e3da16961d30", "title": "An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition", "addresses": [{"name": "Northwestern Polytechnical University", "source_name": "Northwestern Polytechnical University", "street_adddress": "\u897f\u5317\u5de5\u4e1a\u5927\u5b66 \u53cb\u8c0a\u6821\u533a, 127\u53f7, \u53cb\u8c0a\u897f\u8def, \u957f\u5b89\u8def, \u7891\u6797\u533a (Beilin), \u897f\u5b89\u5e02, \u9655\u897f\u7701, 710072, \u4e2d\u56fd", "lat": "34.24691520", "lng": "108.91061982", "type": "edu", "country": "China"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7605450"]}, {"id": "6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de", "title": "Crowd Counting via Scale-Adaptive Convolutional Neural Network", "addresses": [{"name": "Shanghai Jiaotong University", "source_name": "Shanghai Jiaotong University", "street_adddress": "China, Shanghai, Minhang, \u4e1c\u5ddd\u8def \u90ae\u653f\u7f16\u7801: 200240", "lat": "31.02522010", "lng": "121.43377840", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.04433.pdf"], "doi": []}, {"id": "e607b91f69ea2bff3194b07c5d22b4625bbe306e", "title": "Learning to See People Like People : Predicting Social Impressions of Faces", "addresses": [{"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e607/b91f69ea2bff3194b07c5d22b4625bbe306e.pdf"], "doi": []}, {"id": "737f3cf354f40a6a7fd8a2058fe2803b8dd6c56b", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/737f/3cf354f40a6a7fd8a2058fe2803b8dd6c56b.pdf"], "doi": []}, {"id": "3e667c54e848233db092b794f2cfbf47ea63b771", "title": "Combined convolutional and recurrent neural networks for hierarchical classification of images", "addresses": [{"name": "Northwestern University", "source_name": "Northwestern University", "street_adddress": "Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA", "lat": "42.05511640", "lng": "-87.67581113", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.09574.pdf"], "doi": []}, {"id": "a5c8fc1ca4f06a344b53dc81ebc6d87f54896722", "title": "Learning to see people like people", "addresses": [{"name": "University of California, San Diego", "source_name": "University of California, San Diego", "street_adddress": "UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA", "lat": "32.87935255", "lng": "-117.23110049", "type": "edu", "country": "United States"}, {"name": "Purdue University", "source_name": "Purdue University", "street_adddress": "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "lat": "40.43197220", "lng": "-86.92389368", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.04282.pdf"], "doi": []}, {"id": "7a9c2524a157a6b5d0204c2f3b187cd67eb26b4c", "title": "SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection", "addresses": [{"name": "Hong Kong Polytechnic University", "source_name": "Hong Kong Polytechnic University", "street_adddress": "hong kong, 11, \u80b2\u624d\u9053 Yuk Choi Road, \u5c16\u6c99\u5480 Tsim Sha Tsui, \u6cb9\u5c16\u65fa\u5340 Yau Tsim Mong District, \u4e5d\u9f8d Kowloon, HK, 00000, \u4e2d\u56fd", "lat": "22.30457200", "lng": "114.17976285", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8478157"]}, {"id": "c7f4e18ec3a805b8aee1d3d7552364c8f5f6ca1d", "title": "An Auto-adaptive CNN for Crowd Counting in Monitor Image", "addresses": [{"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8525541"]}, {"id": "b1db174463b0bbc54a61fcc83acfb89ad3e3d18f", "title": "Loss Functions for Multiset Prediction", "addresses": [{"name": "New York University", "source_name": "New York University", "street_adddress": "NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA", "lat": "40.72925325", "lng": "-73.99625394", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.05246.pdf"], "doi": []}, {"id": "81ba5202424906f64b77f68afca063658139fbb2", "title": "Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "IDIAP Research Institute", "source_name": "IDIAP Research Institute", "street_adddress": "Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.10923700", "lng": "7.08453549", "type": "edu", "country": "Switzerland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09078.pdf"], "doi": []}, {"id": "d488dad9fa81817c85a284b09ebf198bf6b640f9", "title": "FCHD: A fast and accurate head detector", "addresses": [{"name": "IIT Madras, India", "source_name": "IIT Madras, India", "street_adddress": "Indian Institute Of Technology, Chennai, Tamil Nadu 600036, India", "lat": "12.99149290", "lng": "80.23369070", "type": "edu", "country": "India"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08766.pdf"], "doi": []}, {"id": "830466596c0908399760f2009a09ce605e3121c9", "title": "Revisiting Perspective Information for Efficient Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "1d1a2387663cb3510d6f5c0651c1dc55e48dcabc", "title": "Joint Pedestrian and Body Part Detection via Semantic Relationship Learning", "addresses": [{"name": "Hebei University of Technology", "source_name": "Hebei University of Technology, Tianjin, P. R. China", "street_adddress": "8 Dingzigu 1st Rd, Hongqiao Qu, China, 300131", "lat": "39.17963500", "lng": "117.16588200", "type": "edu", "country": "China"}, {"name": "Chinese Academy of Sciences", "source_name": "Chinese Academy of Sciences", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "lat": "40.00447950", "lng": "116.37023800", "type": "edu", "country": "China"}, {"name": "Beijing Information Science and Technology University", "source_name": "Beijing Information Science and Technology University, Beijing, China", "street_adddress": "China, Beijing, Haidian, \u6e05\u6cb3\u56db\u62d4\u5b50", "lat": "40.04332040", "lng": "116.34181090", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/1d1a/2387663cb3510d6f5c0651c1dc55e48dcabc.pdf"], "doi": []}, {"id": "91d2f0b7c23239740fa15dff0b5893b992c0ab34", "title": "Sequence-to-Segment Networks for Segment Detection", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/91d2/f0b7c23239740fa15dff0b5893b992c0ab34.pdf"], "doi": []}, {"id": "8e7c647d8e8ba726b03f7e7c5cc395f86b9de9be", "title": "Parsing Pose of People with Interaction", "addresses": [{"name": "California Institute of Technology", "source_name": "California Institute of Technology", "street_adddress": "California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA", "lat": "34.13710185", "lng": "-118.12527487", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8e7c/647d8e8ba726b03f7e7c5cc395f86b9de9be.pdf"], "doi": []}, {"id": "2f02c1d4858d9c0f5d16099eb090560d5fa4f23f", "title": "Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545068"]}, {"id": "c43c3ec39005aaf1f0ad2f641d92f41021342217", "title": "Pedestrian Detection with Autoregressive Network Phases", "addresses": [{"name": "Michigan State University", "source_name": "Michigan State University", "street_adddress": "Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA", "lat": "42.71856800", "lng": "-84.47791571", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00440.pdf"], "doi": []}, {"id": "e1a784e360f2bf3911cffa30506d46c412659db5", "title": "MetaAnchor: Learning to Detect Objects with Customized Anchors", "addresses": [{"name": "Fudan University", "source_name": "Fudan University", "street_adddress": "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "lat": "31.30104395", "lng": "121.50045497", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00980.pdf"], "doi": []}, {"id": "9043df1de4f6e181875011c1379d1a7f68a28d6c", "title": "People Detection from Overhead Cameras", "addresses": [{"name": "Delft University of Technology", "source_name": "Delft University of Technology", "street_adddress": "TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland", "lat": "51.99882735", "lng": "4.37396037", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9043/df1de4f6e181875011c1379d1a7f68a28d6c.pdf"], "doi": []}, {"id": "9da3ade53bf91556fe46828b216aab20a4e72294", "title": "SNc Neuron Detection Method Based on Deep Learning for Efficacy Evaluation of Anti-PD Drugs", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8431470"]}, {"id": "cfa48bc1015b88809e362b4da19fe4459acb1d89", "title": "Learning to Filter Object Detections", "addresses": [{"name": "Max Planck Institute for Intelligent Systems", "source_name": "Max Planck Institute for Intelligent Systems", "street_adddress": "Heisenbergstra\u00dfe 3, 70569 Stuttgart, Germany", "lat": "48.74689390", "lng": "9.08051410", "type": "edu", "country": "Germany"}, {"name": "Microsoft", "source_name": "Microsoft Corporation, Redmond, WA, USA", "street_adddress": "One Microsoft Way, Redmond, WA 98052, USA", "lat": "47.64233180", "lng": "-122.13693020", "type": "company", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cfa4/8bc1015b88809e362b4da19fe4459acb1d89.pdf"], "doi": []}, {"id": "eb5780e49ad7e713e9f34cf067d45030fb29753e", "title": "Iterative fully convolutional neural networks for automatic vertebra segmentation and identification", "addresses": [{"name": "University Medical Center Utrecht", "source_name": "Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands", "street_adddress": "Vondellaan 94, 3521 GH Utrecht, Netherlands", "lat": "52.07869500", "lng": "5.11974690", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04383.pdf"], "doi": []}, {"id": "54c9343c247ce5a82bc52f83df84c2bbae737ce4", "title": "Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back. (L'apprentissage profond sur graphes attribu\u00e9s: Un voyage aller-retour aux plongements des graphes)", "addresses": [{"name": "INRIA Sophia Antipolis", "source_name": "INRIA Sophia Antipolis Meditérannée, Valbonne, France", "street_adddress": "2004 Route des Lucioles, 06902 Valbonne, France", "lat": "43.61581310", "lng": "7.06838000", "type": "edu", "country": "France"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.08296.pdf"], "doi": []}, {"id": "2d81cf3214281af85eb1d9d270a897d62302e88e", "title": "High density people estimation in video surveillance", "addresses": [{"name": "AvidBeam", "source_name": "AvidBeam", "street_adddress": "5 Wadi Al Nile, Maadi Al Khabiri Ash Sharqeyah, Al Maadi, Cairo Governorate 11728, Egypt", "lat": "29.95606300", "lng": "31.25547100", "type": "company", "country": "Egypt"}, {"name": "Faculty of Media Engineering & Technology German University in Cairo", "source_name": "Faculty of Media Engineering & Technology German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}, {"name": "German University in Cairo", "source_name": "Faculty of Media Engineering and Technology, German University in Cairo, Egypt", "street_adddress": "Cairo Governorate, Egypt", "lat": "29.98663810", "lng": "31.44142180", "type": "edu", "country": "Egypt"}], "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8275348"]}, {"id": "d54d0dc1e7ef82f3ed0ee332e0777b6d73477a8c", "title": "Sidewalk-level People Flow Estimation Using Dashboard Cameras Based on Deep Learning", "addresses": [{"name": "Osaka University", "source_name": "Osaka University", "street_adddress": "\u5927\u962a\u5927\u5b66\u6e05\u660e\u5bee, \u670d\u90e8\u897f\u753a\u56db\u4e01\u76ee, \u8c4a\u4e2d\u5e02, \u5927\u962a\u5e9c, \u8fd1\u757f\u5730\u65b9, \u65e5\u672c", "lat": "34.80809035", "lng": "135.45785218", "type": "edu", "country": "Japan"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8653595"]}, {"id": "9607f88fe6298f754e3f610c3a587d8e10b1b0a9", "title": "Scene Text Detection with Recurrent Instance Segmentation", "addresses": [{"name": "National Laboratory of Pattern Recognition", "source_name": "National Laboratory of Pattern Recognition & Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, China", "street_adddress": "China, Beijing, Haidian, Zhongguancun South 1st Alley, \u4e2d\u5173\u6751\u5357\u4e00\u6761", "lat": "39.98177000", "lng": "116.33008600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545073"]}, {"id": "ed2ba6448db8cf945ca24d4df11916c2c5c3edd1", "title": "Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing", "addresses": [{"name": "University of Electronic Science and Technology of China", "source_name": "University of Electronic Science and Technology of China", "street_adddress": "2 Jianshe North Rd 2nd Section, Jianshe Road, Chenghua Qu, Chengdu Shi, Sichuan Sheng, China, 610054", "lat": "30.67272100", "lng": "104.09880600", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://doi.org/10.1007/s11063-018-9837-1"]}, {"id": "03a65d274dc6caea94f6ab344e0b4969575327e3", "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "addresses": [{"name": "Megvii Inc. (Face++), China", "source_name": "Megvii Inc. (Face++), China", "street_adddress": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "company", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00123.pdf"], "doi": []}, {"id": "d78b190f98f9630cab261eabc399733af052f05c", "title": "Unsupervised Deep Domain Adaptation for Pedestrian Detection", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "University of Twente", "source_name": "University of Twente", "street_adddress": "University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland", "lat": "52.23801390", "lng": "6.85667610", "type": "edu", "country": "Netherlands"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1802.03269.pdf"], "doi": []}, {"id": "deea683731f468c7234e1089f48c4546e7003b18", "title": "Multi-Task Vehicle Detection With Region-of-Interest Voting", "addresses": [{"name": "Alibaba Group, Hangzhou, China", "source_name": "Alibaba Group, Hangzhou, China", "street_adddress": "Alibaba Group, \u4e94\u5e38\u8857\u9053, \u4f59\u676d\u533a (Yuhang), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, \u4e2d\u56fd", "lat": "30.28106540", "lng": "120.02139087", "type": "edu", "country": "China"}, {"name": "Alibaba, Hangzhou, China", "source_name": "Alibaba, Hangzhou, China", "street_adddress": "699 Wangshang Rd, Binjiang Qu, Hangzhou Shi, Zhejiang Sheng, China", "lat": "30.18996400", "lng": "120.19210000", "type": "edu", "country": "China"}, {"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8066331", "http://doi.org/10.1109/TIP.2017.2762591", "https://www.ncbi.nlm.nih.gov/pubmed/29028197", "https://www.wikidata.org/entity/Q50063923"]}, {"id": "1303b3e9f4bffb87b6dd34f7849f7a57e00253d1", "title": "Point in, Box out: Beyond Counting Persons in Crowds", "addresses": [{"name": "Sichuan University, Chengdu", "source_name": "Sichuan Univ., Chengdu", "street_adddress": "\u56db\u5ddd\u5927\u5b66\uff08\u534e\u897f\u6821\u533a\uff09, \u6821\u4e1c\u8def, \u6b66\u4faf\u533a, \u6b66\u4faf\u533a (Wuhou), \u6210\u90fd\u5e02 / Chengdu, \u56db\u5ddd\u7701, 610014, \u4e2d\u56fd", "lat": "30.64276900", "lng": "104.06751175", "type": "edu", "country": "China"}, {"name": "INRIA", "source_name": "INRIA Grenoble Rhone-Alpes, Grenoble, France", "street_adddress": "655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France", "lat": "45.21788600", "lng": "5.80736900", "type": "edu", "country": "France"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01333.pdf"], "doi": []}, {"id": "4140ccbca5a585162420b82e9e4eeb9afbd1e7c2", "title": "Simulating Crowds in Egress Scenarios", "addresses": [{"name": "Pontifical Catholic University of Rio Grande do Sul", "source_name": "Pontifical Catholic University of Rio Grande do Sul", "street_adddress": "Av. Ipiranga, 6681 - Partenon, Porto Alegre - RS, 90619-900, Brazil", "lat": "-30.05934460", "lng": "-51.17349120", "type": "edu", "country": "Brazil"}, {"name": "University of Pennsylvania", "source_name": "University of Pennsylvania", "street_adddress": "Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA", "lat": "39.94923440", "lng": "-75.19198985", "type": "edu", "country": "United States"}, {"name": "Federal University of Rio Grande do Sul", "source_name": "Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil", "street_adddress": "Av. Paulo Gama, 110 - Farroupilha, Porto Alegre - RS, 90040-060, Brazil", "lat": "-30.03382480", "lng": "-51.21882800", "type": "edu", "country": "Brazil"}], "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1007/978-3-319-65202-3"]}, {"id": "5031a110219231ceaa820725c6e77f87f7b2fde2", "title": "Training with Confusion for Fine-Grained Visual Classification", "addresses": [{"name": "Harvard University", "source_name": "Harvard University", "street_adddress": "Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA", "lat": "42.36782045", "lng": "-71.12666653", "type": "edu", "country": "United States"}, {"name": "MIT", "source_name": "Massachusetts Institute", "street_adddress": "MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA", "lat": "42.35839610", "lng": "-71.09567788", "type": "edu", "country": "United States"}, {"name": "Brigham Young University", "source_name": "Brigham Young University, Provo, USA", "street_adddress": "Provo, UT 84602, USA", "lat": "40.25184350", "lng": "-111.64931560", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/5031/a110219231ceaa820725c6e77f87f7b2fde2.pdf"], "doi": []}, {"id": "86c158ef6caaf247d5d14e07c5edded0147df8b7", "title": "Spatial Memory for Context Reasoning in Object Detection", "addresses": [{"name": "Carnegie Mellon University", "source_name": "Carnegie Mellon University Pittsburgh, PA - 15213, USA", "street_adddress": "Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA", "lat": "40.44416190", "lng": "-79.94272826", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.04224.pdf"], "doi": []}, {"id": "bba153ebdf11e6fb8716e35749c671ac96c14176", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.03686.pdf"], "doi": []}, {"id": "fe5679c183cb432894d111bf02cc3243c89762ca", "title": "Adaptive Scenario Discovery for Crowd Counting", "addresses": [{"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.02393.pdf"], "doi": []}, {"id": "11824658170994e4d4655e8f688bace16a0d3e48", "title": "Multi-person Head Segmentation in Low Resolution Crowd Scenes Using Convolutional Encoder-Decoder Framework", "addresses": [{"name": "Qatar University", "source_name": "Qatar University", "street_adddress": "Qatar University, Roindabout 3, Al Tarfa (68), \u0623\u0645 \u0635\u0644\u0627\u0644, 24685, \u200f\u0642\u0637\u0631\u200e", "lat": "25.37461295", "lng": "51.48980354", "type": "edu", "country": "Qatar"}, {"name": "University of Warwick", "source_name": "University of Warwick", "street_adddress": "University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK", "lat": "52.37931310", "lng": "-1.56042520", "type": "edu", "country": "United Kingdom"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1182/4658170994e4d4655e8f688bace16a0d3e48.pdf"], "doi": []}, {"id": "061356704ec86334dbbc073985375fe13cd39088", "title": "Very Deep Convolutional Networks for Large-Scale Image Recognition", "addresses": [{"name": "University of Oxford", "source_name": "University of Oxford", "street_adddress": "Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK", "lat": "51.75345380", "lng": "-1.25400997", "type": "edu", "country": "United Kingdom"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1409.1556.pdf"], "doi": []}, {"id": "14318685b5959b51d0f1e3db34643eb2855dc6d9", "title": "Going deeper with convolutions", "addresses": [{"name": "Google", "source_name": "Google, Inc.", "street_adddress": "1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA", "lat": "37.42199990", "lng": "-122.08405750", "type": "company", "country": "United States"}, {"name": "University of Michigan", "source_name": "University of Michigan", "street_adddress": "University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA", "lat": "42.29421420", "lng": "-83.71003894", "type": "edu", "country": "United States"}, {"name": "University of North Carolina", "source_name": "University of North Carolina", "street_adddress": "University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA", "lat": "35.90503535", "lng": "-79.04775327", "type": "edu", "country": "United States"}], "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298594"]}, {"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "title": "End-to-End People Detection in Crowded Scenes", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780624"]}, {"id": "7e915bb8e4ada4f8d261bc855a4f587ea97764ca", "title": "People detection in crowded scenes via regional-based convolutional network", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877809", "http://doi.org/10.1109/ICSP.2016.7877809"]}, {"id": "591a4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b", "title": "A Replacement Algorithm of Non-Maximum Suppression Base on Graph Clustering", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/591a/4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b.pdf"], "doi": []}, {"id": "b02d31c640b0a31fb18c4f170d841d8e21ffb66c", "title": "Localized region context and object feature fusion for people head detection", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532426", "http://doi.org/10.1109/ICIP.2016.7532426"]}, {"id": "68ea88440fc48d59c7407e71a193ff1973f9ba7c", "title": "Shoulder Keypoint-Detection from Object Detection", "addresses": [{"name": "University of Ottawa", "source_name": "University of Ottawa", "street_adddress": "University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/68ea/88440fc48d59c7407e71a193ff1973f9ba7c.pdf"], "doi": []}]} \ No newline at end of file diff --git a/site/datasets/unknown/brainwash.json b/site/datasets/unknown/brainwash.json index a584106d..2e2b4252 100644 --- a/site/datasets/unknown/brainwash.json +++ b/site/datasets/unknown/brainwash.json @@ -1 +1 @@ -{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "citations": [{"id": "02caadae027f983261d93e40f4d9d1f785163db4", "title": "Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03891.pdf"], "doi": []}, {"id": "6f172b6635ad9e3d3e0ab65d931dcb354eb9ff73", "title": "Accurate Single Stage Detector Using Recurrent Rolling Convolution", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099570"]}, {"id": "34786071f672b55fcdb24213a95f2ee52623ff23", "title": "MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.07695.pdf"], "doi": []}, {"id": "439f6206480b3ce069d75a95b1ffed9417117a17", "title": "Representations, Analysis and Recognition of Shape and Motion from Imaging Data", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/978-3-030-19816-9"]}, {"id": "95addf732b584f7a2959f143d860863df3d1f320", "title": "Deep Learning on Attributed Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/95ad/df732b584f7a2959f143d860863df3d1f320.pdf"], "doi": []}, {"id": "5d49632f8c8cd06cd5ce66f007aa140f40c12c45", "title": "Bus-Crowdedness Estimation by Shallow Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8615907"]}, {"id": "b80a7bbde2986a0b3474258ec2fad0a75813d89f", "title": "Context Learning Network for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8637445"]}, {"id": "84afbf356669f544f6c7e19fdb273edc93bf93ee", "title": "Scatteract: Automated Extraction of Data from Scatter Plots", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06687.pdf"], "doi": []}, {"id": "bcdb697c9d748f7655859256b0228a51b19b6fee", "title": "Parallel RCNN: A deep learning method for people detection using RGB-D images", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302069"]}, {"id": "e586547a63400881c7a95d6ad6d5fa31ac237ca9", "title": "Variational Methods for Human Modeling", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e586/547a63400881c7a95d6ad6d5fa31ac237ca9.pdf"], "doi": []}, {"id": "99c1bc2b09210d016a252ddae051ca7cf7fe0a56", "title": "Abnormality Extraction in Crowd", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/99c1/bc2b09210d016a252ddae051ca7cf7fe0a56.pdf"], "doi": []}, {"id": "d488dad9fa81817c85a284b09ebf198bf6b640f9", "title": "FCHD: A fast and accurate head detector", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08766.pdf"], "doi": []}, {"id": "b8c51b9ad3da310b590629b050152460abf7effb", "title": "Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.03193.pdf"], "doi": []}, {"id": "f38a1edab9f0f0f36718778ac8d510fd25c41269", "title": "Adversarial Adaptation From Synthesis to Reality in Fast Detector for Smoke Detection", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8657935"]}, {"id": "6a0aaefce8a27a8727d896fa444ba27558b2d381", "title": "Relation Networks for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578476"]}, {"id": "82b1ca78b2fc7ae0459f5d7c61a78822b8a590d2", "title": "Deep Semantic Instance Segmentation of Tree-Like Structures Using Synthetic Data", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658794"]}, {"id": "9043df1de4f6e181875011c1379d1a7f68a28d6c", "title": "People Detection from Overhead Cameras", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9043/df1de4f6e181875011c1379d1a7f68a28d6c.pdf"], "doi": []}, {"id": "a4ffdc6f0811b5adbf41d20433a44fc546197b75", "title": "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03480.pdf"], "doi": []}, {"id": "750bc0d2c9105a352001875127d796599a994886", "title": "Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8464244"]}, {"id": "28cd46a078e8fad370b1aba34762a874374513a5", "title": "cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06436.pdf"], "doi": []}, {"id": "03a65d274dc6caea94f6ab344e0b4969575327e3", "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00123.pdf"], "doi": []}, {"id": "8935ffe454758e2e5def0b5190de6e28c350b3b8", "title": "Learning to Reconstruct Face Geometries Research", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ea06/abd83c491877f0ce04cc7780ce068578f282.pdf"], "doi": []}, {"id": "993acefc2e350f9661125bb74df136e2b614ea23", "title": "People detection on the Pepper Robot using Convolutional Neural Networks and 3D Blob detection", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/993a/cefc2e350f9661125bb74df136e2b614ea23.pdf"], "doi": []}, {"id": "d78b190f98f9630cab261eabc399733af052f05c", "title": "Unsupervised Deep Domain Adaptation for Pedestrian Detection", "year": "2016", "pdf": ["https://arxiv.org/pdf/1802.03269.pdf"], "doi": []}, {"id": "08e18921d7e405ad27956c75f2613230170997d5", "title": "Towards Variational Generation of Small Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a001/f2440fa49d1c137c9ca1b892857270096ef9.pdf"], "doi": []}, {"id": "f6f4d887fb62d33a9a18cbb7bc58bd6247384a35", "title": "People detection in crowded scenes using hierarchical features", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8261462"]}, {"id": "0ceda9dae8b9f322df65ca2ef02caca9758aec6f", "title": "Context-Aware CNNs for Person Head Detection", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410688"]}, {"id": "9f25b9efd09cc08c1ae14f301c90b903614968d8", "title": "Deep People Detection: A Comparative Study of SSD and LSTM-decoder", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575768"]}]} \ No newline at end of file +{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "citations": [{"id": "02caadae027f983261d93e40f4d9d1f785163db4", "title": "Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03891.pdf"], "doi": []}, {"id": "6f172b6635ad9e3d3e0ab65d931dcb354eb9ff73", "title": "Accurate Single Stage Detector Using Recurrent Rolling Convolution", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099570"]}, {"id": "34786071f672b55fcdb24213a95f2ee52623ff23", "title": "MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.07695.pdf"], "doi": []}, {"id": "439f6206480b3ce069d75a95b1ffed9417117a17", "title": "Representations, Analysis and Recognition of Shape and Motion from Imaging Data", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/978-3-030-19816-9"]}, {"id": "95addf732b584f7a2959f143d860863df3d1f320", "title": "Deep Learning on Attributed Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/95ad/df732b584f7a2959f143d860863df3d1f320.pdf"], "doi": []}, {"id": "5d49632f8c8cd06cd5ce66f007aa140f40c12c45", "title": "Bus-Crowdedness Estimation by Shallow Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8615907"]}, {"id": "b80a7bbde2986a0b3474258ec2fad0a75813d89f", "title": "Context Learning Network for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8637445"]}, {"id": "84afbf356669f544f6c7e19fdb273edc93bf93ee", "title": "Scatteract: Automated Extraction of Data from Scatter Plots", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06687.pdf"], "doi": []}, {"id": "bcdb697c9d748f7655859256b0228a51b19b6fee", "title": "Parallel RCNN: A deep learning method for people detection using RGB-D images", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8302069"]}, {"id": "e586547a63400881c7a95d6ad6d5fa31ac237ca9", "title": "Variational Methods for Human Modeling", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e586/547a63400881c7a95d6ad6d5fa31ac237ca9.pdf"], "doi": []}, {"id": "99c1bc2b09210d016a252ddae051ca7cf7fe0a56", "title": "Abnormality Extraction in Crowd", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/99c1/bc2b09210d016a252ddae051ca7cf7fe0a56.pdf"], "doi": []}, {"id": "b8c51b9ad3da310b590629b050152460abf7effb", "title": "Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.03193.pdf"], "doi": []}, {"id": "f38a1edab9f0f0f36718778ac8d510fd25c41269", "title": "Adversarial Adaptation From Synthesis to Reality in Fast Detector for Smoke Detection", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8657935"]}, {"id": "6a0aaefce8a27a8727d896fa444ba27558b2d381", "title": "Relation Networks for Object Detection", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578476"]}, {"id": "82b1ca78b2fc7ae0459f5d7c61a78822b8a590d2", "title": "Deep Semantic Instance Segmentation of Tree-Like Structures Using Synthetic Data", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658794"]}, {"id": "a4ffdc6f0811b5adbf41d20433a44fc546197b75", "title": "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03480.pdf"], "doi": []}, {"id": "750bc0d2c9105a352001875127d796599a994886", "title": "Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8464244"]}, {"id": "28cd46a078e8fad370b1aba34762a874374513a5", "title": "cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06436.pdf"], "doi": []}, {"id": "8935ffe454758e2e5def0b5190de6e28c350b3b8", "title": "Learning to Reconstruct Face Geometries Research", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ea06/abd83c491877f0ce04cc7780ce068578f282.pdf"], "doi": []}, {"id": "993acefc2e350f9661125bb74df136e2b614ea23", "title": "People detection on the Pepper Robot using Convolutional Neural Networks and 3D Blob detection", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/993a/cefc2e350f9661125bb74df136e2b614ea23.pdf"], "doi": []}, {"id": "08e18921d7e405ad27956c75f2613230170997d5", "title": "Towards Variational Generation of Small Graphs", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a001/f2440fa49d1c137c9ca1b892857270096ef9.pdf"], "doi": []}, {"id": "f6f4d887fb62d33a9a18cbb7bc58bd6247384a35", "title": "People detection in crowded scenes using hierarchical features", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8261462"]}, {"id": "0ceda9dae8b9f322df65ca2ef02caca9758aec6f", "title": "Context-Aware CNNs for Person Head Detection", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410688"]}, {"id": "9f25b9efd09cc08c1ae14f301c90b903614968d8", "title": "Deep People Detection: A Comparative Study of SSD and LSTM-decoder", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575768"]}]} \ No newline at end of file diff --git a/site/datasets/verified/brainwash.json b/site/datasets/verified/brainwash.json index e7dd9ff5..edfa0ac9 100644 --- a/site/datasets/verified/brainwash.json +++ b/site/datasets/verified/brainwash.json @@ -1 +1 @@ -{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "paper": {"key": "brainwash", "name": "Brainwash", "title": "End-to-End People Detection in Crowded Scenes", "year": "2016", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "vetting": {"yes": 12, "no": 42, "total": 54}}, "citations": [{"id": "7e915bb8e4ada4f8d261bc855a4f587ea97764ca", "title": "People detection in crowded scenes via regional-based convolutional network", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877809", "http://doi.org/10.1109/ICSP.2016.7877809"]}, {"id": "591a4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b", "title": "A Replacement Algorithm of Non-Maximum Suppression Base on Graph Clustering", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/591a/4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b.pdf"], "doi": []}, {"id": "b02d31c640b0a31fb18c4f170d841d8e21ffb66c", "title": "Localized region context and object feature fusion for people head detection", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532426", "http://doi.org/10.1109/ICIP.2016.7532426"]}, {"id": "81ba5202424906f64b77f68afca063658139fbb2", "title": "Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "IDIAP Research Institute", "source_name": "IDIAP Research Institute", "street_adddress": "Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.10923700", "lng": "7.08453549", "type": "edu", "country": "Switzerland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09078.pdf"], "doi": []}, {"id": "2f02c1d4858d9c0f5d16099eb090560d5fa4f23f", "title": "Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545068"]}, {"id": "cab97d4dc67919f965cc884d80e4d6b743a256eb", "title": "Scale Mapping and Dynamic Re-Detecting in Dense Head Detection", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451653"]}, {"id": "68ea88440fc48d59c7407e71a193ff1973f9ba7c", "title": "Shoulder Keypoint-Detection from Object Detection", "addresses": [{"name": "University of Ottawa", "source_name": "University of Ottawa", "street_adddress": "University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/68ea/88440fc48d59c7407e71a193ff1973f9ba7c.pdf"], "doi": []}]} \ No newline at end of file +{"id": "1bd1645a629f1b612960ab9bba276afd4cf7c666", "paper": {"key": "brainwash", "name": "Brainwash", "title": "End-to-End People Detection in Crowded Scenes", "year": "2016", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "vetting": {"yes": 12, "no": 42, "total": 54}}, "citations": [{"id": "7e915bb8e4ada4f8d261bc855a4f587ea97764ca", "title": "People detection in crowded scenes via regional-based convolutional network", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7877809", "http://doi.org/10.1109/ICSP.2016.7877809"]}, {"id": "591a4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b", "title": "A Replacement Algorithm of Non-Maximum Suppression Base on Graph Clustering", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/591a/4bfa6380c9fcd5f3ae690e3ac5c09b7bf37b.pdf"], "doi": []}, {"id": "b02d31c640b0a31fb18c4f170d841d8e21ffb66c", "title": "Localized region context and object feature fusion for people head detection", "addresses": [{"name": "National University of Defense Technology, China", "source_name": "National University of Defence Technology, Changsha 410000, China", "street_adddress": "\u56fd\u9632\u79d1\u5b66\u6280\u672f\u5927\u5b66, \u4e09\u4e00\u5927\u9053, \u5f00\u798f\u533a, \u5f00\u798f\u533a (Kaifu), \u957f\u6c99\u5e02 / Changsha, \u6e56\u5357\u7701, 410073, \u4e2d\u56fd", "lat": "28.22902090", "lng": "112.99483204", "type": "mil", "country": "China"}], "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532426", "http://doi.org/10.1109/ICIP.2016.7532426"]}, {"id": "81ba5202424906f64b77f68afca063658139fbb2", "title": "Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "IDIAP Research Institute", "source_name": "IDIAP Research Institute", "street_adddress": "Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.10923700", "lng": "7.08453549", "type": "edu", "country": "Switzerland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09078.pdf"], "doi": []}, {"id": "03a65d274dc6caea94f6ab344e0b4969575327e3", "title": "CrowdHuman: A Benchmark for Detecting Human in a Crowd", "addresses": [{"name": "Megvii Inc. (Face++), China", "source_name": "Megvii Inc. (Face++), China", "street_adddress": "China", "lat": "35.86166000", "lng": "104.19539700", "type": "company", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00123.pdf"], "doi": []}, {"id": "2f02c1d4858d9c0f5d16099eb090560d5fa4f23f", "title": "Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545068"]}, {"id": "cab97d4dc67919f965cc884d80e4d6b743a256eb", "title": "Scale Mapping and Dynamic Re-Detecting in Dense Head Detection", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8451653"]}, {"id": "d78b190f98f9630cab261eabc399733af052f05c", "title": "Unsupervised Deep Domain Adaptation for Pedestrian Detection", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "University of Twente", "source_name": "University of Twente", "street_adddress": "University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland", "lat": "52.23801390", "lng": "6.85667610", "type": "edu", "country": "Netherlands"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1802.03269.pdf"], "doi": []}, {"id": "d488dad9fa81817c85a284b09ebf198bf6b640f9", "title": "FCHD: A fast and accurate head detector", "addresses": [{"name": "IIT Madras, India", "source_name": "IIT Madras, India", "street_adddress": "Indian Institute Of Technology, Chennai, Tamil Nadu 600036, India", "lat": "12.99149290", "lng": "80.23369070", "type": "edu", "country": "India"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08766.pdf"], "doi": []}, {"id": "68ea88440fc48d59c7407e71a193ff1973f9ba7c", "title": "Shoulder Keypoint-Detection from Object Detection", "addresses": [{"name": "University of Ottawa", "source_name": "University of Ottawa", "street_adddress": "University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada", "lat": "45.42580475", "lng": "-75.68740118", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/68ea/88440fc48d59c7407e71a193ff1973f9ba7c.pdf"], "doi": []}, {"id": "9043df1de4f6e181875011c1379d1a7f68a28d6c", "title": "People Detection from Overhead Cameras", "addresses": [{"name": "Delft University of Technology", "source_name": "Delft University of Technology", "street_adddress": "TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland", "lat": "51.99882735", "lng": "4.37396037", "type": "edu", "country": "Netherlands"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9043/df1de4f6e181875011c1379d1a7f68a28d6c.pdf"], "doi": []}]} \ No newline at end of file -- cgit v1.2.3-70-g09d2