From 966e27c7418d6e188ea4b1f651a5e6c67495b765 Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Mon, 3 Dec 2018 17:19:51 +0100 Subject: base css --- site/assets/js/app/site.js | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) create mode 100644 site/assets/js/app/site.js (limited to 'site/assets/js/app') diff --git a/site/assets/js/app/site.js b/site/assets/js/app/site.js new file mode 100644 index 00000000..04c0c495 --- /dev/null +++ b/site/assets/js/app/site.js @@ -0,0 +1,22 @@ +const isiPhone = !!((navigator.userAgent.match(/iPhone/i)) || (navigator.userAgent.match(/iPod/i))) +const isiPad = !!(navigator.userAgent.match(/iPad/i)) +const isAndroid = !!(navigator.userAgent.match(/Android/i)) +const isMobile = isiPhone || isiPad || isAndroid +const isDesktop = !isMobile + +const htmlClassList = document.body.parentNode.classList +htmlClassList.add(isDesktop ? 'desktop' : 'mobile') + +var site = (function(){ + var site = {} + site.init = function(){ + site.build() + } + site.build = function(){ + const paras = document.querySelectorAll("section p") + if (paras.length) { + paras[0].classList.add('first_paragraph') + } + } + site.init() +})() \ No newline at end of file -- cgit v1.2.3-70-g09d2 From 03ed12b471c1e50ae531c46fcbf5afd06ca5432b Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Wed, 5 Dec 2018 18:23:32 +0100 Subject: build --- builder/builder.py | 37 ++++-- builder/parser.py | 46 ++++++- builder/s3.py | 6 + site/assets/css/css.css | 65 +++++++--- site/assets/css/fonts.css | 18 ++- site/assets/js/app/site.js | 7 + site/public/about/credits/index.html | 8 +- site/public/about/disclaimer/index.html | 8 +- site/public/about/index.html | 11 +- site/public/about/press/index.html | 8 +- site/public/about/privacy/index.html | 9 +- site/public/about/style/index.html | 12 +- site/public/about/terms/index.html | 8 +- site/public/datasets/lfw/index.html | 20 +-- site/public/datasets/lfw/what/index.html | 141 +++++++++++++++++++++ site/public/datasets/vgg_faces2/index.html | 20 +-- site/public/index.html | 12 +- .../research/01_from_1_to_100_pixels/index.html | 15 +-- site/public/research/index.html | 50 ++++++++ site/templates/layout.html | 8 +- site/templates/research.html | 12 -- 21 files changed, 391 insertions(+), 130 deletions(-) create mode 100644 site/public/datasets/lfw/what/index.html create mode 100644 site/public/research/index.html (limited to 'site/assets/js/app') diff --git a/builder/builder.py b/builder/builder.py index deb9eb68..0e404b88 100644 --- a/builder/builder.py +++ b/builder/builder.py @@ -29,21 +29,25 @@ def build_page(fn, research_posts): output_path = public_path + metadata['url'] output_fn = os.path.join(output_path, "index.html") + is_research = False + if 'research/' in fn: + is_research = True template = env.get_template("research.html") else: template = env.get_template("page.html") - if 'datasets' in fn: - s3_path = "{}/{}/{}{}".format(os.getenv('S3_ENDPOINT'), os.getenv('S3_BUCKET'), s3_datasets_path, metadata['path']) - if 'index.md' in fn: - s3.sync_directory(dirname, s3_datasets_path, metadata) + if 'datasets/' in fn: + s3_dir = s3_datasets_path else: - s3_path = "{}/{}/{}{}".format(os.getenv('S3_ENDPOINT'), os.getenv('S3_BUCKET'), s3_site_path, metadata['path']) - if 'index.md' in fn and metadata['url'] != '/': - s3.sync_directory(dirname, s3_site_path, metadata) + s3_dir = s3_site_path + + s3_path = s3.make_s3_path(s3_dir, metadata['path']) + + if 'index.md' in fn: + s3.sync_directory(dirname, s3_dir, metadata) - content = parser.parse_markdown(sections, s3_path) + content = parser.parse_markdown(sections, s3_path, skip_h1=is_research) html = template.render( metadata=metadata, @@ -58,10 +62,27 @@ def build_page(fn, research_posts): print("______") +def build_research_index(research_posts): + metadata, sections = parser.read_metadata('../site/content/research/index.md') + template = env.get_template("page.html") + s3_path = s3.make_s3_path(s3_site_path, metadata['path']) + content = parser.parse_markdown(sections, s3_path, skip_h1=False) + content += parser.parse_research_index(research_posts) + html = template.render( + metadata=metadata, + content=content, + research_posts=research_posts, + latest_research_post=research_posts[-1], + ) + output_fn = public_path + '/research/index.html' + with open(output_fn, "w") as file: + file.write(html) + def build_site(): research_posts = parser.read_research_post_index() for fn in glob.iglob(os.path.join(content_path, "**/*.md"), recursive=True): build_page(fn, research_posts) + build_research_index(research_posts) if __name__ == '__main__': build_site() diff --git a/builder/parser.py b/builder/parser.py index 529d21fa..da3044a0 100644 --- a/builder/parser.py +++ b/builder/parser.py @@ -2,6 +2,8 @@ import os import re import glob import mistune + +import s3 from paths import * renderer = mistune.Renderer(escape=False) @@ -12,7 +14,6 @@ def fix_images(lines, s3_path): block = "\n\n".join(lines) for line in block.split("\n"): if "![" in line: - print(line) line = line.replace('![', '') alt_text, tail = line.split('](', 1) url, tail = tail.split(')', 1) @@ -35,13 +36,26 @@ def format_section(lines, s3_path, type=''): return "
" + markdown(lines) + "
" return "" -def parse_markdown(sections, s3_path): +def format_metadata(section): + meta = [] + for line in section.split('\n'): + key, value = line[2:].split(': ', 1) + meta.append("
{}
{}
".format(key, value)) + return "
{}
".format(''.join(meta)) + +def parse_markdown(sections, s3_path, skip_h1=False): groups = [] current_group = [] + seen_metadata = False for section in sections: - if section.startswith('# '): + if skip_h1 and section.startswith('# '): continue - if '![wide:' in section: + elif section.startswith('+ ') and not seen_metadata: + groups.append(format_section(current_group, s3_path)) + groups.append(format_metadata(section)) + current_group = [] + seen_metadata = True + elif '![wide:' in section: groups.append(format_section(current_group, s3_path)) groups.append(format_section([section], s3_path, type='wide')) current_group = [] @@ -55,6 +69,23 @@ def parse_markdown(sections, s3_path): content = "".join(groups) return content +def parse_research_index(research_posts): + content = "
" + for post in research_posts: + s3_path = s3.make_s3_path(s3_site_path, post['path']) + if 'image' in post: + post_image = s3_path + post['image'] + else: + post_image = '' + row = "
Research post

{}

{}

".format( + post['path'], + post_image, + post['title'], + post['tagline']) + content += row + content += '
' + return content + def read_metadata(fn): with open(fn, "r") as file: data = file.read() @@ -74,6 +105,8 @@ default_metadata = { 'published': '2018-12-31', 'updated': '2018-12-31', 'authors': 'Adam Harvey', + 'sync': 'true', + 'tagline': '', } def parse_metadata_section(metadata, section): @@ -117,12 +150,15 @@ def parse_metadata(fn, sections): if metadata['status'] == 'published|draft|private': metadata['status'] = 'published' + + metadata['sync'] = metadata['sync'] != 'false' + metadata['author_html'] = '
'.join(metadata['authors'].split(',')) return metadata, valid_sections def read_research_post_index(): posts = [] - for fn in sorted(glob.glob(os.path.join(content_path, 'research/**/index.md'), recursive=True)): + for fn in sorted(glob.glob('../site/content/research/*/index.md')): metadata, valid_sections = read_metadata(fn) if metadata is None or metadata['status'] == 'private' or metadata['status'] == 'draft': continue diff --git a/builder/s3.py b/builder/s3.py index f3dcce48..41ecdf61 100644 --- a/builder/s3.py +++ b/builder/s3.py @@ -18,6 +18,9 @@ def sync_directory(base_fn, s3_path, metadata): for fn in glob.glob(os.path.join(base_fn, 'assets/*')): fns[os.path.basename(fn)] = True + if not metadata['sync']: + return + remote_path = s3_path + metadata['url'] directory = s3_client.list_objects(Bucket=os.getenv('S3_BUCKET'), Prefix=remote_path) @@ -53,3 +56,6 @@ def sync_directory(base_fn, s3_path, metadata): os.getenv('S3_BUCKET'), s3_fn, ExtraArgs={ 'ACL': 'public-read' }) + +def make_s3_path(s3_dir, metadata_path): + return "{}/{}/{}{}".format(os.getenv('S3_ENDPOINT'), os.getenv('S3_BUCKET'), s3_dir, metadata_path) diff --git a/site/assets/css/css.css b/site/assets/css/css.css index 1024ffcd..843809a8 100644 --- a/site/assets/css/css.css +++ b/site/assets/css/css.css @@ -164,16 +164,46 @@ p { .content a:hover { color: #fff; } + +/* top of post metadata */ + +.meta { + display: flex; + flex-direction: row; + justify-content: flex-start; + align-items: flex-start; + font-size: 10pt; + margin-bottom: 20px; +} +.meta > div { + margin-right: 30px; +} +.meta .gray { + font-size: 9pt; + padding-bottom: 4px; +} + +/* misc formatting */ + code { font-family: 'Roboto Mono', monospace; font-size: 9pt; padding: 2px 4px; background: rgba(255,255,255,0.1); } +pre { + margin: 0 0 40px 0; + border: 1px solid #666; + border-radius: 2px; +} pre code { display: block; max-height: 400px; max-width: 640px; + padding: 4px 10px; +} +table { + margin-bottom: 40px; } hr { height: 1px; @@ -181,6 +211,14 @@ hr { border: 0; width: 80px; } +blockquote { + margin-left: 28px; + padding: 0 0 0 10px; + border-left: 2px solid #555; +} + +/* footnotes */ + .footnotes hr { display: none; } @@ -243,29 +281,14 @@ section.wide .image { max-width: 620px; margin: 10px auto 0 auto; } - -blockquote { - margin-left: 28px; - padding: 0 0 0 10px; - border-left: 2px solid #555; -} - -/* top of post metadata */ - -.meta { - display: flex; - flex-direction: row; - justify-content: flex-start; - align-items: flex-start; - font-size: 10pt; - margin-bottom: 20px; +.research_index { + margin-top: 40px; } -.meta > div { - margin-right: 30px; +.research_index a { + text-decoration: none; } -.meta .gray { - font-size: 9pt; - padding-bottom: 4px; +.research_index h1 { + margin-top: 20px; } /* blogpost index */ diff --git a/site/assets/css/fonts.css b/site/assets/css/fonts.css index 2195c70b..8db01fbd 100644 --- a/site/assets/css/fonts.css +++ b/site/assets/css/fonts.css @@ -2,34 +2,40 @@ font-family: 'Roboto'; font-style: normal; font-weight: 300; - src: url("../fonts/Roboto_300.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_300.woff") format("woff"), url("../fonts/Roboto_300.woff2") format("woff2"), url("../fonts/Roboto_300.svg#Roboto") format("svg"), url("../fonts/Roboto_300.ttf") format("truetype"); } + src: url("../fonts/Roboto_300.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_300.woff") format("woff"), url("../fonts/Roboto_300.woff2") format("woff2"), url("../fonts/Roboto_300.svg#Roboto") format("svg"), url("../fonts/Roboto_300.ttf") format("truetype"); +} @font-face { font-family: 'Roboto'; font-style: normal; font-weight: 400; - src: url("../fonts/Roboto_400.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_400.woff") format("woff"), url("../fonts/Roboto_400.woff2") format("woff2"), url("../fonts/Roboto_400.svg#Roboto") format("svg"), url("../fonts/Roboto_400.ttf") format("truetype"); } + src: url("../fonts/Roboto_400.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_400.woff") format("woff"), url("../fonts/Roboto_400.woff2") format("woff2"), url("../fonts/Roboto_400.svg#Roboto") format("svg"), url("../fonts/Roboto_400.ttf") format("truetype"); +} @font-face { font-family: 'Roboto'; font-style: normal; font-weight: 500; - src: url("../fonts/Roboto_500.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_500.woff") format("woff"), url("../fonts/Roboto_500.woff2") format("woff2"), url("../fonts/Roboto_500.svg#Roboto") format("svg"), url("../fonts/Roboto_500.ttf") format("truetype"); } + src: url("../fonts/Roboto_500.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_500.woff") format("woff"), url("../fonts/Roboto_500.woff2") format("woff2"), url("../fonts/Roboto_500.svg#Roboto") format("svg"), url("../fonts/Roboto_500.ttf") format("truetype"); +} @font-face { font-family: 'Roboto Mono'; font-style: normal; font-weight: 300; - src: url("../fonts/Roboto_Mono_300.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_Mono_300.woff") format("woff"), url("../fonts/Roboto_Mono_300.woff2") format("woff2"), url("../fonts/Roboto_Mono_300.svg#RobotoMono") format("svg"), url("../fonts/Roboto_Mono_300.ttf") format("truetype"); } + src: url("../fonts/Roboto_Mono_300.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_Mono_300.woff") format("woff"), url("../fonts/Roboto_Mono_300.woff2") format("woff2"), url("../fonts/Roboto_Mono_300.svg#RobotoMono") format("svg"), url("../fonts/Roboto_Mono_300.ttf") format("truetype"); +} @font-face { font-family: 'Roboto Mono'; font-style: normal; font-weight: 400; - src: url("../fonts/Roboto_Mono_400.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_Mono_400.woff") format("woff"), url("../fonts/Roboto_Mono_400.woff2") format("woff2"), url("../fonts/Roboto_Mono_400.svg#RobotoMono") format("svg"), url("../fonts/Roboto_Mono_400.ttf") format("truetype"); } + src: url("../fonts/Roboto_Mono_400.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_Mono_400.woff") format("woff"), url("../fonts/Roboto_Mono_400.woff2") format("woff2"), url("../fonts/Roboto_Mono_400.svg#RobotoMono") format("svg"), url("../fonts/Roboto_Mono_400.ttf") format("truetype"); +} @font-face { font-family: 'Roboto Mono'; font-style: normal; font-weight: 500; - src: local("Roboto-Mono Medium"), local("RobotoMono-Medium"), url("../fonts/Roboto_Mono_500.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_Mono_500.woff") format("woff"), url("../fonts/Roboto_Mono_500.woff2") format("woff2"), url("../fonts/Roboto_Mono_500.svg#RobotoMono") format("svg"), url("../fonts/Roboto_Mono_500.ttf") format("truetype"); } + src: local("Roboto-Mono Medium"), local("RobotoMono-Medium"), url("../fonts/Roboto_Mono_500.eot?#iefix") format("embedded-opentype"), url("../fonts/Roboto_Mono_500.woff") format("woff"), url("../fonts/Roboto_Mono_500.woff2") format("woff2"), url("../fonts/Roboto_Mono_500.svg#RobotoMono") format("svg"), url("../fonts/Roboto_Mono_500.ttf") format("truetype"); +} diff --git a/site/assets/js/app/site.js b/site/assets/js/app/site.js index 04c0c495..12bee3ec 100644 --- a/site/assets/js/app/site.js +++ b/site/assets/js/app/site.js @@ -7,6 +7,8 @@ const isDesktop = !isMobile const htmlClassList = document.body.parentNode.classList htmlClassList.add(isDesktop ? 'desktop' : 'mobile') +function toArray(A) { return Array.prototype.slice.apply(A) } + var site = (function(){ var site = {} site.init = function(){ @@ -17,6 +19,11 @@ var site = (function(){ if (paras.length) { paras[0].classList.add('first_paragraph') } + toArray(document.querySelectorAll('header .links a')).forEach(tag => { + if (window.location.href.match(tag.href)) { + tag.classList.add('active') + } + }) } site.init() })() \ No newline at end of file diff --git a/site/public/about/credits/index.html b/site/public/about/credits/index.html index 9fec7e64..f1a28b0e 100644 --- a/site/public/about/credits/index.html +++ b/site/public/about/credits/index.html @@ -18,10 +18,10 @@ The Darkside of Datasets
diff --git a/site/public/about/disclaimer/index.html b/site/public/about/disclaimer/index.html index 553bf084..5df5d656 100644 --- a/site/public/about/disclaimer/index.html +++ b/site/public/about/disclaimer/index.html @@ -18,10 +18,10 @@ The Darkside of Datasets
diff --git a/site/public/about/index.html b/site/public/about/index.html index 363e8fc0..f1a28b0e 100644 --- a/site/public/about/index.html +++ b/site/public/about/index.html @@ -18,15 +18,16 @@ The Darkside of Datasets
-
alt text
alt text
    +

    Credits

    +
    alt text
    alt text
    • MegaPixels by Adam Harvey
    • Made with support from Mozilla
    • Site developed by Jules Laplace
    • diff --git a/site/public/about/press/index.html b/site/public/about/press/index.html index aa6e5e13..e5763036 100644 --- a/site/public/about/press/index.html +++ b/site/public/about/press/index.html @@ -18,10 +18,10 @@ The Darkside of Datasets
      diff --git a/site/public/about/privacy/index.html b/site/public/about/privacy/index.html index d1ec1c77..7ad9564f 100644 --- a/site/public/about/privacy/index.html +++ b/site/public/about/privacy/index.html @@ -18,10 +18,10 @@ The Darkside of Datasets
      @@ -84,7 +84,6 @@ megapixels.cc will take all steps reasonably necessary to ensure that your data

      Disclosure Of Data

      Legal Requirements

      megapixels.cc may disclose your Personal Data in the good faith belief that such action is necessary to:

      -

        • To comply with a legal obligation
        • To protect and defend the rights or property of megapixels.cc
        • diff --git a/site/public/about/style/index.html b/site/public/about/style/index.html index 24e6f5be..eea861ac 100644 --- a/site/public/about/style/index.html +++ b/site/public/about/style/index.html @@ -18,15 +18,17 @@ The Darkside of Datasets
          -
          Alt text here
          Alt text here

          Header 2

          +

          Style Examples

          +
          Alt text here
          Alt text here

          Header 1

          +

          Header 2

          Header 3

          Header 4

          Header 5
          diff --git a/site/public/about/terms/index.html b/site/public/about/terms/index.html index 4b9f4445..db8b9e57 100644 --- a/site/public/about/terms/index.html +++ b/site/public/about/terms/index.html @@ -18,10 +18,10 @@ The Darkside of Datasets
          diff --git a/site/public/datasets/lfw/index.html b/site/public/datasets/lfw/index.html index a130c24e..76549d25 100644 --- a/site/public/datasets/lfw/index.html +++ b/site/public/datasets/lfw/index.html @@ -18,28 +18,22 @@ The Darkside of Datasets
          -
            -
          • Created 2007
          • -
          • Images 13,233
          • -
          • People 5,749
          • -
          • Created From Yahoo News images
          • -
          • Analyzed and searchable
          • -
          -

          Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first dataset of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people downloaded from the Internet, otherwise referred to as “The Wild”.

          +

          Labeled Faces in The Wild

          +
          Created
          2007
          Images
          13,233
          People
          5,749
          Created From
          Yahoo News images
          Search available
          Searchable

          Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first dataset of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people downloaded from the Internet, otherwise referred to as “The Wild”.

          Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.
          Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.

          INTRO

          It began in 2002. Researchers at University of Massachusetts Amherst were developing algorithms for facial recognition and they needed more data. Between 2002-2004 they scraped Yahoo News for images of public figures. Two years later they cleaned up the dataset and repackaged it as Labeled Faces in the Wild (LFW).

          Since then the LFW dataset has become one of the most widely used datasets used for evaluating face recognition algorithms. The associated research paper “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” has been cited 996 times reaching 45 different countries throughout the world.

          The faces come from news stories and are mostly celebrities from the entertainment industry, politicians, and villains. It’s a sampling of current affairs and breaking news that has come to pass. The images, detached from their original context now server a new purpose: to train, evaluate, and improve facial recognition.

          As the most widely used facial recognition dataset, it can be said that each individual in LFW has, in a small way, contributed to the current state of the art in facial recognition surveillance. John Cusack, Julianne Moore, Barry Bonds, Osama bin Laden, and even Moby are amongst these biometric pillars, exemplar faces provided the visual dimensions of a new computer vision future.

          -
          From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset
          From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset

          In addition to commercial use as an evaluation tool, alll of the faces in LFW dataset are prepackaged into a popular machine learning code framework called scikit-learn.

          +
          From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset
          From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset

          In addition to commercial use as an evaluation tool, alll of the faces in LFW dataset are prepackaged into a popular machine learning code framework called scikit-learn.

          Usage

          #!/usr/bin/python
           from matplotlib import plt
          diff --git a/site/public/datasets/lfw/what/index.html b/site/public/datasets/lfw/what/index.html
          new file mode 100644
          index 00000000..52993a79
          --- /dev/null
          +++ b/site/public/datasets/lfw/what/index.html
          @@ -0,0 +1,141 @@
          +
          +
          +
          +  MegaPixels
          +  
          +  
          +  
          +  
          +  
          +  
          +  
          +
          +
          +  
          + + +
          MegaPixels
          + The Darkside of Datasets +
          + +
          +
          + +

          Labeled Faces in The Wild

          +
            +
          • Created 2007 (auto)
          • +
          • Images 13,233 (auto)
          • +
          • People 5,749 (auto)
          • +
          • Created From Yahoo News images (auto)
          • +
          • Analyzed and searchable (auto)
          • +
          +

          Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first facial recognition dataset [^lfw_names_faces] of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people that appeared on Yahoo News between 2002 - 2004.

          +
          Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.
          Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.

          INTRO

          +

          It began in 2002. Researchers at University of Massachusetts Amherst were developing algorithms for facial recognition and they needed more data. Between 2002-2004 they scraped Yahoo News for images of public figures. Two years later they cleaned up the dataset and repackaged it as Labeled Faces in the Wild (LFW).

          +

          Since then the LFW dataset has become one of the most widely used datasets used for evaluating face recognition algorithms. The associated research paper “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” has been cited 996 times reaching 45 different countries throughout the world.

          +

          The faces come from news stories and are mostly celebrities from the entertainment industry, politicians, and villains. It’s a sampling of current affairs and breaking news that has come to pass. The images, detached from their original context now server a new purpose: to train, evaluate, and improve facial recognition.

          +

          As the most widely used facial recognition dataset, it can be said that each individual in LFW has, in a small way, contributed to the current state of the art in facial recognition surveillance. John Cusack, Julianne Moore, Barry Bonds, Osama bin Laden, and even Moby are amongst these biometric pillars, exemplar faces provided the visual dimensions of a new computer vision future.

          +
          From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset
          From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset

          In addition to commercial use as an evaluation tool, all of the faces in LFW dataset are prepackaged into a popular machine learning code framework called scikit-learn.

          +

          Usage

          +
          #!/usr/bin/python
          +from matplotlib import plt
          +from sklearn.datasets import fetch_lfw_people
          +lfw_people = fetch_lfw_people()
          +lfw_person = lfw_people[0]
          +plt.imshow(lfw_person)
          +
          +

          Commercial Use

          +

          The LFW dataset is used by numerous companies for benchmarking algorithms and in some cases training. According to the benchmarking results page [^lfw_results] provided by the authors, over 2 dozen companies have contributed their benchmark results

          +
          load file: lfw_commercial_use.csv
          +name_display,company_url,example_url,country,description
          +
          + + + + + + + + + + + + + + + + + + + + + + + + +
          CompanyCountryIndustries
          AratekChinaBiometric sensors for telecom, civil identification, finance, education, POS, and transportation
          AratekChinaBiometric sensors for telecom, civil identification, finance, education, POS, and transportation
          AratekChinaBiometric sensors for telecom, civil identification, finance, education, POS, and transportation
          +

          Add 2-4 screenshots of companies mentioning LFW here

          +
          ReadSense
          ReadSense

          In benchmarking, companies use a dataset to evaluate their algorithms which are typically trained on other data. After training, researchers will use LFW as a benchmark to compare results with other algorithms.

          +

          For example, Baidu (est. net worth $13B) uses LFW to report results for their "Targeting Ultimate Accuracy: Face Recognition via Deep Embedding". According to the three Baidu researchers who produced the paper:

          +

          LFW has been the most popular evaluation benchmark for face recognition, and played a very important role in facilitating the face recognition society to improve algorithm. 1.

          +
          +

          Citations

          + + + + + + + + + + + + + + + + + + + + + + +
          TitleOrganizationCountryType
          3D-aided face recognition from videosUniversity of LyonFranceedu
          A Community Detection Approach to Cleaning Extremely Large Face DatabaseNational University of Defense Technology, ChinaChinaedu
          +

          Conclusion

          +

          The LFW face recognition training and evaluation dataset is a historically important face dataset as it was the first popular dataset to be created entirely from Internet images, paving the way for a global trend towards downloading anyone’s face from the Internet and adding it to a dataset. As will be evident with other datasets, LFW’s approach has now become the norm.

          +

          For all the 5,000 people in this datasets, their face is forever a part of facial recognition history. It would be impossible to remove anyone from the dataset because it is so ubiquitous. For their rest of the lives and forever after, these 5,000 people will continue to be used for training facial recognition surveillance.

          +

          Notes

          +

          According to BiometricUpdate.com2, LFW is "the most widely used evaluation set in the field of facial recognition, LFW attracts a few dozen teams from around the globe including Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong."

          +
          +
          +
          1. "Chinese tourist town uses face recognition as an entry pass". New Scientist. November 17, 2016. https://www.newscientist.com/article/2113176-chinese-tourist-town-uses-face-recognition-as-an-entry-pass/

          2. +
          3. "PING AN Tech facial recognition receives high score in latest LFW test results". https://www.biometricupdate.com/201702/ping-an-tech-facial-recognition-receives-high-score-in-latest-lfw-test-results

          4. +
          +
          +
          + +
          + + + + \ No newline at end of file diff --git a/site/public/datasets/vgg_faces2/index.html b/site/public/datasets/vgg_faces2/index.html index ee353047..95b5f7d7 100644 --- a/site/public/datasets/vgg_faces2/index.html +++ b/site/public/datasets/vgg_faces2/index.html @@ -18,23 +18,17 @@ The Darkside of Datasets
          -
            -
          • Created 2007
          • -
          • Images 13,233
          • -
          • People 5,749
          • -
          • Created From Yahoo News images
          • -
          • Search available Searchable
          • -
          -

          Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first dataset of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people downloaded from the Internet, otherwise referred to by researchers as “The Wild”.

          -
          Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.
          Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.

          INTRO

          +

          Labeled Faces in The Wild

          +
          Created
          2007
          Images
          13,233
          People
          5,749
          Created From
          Yahoo News images
          Search available
          [Searchable](#)

          Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first dataset of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people downloaded from the Internet, otherwise referred to by researchers as “The Wild”.

          +

          INTRO

          It began in 2002. Researchers at University of Massachusetts Amherst were developing algorithms for facial recognition and they needed more data. Between 2002-2004 they scraped Yahoo News for images of public figures. Two years later they cleaned up the dataset and repackaged it as Labeled Faces in the Wild (LFW).

          Since then the LFW dataset has become one of the most widely used datasets used for evaluating face recognition algorithms. The associated research paper “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” has been cited 996 times reaching 45 different countries throughout the world.

          The faces come from news stories and are mostly celebrities from the entertainment industry, politicians, and villains. It’s a sampling of current affairs and breaking news that has come to pass. The images, detached from their original context now server a new purpose: to train, evaluate, and improve facial recognition.

          diff --git a/site/public/index.html b/site/public/index.html index ea3dc24c..3ce22936 100644 --- a/site/public/index.html +++ b/site/public/index.html @@ -18,23 +18,23 @@ The Darkside of Datasets

          MegaPixels is an art project that explores the dark side of face recognition training data and the future of computer vision

          Made by Adam Harvey in partnership with Mozilla.
          -Read more about MegaPixels

          +Read more [about MegaPixels]

          [Explore Datasets] [Explore Algorithms]

          Facial Recognition Datasets

          Regular Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

          Summary

            -
          • 275 datasets found
          • +
          • 275 datsets found
          • Created between the years 1993-2018
          • Smallest dataset: 20 images
          • Largest dataset: 10,000,000 images
          • diff --git a/site/public/research/01_from_1_to_100_pixels/index.html b/site/public/research/01_from_1_to_100_pixels/index.html index 90f142e9..55e02c6c 100644 --- a/site/public/research/01_from_1_to_100_pixels/index.html +++ b/site/public/research/01_from_1_to_100_pixels/index.html @@ -18,10 +18,10 @@ The Darkside of Datasets
            @@ -74,13 +74,6 @@
          -
          -

          MORE RESEARCH

          -
          - -
          -
          -
          {{ content }} - -
          -

          MORE RESEARCH

          -
          - {% for blogpost in blogposts %} -
          - {{ blogpost.title }} - {{ blogpost.date }} -
          - {% endfor %} -
          -
          {% endblock %} -- cgit v1.2.3-70-g09d2 From 2d950c3fa3b8107f941a80f88127ab45e371d128 Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Thu, 6 Dec 2018 19:39:29 +0100 Subject: homepage css --- builder/README.md | 3 + builder/builder.py | 10 +- builder/parser.py | 4 +- site/assets/css/css.css | 93 ++++++++- site/assets/js/app/face.js | 213 +++++++++++++++++++++ site/assets/js/app/site.js | 3 +- site/public/about/credits/index.html | 1 + site/public/about/disclaimer/index.html | 1 + site/public/about/index.html | 1 + site/public/about/press/index.html | 1 + site/public/about/privacy/index.html | 1 + site/public/about/style/index.html | 3 +- site/public/about/terms/index.html | 1 + site/public/datasets/lfw/index.html | 160 +++++++++++++--- site/public/datasets/lfw/what/index.html | 1 + site/public/datasets/vgg_faces2/index.html | 1 + site/public/index.html | 42 ++-- .../research/01_from_1_to_100_pixels/index.html | 1 + site/public/research/index.html | 1 + site/templates/home.html | 32 ++++ site/templates/layout.html | 1 + 21 files changed, 524 insertions(+), 50 deletions(-) create mode 100644 site/assets/js/app/face.js create mode 100644 site/templates/home.html (limited to 'site/assets/js/app') diff --git a/builder/README.md b/builder/README.md index 1a6d3a1e..57c024cb 100644 --- a/builder/README.md +++ b/builder/README.md @@ -19,3 +19,6 @@ authors: Adam Harvey, Berit Gilma, Matthew Stender Static assets: `v1/site/about/assets/picture.jpg` Dataset assets: `v1/datasets/lfw/assets/picture.jpg` + +## Markup + diff --git a/builder/builder.py b/builder/builder.py index 0e404b88..620fc710 100644 --- a/builder/builder.py +++ b/builder/builder.py @@ -29,10 +29,12 @@ def build_page(fn, research_posts): output_path = public_path + metadata['url'] output_fn = os.path.join(output_path, "index.html") - is_research = False + skip_h1 = False - if 'research/' in fn: - is_research = True + if metadata['url'] == '/': + template = env.get_template("home.html") + elif 'research/' in fn: + skip_h1 = True template = env.get_template("research.html") else: template = env.get_template("page.html") @@ -47,7 +49,7 @@ def build_page(fn, research_posts): if 'index.md' in fn: s3.sync_directory(dirname, s3_dir, metadata) - content = parser.parse_markdown(sections, s3_path, skip_h1=is_research) + content = parser.parse_markdown(sections, s3_path, skip_h1=skip_h1) html = template.render( metadata=metadata, diff --git a/builder/parser.py b/builder/parser.py index da3044a0..dd3643bf 100644 --- a/builder/parser.py +++ b/builder/parser.py @@ -46,15 +46,13 @@ def format_metadata(section): def parse_markdown(sections, s3_path, skip_h1=False): groups = [] current_group = [] - seen_metadata = False for section in sections: if skip_h1 and section.startswith('# '): continue - elif section.startswith('+ ') and not seen_metadata: + elif section.startswith('+ '): groups.append(format_section(current_group, s3_path)) groups.append(format_metadata(section)) current_group = [] - seen_metadata = True elif '![wide:' in section: groups.append(format_section(current_group, s3_path)) groups.append(format_section([section], s3_path, type='wide')) diff --git a/site/assets/css/css.css b/site/assets/css/css.css index 843809a8..9ac35699 100644 --- a/site/assets/css/css.css +++ b/site/assets/css/css.css @@ -5,9 +5,11 @@ html, body { width: 100%; min-height: 100%; font-family: 'Roboto', sans-serif; - background: #191919; color: #b8b8b8; } +html { + background: #191919; +} /* header */ @@ -119,12 +121,14 @@ h1 { font-size: 24pt; margin: 75px 0 10px; padding: 0; + transition: color 0.2s cubic-bezier(0,0,1,1); } h2, h3 { margin: 0 0 20px 0; padding: 0; font-size: 11pt; font-weight: 500; + transition: color 0.2s cubic-bezier(0,0,1,1); } th, .gray, h2, h3 { @@ -281,6 +285,9 @@ section.wide .image { max-width: 620px; margin: 10px auto 0 auto; } + +/* blog index */ + .research_index { margin-top: 40px; } @@ -289,10 +296,88 @@ section.wide .image { } .research_index h1 { margin-top: 20px; + text-decoration: underline; +} +.desktop .research_index section:hover h1 { + color: #fff; +} +.research_index section:hover h2 { + color: #ddd; } -/* blogpost index */ +/* home page */ -.blogposts div { - margin-bottom: 5px; +.hero { + position: relative; + width: 100%; + max-width: 1200px; + height: 50vw; + max-height: 70vh; + display: flex; + align-items: center; + margin: 0 auto; +} +#face_container { + pointer-events: none; + position: absolute; + width: 50vw; + height: 50vw; + max-height: 70vh; + top: 0; + right: 0; + z-index: -1; + text-align: center; +} +.currentFace { + position: absolute; + bottom: 50px; + width: 100%; + left: 0; + text-align: center; +} +.intro { + max-width: 640px; + padding: 75px 0 75px 10px; + z-index: 1; +} +.intro .headline { + font-family: 'Roboto Mono', monospace; + font-size: 16pt; +} +.intro .buttons { + margin: 40px 0; +} +.intro button { + font-family: 'Roboto', sans-serif; + padding: 8px 12px; + border-radius: 6px; + border: 1px solid transparent; + cursor: pointer; + font-size: 11pt; + margin-right: 10px; + transition: color 0.1s cubic-bezier(0,0,1,1), background-color 0.1s cubic-bezier(0,0,1,1); +} +.intro button.normal { + background: #191919; + border-color: #444; + color: #ddd; +} +.intro button.important { + background: #444; + border-color: #444; + color: #ddd; +} +.desktop .intro button:hover { + background: #666; + border-color: #666; + color: #fff; +} +.intro .under { + color: #888; +} +.intro .under a { + color: #bbb; +} +.desktop .intro .under a:hover { + color: #fff; } \ No newline at end of file diff --git a/site/assets/js/app/face.js b/site/assets/js/app/face.js new file mode 100644 index 00000000..e8bcd313 --- /dev/null +++ b/site/assets/js/app/face.js @@ -0,0 +1,213 @@ +var face = (function(){ + var container = document.querySelector("#face_container") + var camera, controls, scene, renderer + var mouse = new THREE.Vector2(0.5, 0.5) + var mouseTarget = new THREE.Vector2(0.5, 0.5) + var POINT_SCALE = 1.8 + var FACE_POINT_COUNT = 68 + var SWAP_TIME = 500 + var cubes = [], meshes = [] + var currentFace = document.querySelector('.currentFace') + var faceBuffer = (function () { + var a = new Array(FACE_POINT_COUNT) + for (let i = 0; i < FACE_POINT_COUNT; i++) { + a[i] = new THREE.Vector3() + } + return a + })() + var last_t = 0, start_t = 0 + var colors = [ + 0xff3333, + 0xff8833, + 0xffff33, + 0x338833, + 0x3388ff, + 0x3333ff, + 0x8833ff, + 0xff3388, + 0xffffff, + ] + var swapping = false, swap_count = 0, swapFrom, swapTo, face_names, faces + init() + + function init() { + fetch("/assets/data/3dlm_0_10.json") + .then(req => req.json()) + .then(data => { + face_names = Object.keys(data) + faces = face_names.map(name => recenter(data[name])) + setup() + build(faces[0]) + updateFace(faces[0]) + setCurrentFace(face_names[0]) + swapTo = faces[0] + animate() + }) + } + function setup() { + var w = window.innerWidth / 2 + var h = Math.min(window.innerWidth / 2, window.innerHeight * 0.7) + camera = new THREE.PerspectiveCamera(70, w/h, 1, 10000) + camera.position.x = 0 + camera.position.y = 0 + camera.position.z = 250 + + scene = new THREE.Scene() + scene.background = new THREE.Color(0x191919) + + renderer = new THREE.WebGLRenderer({ antialias: true }) + renderer.setPixelRatio(window.devicePixelRatio) + renderer.setSize(w, h) + container.appendChild(renderer.domElement) + document.body.addEventListener('mousemove', onMouseMove) + // renderer.domElement.addEventListener('mousedown', swap) + setInterval(swap, 5000) + } + function build(points) { + var matrix = new THREE.Matrix4() + var quaternion = new THREE.Quaternion() + + for (var i = 0; i < FACE_POINT_COUNT; i++) { + var p = points[i] + var geometry = new THREE.BoxBufferGeometry() + var position = new THREE.Vector3(p[0], p[1], p[2]) + var rotation = new THREE.Euler() + var scale = new THREE.Vector3() + var color = new THREE.Color() + scale.x = scale.y = scale.z = POINT_SCALE + quaternion.setFromEuler(rotation, false) + matrix.compose(position, quaternion, scale) + geometry.applyMatrix(matrix) + material = new THREE.MeshBasicMaterial({ color: color.setHex(0xffffff) }) + cube = new THREE.Mesh(geometry, material) + scene.add(cube) + cubes.push(cube) + } + + meshes = getLineGeometry(points).map((geometry, i) => { + var color = new THREE.Color() + var material = new MeshLineMaterial({ + color: color.setHex(colors[i % colors.length]), + }) + var line = new MeshLine() + line.setGeometry(geometry, _ => 1.5) + var mesh = new THREE.Mesh(line.geometry, material) + mesh.geometry.dynamic = true + scene.add(mesh) + return [line, mesh] + }) + } + function lerpPoints(n, A, B, C) { + for (let i = 0, len = A.length; i < len; i++) { + lerpPoint(n, A[i], B[i], C[i]) + } + } + function lerpPoint(n, A, B, C) { + C.x = lerp(n, A.x, B.x) + C.y = lerp(n, A.y, B.y) + C.z = lerp(n, A.z, B.z) + } + function lerp(n, a, b) { + return (b-a) * n + a + } + function swap(){ + if (swapping) return + start_t = last_t + swapping = true + swap_count = (swap_count + 1) % faces.length + swapFrom = swapTo + swapTo = faces[swap_count] + setCurrentFace(face_names[swap_count]) + } + function setCurrentFace(name) { + name = name.replace('.png', '').split('_').filter(s => !s.match(/\d+/)).join(' ') + currentFace.innerHTML = name + } + function update_swap(t){ + var n = (t - start_t) / SWAP_TIME + if (n > 1) { + swapping = false + n = 1 + } + lerpPoints(n, swapFrom, swapTo, faceBuffer) + updateFace(faceBuffer) + } + function updateFace(points) { + updateCubeGeometry(points) + updateLineGeometry(points) + } + function updateCubeGeometry(points) { + cubes.forEach((cube, i) => { + const p = points[i] + cube.position.set(p.x, p.y, p.z) + }) + } + function updateLineGeometry(points) { + getLineGeometry(points).map((geometry, i) => { + var [line, mesh] = meshes[i] + line.setGeometry(geometry, _ => 1.5) + mesh.geometry.vertices = line.geometry.vertices + mesh.geometry.verticesNeedUpdate = true + }) + } + function getLineGeometry(points) { + return [ + points.slice(0, 17), + points.slice(17, 22), + points.slice(22, 27), + points.slice(27, 31), + points.slice(31, 36), + points.slice(36, 42), + points.slice(42, 48), + points.slice(48) + ].map((a, i) => { + var geometry = new THREE.Geometry() + a.forEach(p => geometry.vertices.push(p)) + if (i > 4) { + geometry.vertices.push(a[0]) + } + return geometry + }) + } + function getBounds(obj) { + return obj.reduce((a, p) => { + return [ + Math.min(a[0], p[0]), + Math.max(a[1], p[0]), + Math.min(a[2], p[1]), + Math.max(a[3], p[1]), + Math.min(a[4], p[2]), + Math.max(a[5], p[2]), + ] + }, [Infinity, -Infinity, Infinity, -Infinity, Infinity, -Infinity]) + } + function recenter(obj) { + const bounds = getBounds(obj) + const x_width = (bounds[1] - bounds[0]) / 2 + const y_width = (bounds[3] - bounds[2]) / -3 + const z_width = (bounds[5] - bounds[4]) / 2 + return obj.map(p => { + p[0] = p[0] - bounds[0] - x_width + p[1] = -p[1] + bounds[1] + y_width + p[2] = p[2] - bounds[2] + z_width + return new THREE.Vector3(p[0], p[1], p[2]) + }) + } + // + function onMouseMove(e) { + mouse.x = e.clientX / window.innerWidth + mouse.y = e.clientY / window.innerHeight + } + function animate(t) { + requestAnimationFrame(animate) + if (swapping) update_swap(t) + renderer.render(scene, camera) + scene.rotation.y += 0.01 * Math.PI + mouseTarget.x += (mouse.x - mouseTarget.x) * 0.1 + mouseTarget.y += (mouse.y - mouseTarget.y) * 0.1 + scene.rotation.x = (mouseTarget.y - 0.5) * Math.PI / 2 + // scene.rotation.y = (mouseTarget.x - 0.5) * Math.PI + scene.rotation.y += 0.01 + last_t = t + } +})() diff --git a/site/assets/js/app/site.js b/site/assets/js/app/site.js index 12bee3ec..eb6886c2 100644 --- a/site/assets/js/app/site.js +++ b/site/assets/js/app/site.js @@ -7,7 +7,8 @@ const isDesktop = !isMobile const htmlClassList = document.body.parentNode.classList htmlClassList.add(isDesktop ? 'desktop' : 'mobile') -function toArray(A) { return Array.prototype.slice.apply(A) } +function toArray(a) { return Array.prototype.slice.apply(a) } +function choice(a) { return a[Math.floor(Math.random()*a.length)]} var site = (function(){ var site = {} diff --git a/site/public/about/credits/index.html b/site/public/about/credits/index.html index f1a28b0e..65bc7ac4 100644 --- a/site/public/about/credits/index.html +++ b/site/public/about/credits/index.html @@ -52,5 +52,6 @@
          + \ No newline at end of file diff --git a/site/public/about/disclaimer/index.html b/site/public/about/disclaimer/index.html index 5df5d656..b0215bde 100644 --- a/site/public/about/disclaimer/index.html +++ b/site/public/about/disclaimer/index.html @@ -52,5 +52,6 @@
          + \ No newline at end of file diff --git a/site/public/about/index.html b/site/public/about/index.html index f1a28b0e..65bc7ac4 100644 --- a/site/public/about/index.html +++ b/site/public/about/index.html @@ -52,5 +52,6 @@
          + \ No newline at end of file diff --git a/site/public/about/press/index.html b/site/public/about/press/index.html index e5763036..09c89165 100644 --- a/site/public/about/press/index.html +++ b/site/public/about/press/index.html @@ -50,5 +50,6 @@
          + \ No newline at end of file diff --git a/site/public/about/privacy/index.html b/site/public/about/privacy/index.html index 7ad9564f..5675f072 100644 --- a/site/public/about/privacy/index.html +++ b/site/public/about/privacy/index.html @@ -129,5 +129,6 @@ You are advised to review this Privacy Policy periodically for any changes. Chan
      + \ No newline at end of file diff --git a/site/public/about/style/index.html b/site/public/about/style/index.html index eea861ac..f2c0d4b8 100644 --- a/site/public/about/style/index.html +++ b/site/public/about/style/index.html @@ -27,7 +27,7 @@

      Style Examples

      -
      Alt text here
      Alt text here

      Header 1

      +
      Alt text here
      Alt text here
      Date
      17-Jan-2019
      Numbers
      17
      Identities
      12,139
      But also
      This is a test of the stylesheet

      Header 1

      Header 2

      Header 3

      Header 4

      @@ -85,5 +85,6 @@ But let's throw in a <b>tag</b>.
      + \ No newline at end of file diff --git a/site/public/about/terms/index.html b/site/public/about/terms/index.html index db8b9e57..078c339f 100644 --- a/site/public/about/terms/index.html +++ b/site/public/about/terms/index.html @@ -64,5 +64,6 @@
      + \ No newline at end of file diff --git a/site/public/datasets/lfw/index.html b/site/public/datasets/lfw/index.html index 76549d25..39052b44 100644 --- a/site/public/datasets/lfw/index.html +++ b/site/public/datasets/lfw/index.html @@ -27,23 +27,22 @@

      Labeled Faces in The Wild

      -
      Created
      2007
      Images
      13,233
      People
      5,749
      Created From
      Yahoo News images
      Search available
      Searchable

      Labeled Faces in The Wild is amongst the most widely used facial recognition training datasets in the world and is the first dataset of its kind to be created entirely from Internet photos. It includes 13,233 images of 5,749 people downloaded from the Internet, otherwise referred to as “The Wild”.

      -
      Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.
      Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.

      INTRO

      +
      Created
      2007
      Images
      13,233
      People
      5,749
      Created From
      Yahoo News images
      Search available
      Searchable

      Labeled Faces in The Wild (LFW) is amongst the most widely used facial recognition training datasets in the world and is the first of its kind to be created entirely from images that were posted online. The LFW dataset includes 13,233 images of 5,749 people that were collected between 2002-2004. Use the tools below to check if you were included in this dataset or scroll down to read the analysis.

      +

      {INSERT IMAGE SEARCH MODULE}

      +

      {INSERT TEXT SEARCH MODULE}

      +
      Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.
      Eight out of 5,749 people in the Labeled Faces in the Wild dataset. The face recognition training dataset is created entirely from photos downloaded from the Internet.

      INTRO

      It began in 2002. Researchers at University of Massachusetts Amherst were developing algorithms for facial recognition and they needed more data. Between 2002-2004 they scraped Yahoo News for images of public figures. Two years later they cleaned up the dataset and repackaged it as Labeled Faces in the Wild (LFW).

      Since then the LFW dataset has become one of the most widely used datasets used for evaluating face recognition algorithms. The associated research paper “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” has been cited 996 times reaching 45 different countries throughout the world.

      The faces come from news stories and are mostly celebrities from the entertainment industry, politicians, and villains. It’s a sampling of current affairs and breaking news that has come to pass. The images, detached from their original context now server a new purpose: to train, evaluate, and improve facial recognition.

      As the most widely used facial recognition dataset, it can be said that each individual in LFW has, in a small way, contributed to the current state of the art in facial recognition surveillance. John Cusack, Julianne Moore, Barry Bonds, Osama bin Laden, and even Moby are amongst these biometric pillars, exemplar faces provided the visual dimensions of a new computer vision future.

      -
      From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset
      From Aaron Eckhart to Zydrunas Ilgauskas. A small sampling of the LFW dataset

      In addition to commercial use as an evaluation tool, alll of the faces in LFW dataset are prepackaged into a popular machine learning code framework called scikit-learn.

      -

      Usage

      -
      #!/usr/bin/python
      -from matplotlib import plt
      -from sklearn.datasets import fetch_lfw_people
      -lfw_people = fetch_lfw_people()
      -lfw_person = lfw_people[0]
      -plt.imshow(lfw_person)
      -
      +
      The entire LFW dataset cropped to facial regions
      The entire LFW dataset cropped to facial regions

      In addition to commercial use as an evaluation tool, alll of the faces in LFW dataset are prepackaged into a popular machine learning code framework called scikit-learn.

      +

      Facts

      +

      The person with the most images is: +The person with the least images is:

      Commercial Use

      -

      The LFW dataset is used by numerous companies for benchmarking algorithms and in some cases training. According to the benchmarking results page [^lfw_results] provided by the authors, over 2 dozen companies have contributed their benchmark results

      +

      The LFW dataset is used by numerous companies for benchmarking algorithms and in some cases training. According to the benchmarking results page [^lfw_results] provided by the authors, over 2 dozen companies have contributed their benchmark results.

      +

      According to BiometricUpdate.com [^lfw_pingan], LFW is "the most widely used evaluation set in the field of facial recognition, LFW attracts a few dozen teams from around the globe including Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong."

      +

      According to researchers at the Baidu Research – Institute of Deep Learning "LFW has been the most popular evaluation benchmark for face recognition, and played a very important role in facilitating the face recognition society to improve algorithm. [^lfw_baidu]."

      load file: lfw_commercial_use.csv
       name_display,company_url,example_url,country,description
       
      @@ -73,11 +72,24 @@ name_display,company_url,example_url,country,description

      Add 2-4 screenshots of companies mentioning LFW here

      -
      ReadSense
      ReadSense

      In benchmarking, companies use a dataset to evaluate their algorithms which are typically trained on other data. After training, researchers will use LFW as a benchmark to compare results with other algorithms.

      +
       "PING AN Tech facial recognition receives high score in latest LFW test results"
      "PING AN Tech facial recognition receives high score in latest LFW test results"
      +
       "Face Recognition Performance in LFW benchmark"
      "Face Recognition Performance in LFW benchmark"
      +
       "The 1st place in face verification challenge, LFW"
      "The 1st place in face verification challenge, LFW"

      In benchmarking, companies use a dataset to evaluate their algorithms which are typically trained on other data. After training, researchers will use LFW as a benchmark to compare results with other algorithms.

      For example, Baidu (est. net worth $13B) uses LFW to report results for their "Targeting Ultimate Accuracy: Face Recognition via Deep Embedding". According to the three Baidu researchers who produced the paper:

      -

      LFW has been the most popular evaluation benchmark for face recognition, and played a very important role in facilitating the face recognition society to improve algorithm. 1.

      -

      Citations

      +

      Overall, LFW has at least 456 citations from 123 countries. Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo. Nemo enim ipsam voluptatem, quia voluptas sit, aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos.

      +

      Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo. Nemo enim ipsam voluptatem, quia voluptas sit, aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos.

      +
      Distribution of citations per year per country for the top 5 countries with citations for the LFW Dataset
      Distribution of citations per year per country for the top 5 countries with citations for the LFW Dataset
      Geographic distributions of citations for the LFW Dataset
      Geographic distributions of citations for the LFW Dataset

      Conclusion

      +

      The LFW face recognition training and evaluation dataset is a historically important face dataset as it was the first popular dataset to be created entirely from Internet images, paving the way for a global trend towards downloading anyone’s face from the Internet and adding it to a dataset. As will be evident with other datasets, LFW’s approach has now become the norm.

      +

      For all the 5,000 people in this datasets, their face is forever a part of facial recognition history. It would be impossible to remove anyone from the dataset because it is so ubiquitous. For their rest of the lives and forever after, these 5,000 people will continue to be used for training facial recognition surveillance.

      +

      Right to Removal

      +

      If you are affected by disclosure of your identity in this dataset please do contact the authors, many state that they are willing to remove images upon request. The authors of the LFW can be reached from the emails posted in their paper:

      +

      You can use the following message to request removal from the dataset:

      +

      Dear [researcher name],

      +

      I am writing to you about the "LFW Dataset". Recently I have discovered that your dataset includes my identity and no longer wish to be included in your dataset

      +

      MegaPixels is an educational art project developed for academic purposes. In no way does this project aim to villify the researchers who produced the datasets. The aim of this project is to encourage discourse around ethics and consent in artificial intelligence by providing information about these datasets that is otherwise difficult to obtain or inaccessible to other researchers.

      +

      Supplementary Data

      +

      Sed ut perspiciatis, unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam eaque ipsa, quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt, explicabo. Nemo enim ipsam voluptatem, quia voluptas sit, aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos.

      @@ -99,18 +111,119 @@ name_display,company_url,example_url,country,description + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      TitleChina edu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      3D-aided face recognition from videosUniversity of LyonFranceedu
      -

      Conclusion

      -

      The LFW face recognition training and evaluation dataset is a historically important face dataset as it was the first popular dataset to be created entirely from Internet images, paving the way for a global trend towards downloading anyone’s face from the Internet and adding it to a dataset. As will be evident with other datasets, LFW’s approach has now become the norm.

      -

      For all the 5,000 people in this datasets, their face is forever a part of facial recognition history. It would be impossible to remove anyone from the dataset because it is so ubiquitous. For their rest of the lives and forever after, these 5,000 people will continue to be used for training facial recognition surveillance.

      -

      Notes

      -

      According to BiometricUpdate.com2, LFW is "the most widely used evaluation set in the field of facial recognition, LFW attracts a few dozen teams from around the globe including Google, Facebook, Microsoft Research Asia, Baidu, Tencent, SenseTime, Face++ and Chinese University of Hong Kong."

      +

      Code

      +
      #!/usr/bin/python
      +
      +import numpy as np
      +from sklearn.datasets import fetch_lfw_people
      +import imageio
      +import imutils
      +
      +# download LFW dataset (first run takes a while)
      +lfw_people = fetch_lfw_people(min_faces_per_person=1, resize=1, color=True, funneled=False)
      +
      +# introspect dataset
      +n_samples, h, w, c = lfw_people.images.shape
      +print('{:,} images at {}x{}'.format(n_samples, w, h))
      +cols, rows = (176, 76)
      +n_ims = cols * rows
      +
      +# build montages
      +im_scale = 0.5
      +ims = lfw_people.images[:n_ims
      +montages = imutils.build_montages(ims, (int(w*im_scale, int(h*im_scale)), (cols, rows))
      +montage = montages[0]
      +
      +# save full montage image
      +imageio.imwrite('lfw_montage_full.png', montage)
      +
      +# make a smaller version
      +montage_960 = imutils.resize(montage, width=960)
      +imageio.imwrite('lfw_montage_960.jpg', montage_960)
      +

      -
      1. "Chinese tourist town uses face recognition as an entry pass". New Scientist. November 17, 2016. https://www.newscientist.com/article/2113176-chinese-tourist-town-uses-face-recognition-as-an-entry-pass/

      2. -
      3. "PING AN Tech facial recognition receives high score in latest LFW test results". https://www.biometricupdate.com/201702/ping-an-tech-facial-recognition-receives-high-score-in-latest-lfw-test-results

      4. -
      +
        @@ -130,5 +243,6 @@ name_display,company_url,example_url,country,description
        + \ No newline at end of file diff --git a/site/public/datasets/lfw/what/index.html b/site/public/datasets/lfw/what/index.html index 52993a79..ceafb35a 100644 --- a/site/public/datasets/lfw/what/index.html +++ b/site/public/datasets/lfw/what/index.html @@ -137,5 +137,6 @@ name_display,company_url,example_url,country,description
    + \ No newline at end of file diff --git a/site/public/datasets/vgg_faces2/index.html b/site/public/datasets/vgg_faces2/index.html index 95b5f7d7..3f778f71 100644 --- a/site/public/datasets/vgg_faces2/index.html +++ b/site/public/datasets/vgg_faces2/index.html @@ -58,5 +58,6 @@
    + \ No newline at end of file diff --git a/site/public/index.html b/site/public/index.html index 3ce22936..51006b59 100644 --- a/site/public/index.html +++ b/site/public/index.html @@ -26,22 +26,31 @@
    -

    MegaPixels is an art project that explores the dark side of face recognition training data and the future of computer vision

    -

    Made by Adam Harvey in partnership with Mozilla.
    -Read more [about MegaPixels]

    -

    [Explore Datasets] [Explore Algorithms]

    -

    Facial Recognition Datasets

    +
    +
    +
    +
    +
    +
    + MegaPixels is an art project that explores the dark side of face recognition and the future of computer vision. +
    + + + +
    + Made by Adam Harvey in partnership with Mozilla.
    + Read more about MegaPixels +
    +
    +
    + +

    Facial Recognition Datasets

    Regular Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

    Summary

    -
      -
    • 275 datsets found
    • -
    • Created between the years 1993-2018
    • -
    • Smallest dataset: 20 images
    • -
    • Largest dataset: 10,000,000 images
    • -
    • Highest resolution faces: 450x500 (Unconstrained College Students)
    • -
    • Lowest resolution faces: 16x20 pixels (QMUL SurvFace)
    • -
    -
    +
    Found
    275 datasets
    Created between
    1993-2018
    Smallest dataset
    20 images
    Largest dataset
    10,000,000 images
    Highest resolution faces
    450x500 (Unconstrained College Students)
    Lowest resolution faces
    16x20 pixels (QMUL SurvFace)
    +
    @@ -59,5 +68,10 @@ Read more [about MegaPixels]

    + + + + + \ No newline at end of file diff --git a/site/public/research/01_from_1_to_100_pixels/index.html b/site/public/research/01_from_1_to_100_pixels/index.html index 55e02c6c..b4c85d00 100644 --- a/site/public/research/01_from_1_to_100_pixels/index.html +++ b/site/public/research/01_from_1_to_100_pixels/index.html @@ -90,5 +90,6 @@ + \ No newline at end of file diff --git a/site/public/research/index.html b/site/public/research/index.html index 1f61dadf..cf9546e1 100644 --- a/site/public/research/index.html +++ b/site/public/research/index.html @@ -46,5 +46,6 @@ + \ No newline at end of file diff --git a/site/templates/home.html b/site/templates/home.html new file mode 100644 index 00000000..436c1ddf --- /dev/null +++ b/site/templates/home.html @@ -0,0 +1,32 @@ +{% extends 'layout.html' %} + +{% block content %} +
    +
    +
    +
    +
    +
    + MegaPixels is an art project that explores the dark side of face recognition and the future of computer vision. +
    + + + +
    + Made by Adam Harvey in partnership with Mozilla.
    + Read more about MegaPixels +
    +
    +
    + + {{ content }} + +{% endblock %} + +{% block scripts %} + + + +{% endblock %} diff --git a/site/templates/layout.html b/site/templates/layout.html index 7558163e..605f9788 100644 --- a/site/templates/layout.html +++ b/site/templates/layout.html @@ -42,5 +42,6 @@ +{% block scripts %}{% endblock %} \ No newline at end of file -- cgit v1.2.3-70-g09d2 From 9d0c59efe26ac3607900ff1685eafe5572b06400 Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Fri, 7 Dec 2018 18:19:03 +0100 Subject: dont sleep --- scraper/s2-raw-papers.py | 4 ++-- site/assets/js/app/face.js | 14 ++++++++++++++ site/templates/home.html | 1 + 3 files changed, 17 insertions(+), 2 deletions(-) (limited to 'site/assets/js/app') diff --git a/scraper/s2-raw-papers.py b/scraper/s2-raw-papers.py index 2323ec63..089055da 100644 --- a/scraper/s2-raw-papers.py +++ b/scraper/s2-raw-papers.py @@ -29,10 +29,10 @@ def fetch_raw_paper(paper_id): paper = s2.raw_paper(paper_id) if paper is None: print("Got empty paper?? {}".format(paper_id)) - time.sleep(random.randint(5, 10)) + # time.sleep(random.randint(5, 10)) return None write_json(paper_fn, paper) - time.sleep(random.randint(5, 10)) + # time.sleep(random.randint(5, 10)) return paper def make_raw_paper_path(paper_id): diff --git a/site/assets/js/app/face.js b/site/assets/js/app/face.js index e8bcd313..bdaa0313 100644 --- a/site/assets/js/app/face.js +++ b/site/assets/js/app/face.js @@ -61,6 +61,20 @@ var face = (function(){ container.appendChild(renderer.domElement) document.body.addEventListener('mousemove', onMouseMove) // renderer.domElement.addEventListener('mousedown', swap) + // oktween.add({ + // obj: el.style, + // units: "px", + // from: { left: 0 }, + // to: { left: 100 }, + // duration: 1000, + // easing: oktween.easing.circ_out, + // update: function(obj){ + // console.log(obj.left) + // } + // finished: function(){ + // console.log("done") + // } + // }) setInterval(swap, 5000) } function build(points) { diff --git a/site/templates/home.html b/site/templates/home.html index 436c1ddf..59f8cf76 100644 --- a/site/templates/home.html +++ b/site/templates/home.html @@ -28,5 +28,6 @@ {% block scripts %} + {% endblock %} -- cgit v1.2.3-70-g09d2