From 994d74feae29f2577bc04e10dd4bafbfb3dc8e83 Mon Sep 17 00:00:00 2001 From: adamhrv Date: Tue, 18 Dec 2018 01:15:36 +0100 Subject: set jitter 25 --- megapixels/app/settings/types.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'megapixels/app/settings') diff --git a/megapixels/app/settings/types.py b/megapixels/app/settings/types.py index 754be618..ee6f8de5 100644 --- a/megapixels/app/settings/types.py +++ b/megapixels/app/settings/types.py @@ -45,7 +45,8 @@ class LogLevel(Enum): # -------------------------------------------------------------------- class Metadata(Enum): - IDENTITY, FILE_RECORD, FACE_VECTOR, FACE_POSE, FACE_ROI = range(5) + IDENTITY, FILE_RECORD, FACE_VECTOR, FACE_POSE, FACE_ROI, FACE_LANDMARKS_68, \ + FACE_LANDMARKS_3D = range(7) class Dataset(Enum): LFW, VGG_FACE2 = range(2) -- cgit v1.2.3-70-g09d2 From 5340bee951c18910fd764241945f1f136b5a22b4 Mon Sep 17 00:00:00 2001 From: adamhrv Date: Sun, 23 Dec 2018 01:24:24 +0100 Subject: fixing face roi --- megapixels/app/settings/types.py | 2 +- megapixels/commands/cv/face_roi.py | 4 ++-- megapixels/commands/cv/face_vector.py | 2 +- megapixels/commands/datasets/records.py | 40 ++++++++++++++++++++------------- megapixels/commands/demo/face_search.py | 4 +++- 5 files changed, 31 insertions(+), 21 deletions(-) (limited to 'megapixels/app/settings') diff --git a/megapixels/app/settings/types.py b/megapixels/app/settings/types.py index ee6f8de5..0805c5bd 100644 --- a/megapixels/app/settings/types.py +++ b/megapixels/app/settings/types.py @@ -49,7 +49,7 @@ class Metadata(Enum): FACE_LANDMARKS_3D = range(7) class Dataset(Enum): - LFW, VGG_FACE2 = range(2) + LFW, VGG_FACE2, MSCELEB, UCCS, UMD_FACES = range(5) # --------------------------------------------------------------------- diff --git a/megapixels/commands/cv/face_roi.py b/megapixels/commands/cv/face_roi.py index d7248aee..a08566a8 100644 --- a/megapixels/commands/cv/face_roi.py +++ b/megapixels/commands/cv/face_roi.py @@ -115,7 +115,7 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, data = [] for df_record in tqdm(df_records.itertuples(), total=len(df_records)): - fp_im = data_store.face_image(str(df_record.subdir), str(df_record.fn), str(df_record.ext)) + fp_im = data_store.face(str(df_record.subdir), str(df_record.fn), str(df_record.ext)) im = cv.imread(fp_im) # filter out color or grayscale iamges @@ -149,10 +149,10 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, # debug display if opt_display and len(bboxes): - bbox_dim = bbox.to_dim(im.shape[:2][::-1]) # w,h im_md = im_utils.resize(im, width=min(1200, opt_size[0])) for bbox in bboxes: bbox_dim = bbox.to_dim(im_md.shape[:2][::-1]) + log.debug(f'bbox: {bbox_dim}') cv.rectangle(im_md, bbox_dim.pt_tl, bbox_dim.pt_br, (0,255,0), 3) cv.imshow('', im_md) while True: diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py index cd816f9f..7200d73b 100644 --- a/megapixels/commands/cv/face_vector.py +++ b/megapixels/commands/cv/face_vector.py @@ -115,7 +115,7 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, # padding=opt_padding not yet implemented in 19.16 but merged in master vec = facerec.vec(im, bbox_dim, jitters=opt_jitters) vec_str = ','.join([repr(x) for x in vec]) # convert to string for CSV - vecs.append( {'roi_index': roi_index, 'image_index': image_index, 'vec': vec_str}) + vecs.append( {'roi_index': roi_index, 'record_index': image_index, 'vec': vec_str}) # save date diff --git a/megapixels/commands/datasets/records.py b/megapixels/commands/datasets/records.py index 80de5040..b6ef618b 100644 --- a/megapixels/commands/datasets/records.py +++ b/megapixels/commands/datasets/records.py @@ -107,10 +107,12 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media, # convert data to dict data = [] + indentity_count = 0 for sha256, fp_im in zip(sha256s, fp_ims): fpp_im = Path(fp_im) subdir = str(fpp_im.parent.relative_to(fp_in)) + if opt_identity: subdirs = subdir.split('/') if not len(subdirs) > 0: @@ -124,7 +126,8 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media, elif opt_identity == 'subdir_tail': identity = subdirs[-1] # use last part of subdir path else: - identity = '' + identity = indentity_count # use incrementing number + indentity_count += 1 data.append({ 'subdir': subdir, @@ -135,22 +138,27 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dataset, opt_data_store, opt_dir_media, 'identity_key': identity }) - log.info(f'adding identity index using: "{opt_identity}". This may take a while...') - # convert dict to DataFrame df_records = pd.DataFrame.from_dict(data) - # sort based on identity_key - df_records = df_records.sort_values(by=['identity_key'], ascending=True) - # add new column for identity - df_records['identity_index'] = [-1] * len(df_records) - # populate the identity_index - df_records_identity_groups = df_records.groupby('identity_key') - # enumerate groups to create identity indices - for identity_index, df_records_identity_group_tuple in enumerate(df_records_identity_groups): - identity_key, df_records_identity_group = df_records_identity_group_tuple - for ds_record in df_records_identity_group.itertuples(): - df_records.at[ds_record.Index, 'identity_index'] = identity_index - # reset index after being sorted - df_records = df_records.reset_index(drop=True) + if opt_identity: + log.info(f'adding identity index using: "{opt_identity}". This may take a while...') + # convert dict to DataFrame + # sort based on identity_key + df_records = df_records.sort_values(by=['identity_key'], ascending=True) + # add new column for identity + df_records['identity_index'] = [-1] * len(df_records) + # populate the identity_index + df_records_identity_groups = df_records.groupby('identity_key') + # enumerate groups to create identity indices + for identity_index, df_records_identity_group_tuple in enumerate(df_records_identity_groups): + identity_key, df_records_identity_group = df_records_identity_group_tuple + for ds_record in df_records_identity_group.itertuples(): + df_records.at[ds_record.Index, 'identity_index'] = identity_index + # reset index after being sorted + df_records = df_records.reset_index(drop=True) + else: + # name everyone person 1, 2, 3... + pass + df_records.index.name = 'index' # reassign 'index' as primary key column # write to CSV file_utils.mkdirs(fp_out) diff --git a/megapixels/commands/demo/face_search.py b/megapixels/commands/demo/face_search.py index 34a25762..6e4bcdad 100644 --- a/megapixels/commands/demo/face_search.py +++ b/megapixels/commands/demo/face_search.py @@ -21,6 +21,8 @@ log = Logger.getLogger() required=True, show_default=True, help=click_utils.show_help(types.Dataset)) +@click.option('--results', 'opt_results', default=5, + help='Number of match results to display') @click.option('--gpu', 'opt_gpu', default=0, help='GPU index (use -1 for CPU') @click.pass_context @@ -73,7 +75,7 @@ def cli(ctx, opt_fp_in, opt_data_store, opt_dataset, opt_gpu): vec_query = recognition.vec(im_query, bbox) # find matches - image_records = dataset.find_matches(vec_query, n_results=5) + image_records = dataset.find_matches(vec_query, n_results=opt_results) # summary ims_match = [im_query] -- cgit v1.2.3-70-g09d2 From bff4e1c50349b0ba7d8e5fab6ce697c0b856f13f Mon Sep 17 00:00:00 2001 From: adamhrv Date: Fri, 4 Jan 2019 13:21:59 +0100 Subject: adding 3D landmarks... --- megapixels/app/processors/face_landmarks.py | 60 ---------------- megapixels/app/processors/face_landmarks_2d.py | 87 +++++++++++++++++++++++ megapixels/app/processors/face_landmarks_3d.py | 51 ++++++++++++-- megapixels/app/settings/types.py | 4 +- megapixels/commands/cv/face_landmark.py | 96 ++++++++++++++++++++++++++ megapixels/commands/cv/face_landmarks_3d.py | 96 -------------------------- megapixels/commands/cv/face_pose.py | 2 +- 7 files changed, 231 insertions(+), 165 deletions(-) delete mode 100644 megapixels/app/processors/face_landmarks.py create mode 100644 megapixels/app/processors/face_landmarks_2d.py create mode 100644 megapixels/commands/cv/face_landmark.py delete mode 100644 megapixels/commands/cv/face_landmarks_3d.py (limited to 'megapixels/app/settings') diff --git a/megapixels/app/processors/face_landmarks.py b/megapixels/app/processors/face_landmarks.py deleted file mode 100644 index dfcb9ee8..00000000 --- a/megapixels/app/processors/face_landmarks.py +++ /dev/null @@ -1,60 +0,0 @@ -import os -from os.path import join -from pathlib import Path - -import cv2 as cv -import numpy as np -import imutils -from app.utils import im_utils, logger_utils -from app.models.bbox import BBox -from app.settings import app_cfg as cfg -from app.settings import types -from app.models.bbox import BBox - -class LandmarksDLIB: - - def __init__(self): - # init dlib - import dlib - self.log = logger_utils.Logger.getLogger() - self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT) - - def landmarks(self, im, bbox): - # Draw high-confidence faces - dim = im.shape[:2][::-1] - bbox = bbox.to_dlib() - im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY) - landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()] - return landmarks - - -class LandmarksMTCNN: - - # https://github.com/ipazc/mtcnn - # pip install mtcnn - - dnn_size = (400, 400) - - def __init__(self, size=(400,400)): - from mtcnn.mtcnn import MTCNN - self.detector = MTCNN() - - def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None): - '''Detects face using MTCNN and returns (list) of BBox - :param im: (numpy.ndarray) image - :returns list of BBox - ''' - rois = [] - dnn_size = self.dnn_size if opt_size is None else opt_size - im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) - dim = im.shape[:2][::-1] - - # run MTCNN - dets = self.detector.detect_faces(im) - - for det in dets: - rect = det['box'] - keypoints = det['keypoints'] # not using here. see 'face_landmarks.py' - bbox = BBox.from_xywh_dim(*rect, dim) - rois.append(bbox) - return rois \ No newline at end of file diff --git a/megapixels/app/processors/face_landmarks_2d.py b/megapixels/app/processors/face_landmarks_2d.py new file mode 100644 index 00000000..e8ce93c1 --- /dev/null +++ b/megapixels/app/processors/face_landmarks_2d.py @@ -0,0 +1,87 @@ +import os +from os.path import join +from pathlib import Path + +import cv2 as cv +import numpy as np +import imutils +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types +from app.models.bbox import BBox + +class LandmarksFaceAlignment: + + # Estimates 2D facial landmarks + import face_alignment + + def __init__(self, gpu=0): + self.log = logger_utils.Logger.getLogger() + device = f'cuda:{gpu}' if gpu > -1 else 'cpu' + self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device, flip_input=True) + + def landmarks(self, im, as_type=str): + '''Calculates the 3D facial landmarks + :param im: (numpy.ndarray) image + :param as_type: (str) or (list) type to return data + ''' + preds = self.fa.get_landmarks(im) + # convert to comma separated ints + # storing data as "[1,2], [3,4]" is larger file size than storing as "1,2,3,4" + # storing a list object in Pandas seems to result in 30% larger CSV files + # TODO optimize this + preds_int = [list(map(int, x)) for x in preds[0]] # list of ints + if as_type is str: + return ','.join([','.join(list(map(str,[x,y]))) for x,y in preds_int]) + else: + return preds_int + + +class LandmarksDLIB: + + def __init__(self): + # init dlib + import dlib + self.log = logger_utils.Logger.getLogger() + self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT) + + def landmarks(self, im, bbox): + # Draw high-confidence faces + dim = im.shape[:2][::-1] + bbox = bbox.to_dlib() + im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY) + landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()] + return landmarks + + +class LandmarksMTCNN: + + # https://github.com/ipazc/mtcnn + # pip install mtcnn + + dnn_size = (400, 400) + + def __init__(self, size=(400,400)): + from mtcnn.mtcnn import MTCNN + self.detector = MTCNN() + + def landmarks(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None): + '''Detects face using MTCNN and returns (list) of BBox + :param im: (numpy.ndarray) image + :returns list of BBox + ''' + rois = [] + dnn_size = self.dnn_size if opt_size is None else opt_size + im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) + dim = im.shape[:2][::-1] + + # run MTCNN + dets = self.detector.detect_faces(im) + + for det in dets: + rect = det['box'] + keypoints = det['keypoints'] # not using here. see 'face_landmarks.py' + bbox = BBox.from_xywh_dim(*rect, dim) + rois.append(bbox) + return rois \ No newline at end of file diff --git a/megapixels/app/processors/face_landmarks_3d.py b/megapixels/app/processors/face_landmarks_3d.py index 28aff592..3663364c 100644 --- a/megapixels/app/processors/face_landmarks_3d.py +++ b/megapixels/app/processors/face_landmarks_3d.py @@ -13,24 +13,63 @@ from app.settings import app_cfg as cfg from app.settings import types +class FaceLandmarks2D: + + # Estimates 2D facial landmarks + import face_alignment + + def __init__(self, gpu=0): + self.log = logger_utils.Logger.getLogger() + device = f'cuda:{gpu}' if gpu > -1 else 'cpu' + self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device, flip_input=True) + + def landmarks(self, im, as_type=str): + '''Calculates the 3D facial landmarks + :param im: (numpy.ndarray) image + :param as_type: (str) or (list) type to return data + ''' + preds = self.fa.get_landmarks(im) + # convert to comma separated ints + # storing data as "[1,2], [3,4]" is larger file size than storing as "1,2,3,4" + # storing a list object in Pandas seems to result in 30% larger CSV files + # TODO optimize this + preds_int = [list(map(int, x)) for x in preds[0]] # list of ints + if as_type is str: + return ','.join([','.join(list(map(str,[x,y]))) for x,y in preds_int]) + else + return preds_int + class FaceLandmarks3D: # Estimates 3D facial landmarks import face_alignment - from skimage import io - def __init__(self): + def __init__(self, gpu=0): self.log = logger_utils.Logger.getLogger() - self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) + device = f'cuda:{gpu}' if gpu > -1 else 'cpu' + self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device=device, flip_input=False) - def landmarks(self, im): + def landmarks(self, im, as_type=str): + '''Calculates the 3D facial landmarks + :param im: (numpy.ndarray) image + :param as_type: (str) or (list) type to return data + ''' preds = self.fa.get_landmarks(im) - return preds + # convert to comma separated ints + # storing data as "[1,2], [3,4]" is larger file size than storing as "1,2,3,4" + # storing a list object in Pandas seems to result in 30% larger CSV files + # TODO optimize this + preds_int = [list(map(int, x)) for x in preds[0]] # list of ints + if as_type is str: + return ','.join([','.join(list(map(str,[x,y]))) for x,y in preds_int]) + else + return preds_int def draw(self, im): '''draws landmarks in 3d scene''' + # TODO ''' import face_alignment import numpy as np @@ -74,4 +113,4 @@ class FaceLandmarks3D: ax.set_xlim(ax.get_xlim()[::-1]) plt.show() ''' - return False \ No newline at end of file + return im \ No newline at end of file diff --git a/megapixels/app/settings/types.py b/megapixels/app/settings/types.py index 0805c5bd..c2e2caf7 100644 --- a/megapixels/app/settings/types.py +++ b/megapixels/app/settings/types.py @@ -45,8 +45,8 @@ class LogLevel(Enum): # -------------------------------------------------------------------- class Metadata(Enum): - IDENTITY, FILE_RECORD, FACE_VECTOR, FACE_POSE, FACE_ROI, FACE_LANDMARKS_68, \ - FACE_LANDMARKS_3D = range(7) + IDENTITY, FILE_RECORD, FACE_VECTOR, FACE_POSE, FACE_ROI, FACE_LANDMARKS_2D_68, \ + FACE_LANDMARKS_3D_68 = range(7) class Dataset(Enum): LFW, VGG_FACE2, MSCELEB, UCCS, UMD_FACES = range(5) diff --git a/megapixels/commands/cv/face_landmark.py b/megapixels/commands/cv/face_landmark.py new file mode 100644 index 00000000..03ef8fc2 --- /dev/null +++ b/megapixels/commands/cv/face_landmark.py @@ -0,0 +1,96 @@ +""" + +""" + +import click + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + +color_filters = {'color': 1, 'gray': 2, 'all': 3} + +@click.command() +@click.option('-i', '--input', 'opt_dirs_in', required=True, multiple=True, + help='Input directory') +@click.option('-o', '--output', 'opt_fp_out', required=True, + help='Output CSV') +@click.option('-e', '--ext', 'opt_ext', + default='jpg', type=click.Choice(['jpg', 'png']), + help='File glob ext') +@click.option('--size', 'opt_size', + type=(int, int), default=(300, 300), + help='Output image size') +@click.option('-g', '--gpu', 'opt_gpu', default=0, + help='GPU index') +@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), + help='Slice list of files') +@click.option('--recursive/--no-recursive', 'opt_recursive', is_flag=True, default=False, + help='Use glob recursion (slower)') +@click.option('-f', '--force', 'opt_force', is_flag=True, + help='Force overwrite file') +@click.pass_context +def cli(ctx, opt_dirs_in, opt_fp_out, opt_ext, opt_size, opt_gpu, opt_slice, + opt_recursive, opt_force): + """Converts face imges to 3D landmarks""" + + import sys + import os + from os.path import join + from pathlib import Path + from glob import glob + + from tqdm import tqdm + import numpy as np + import dlib # must keep a local reference for dlib + import cv2 as cv + import pandas as pd + from face_alignment import FaceAlignment, LandmarksType + from skimage import io + + from app.utils import logger_utils, file_utils + from app.processors import face_detector + + # ------------------------------------------------- + # init here + + + log = logger_utils.Logger.getLogger() + + if not opt_force and Path(opt_fp_out).exists(): + log.error('File exists. Use "-f / --force" to overwite') + return + + device = 'cuda' if opt_gpu > -1 else 'cpu' + fa = FaceAlignment(LandmarksType._3D, flip_input=False, device=device) + + # get list of files to process + fp_ims = [] + for opt_dir_in in opt_dirs_in: + if opt_recursive: + fp_glob = join(opt_dir_in, '**/*.{}'.format(opt_ext)) + fp_ims += glob(fp_glob, recursive=True) + else: + fp_glob = join(opt_dir_in, '*.{}'.format(opt_ext)) + fp_ims += glob(fp_glob) + log.debug(fp_glob) + + + if opt_slice: + fp_ims = fp_ims[opt_slice[0]:opt_slice[1]] + log.debug('processing {:,} files'.format(len(fp_ims))) + + + data = {} + + for fp_im in tqdm(fp_ims): + fpp_im = Path(fp_im) + im = io.imread(fp_im) + preds = fa.get_landmarks(im) + if preds and len(preds) > 0: + data[fpp_im.name] = preds[0].tolist() + + # save date + file_utils.mkdirs(opt_fp_out) + + file_utils.write_json(data, opt_fp_out, verbose=True) \ No newline at end of file diff --git a/megapixels/commands/cv/face_landmarks_3d.py b/megapixels/commands/cv/face_landmarks_3d.py deleted file mode 100644 index 03ef8fc2..00000000 --- a/megapixels/commands/cv/face_landmarks_3d.py +++ /dev/null @@ -1,96 +0,0 @@ -""" - -""" - -import click - -from app.settings import types -from app.utils import click_utils -from app.settings import app_cfg as cfg - -color_filters = {'color': 1, 'gray': 2, 'all': 3} - -@click.command() -@click.option('-i', '--input', 'opt_dirs_in', required=True, multiple=True, - help='Input directory') -@click.option('-o', '--output', 'opt_fp_out', required=True, - help='Output CSV') -@click.option('-e', '--ext', 'opt_ext', - default='jpg', type=click.Choice(['jpg', 'png']), - help='File glob ext') -@click.option('--size', 'opt_size', - type=(int, int), default=(300, 300), - help='Output image size') -@click.option('-g', '--gpu', 'opt_gpu', default=0, - help='GPU index') -@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), - help='Slice list of files') -@click.option('--recursive/--no-recursive', 'opt_recursive', is_flag=True, default=False, - help='Use glob recursion (slower)') -@click.option('-f', '--force', 'opt_force', is_flag=True, - help='Force overwrite file') -@click.pass_context -def cli(ctx, opt_dirs_in, opt_fp_out, opt_ext, opt_size, opt_gpu, opt_slice, - opt_recursive, opt_force): - """Converts face imges to 3D landmarks""" - - import sys - import os - from os.path import join - from pathlib import Path - from glob import glob - - from tqdm import tqdm - import numpy as np - import dlib # must keep a local reference for dlib - import cv2 as cv - import pandas as pd - from face_alignment import FaceAlignment, LandmarksType - from skimage import io - - from app.utils import logger_utils, file_utils - from app.processors import face_detector - - # ------------------------------------------------- - # init here - - - log = logger_utils.Logger.getLogger() - - if not opt_force and Path(opt_fp_out).exists(): - log.error('File exists. Use "-f / --force" to overwite') - return - - device = 'cuda' if opt_gpu > -1 else 'cpu' - fa = FaceAlignment(LandmarksType._3D, flip_input=False, device=device) - - # get list of files to process - fp_ims = [] - for opt_dir_in in opt_dirs_in: - if opt_recursive: - fp_glob = join(opt_dir_in, '**/*.{}'.format(opt_ext)) - fp_ims += glob(fp_glob, recursive=True) - else: - fp_glob = join(opt_dir_in, '*.{}'.format(opt_ext)) - fp_ims += glob(fp_glob) - log.debug(fp_glob) - - - if opt_slice: - fp_ims = fp_ims[opt_slice[0]:opt_slice[1]] - log.debug('processing {:,} files'.format(len(fp_ims))) - - - data = {} - - for fp_im in tqdm(fp_ims): - fpp_im = Path(fp_im) - im = io.imread(fp_im) - preds = fa.get_landmarks(im) - if preds and len(preds) > 0: - data[fpp_im.name] = preds[0].tolist() - - # save date - file_utils.mkdirs(opt_fp_out) - - file_utils.write_json(data, opt_fp_out, verbose=True) \ No newline at end of file diff --git a/megapixels/commands/cv/face_pose.py b/megapixels/commands/cv/face_pose.py index 9979ad34..4e35210c 100644 --- a/megapixels/commands/cv/face_pose.py +++ b/megapixels/commands/cv/face_pose.py @@ -57,7 +57,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, from app.models.bbox import BBox from app.utils import logger_utils, file_utils, im_utils - from app.processors.face_landmarks import LandmarksDLIB + from app.processors.face_landmarks_2d import LandmarksDLIB from app.processors.face_pose import FacePoseDLIB from app.models.data_store import DataStore -- cgit v1.2.3-70-g09d2