From 334ea5a2a91da853dc6faf7f48aaa12599201218 Mon Sep 17 00:00:00 2001
From: Jules Laplace
Date: Fri, 11 Jan 2019 20:38:36 +0100
Subject: enable celery tasks
---
megapixels/app/server/tasks/__init__.py | 47 +++++++++++++++++++++++++++++++++
1 file changed, 47 insertions(+)
create mode 100644 megapixels/app/server/tasks/__init__.py
(limited to 'megapixels/app/server/tasks/__init__.py')
diff --git a/megapixels/app/server/tasks/__init__.py b/megapixels/app/server/tasks/__init__.py
new file mode 100644
index 00000000..bac7309f
--- /dev/null
+++ b/megapixels/app/server/tasks/__init__.py
@@ -0,0 +1,47 @@
+import simplejson as json
+from app.settings import app_cfg as cfg
+from celery import Celery
+
+celery = Celery(__name__, backend=cfg.CELERY_RESULT_BACKEND, broker=cfg.CELERY_BROKER_URL)
+
+from app.server.tasks.sleep import sleep_task
+# from app.server.tasks.blur import blur_task
+
+def list_active_tasks():
+ dropdown = {}
+ for k,v in task_lookup.items():
+ if 'active' not in v or v['active'] is not False:
+ is_default = 'default' in v and v['default'] is True
+ task = {
+ 'name': k,
+ 'title': v['title'],
+ 'selected': is_default,
+ }
+ dropdown[k] = task
+ return dropdown
+
+###################################################################
+# Add all valid tasks to this lookup.
+# Set 'active': False to disable a task
+# Set 'default': True to define the default task
+
+task_lookup = {
+ 'sleep': {
+ 'title': 'Sleep Test',
+ 'task': sleep_task,
+ 'active': True,
+ 'default': True,
+ },
+ # 'blur': {
+ # 'title': 'Blur',
+ # 'task': blur_task,
+ # 'active': False,
+ # },
+ # 'task_dull': {
+ # 'title': 'DullDream V2',
+ # 'task': task_dull,
+ # 'active': True,
+ # 'default': True,
+ # }
+}
+
--
cgit v1.2.3-70-g09d2
From 47b6ae0f8ad2f49692222bb0c800e7ba1eb4b94b Mon Sep 17 00:00:00 2001
From: Jules Laplace
Date: Sun, 13 Jan 2019 00:54:13 +0100
Subject: face info page
---
client/faceAnalysis/faceAnalysis.actions.js | 20 +--
client/faceAnalysis/faceAnalysis.query.js | 4 +-
client/faceAnalysis/faceAnalysis.reducer.js | 7 +
client/index.js | 2 +
client/types.js | 2 +-
megapixels/app/server/api.py | 1 -
megapixels/app/server/api_task.py | 40 +++---
megapixels/app/server/tasks/__init__.py | 19 ++-
megapixels/app/server/tasks/blur.py | 23 +---
megapixels/app/server/tasks/fullmonte.py | 199 ++++++++++++++++++++++++++++
megapixels/app/utils/im_utils.py | 12 ++
site/public/info/index.html | 53 ++++++++
12 files changed, 322 insertions(+), 60 deletions(-)
create mode 100644 megapixels/app/server/tasks/fullmonte.py
create mode 100644 site/public/info/index.html
(limited to 'megapixels/app/server/tasks/__init__.py')
diff --git a/client/faceAnalysis/faceAnalysis.actions.js b/client/faceAnalysis/faceAnalysis.actions.js
index 90d7156f..6a318b5d 100644
--- a/client/faceAnalysis/faceAnalysis.actions.js
+++ b/client/faceAnalysis/faceAnalysis.actions.js
@@ -8,7 +8,7 @@ import { get, post } from '../util'
// urls
const url = {
- upload: (dataset) => process.env.API_HOST + '/api/dataset/' + dataset + '/face',
+ upload: () => process.env.API_HOST + '/task/upload/sleep',
}
export const publicUrl = {
}
@@ -26,6 +26,11 @@ const loaded = (tag, data, offset = 0) => ({
data,
offset
})
+const polled = (data, offset = 0) => ({
+ type: types.faceAnalysis.poll,
+ data,
+ offset
+})
const error = (tag, err) => ({
type: types.faceAnalysis.error,
tag,
@@ -42,7 +47,7 @@ export const updateOptions = opt => dispatch => {
export const upload = (payload, file) => dispatch => {
// const { options } = store.getState().faceAnalysis
- const tag = 'result'
+ const tag = 'task'
const fd = new FormData()
fd.append('query_img', file)
// fd.append('limit', options.perPage)
@@ -62,14 +67,13 @@ const POLL_DELAY = 500
let pollTimeout = null
export const poll = (payload, taskURL) => dispatch => {
- const tag = 'poll'
clearTimeout(pollTimeout)
- dispatch(loading(tag))
get(taskURL)
.then(data => {
- dispatch(loaded(tag, data))
- // check if complete
- pollTimeout = setTimeout(() => poll(payload, taskURL), POLL_DELAY)
+ dispatch(polled(data))
+ if (!data.complete) {
+ pollTimeout = setTimeout(() => poll(payload, taskURL), POLL_DELAY)
+ }
})
- .catch(err => dispatch(error(tag, err)))
+ .catch(err => dispatch(error('result', err)))
}
diff --git a/client/faceAnalysis/faceAnalysis.query.js b/client/faceAnalysis/faceAnalysis.query.js
index 86dbe1ae..6b92b70d 100644
--- a/client/faceAnalysis/faceAnalysis.query.js
+++ b/client/faceAnalysis/faceAnalysis.query.js
@@ -57,8 +57,8 @@ class FaceAnalysisQuery extends Component {
{'Put yourself under the microscope of various facial recognition algorithms. See what can be determined from a photo.'}
- - Upload a photo of yourself
- - {'Your search data is never stored and immediately cleared '}
+
- Upload a photo of yourself and be judged by the algorithm
+ - {'Your search data is only stored for the duration of this analysis and is immediately cleared '}
{'once you leave this page.'}
diff --git a/client/faceAnalysis/faceAnalysis.reducer.js b/client/faceAnalysis/faceAnalysis.reducer.js
index d8e914ab..54a6d5eb 100644
--- a/client/faceAnalysis/faceAnalysis.reducer.js
+++ b/client/faceAnalysis/faceAnalysis.reducer.js
@@ -2,6 +2,7 @@ import * as types from '../types'
const initialState = () => ({
query: {},
+ task: {},
result: {},
loading: false,
})
@@ -20,6 +21,12 @@ export default function faceAnalysisReducer(state = initialState(), action) {
[action.tag]: action.data,
}
+ case types.faceAnalysis.poll:
+ return {
+ ...state,
+ result: action.data,
+ }
+
case types.faceAnalysis.error:
return {
...state,
diff --git a/client/index.js b/client/index.js
index 40be2841..96f2c8c8 100644
--- a/client/index.js
+++ b/client/index.js
@@ -20,6 +20,8 @@ function appendReactApplet(el, payload) {
}
function fetchDataset(payload) {
+ if (payload.command === 'face_analysis') return new Promise(resolve => resolve())
+ if (payload.dataset === 'info') return new Promise(resolve => resolve())
const url = "https://megapixels.nyc3.digitaloceanspaces.com/v1/citations/" + payload.dataset + ".json"
return fetch(url, { mode: 'cors' }).then(r => r.json())
}
diff --git a/client/types.js b/client/types.js
index 2d35ec36..fd9aa3e0 100644
--- a/client/types.js
+++ b/client/types.js
@@ -7,7 +7,7 @@ export const tagAsType = (type, names) => (
)
export const faceAnalysis = tagAsType('faceAnalysis', [
- 'loading', 'loaded', 'error', 'update_options',
+ 'loading', 'loaded', 'poll', 'error', 'update_options',
])
export const faceSearch = tagAsType('faceSearch', [
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py
index 48279040..663f52cc 100644
--- a/megapixels/app/server/api.py
+++ b/megapixels/app/server/api.py
@@ -30,7 +30,6 @@ def index():
"""List the datasets and their fields"""
return jsonify({ 'datasets': list_datasets() })
-
@api.route('/dataset/')
def show(dataset_name):
"""Show the data that a dataset will return"""
diff --git a/megapixels/app/server/api_task.py b/megapixels/app/server/api_task.py
index 36990997..23e11454 100644
--- a/megapixels/app/server/api_task.py
+++ b/megapixels/app/server/api_task.py
@@ -6,30 +6,21 @@ import dlib
import simplejson as json
import numpy as np
from flask import Blueprint, request, jsonify
-from PIL import Image # todo: try to remove PIL dependency
-
-# from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
-# from app.utils.im_utils import pil2np
+from PIL import Image, ImageOps # todo: try to remove PIL dependency
from celery.result import AsyncResult
from app.server.tasks import celery
from app.server.tasks import task_lookup, list_active_tasks
+# from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
-api_task = Blueprint('api_task', __name__)
+api_task = Blueprint('task', __name__)
@api_task.route('/')
def index():
"""List active tasks"""
return jsonify(list_active_tasks)
-# from flask import render_template, redirect, url_for, send_from_directory
-# from flask import request, make_response, jsonify
-# from . import main, utils
-# from PIL import Image, ImageOps
-# import cv2 as cv
-# import imutils
-
-@api_task.route('//')
+@api_task.route('/status//')
def task_status(task_name, task_id):
"""Return celery image processing status"""
if task_name in task_lookup:
@@ -69,6 +60,9 @@ def task_status(task_name, task_id):
@api_task.route('/upload/sleep', methods=['GET', 'POST'])
def sleep_test():
+ """
+ Test the Celery system using a task that sleeps.
+ """
async_task = task_lookup['sleep']['task'].apply_async(args=['sleep_test'])
task_url = '/task/{}/{}'.format('sleep', async_task.id)
return jsonify({
@@ -76,10 +70,12 @@ def sleep_test():
'task_url': task_url,
})
-@api_task.route('/upload', methods=['POST'])
-def upload():
- style = request.form['style']
- print('style',style)
+@api_task.route('/upload/:style', methods=['POST'])
+def upload(style):
+ """
+ Process a images in a particular style
+ """
+ print('style: {}'.format(style))
if style in task_lookup:
task = task_lookup[style]['task']
print('task',task)
@@ -103,19 +99,19 @@ def upload():
# convert PNG to JPG
print('[+] Resizing image')
- # LOL MaskRCNN needs to be run outside of the Celery Task
im = Image.open(file.stream).convert('RGB')
- im = ImageOps.fit(im,(512,512))
+ im = ImageOps.fit(im, (256, 256))
# # Save image to disk
# print('[+] Save image to {}'.format(fpath))
# im.save(fpath, 'JPEG', quality=100)
# im_pil_256 = im.resize((256,256))
- print('[+] ensure_np...')
- im_np = imx.ensure_np(im_pil_256)
+ # print('[+] ensure_np...')
+ # im_np = imx.ensure_np(im_pil_256)
celery_result = {
+ im: im,
}
print('[+] Start celery')
@@ -124,6 +120,6 @@ def upload():
return jsonify({
'result': True,
- 'task_url': task_url,
+ 'taskURL': task_url,
'uuid': uuid_name
})
diff --git a/megapixels/app/server/tasks/__init__.py b/megapixels/app/server/tasks/__init__.py
index bac7309f..fd6e398a 100644
--- a/megapixels/app/server/tasks/__init__.py
+++ b/megapixels/app/server/tasks/__init__.py
@@ -5,7 +5,7 @@ from celery import Celery
celery = Celery(__name__, backend=cfg.CELERY_RESULT_BACKEND, broker=cfg.CELERY_BROKER_URL)
from app.server.tasks.sleep import sleep_task
-# from app.server.tasks.blur import blur_task
+from app.server.tasks.blur import blur_task
def list_active_tasks():
dropdown = {}
@@ -32,16 +32,15 @@ task_lookup = {
'active': True,
'default': True,
},
- # 'blur': {
- # 'title': 'Blur',
- # 'task': blur_task,
- # 'active': False,
- # },
- # 'task_dull': {
- # 'title': 'DullDream V2',
- # 'task': task_dull,
+ 'blur': {
+ 'title': 'Blur',
+ 'task': blur_task,
+ 'active': False,
+ },
+ # 'fullmonte': {
+ # 'title': 'TIA facial processing pipeline',
+ # 'task': fullmonte,
# 'active': True,
# 'default': True,
# }
}
-
diff --git a/megapixels/app/server/tasks/blur.py b/megapixels/app/server/tasks/blur.py
index ede75e6a..3b7e20be 100644
--- a/megapixels/app/server/tasks/blur.py
+++ b/megapixels/app/server/tasks/blur.py
@@ -3,14 +3,14 @@ import sys
import time
import datetime
import json
-from PIL import Image, ImageFilter
+from PIL import Image
import cv2 as cv
import numpy as np
-from . import main, utils
-from .. import basemodels
+from app.utils.im_utils import ensure_np, ensure_pil
from flask import current_app as app
-from .paths import get_paths
-celery = basemodels.celery
+
+from app.server.tasks import celery
+
from celery.utils.log import get_task_logger
celery_logger = get_task_logger(__name__)
import imutils
@@ -37,9 +37,9 @@ def blur_task(self, uuid_name, extra):
'uuid': uuid_name
})
- im_np = utils.ensure_np(im)
+ im_np = ensure_np(im)
im_blur = cv.blur(im_np, (5,5), 1.0)
- im_blur_pil = utils.ensure_pil(im_blur)
+ im_blur_pil = ensure_pil(im_blur)
fn = uuid_name + '_blur.jpg'
fpath = os.path.join(render_dir, fn)
@@ -52,15 +52,6 @@ def blur_task(self, uuid_name, extra):
time.sleep(3)
- self.update_state(
- state = 'PROCESSING',
- meta = {
- 'percent': 0.50,
- 'message': 'Sleeping for some reason',
- 'uuid': uuid_name
- })
- time.sleep(2)
-
self.update_state(
state = 'PROCESSING',
meta = {
diff --git a/megapixels/app/server/tasks/fullmonte.py b/megapixels/app/server/tasks/fullmonte.py
new file mode 100644
index 00000000..17ca9403
--- /dev/null
+++ b/megapixels/app/server/tasks/fullmonte.py
@@ -0,0 +1,199 @@
+
+import sys
+import os
+from os.path import join
+from pathlib import Path
+import time
+
+import numpy as np
+import cv2 as cv
+import dlib
+from PIL import Image
+import matplotlib.pyplot as plt
+
+from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+from app.utils import plot_utils
+from app.processors import face_detector, face_landmarks
+from app.models.data_store import DataStore
+
+@celery.task(bind=True)
+def fullmonte_task(self, uuid_name):
+ return
+
+ # TOOD add selective testing
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+
+ # -------------------------------------------------
+ # init here
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # load image
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ log.info('detecting face...')
+ st = time.time()
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ log.info('generating 3D animation...')
+ if not opt_fp_out:
+ fpp_im = Path(opt_fp_in)
+ fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ else:
+ fp_out = opt_fp_out
+ st = time.time()
+ plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ size=opt_gif_size, num_frames=opt_gif_frames)
+ log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ log.info(f'Saved to: {fp_out}')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ log.info('initialize face recognition model...')
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ st = time.time()
+ log.info('generating face vector...')
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ log.info('initializing face landmarks 68 dlib...')
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ log.info('generating 2D 68PT landmarks...')
+ st = time.time()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ if opt_run_pose:
+ log.info('initialize pose...')
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ log.info('generating pose...')
+ st = time.time()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+ log.info(f'generated pose {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ # done
+ self.log.debug('Add age real')
+ self.log.debug('Add age apparent')
+ self.log.debug('Add gender')
+
+
+ # 3DDFA
+ self.log.debug('Add depth')
+ self.log.debug('Add pncc')
+
+ # TODO
+ self.log.debug('Add 3D face model')
+ self.log.debug('Add face texture flat')
+ self.log.debug('Add ethnicity')
+
+ # display
+ if opt_display:
+
+ # draw bbox
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ if opt_run_pose:
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+ # draw animated GIF
+ im = Image.open(fp_out)
+ im_frames = []
+ duration = im.info['duration']
+ try:
+ while True:
+ im.seek(len(im_frames))
+ mypalette = im.getpalette()
+ im.putpalette(mypalette)
+ im_jpg = Image.new("RGB", im.size)
+ im_jpg.paste(im)
+ im_np = im_utils.pil2np(im_jpg.copy())
+ im_frames.append(im_np)
+ except EOFError:
+ pass # end of GIF sequence
+
+ n_frames = len(im_frames)
+ frame_number = 0
+
+ while True:
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ cv.imshow('Pose', im_pose)
+ cv.imshow('3D 68pt GIF', im_frames[frame_number])
+ frame_number = (frame_number + 1) % n_frames
+ k = cv.waitKey(duration) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break
\ No newline at end of file
diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py
index e882c67f..d36c1c32 100644
--- a/megapixels/app/utils/im_utils.py
+++ b/megapixels/app/utils/im_utils.py
@@ -19,7 +19,19 @@ from torch.autograd import Variable
from sklearn.metrics.pairwise import cosine_similarity
import datetime
+def ensure_pil(im):
+ """Ensure image is Pillow format"""
+ try:
+ im.verify()
+ return im
+ except:
+ return Image.fromarray(im.astype('uint8'), 'RGB')
+def ensure_np(im):
+ """Ensure image is numpy array"""
+ if type(im) == np.ndarray:
+ return im
+ return np.asarray(im, np.uint8)
def num_channels(im):
'''Returns number of channels in numpy.ndarray image'''
diff --git a/site/public/info/index.html b/site/public/info/index.html
new file mode 100644
index 00000000..0d7b2d2e
--- /dev/null
+++ b/site/public/info/index.html
@@ -0,0 +1,53 @@
+
+
+
+ MegaPixels
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
What do facial recognition algorithms see?
+Results are only stored for the duration of the analysis and are deleted when you leave this page.
+
+
+
+
+
+
+
+
\ No newline at end of file
--
cgit v1.2.3-70-g09d2
From 198147bef9976a41046c3c513dc4d33babf7a238 Mon Sep 17 00:00:00 2001
From: Jules Laplace
Date: Sun, 13 Jan 2019 22:20:06 +0100
Subject: extracting 3d facial vectors
---
client/faceAnalysis/faceAnalysis.actions.js | 2 +-
client/faceAnalysis/faceAnalysis.result.js | 26 ++-
megapixels/app/server/api.py | 2 -
megapixels/app/server/api_task.py | 13 +-
megapixels/app/server/tasks/__init__.py | 15 +-
megapixels/app/server/tasks/blur.py | 15 +-
megapixels/app/server/tasks/demo.py | 244 ++++++++++++++++++++++++++++
megapixels/app/server/tasks/fullmonte.py | 199 -----------------------
site/assets/css/applets.css | 6 +-
9 files changed, 292 insertions(+), 230 deletions(-)
create mode 100644 megapixels/app/server/tasks/demo.py
delete mode 100644 megapixels/app/server/tasks/fullmonte.py
(limited to 'megapixels/app/server/tasks/__init__.py')
diff --git a/client/faceAnalysis/faceAnalysis.actions.js b/client/faceAnalysis/faceAnalysis.actions.js
index f8d8973f..2d372c1e 100644
--- a/client/faceAnalysis/faceAnalysis.actions.js
+++ b/client/faceAnalysis/faceAnalysis.actions.js
@@ -8,7 +8,7 @@ import { get, post } from '../util'
// urls
const url = {
- upload: () => process.env.API_HOST + '/task/upload/blur',
+ upload: () => process.env.API_HOST + '/task/upload/demo',
}
export const publicUrl = {
}
diff --git a/client/faceAnalysis/faceAnalysis.result.js b/client/faceAnalysis/faceAnalysis.result.js
index 63a23d65..fd079529 100644
--- a/client/faceAnalysis/faceAnalysis.result.js
+++ b/client/faceAnalysis/faceAnalysis.result.js
@@ -1,7 +1,6 @@
import React, { Component } from 'react'
import { bindActionCreators } from 'redux'
import { connect } from 'react-redux'
-import { courtesyS } from '../util'
import * as actions from './faceAnalysis.actions'
import { Loader } from '../common'
@@ -63,16 +62,25 @@ class FaceAnalysisResult extends Component {
)
}
- let blurImg = data.data.blur_fn && (
-
-

-
Blurred image
-
- )
+ const results = ['blur_fn', 'landmarks_3d_68'].map(tag => {
+ if (tag in data.data) {
+ const { title, url } = data.data[tag]
+ return (
+
+

+
{title}
+
+ )
+ }
+ return null
+ }).filter(a => a)
+
return (
-
+
{!(step && total && message) ? '' : (
{step} / {total}: {message})}
- {blurImg}
+
+ {results}
+
Query took {(timing / 1000).toFixed(2)} s.
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py
index 5ad454d8..b3bce9bc 100644
--- a/megapixels/app/server/api.py
+++ b/megapixels/app/server/api.py
@@ -1,5 +1,3 @@
-import logging
-import logging.handlers
import os
import re
import time
diff --git a/megapixels/app/server/api_task.py b/megapixels/app/server/api_task.py
index c9bc19ed..57ae9f7d 100644
--- a/megapixels/app/server/api_task.py
+++ b/megapixels/app/server/api_task.py
@@ -27,7 +27,8 @@ def task_status(task_name, task_id):
if task_name in task_lookup:
task = task_lookup[task_name]['task'].AsyncResult(task_id)
# task = AsyncResult(task_id, app=celery)
- else:
+
+ if task_name not in task_lookup or task.info is None:
return jsonify({
'state': 'error',
'percent': 100,
@@ -75,10 +76,16 @@ def sleep_test():
@api_task.route('/upload/blur', methods=['POST'])
def upload():
+ return process('blur')
+
+@api_task.route('/upload/demo', methods=['POST'])
+def demo():
+ return process('demo')
+
+def process(style):
"""
- Process a images in a particular style
+ Process an image in a particular style
"""
- style = 'blur'
print('style: {}'.format(style))
if style in task_lookup:
task = task_lookup[style]['task']
diff --git a/megapixels/app/server/tasks/__init__.py b/megapixels/app/server/tasks/__init__.py
index fd6e398a..c0db0be5 100644
--- a/megapixels/app/server/tasks/__init__.py
+++ b/megapixels/app/server/tasks/__init__.py
@@ -6,6 +6,7 @@ celery = Celery(__name__, backend=cfg.CELERY_RESULT_BACKEND, broker=cfg.CELERY_B
from app.server.tasks.sleep import sleep_task
from app.server.tasks.blur import blur_task
+from app.server.tasks.demo import demo_task
def list_active_tasks():
dropdown = {}
@@ -35,12 +36,12 @@ task_lookup = {
'blur': {
'title': 'Blur',
'task': blur_task,
- 'active': False,
+ 'active': True,
},
- # 'fullmonte': {
- # 'title': 'TIA facial processing pipeline',
- # 'task': fullmonte,
- # 'active': True,
- # 'default': True,
- # }
+ 'demo': {
+ 'title': 'Facial processing pipeline',
+ 'task': demo_task,
+ 'active': True,
+ 'default': True,
+ }
}
diff --git a/megapixels/app/server/tasks/blur.py b/megapixels/app/server/tasks/blur.py
index 42977097..74798cee 100644
--- a/megapixels/app/server/tasks/blur.py
+++ b/megapixels/app/server/tasks/blur.py
@@ -14,14 +14,14 @@ import app.settings.app_cfg as cfg
from app.server.tasks import celery
from celery.utils.log import get_task_logger
-celery_logger = get_task_logger(__name__)
+log = get_task_logger(__name__)
import imutils
@celery.task(bind=True)
def blur_task(self, uuid_name, fn):
"""Process image and update during"""
- celery_logger.debug('process_image_task, uuid: {}'.format(uuid_name))
- celery_logger.debug('fn: {}'.format(fn))
+ log.debug('process_image_task, uuid: {}'.format(uuid_name))
+ log.debug('fn: {}'.format(fn))
files = []
@@ -48,7 +48,7 @@ def blur_task(self, uuid_name, fn):
fn = uuid_name + '_blur.jpg'
fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
im_blur_pil.save(fpath, 'JPEG', quality=80)
- celery_logger.debug('fpath: {}'.format(fpath))
+ log.debug('fpath: {}'.format(fpath))
print('fpath: {}'.format(fpath))
# files.append({
@@ -58,7 +58,10 @@ def blur_task(self, uuid_name, fn):
meta['step'] += 1
meta['message'] = 'Applying blur'
- meta['data']['blur_fn'] = os.path.join('/user_content/', fn)
+ meta['data']['blur_fn'] = {
+ 'title': 'Blurred image',
+ 'url': os.path.join('/user_content/', fn)
+ }
self.update_state(state='PROCESSING', meta=meta)
time.sleep(3)
@@ -70,7 +73,7 @@ def blur_task(self, uuid_name, fn):
self.update_state(state='PROCESSING', meta=meta)
time.sleep(2)
- celery_logger.debug('done!!')
+ log.debug('done!!')
meta['step'] = meta['total']
meta['state'] = 'complete'
diff --git a/megapixels/app/server/tasks/demo.py b/megapixels/app/server/tasks/demo.py
new file mode 100644
index 00000000..acc5dbac
--- /dev/null
+++ b/megapixels/app/server/tasks/demo.py
@@ -0,0 +1,244 @@
+
+import app.settings.app_cfg as cfg
+from app.server.tasks import celery
+
+from celery.utils.log import get_task_logger
+log = get_task_logger(__name__)
+
+opt_size = (256, 256,)
+
+@celery.task(bind=True)
+def demo_task(self, uuid_name, fn):
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ import numpy as np
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TODO add selective testing
+ opt_gpu = -1
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+ paths
+
+ meta = {
+ 'step': 0,
+ 'total': 3,
+ 'message': 'Starting',
+ 'uuid': uuid_name,
+ 'data': {},
+ }
+ paths = []
+
+ def step(msg, step=0):
+ meta['step'] += step
+ meta['message'] = msg
+ log.debug('> {}'.format(msg))
+ self.update_state(state='PROCESSING', meta=meta)
+
+ step('Loading image')
+ self.update_state(state='PROCESSING', meta=meta)
+
+ # os.path.join('/user_content/', fn)
+
+ # -------------------------------------------------
+ # init here
+
+ # load image
+ im = cv.imread(fn)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector_instance = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ step('Detecting face')
+ st = time.time()
+ bboxes = face_detector_instance.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('No face detected')
+ meta['error'] = 'No face detected'
+ self.update_state(state='FAILURE', meta=meta)
+ return meta
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ step('Generating 3D Landmarks')
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ save_image('landmarks_3d_68', '3D Landmarks', im_landmarks_3d_68)
+
+ def save_image(key, title, data):
+ fn = '{}_{}.jpg'.format(uuid_name, key)
+ fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
+ paths.append(fpath)
+ cv.imwrite(fpath, im_landmarks_3d_68)
+
+ meta['data']['landmarks_3d_68'] = {
+ 'title': '3D Landmarks',
+ 'url': os.path.join('/user_content/', fn),
+ }
+ step('Generated 3D Landmarks', step=0)
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ # step('Generating GIF Animation')
+ # log.info('generating 3D animation...')
+ # if not opt_fp_out:
+ # fpp_im = Path(opt_fp_in)
+ # fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ # else:
+ # fp_out = opt_fp_out
+ # st = time.time()
+ # plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ # size=opt_gif_size, num_frames=opt_gif_frames)
+ # log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ # log.info(f'Saved to: {fp_out}')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate face vectors, only to test if feature extraction works
+
+ # step('Generating face vectors')
+ # log.info('initialize face recognition model...')
+ # from app.processors import face_recognition
+ # face_rec = face_recognition.RecognitionDLIB()
+ # st = time.time()
+ # log.info('generating face vector...')
+ # vec = face_rec.vec(im_resized, bbox_dim)
+ # log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate 68 point landmarks using dlib
+
+ # step('Generating 2D 68PT landmarks')
+ # log.info('initializing face landmarks 68 dlib...')
+ # from app.processors import face_landmarks
+ # landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ # log.info('generating 2D 68PT landmarks...')
+ # st = time.time()
+ # points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ # log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate pose from 68 point 2D landmarks
+
+ # if opt_run_pose:
+ # step('Generating pose')
+ # log.info('initialize pose...')
+ # from app.processors import face_pose
+ # pose_detector = face_pose.FacePoseDLIB()
+ # log.info('generating pose...')
+ # st = time.time()
+ # pose_data = pose_detector.pose(points_2d_68, dim)
+ # log.info(f'generated pose {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate pose from 68 point 2D landmarks
+
+ step('Done')
+
+ # done
+ # self.log.debug('Add age real')
+ # self.log.debug('Add age apparent')
+ # self.log.debug('Add gender')
+
+
+ # # 3DDFA
+ # self.log.debug('Add depth')
+ # self.log.debug('Add pncc')
+
+ # # TODO
+ # self.log.debug('Add 3D face model')
+ # self.log.debug('Add face texture flat')
+ # self.log.debug('Add ethnicity')
+
+ # display
+ # draw bbox
+
+ # # draw 2d landmarks
+ # im_landmarks_2d_68 = im_resized.copy()
+ # draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ # draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # # draw pose
+ # if opt_run_pose:
+ # im_pose = im_resized.copy()
+ # draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ # draw_utils.draw_degrees(im_pose, pose_data)
+
+ # # draw animated GIF
+ # im = Image.open(fp_out)
+ # im_frames = []
+ # duration = im.info['duration']
+ # try:
+ # while True:
+ # im.seek(len(im_frames))
+ # mypalette = im.getpalette()
+ # im.putpalette(mypalette)
+ # im_jpg = Image.new("RGB", im.size)
+ # im_jpg.paste(im)
+ # im_np = im_utils.pil2np(im_jpg.copy())
+ # im_frames.append(im_np)
+ # except EOFError:
+ # pass # end of GIF sequence
+
+ # n_frames = len(im_frames)
+ # frame_number = 0
+
+ # # show all images here
+ # cv.imshow('Original', im_resized)
+ # cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ # cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ # cv.imshow('Pose', im_pose)
+ # cv.imshow('3D 68pt GIF', im_frames[frame_number])
+
+ log.debug('done!!')
+
+ for path in paths:
+ if os.path.exists(path):
+ os.remove(path)
+
+ meta['step'] = meta['total']
+ meta['state'] = 'SUCCESS'
+ return meta
diff --git a/megapixels/app/server/tasks/fullmonte.py b/megapixels/app/server/tasks/fullmonte.py
deleted file mode 100644
index 8215656a..00000000
--- a/megapixels/app/server/tasks/fullmonte.py
+++ /dev/null
@@ -1,199 +0,0 @@
-
-import sys
-import os
-from os.path import join
-from pathlib import Path
-import time
-
-import numpy as np
-import cv2 as cv
-import dlib
-from PIL import Image
-import matplotlib.pyplot as plt
-
-from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
-from app.utils import plot_utils
-from app.processors import face_detector, face_landmarks
-from app.models.data_store import DataStore
-
-@celery.task(bind=True)
-def fullmonte_task(self, uuid_name, fn):
- # TOOD add selective testing
- opt_run_pose = True
- opt_run_2d_68 = True
- opt_run_3d_68 = True
- opt_run_3d_68 = True
-
- return
-
- # -------------------------------------------------
- # init here
-
-
- log = logger_utils.Logger.getLogger()
-
- # load image
- im = cv.imread(opt_fp_in)
- im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
-
-
- # ----------------------------------------------------------------------------
- # detect face
-
- face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
- log.info('detecting face...')
- st = time.time()
- bboxes = face_detector.detect(im_resized, largest=True)
- bbox = bboxes[0]
- dim = im_resized.shape[:2][::-1]
- bbox_dim = bbox.to_dim(dim)
- if not bbox:
- log.error('no face detected')
- return
- else:
- log.info(f'Detected face in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # detect 3D landmarks
-
- log.info('loading 3D landmark generator files...')
- landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
- log.info('generating 3D landmarks...')
- st = time.time()
- points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
- log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate 3D GIF animation
-
- log.info('generating 3D animation...')
- if not opt_fp_out:
- fpp_im = Path(opt_fp_in)
- fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
- else:
- fp_out = opt_fp_out
- st = time.time()
- plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
- size=opt_gif_size, num_frames=opt_gif_frames)
- log.info(f'Generated animation in {(time.time() - st):.2f}s')
- log.info(f'Saved to: {fp_out}')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate face vectors, only to test if feature extraction works
-
- log.info('initialize face recognition model...')
- from app.processors import face_recognition
- face_rec = face_recognition.RecognitionDLIB()
- st = time.time()
- log.info('generating face vector...')
- vec = face_rec.vec(im_resized, bbox_dim)
- log.info(f'generated face vector in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate 68 point landmarks using dlib
-
- log.info('initializing face landmarks 68 dlib...')
- from app.processors import face_landmarks
- landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
- log.info('generating 2D 68PT landmarks...')
- st = time.time()
- points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
- log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate pose from 68 point 2D landmarks
-
- if opt_run_pose:
- log.info('initialize pose...')
- from app.processors import face_pose
- pose_detector = face_pose.FacePoseDLIB()
- log.info('generating pose...')
- st = time.time()
- pose_data = pose_detector.pose(points_2d_68, dim)
- log.info(f'generated pose {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate pose from 68 point 2D landmarks
-
- # done
- self.log.debug('Add age real')
- self.log.debug('Add age apparent')
- self.log.debug('Add gender')
-
-
- # 3DDFA
- self.log.debug('Add depth')
- self.log.debug('Add pncc')
-
- # TODO
- self.log.debug('Add 3D face model')
- self.log.debug('Add face texture flat')
- self.log.debug('Add ethnicity')
-
- # display
- if opt_display:
-
- # draw bbox
-
- # draw 3d landmarks
- im_landmarks_3d_68 = im_resized.copy()
- draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
- draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
-
- # draw 2d landmarks
- im_landmarks_2d_68 = im_resized.copy()
- draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
- draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
-
- # draw pose
- if opt_run_pose:
- im_pose = im_resized.copy()
- draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
- draw_utils.draw_degrees(im_pose, pose_data)
-
- # draw animated GIF
- im = Image.open(fp_out)
- im_frames = []
- duration = im.info['duration']
- try:
- while True:
- im.seek(len(im_frames))
- mypalette = im.getpalette()
- im.putpalette(mypalette)
- im_jpg = Image.new("RGB", im.size)
- im_jpg.paste(im)
- im_np = im_utils.pil2np(im_jpg.copy())
- im_frames.append(im_np)
- except EOFError:
- pass # end of GIF sequence
-
- n_frames = len(im_frames)
- frame_number = 0
-
- while True:
- # show all images here
- cv.imshow('Original', im_resized)
- cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
- cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
- cv.imshow('Pose', im_pose)
- cv.imshow('3D 68pt GIF', im_frames[frame_number])
- frame_number = (frame_number + 1) % n_frames
- k = cv.waitKey(duration) & 0xFF
- if k == 27 or k == ord('q'): # ESC
- cv.destroyAllWindows()
- sys.exit()
- elif k != 255:
- # any key to continue
- break
\ No newline at end of file
diff --git a/site/assets/css/applets.css b/site/assets/css/applets.css
index e5b73562..0c566a9f 100644
--- a/site/assets/css/applets.css
+++ b/site/assets/css/applets.css
@@ -126,12 +126,12 @@
/* analysis results */
-.analysisContainer .result div {
+.analysisContainer .results div {
width: 256px;
text-align: center;
- border: 1px solid white;
padding: 10px;
+ margin: 10px;
}
-.analysisContainer .result div img {
+.analysisContainer .results div img {
max-width: 100%;
}
--
cgit v1.2.3-70-g09d2