From ee3d0d98e19f1d8177d85af1866fd0ee431fe9ea Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Sun, 25 Nov 2018 22:19:15 +0100 Subject: moving stuff --- ...acial Parts Responses to Face Detection: A Deep Learning Approach.csv | 1 - 1 file changed, 1 deletion(-) delete mode 100644 datasets/scholar/entries/From Facial Parts Responses to Face Detection: A Deep Learning Approach.csv (limited to 'datasets/scholar/entries/From Facial Parts Responses to Face Detection: A Deep Learning Approach.csv') diff --git a/datasets/scholar/entries/From Facial Parts Responses to Face Detection: A Deep Learning Approach.csv b/datasets/scholar/entries/From Facial Parts Responses to Face Detection: A Deep Learning Approach.csv deleted file mode 100644 index e22f032b..00000000 --- a/datasets/scholar/entries/From Facial Parts Responses to Face Detection: A Deep Learning Approach.csv +++ /dev/null @@ -1 +0,0 @@ -From facial parts responses to face detection: A deep learning approach|http://scholar.google.com/https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Yang_From_Facial_Parts_ICCV_2015_paper.html|2015|213|12|1818335115841631894|None|http://scholar.google.com/scholar?cites=1818335115841631894&as_sdt=2005&sciodt=0,5&hl=en|http://scholar.google.com/scholar?cluster=1818335115841631894&hl=en&as_sdt=0,5|None|In this paper, we propose a novel deep convolutional network (DCN) that achieves outstanding performance on FDDB, PASCAL Face, and AFW. Specifically, our method achieves a high recall rate of 90.99% on the challenging FDDB benchmark, outperforming the state-of-the-art method by a large margin of 2.91%. Importantly, we consider finding faces from a new perspective through scoring facial parts responses by their spatial structure and arrangement. The scoring mechanism is carefully formulated considering challenging … -- cgit v1.2.3-70-g09d2