diff options
Diffstat (limited to 'site/datasets/verified/ucf_crowd.json')
| -rw-r--r-- | site/datasets/verified/ucf_crowd.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/verified/ucf_crowd.json b/site/datasets/verified/ucf_crowd.json index a5141434..11bb2fbe 100644 --- a/site/datasets/verified/ucf_crowd.json +++ b/site/datasets/verified/ucf_crowd.json @@ -1 +1 @@ -{"id": "32c801cb7fbeb742edfd94cccfca4934baec71da", "paper": {"key": "ucf_crowd", "name": "UCF-CC-50", "title": "Multi-source Multi-scale Counting in Extremely Dense Crowd Images", "year": "2013", "addresses": []}, "citations": [{"id": "dd056ecfdcc8ce89a550e56887f1df1a66f5cbff", "title": "Body Structure Aware Deep Crowd Counting", "addresses": [{"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}, {"name": "Northwestern Polytechnical University", "source_name": "Northwestern Polytechnical University", "street_adddress": "\u897f\u5317\u5de5\u4e1a\u5927\u5b66 \u53cb\u8c0a\u6821\u533a, 127\u53f7, \u53cb\u8c0a\u897f\u8def, \u957f\u5b89\u8def, \u7891\u6797\u533a (Beilin), \u897f\u5b89\u5e02, \u9655\u897f\u7701, 710072, \u4e2d\u56fd", "lat": "34.24691520", "lng": "108.91061982", "type": "edu", "country": "China"}, {"name": "Xiamen University", "source_name": "Xiamen University", "street_adddress": "\u53a6\u95e8\u5927\u5b66, \u601d\u660e\u5357\u8def Siming South Road, \u601d\u660e\u533a, \u601d\u660e\u533a (Siming), \u53a6\u95e8\u5e02 / Xiamen, \u798f\u5efa\u7701, 361005, \u4e2d\u56fd", "lat": "24.43994190", "lng": "118.09301781", "type": "edu", "country": "China"}, {"name": "ShanghaiTech University", "source_name": "ShanghaiTech University", "street_adddress": "Yueyang Rd, Xuhui Qu, Shanghai Shi, China", "lat": "31.20254500", "lng": "121.45308600", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["http://mac.xmu.edu.cn/rrji/papers/IP%202018-Body.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8010465", "http://doi.org/10.1109/TIP.2017.2740160", "https://www.ncbi.nlm.nih.gov/pubmed/28816665", "https://www.wikidata.org/entity/Q38372031"]}, {"id": "1b21acf8daaf86c4f2228fa3f5e9aa38ab8ad30d", "title": "Cross-scene crowd counting via deep convolutional neural networks", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "University of Electronic Science and Technology of China", "source_name": "University of Electronic Science and Technology of China", "street_adddress": "2 Jianshe North Rd 2nd Section, Jianshe Road, Chenghua Qu, Chengdu Shi, Sichuan Sheng, China, 610054", "lat": "30.67272100", "lng": "104.09880600", "type": "edu", "country": "China"}], "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_091.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_091_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Cross-Scene_Crowd_Counting_2015_CVPR_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298684", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298684", "http://doi.org/10.1109/CVPR.2015.7298684"]}, {"id": "5b823d0bdcb2c5dddfb84b4f92353bc5aa8f2644", "title": "In Defense of Single-column Networks for Crowd Counting", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}, {"name": "Beijing, China", "source_name": "Beijing, China", "street_adddress": "Beijing, China", "lat": "39.90419990", "lng": "116.40739630", "type": "edu", "country": "China"}, {"name": "Duke University", "source_name": "Duke University", "street_adddress": "Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA", "lat": "35.99905220", "lng": "-78.92906290", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06133.pdf"], "doi": []}, {"id": "4c02d6874a761182f3776a5a04142e713cd939fa", "title": "Crowd Counting using Deep Recurrent Spatial-Aware Network", "addresses": [{"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}, {"name": "University of Sydney", "source_name": "University of Sydney", "street_adddress": "USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia", "lat": "-33.88890695", "lng": "151.18943366", "type": "edu", "country": "Australia"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00601.pdf"], "doi": []}, {"id": "1a964f13abb3cdc5675dbfd612fa0409608e28c7", "title": "CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes", "addresses": [{"name": "University of Illinois, Urbana-Champaign", "source_name": "University of Illinois, Urbana-Champaign", "street_adddress": "B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA", "lat": "40.11116745", "lng": "-88.22587665", "type": "edu", "country": "United States"}, {"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.10062.pdf"], "doi": []}, {"id": "9713e87734046cb7a2d040d71fa35cf93472ea80", "title": "Granular-based dense crowd density estimation", "addresses": [{"name": "University of Malaya, Kuala Lumpur", "source_name": "University of Malaya", "street_adddress": "UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia", "lat": "3.12267405", "lng": "101.65356103", "type": "edu", "country": "Malaysia"}, {"name": "National University of Malaysia", "source_name": "Faculty of Information Science and Technology, National University of Malaysia, Bangi, Malaysia", "street_adddress": "43600 Bangi, Selangor, Malaysia", "lat": "2.91795020", "lng": "101.77127760", "type": "edu", "country": "Malaysia"}], "year": "2017", "pdf": ["http://cs-chan.com/doc/MVA2018.pdf"], "doi": ["http://doi.org/10.1007/s11042-017-5418-y"]}, {"id": "67c563d59e73a4d314e53eaa79dfcc59bdad92f4", "title": "Leveraging Dynamics in Computer Vision Problems: User Friendly and Theoretically Sound Tools", "addresses": [{"name": "Electrical and Computer Engineering", "source_name": "Electrical and Computer Engineering", "street_adddress": "Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA", "lat": "33.58667840", "lng": "-101.87539204", "type": "edu", "country": "United States"}, {"name": "Northeastern University", "source_name": "Northeastern University", "street_adddress": "Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA", "lat": "42.33836680", "lng": "-71.08793524", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/67c5/63d59e73a4d314e53eaa79dfcc59bdad92f4.pdf"], "doi": []}, {"id": "36db84d941f1a3ece8aacbfcdec79234f03aa1d2", "title": "Manifold-Based Visual Object Counting", "addresses": [{"name": "University of Surrey", "source_name": "University of Surrey", "street_adddress": "University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK", "lat": "51.24303255", "lng": "-0.59001382", "type": "edu", "country": "United Kingdom"}, {"name": "Peking University Shenzhen Graduate School", "source_name": "Peking University Shenzhen Graduate School, Xili, Nanshan District Shenzhen, Guangdong Province, China", "street_adddress": "2199 Lishui Rd, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518055", "lat": "22.59281300", "lng": "113.97426400", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["http://epubs.surrey.ac.uk/845693/1/Manifold-based%20Visual%20Object%20Counting.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272019", "http://doi.org/10.1109/TIP.2018.2799328", "https://www.ncbi.nlm.nih.gov/pubmed/29641404", "https://www.wikidata.org/entity/Q52594268"]}, {"id": "1e0fc2e5537db53080ec9a875df614dd8018c873", "title": "Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting", "addresses": [{"name": "Meijo University", "source_name": "Meijo University, Nagoya-shi, Japan", "street_adddress": "1 Chome-\uff15\uff10\uff11 Shiogamaguchi, Tenpaku Ward, Nagoya, Aichi Prefecture 468-0073, Japan", "lat": "35.13542910", "lng": "136.97509830", "type": "edu", "country": "Japan"}, {"name": "Hiroshima University", "source_name": "Hiroshima University", "street_adddress": "Hiroshima University\u3000\u5e83\u5cf6\u5927\u5b66 \u6771\u5e83\u5cf6\u30ad\u30e3\u30f3\u30d1\u30b9, \u51fa\u4f1a\u3044\u306e\u9053\u3000Deai-no-michi Str., \u897f\u6761\u4e0b\u898b, \u6771\u5e83\u5cf6\u5e02, \u5e83\u5cf6\u770c, \u4e2d\u56fd\u5730\u65b9, 739-0047, \u65e5\u672c", "lat": "34.40197660", "lng": "132.71231950", "type": "edu", "country": "Japan"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.09393.pdf"], "doi": []}, {"id": "830466596c0908399760f2009a09ce605e3121c9", "title": "Revisiting Perspective Information for Efficient Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "6c182ec9bd85cf61b01c90955c81d71926b0198a", "title": "A Deeply-Recursive Convolutional Network For Crowd Counting", "addresses": [{"name": "Xiamen University", "source_name": "Xiamen University", "street_adddress": "\u53a6\u95e8\u5927\u5b66, \u601d\u660e\u5357\u8def Siming South Road, \u601d\u660e\u533a, \u601d\u660e\u533a (Siming), \u53a6\u95e8\u5e02 / Xiamen, \u798f\u5efa\u7701, 361005, \u4e2d\u56fd", "lat": "24.43994190", "lng": "118.09301781", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.05633.pdf"], "doi": []}, {"id": "ce7d2454cdf522b9ddae98459ec9dfe4dcddc902", "title": "A Mobile Based Crowd Management System", "addresses": [{"name": "Benha University", "source_name": "Benha University", "street_adddress": "\u0643\u0644\u064a\u0629 \u0627\u0644\u0647\u0646\u062f\u0633\u0629 \u0628\u0634\u0628\u0631\u0627 \u062c\u0627\u0645\u0639\u0629 \u0628\u0646\u0647\u0627, \u0634\u0627\u0631\u0639 \u0627\u0644\u064a\u0627\u0632\u062c\u064a, \u0631\u0648\u0636 \u0627\u0644\u0641\u0631\u062c, \u0627\u0644\u0642\u0627\u0647\u0631\u0629, \u0645\u062d\u0627\u0641\u0638\u0629 \u0627\u0644\u0642\u0627\u0647\u0631\u0629, 2466, \u0645\u0635\u0631", "lat": "30.08187270", "lng": "31.24454841", "type": "edu", "country": "Egypt"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ce7d/2454cdf522b9ddae98459ec9dfe4dcddc902.pdf"], "doi": []}, {"id": "fe5679c183cb432894d111bf02cc3243c89762ca", "title": "Adaptive Scenario Discovery for Crowd Counting", "addresses": [{"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.02393.pdf"], "doi": []}, {"id": "888bb55811a77011a1f922044ee5709f25cb5b36", "title": "ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding", "addresses": [{"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11968.pdf"], "doi": []}, {"id": "054ede6144c3dee20b9b9a435a33ece783a32cfc", "title": "Analysis of Crowd Behavior Based on Optical Flow: Detection,Classification, and Clustering", "addresses": [{"name": "University of Notre Dame", "source_name": "University of Notre Dame", "street_adddress": "University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/054e/de6144c3dee20b9b9a435a33ece783a32cfc.pdf"], "doi": []}, {"id": "9fb7a23910f6464902f1b653025f3aeaa20b90dd", "title": "CNN-Based cascaded multi-task learning of high-level prior and density estimation for crowd counting", "addresses": [{"name": "Rutgers University", "source_name": "Rutgers University", "street_adddress": "Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.09605.pdf"], "doi": []}, {"id": "c05f9e4979cb33090db984226ff3cff6e2dc1950", "title": "Counting in Dense Crowds using Deep Features", "addresses": [{"name": "University of Illinois, Urbana-Champaign", "source_name": "University of Illinois, Urbana-Champaign", "street_adddress": "B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA", "lat": "40.11116745", "lng": "-88.22587665", "type": "edu", "country": "United States"}], "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/c05f/9e4979cb33090db984226ff3cff6e2dc1950.pdf"], "doi": []}, {"id": "504a4056692eba25e732717a3181ff73a5c7ec45", "title": "Crowd Counting Using Scale-Aware Attention Networks", "addresses": [{"name": "University of Manitoba", "source_name": "University of Manitoba", "street_adddress": "University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada", "lat": "49.80915360", "lng": "-97.13304179", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1903.02025.pdf"], "doi": []}, {"id": "6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de", "title": "Crowd Counting via Scale-Adaptive Convolutional Neural Network", "addresses": [{"name": "Shanghai Jiaotong University", "source_name": "Shanghai Jiaotong University", "street_adddress": "China, Shanghai, Minhang, \u4e1c\u5ddd\u8def \u90ae\u653f\u7f16\u7801: 200240", "lat": "31.02522010", "lng": "121.43377840", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.04433.pdf"], "doi": []}, {"id": "73f4be4b6e56f5bde875a8987f90ba799dde35b2", "title": "Deep Spatial Regression Model for Image Crowd Counting", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.09757.pdf"], "doi": []}, {"id": "0d3018c0630fe3f44f96c7cb4c6cabc1517b100a", "title": "Fully Convolutional Crowd Counting On Highly Congested Scenes", "addresses": [{"name": "Dublin City University", "source_name": "DUBLIN CITY UNIVERSITY", "street_adddress": "Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland", "lat": "53.38522185", "lng": "-6.25740874", "type": "edu", "country": "Ireland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.00220.pdf"], "doi": []}, {"id": "7e225e3e61527f35b7bf44d47e12cbadfc9441f8", "title": "Generating High-Quality Crowd Density Maps Using Contextual Pyramid CNNs", "addresses": [{"name": "Rutgers University", "source_name": "Rutgers University", "street_adddress": "Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.00953.pdf"], "doi": []}, {"id": "bba153ebdf11e6fb8716e35749c671ac96c14176", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.03686.pdf"], "doi": []}]}
\ No newline at end of file +{"id": "32c801cb7fbeb742edfd94cccfca4934baec71da", "paper": {"key": "ucf_crowd", "name": "UCF-CC-50", "title": "Multi-source Multi-scale Counting in Extremely Dense Crowd Images", "year": "2013", "addresses": [], "vetting": {"yes": 62, "no": 55, "total": 117}}, "citations": [{"id": "dd056ecfdcc8ce89a550e56887f1df1a66f5cbff", "title": "Body Structure Aware Deep Crowd Counting", "addresses": [{"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}, {"name": "Northwestern Polytechnical University", "source_name": "Northwestern Polytechnical University", "street_adddress": "\u897f\u5317\u5de5\u4e1a\u5927\u5b66 \u53cb\u8c0a\u6821\u533a, 127\u53f7, \u53cb\u8c0a\u897f\u8def, \u957f\u5b89\u8def, \u7891\u6797\u533a (Beilin), \u897f\u5b89\u5e02, \u9655\u897f\u7701, 710072, \u4e2d\u56fd", "lat": "34.24691520", "lng": "108.91061982", "type": "edu", "country": "China"}, {"name": "Xiamen University", "source_name": "Xiamen University", "street_adddress": "\u53a6\u95e8\u5927\u5b66, \u601d\u660e\u5357\u8def Siming South Road, \u601d\u660e\u533a, \u601d\u660e\u533a (Siming), \u53a6\u95e8\u5e02 / Xiamen, \u798f\u5efa\u7701, 361005, \u4e2d\u56fd", "lat": "24.43994190", "lng": "118.09301781", "type": "edu", "country": "China"}, {"name": "ShanghaiTech University", "source_name": "ShanghaiTech University", "street_adddress": "Yueyang Rd, Xuhui Qu, Shanghai Shi, China", "lat": "31.20254500", "lng": "121.45308600", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["http://mac.xmu.edu.cn/rrji/papers/IP%202018-Body.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8010465", "http://doi.org/10.1109/TIP.2017.2740160", "https://www.ncbi.nlm.nih.gov/pubmed/28816665", "https://www.wikidata.org/entity/Q38372031"]}, {"id": "1b21acf8daaf86c4f2228fa3f5e9aa38ab8ad30d", "title": "Cross-scene crowd counting via deep convolutional neural networks", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}, {"name": "University of Electronic Science and Technology of China", "source_name": "University of Electronic Science and Technology of China", "street_adddress": "2 Jianshe North Rd 2nd Section, Jianshe Road, Chenghua Qu, Chengdu Shi, Sichuan Sheng, China, 610054", "lat": "30.67272100", "lng": "104.09880600", "type": "edu", "country": "China"}], "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_091.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_091_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhang_Cross-Scene_Crowd_Counting_2015_CVPR_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298684", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298684", "http://doi.org/10.1109/CVPR.2015.7298684"]}, {"id": "5b823d0bdcb2c5dddfb84b4f92353bc5aa8f2644", "title": "In Defense of Single-column Networks for Crowd Counting", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}, {"name": "Beijing, China", "source_name": "Beijing, China", "street_adddress": "Beijing, China", "lat": "39.90419990", "lng": "116.40739630", "type": "edu", "country": "China"}, {"name": "Duke University", "source_name": "Duke University", "street_adddress": "Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA", "lat": "35.99905220", "lng": "-78.92906290", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06133.pdf"], "doi": []}, {"id": "4c02d6874a761182f3776a5a04142e713cd939fa", "title": "Crowd Counting using Deep Recurrent Spatial-Aware Network", "addresses": [{"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}, {"name": "University of Sydney", "source_name": "University of Sydney", "street_adddress": "USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia", "lat": "-33.88890695", "lng": "151.18943366", "type": "edu", "country": "Australia"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00601.pdf"], "doi": []}, {"id": "1a964f13abb3cdc5675dbfd612fa0409608e28c7", "title": "CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes", "addresses": [{"name": "University of Illinois, Urbana-Champaign", "source_name": "University of Illinois, Urbana-Champaign", "street_adddress": "B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA", "lat": "40.11116745", "lng": "-88.22587665", "type": "edu", "country": "United States"}, {"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.10062.pdf"], "doi": []}, {"id": "9713e87734046cb7a2d040d71fa35cf93472ea80", "title": "Granular-based dense crowd density estimation", "addresses": [{"name": "University of Malaya, Kuala Lumpur", "source_name": "University of Malaya", "street_adddress": "UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia", "lat": "3.12267405", "lng": "101.65356103", "type": "edu", "country": "Malaysia"}, {"name": "National University of Malaysia", "source_name": "Faculty of Information Science and Technology, National University of Malaysia, Bangi, Malaysia", "street_adddress": "43600 Bangi, Selangor, Malaysia", "lat": "2.91795020", "lng": "101.77127760", "type": "edu", "country": "Malaysia"}], "year": "2017", "pdf": ["http://cs-chan.com/doc/MVA2018.pdf"], "doi": ["http://doi.org/10.1007/s11042-017-5418-y"]}, {"id": "67c563d59e73a4d314e53eaa79dfcc59bdad92f4", "title": "Leveraging Dynamics in Computer Vision Problems: User Friendly and Theoretically Sound Tools", "addresses": [{"name": "Electrical and Computer Engineering", "source_name": "Electrical and Computer Engineering", "street_adddress": "Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA", "lat": "33.58667840", "lng": "-101.87539204", "type": "edu", "country": "United States"}, {"name": "Northeastern University", "source_name": "Northeastern University", "street_adddress": "Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA", "lat": "42.33836680", "lng": "-71.08793524", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/67c5/63d59e73a4d314e53eaa79dfcc59bdad92f4.pdf"], "doi": []}, {"id": "36db84d941f1a3ece8aacbfcdec79234f03aa1d2", "title": "Manifold-Based Visual Object Counting", "addresses": [{"name": "University of Surrey", "source_name": "University of Surrey", "street_adddress": "University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK", "lat": "51.24303255", "lng": "-0.59001382", "type": "edu", "country": "United Kingdom"}, {"name": "Peking University Shenzhen Graduate School", "source_name": "Peking University Shenzhen Graduate School, Xili, Nanshan District Shenzhen, Guangdong Province, China", "street_adddress": "2199 Lishui Rd, Nanshan Qu, Shenzhen Shi, Guangdong Sheng, China, 518055", "lat": "22.59281300", "lng": "113.97426400", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["http://epubs.surrey.ac.uk/845693/1/Manifold-based%20Visual%20Object%20Counting.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272019", "http://doi.org/10.1109/TIP.2018.2799328", "https://www.ncbi.nlm.nih.gov/pubmed/29641404", "https://www.wikidata.org/entity/Q52594268"]}, {"id": "1e0fc2e5537db53080ec9a875df614dd8018c873", "title": "Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting", "addresses": [{"name": "Meijo University", "source_name": "Meijo University, Nagoya-shi, Japan", "street_adddress": "1 Chome-\uff15\uff10\uff11 Shiogamaguchi, Tenpaku Ward, Nagoya, Aichi Prefecture 468-0073, Japan", "lat": "35.13542910", "lng": "136.97509830", "type": "edu", "country": "Japan"}, {"name": "Hiroshima University", "source_name": "Hiroshima University", "street_adddress": "Hiroshima University\u3000\u5e83\u5cf6\u5927\u5b66 \u6771\u5e83\u5cf6\u30ad\u30e3\u30f3\u30d1\u30b9, \u51fa\u4f1a\u3044\u306e\u9053\u3000Deai-no-michi Str., \u897f\u6761\u4e0b\u898b, \u6771\u5e83\u5cf6\u5e02, \u5e83\u5cf6\u770c, \u4e2d\u56fd\u5730\u65b9, 739-0047, \u65e5\u672c", "lat": "34.40197660", "lng": "132.71231950", "type": "edu", "country": "Japan"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.09393.pdf"], "doi": []}, {"id": "830466596c0908399760f2009a09ce605e3121c9", "title": "Revisiting Perspective Information for Efficient Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "6c182ec9bd85cf61b01c90955c81d71926b0198a", "title": "A Deeply-Recursive Convolutional Network For Crowd Counting", "addresses": [{"name": "Xiamen University", "source_name": "Xiamen University", "street_adddress": "\u53a6\u95e8\u5927\u5b66, \u601d\u660e\u5357\u8def Siming South Road, \u601d\u660e\u533a, \u601d\u660e\u533a (Siming), \u53a6\u95e8\u5e02 / Xiamen, \u798f\u5efa\u7701, 361005, \u4e2d\u56fd", "lat": "24.43994190", "lng": "118.09301781", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.05633.pdf"], "doi": []}, {"id": "ce7d2454cdf522b9ddae98459ec9dfe4dcddc902", "title": "A Mobile Based Crowd Management System", "addresses": [{"name": "Benha University", "source_name": "Benha University", "street_adddress": "\u0643\u0644\u064a\u0629 \u0627\u0644\u0647\u0646\u062f\u0633\u0629 \u0628\u0634\u0628\u0631\u0627 \u062c\u0627\u0645\u0639\u0629 \u0628\u0646\u0647\u0627, \u0634\u0627\u0631\u0639 \u0627\u0644\u064a\u0627\u0632\u062c\u064a, \u0631\u0648\u0636 \u0627\u0644\u0641\u0631\u062c, \u0627\u0644\u0642\u0627\u0647\u0631\u0629, \u0645\u062d\u0627\u0641\u0638\u0629 \u0627\u0644\u0642\u0627\u0647\u0631\u0629, 2466, \u0645\u0635\u0631", "lat": "30.08187270", "lng": "31.24454841", "type": "edu", "country": "Egypt"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ce7d/2454cdf522b9ddae98459ec9dfe4dcddc902.pdf"], "doi": []}, {"id": "fe5679c183cb432894d111bf02cc3243c89762ca", "title": "Adaptive Scenario Discovery for Crowd Counting", "addresses": [{"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.02393.pdf"], "doi": []}, {"id": "888bb55811a77011a1f922044ee5709f25cb5b36", "title": "ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding", "addresses": [{"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11968.pdf"], "doi": []}, {"id": "054ede6144c3dee20b9b9a435a33ece783a32cfc", "title": "Analysis of Crowd Behavior Based on Optical Flow: Detection,Classification, and Clustering", "addresses": [{"name": "University of Notre Dame", "source_name": "University of Notre Dame", "street_adddress": "University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA", "lat": "41.70456775", "lng": "-86.23822026", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/054e/de6144c3dee20b9b9a435a33ece783a32cfc.pdf"], "doi": []}, {"id": "9fb7a23910f6464902f1b653025f3aeaa20b90dd", "title": "CNN-Based cascaded multi-task learning of high-level prior and density estimation for crowd counting", "addresses": [{"name": "Rutgers University", "source_name": "Rutgers University", "street_adddress": "Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.09605.pdf"], "doi": []}, {"id": "c05f9e4979cb33090db984226ff3cff6e2dc1950", "title": "Counting in Dense Crowds using Deep Features", "addresses": [{"name": "University of Illinois, Urbana-Champaign", "source_name": "University of Illinois, Urbana-Champaign", "street_adddress": "B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA", "lat": "40.11116745", "lng": "-88.22587665", "type": "edu", "country": "United States"}], "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/c05f/9e4979cb33090db984226ff3cff6e2dc1950.pdf"], "doi": []}, {"id": "504a4056692eba25e732717a3181ff73a5c7ec45", "title": "Crowd Counting Using Scale-Aware Attention Networks", "addresses": [{"name": "University of Manitoba", "source_name": "University of Manitoba", "street_adddress": "University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada", "lat": "49.80915360", "lng": "-97.13304179", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1903.02025.pdf"], "doi": []}, {"id": "6fc8c988dd841c6c4f5e96b1b1458b6aa564b2de", "title": "Crowd Counting via Scale-Adaptive Convolutional Neural Network", "addresses": [{"name": "Shanghai Jiaotong University", "source_name": "Shanghai Jiaotong University", "street_adddress": "China, Shanghai, Minhang, \u4e1c\u5ddd\u8def \u90ae\u653f\u7f16\u7801: 200240", "lat": "31.02522010", "lng": "121.43377840", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.04433.pdf"], "doi": []}, {"id": "73f4be4b6e56f5bde875a8987f90ba799dde35b2", "title": "Deep Spatial Regression Model for Image Crowd Counting", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.09757.pdf"], "doi": []}, {"id": "0d3018c0630fe3f44f96c7cb4c6cabc1517b100a", "title": "Fully Convolutional Crowd Counting On Highly Congested Scenes", "addresses": [{"name": "Dublin City University", "source_name": "DUBLIN CITY UNIVERSITY", "street_adddress": "Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland", "lat": "53.38522185", "lng": "-6.25740874", "type": "edu", "country": "Ireland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.00220.pdf"], "doi": []}, {"id": "7e225e3e61527f35b7bf44d47e12cbadfc9441f8", "title": "Generating High-Quality Crowd Density Maps Using Contextual Pyramid CNNs", "addresses": [{"name": "Rutgers University", "source_name": "Rutgers University", "street_adddress": "Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA", "lat": "40.47913175", "lng": "-74.43168868", "type": "edu", "country": "United States"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.00953.pdf"], "doi": []}, {"id": "bba153ebdf11e6fb8716e35749c671ac96c14176", "title": "Image Crowd Counting Using Convolutional Neural Network and Markov Random Field", "addresses": [{"name": "Shanghai University", "source_name": "Shanghai University", "street_adddress": "\u4e0a\u6d77\u5927\u5b66, \u9526\u79cb\u8def, \u5927\u573a\u9547, \u5b9d\u5c71\u533a (Baoshan), \u4e0a\u6d77\u5e02, 201906, \u4e2d\u56fd", "lat": "31.32235655", "lng": "121.38400941", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.03686.pdf"], "doi": []}, {"id": "4e6305b9c9ec58db62548c666357521fb4b3f6f9", "title": "Iterative Crowd Counting", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09959.pdf"], "doi": []}, {"id": "45e459462a80af03e1bb51a178648c10c4250925", "title": "LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning", "addresses": [{"name": "The University of North Carolina at Chapel Hill", "source_name": "The University of North Carolina at Chapel Hill, USA", "street_adddress": "Chapel Hill, NC, USA", "lat": "35.90491220", "lng": "-79.04691340", "type": "edu", "country": "United States"}], "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.08998.pdf"], "doi": []}, {"id": "806d7b97c3535a3c62ce243fe7008149062d14c1", "title": "Learning to Count with CNN Boosting", "addresses": [{"name": "Tel Aviv University", "source_name": "Tel Aviv University", "street_adddress": "\u05d0\u05d5\u05e0\u05d9\u05d1\u05e8\u05e1\u05d9\u05d8\u05ea \u05ea\u05dc \u05d0\u05d1\u05d9\u05d1, \u05db\u05d9\u05db\u05e8 \u05de\u05e0\u05d3\u05dc, \u05ea\u05dc \u05d0\u05d1\u05d9\u05d1 - \u05d9\u05e4\u05d5, \u05d0\u05e4\u05e7\u05d4, \u05ea\u05dc \u05d0\u05d1\u05d9\u05d1-\u05d9\u05e4\u05d5, \u05de\u05d7\u05d5\u05d6 \u05ea\u05dc \u05d0\u05d1\u05d9\u05d1, NO, \u05d9\u05e9\u05e8\u05d0\u05dc", "lat": "32.11198890", "lng": "34.80459702", "type": "edu", "country": "Israel"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/806d/7b97c3535a3c62ce243fe7008149062d14c1.pdf"], "doi": []}, {"id": "5ece646d13786df1d84ff8eb2bfbc736dd337378", "title": "Leveraging Unlabeled Data for Crowd Counting by Learning to Rank", "addresses": [{"name": "University of Florence", "source_name": "University of Florence", "street_adddress": "Piazza di San Marco, 4, 50121 Firenze FI, Italy", "lat": "43.77764260", "lng": "11.25976500", "type": "edu", "country": "Italy"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03095.pdf"], "doi": []}, {"id": "ae47e73c25755427c9f5904425a35d7db737829b", "title": "Multi-scale convolutional neural networks for crowd counting", "addresses": [{"name": "South China University of Technology", "source_name": "South China University of Technology", "street_adddress": "\u534e\u5357\u7406\u5de5\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u4e1c\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u65b0\u9020, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.05020420", "lng": "113.39880323", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.02359.pdf"], "doi": []}, {"id": "54171243dfae9d7343c78026c9b94004df3853bb", "title": "ResnetCrowd: A residual deep learning architecture for crowd counting, violent behaviour detection and crowd density level classification", "addresses": [{"name": "Dublin City University", "source_name": "DUBLIN CITY UNIVERSITY", "street_adddress": "Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland", "lat": "53.38522185", "lng": "-6.25740874", "type": "edu", "country": "Ireland"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10698.pdf"], "doi": []}, {"id": "7cab6a3247f56e0e2fc38133ea0fb89c48dadda7", "title": "Spatiotemporal Modeling for Crowd Counting in Videos", "addresses": [{"name": "Hong Kong University of Science and Technology", "source_name": "Hong Kong University of Science and Technology", "street_adddress": "\u9999\u6e2f\u79d1\u6280\u5927\u5b78 Hong Kong University of Science and Technology, \u5927\u5b78\u9053 University Road, \u5927\u57d4\u4ed4 Tai Po Tsai, \u5927\u57d4\u4ed4\u6751 Tai Po Tsai Village, \u65b0\u754c New Territories, HK, DD253 1209, \u4e2d\u56fd", "lat": "22.33863040", "lng": "114.26203370", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.07890.pdf"], "doi": []}, {"id": "7d1ac241fb603a4237cb681dbcf163a9f89e906a", "title": "Supplementary Material : Switching Convolutional Neural Network for Crowd Counting", "addresses": [{"name": "Indian Institute of Science Bangalore", "source_name": "Indian Institute of Science Bangalore", "street_adddress": "IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India", "lat": "13.02223470", "lng": "77.56718325", "type": "edu", "country": "India"}], "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7d1a/c241fb603a4237cb681dbcf163a9f89e906a.pdf"], "doi": []}, {"id": "99783c792947f17e41c94ddaac31766277809049", "title": "Switching Convolutional Neural Network for Crowd Counting", "addresses": [{"name": "Indian Institute of Science Bangalore", "source_name": "Indian Institute of Science Bangalore", "street_adddress": "IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India", "lat": "13.02223470", "lng": "77.56718325", "type": "edu", "country": "India"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.00199.pdf"], "doi": []}, {"id": "b8877c1ad550a3c1b78b9f471497413a9bc52809", "title": "A Framework for Video-Driven Crowd Synthesis", "addresses": [{"name": "University of Ontario Institute of Technology", "source_name": "University of Ontario Institute of Technology, Simcoe St N, Canada", "street_adddress": "2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada", "lat": "43.94587180", "lng": "-78.89673750", "type": "edu", "country": "Canada"}], "year": "2014", "pdf": ["https://arxiv.org/pdf/1803.04969.pdf"], "doi": []}, {"id": "891eb18f7cc0702a352d812c78f33eae7ee23f99", "title": "ADCrowdNet: An Attention-injective Deformable Convolutional Network for Crowd Understanding", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "Sun Yat-Sen University", "source_name": "Sun Yat-Sen University", "street_adddress": "\u4e2d\u5927, \u65b0\u6e2f\u897f\u8def, \u9f99\u8239\u6ed8, \u5eb7\u4e50, \u6d77\u73e0\u533a (Haizhu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510105, \u4e2d\u56fd", "lat": "23.09461185", "lng": "113.28788994", "type": "edu", "country": "China"}, {"name": "University of Maryland", "source_name": "University of Maryland", "street_adddress": "The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA", "lat": "39.28996850", "lng": "-76.62196103", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11968.pdf"], "doi": []}, {"id": "d882da8d831b7fb6c459f052f9e12c9a3ea9adac", "title": "Almost Unsupervised Learning for Dense Crowd Counting", "addresses": [{"name": "Indian Institute of Science Bangalore", "source_name": "Indian Institute of Science Bangalore", "street_adddress": "IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India", "lat": "13.02223470", "lng": "77.56718325", "type": "edu", "country": "India"}], "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/d882/da8d831b7fb6c459f052f9e12c9a3ea9adac.pdf"], "doi": []}, {"id": "5882e62866fe1fcf7f8458e0bd0bcb39057afce3", "title": "Attention to Head Locations for Crowd Counting", "addresses": [{"name": "Nanjing Tech University", "source_name": "Nanjing Tech University, Nanjing, China", "street_adddress": "China, Jiangsu Sheng, Nanjing Shi, Gulou Qu, \u65b0\u6a21\u8303\u9a6c\u8def5\u53f7 \u90ae\u653f\u7f16\u7801: 210028", "lat": "32.07673400", "lng": "118.77813900", "type": "edu", "country": "China"}, {"name": "Shandong University Jinan", "source_name": "Shandong University Jinan, China, 250100", "street_adddress": "China, Shandong, Jinan, Licheng, Shanda S Rd, 27\u53f7\u5357\u8def27\u53f7 CN \u5c71\u4e1c\u7701 \u6d4e\u5357\u5e02 \u5c71\u5927", "lat": "36.64893000", "lng": "117.02901400", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.10287.pdf"], "doi": []}, {"id": "02e17f547dd75eee7282af1b5ad2626829615ac9", "title": "Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking", "addresses": [{"name": "City University of Hong Kong", "source_name": "City University of Hong Kong", "street_adddress": "\u9999\u6e2f\u57ce\u5e02\u5927\u5b78 City University of Hong Kong, \u9054\u5eb7\u8def Tat Hong Avenue, \u5927\u7aa9\u576a Tai Wo Ping, \u6df1\u6c34\u57d7\u5340 Sham Shui Po District, \u4e5d\u9f8d Kowloon, HK, KIL 3348, \u4e2d\u56fd", "lat": "22.34000115", "lng": "114.16970291", "type": "edu", "country": "China"}, {"name": "SenseTime", "source_name": "SenseTime", "street_adddress": "China, Beijing Shi, Haidian Qu, WuDaoKou, Zhongguancun E Rd, 1\u53f7-7", "lat": "39.99300800", "lng": "116.32988200", "type": "company", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10118.pdf"], "doi": []}, {"id": "8ff7567197aa9cf146e023326802b2e097121acb", "title": "Context-Aware Crowd Counting", "addresses": [{"name": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", "source_name": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Switzerland", "street_adddress": "Biblioth\u00e8que de l'EPFL, Route des Noyerettes, Ecublens, District de l'Ouest lausannois, Vaud, 1024, Schweiz/Suisse/Svizzera/Svizra", "lat": "46.51841210", "lng": "6.56846540", "type": "edu", "country": "Switzerland"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.10452.pdf"], "doi": []}, {"id": "aef3ecc926ed79478f9d1f38c0fec2a29bae9c3b", "title": "Counting in High Density Crowd Videos", "addresses": [{"name": "University of Central Florida", "source_name": "University of Central Florida", "street_adddress": "University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA", "lat": "28.59899755", "lng": "-81.19712501", "type": "edu", "country": "United States"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/aef3/ecc926ed79478f9d1f38c0fec2a29bae9c3b.pdf"], "doi": []}, {"id": "06686d25a6a7fecb201b428260636e2265f71238", "title": "Crowd Behavior Analysis via Curl and Divergence of Motion Trajectories", "addresses": [{"name": "Nanjing University of Posts and Telecommunications", "source_name": "College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China", "street_adddress": "9 Wenyuan Rd, Qixia Qu, Nanjing Shi, Jiangsu Sheng, China, 210046", "lat": "32.10574800", "lng": "118.93170100", "type": "edu", "country": "China"}, {"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["http://faculty.ucmerced.edu/mhyang/papers/ijcv17_cd.pdf"], "doi": ["https://doi.org/10.1007/s11263-017-1005-y"]}, {"id": "72da189e5a814ac899e7cb4da80370301b0a20e3", "title": "Crowd Counting and Density Estimation by Trellis Encoder-Decoder Network", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}, {"name": "University at Buffalo", "source_name": "State University of New York at Buffalo", "street_adddress": "Buffalo, NY 14260, USA", "lat": "43.00080930", "lng": "-78.78896970", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.00853.pdf"], "doi": []}, {"id": "bc97abcfb02bbcdae4c893c2182565c49603e430", "title": "Crowd Counting using Deep Recurrent Spatial-Aware Network", "addresses": [{"name": "Guangzhou University", "source_name": "Guangzhou University", "street_adddress": "\u5e7f\u5dde\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u897f\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u5357\u6751\u9547, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.04436505", "lng": "113.36668458", "type": "edu", "country": "China"}, {"name": "University of Sydney", "source_name": "University of Sydney", "street_adddress": "USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia", "lat": "-33.88890695", "lng": "151.18943366", "type": "edu", "country": "Australia"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00601.pdf"], "doi": []}, {"id": "8a62ecdc178bc14f12ce19388e2f4032648ed4db", "title": "Crowd Counting with Decomposed Uncertainty", "addresses": [{"name": "Columbia University", "source_name": "Columbia University", "street_adddress": "Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA", "lat": "40.84198360", "lng": "-73.94368971", "type": "edu", "country": "United States"}, {"name": "IBM", "source_name": "IBM, Yorktown Heights, NY, USA", "street_adddress": "1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA", "lat": "41.21055540", "lng": "-73.80342710", "type": "company", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.07427.pdf"], "doi": []}, {"id": "1a219e7bcd8f30f886a1f24a8c05bc26bef83ff9", "title": "Crowd Counting with Density Adaption Networks", "addresses": [{"name": "Chinese Academy of Sciences", "source_name": "Chinese Academy of Sciences", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "lat": "40.00447950", "lng": "116.37023800", "type": "edu", "country": "China"}, {"name": "East China Normal University", "source_name": "East China Normal University", "street_adddress": "\u534e\u4e1c\u5e08\u8303\u5927\u5b66, 3663, \u4e2d\u5c71\u5317\u8def, \u66f9\u5bb6\u6e21, \u666e\u9640\u533a, \u666e\u9640\u533a (Putuo), \u4e0a\u6d77\u5e02, 200062, \u4e2d\u56fd", "lat": "31.22849230", "lng": "121.40211389", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.10040.pdf"], "doi": []}, {"id": "09c9a70a95d1e663e9f718c095f0ef59a877c152", "title": "DA-Net: Learning the Fine-Grained Density Distribution With Deformation Aggregation Network", "addresses": [{"name": "Huazhong University of Science and Technology", "source_name": "Huazhong University of Science and Technology", "street_adddress": "\u534e\u4e2d\u5927, \u73de\u55bb\u8def, \u4e1c\u6e56\u65b0\u6280\u672f\u5f00\u53d1\u533a, \u5173\u4e1c\u8857\u9053, \u4e1c\u6e56\u65b0\u6280\u672f\u5f00\u53d1\u533a\uff08\u6258\u7ba1\uff09, \u6d2a\u5c71\u533a (Hongshan), \u6b66\u6c49\u5e02, \u6e56\u5317\u7701, 430074, \u4e2d\u56fd", "lat": "30.50975370", "lng": "114.40628810", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://xplorestaging.ieee.org/ielx7/6287639/6514899/08497050.pdf?arnumber=8497050"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8497050", "http://doi.org/10.1109/ACCESS.2018.2875495"]}, {"id": "edafefc60c6e7511f172be8b3660e41b2d6f0f07", "title": "DENet: A Universal Network for Counting Crowd with Varying Densities and Scales", "addresses": [{"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}, {"name": "University of Technology Sydney", "source_name": "University of Technology Sydney", "street_adddress": "University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia", "lat": "-33.88096510", "lng": "151.20107299", "type": "edu", "country": "Australia"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.08056.pdf"], "doi": []}, {"id": "a4927558407dab54353ac166f402e6a26c44e0ca", "title": "Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank", "addresses": [{"name": "Autonomous University of Barcelona", "source_name": "Computer Vision Center, Autonomous University of Barcelona, Edifici O, 08193 Bellaterra, Barcelona, Spain", "street_adddress": "Campus UAB, Edifici O, s/n, 08193 Cerdanyola del Vall\u00e8s, Barcelona, Spain", "lat": "41.50089570", "lng": "2.11155300", "type": "edu", "country": "Spain"}, {"name": "University of Florence", "source_name": "University of Florence", "street_adddress": "Piazza di San Marco, 4, 50121 Firenze FI, Italy", "lat": "43.77764260", "lng": "11.25976500", "type": "edu", "country": "Italy"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.06285.pdf"], "doi": []}, {"id": "429b9c93bb928815f84fb0055831077ee8149c78", "title": "Improving Dense Crowd Counting Convolutional Neural Networks using Inverse k-Nearest Neighbor Maps and Multiscale Upsampling", "addresses": [{"name": "CUNY City College", "source_name": "CUNY City College", "street_adddress": "CUNY City College, 205 East 42nd Street, New York, NY 10017", "lat": "45.55466080", "lng": "5.40652550", "type": "edu", "country": "United States"}, {"name": "City University of New York", "source_name": "The City University of New York", "street_adddress": "Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA", "lat": "40.87228250", "lng": "-73.89489171", "type": "edu", "country": "United States"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.05379.pdf"], "doi": []}, {"id": "e7ecb3ddd1d4d79231fc5fa5140288e0a7a3592b", "title": "Iterative Crowd Counting", "addresses": [{"name": "Stony Brook University", "source_name": "Stony Brook University", "street_adddress": "Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA", "lat": "40.91531960", "lng": "-73.12706260", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09959.pdf"], "doi": []}, {"id": "0bc6ea6afe3b59848a2a8f03423cc6284c60327e", "title": "Learning from Synthetic Data for Crowd Counting in the Wild", "addresses": [{"name": "Northwestern Polytechnical University Xian", "source_name": "Northwestern Polytechnical University Xian, P. R. China", "street_adddress": "127 Youyi W Rd, Beilin Qu, Xian Shi, Shaanxi Sheng, China, 710065", "lat": "34.24166080", "lng": "108.93673870", "type": "edu", "country": "China"}], "year": "2019", "pdf": ["https://arxiv.org/pdf/1903.03303.pdf"], "doi": []}, {"id": "e3b92cc14f2c33bfdc07b794292a30384f8d0ad1", "title": "Local Segmentation for Pedestrian Tracking in Dense Crowds", "addresses": [{"name": "Toshiba", "source_name": "Corp. Res. & Dev. Center, Toshiba Corp., Kawasaki, Japan", "street_adddress": "Japan, \u3012212-8582 Kanagawa Prefecture, Kawasaki, Saiwai Ward, \u5c0f\u5411\u6771\u829d\u753a1", "lat": "35.54931130", "lng": "139.69201440", "type": "company", "country": "Japan"}], "year": "2014", "pdf": ["http://clementcreusot.com/publications/papers/creusot2014-MMM.pdf"], "doi": ["http://doi.org/10.1007/978-3-319-04114-8_23"]}, {"id": "389b217408db3c6d013207ede37590513cad28c1", "title": "Mask-aware networks for crowd counting", "addresses": [{"name": "Adelaide University", "source_name": "Adelaide University, Australia", "street_adddress": "Adelaide SA 5005, Australia", "lat": "-34.92060300", "lng": "138.60622770", "type": "edu", "country": "Australia"}, {"name": "Nanjing University", "source_name": "Nanjing University", "street_adddress": "NJU, \u4e09\u6c5f\u8def, \u9f13\u697c\u533a, \u5357\u4eac\u5e02, \u6c5f\u82cf\u7701, 210093, \u4e2d\u56fd", "lat": "32.05659570", "lng": "118.77408833", "type": "edu", "country": "China"}, {"name": "Sichuan University, Chengdu", "source_name": "Sichuan Univ., Chengdu", "street_adddress": "\u56db\u5ddd\u5927\u5b66\uff08\u534e\u897f\u6821\u533a\uff09, \u6821\u4e1c\u8def, \u6b66\u4faf\u533a, \u6b66\u4faf\u533a (Wuhou), \u6210\u90fd\u5e02 / Chengdu, \u56db\u5ddd\u7701, 610014, \u4e2d\u56fd", "lat": "30.64276900", "lng": "104.06751175", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.00039.pdf"], "doi": []}, {"id": "572ee775bf7801cd64e7b85a49e9977e960e3257", "title": "Multi-label Pixelwise Classification for Reconstruction of Large-scale Urban Areas", "addresses": [{"name": "Concordia University", "source_name": "Concordia University", "street_adddress": "Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA", "lat": "45.57022705", "lng": "-122.63709346", "type": "edu", "country": "United States"}, {"name": "Guangzhou University", "source_name": "Guangzhou University", "street_adddress": "\u5e7f\u5dde\u5927\u5b66, \u5927\u5b66\u57ce\u4e2d\u73af\u897f\u8def, \u5e7f\u5dde\u5927\u5b66\u57ce, \u5357\u6751\u9547, \u756a\u79ba\u533a (Panyu), \u5e7f\u5dde\u5e02, \u5e7f\u4e1c\u7701, 510006, \u4e2d\u56fd", "lat": "23.04436505", "lng": "113.36668458", "type": "edu", "country": "China"}], "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.07368.pdf"], "doi": []}, {"id": "5128f77564f70d861debf2941df54fc575283698", "title": "PaDNet: Pan-Density Crowd Counting", "addresses": [{"name": "Fudan University", "source_name": "Fudan University", "street_adddress": "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "lat": "31.30104395", "lng": "121.50045497", "type": "edu", "country": "China"}, {"name": "Pennsylvania State University", "source_name": "Pennsylvania State University", "street_adddress": "Old Main, State College, PA 16801, USA", "lat": "40.79821330", "lng": "-77.85990840", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.02805.pdf"], "doi": []}, {"id": "7174e77f8e26aef3105996512b787b336320d46f", "title": "People Counting in High Density Crowds from Still Images", "addresses": [{"name": "Indian Institute of Technology Kanpur", "source_name": "Indian Institute of Technology Kanpur", "street_adddress": "Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India", "lat": "26.51318800", "lng": "80.23651945", "type": "edu", "country": "India"}], "year": "2015", "pdf": ["https://arxiv.org/pdf/1507.08445.pdf"], "doi": []}, {"id": "46f5bb35ea99c62320199b1f0924a4e7c0b001d3", "title": "Perspective-Aware CNN For Crowd Counting", "addresses": [{"name": "Peking University", "source_name": "Peking University", "street_adddress": "\u5317\u4eac\u5927\u5b66, 5\u53f7, \u9890\u548c\u56ed\u8def, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100871, \u4e2d\u56fd", "lat": "39.99223790", "lng": "116.30393816", "type": "edu", "country": "China"}, {"name": "Tongji University", "source_name": "Tongji University", "street_adddress": "\u540c\u6d4e\u5927\u5b66, 1239, \u56db\u5e73\u8def, \u6c5f\u6e7e, \u8679\u53e3\u533a, \u4e0a\u6d77\u5e02, 200092, \u4e2d\u56fd", "lat": "31.28473925", "lng": "121.49694909", "type": "edu", "country": "China"}, {"name": "University of Rennes", "source_name": "IRISA, University of Rennes 1", "street_adddress": "263 Avenue G\u00e9n\u00e9ral Leclerc, 35000 Rennes, France", "lat": "48.11631810", "lng": "-1.63970240", "type": "edu", "country": "France"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01989.pdf"], "doi": []}, {"id": "a507ee57e0e2e2834bab1ff7d218d3afb3634f2a", "title": "Top-Down Feedback for Crowd Counting Convolutional Neural Network", "addresses": [{"name": "Indian Institute of Science Bangalore", "source_name": "Indian Institute of Science Bangalore", "street_adddress": "IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India", "lat": "13.02223470", "lng": "77.56718325", "type": "edu", "country": "India"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08881.pdf"], "doi": []}, {"id": "2e6c3557cb90f472e6798fcaa8ecc9dff3557f11", "title": "Towards Perspective-Free Object Counting with Deep Learning", "addresses": [{"name": "University of Alcala", "source_name": "Geintra Research Group, University of Alcala", "street_adddress": "Plaza de San Diego, s/n, 28801 Alcal\u00e1 de Henares, Madrid, Spain", "lat": "40.48247220", "lng": "-3.36286740", "type": "edu", "country": "Spain"}], "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/abf0/20e0dcadc047f91ecb394cade13c05112d71.pdf"], "doi": []}, {"id": "4543845adcb6135f263cbf6c2813d10464199d52", "title": "Improving Deep Crowd Density Estimation via Pre-classification of Density", "addresses": [{"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}, {"name": "Beijing Institute of Technology", "source_name": "Beijing Institute of Technology University", "street_adddress": "\u5317\u4eac\u7406\u5de5\u5927\u5b66, 5, \u4e2d\u5173\u6751\u5357\u5927\u8857, \u4e2d\u5173\u6751, \u7a3b\u9999\u56ed\u5357\u793e\u533a, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100872, \u4e2d\u56fd", "lat": "39.95866520", "lng": "116.30971281", "type": "edu", "country": "China"}, {"name": "Shanghai Institute of Technology", "source_name": "Shanghai Institute of Technology, Shanghai, China", "street_adddress": "100 Haiquan Rd, Fengxian Qu, Shanghai Shi, China", "lat": "30.83807700", "lng": "121.50781700", "type": "edu", "country": "China"}], "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1007/978-3-319-70090-8_27"]}]}
\ No newline at end of file |
