summaryrefslogtreecommitdiff
path: root/site/datasets/verified/fiw_300.csv
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/verified/fiw_300.csv')
-rw-r--r--site/datasets/verified/fiw_300.csv9
1 files changed, 9 insertions, 0 deletions
diff --git a/site/datasets/verified/fiw_300.csv b/site/datasets/verified/fiw_300.csv
index afcd74c1..c87a054d 100644
--- a/site/datasets/verified/fiw_300.csv
+++ b/site/datasets/verified/fiw_300.csv
@@ -1,2 +1,11 @@
id,country,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,,300-W,fiw_300,0.0,0.0,,,,main,,A Semi-automatic Methodology for Facial Landmark Annotation,2013
+1,United Kingdom,300-W,fiw_300,51.0267513,-1.3972576,"IBM Hursley Labs, UK",company,c335a560a315de7cfeadf5b0b0febca837116988,citation,http://eprints.mdx.ac.uk/23779/1/C26.pdf,Back to the future: A fully automatic method for robust age progression,2016
+2,United States,300-W,fiw_300,35.9042272,-78.85565763,"IBM Research, North Carolina",company,c335a560a315de7cfeadf5b0b0febca837116988,citation,http://eprints.mdx.ac.uk/23779/1/C26.pdf,Back to the future: A fully automatic method for robust age progression,2016
+3,United Kingdom,300-W,fiw_300,51.49887085,-0.17560797,Imperial College London,edu,c335a560a315de7cfeadf5b0b0febca837116988,citation,http://eprints.mdx.ac.uk/23779/1/C26.pdf,Back to the future: A fully automatic method for robust age progression,2016
+4,United States,300-W,fiw_300,37.3936717,-122.0807262,Facebook,company,dcd2ac544a8336d73e4d3d80b158477c783e1e50,citation,https://arxiv.org/pdf/1709.01591.pdf,Improving Landmark Localization with Semi-Supervised Learning,2018
+5,United States,300-W,fiw_300,37.3706254,-121.9671894,NVIDIA,company,dcd2ac544a8336d73e4d3d80b158477c783e1e50,citation,https://arxiv.org/pdf/1709.01591.pdf,Improving Landmark Localization with Semi-Supervised Learning,2018
+6,Canada,300-W,fiw_300,45.5010087,-73.6157778,University of Montreal,edu,dcd2ac544a8336d73e4d3d80b158477c783e1e50,citation,https://arxiv.org/pdf/1709.01591.pdf,Improving Landmark Localization with Semi-Supervised Learning,2018
+7,United States,300-W,fiw_300,38.7768106,-94.9442982,Amazon,company,e7265c560b3f10013bf70aacbbf0eb4631b7e2aa,citation,https://arxiv.org/pdf/1805.10483.pdf,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,2018
+8,China,300-W,fiw_300,39.993008,116.329882,SenseTime,company,e7265c560b3f10013bf70aacbbf0eb4631b7e2aa,citation,https://arxiv.org/pdf/1805.10483.pdf,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,2018
+9,China,300-W,fiw_300,40.00229045,116.32098908,Tsinghua University,edu,e7265c560b3f10013bf70aacbbf0eb4631b7e2aa,citation,https://arxiv.org/pdf/1805.10483.pdf,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,2018