diff options
Diffstat (limited to 'site/datasets/unknown/voc.json')
| -rw-r--r-- | site/datasets/unknown/voc.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/voc.json b/site/datasets/unknown/voc.json index 3ea9f08e..86f41526 100644 --- a/site/datasets/unknown/voc.json +++ b/site/datasets/unknown/voc.json @@ -1 +1 @@ -{"id": "0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a", "citations": [{"id": "7f5793c967d53d0a3e88e8bba895336b92d5da90", "title": "Dense interest features for video processing", "year": "2014", "pdf": []}, {"id": "25d75339720787e7003f2f103cf38cee8175972a", "title": "Optimistic and Pessimistic Neural Networks for Scene and Object Recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.07982.pdf"]}, {"id": "7f66ff8dd0313fc9c7d67be7ea5aecdda956657c", "title": "Tracking-by-Segmentation with Online Gradient Boosting Decision Tree", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf"]}, {"id": "c399c0089fb134d1476fadf5f0426e0e8b70eebd", "title": "The Lov\u00e1sz Hinge: A Novel Convex Surrogate for Submodular Losses.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1512.07797.pdf"]}, {"id": "794dbf68bae49bb571d1b2461289a6bb629de875", "title": "The Lov\u00e1sz Hinge: A Convex Surrogate for Submodular Losses", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/794d/bf68bae49bb571d1b2461289a6bb629de875.pdf"]}, {"id": "0caef87116f62fcc86735401a9aa9d4e170ffbef", "title": "On Performance Evaluation of Driver Hand Detection Algorithms: Challenges, Dataset, and Metrics", "year": "2015", "pdf": ["http://cvrr.ucsd.edu/eshed/papers/Das_ITSC2015.pdf", "http://cvrr.ucsd.edu/publications/2015/DasOhnbarTrivedi_ITSC2015.pdf"]}, {"id": "bea1958ecdcc5279672bed0f2ba8de5a84b0ce64", "title": "Towards reasoning based representations: Deep Consistence Seeking Machine", "year": "2018", "pdf": []}, {"id": "823db813f036365cf9b22b2081ec167a2b582532", "title": "Segmentation and Shape Extraction from Convolutional Neural Networks", "year": "2018", "pdf": []}, {"id": "f81f5da2a1e4eb80b465b8dffca4c9e583a8a8a6", "title": "Rapid Object Detection Systems , Utilising Deep Learning and Unmanned Aerial Systems ( Uas ) for Civil Engineering Applications", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f81f/5da2a1e4eb80b465b8dffca4c9e583a8a8a6.pdf"]}, {"id": "b61ae8216a7c3a5a3202478cd6f18bf3014e2342", "title": "Robust Pedestrian Detection by Combining Visible and Thermal Infrared Cameras", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1f50/d437901304a20f17713bc4a1935f842c57fa.pdf"]}, {"id": "5638516780883fa91827ed095fe2ace103a2f941", "title": "Weakly supervised pedestrian detector training by unsupervised prior learning and cue fusion in videos", "year": "2014", "pdf": []}, {"id": "656f05741c402ba43bb1b9a58bcc5f7ce2403d9a", "title": "Supervised Learning Approaches for Automatic Structuring of Videos. (M\u00e9thodes d'apprentissage supervis\u00e9 pour la structuration automatique de vid\u00e9os)", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/656f/05741c402ba43bb1b9a58bcc5f7ce2403d9a.pdf"]}, {"id": "a6b553a00e60cd1d33f91dc726fa0216728c20e9", "title": "Nonparametric Feature Matching Based Conditional Random Fields for Gesture Recognition from Multi-Modal Video", "year": "2016", "pdf": []}, {"id": "67126ad0af544740c455311d08cb180aec830a6c", "title": "Generating Descriptions of Spatial Relations between Objects in Images", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6712/6ad0af544740c455311d08cb180aec830a6c.pdf"]}, {"id": "59b21f61ac46e1f982cbd9f49cb855ba5fcd3c45", "title": "CCNY at TRECVID 2014 : Surveillance Event Detection", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8028/6720d33e63f470f43db4723a58bdc6d8b450.pdf"]}, {"id": "4980511ea7ac286b7fff0456216425287bc9a083", "title": "Automatic Image Annotation Using Modified Keywords Transfer Mechanism Base on Image-Keyword Graph", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/4980/511ea7ac286b7fff0456216425287bc9a083.pdf"]}, {"id": "ff18125a8f549135e6320fed91d0002bd2dae635", "title": "Colour Terms: a Categorisation Model Inspired by Visual Cortex Neurons", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.06300.pdf"]}, {"id": "b3d8705d46a1d63b40a76bbcf8822b2e90b3b9ad", "title": "Efficient Labelling of Pedestrian Supervisions", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/b3d8/705d46a1d63b40a76bbcf8822b2e90b3b9ad.pdf"]}, {"id": "7e2ff809f2f38eaf070fe36ad054e61c31b6b9e8", "title": "Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1503.04949.pdf"]}, {"id": "dc5e9f75235dcb4ec39259f82574cd6ffd3611de", "title": "Analysis of Multi-planar Probability Maps for People Localization in Overlapping Camera Systems", "year": "2014", "pdf": []}, {"id": "6601549a9f27233b4b21d9c1892efd40b055d74c", "title": "Structured class-labels in random forests for semantic image labelling", "year": "2011", "pdf": ["http://www.dsi.unive.it/~pelillo/papers/ICCV%202011.pdf", "http://www.dsi.unive.it/~srotabul/files/publications/iccv11.pdf"]}, {"id": "e21b1c10bee6a984971dcba414c22078dcfd21c2", "title": "Recent progress in semantic image segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.10198.pdf"]}, {"id": "744108530678ee667b9c1220933bed074794d9e2", "title": "A Scene Recognition and Semantic Analysis Approach to Unhealthy Sitting Posture Detection during Screen-Reading", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/7441/08530678ee667b9c1220933bed074794d9e2.pdf"]}, {"id": "0435a34e93b8dda459de49b499dd71dbb478dc18", "title": "VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks", "year": "2018", "pdf": []}, {"id": "cf384eda31030a45238ebd8356ace7600da5076b", "title": "Cross-Domain CNN for Hyperspectral Image Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00093.pdf"]}, {"id": "e4dc24e4926df4de3e8d7ca7cd1f4115e91f03e1", "title": "Instance-level video segmentation from object tracks Anonymous CVPR submission", "year": "", "pdf": ["https://pdfs.semanticscholar.org/e4dc/24e4926df4de3e8d7ca7cd1f4115e91f03e1.pdf"]}, {"id": "fbb4f4959756798aabba8034cb3167756b191811", "title": "Supervised Infinite Feature Selection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.02665.pdf"]}, {"id": "28f9cf85ebbff86207e1f6067880bb23daff0878", "title": "Prime Object Proposals with Randomized Prim's Algorithm", "year": "2013", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Manen_Prime_Object_Proposals_2013_ICCV_paper.pdf", "http://www.vision.ee.ethz.ch/~smanenfr/rp/ManenICCV2013.pdf", "https://varcity.ethz.ch/paper/iccv2013_manen_primeobjects.pdf"]}, {"id": "5a0209515ab62e008efeca31f80fa0a97031cd9d", "title": "Dataset fingerprints: Exploring image collections through data mining", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_046.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_046_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_046_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Rematas_Dataset_Fingerprints_Exploring_2015_CVPR_paper.pdf", "https://homes.cs.washington.edu/~krematas/Publications/rematasCVPR2015.pdf"]}, {"id": "7e157fb05614a158397bc2a3bf7b7962b1a123ce", "title": "Deep Network Embedding for Graph Representation Learning in Signed Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.01718.pdf"]}, {"id": "194af94f1ea9357bebb0aab5ab98aa0daa21ddbd", "title": "Snapshot Distillation: Teacher-Student Optimization in One Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00123.pdf"]}, {"id": "14d0a53ede10cb42cf3ef8429e24340ef18d0814", "title": "Motion-Guided Cascaded Refinement Network for Video Object Segmentation", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0391.pdf", "http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Motion-Guided_Cascaded_Refinement_CVPR_2018_paper.pdf"]}, {"id": "aae1bf434983545c8a99a5dbfc2ce37435c76e03", "title": "SampleAhead: Online Classifier-Sampler Communication for Learning from Synthesized Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00248.pdf"]}, {"id": "563e1c1821401eef5a6473524583951d3a0f641b", "title": "Detecting Small Signs from Large Images", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.08574.pdf"]}, {"id": "e9af96d478b487fec9a06dde9e43b2ed3355ea7b", "title": "Automatic thresholding of SIFT descriptors", "year": "2016", "pdf": ["https://arxiv.org/pdf/1811.03173.pdf"]}, {"id": "d0b083befa0034bcd4a1349336fb30158157e6d8", "title": "A Semantic Distance Based Nearest Neighbor Method for Image Annotation", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/d0b0/83befa0034bcd4a1349336fb30158157e6d8.pdf"]}, {"id": "42a581862c4bf4c0315078165172cc8d40054ea5", "title": "Combining static and dynamic features for real-time moving pedestrian detection", "year": "2018", "pdf": []}, {"id": "2c9c597ab660815e07980e9655c3c5989402205b", "title": "Vision-Based Reacquisition for Task-Level Control", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/2c9c/597ab660815e07980e9655c3c5989402205b.pdf"]}, {"id": "0bbaa29d1203d3a241074d4c6c7d01171b15afdb", "title": "AN EFFICIENT FRAMEWORK FOR IMAGE DATA RECOGNITION & RETRIEVAL", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/0bba/a29d1203d3a241074d4c6c7d01171b15afdb.pdf"]}, {"id": "a221588fd2d062462254481cfd9563fec2f7c387", "title": "Deep neural network ensemble architecture for eye movements classification", "year": "2018", "pdf": []}, {"id": "a1f33473ea3b8e98fee37e32ecbecabc379e07a0", "title": "Image Segmentation by Cascaded Region Agglomeration", "year": "2013", "pdf": ["http://cs.brown.edu/people/ren/publications/cvpr2013/cascade_final.pdf", "http://ttic.uchicago.edu/~gregory/papers/cascade_cvpr2013.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c011.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Ren_Image_Segmentation_by_2013_CVPR_paper.pdf"]}, {"id": "6c289ce7cd1c8514f71bf7dc25b1b203b98f8129", "title": "Semantic-Aware Image Smoothing", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6c28/9ce7cd1c8514f71bf7dc25b1b203b98f8129.pdf"]}, {"id": "858555b6f4663fe083d6c81a2671c9cd8130bbf3", "title": "Object Discovery via Cohesion Measurement", "year": "2018", "pdf": ["https://arxiv.org/pdf/1704.08944.pdf"]}, {"id": "995998f46ce5cb82a214fad9b4604bd52e836f0a", "title": "Coarse adaptive color image segmentation for visual object classification", "year": "2008", "pdf": ["http://liris.cnrs.fr/Documents/Liris-3453.pdf"]}, {"id": "3e50e351687779c05390daf117f0394d1556cd3c", "title": "Die Detektion interessanter Objekte unter Verwendung eines objektbasierten Aufmerksamkeitsmodells", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3e50/e351687779c05390daf117f0394d1556cd3c.pdf"]}, {"id": "83acbf0bee402b0472ff101cee5942f4137d91c3", "title": "Semi-automatic Annotation on Image Segmentation Hierarchies", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/83ac/bf0bee402b0472ff101cee5942f4137d91c3.pdf"]}, {"id": "4b726a43e201f320b906e1f155aa27c32d43bbc6", "title": "Simultaneous Object Classification and Viewpoint Estimation using Deep Multi-task Convolutional Neural Network", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4b72/6a43e201f320b906e1f155aa27c32d43bbc6.pdf"]}, {"id": "f1d8c377093ecf64afd7f17383738e81666fe5ae", "title": "Remote Detection of Idling Cars Using Infrared Imaging and Deep Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10805.pdf"]}, {"id": "09d7fcbc2dca399b500586b007307fde6424b424", "title": "Optimizing Average Precision Using Weakly Supervised Data", "year": "2014", "pdf": ["http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0E16D657AE13065C41D3AB64DEAAA8C0?doi=10.1.1.456.4369&rep=rep1&type=pdf", "http://cvn.ecp.fr/personnel/pawan/publications/BMJK-PAMI2015.pdf", "http://web2py.iiit.ac.in/research_centres/publications/download/inproceedings.pdf.9ccd4649122c46ad.417365656d323031344f7074696d697a696e672e706466.pdf", "http://web2py.iiit.ac.in/research_centres/publications/download/mastersthesis.pdf.946ff3c03bcbb404.617365656d5468657369732e706466.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Behl_Optimizing_Average_Precision_2014_CVPR_paper.pdf", "https://hal-ecp.archives-ouvertes.fr/file/index/docid/984699/filename/BJK-CVPR2014.pdf"]}, {"id": "03a2235fea70317461222fac05e38ee35ead9711", "title": "Implementation of a Computer Vision Algorithm for Onboard Detection of Unmanned Aircraft submitted by Luk\u00e1\u0161 Bauer", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03a2/235fea70317461222fac05e38ee35ead9711.pdf"]}, {"id": "393d34faf86df2c9d8246a7d6ba669133fe9207d", "title": "Visual tracking of a moving object via the soft cosine measure", "year": "2017", "pdf": []}, {"id": "4ba503d8f173880d8e8402808f54b78b653e5d20", "title": "Accelerating Stochastic Gradient Descent via Online Learning to Sample", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/4ba5/03d8f173880d8e8402808f54b78b653e5d20.pdf"]}, {"id": "1a20ddce2349bc995dceea66cd2378f8888c8027", "title": "SAN: Learning Relationship Between Convolutional Features for Multi-scale Object Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04974.pdf"]}, {"id": "afad16c9fee11d8f78785af6b1856beb86b5ccf4", "title": "Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08011.pdf"]}, {"id": "369bd35ab8bad4c7bc5e376cc776a5366d97b12e", "title": "An Object Detector Trained on Line Drawings", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/369b/d35ab8bad4c7bc5e376cc776a5366d97b12e.pdf"]}, {"id": "095ccb4e2e0f3934dc1aa51c685b2f54c8a6e588", "title": "Derivate-based Component-Trees for Multi-Channel Image Segmentation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.01906.pdf"]}, {"id": "3b4f6956aba3c0a8c444349868b2263d3124aa66", "title": "Seeded Laplacian: An interactive image segmentation approach using eigenfunctions", "year": "2015", "pdf": ["http://ahmed-taha.com/wp-content/uploads/2015/09/icip2015_presentation.pdf"]}, {"id": "b1369e4785dd0b23f89ca76f45468049c8667863", "title": "1 DARTS : Deceiving Autonomous Cars with Toxic Signs", "year": "2018", "pdf": []}, {"id": "83b2dc1b81e5dd420bc030a8d67b5ed36b5b0c5e", "title": "Supervised hierarchical Pitman-Yor process for natural scene segmentation", "year": "2011", "pdf": ["http://ttic.uchicago.edu/~rurtasun/publications/shyr_etal_cvpr11.pdf"]}, {"id": "065f05c9cb2a6080191851dd82cd9b439a77499a", "title": "Comparing Boosted Cascades to Deep Learning Architectures for Fast and Robust Coconut Tree Detection in Aerial Images", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/065f/05c9cb2a6080191851dd82cd9b439a77499a.pdf"]}, {"id": "12ff1c48f5776fda9d156c7b324af3f2674420a9", "title": "Are Large Scale Training Images or Discriminative Features Important for Codebook Construction?", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/12ff/1c48f5776fda9d156c7b324af3f2674420a9.pdf"]}, {"id": "cb4fc4d49783f2049c48a062169f04eb744443ec", "title": "Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.08474.pdf"]}, {"id": "46971fb6caa61c606b046da855be4e196a830ccf", "title": "Identification of Scene Text by Character Descriptor in Smart Mobile Devices", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/4697/1fb6caa61c606b046da855be4e196a830ccf.pdf"]}, {"id": "fd23dda0abe2d6a3ae0c8253c89110364cdecbc9", "title": "Deep Learning for People Detection on Beach Images", "year": "2018", "pdf": []}, {"id": "f8f14c0248a4974ce9a6226db81f9745a6b1ea97", "title": "Part based pedestrian detection based on Logic inference", "year": "2013", "pdf": ["http://portal.uc3m.es/portal/page/portal/dpto_ing_sistemas_automatica/investigacion/lab_sist_inteligentes_old/publications/2013-ITSC-Olmeda.pdf"]}, {"id": "1c9da6cef6b1be9c116b26dd52c341c0adcf7db2", "title": "Interactive Perception: Leveraging Action in Perception and Perception in Action", "year": "2017", "pdf": ["https://arxiv.org/pdf/1604.03670.pdf"]}, {"id": "b1f9657ad8033bca6f25a7aef019a1cb45b75ce2", "title": "High performance and fast object detection in road environments", "year": "2017", "pdf": []}, {"id": "e047bcb9721c36fb61df1f4d6f7de83f290ec1d4", "title": "Flower classification: Training augmentation using manifold images", "year": "2015", "pdf": []}, {"id": "32bebe84ffbd4fd81f0e5bb30dbc90774aa3b14b", "title": "Segmentation Results Stimuli Final Saliency Map Ground Truth Constructed Graph CCA", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/32be/be84ffbd4fd81f0e5bb30dbc90774aa3b14b.pdf"]}, {"id": "71c966967fe77132a6c87999bde17a80e76b1202", "title": "Object Detection Using Deep Learning - Learning where to search using visual attention", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/71c9/66967fe77132a6c87999bde17a80e76b1202.pdf"]}, {"id": "bf3aae7293f664d512c0904916d804327af22f52", "title": "STDnet: A ConvNet for Small Target Detection", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/bf3a/ae7293f664d512c0904916d804327af22f52.pdf"]}, {"id": "29aa3dc15450e6eb46c34f30f0e224e5ea16615e", "title": "Sketch Me That Shoe", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Yu_Sketch_Me_That_CVPR_2016_paper.pdf", "http://vision.cs.utexas.edu/381V-fall2016/slides/hsiao_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yu_Sketch_Me_That_CVPR_2016_paper.pdf", "https://www.eecs.qmul.ac.uk/~qian/SketchMeThatShoe.pdf"]}, {"id": "c37fe13f94dfc2f3494a35a63336689ce4392135", "title": "MPNET: An End-to-End Deep Neural Network for Object Detection in Surveillance Video", "year": "2018", "pdf": []}, {"id": "549c719c4429812dff4d02753d2db11dd490b2ae", "title": "YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00824.pdf"]}, {"id": "6f2819172d270ceb568bf7586d812b298266bcbf", "title": "Edge Fields for Robust Object Proposal", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6f28/19172d270ceb568bf7586d812b298266bcbf.pdf"]}, {"id": "22cf367d14e646914cc959bbcd402df0c20cd0dc", "title": "Towards Automated Melanoma Screening: Proper Computer Vision & Reliable Results", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.04024.pdf"]}, {"id": "c8ba499e8d8daa32637885f03137f41d61023bf9", "title": "Weak supervision for detecting object classes from activities", "year": "2017", "pdf": ["https://ps.is.tue.mpg.de/uploads_file/attachment/attachment/296/weak_supervision_object_detection.pdf"]}, {"id": "82451d0ae2e0154b5f9cd096af199c35319e911a", "title": "Image spam filtering using convolutional neural networks", "year": "2018", "pdf": []}, {"id": "b800f6b02c32c54cb07e6b8655171bbb2ca5cc0e", "title": "Computer Vision : Visual Extent of an Object", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/b800/f6b02c32c54cb07e6b8655171bbb2ca5cc0e.pdf"]}, {"id": "094f5e36dae2602e179f2c1d95a616df3dbe967f", "title": "Bilinear classifiers for visual recognition", "year": "2009", "pdf": ["https://pdfs.semanticscholar.org/094f/5e36dae2602e179f2c1d95a616df3dbe967f.pdf"]}, {"id": "e8b2a98f87b7b2593b4a046464c1ec63bfd13b51", "title": "CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.05413.pdf"]}, {"id": "46c82cfadd9f885f5480b2d7155f0985daf949fc", "title": "3D Shape Attributes", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Fouhey_3D_Shape_Attributes_CVPR_2016_paper.pdf", "http://www.cs.cmu.edu/~dfouhey/2016/shapeAttr/shapeAttr.pdf", "http://www.cs.cmu.edu/~dfouhey/2016/shapeAttr/talk_final.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Fouhey_3D_Shape_Attributes_CVPR_2016_paper.pdf", "http://www.robots.ox.ac.uk/~vgg/publications/2016/Fouhey16/fouhey16.pdf", "https://people.eecs.berkeley.edu/~dfouhey/2016/shapeAttr/shapeAttr.pdf", "https://people.eecs.berkeley.edu/~dfouhey/2016/shapeAttr/talk_final.pdf"]}, {"id": "9c4365a56fb3cf41b15712657b15f7422ca0dab2", "title": "A Hybrid Supervised-Unsupervised Vocabulary Generation Algorithm for Visual Concept Recognition", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/9c43/65a56fb3cf41b15712657b15f7422ca0dab2.pdf"]}, {"id": "90e994a802a0038f24c8e3735d7619ebb40e6e93", "title": "Semantic Foggy Scene Understanding with Synthetic Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.07819.pdf"]}, {"id": "cd1a636c1261208084cb8395c877c7ca22c76df1", "title": "Fast Deep Vehicle Detection in Aerial Images", "year": "2017", "pdf": ["https://www.computer.org/csdl/proceedings/wacv/2017/4822/00/07926624.pdf"]}, {"id": "1999d5e0700bf8fa50bb1bab5b981bda1d111a4f", "title": "Monocular Road Terrain Detection by Combining Visual and Spatial Information", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/73b1/10df4809d0a015f90fa6e7a7dce351bcc52e.pdf", "https://www.researchgate.net/profile/Jannik_Fritsch/publication/261073577_Monocular_Road_Terrain_Detection_by_Combining_Visual_and_Spatial_Information/links/5475ef240cf29afed612e5a8.pdf"]}, {"id": "895c5a6f2915d95d518e78d6a0224dad7399492b", "title": "Beyond Bounding Boxes: Precise Localization of Objects in Images", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/b43d/d1c7c058831ba3f242997e7743425325b0bd.pdf"]}, {"id": "e8ffef3d4d74720e766e506e175e533bdc8ee705", "title": "Object Detection Networks on Convolutional Feature Maps", "year": "2017", "pdf": ["https://arxiv.org/pdf/1504.06066.pdf"]}, {"id": "5e0f8c355a37a5a89351c02f174e7a5ddcb98683", "title": "Microsoft COCO: Common Objects in Context", "year": "2014", "pdf": ["https://arxiv.org/pdf/1405.0312.pdf"]}, {"id": "304aa9bfd6bc32d3d87abce6a229d973270bbd73", "title": "Fast Neural Cell Detection Using Light-Weight SSD Neural Network", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w8/papers/Yi_Fast_Neural_Cell_CVPR_2017_paper.pdf"]}, {"id": "084bd219dd239dc4c9a02621a5333d3bc1446566", "title": "DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking", "year": "2015", "pdf": ["https://arxiv.org/pdf/1503.00072.pdf"]}, {"id": "284be8be0c6bedc36dfe43229bc84345ab0aedc2", "title": "Faster Training of Mask R-CNN by Focusing on Instance Boundaries", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07069.pdf"]}, {"id": "0394acc70f58fbb6326d1fbf44e0a6da5a0345d1", "title": "Automated Recognition of Text in Images : A Survey", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/0394/acc70f58fbb6326d1fbf44e0a6da5a0345d1.pdf"]}, {"id": "e41876930495ee879b0d1cda9a85f82102884b17", "title": "Robotic arm control by fine-tuned convolutional neural network model", "year": "2017", "pdf": []}, {"id": "c56da136b8d62125009a131f6dc21fcd0dd6a559", "title": "ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT)", "year": "2017", "pdf": []}, {"id": "0083a395fded81d562317d83e194dfbc47b5c04a", "title": "AT&T Research at TRECVID 2010", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/955f/e9a0ba02d82e469c5e719bbde9a5f14a3d32.pdf"]}, {"id": "25a3ae06419787770f8040938232a77f29bd0bc2", "title": "PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects", "year": "2013", "pdf": ["http://liris.cnrs.fr/Documents/Liris-6293.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Duffner_PixelTrack_A_Fast_2013_ICCV_paper.pdf", "https://hal.archives-ouvertes.fr/hal-00976387/file/Liris-6293.pdf"]}, {"id": "a05b7a206c86b3928746cce935f6f85d534a43cd", "title": "Automated Pathogenesis-Based Diagnosis of Lumbar Neural Foraminal Stenosis via Deep Multiscale Multitask Learning", "year": "2018", "pdf": ["http://www.digitalimaginggroup.ca/members/Shuo/PathogenesisSpine.pdf"]}, {"id": "c1e53c31202d7c9512857d4dd73a8e6d05a48849", "title": "An Improved Faster R-CNN for Same Object Retrieval", "year": "2017", "pdf": []}, {"id": "a74b045f28670e8f85173e0e483581520d667f02", "title": "Object tracking using Langevin Monte Carlo particle filter and locality sensitive histogram based likelihood model", "year": "2018", "pdf": []}, {"id": "2d15a7546c16d5821ffa8f769eb7ec18e435e64d", "title": "Recognition in Terra Incognita", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04975.pdf"]}, {"id": "66586f1d755362f485f25acfc60153c2a5ed1533", "title": "A Comparison of Deep Learning Architectures for Semantic Mapping of Very High Resolution Images", "year": "2018", "pdf": []}, {"id": "81ea29bde0216e41420c4591bebb800142fa3269", "title": "Learning Active Learning from Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.03365.pdf"]}, {"id": "fa11e3517ed9b08ca1d0dcca2cc5bc3a6ada9fcb", "title": "The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics", "year": "2015", "pdf": []}, {"id": "8d74fbd46f9d5d615e350c4593cbc5b5ca63fa8b", "title": "Data driven visual tracking via representation learning and online multi-class LPBoost learning", "year": "2016", "pdf": []}, {"id": "9452d029f5d140aece06619b6fd8e47b070cacd1", "title": "Urban classification by pixel and object-based approaches for very high resolution imagery", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/9452/d029f5d140aece06619b6fd8e47b070cacd1.pdf"]}, {"id": "f852d7ff0b1ade73fdb2dc43578cf414a6c57cab", "title": "Deep learning on small datasets using online image search", "year": "2016", "pdf": []}, {"id": "0ab65b963f8b71e31bfec188056023147f75303e", "title": "SPNet: Superpixel Pyramid Network for Scene Parsing", "year": "2018", "pdf": []}, {"id": "47c31fd5edce58007df1b61dd671283722047da4", "title": "Decomposition, discovery and detection of visual categories using topic models", "year": "2008", "pdf": ["http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/463.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/463.pdf", "http://www.icsi.berkeley.edu/pubs/vision/decompositiondiscover08.pdf", "https://scalable.mpi-inf.mpg.de/files/2013/04/fritz08cvpr.pdf"]}, {"id": "ed62a56b81511d7fcf6d247014987163d9668982", "title": "\"What happens if...\" Learning to Predict the Effect of Forces in Images", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.05600.pdf"]}, {"id": "8502c089c9affe5955810073b4c814457790065c", "title": "Learning Single-view 3D Reconstruction of Objects and Scenes", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8502/c089c9affe5955810073b4c814457790065c.pdf"]}, {"id": "d6b514a68abff3ab14af9fc0152cd5b28bd0192c", "title": "Instance Segmentation by Deep Coloring", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.10007.pdf"]}, {"id": "af7310abcbac6b43ffa850be2315282185b933bc", "title": "Detection and recognition of traffic signs inside the attentional visual field of drivers", "year": "2017", "pdf": []}, {"id": "193a69489230de1013dff9af1232e5379cc5282f", "title": "Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/193a/69489230de1013dff9af1232e5379cc5282f.pdf"]}, {"id": "2851efe83633a1c80272ba2c9302a1333dd32523", "title": "Understanding and localizing activities from correspondences of clustered trajectories", "year": "2017", "pdf": ["https://www.micc.unifi.it/wp-content/uploads/2017/01/1-s2.0-S1077314216301965-main.pdf"]}, {"id": "0f8f9253c81fd90fe44d474cc185d4ae2487e5b4", "title": "NYC3DCars: A Dataset of 3D Vehicles in Geographic Context", "year": "2013", "pdf": ["http://nyc3d.cs.cornell.edu/static/paper.pdf", "http://www.cs.cornell.edu/~snavely/publications/papers/nyc3dcars_iccv13.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Matzen_NYC3DCars_A_Dataset_2013_ICCV_paper.pdf"]}, {"id": "be2d326fa588b4ffd1d8d3d4408ae680e1a26277", "title": "JOURNA A Survey on Modern Era \u2019 s Online Object Tracking Algorithms", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/be2d/326fa588b4ffd1d8d3d4408ae680e1a26277.pdf"]}, {"id": "a228ba020bd321d29ab24485cb2988a62707fd64", "title": "Using objective ground-truth labels created by multiple annotators for improved video classification: A comparative study", "year": "2013", "pdf": ["https://engineering.purdue.edu/RVL/Publications/Srivastava2013.pdf"]}, {"id": "3e9d04b62d3469fb155e02c1f30b8900381e1419", "title": "Fast and Accurate, Convolutional Neural Network Based Approach for Object Detection from UAV", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05756.pdf"]}, {"id": "2d5589ad3a228670eac7251b6508cb326793051c", "title": "A comparison of late fusion methods for object detection", "year": "2013", "pdf": ["http://www2.informatik.hu-berlin.de/~knauer/Publikationen/knauer2013c.pdf"]}, {"id": "5c45a1abc51fe059987bcfba19b1d5076a8d9afb", "title": "Autonomous Object Category Learning for Service Robots Using Internet Resources", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5c45/a1abc51fe059987bcfba19b1d5076a8d9afb.pdf"]}, {"id": "c9d73438bf5e66bd0c4f512c5a4e53c3e33e721e", "title": "Adding spatial distribution clue to aggregated vector in image retrieval", "year": "2018", "pdf": ["https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-018-0247-0?site=jivp-eurasipjournals.springeropen.com"]}, {"id": "197f945b66995e4d006497808586f828f8a88a86", "title": "Part Discovery from Partial Correspondence", "year": "2013", "pdf": ["http://people.cs.umass.edu/~smaji/papers/viscorr-cvpr13.pdf", "http://people.cs.umass.edu/~smaji/presentations/ViscorrCVPR13Poster.pdf", "http://ttic.uchicago.edu/~gregory/papers/mg-viscorr-cvpr13.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a931.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Maji_Part_Discovery_from_2013_CVPR_paper.pdf"]}, {"id": "64c1158a4061882d610f1cffd5ddb1e8fc9a74b4", "title": "Gated Feedback Refinement Network for Dense Image Labeling", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Islam_Gated_Feedback_Refinement_CVPR_2017_paper.pdf", "http://www.cs.umanitoba.ca/~ywang/papers/cvpr17.pdf"]}, {"id": "02e5372e439c09f8a8ce8c4784b044ce116ca11c", "title": "DeepCorrect: Correcting DNN models against Image Distortions", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.02406.pdf"]}, {"id": "451ed51346fe2e6c5de2dbf29733711b31f5fd68", "title": "Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05573.pdf"]}, {"id": "e644867bc141453d1f0387c76ff5e7f7863c5f4f", "title": "Learning Pixel-Level Semantic Affinity with Image-Level Supervision for Weakly Supervised Semantic Segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.10464.pdf"]}, {"id": "b12c9773c6d948d36698666ec351a78c449c0d06", "title": "Figure-Aware Tracking under Occlusion from Monocular Videos", "year": "2014", "pdf": []}, {"id": "c3c4f0caf1b42b6466306360c4ebe16f66489df0", "title": "Gated Feedback Refinement Network for Coarse-to-Fine Dense Semantic Image Labeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.11266.pdf"]}, {"id": "aa1c888d43f1d254e9fece485c3d6fd2454b894f", "title": "Structured Prediction for Object Detection in Deep Neural Networks", "year": "2014", "pdf": ["http://www.ais.uni-bonn.de/papers/icann2014_schulz.pdf"]}, {"id": "a85e287343379eb80793345bbff733cbc128a5bc", "title": "Improving a Real-Time Object Detector with Compact Temporal Information", "year": "2017", "pdf": ["http://vbn.aau.dk/files/272717858/ahrnbom_jensen_etal_iccvw2_17.pdf", "http://www2.maths.lth.se/vision/publdb/reports/pdf/ahrnbom-jensen-etal-iccvw2-17.pdf"]}, {"id": "182c91f619e0b7a8cd2120139d530750aa0b85a7", "title": "Compressing the Input for CNNs with the First-Order Scattering Transform", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.10200.pdf"]}, {"id": "b87eeb3b873d27c68a5a1cdfd9409c14db352d92", "title": "Hierarchical Cellular Automata for Visual Saliency", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.09425.pdf"]}, {"id": "37b9ea1bf5b6ce8ecb656628af3933c64c632c2b", "title": "Transfer Learning for 3 D LiDAR-based Human Classification with a Mobile Robot", "year": "2018", "pdf": []}, {"id": "7af667b6c1b4b32f513dd70fe3ef36fcf344a741", "title": "A transfer learning based approach for automated grading of Gliomas using deep Residual Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/7af6/67b6c1b4b32f513dd70fe3ef36fcf344a741.pdf"]}, {"id": "073c9ec4ff069218f358b9dd8451a040cf1a4a82", "title": "Object Classification and Detection in High Dimensional Feature Space", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/073c/9ec4ff069218f358b9dd8451a040cf1a4a82.pdf"]}, {"id": "3b304585d5af0afe98a85d6e0559315fbf3a7807", "title": "An Improved Labelling for the INRIA Person Data Set for Pedestrian Detection", "year": "2013", "pdf": ["http://welcome.isr.ist.utl.pt/img/pdfs/2999_2013_IbPRIA_Taiana_Nascimento_Bernardino.pdf", "http://welcome.isr.tecnico.ulisboa.pt/wp-content/uploads/2015/05/2999_2013_IbPRIA_Taiana_Nascimento_Bernardino.pdf"]}, {"id": "81763bb718dc6630be210c056a250b1c2ed57fd7", "title": "3D Semantic Parsing of Large-Scale Indoor Spaces", "year": "2016", "pdf": ["http://buildingparser.stanford.edu/images/CVPR_2016_poster.pdf", "http://buildingparser.stanford.edu/images/supp_mat.pdf", "http://openaccess.thecvf.com/content_cvpr_2016/papers/Armeni_3D_Semantic_Parsing_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Armeni_3D_Semantic_Parsing_CVPR_2016_paper.pdf"]}, {"id": "a289de92de2503b632efd7acc13080ab026986b7", "title": "Fine-grained object recognition in underwater visual data", "year": "2015", "pdf": ["http://sis.univ-tln.fr/~glotin/Concetto_Glotin_et_SubmarineObjectRecognition_accepted_MTAPjournal_2015.pdf"]}, {"id": "80ab008243b5a61c8a74a0a3e2aaf702b1f906b3", "title": "Ship detection for automating navigational watch", "year": "2014", "pdf": []}, {"id": "065eb1ac981cbb422d8e22d51d416807e612df0f", "title": "Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few % Performance from Vision Models with Just Three More Parameters", "year": "2014", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Premachandran_Empirical_Minimum_Bayes_2014_CVPR_paper.pdf", "https://filebox.ece.vt.edu/~dbatra/papers/ptb_cvpr14.pdf", "https://www.cc.gatech.edu/~dbatra/papers/ptb_cvpr14.pdf"]}, {"id": "02b6acd8d1f2a5833a29b52766776fd70b3dbb56", "title": "Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.09558.pdf"]}, {"id": "17e997e6f724f8b92c0b91ad5d7f828714a510c6", "title": "Interactive adaptation of real-time object detectors", "year": "2014", "pdf": ["http://www.drgoehring.de/bib/goehring14icra/goehring14icra-slides.pdf", "https://people.eecs.berkeley.edu/~jhoffman/papers/Goehring_ICRA2014.pdf", "https://www.eecs.berkeley.edu/~jhoffman/papers/Goehring_ICRA2014.pdf"]}, {"id": "8645fe95f3f503f854b08096c2874a3f7ea6b79b", "title": "BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Sochor_BoxCars_3D_Boxes_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sochor_BoxCars_3D_Boxes_CVPR_2016_paper.pdf"]}, {"id": "f79c4bf83371627ba139b61eb427463b93cd687b", "title": "Learning from Few Examples for Visual Recognition Problems", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/f79c/4bf83371627ba139b61eb427463b93cd687b.pdf"]}, {"id": "d23ac99cdab20a9a3eca2784a5b262649c717988", "title": "Rotation Invariant Angular Descriptor Via A Bandlimited Gaussian-like Kernel", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.02753.pdf"]}, {"id": "810eafc9e854ea9b1d7a9e9f755f8102310d5db6", "title": "Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.02257.pdf"]}, {"id": "10d3f77225eca1d576268ba84ed83f230a5e47c4", "title": "Crafting a multi-task CNN for viewpoint estimation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.03894.pdf"]}, {"id": "dcb6f06631021811091ce691592b12a237c12907", "title": "SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection", "year": "2018", "pdf": []}, {"id": "c7780cff11068fecb322a43e459c56267a88aee7", "title": "DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion", "year": "2017", "pdf": []}, {"id": "581fb0f0405c7f0e60610d88ceaceb9af44d8569", "title": "Final Report : Smart Trash Net : Waste Localization and Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/581f/b0f0405c7f0e60610d88ceaceb9af44d8569.pdf"]}, {"id": "149f3cc167b046dc790b1f4f1c48eeb31e898403", "title": "A study of vehicle detector generalization on U.S. highway", "year": "2016", "pdf": ["http://cvrr.ucsd.edu/publications/2016/0669.pdf"]}, {"id": "e6e5949464c38ecea94c3c295ea65220bc19f338", "title": "BOP: Benchmark for 6D Object Pose Estimation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.08319.pdf"]}, {"id": "a43f460f6c1abbe8eb0097594df6eafc0f651d49", "title": "Saliency-based object recognition in video", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a43f/460f6c1abbe8eb0097594df6eafc0f651d49.pdf"]}, {"id": "c23734cf46af7c299b72089e5cbc0e50b833e434", "title": "Edge color transform: a new operator for natural scene text localization", "year": "2017", "pdf": []}, {"id": "4ff486644be5e451784d6ae83f8073c8320fa974", "title": "Visual Tracking with Convolutional Neural Network", "year": "2015", "pdf": []}, {"id": "e545f1c06799bfd2bd5f7eaed085fd60a388202f", "title": "A top-down manner-based DCNN architecture for semantic image segmentation", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e545/f1c06799bfd2bd5f7eaed085fd60a388202f.pdf"]}, {"id": "0dc0823a7485e2dfba9cdbcec788fe705c9bd8a1", "title": "Lazy dragging: effortless bounding-box drawing for touch-screen devices", "year": "2017", "pdf": []}, {"id": "4bdf749e43a8e0294ba345d2d3e524e21a144ef2", "title": "Count on Me: Learning to Count on a Single Image", "year": "2018", "pdf": []}, {"id": "55f7699e768457d40c5232448cdca4503db2821b", "title": "Temporal consistency object tracker with ranking mechanism", "year": "2015", "pdf": []}, {"id": "a738bd92c2be3b61b7a4b55c028550559b7d9d96", "title": "Selective Weakly Supervised Human Detection under Arbitrary Poses", "year": "2017", "pdf": ["http://parnec.nuaa.edu.cn/xtan/paper/y-cai-pr-2017.pdf"]}, {"id": "4e4f2c4d2ea47636ca2ab795770d6b3214640f37", "title": "Efficient Maximum Appearance Search for Large-Scale Object Detection", "year": "2013", "pdf": ["http://researcher.watson.ibm.com/researcher/files/us-liangliang.cao/qiangcvpr2013_final.pdf", "http://rogerioferis.com/publications/ChenCVPR2013.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d190.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Efficient_Maximum_Appearance_2013_CVPR_paper.pdf"]}, {"id": "2a70068b2da3c75632e2896a2da567a5f3b35231", "title": "Visual Localisation and Individual Identification of Holstein Friesian Cattle via Deep Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w41/Andrew_Visual_Localisation_and_ICCV_2017_paper.pdf", "https://research-information.bristol.ac.uk/files/127299906/Tilo_Burghardt_Visual_Localisation_and_Individual_Identification_of_Helstein_Friesian_Cattle_via_Deep_Learning.pdf"]}, {"id": "2284ba28bd3b1afaf06afb8c2a94638e350b3ecb", "title": "Boosting Object Proposals: From Pascal to COCO", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Pont-Tuset_Boosting_Object_Proposals_ICCV_2015_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pont-Tuset_Boosting_Object_Proposals_ICCV_2015_paper.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01226.pdf"]}, {"id": "b31f37fd71b7b45e6fd8978960e271a7db1ee212", "title": "DICTING IMAGE ROTATIONS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b31f/37fd71b7b45e6fd8978960e271a7db1ee212.pdf"]}, {"id": "2c0f0b4304e2823df4fe7cf2ac74e06f46d40dcb", "title": "Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study", "year": "2010", "pdf": ["http://lastchance.inf.cs.cmu.edu/alex/itm_yjiang10.pdf", "http://www.researchgate.net/profile/Chong-Wah_Ngo/publication/224079997_Representations_of_Keypoint-Based_Semantic_Concept_Detection_A_Comprehensive_Study/links/0912f50cbe0debcb79000000.pdf", "http://www.yugangjiang.info/publication/itm_yjiang.pdf"]}, {"id": "576ffe2304aba0b799b4d3b8880f4b5a244ece5f", "title": "Learning Class-to-Image Distance with Object Matchings", "year": "2013", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a795.pdf", "http://www.cs.sfu.ca/~gza11/personal/research/om_cvpr13.pdf", "http://www.cs.sfu.ca/~mori/research/papers/zhou-cvpr13.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhou_Learning_Class-to-Image_Distance_2013_CVPR_paper.pdf"]}, {"id": "42832bcb36ee3f69327c38d0d17e6e2a73aaa2a6", "title": "SUN Database: Exploring a Large Collection of Scene Categories", "year": "2014", "pdf": ["http://cvcl.mit.edu/Papers/SUN-IJCV2014.pdf", "http://vision.cs.princeton.edu/projects/2010/SUN/paperIJCV.pdf", "http://vision.princeton.edu/projects/2010/SUN/paperIJCV.pdf"]}, {"id": "20a0b23741824a17c577376fdd0cf40101af5880", "title": "Learning to Track for Spatio-Temporal Action Localization", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.01929.pdf"]}, {"id": "71f7be73a575f3689b0137446289d02462e1c5b0", "title": "Adaptive Multi-Scale Information Flow for Object Detection.", "year": "2018", "pdf": ["http://bmvc2018.org/contents/papers/0266.pdf"]}, {"id": "34ccebc467bad0fc179543bde7d1bc04bed2397c", "title": "Recognizing Actions Through Action-Specific Person Detection", "year": "2015", "pdf": []}, {"id": "eacb95e81156c48f4ff7470567ba205225170fa7", "title": "Learning Aerial Image Segmentation From Online Maps", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06879.pdf"]}, {"id": "d6bdc70d259b38bbeb3a78db064232b4b4acc88f", "title": "Video-Based Face Association and Identification", "year": "2017", "pdf": []}, {"id": "367008b91eb57c5ea64ef7520dfcabc0c5c85532", "title": "Person Re-identification: Past, Present and Future", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.02984.pdf"]}, {"id": "92990ef7866ca906b595e2841e340725fb3ff8da", "title": "Generating Synthetic Data for Text Recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1608.04224.pdf"]}, {"id": "3dba6c86541aad3ec8f54c55d57eca9aa98f4ed2", "title": "PAC-Bayesian Majority Vote for Late Classifier Fusion", "year": "2012", "pdf": ["https://arxiv.org/pdf/1207.1019.pdf"]}, {"id": "af9cc1767f50f63291d7ca9ab709f6849cd1e46c", "title": "Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation.", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/af9c/c1767f50f63291d7ca9ab709f6849cd1e46c.pdf"]}, {"id": "02534fabd5ffbb98d1c09581eb410e29bec9da01", "title": "Fast Vehicle Detection in Aerial Imagery.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.08666.pdf"]}, {"id": "dcc6bc3751191d0c4be131352d5a5bc5d0a26e19", "title": "Performance evaluation of CBIR system based on object detection and evolutionary computation", "year": "2014", "pdf": []}, {"id": "ceee9ba72a021ae5604db04a93fdcff421d60216", "title": "Encoder Based Lifelong Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.01920.pdf"]}, {"id": "94d8de8793aa6c0e1a9fcf14e73e3860690c727f", "title": "Image context classification based on visual codebook feature boosting", "year": "2013", "pdf": []}, {"id": "feaedf4b24f8d7673c59659cadd4237c2a1dbc90", "title": "A large-scale solar image dataset with labeled event regions", "year": "2013", "pdf": []}, {"id": "c4a0e89793961dc486964802df55ae73fbba60ee", "title": "Soccer: Who Has the Ball? Generating Visual Analytics and Player Statistics", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w34/Theagarajan_Soccer_Who_Has_CVPR_2018_paper.pdf", "http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2018/FINAL-published-soccer-ball-generating.pdf"]}, {"id": "98bf42055160845e6f8f3c022298e3b8e4e55f80", "title": "Vision Meets Drones: A Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.07437.pdf"]}, {"id": "1114c2aba97a5782a48341817811df2438d0fdbf", "title": "Robust Visual Tracking using Multi-Frame Multi-Feature Joint Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07498.pdf"]}, {"id": "1b8b9332886ea661e5a46bb87118956f1f4c15f3", "title": "Temporal Hallucinating for Action Recognition with Few Still Images", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/Supplemental/1664-supp.pdf", "http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Temporal_Hallucinating_for_CVPR_2018_paper.pdf"]}, {"id": "ca05fadeb6e0d3414fd21870320545be4582e408", "title": "Deep Part-Based Generative Shape Model with Latent Variables", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/da8d/06e424c1abbb266147d23be460c53880401f.pdf"]}, {"id": "7b3a63d030d03e536ddcbc217bc8d6fd630e3b53", "title": "xView: Objects in Context in Overhead Imagery", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.07856.pdf"]}, {"id": "4bf2f88176484e15bb673abb6fca093af7935c55", "title": "Personal driving diary: Automated recognition of driving events from first-person videos", "year": "2013", "pdf": ["http://michaelryoo.com/papers/cviu13_driving_ryoo.pdf"]}, {"id": "b9b21cfa7de32677151571ab44d27d2d246b7a03", "title": "Towards Explanation of DNN-based Prediction with Guided Feature Inversion", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00506.pdf"]}, {"id": "5950512e21114236208b9eaeebc9a09735e367a6", "title": "Master research Internship Internship report Segmentation and recognition of symbols for printed and handwritten music scores", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5950/512e21114236208b9eaeebc9a09735e367a6.pdf"]}, {"id": "4152d2c8585f7e3f85d3b3d84036171de104cbd7", "title": "Rethinking ImageNet Pre-training", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08883.pdf"]}, {"id": "0199150ccad6479eac9d693a7cc0406935d877a8", "title": "Towards Real-Time Accurate Object Detection in Both Images and Videos Based on Dual Refinement.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08638.pdf"]}, {"id": "eb2ab9caa61b021c1cd7aff6d08163768faba99e", "title": "Cleaning Up Multiple Detections Caused by Sliding Window Based Object Detectors", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/eb2a/b9caa61b021c1cd7aff6d08163768faba99e.pdf"]}, {"id": "2e62b4f2f5a8e6c1bf6a21ebb860c40463d72917", "title": "Adversarial background augmentation improves object localisation using convolutional neural networks", "year": "", "pdf": ["https://pdfs.semanticscholar.org/2e62/b4f2f5a8e6c1bf6a21ebb860c40463d72917.pdf"]}, {"id": "d2e8efaa0d095c22455fe4eab260f94994bfb116", "title": "Stand-alone quality estimation of background subtraction algorithms", "year": "2017", "pdf": []}, {"id": "4893ce89df7afde71534af9b9fd5becb947f112e", "title": "Instance-level Sketch-based Retrieval by Deep Triplet Classification Siamese Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11375.pdf"]}, {"id": "1a1654456decd116f4ca84c98006dfda0a8a3134", "title": "INTEGRATED VISUAL INFORMATION FOR MARITIME SURVEILLANCE", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1a16/54456decd116f4ca84c98006dfda0a8a3134.pdf"]}, {"id": "e9d82ae7530e605c03440d362d78663c4af0edb6", "title": "Object Detection Using Color Entropies and a Fuzzy Classifier", "year": "2013", "pdf": []}, {"id": "1c720c0da64d6e2e4e04cfa70216215bd33eade5", "title": "Region Trajectories for Video Semantic Concept Detection", "year": "2016", "pdf": []}, {"id": "4a6049e1926cc8e574301cfb229599cdc0a64e62", "title": "Characterizing the performance of an image-based recognizer for planar mechanical linkages in textbook graphics and hand-drawn sketches", "year": "2015", "pdf": ["http://vdel.me.cmu.edu/publications/2015cag/paper.pdf"]}, {"id": "4fe91feab83d947a0d3bd85adcf18ab1b3d9e05f", "title": "Transductive People Tracking in Unconstrained Surveillance", "year": "2016", "pdf": ["http://imagelab.ing.unimore.it/Pubblicazioni/pubblicazioni/2015TCSVT.pdf"]}, {"id": "a5fa91dbc72f200970e70debe88375b71ddef40b", "title": "A new performance measure and evaluation benchmark for road detection algorithms", "year": "2013", "pdf": ["http://www.cvlibs.net/publications/Fritsch2013ITSC.pdf"]}, {"id": "c96f012f4915398259e7e223810c57898b5e1a76", "title": "Fast LIDAR-based Road Detection Using Convolutional Neural Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c96f/012f4915398259e7e223810c57898b5e1a76.pdf"]}, {"id": "1281e443d2cf1c1dd71ed3b7b0376d408d0958af", "title": "SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks", "year": "2015", "pdf": ["http://www.cs.cornell.edu/~xhuang/publications/salicon_poster.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_SALICON_Reducing_the_ICCV_2015_paper.pdf"]}, {"id": "e295c1aa47422eb35123053038e62e9aa50a2e3a", "title": "ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Escalera_ChaLearn_Looking_at_ICCV_2015_paper.pdf"]}, {"id": "b4df58f1fd8a3bd0815e7fb957f7f07fddd77338", "title": "Rethinking the sGLOH Descriptor", "year": "2018", "pdf": ["http://cvg.dsi.unifi.it/colombo_now/CC/Public/sGLOH2_TPAMI_2017.pdf"]}, {"id": "2e1f0b522014c942197e51b556eeb48b6ad66cda", "title": "Automatic object classification using motion blob based local feature fusion for traffic scene surveillance", "year": "2012", "pdf": []}, {"id": "335be9250ba4a69a303abc3e202fb7c9c8551f49", "title": "Large scale visual classification with SVM, create the unique article through NLP", "year": "2017", "pdf": []}, {"id": "36aa5dd816553ba2e666d2a4b7d2f346e4b56be2", "title": "Variable scale and anti-occlusion object tracking method with multiple feature integration", "year": "2016", "pdf": []}, {"id": "eb3a5714b5768755a046cfa944433394534e96fd", "title": "Pedestrian Localization", "year": "2011", "pdf": []}, {"id": "0431e8a01bae556c0d8b2b431e334f7395dd803a", "title": "Learning Localized Perceptual Similarity Metrics for Interactive Categorization", "year": "2015", "pdf": ["http://people.cs.umass.edu/~smaji/papers/localized-wacv15.pdf", "http://vision.cs.utexas.edu/hmcv2014/wah_etal_hmcv2014.pdf", "https://vision.cornell.edu/se3/wp-content/uploads/2014/11/wacv2015_localized_final.pdf"]}, {"id": "3f74b70e304a957655e2bedc360c4fe5fcd54318", "title": "Detecting objects of a category in range data by comparing to a single geometric prototype", "year": "2013", "pdf": ["http://elib.dlr.de/85396/1/Hillenbrand_13.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_IROS_2013/media/files/2658.pdf"]}, {"id": "1e5edbd39b4c61f785515e117a74e2d280aefbe7", "title": "The urrent tate and TRL ssessment of eople racking echnology for ideo urveillance pplications", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1e5e/dbd39b4c61f785515e117a74e2d280aefbe7.pdf"]}, {"id": "a01c7eec51fa901b2526325f563480c152c58ee5", "title": "Contour Box: Rejecting Object Proposals without Explicit Closed Contours", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Contour_Box_Rejecting_ICCV_2015_paper.pdf", "http://www.cse.cuhk.edu.hk/leojia/papers/contour_iccv15.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Lu_Contour_Box_Rejecting_ICCV_2015_paper.pdf"]}, {"id": "4e5be30a51f6f5cde38b4917ab9e8c51d85ad16c", "title": "Fast dynamic video content exploration", "year": "2013", "pdf": []}, {"id": "e251714d84e018fa2ec0c8c9948b9ece40613140", "title": "Multilayer feature combination for visual tracking", "year": "2015", "pdf": []}, {"id": "eb69f89588e9538194750f12bf8c8df6d5301f3b", "title": "Object Tracking by a Combination of Discriminative Global and Generative Multi-Scale Local Models", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/eb69/f89588e9538194750f12bf8c8df6d5301f3b.pdf"]}, {"id": "b61b4eb2e28b9cf35578498e1bbcc35ec0a07651", "title": "Backtracking ScSPM Image Classifier for Weakly Supervised Top-Down Saliency", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Cholakkal_Backtracking_ScSPM_Image_CVPR_2016_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2016/supplemental/Cholakkal_Backtracking_ScSPM_Image_2016_CVPR_supplemental.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cholakkal_Backtracking_ScSPM_Image_CVPR_2016_paper.pdf"]}, {"id": "833ada09759039b7c620b8930a50a0521d70b2c7", "title": "Attend in Groups: A Weakly-Supervised Deep Learning Framework for Learning from Web Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09960.pdf"]}, {"id": "87c2e267fadac9d4f4f694125eb86eaaf7121797", "title": "Fine tuning CNNS with scarce training data \u2014 Adapting imagenet to art epoch classification", "year": "2016", "pdf": ["https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web_3.0/ICIP2016-hentschel.pdf"]}, {"id": "cda356a979c0a57e1051830551f657db249e3c45", "title": "Architecture for Dynamic Allocation of Computer Vision Tasks", "year": "2016", "pdf": []}, {"id": "f6f4d887fb62d33a9a18cbb7bc58bd6247384a35", "title": "People detection in crowded scenes using hierarchical features", "year": "2017", "pdf": []}, {"id": "72d7e11b30767f4f5993d794fc040328b23868b5", "title": "Deep neural network acceleration framework under hardware uncertainty", "year": "2018", "pdf": ["http://moimani.weebly.com/uploads/2/3/8/6/23860882/isqed_18_nn__1_.pdf"]}, {"id": "7a81967598c2c0b3b3771c1af943efb1defd4482", "title": "Do We Need More Training Data?", "year": "2015", "pdf": ["https://arxiv.org/pdf/1503.01508.pdf"]}, {"id": "2cea306754ed83eaf1d0433abbfb05b5a4c4cf48", "title": "BIG-OH: BInarization of gradient orientation histograms", "year": "2014", "pdf": ["http://vgl-ait.org/mdailey/uploads/publication_file/filename/110/Baber-BIG-OH.pdf"]}, {"id": "f0418d8029323e37e14ccf2e2a7143e197fb36e4", "title": "Robust tracking via weighted online extreme learning machine", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.10211.pdf"]}, {"id": "f542d59ce3f2ae32404046416fb7dbb1d5c0c336", "title": "Multi-view 6D Object Pose Estimation and Camera Motion Planning Using RGBD Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w31/Sock_Multi-View_6D_Object_ICCV_2017_paper.pdf"]}, {"id": "7142e659d6466717cdb8a242d8e34fce176b3f4a", "title": "Improved scene identification and object detection on egocentric vision of daily activities", "year": "2017", "pdf": ["http://crcv.ucf.edu/news&info/DefenseBooklet_FA17.pdf", "http://crcv.ucf.edu/papers/cviu2016-gonzalo.pdf", "http://vision.eecs.ucf.edu/papers/cviu2016-gonzalo.pdf"]}, {"id": "34072c31c2c778df471c9f0c43ba6198dfd0db32", "title": "Arbitrary Category Classification of Websites Based on Image Content", "year": "2015", "pdf": ["http://users.ics.aalto.fi/juha/papers/ELM2014.pdf", "http://www.engineering.uiowa.edu/sites/default/files/files/newpaper.pdf"]}, {"id": "3e00dd86c084d8680409c65c1a48f1b3aa864eb7", "title": "Deep Crisp Boundaries: From Boundaries to Higher-Level Tasks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1801.02439.pdf"]}, {"id": "259f0699d7e4066966a38860ad3227fe123d1660", "title": "Convolutional Neural Networks for joint object detection and pose estimation: A comparative study.", "year": "2014", "pdf": ["https://arxiv.org/pdf/1412.7190.pdf"]}, {"id": "ec6f1a4b9367675833f0111c44a22ba217fcbd23", "title": "Visual Tracking via Constrained Incremental Non-negative Matrix Factorization", "year": "2015", "pdf": []}, {"id": "7ca600523495b3d6c9addf26cd89d3bd23ce4cf3", "title": "ReDMark : Framework for Residual Diffusion Watermarking based on Deep Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/7ca6/00523495b3d6c9addf26cd89d3bd23ce4cf3.pdf"]}, {"id": "f57891b2e5860f42c9cbe3c58e926b891270277e", "title": "50 Years of object recognition: Directions forward", "year": "2013", "pdf": ["http://researcher.watson.ibm.com/researcher/files/us-aandreo/andreopoulos_cviu2013.pdf"]}, {"id": "ab1719f573a6c121d7d7da5053fe5f12de0182e7", "title": "Combining visual recognition and computational linguistics : linguistic knowledge for visual recognition and natural language descriptions of visual content", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/ab17/19f573a6c121d7d7da5053fe5f12de0182e7.pdf"]}, {"id": "2901da4464c1ec652eebd0155f23b9c8a82e2fe8", "title": "Tropel: Crowdsourcing Detectors with Minimal Training", "year": "2015", "pdf": ["http://cs.brown.edu/people/gen/pub_papers/patterson_hcomp2015.pdf", "http://cs.brown.edu/~gen/pub_papers/patterson_hcomp2015.pdf"]}, {"id": "6f41e2ba877ec690bd1c9e5e8742c4088f95c346", "title": "Video Frames Segmentation time Modular Network Clock Fires Executed", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/6f41/e2ba877ec690bd1c9e5e8742c4088f95c346.pdf"]}, {"id": "3de3c479164312ab3a1795ee84f20c16632c04c4", "title": "Scalable Deep Learning Logo Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.11417.pdf"]}, {"id": "1287bfe73e381cc8042ac0cc27868ae086e1ce3b", "title": "Computational Mid-Level Vision: From Border Ownership to Categorical Object Recognition", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1287/bfe73e381cc8042ac0cc27868ae086e1ce3b.pdf"]}, {"id": "4ad75b110b52d1cc44e76664bab42e9e49eb95b2", "title": "Localizing scene texts by fuzzy inference systems and low rank matrix recovery model", "year": "2016", "pdf": []}, {"id": "ac5c93b789bdd557b90ce77221f1c01ead63041f", "title": "Robust People Detection using Computer Vision Spring Term 2013", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/ac5c/93b789bdd557b90ce77221f1c01ead63041f.pdf"]}, {"id": "aabcbe3ee81ff4f696c7cefc49d28a41fb760987", "title": "Automated annotation of coral reef survey images", "year": "2012", "pdf": ["http://vision.cornell.edu/se3/wp-content/uploads/2014/09/automated_coral_annotation.pdf", "http://vision.ucsd.edu/sites/default/files/automated_coral_annotation.pdf"]}, {"id": "0667bd18e0537359bc44a8f2ad94074b2e3a346e", "title": "Fast Pixelwise Adaptive Visual Tracking of Non-Rigid Objects", "year": "2017", "pdf": []}, {"id": "12fd613bc68101176d8fdf1b28d4d6fb3e3fec6f", "title": "Training a Scene-Specific Pedestrian Detector Using Tracklets", "year": "2015", "pdf": ["http://web.mst.edu/~yinz/Papers/WACV2015_SceneSpecificPedestrianDetector.pdf"]}, {"id": "89fff8387432878db240a044a98ff9c9200f3197", "title": "Learning Globally Optimized Object Detector via Policy Gradient", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf"]}, {"id": "fbd7c6956fd08358b0335241292dcd0af080560c", "title": "Scale-adaptive tracking based on perceptual hash and correlation filter", "year": "2018", "pdf": []}, {"id": "d6684b382bed96f7ad84087f9b8f81753065ecf3", "title": "Matrix factorization for co-training algorithm to classify human rights abuses", "year": "2018", "pdf": []}, {"id": "7d96ecb24b3d8595267365cfc9878d46280f1e8c", "title": "End-to-end steering angle prediction and object detection using convolutional neural networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7d96/ecb24b3d8595267365cfc9878d46280f1e8c.pdf"]}, {"id": "ddfdc4bf9fe440926e5e80909d444316fb7bc694", "title": "UvA-DARE ( Digital Academic Repository ) Selective Search for Object Recognition", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/ddfd/c4bf9fe440926e5e80909d444316fb7bc694.pdf"]}, {"id": "904b96d0691c62cacd1d9456e623ab24901763a0", "title": "Facade Segmentation in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08634.pdf"]}, {"id": "b46f96ee1ef0c7b31e5cec9abc60aa5f77fe4245", "title": "Literature Review on Real Time People Tracking in a Camera Network", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/b46f/96ee1ef0c7b31e5cec9abc60aa5f77fe4245.pdf"]}, {"id": "3b374fd726c8cd2c79c1092d76e3583265866362", "title": "Superpixel Convolutional Networks using Bilateral Inceptions", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.06739.pdf"]}, {"id": "29d94f275b1483f575c05b90464994ecfa86e27f", "title": "A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/29d9/4f275b1483f575c05b90464994ecfa86e27f.pdf"]}, {"id": "7c3e09e0bd992d3f4670ffacb4ec3a911141c51f", "title": "Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.00162.pdf"]}, {"id": "f1a0010f588a41682c1efd770541c4c381949d88", "title": "VisGraB: A benchmark for vision-based grasping", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/f1a0/010f588a41682c1efd770541c4c381949d88.pdf"]}, {"id": "4cf329b2a09eac0c55ec0eb8fdd5ef9c997ec27b", "title": "Principal texture direction based block level image reordering and use of color edge features for application of object based image retrieval", "year": "2018", "pdf": []}, {"id": "a67d54cf585c9491ab8a3e2d58d9c4b223359602", "title": "Spatial information and end-to-end learning for visual recognition. (Informations spatiales et apprentissage bout-en-bout pour la reconnaissance visuelle)", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/fda4/1c4b51e5a10d2e07dc67beb9f3375a43fa51.pdf"]}, {"id": "f3f7df3315fcb8d651efaa85ce59b82c4f46cc08", "title": "Object detection for big data", "year": "2014", "pdf": []}, {"id": "d68a11b48eda83f21f2b63c591461d58116667c3", "title": "Painting-91: a large scale database for computational painting categorization", "year": "2014", "pdf": []}, {"id": "08ff22f76a567fcbc1afec6bfbf957a560cfadc7", "title": "Exploring Person Context and Local Scene Context for Object Detection.", "year": "2015", "pdf": ["https://arxiv.org/pdf/1511.08177.pdf"]}, {"id": "981449cdd5b820268c0876477419cba50d5d1316", "title": "Learning Deep Features for One-Class Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05365.pdf"]}, {"id": "02f90eb252ab3bdab420690570b16effdee53b3f", "title": "Unsupervised Object Discovery and Segmentation in Videos", "year": "2013", "pdf": ["http://lrs.icg.tugraz.at/pubs/schulter_bmvc_13.pdf", "http://www.bmva.org/bmvc/2013/Papers/paper0053/abstract0053.pdf", "http://www.bmva.org/bmvc/2013/Papers/paper0053/paper0053.pdf"]}, {"id": "427c24c75128412166326e2afda1e3cd5a35a16a", "title": "A Survey of Research on Cloud Robotics and Automation", "year": "2015", "pdf": ["http://goldberg.berkeley.edu/pubs/T-ASE-Cloud-RA-Survey-Paper-Final-2015.pdf", "http://rll.berkeley.edu/~sachin/papers/Kehoe-TASE2015a.pdf", "http://www-users.cselabs.umn.edu/classes/Spring-2015/csci8980/papers/CloudRobotics/cloud_robotics_survey.pdf", "http://www.cs.berkeley.edu/~pabbeel/papers/2014_TASE_cloud_robotics_survey.pdf", "http://www.docum-enter.com/get/H3LgmYsUIxL6Gt8YqpZpPqOtCsTQyXohukkVTxw58zc,/IEEE-TRANSACTIONS-ON-AUTOMATION-SCIENCE.pdf", "https://cloudfront.escholarship.org/dist/prd/content/qt3t04p9m1/qt3t04p9m1.pdf?t=o6m2d0", "https://people.eecs.berkeley.edu/~pabbeel/papers/2015-TASE-cloud-robotics-survey.pdf"]}, {"id": "7bf694a54c7c94a32d85ae6018a558c817b2ceee", "title": "Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene", "year": "2016", "pdf": ["http://www.scitepress.org/Papers/2016/57251/57251.pdf"]}, {"id": "fbace36d9161fbd062eefa0c005362bb210c7097", "title": "VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.06288.pdf"]}, {"id": "9595fa763c4f1d92c604a131cfc624b9edbd8b02", "title": "Integral Histogram Image Computing For Parallel Hardware Architecture", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/9595/fa763c4f1d92c604a131cfc624b9edbd8b02.pdf"]}, {"id": "a81165542cdf04e2e1bf4572f42a468b14b4d3b3", "title": "Webly Supervised Semantic Segmentation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Jin_Webly_Supervised_Semantic_CVPR_2017_paper.pdf", "https://infoscience.epfl.ch/record/227361/files/2017-CVPR-1333_final-Bin.pdf"]}, {"id": "4c5a07ab1700a67afaf16fc9a7a2647f51358255", "title": "DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection", "year": "2016", "pdf": ["https://arxiv.org/pdf/1510.05484.pdf"]}, {"id": "4cea60c30d404abfd4044a6367d436fa6f67bb89", "title": "ConTagNet: Exploiting User Context for Image Tag Recommendation", "year": "2016", "pdf": []}, {"id": "7feff9a8f31520310ce99ffd591178feacdd98bb", "title": "Confidence-Rated Multiple Instance Boosting for Object Detection", "year": "2014", "pdf": ["http://karimali.org/publications/AS_CVPR14.pdf", "http://openaccess.thecvf.com/content_cvpr_2014/papers/Ali_Confidence-Rated_Multiple_Instance_2014_CVPR_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ali_Confidence-Rated_Multiple_Instance_2014_CVPR_paper.pdf", "http://www.karimali.org/publications/AS_CVPR14.pdf"]}, {"id": "abeda55a7be0bbe25a25139fb9a3d823215d7536", "title": "Understanding Human-Centric Images: From Geometry to Fashion", "year": "2015", "pdf": ["https://arxiv.org/pdf/1604.08164.pdf"]}, {"id": "8e7886d42fac00d0b2ab3b0ea7bbb449dcc6b690", "title": "Online Camera LiDAR Fusion and Object Detection on Hybrid Data for Autonomous Driving", "year": "2018", "pdf": []}, {"id": "e22979cdf147a63be74f3816ef59ef11f3508919", "title": "Learning Image Representations by Completing Damaged Jigsaw Puzzles", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01880.pdf"]}, {"id": "90bc77c8eb4cc28520b3fda4f492276602869019", "title": "StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1709.05788.pdf"]}, {"id": "3981997df8613efd955a8f48a0eb97249bfced41", "title": "A Robust Appearance Model for Object Tracking", "year": "2016", "pdf": []}, {"id": "8004e5f2d50dde9c7210cd8956d26362c262d40f", "title": "The hierarchical high-speed neural network image classification algorithm for video surveillance systems", "year": "2018", "pdf": []}, {"id": "53f0b39c88f3973f74f65455d0d77dfe6feede84", "title": "Fine-grained sketch-based image retrieval by matching deformable part models", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/53f0/b39c88f3973f74f65455d0d77dfe6feede84.pdf"]}, {"id": "167c058b008c358ce5a3cd298c5859ffea441e51", "title": "The role of context in image annotation and recommendation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/167c/058b008c358ce5a3cd298c5859ffea441e51.pdf"]}, {"id": "2a53677037a56297163661dc1afe44fc020f3d35", "title": "Convolutional neural networks for license plate detection in images", "year": "2017", "pdf": []}, {"id": "13cfaf55ca5241d3cc7e8553e5800839292ed699", "title": "Collaborative object tracking model with local sparse representation", "year": "2014", "pdf": []}, {"id": "239ee313cc75c01fb658ebf86183e366c21ab253", "title": "Im2Flow: Motion Hallucination from Static Images for Action Recognition", "year": "2018", "pdf": []}, {"id": "22dfc98d9641ac008043cad987a13f9d63ad8418", "title": "Video Scene Change Detection Using Convolution Neural Network", "year": "2017", "pdf": []}, {"id": "f7dcadc5288653ec6764600c7c1e2b49c305dfaa", "title": "Interactive Image Search with Attributes by", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/f7dc/adc5288653ec6764600c7c1e2b49c305dfaa.pdf"]}, {"id": "84f911432ba8a3356013b3abfbf1947f1145c953", "title": "Online Object Tracking with Proposal Selection", "year": "2015", "pdf": ["https://arxiv.org/pdf/1509.09114.pdf"]}, {"id": "31ac2acbc16ae0e7d4ff2ef0f283cdcb21641709", "title": "An Animal Detection Pipeline for Identification", "year": "2018", "pdf": []}, {"id": "0f4fce9385f1d383ac27e9d43f03cc45d10584f8", "title": "Dual Uncertainty Minimization Regularization and Its Applications on Heterogeneous Data", "year": "2014", "pdf": []}, {"id": "6a8a3b27a78c78bc80984fca29554de3269d34d3", "title": "Speeding-Up Object Detection Training for Robotics with FALKON", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08740.pdf"]}, {"id": "8850a9748da6579b939ab9f1aa705b7886c4417b", "title": "Serving Self Loading Video Composition", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8850/a9748da6579b939ab9f1aa705b7886c4417b.pdf"]}, {"id": "75031316b3d1473d8994a068f43d57ad069d22ba", "title": "Inter-dependent CNNs for joint scene and object recognition", "year": "2016", "pdf": ["http://www.ee.ucr.edu/~amitrc/publications/ICPR2016_SO_Jawad.pdf", "http://www.ee.ucr.edu/~mbappy/pubs/ICPR2016.pdf", "http://www.ee.ucr.edu/~mbappy/pubs/ICPR_PPT.pdf"]}, {"id": "3c94f3380206bf4f53a6d971f9195d3811fab8f5", "title": "Exploiting Test Time Evidence to Improve Predictions of Deep Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09796.pdf"]}, {"id": "e25e07cfd0818a499033caf9d7aa8ef4feec981b", "title": "Semantic Segmentation for Real-World Data by Jointly Exploiting Supervised and Transferrable Knowledge", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e25e/07cfd0818a499033caf9d7aa8ef4feec981b.pdf"]}, {"id": "399f321089a3a35ddf0e92435dfc374cbcc3dbbd", "title": "A Novel Approach for Automatic Standing Upper Body Extraction Based on Skin Detection and Anthropometric Constraint from Single Image", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/399f/321089a3a35ddf0e92435dfc374cbcc3dbbd.pdf"]}, {"id": "1552548a1020a90744dad335bf18032b483dc852", "title": "Efficient Object Recognition Using Sampling of Keypoint Triples and Keygraph Structure", "year": "2016", "pdf": []}, {"id": "c95cd791ad0cb0a08cb39e987f725eabe3a08648", "title": "Are all objects equal? Deep spatio-temporal importance prediction in driving videos", "year": "2017", "pdf": ["http://cvrr.ucsd.edu/eshed/papers/areall.pdf", "http://cvrr.ucsd.edu/publications/2017/eshed_all_objects_2017.pdf", "https://eshed1.github.io/papers/areall.pdf"]}, {"id": "f75a4f6f852f282336cb0803475edacf3397f485", "title": "A New Data Transformation Method Based on Adaptive Binarization for Bag-of-Features Model", "year": "2009", "pdf": []}, {"id": "386a5c06d334d20227e8b2daf5433a2bef385648", "title": "Cross and Learn: Cross-Modal Self-Supervision", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03879.pdf"]}, {"id": "4f4f646b65921850b7812a376fc2ac5ff806b1c8", "title": "Joint Stem Detection and Crop-Weed Classification for Plant-Specific Treatment in Precision Farming", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03413.pdf"]}, {"id": "d58516957d376e1e682130825efd74a8d34e81d6", "title": "Pedestrian Detection Using Thermal Imaging for Night Driving Assistance", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/d585/16957d376e1e682130825efd74a8d34e81d6.pdf"]}, {"id": "dff1e32111bf0c4ed659ece19f5be2fcfd528b4d", "title": "From sample selection to model update: A robust online visual tracking algorithm against drifting", "year": "2016", "pdf": []}, {"id": "4cfe0a11f11a2b8f9d16c4226280774de9a43f07", "title": "Can Object Detectors Aid Internet Video Event Retrieval ?", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/4cfe/0a11f11a2b8f9d16c4226280774de9a43f07.pdf"]}, {"id": "5eac16cf7551d2968bc2d73200883dca0b5f7f13", "title": "Combining complementary kernels in complex visual categorization", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/5eac/16cf7551d2968bc2d73200883dca0b5f7f13.pdf"]}, {"id": "366595171c9f4696ec5eef7c3686114fd3f116ad", "title": "Algorithms and Representations for Visual Recognition", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/3665/95171c9f4696ec5eef7c3686114fd3f116ad.pdf"]}, {"id": "e91ea0179977bd295751c6436f385fb3fe1ca3ff", "title": "Pointwise and pairwise clothing annotation: combining features from social media", "year": "2015", "pdf": []}, {"id": "0edafa576c8c89035db8ad24a8a1af5d457b746b", "title": "Articulated Human Detection with Flexible Mixtures of Parts", "year": "2013", "pdf": ["http://vision.ics.uci.edu/papers/YangR_TPAMI_2013/YangR_TPAMI_2013.pdf", "http://www.ics.uci.edu/~dramanan/papers/pose_pami.pdf"]}, {"id": "02b8e7e8724359e4a830b001914a8ba54046fbd2", "title": "Efficient 2D and 3D Facade Segmentation Using Auto-Context", "year": "2018", "pdf": ["https://arxiv.org/pdf/1606.06437.pdf"]}, {"id": "0874a262c2ec7082658cbfc55892ec6e5ca6a374", "title": "CaTDet: Cascaded Tracked Detector for Efficient Object Detection from Video", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.00434.pdf"]}, {"id": "6370a7f8752ddff07c30f327a71d3fb5f856daf6", "title": "Damage Assessment from Social Media Imagery Data During Disasters", "year": "2017", "pdf": []}, {"id": "4ecaa651722a98c2847377f3ae1c70294b4791ce", "title": "Few-Example Object Detection with Model Communication.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.08249.pdf"]}, {"id": "de696b93641c8d1e7762d8ea85ede7032d1a5af2", "title": "Unsupervised object discovery via self-organisation", "year": "2012", "pdf": ["http://personal.lut.fi/users/joni.kamarainen/downloads/publications/PRL2012_accepted.pdf", "http://vision.cs.tut.fi/data/publications/PRL2012_accepted.pdf"]}, {"id": "90dd6e7051a2dd8639d6f2d9f7b02acb43eb94c7", "title": "BlitzNet: A Real-Time Deep Network for Scene Understanding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02813.pdf"]}, {"id": "36968feec92887682858d9aa58ab1c98d90c13da", "title": "A region-centered topic model for object discovery and category-based image segmentation", "year": "2013", "pdf": ["https://e-archivo.uc3m.es/bitstream/handle/10016/21534/region_PR_2013_ps.pdf;jsessionid=95E48306A0DD57937AD6A5B96BF057FE?sequence=1"]}, {"id": "e16a9a9762b6506fb1e63c775b5348110646111d", "title": "Automated Detection of Threat Objects Using Adapted Implicit Shape Model", "year": "2016", "pdf": ["http://vriffo1.sitios.ing.uc.cl/papers/journals/Riffo2016_IEEE_SMCA_borrador.pdf"]}, {"id": "151b6c519c77cda9ff5542fecee166a166e0928f", "title": "Mobile Applications Scene Text Recognition by Character Descriptor and Structure Configuration", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/151b/6c519c77cda9ff5542fecee166a166e0928f.pdf"]}, {"id": "4682fee7dc045aea7177d7f3bfe344aabf153bd5", "title": "Tabula rasa: Model transfer for object category detection", "year": "2011", "pdf": ["http://cs.brown.edu/~ls/teaching_CMU_16-824/slides_tz-1.pdf", "http://eprints.pascal-network.org/archive/00008313/01/aytar11.pdf", "http://www.cs.utexas.edu/~cv-fall2012/slides/elad-paper.pdf", "http://www.robots.ox.ac.uk/~vgg/publications/2011/Aytar11/aytar11.pdf", "http://www.robots.ox.ac.uk/~vgg/publications/2011/Aytar11/poster.pdf"]}, {"id": "44a3ee0429a6d1b79d431b4d396962175c28ace6", "title": "Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Yang_Exploit_All_the_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_Exploit_All_the_CVPR_2016_paper.pdf", "http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/cvpr16_scaledependentpooling.pdf", "http://www.umiacs.umd.edu/~fyang/papers/cvpr16.pdf"]}, {"id": "54830a1cf8606a5183561357b4004088718e4141", "title": "Deep Watershed Detector for Music Object Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10548.pdf"]}, {"id": "6826ae2e1598be376f5b64f302172bebc57b64cb", "title": "Foreground Object Segmentation with Objectness Measure", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6826/ae2e1598be376f5b64f302172bebc57b64cb.pdf"]}, {"id": "9caa7605c16da42761c8a27327f5f037dbf901fa", "title": "q-Gaussian mixture models for image and video semantic indexing", "year": "2013", "pdf": []}, {"id": "571d2b173c2db8ac751dabdfcf5a18c06f365e05", "title": "Improved Part Segmentation Performance by Optimising Realism of Synthetic Images using Cycle Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06301.pdf"]}, {"id": "4bb84c9b24456fb0bb920ca83280bd9c48ad4b66", "title": "Instance-Level Video Segmentation from Object Tracks", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Seguin_Instance-Level_Video_Segmentation_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Seguin_Instance-Level_Video_Segmentation_CVPR_2016_paper.pdf", "http://www.di.ens.fr/willow/pdfscurrent/seguin2016.pdf", "http://www.di.ens.fr/willow/research/instancelevel/seguin16instancelevel.pdf", "http://www.di.ens.fr/~bojanowski/papers/seguin16instance.pdf"]}, {"id": "a0e5afb1237d47f7a8ac66e7b5ada24cec5222cb", "title": "Semantic pooling for image categorization using multiple kernel learning", "year": "2014", "pdf": ["http://cedric.cnam.fr/~thomen/papers/Durand_Picard_ICIP_2014.pdf", "http://webia.lip6.fr/~thomen/papers/Durand_Picard_ICIP_2014.pdf"]}, {"id": "0678a8abea82793993cd89383319da75f6dc4be3", "title": "ProNet: Learning to Propose Object-Specific Boxes for Cascaded Neural Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.03776.pdf"]}, {"id": "cac8bb0e393474b9fb3b810c61efdbc2e2c25c29", "title": "Visual Segmentation of Simple Objects for Robots", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/67c5/e2ff4bc630dfbc0cabf812e5e927266f071c.pdf"]}, {"id": "839e7491cd6032162ee4bb6d73b7122cc4af12f1", "title": "Improved Person Detection on Omnidirectional Images with Non-maxima Supression", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08503.pdf"]}, {"id": "5ca467072ec40acb1b6bbf59f1119300741c0aba", "title": "Content-Based Photo Quality Assessment", "year": "2011", "pdf": ["http://mmlab.ie.cuhk.edu.hk/archive/2011/cvpr11_WLuo_XWang_XTang.pdf", "http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTiccv11.pdf", "http://www.ee.cuhk.edu.hk/~xgwang/papers/tangLWtmm13.pdf"]}, {"id": "2a6890c9d8877199cc34ba5e70cbb8b307e956db", "title": "Region-based progressive localization of cell nuclei in microscopic images with data adaptive modeling", "year": "2013", "pdf": ["http://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-14-173?site=bmcbioinformatics.biomedcentral.com", "https://vtechworks.lib.vt.edu/bitstream/handle/10919/23296/1471-2105-14-173.pdf?isAllowed=y&sequence=2"]}, {"id": "bd88bb2e4f351352d88ee7375af834360e223498", "title": "HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf"]}, {"id": "2aa362740ac9a2b304a74122da820e3829689842", "title": "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.05830.pdf"]}, {"id": "b9128ff3b0b96815ff41a7d5fb2b4bef69f635ca", "title": "Deconvolutional Feature Stacking for Weakly-Supervised Semantic Segmentation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.04984.pdf"]}, {"id": "7fd5d2b0a034da43a747f6b8be3e51d775a05625", "title": "A Method to Detect Boats in Images of the Amazonian Rivers", "year": "2017", "pdf": []}, {"id": "7411761e789ccb1da80984472f5df5cb084e8ba3", "title": "Towards Scene Understanding with Detailed 3D Object Representations", "year": "2014", "pdf": ["https://arxiv.org/pdf/1411.5935.pdf"]}, {"id": "6306ee4a2bab01890eacd74e55aedb207fed0353", "title": "Structure-Measure: A New Way to Evaluate Foreground Maps", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.00786.pdf"]}, {"id": "09dace372d15fa3381ade36f5cf892b5ce15a982", "title": "Efficient human computation: the distributed labeling problem", "year": "2009", "pdf": []}, {"id": "5020a75c45416073d0b07b1deb7382bc80de1779", "title": "Human Detection Using Learned Part Alphabet and Pose Dictionary", "year": "2014", "pdf": ["http://cis-linux1.temple.edu/~latecki/Papers/HumanDetectionECCV2014.pdf", "http://mc.eistar.net/UpLoadFiles/Papers/%5B38%5D%202014%20ECCV%20Yaocong.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8693/86930251.pdf", "https://cis.temple.edu/~latecki/Papers/HumanDetectionECCV2014.pdf"]}, {"id": "35f345ebe3831e4741dcdc1931da59043acf4b83", "title": "Towards High Performance Video Object Detection for Mobiles 3 2 Revisiting Video Object Detection Baseline", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/35f3/45ebe3831e4741dcdc1931da59043acf4b83.pdf"]}, {"id": "a6eb6ad9142130406fb4ffd4d60e8348c2442c29", "title": "Video Description: A Survey of Methods, Datasets and Evaluation Metrics", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00186.pdf"]}, {"id": "587caa61ac2ff1b45acf5c8f4ae1478addd79b7f", "title": "Higher Order Potentials in End-to-End Trainable Conditional Random Fields", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/c98b/6fc86d0e806be52bf470b27fe81f0d8563cb.pdf"]}, {"id": "0755ee472e2bc2968b16f851a16c39b3f3e2d0d0", "title": "From Weakly Supervised Object Localization to Semantic Segmentation by Probabilistic Image Modeling", "year": "2017", "pdf": []}, {"id": "51ea36ff126f8b4546e46a8876b0a644659fc2f5", "title": "Higher Order Conditional Random Fields in Deep Neural Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.08119.pdf"]}, {"id": "821ba3eba1e36a29cc482f5378f4a0d0f6893159", "title": "Unsupervised Domain Adaptation for Learning Eye Gaze from a Million Synthetic Images: An Adversarial Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.07926.pdf"]}, {"id": "ad173dd56894fe00ab1bca68c284dc34b5e67a0e", "title": "Multi-scale object detection by clustering lines", "year": "2009", "pdf": ["http://hci.iwr.uni-heidelberg.de/COMPVIS/research/voting/ommer_cvl_iccv09.pdf", "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/ommer_cvl_iccv09.pdf"]}, {"id": "a0703bef11c978cc8faf05eb229e29a889f8a0b1", "title": "Superpixel Hierarchy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1605.06325.pdf"]}, {"id": "fb710e9d897b7c1fd5275a0bcfa22711c5768990", "title": "A Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/fb71/0e9d897b7c1fd5275a0bcfa22711c5768990.pdf"]}, {"id": "9cbd49a55724da2249ac1810b9e6d31f5d41a4ac", "title": "Viewpoint-aware object detection and continuous pose estimation", "year": "2012", "pdf": ["http://www.weizmann.ac.il/math/meirav/sites/math.meirav/files/uploads/viewpoint_aware_object_detection.pdf", "http://www.wisdom.weizmann.ac.il/~vision/viewpoint-aware/files/GGABS12.pdf"]}, {"id": "5c7964b57fcac612dc18e27e18f98eeba9404707", "title": "Fusing visual and range imaging for object class recognition", "year": "2011", "pdf": ["http://www.researchgate.net/profile/Aharon_Bar_hillel/publication/221109977_Fusing_visual_and_range_imaging_for_object_class_recognition/links/0fcfd505985047018a000000.pdf", "https://740f0a9b-a-62cb3a1a-s-sites.googlegroups.com/site/aharonbarhillel/Fusion_ICCV2011.pdf?attachauth=ANoY7cqh0aiOE_NJSnkxPUgHiRXPjpmSRFaM58Kcrv56pJaVZRwlMwoboaMbJIxNA9dagRkz2dr74VkTYs4gr1yjZgW5fMUZOMbTyOYU1DG4V5tef3xzTOLTVoQDVlBNeN8zVX3UCCijr73jsm77aRBdXo6Bwj7axlN5UbiT6O-wjDLLm4BMGxRm-yyGXisuz8Fz96C89JQV3SEPWqJphcRyUTmW_07W-EVPEK3sJp288fQ4JyySGKE%3D&attredirects=0"]}, {"id": "d9dafc343727db2b6060c868d748f97eff6bac7d", "title": "Improved pedestrian detection using motion segmentation and silhouette orientation", "year": "2017", "pdf": []}, {"id": "659fc2a483a97dafb8fb110d08369652bbb759f9", "title": "Improving the Fisher Kernel for Large-Scale Image Classification", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/659f/c2a483a97dafb8fb110d08369652bbb759f9.pdf"]}, {"id": "e0e19769ad446c2a74c0616fcfb551059c899ce6", "title": "Part level transfer regularization for enhancing exemplar SVMs", "year": "2015", "pdf": ["http://people.csail.mit.edu/yusuf/publications/2015/Aytar15/aytar15.pdf"]}, {"id": "8cf3b70f9247be23de9cc42272464e0363acb426", "title": "Multi-label classification of a real-world image dataset", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/8cf3/b70f9247be23de9cc42272464e0363acb426.pdf"]}, {"id": "37668092cf8b7695d4a85eb7a25e9a2ef0fd0739", "title": "Robust object detection under partial occlusion", "year": "2016", "pdf": []}, {"id": "43fe9006b90137d6ce85a539685ce66c13f0e38e", "title": "A review of image-based automatic facial landmark identification techniques", "year": "", "pdf": ["https://pdfs.semanticscholar.org/43fe/9006b90137d6ce85a539685ce66c13f0e38e.pdf"]}, {"id": "6f7de9849be93eff1c5f133defd9d70e5ff437ac", "title": "AttentionNet: Aggregating Weak Directions for Accurate Object Detection", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.07704.pdf"]}, {"id": "071680ca97de050a372ea79f2b99f102bb3ca6ef", "title": "Inferring Unseen Views of People", "year": "2014", "pdf": ["http://vision.cs.utexas.edu/projects/infering_unseen_views_of_people/inferring-unseen-views-of-people-paper.pdf", "http://vision.cs.utexas.edu/projects/infering_unseen_views_of_people/inferring-unseen-views-of-people-poster.pdf", "http://vision.cs.utexas.edu/projects/infering_unseen_views_of_people/supp.pdf", "http://www.cs.utexas.edu/~chaoyeh/cvpr_2014_Inferring_Unseen_Views_of_People%20(2).pdf", "http://www.cs.utexas.edu/~grauman/papers/chen-pose-cvpr2014.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Inferring_Unseen_Views_2014_CVPR_paper.pdf"]}, {"id": "6bcc2b50e32bdbb0c668f75000badf21e6cd0839", "title": "Knowledge Projection for Deep Neural Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.09505.pdf"]}, {"id": "bdfb5f11d497b44b17d0315c3b6892f835723832", "title": "Object Captioning and Retrieval with Natural Language", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06152.pdf"]}, {"id": "51df7590828e7e6f7f9d38e5cd0cacebb1221837", "title": "L1 Graph Based Sparse Model for Label De-noising", "year": "2016", "pdf": ["http://www.bmva.org/bmvc/2016/papers/paper074/abstract074.pdf", "http://www.bmva.org/bmvc/2016/papers/paper074/paper074.pdf", "https://www.research.ed.ac.uk/portal/files/28312823/chang2016robustDenoise.pdf"]}, {"id": "0967341790643f680f3fc9dc87bfe311723be4e4", "title": "A Perception-Driven Transcale Display Scheme for Space Image Sequences", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/0967/341790643f680f3fc9dc87bfe311723be4e4.pdf"]}, {"id": "4affeed766c5edc6d5e16f5aa427873ec7d79a76", "title": "Video Anomaly Detection in Real Time on a Power-Aware Heterogeneous Platform", "year": "2016", "pdf": ["http://homepages.ed.ac.uk/cblair2/papers/csvt_15_cb.pdf", "https://pure.qub.ac.uk/portal/files/120162443/video_anomaly.pdf"]}, {"id": "efe133717899b41cd4c0b0c999da312d3af60a6e", "title": "Depth-Based Hand Pose Estimation: Methods, Data, and Challenges", "year": "2018", "pdf": ["https://arxiv.org/pdf/1504.06378.pdf"]}, {"id": "bfa6ad4d71008505729274d008a9b4a7d92b2985", "title": "Semantic Understanding of Scenes Through the ADE20K Dataset", "year": "2018", "pdf": ["https://arxiv.org/pdf/1608.05442.pdf"]}, {"id": "3481a544e28cfc14108b0785eef7c12747e622ee", "title": "Online Multi-object Tracking via Structural Constraint Event Aggregation", "year": "2016", "pdf": ["http://faculty.ucmerced.edu/mhyang/papers/cvpr16_mot.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/melu/201703210652/Online%20Multi-Object%20Tracking%20via%20Structural%20Constraint%20Event%20Aggregation.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yoon_Online_Multi-Object_Tracking_CVPR_2016_paper.pdf"]}, {"id": "ba51ce1ec7b18fa808985b919f4a201fe5e4bafb", "title": "Semantic parsing for priming object detection in indoors RGB-D scenes", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/ba51/ce1ec7b18fa808985b919f4a201fe5e4bafb.pdf"]}, {"id": "b50156e76ae03a1c0b04cd2076a99b7f2b441506", "title": "An image classification method that considers privacy-preservation", "year": "2016", "pdf": []}, {"id": "087337fdad69caaab8ebd8ae68a731c5bf2e8b14", "title": "Fully Convolutional Networks for Semantic Segmentation", "year": "2015", "pdf": ["https://arxiv.org/pdf/1411.4038.pdf"]}, {"id": "1426045c4188f09fec46d0d2f246357a230a1748", "title": "Structured Labels in Random Forests for Semantic Labelling and Object Detection", "year": "2014", "pdf": []}, {"id": "472de7b3c674e8f06702385569779d11b71bc8f2", "title": "Superpixel Coherency and Uncertainty Models for Semantic Segmentation", "year": "2013", "pdf": ["http://cvlab.postech.ac.kr/~tgx.lim/paper/iccv2013_semantic.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W08/papers/Baek_Superpixel_Coherency_and_2013_ICCV_paper.pdf"]}, {"id": "e5346a581ade62e1ac4b272d26d340fe78b58faa", "title": "Weakly Supervised Semantic Segmentation Using Web-Crawled Videos", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.00352.pdf"]}, {"id": "f72f6a45ee240cc99296a287ff725aaa7e7ebb35", "title": "Pedestrian Detection: An Evaluation of the State of the Art", "year": "2012", "pdf": ["http://vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf", "http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/PAMI12pedestrians.pdf", "https://www.computer.org/cms/ComputingNow/homepage/2012/0412/T_TP2_PedestrianDetection.pdf", "https://www.d2.mpi-inf.mpg.de/sites/default/files/dollar2011pami.pdf"]}, {"id": "5e99aeae07c8f599ab2251a1f62703d0380d1e14", "title": "Dictionary learning for a sparse appearance model in visual tracking", "year": "2015", "pdf": []}, {"id": "49f276e1b8fd162ac3cd996becc63cab2b2535b7", "title": "Trained 3D Models for CNN based Object Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/49f2/76e1b8fd162ac3cd996becc63cab2b2535b7.pdf"]}, {"id": "806aea24148fc2ef851803c216a0a25894d78bf4", "title": "Correlation filter based visual trackers for person pursuit using a low-cost Quadrotor", "year": "2015", "pdf": []}, {"id": "773fd71d3d24c268c99e1c53ae87a28da3bbe0f6", "title": "Conditional Entropies as Over-Segmentation and Under-Segmentation Metrics for Multi-Part Image Segmentation", "year": "2011", "pdf": []}, {"id": "90e36f66c25a4c73a252102c6c6c329c36d82676", "title": "Probably Unknown: Deep Inverse Sensor Modelling In Radar", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.08151.pdf"]}, {"id": "02567fd428a675ca91a0c6786f47f3e35881bcbd", "title": "Deep Label Distribution Learning With Label Ambiguity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01731.pdf"]}, {"id": "8047586d2223f3076a1fc028197f54d0997bccfc", "title": "Pelee: A Real-Time Object Detection System on Mobile Devices", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.06882.pdf"]}, {"id": "9ea7205ef136f207123cd6b54e15075835ae0049", "title": "Self-supervised language grounding by active sensing combined with Internet acquired images and text", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/9ea7/205ef136f207123cd6b54e15075835ae0049.pdf"]}, {"id": "17342b1c4caccfc499d9ae55a68d7b93285c5d6b", "title": "Action recognition in still images using a combination of human pose and context information", "year": "2012", "pdf": []}, {"id": "51a162f6d21e48c3731aec8f676ba7c18c65bd26", "title": "From trajectories to behaviors : an algorithm to track and describe dancing birds", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/51a1/62f6d21e48c3731aec8f676ba7c18c65bd26.pdf"]}, {"id": "eea9994c71831219aacd537f5f4ab8a91110a7e2", "title": "Optimizing the Trade-off between Single-Stage and Two-Stage Object Detectors using Image Difficulty Prediction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08707.pdf"]}, {"id": "557e5e38a4c5b95e2bc86f491b03e5c8c7add857", "title": "Thin-Slicing for Pose: Learning to Understand Pose without Explicit Pose Estimation", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Kwak_Thin-Slicing_for_Pose_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Kwak_Thin-Slicing_for_Pose_CVPR_2016_paper.pdf", "http://www.di.ens.fr/willow/pdfscurrent/kwak2016.pdf", "https://vlg.dgist.ac.kr/research/pose_emb/data/CVPR2016_pose.pdf"]}, {"id": "a8bf49021017e19df051a3efb7337d93ea263e37", "title": "Deep Multiple Instance Hashing for Object-based Image Retrieval", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a8bf/49021017e19df051a3efb7337d93ea263e37.pdf"]}, {"id": "60efdb2e204b2be6701a8e168983fa666feac1be", "title": "Transferring Deep Object and Scene Representations for Event Recognition in Still Images", "year": "2017", "pdf": ["http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01387.pdf"]}, {"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": []}, {"id": "6e7248f33be3f6b44d6089b7039a5c2d84acaed0", "title": "Object cosegmentation using deep Siamese network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02555.pdf"]}, {"id": "347ce37f15cea5bb8d0a676562664f80e3609b78", "title": "Pixel Objectness: Learning to Segment Generic Objects Automatically in Images and Videos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04702.pdf"]}, {"id": "23e707600c3e9a240e24eaa4ed4b0e4ec6a436c1", "title": "Automatic foreground extraction via joint CRF and online learning", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/7f3b/115dd38a933f3a88e3b20b58862216297d63.pdf"]}, {"id": "13105c611a059b4825bc92ff9778f532b6a849b2", "title": "Compressing Sparse Feature Vectors Using Random Ortho-Projections", "year": "2010", "pdf": ["http://www.ee.oulu.fi/mvg/files/pdf/PID1267977.pdf", "http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/PID1267977.pdf", "http://www.rni.helsinki.fi/~msa/pub/ICPR2010.pdf"]}, {"id": "f865248065b8d6bcbce4a4053b73e4de2080ba23", "title": "Efficient object detection for high resolution images", "year": "2015", "pdf": ["https://arxiv.org/pdf/1510.01257.pdf"]}, {"id": "191beb87f84326d2cc9c427efe2a5abee8f67574", "title": "Dual Local-Global Contextual Pathways for Recognition in Aerial Imagery", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.05462.pdf"]}, {"id": "63ed42249d7cbb21a4b0d42419d42b014ff114eb", "title": "Comprehensive Parameter Sweep for Learning-Based Detector on Traffic Lights", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/4817/826f1af10e0c31dee067f8d9255d6387d486.pdf"]}, {"id": "1b1323b4677c640ae8835a9ccab611ca1e9652e3", "title": "Robust object tracking with a hierarchical ensemble framework", "year": "2016", "pdf": ["https://arxiv.org/pdf/1509.06925.pdf"]}, {"id": "a5683661e80668e05170bf17bcbd754d1b07af74", "title": "Comparison of Data Set Bias in Object Recognition Benchmarks", "year": "2015", "pdf": ["http://vfacstaff.ltu.edu/lshamir/publications/object_recognition_dataset_bias.pdf"]}, {"id": "2b0d2b5a536e2eaa6a1cdab6f1e8d11f602abdab", "title": "Annotating images with suggestions: user study of a tagging system", "year": "2012", "pdf": ["http://www.fit.vutbr.cz/research/view_pub.php?file=/pub/9990/HRADIS-ACIVS-2012.pdf&id=9990", "https://page-one.springer.com/pdf/preview/10.1007/978-3-642-33140-4_14"]}, {"id": "7fdab95ff454a900c710f464c1129cd173059912", "title": "Pattern Recognition and Image Analysis", "year": "2013", "pdf": []}, {"id": "8d2459ada191d496eeee70f1e817d0ba92075160", "title": "The evaluation of different approaches towards using Kinect sensor as a Laser scanner", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8d24/59ada191d496eeee70f1e817d0ba92075160.pdf"]}, {"id": "c5632e2117d268159225d5c307b7efbb6428ccba", "title": "Understanding image concepts using ISTOP model", "year": "2016", "pdf": ["http://www.cs.uu.nl/groups/MG/multimedia/publications/art/PR2016b.pdf"]}, {"id": "7c03a0ad5202a6a31ad3b78b11f6b45ecd840616", "title": "Scale-Invariant Feature Learning using Deconvolutional Neural Networks for Weakly-Supervised Semantic Segmentation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7c03/a0ad5202a6a31ad3b78b11f6b45ecd840616.pdf"]}, {"id": "76f73c884e4437a22afcba60193bbd7f35e64aaf", "title": "Title of dissertation : RESOURCE ALLOCATION IN COMPUTER VISION", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/76f7/3c884e4437a22afcba60193bbd7f35e64aaf.pdf"]}, {"id": "7543cf85a3fb56470b0020c0fc6db45e64f7ae5e", "title": "Object Proposals Estimation in Depth Image Using Compact 3D Shape Manifolds", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/7543/cf85a3fb56470b0020c0fc6db45e64f7ae5e.pdf"]}, {"id": "18ccd8bd64b50c1b6a83a71792fd808da7076bc9", "title": "Object detection and segmentation from joint embedding of parts and pixels", "year": "2011", "pdf": ["http://ttic.uchicago.edu/~mmaire/papers/pdf/seg_obj_iccv2011.pdf", "http://ttic.uchicago.edu/~mmaire/papers/pdf/seg_obj_iccv2011_slides.pdf", "http://vision.caltech.edu/~mmaire/papers/pdf/seg_obj_iccv2011.pdf", "http://vision.caltech.edu/~mmaire/papers/pdf/seg_obj_iccv2011_slides.pdf", "http://www.eecs.berkeley.edu/~stellayu/publication/doc/2011objSlides.pdf", "http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2011objSlides.pdf"]}, {"id": "8a3b481d8e06b4acf6e95d8bc2484016f5862668", "title": "Text Detection in Traffic Informatory Signs Using Synthetic Data", "year": "2017", "pdf": []}, {"id": "a13dac9255dd738932f463a8f462c11419f072db", "title": "Use of Generative Adversarial Network for Cross-Domain Change Detection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.08868.pdf"]}, {"id": "11ffcb985aab348870de871f275e5d23558f041c", "title": "Visual grasp affordances from appearance-based cues", "year": "2011", "pdf": ["http://ai.stanford.edu/~hsong/Grasp_ICCV11.pdf", "http://cs.stanford.edu/~hsong/Grasp_ICCV11.pdf", "http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2013-16.pdf", "https://scalable.mpi-inf.mpg.de/files/2013/04/PID2062211.pdf", "https://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-16.pdf"]}, {"id": "4acf31294e940d85a4eea56c244205e3a66d8b8e", "title": "Improving Product Classification Using Images", "year": "2011", "pdf": ["http://talukdar.net/papers/ImageText-ICDM2011.pdf"]}, {"id": "c55f15ffdd01c526624626ea94ae90263ee86fee", "title": "Multi-sensors people detection system for heavy machines", "year": "2014", "pdf": []}, {"id": "05db46c7745c360fa5938ee204c81efdcc84c1da", "title": "An Empirical Evaluation of Current Convolutional Architectures\u2019 Ability to Manage Nuisance Location and Scale Variability", "year": "2016", "pdf": ["https://arxiv.org/pdf/1505.06795.pdf"]}, {"id": "f9f86d087e84eaf0e6a09575982aa7b41fa62451", "title": "Image Synthesis for Self-Supervised Visual Representation Learning", "year": "2018", "pdf": []}, {"id": "c11a2501204e9e7c4a53d8a3c87055b2b11c73df", "title": "Adaptive Learning Algorithms for Transferable Visual Recognition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/c11a/2501204e9e7c4a53d8a3c87055b2b11c73df.pdf"]}, {"id": "18bf90d6f77bb3731cdae14315c0cf4724f0e6c1", "title": "When VLAD Met Hilbert", "year": "2016", "pdf": ["https://arxiv.org/pdf/1507.08373.pdf"]}, {"id": "c2be82ed0db509087b08423c8cf39ab3c36549c3", "title": "Pixel-level guided face editing with fully convolution networks", "year": "2017", "pdf": []}, {"id": "12017d411ad5db2fce87eee19540ba22dc87bdf1", "title": "People detection in heavy machines applications", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/c1fb/fe7118c36d76f05b5bfe4a296510d35ec111.pdf", "https://www.researchgate.net/profile/Vincent_Fremont/publication/271462952_People_Detection_in_Heavy_Machines_Applications/links/5536237d0cf268fd00160d5c.pdf?origin=publication_list"]}, {"id": "aa2ad3df24d8d8c4a4d2fe85f0d4e635d595f0a2", "title": "PedCut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/c029/edca476ddda4050c3c67748056c6189cd1e3.pdf"]}, {"id": "1642358cd9410abe9ee512d34ba68296b308770e", "title": "Robustness Analysis of Pedestrian Detectors for Surveillance", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04562.pdf"]}, {"id": "697646fafee79fc1df05417cf39dad2a7732d270", "title": "Where computer vision needs help from computer science", "year": "2011", "pdf": []}, {"id": "9d5db7427b44d83bf036ff4cff382c23c6c7b6d8", "title": "Video redaction: a survey and comparison of enabling technologies", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f78d/6d092deaafee550fb58d6ea6e8b559325876.pdf"]}, {"id": "f92ceb6875f614bbccb25e4b11ca55353773890f", "title": "Saliency Detection via Boundary Prior and Center Prior", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f92c/eb6875f614bbccb25e4b11ca55353773890f.pdf"]}, {"id": "53822d61e829ef02a95a6c89fea082114fd3e16b", "title": "A General Framework for Tracking Multiple People from a Moving Camera", "year": "2013", "pdf": ["http://www.willowgarage.com/sites/default/files/pami_preprint.pdf"]}, {"id": "7d35fe4f4a932d7598d94d64b72cfa7e6a70286d", "title": "Experimental Evaluation of Multiplicative Kernel SVM Classifiers for Multi-Class Detection", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/7d35/fe4f4a932d7598d94d64b72cfa7e6a70286d.pdf"]}, {"id": "5f0e9cc18374a670dfea4698424c9d48494f3093", "title": "Online Domain Adaptation for Multi-Object Tracking", "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.00776.pdf"]}, {"id": "be48b5dcd10ab834cd68d5b2a24187180e2b408f", "title": "Constrained Low-Rank Learning Using Least Squares-Based Regularization", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.04870.pdf"]}, {"id": "5d16ce0c66cd87dd48cb8c53f5b6a7ee73d33abb", "title": "Robust and Real-Time Object Tracking Using Scale-Adaptive Correlation Filters", "year": "2016", "pdf": []}, {"id": "21d7c74ed8a1c777debe96937c08b162ee01eac6", "title": "Exploring the Potential of Using Semantic Context and Common Sense in On-Road Vehicle Detection", "year": "2018", "pdf": []}, {"id": "044ae9738c2445d4fda30fcd6c289eddf8b3add9", "title": "Multiple Instance Learning: A Survey of Problem Characteristics and Applications", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.03365.pdf"]}, {"id": "99c37dba394b100ba8f3d895c0ee0e57d5852347", "title": "Are Cars Just 3D Boxes? Jointly Estimating the 3D Shape of Multiple Objects", "year": "2014", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2014/papers/Zia_Are_Cars_Just_2014_CVPR_paper.pdf", "http://resources.mpi-inf.mpg.de/publications/D2/2014/zia14cvpr.pdf", "http://www.igp.ethz.ch/photogrammetry/publications/pdf_folder/cvpr2014zz.pdf"]}, {"id": "8209445ce555d166580159ee18059fa41c0433cd", "title": "Real-world Object Recognition with Off-the-shelf Deep Conv Nets: How Many Objects can iCub Learn?", "year": "2015", "pdf": ["https://arxiv.org/pdf/1504.03154.pdf"]}, {"id": "415c0eecce9fde7d1ba9c70bd0bfa5471760c117", "title": "Oriented Object Proposals", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/He_Oriented_Object_Proposals_ICCV_2015_paper.pdf", "http://www.cs.cityu.edu.hk/~rynson/papers/iccv15.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Oriented_Object_Proposals_ICCV_2015_paper.pdf"]}, {"id": "4ace7c8edd9467c7d5bfa00e942531e7b889e650", "title": "Depth-Based Hand Pose Estimation: Data, Methods, and Challenges", "year": "2015", "pdf": ["http://vision.ics.uci.edu/papers/SupancicRYSR_ICCV_2015/SupancicRYSR_ICCV_2015.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Supancic_Depth-Based_Hand_Pose_ICCV_2015_paper.pdf"]}, {"id": "d4efe5177a932305d0ac742b280da1e97a254f0c", "title": "Learning to detect, localize and recognize many text objects in document images from few examples", "year": "2018", "pdf": []}, {"id": "24ff2797234e26bb2ffd4558eb4412df0625687e", "title": "Mind Your Language: Abuse and Offense Detection for Code-Switched Languages", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08652.pdf"]}, {"id": "e502dad3aa196a47ed3cfb727b6b75c65be8a871", "title": "A Baseline for Multi-Label Image Classification Using Ensemble Deep CNN.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08412.pdf"]}, {"id": "c2cb4da617168c76c4560a01de8b5e68b5250749", "title": "FineTag: Multi-attribute Classification at Fine-grained Level in Images", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.07124.pdf"]}, {"id": "94780b00dc2807ec507ae91500b622ec7a8ddb12", "title": "Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a Feature Selector", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.06295.pdf"]}, {"id": "670b10569c5f978ee70d99cf8c14ad9cabb9d454", "title": "Masked face detection via a modified LeNet", "year": "2016", "pdf": []}, {"id": "a0ae4ffe252f32514240cf6d82d52538de5fb78c", "title": "AN ALGORITHM FOR PEDESTRIAN DETECTION IN MULTISPECTRAL IMAGE SEQUENCES", "year": "", "pdf": ["https://pdfs.semanticscholar.org/a0ae/4ffe252f32514240cf6d82d52538de5fb78c.pdf"]}, {"id": "4404a99e2f6db3e703609168a3595e0fbdeabc38", "title": "Online Video SEEDS for Temporal Window Objectness", "year": "2013", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Van_Den_Bergh_Online_Video_SEEDS_2013_ICCV_paper.pdf", "http://www.mvdblive.org/research/videoseeds.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01056.pdf"]}, {"id": "3de71ddc07619c0dd6bbaa3f7b412a9262a0e761", "title": "Discriminatively Trained And-Or Tree Models for Object Detection", "year": "2013", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d278.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Song_Discriminatively_Trained_And-Or_2013_CVPR_paper.pdf", "http://www.stat.ucla.edu/~sczhu/papers/Conf_2013/DiscriminativeAOG_cvpr2013.pdf"]}, {"id": "a887937b813f267507203d4faef1013043cf09d0", "title": "Automatic Process to Build a Contextualized Detector", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/5891/b87c0eecd76f067c5bafd9cd0702ac6d2fc7.pdf"]}, {"id": "050e5b4043009e54dff9319877fe947885db2d6e", "title": "Saliency Guided Dictionary Learning for Weakly-Supervised Image Parsing", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Lai_Saliency_Guided_Dictionary_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lai_Saliency_Guided_Dictionary_CVPR_2016_paper.pdf"]}, {"id": "ffd73d1956163a4160ec2c96b3ab256f79fc92e8", "title": "Attributes as Semantic Units between Natural Language and Visual Recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.03249.pdf"]}, {"id": "748305f0b2d686d51ccf893207697d6cfb39e890", "title": "COVER LOCALIZATION IN AERIAL IMAGES WITH A DEEP LEARNING APPROACH", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7483/05f0b2d686d51ccf893207697d6cfb39e890.pdf"]}, {"id": "d250e57f6b7e06bb1dac41c8b89700086a85999e", "title": "Self-Supervised Generalisation with Meta Auxiliary Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.08933.pdf"]}, {"id": "87d5b53580ca5f77ccc3ff157337ef3456308943", "title": "Augmented Autoencoders for object orientation estimation trained on synthetic RGB images", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/87d5/b53580ca5f77ccc3ff157337ef3456308943.pdf"]}, {"id": "2114b25727a21275e88e30dad0423752f6047dae", "title": "Generic Visual Recognition on Non-Uniform Distributions Based on AdaBoost Codebooks", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/cac0/c534e02784a3a873690d213dd8c92b81992f.pdf"]}, {"id": "2ba540ca70c7dee81e13768792aa7571952987f6", "title": "Drivable Road Detection Based on Dilated FPN with Feature Aggregation", "year": "2017", "pdf": []}, {"id": "6e5363af2bfb7d1b2bd13feb41c2688bd0cf12b3", "title": "Detection of US Traffic Signs", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6e53/63af2bfb7d1b2bd13feb41c2688bd0cf12b3.pdf"]}, {"id": "115e8a4f76a57b893c985ea4f7530b90d071679c", "title": "FSSD: Feature Fusion Single Shot Multibox Detector", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00960.pdf"]}, {"id": "d47d72afc590f5b96117a5227d45157135da21ad", "title": "Attribute-based knowledge transfer learning for human pose estimation", "year": "2013", "pdf": []}, {"id": "a0e286f3c6a72c857ffd03bd8ab9a9f9b98c4432", "title": "AI Learns to Recognize Bengali Handwritten Digits: Bengali.AI Computer Vision Challenge 2018", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04452.pdf"]}, {"id": "a422c2bd9030c8a2c89b6db79be2743c4a4609fb", "title": "Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.02886.pdf"]}, {"id": "c77c094faf7b1a4e293609a0909c7c50b468675a", "title": "Satyam: Democratizing Groundtruth for Machine Vision", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03621.pdf"]}, {"id": "728ad450605c7667526fce3fff75177a3c5e4188", "title": "Automatic discovery of meaningful object parts with latent CRFs", "year": "2010", "pdf": ["http://www.gris.informatik.tu-darmstadt.de/~sroth/pubs/cvpr10schnitzspan.pdf", "http://www.gris.informatik.tu-darmstadt.de/~sroth/pubs/cvpr10schnitzspan_sup.pdf", "http://www.mpi-inf.mpg.de/fileadmin/inf/d2/Research_projects_files/schnitzspan10cvpr_1_.pdf"]}, {"id": "14b311b848b51b7b5345573a289b1cedcbb4d581", "title": "Instance Similarity Deep Hashing for Multi-Label Image Retrieval", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02987.pdf"]}, {"id": "7cb4d30b3bfb0d4b02499c15c7c7a9dfddda8049", "title": "Object Tracking using L 1 / L 2 Sparse Coding and Multi Scale Max Pooling", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/7cb4/d30b3bfb0d4b02499c15c7c7a9dfddda8049.pdf"]}, {"id": "899e7ff67aa2630edc8776758cc5d65823f099c1", "title": "G-CNN: Object Detection via Grid Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "1c0e8c3fb143eb5eb5af3026eae7257255fcf814", "title": "Weakly Supervised Deep Detection Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.02853.pdf"]}, {"id": "057f5ffda59a3412f1e62159e96f84faa352628e", "title": "Tracking with scattering descriptor", "year": "2014", "pdf": []}, {"id": "32deaec54b9860bb4b81c8c9a64d11b0eea382b8", "title": "Large-Scale Image Segmentation with Convolutional Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/35ea/703bf8a5361a7a8014c7d00adbd9ea0779d9.pdf"]}, {"id": "c85aa12331bdeaba06d4c3e44b969e6060c3310c", "title": "Ensemble of Part Detectors for Simultaneous Classification and Localization", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10034.pdf"]}, {"id": "bb6548b43c737dca642298c46ec4648a403e1b11", "title": "A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes", "year": "2018", "pdf": []}, {"id": "8a382f000f98cdab7f7b79e543c75c6b8f93b6f9", "title": "Learning Semantic Image Representations at a Large Scale", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8a38/2f000f98cdab7f7b79e543c75c6b8f93b6f9.pdf"]}, {"id": "46a1172c784c3741e79781ef2353209b08dbea67", "title": "YouTube2Text: Recognizing and Describing Arbitrary Activities Using Semantic Hierarchies and Zero-Shot Recognition", "year": "2013", "pdf": ["http://www.cs.utexas.edu/users/ml/papers/guadarrama.iccv13.pdf", "http://www.cs.utexas.edu/users/ml/posters/guadarrama.iccv13.pdf", "http://www.eecs.berkeley.edu/~sguada/pdfs/2013-ICCV-YouTube2Text-final.pdf", "https://www.cs.utexas.edu/~vsub/pdf/YouTube2Text_Recognizing_and_2013_ICCV_paper.pdf", "https://www.icsi.berkeley.edu/pubs/vision/youtube2text13.pdf"]}, {"id": "fab39542b04d5aac48349e456cdb300e7786ee6b", "title": "Object recognition and retrieval by context dependent similarity kernels", "year": "2008", "pdf": ["http://certis.enpc.fr/publications/papers/CBMI08.pdf"]}, {"id": "14d1a458f49e251cbbab34349e379469300a2bae", "title": "Scene Parsing with Object Instances and Occlusion Ordering", "year": "2014", "pdf": ["http://slazebni.cs.illinois.edu/publications/jtighe-cvpr14.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Tighe_Scene_Parsing_with_2014_CVPR_paper.pdf", "http://wwwx.cs.unc.edu/~mn/sites/default/files/jtighe-cvpr14.pdf"]}, {"id": "828b73e8a4d539eeae82601b5f5a4392818c6430", "title": "Long-Term Tracking by Decision Making", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/828b/73e8a4d539eeae82601b5f5a4392818c6430.pdf"]}, {"id": "f541dac9d0d49cadb3cfd018e87b26e03e3f13aa", "title": "Trio Constrained Adaptive Noise Removal ( TCANR ) Mechanism for Salt and Pepper Noise in Image Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f541/dac9d0d49cadb3cfd018e87b26e03e3f13aa.pdf"]}, {"id": "77830a8d2e6fed5678f91dbc9a0a278c3f051266", "title": "SURFing the point clouds: Selective 3D spatial pyramids for category-level object recognition", "year": "2012", "pdf": ["http://agamenon.tsc.uah.es/Investigacion/gram/publications/cvpr2012-lopez.pdf", "http://agamenon.tsc.uah.es/Personales/rlopez/docs/lopez2012-cvpr.pdf"]}, {"id": "24ff832171cb774087a614152c21f54589bf7523", "title": "Beat-Event Detection in Action Movie Franchises", "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.03755.pdf"]}, {"id": "250466b42c0b690724c4d2c7ff61ecae489be356", "title": "Recognizing Products: A Per-exemplar Multi-label Image Classification Approach", "year": "2014", "pdf": ["http://people.inf.ethz.ch/mageorge/eccv14/marian_george_eccv_2014.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8690/86900440.pdf", "http://www.vs.inf.ethz.ch/publ/papers/mageorge_products_eccv2014.pdf"]}, {"id": "f2828ae81327276407504caab558c13362439476", "title": "Modeling , Representing and Learning of Visual Categories", "year": "2009", "pdf": ["https://pdfs.semanticscholar.org/f282/8ae81327276407504caab558c13362439476.pdf"]}, {"id": "6c9f45c76b4f96fe66d8e1d7b31f89b7cc6caa44", "title": "DeNet: Scalable Real-Time Object Detection with Directed Sparse Sampling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.10295.pdf"]}, {"id": "e478c322de923337627487d8a688f5922b45b2ff", "title": "Automatic Garage Door Opening Using License Plate Recognition and Fingerprint Verification", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/e478/c322de923337627487d8a688f5922b45b2ff.pdf"]}, {"id": "fc2c39b6439623c00b10e8d9826b1c82e8487805", "title": "Generalized Semantic Preserving Hashing for N-Label Cross-Modal Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Mandal_Generalized_Semantic_Preserving_CVPR_2017_paper.pdf"]}, {"id": "ae4577f3a49ee56ea1c80f6884012c416d083ee5", "title": "Adaptive estimation of inlier and outlier threshold", "year": "2013", "pdf": []}, {"id": "3a4c70ca0bbd461fe2e4de3448a01f06c0217459", "title": "Accurate Vision-based Vehicle Localization using Satellite Imagery", "year": "2015", "pdf": ["https://arxiv.org/pdf/1510.09171.pdf"]}, {"id": "b705ca751a947e3b761e2305b41891051525d9df", "title": "Exploring Context with Deep Structured Models for Semantic Segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1603.03183.pdf"]}, {"id": "8093b784be493efc1d833af7e99c5de72eb5afe9", "title": "Understanding object descriptions in robotics by open-vocabulary object retrieval and detection", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/8093/b784be493efc1d833af7e99c5de72eb5afe9.pdf"]}, {"id": "b2f63863e73a8565895ca3d9d7d6a1e10a7695b1", "title": "Efficient Neural Network Compression via Transfer Learning for Industrial Optical Inspection", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b2f6/3863e73a8565895ca3d9d7d6a1e10a7695b1.pdf"]}, {"id": "59ee0f67bcf2d8ea0bbbfcbc71159725fc3a7059", "title": "Object Detection with Appearance-based Mixture Models Anonymous CVPR submission", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/59ee/0f67bcf2d8ea0bbbfcbc71159725fc3a7059.pdf"]}, {"id": "3b570499c39cfdadc306039e58ef460f139f59d0", "title": "Part-based Visual Tracking via Structural Support Correlation Filter", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09971.pdf"]}, {"id": "0ceda9dae8b9f322df65ca2ef02caca9758aec6f", "title": "Context-Aware CNNs for Person Head Detection", "year": "2015", "pdf": ["https://arxiv.org/pdf/1511.07917.pdf"]}, {"id": "b6dc1cd3cabdfea7363d41773a315a0d241dc836", "title": "Local Context Priors for Object Proposal Generation", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/b6dc/1cd3cabdfea7363d41773a315a0d241dc836.pdf"]}, {"id": "e8def76dd702df44b0e1af7dbc0360bb7ef14562", "title": "Rendering Physically Correct Raindrops on Windshields for Robustness Verification of Camera-based Object Recognition", "year": "2018", "pdf": []}, {"id": "509abc3031dbf347c29e2a42d88650e0b8545f3d", "title": "OBJECT DETECTION WITH LARGE INTRA-CLASS VARIATION", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/509a/bc3031dbf347c29e2a42d88650e0b8545f3d.pdf"]}, {"id": "70b420850e16ec2afe42d5c0006742d9045b3e7f", "title": "If You Can't Beat Them, Join Them: Learning with Noisy Data", "year": "2015", "pdf": []}, {"id": "1297e68cbfd314697817fd1eb2901fa391594b5c", "title": "The Research of the Real-time Detection and Recognition of Targets in Streetscape Videos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04070.pdf"]}, {"id": "3bccc5621b14f2e6b07a5936acecdf957724c6ff", "title": "Convolutional Fisher Kernels for RGB-D Object Recognition", "year": "2015", "pdf": []}, {"id": "165c27a4bfb56562c807279bef9d15f1bced5ca0", "title": "Scene parsing using inference Embedded Deep Networks", "year": "2016", "pdf": ["http://www.adv-ci.com/publications/2016_PR_Bu.pdf"]}, {"id": "4be10db13a9210e078d78a4a072c569d9bbd9939", "title": "Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.06098.pdf"]}, {"id": "28566954cda47c55379a510c160e3f7e70d14917", "title": "Generalized Deformable Spatial Pyramid: Geometry-preserving dense correspondence estimation", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2015/supplemental/Hur_Generalized_Deformable_Spatial_2015_CVPR_supplemental.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_031.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_031_ext.pdf"]}, {"id": "8cded4bbe4202ee81c2b75ebe27f839c87b0755e", "title": "Objectness to improve the bag of visual words model", "year": "2014", "pdf": []}, {"id": "11a3084768f035c824662a85a348f02466693d2a", "title": "Lifting Object Detection Datasets into 3D", "year": "2016", "pdf": ["https://arxiv.org/pdf/1503.06465.pdf"]}, {"id": "df8aee8aef6f0c71f968979318dafcd53da04bdc", "title": "Bending the Curve: Improving the ROC Curve Through Error Redistribution", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.06652.pdf"]}, {"id": "75a66e636021bcfde447135ba9a9ed893d3bc436", "title": "Using Visual Saliency to Improve Human Detection with Convolutional Networks", "year": "2018", "pdf": []}, {"id": "66dcc6771e35068a1ea2f6e6f4cdb9a40a4df450", "title": "A Linear Approximation to the chi^2 Kernel with Geometric Convergence", "year": "2012", "pdf": ["https://arxiv.org/pdf/1206.4074.pdf"]}, {"id": "361b19d2c00d086fa8ef860374f5e1d862fd2f30", "title": "Learning to Refine Object Segments", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.08695.pdf"]}, {"id": "26eadb307d62ab28713931beb8be9ff0f04c6ea0", "title": "Synthetic Viewpoint Prediction", "year": "2016", "pdf": []}, {"id": "20bc4145bfa389f40768a7206ba6e5515925af29", "title": "A category-level 3-D object dataset: Putting the Kinect to work", "year": "2011", "pdf": ["http://sergeykarayev.com/files/iccvw2011.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/HJCHEN/201410171124/A%20Category-Level%203-D%20Object%20Dataset%20%20Putting%20the%20Kinect%20to%20Work.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/HJCHEN/201410171124/B3DO_ICCV_2011.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/hjchen/201501231440/A%20Category-Level%203-D%20Object%20Dataset%20%20Putting%20the%20Kinect%20to%20Work.pdf", "http://www.cs.berkeley.edu/~barron/B3DO_ICCV_2011.pdf", "http://www.icsi.berkeley.edu/pubs/vision/categorylevel11.pdf", "https://www.d2.mpi-inf.mpg.de/sites/default/files/janoch13cvpr.pdf"]}, {"id": "8ba686c99684c6be46988ed3ab1003312c2fbf80", "title": "A non-temporal texture driven approach to real-time fire detection", "year": "2011", "pdf": ["http://breckon.eu/toby/publications/papers/chenebert11fire.pdf", "https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/7588/Real-time_fire_detection-2011.pdf;jsessionid=BFF4BCF2CC5EF353D82416490C8E1B85?sequence=1"]}, {"id": "39149c51c5ab3442b43b8d19eca704efde450f51", "title": "Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals", "year": "2015", "pdf": ["https://arxiv.org/pdf/1501.06170.pdf"]}, {"id": "377ad65969b98823dc5f28815d8a01b74fc1b79a", "title": "Action Localization with Tubelets from Motion", "year": "2014", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Jain_Action_Localization_with_2014_CVPR_paper.pdf", "https://staff.fnwi.uva.nl/j.c.vangemert/pub/jain-tubelets-cvpr2014.pdf", "https://staff.fnwi.uva.nl/m.jain/pub/jain-tubelets-cvpr2014.pdf"]}, {"id": "61e84707f98e4e46e60cda61be9f2defac7d6843", "title": "STARS: A new ensemble partitioning approach", "year": "2011", "pdf": []}, {"id": "bf26ccc92bca086195c5f250aef2e409a1c7cd85", "title": "Local Bayes Risk Minimization Based Stopping Strategy for Hierarchical Classification", "year": "2017", "pdf": []}, {"id": "6342c679becb63aed72a9c7cc2cf3b217adcacee", "title": "Deep-learning-based object-level contour detection with CCG and CRF optimization", "year": "2017", "pdf": []}, {"id": "1fc71bc275c64ba39b57056e2174d54b1f293351", "title": "Discriminative spatial saliency for image classification", "year": "2012", "pdf": ["https://jurie.users.greyc.fr/papers/12_cvpr_dsal.pdf"]}, {"id": "ad52d047a44f20416f9dd6655cef54169d481454", "title": "Perceptual modeling in the problem of active object recognition in visual scenes", "year": "2016", "pdf": []}, {"id": "00c8e15cf9cbe9c68fbf00f040a632a37cd944df", "title": "Using image saliency and regions of interest to encourage stronger graphical passwords", "year": "2016", "pdf": []}, {"id": "013e0fe2d203eaa33a4b42d057688815116cc6bb", "title": "Recognizing Car Fluents from Video", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.08067.pdf"]}, {"id": "dab8b00e5619ceec615b179265cd6d315a97911d", "title": "A two-stage training deep neural network for small pedestrian detection", "year": "2017", "pdf": []}, {"id": "9ad0d957138db7fcad7db77bacfdd5c1c728031c", "title": "Convolutional Neural Networks for Efficient Localization of Interstitial Lung Disease Patterns in HRCT Images", "year": "2018", "pdf": []}, {"id": "02f86370fd467f0d03948a94a346034d8a111ffd", "title": "Semantic Video Retrieval Using High Level Context", "year": "2008", "pdf": ["https://pdfs.semanticscholar.org/02f8/6370fd467f0d03948a94a346034d8a111ffd.pdf"]}, {"id": "49862833149ddebc2b2007cb5e417d99ecdb05f1", "title": "Learning to propose objects", "year": "2015", "pdf": ["http://vladlen.info/papers/lpo.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_051_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Krahenbuhl_Learning_to_Propose_2015_CVPR_paper.pdf"]}, {"id": "eaf65c7cf4e9f7868c61f48656cb608fae0adcee", "title": "Visual dictionaries as intermediate features in the human brain", "year": "2014", "pdf": ["http://journal-cdn.frontiersin.org/article/104962/files/pubmed-zip/versions/1/pdf", "http://journal.frontiersin.org/article/10.3389/fncom.2014.00168/pdf", "https://pure.uva.nl/ws/files/2455021/162945_fncom_08_00168.pdf"]}, {"id": "05e9e85b5137016c93d042170e82f77bb551a108", "title": "A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Perazzi_A_Benchmark_Dataset_CVPR_2016_paper.pdf", "https://graphics.ethz.ch/~perazzif/davis/files/davis.pdf", "https://graphics.ethz.ch/~perazzif/davis/files/davis_poster_cvpr_2016.pdf", "https://graphics.ethz.ch/~perazzif/davis/files/davis_supplementary.pdf"]}, {"id": "3f0b0ffe315ee111fc028561ec4ecf2c93f94a05", "title": "Pose Normalization Network for Object Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3f0b/0ffe315ee111fc028561ec4ecf2c93f94a05.pdf"]}, {"id": "74a1336f1fbc8b7bb3b6e159711af1a91336ce22", "title": "An overview of traffic sign detection methods", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/74a1/336f1fbc8b7bb3b6e159711af1a91336ce22.pdf"]}, {"id": "0d760e7d762fa449737ad51431f3ff938d6803fe", "title": "LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.05922.pdf"]}, {"id": "55d01b7314d78fe3bc5ae03b6e414ecba14188f8", "title": "Cognitive Inspired WOR Framework to Reveal Image Semantics, for Efficient Content Based Image Retrieval", "year": "2015", "pdf": []}, {"id": "236db916e2c73eccfe8821110274affcc9b54360", "title": "From Virtual to Reality: Fast Adaptation of Virtual Object Detectors to Real Domains", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/533d/7b1875bd2f8b0656aaba0d6b5a035f0280d8.pdf"]}, {"id": "1a6abbe2e052c07ae2524ffdf91a8b340cdb2718", "title": "Concatenating multiple trajectories using Kalman filter for pedestrian tracking", "year": "2014", "pdf": []}, {"id": "21d1225296aad388406824eb113715c4b90ed3da", "title": "Dirichlet-Based Concentric Circle Feature Transform for Breast Mass Classification", "year": "2015", "pdf": []}, {"id": "87f9a4ff64fb4ab9b066203f360c0b676a9e5a6b", "title": "Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition", "year": "2012", "pdf": ["http://www.nada.kth.se/~tony/LinLin12-CVIU.pdf", "http://www.researchgate.net/profile/Tony_Lindeberg/publication/220135455_Composed_complex-cue_histograms_An_investigation_of_the_information_content_in_receptive_field_based_image_descriptors_for_object_recognition/links/0fcfd50420f7864d60000000.pdf", "https://pdfs.semanticscholar.org/87f9/a4ff64fb4ab9b066203f360c0b676a9e5a6b.pdf"]}, {"id": "cae6f7249783b102e8b05216709a780f47c57f7c", "title": "Subjective evaluation of image understanding results", "year": "2010", "pdf": ["http://www.eurasip.org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569291909.pdf"]}, {"id": "76bcd8cce40892aee1bc46de17a3b803373172d9", "title": "A 58 . 6 mW 30 fps Real-Time Programmable Multi-Object Detection Accelerator with Deformable Parts Models on Full HD 1920", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6734/a3d0325474be381d5c7872b7aed25ea68a49.pdf"]}, {"id": "3ea8d289313b0fe14031ea0d29f517f92a3b0fd3", "title": "Probability-based Detection Quality (PDQ): A Probabilistic Approach to Detection Evaluation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.10800.pdf"]}, {"id": "d88d43504f2be7e26ab1ec731dfc8af6e407aa59", "title": "Model-based Optical Flow: Layers, Learning, and Geometry", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/d88d/43504f2be7e26ab1ec731dfc8af6e407aa59.pdf"]}, {"id": "4c500c84e16e5ebb50b33f9bcff36854e5131c16", "title": "All-Transfer Learning for Deep Neural Networks and its Application to Sepsis Classification", "year": "2016", "pdf": ["https://arxiv.org/pdf/1711.04450.pdf"]}, {"id": "cda617c98020c18f8fefa122b3d55c37255e93a3", "title": "Piecewise Flat Embedding for Image Segmentation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4fe5/d4e7b943657b710c82d1f57aeea4869a1ae5.pdf"]}, {"id": "9d8747468f0fed8e335656d7fe9737e4dc21c798", "title": "RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.03353.pdf"]}, {"id": "1876095a9387a84e594d81675c9c2c17cb10f7cf", "title": "Accurate segmentation of complex document image using digital shearlet transform with neutrosophic set as uncertainty handling tool", "year": "2017", "pdf": ["http://fs.gallup.unm.edu/neut/AccurateSegmentationOfComplex.pdf"]}, {"id": "92a5af98c47bce7208d043c7c418633cd537701c", "title": "Improving Image Captioning by Leveraging Knowledge Graphs", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.08942.pdf"]}, {"id": "6a405e7284ff7e2127a241d60646b4abd3da92f2", "title": "Generate To Adapt : Unsupervised Domain Adaptation using Generative Adversarial Networks", "year": "2017", "pdf": []}, {"id": "d111faa1990f80e3351ea1eef0e5fc177d4e44b4", "title": "Iteratively Training Look-Up Tables for Network Quantization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05355.pdf"]}, {"id": "0e9bc48544dc5a4b88c0c17bf55ad2d5c9d886c4", "title": "Domain Adaptive Classification", "year": "2013", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Mirrashed_Domain_Adaptive_Classification_2013_ICCV_paper.pdf", "http://www.umiacs.umd.edu/~mrastega/paper/dom.pdf"]}, {"id": "896e2776174dcb86d311789ab83a266151d0595b", "title": "A Novel Performance Evaluation Methodology for Single-Target Trackers", "year": "2016", "pdf": ["https://arxiv.org/pdf/1503.01313.pdf"]}, {"id": "1b3ee5455956a40c6e9e09ccda0f4fb162838629", "title": "The Recognition of License Plate Restrictions Based on Faster R-CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1b3e/e5455956a40c6e9e09ccda0f4fb162838629.pdf"]}, {"id": "e33bc0cd79d92d6868989a29c3ab06b75f808590", "title": "Deep Nets: What have they ever done for Vision?", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.04025.pdf"]}, {"id": "ff3a9545e73adea5275a1c7c71c5e3fe2e35a9a1", "title": "An Enhanced Feature Extraction Technique for Diagnosis of Pathological Problems in Mango Crop", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ff3a/9545e73adea5275a1c7c71c5e3fe2e35a9a1.pdf"]}]}
\ No newline at end of file +{"id": "0ee1916a0cb2dc7d3add086b5f1092c3d4beb38a", "citations": [{"id": "7f5793c967d53d0a3e88e8bba895336b92d5da90", "title": "Dense interest features for video processing", "year": "2014", "pdf": []}, {"id": "25d75339720787e7003f2f103cf38cee8175972a", "title": "Optimistic and Pessimistic Neural Networks for Scene and Object Recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.07982.pdf"]}, {"id": "7f66ff8dd0313fc9c7d67be7ea5aecdda956657c", "title": "Tracking-by-Segmentation with Online Gradient Boosting Decision Tree", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf"]}, {"id": "c399c0089fb134d1476fadf5f0426e0e8b70eebd", "title": "The Lov\u00e1sz Hinge: A Novel Convex Surrogate for Submodular Losses.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1512.07797.pdf"]}, {"id": "794dbf68bae49bb571d1b2461289a6bb629de875", "title": "The Lov\u00e1sz Hinge: A Convex Surrogate for Submodular Losses", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/794d/bf68bae49bb571d1b2461289a6bb629de875.pdf"]}, {"id": "0caef87116f62fcc86735401a9aa9d4e170ffbef", "title": "On Performance Evaluation of Driver Hand Detection Algorithms: Challenges, Dataset, and Metrics", "year": "2015", "pdf": ["http://cvrr.ucsd.edu/eshed/papers/Das_ITSC2015.pdf", "http://cvrr.ucsd.edu/publications/2015/DasOhnbarTrivedi_ITSC2015.pdf"]}, {"id": "bea1958ecdcc5279672bed0f2ba8de5a84b0ce64", "title": "Towards reasoning based representations: Deep Consistence Seeking Machine", "year": "2018", "pdf": []}, {"id": "823db813f036365cf9b22b2081ec167a2b582532", "title": "Segmentation and Shape Extraction from Convolutional Neural Networks", "year": "2018", "pdf": []}, {"id": "f81f5da2a1e4eb80b465b8dffca4c9e583a8a8a6", "title": "Rapid Object Detection Systems , Utilising Deep Learning and Unmanned Aerial Systems ( Uas ) for Civil Engineering Applications", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f81f/5da2a1e4eb80b465b8dffca4c9e583a8a8a6.pdf"]}, {"id": "b61ae8216a7c3a5a3202478cd6f18bf3014e2342", "title": "Robust Pedestrian Detection by Combining Visible and Thermal Infrared Cameras", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1f50/d437901304a20f17713bc4a1935f842c57fa.pdf"]}, {"id": "5638516780883fa91827ed095fe2ace103a2f941", "title": "Weakly supervised pedestrian detector training by unsupervised prior learning and cue fusion in videos", "year": "2014", "pdf": []}, {"id": "656f05741c402ba43bb1b9a58bcc5f7ce2403d9a", "title": "Supervised Learning Approaches for Automatic Structuring of Videos. (M\u00e9thodes d'apprentissage supervis\u00e9 pour la structuration automatique de vid\u00e9os)", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/656f/05741c402ba43bb1b9a58bcc5f7ce2403d9a.pdf"]}, {"id": "a6b553a00e60cd1d33f91dc726fa0216728c20e9", "title": "Nonparametric Feature Matching Based Conditional Random Fields for Gesture Recognition from Multi-Modal Video", "year": "2016", "pdf": []}, {"id": "67126ad0af544740c455311d08cb180aec830a6c", "title": "Generating Descriptions of Spatial Relations between Objects in Images", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6712/6ad0af544740c455311d08cb180aec830a6c.pdf"]}, {"id": "59b21f61ac46e1f982cbd9f49cb855ba5fcd3c45", "title": "CCNY at TRECVID 2014 : Surveillance Event Detection", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8028/6720d33e63f470f43db4723a58bdc6d8b450.pdf"]}, {"id": "ff18125a8f549135e6320fed91d0002bd2dae635", "title": "Colour Terms: a Categorisation Model Inspired by Visual Cortex Neurons", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.06300.pdf"]}, {"id": "b3d8705d46a1d63b40a76bbcf8822b2e90b3b9ad", "title": "Efficient Labelling of Pedestrian Supervisions", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/b3d8/705d46a1d63b40a76bbcf8822b2e90b3b9ad.pdf"]}, {"id": "6601549a9f27233b4b21d9c1892efd40b055d74c", "title": "Structured class-labels in random forests for semantic image labelling", "year": "2011", "pdf": ["http://www.dsi.unive.it/~pelillo/papers/ICCV%202011.pdf", "http://www.dsi.unive.it/~srotabul/files/publications/iccv11.pdf"]}, {"id": "e21b1c10bee6a984971dcba414c22078dcfd21c2", "title": "Recent progress in semantic image segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.10198.pdf"]}, {"id": "cf384eda31030a45238ebd8356ace7600da5076b", "title": "Cross-Domain CNN for Hyperspectral Image Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00093.pdf"]}, {"id": "e4dc24e4926df4de3e8d7ca7cd1f4115e91f03e1", "title": "Instance-level video segmentation from object tracks Anonymous CVPR submission", "year": "", "pdf": ["https://pdfs.semanticscholar.org/e4dc/24e4926df4de3e8d7ca7cd1f4115e91f03e1.pdf"]}, {"id": "fbb4f4959756798aabba8034cb3167756b191811", "title": "Supervised Infinite Feature Selection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.02665.pdf"]}, {"id": "28f9cf85ebbff86207e1f6067880bb23daff0878", "title": "Prime Object Proposals with Randomized Prim's Algorithm", "year": "2013", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Manen_Prime_Object_Proposals_2013_ICCV_paper.pdf", "http://www.vision.ee.ethz.ch/~smanenfr/rp/ManenICCV2013.pdf", "https://varcity.ethz.ch/paper/iccv2013_manen_primeobjects.pdf"]}, {"id": "5a0209515ab62e008efeca31f80fa0a97031cd9d", "title": "Dataset fingerprints: Exploring image collections through data mining", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_046.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_046_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/3B_046_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Rematas_Dataset_Fingerprints_Exploring_2015_CVPR_paper.pdf", "https://homes.cs.washington.edu/~krematas/Publications/rematasCVPR2015.pdf"]}, {"id": "7e157fb05614a158397bc2a3bf7b7962b1a123ce", "title": "Deep Network Embedding for Graph Representation Learning in Signed Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1901.01718.pdf"]}, {"id": "194af94f1ea9357bebb0aab5ab98aa0daa21ddbd", "title": "Snapshot Distillation: Teacher-Student Optimization in One Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00123.pdf"]}, {"id": "14d0a53ede10cb42cf3ef8429e24340ef18d0814", "title": "Motion-Guided Cascaded Refinement Network for Video Object Segmentation", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0391.pdf", "http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Motion-Guided_Cascaded_Refinement_CVPR_2018_paper.pdf"]}, {"id": "aae1bf434983545c8a99a5dbfc2ce37435c76e03", "title": "SampleAhead: Online Classifier-Sampler Communication for Learning from Synthesized Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00248.pdf"]}, {"id": "563e1c1821401eef5a6473524583951d3a0f641b", "title": "Detecting Small Signs from Large Images", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.08574.pdf"]}, {"id": "e9af96d478b487fec9a06dde9e43b2ed3355ea7b", "title": "Automatic thresholding of SIFT descriptors", "year": "2016", "pdf": ["https://arxiv.org/pdf/1811.03173.pdf"]}, {"id": "2c9c597ab660815e07980e9655c3c5989402205b", "title": "Vision-Based Reacquisition for Task-Level Control", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/2c9c/597ab660815e07980e9655c3c5989402205b.pdf"]}, {"id": "0bbaa29d1203d3a241074d4c6c7d01171b15afdb", "title": "AN EFFICIENT FRAMEWORK FOR IMAGE DATA RECOGNITION & RETRIEVAL", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/0bba/a29d1203d3a241074d4c6c7d01171b15afdb.pdf"]}, {"id": "a221588fd2d062462254481cfd9563fec2f7c387", "title": "Deep neural network ensemble architecture for eye movements classification", "year": "2018", "pdf": []}, {"id": "a1f33473ea3b8e98fee37e32ecbecabc379e07a0", "title": "Image Segmentation by Cascaded Region Agglomeration", "year": "2013", "pdf": ["http://cs.brown.edu/people/ren/publications/cvpr2013/cascade_final.pdf", "http://ttic.uchicago.edu/~gregory/papers/cascade_cvpr2013.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989c011.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Ren_Image_Segmentation_by_2013_CVPR_paper.pdf"]}, {"id": "6c289ce7cd1c8514f71bf7dc25b1b203b98f8129", "title": "Semantic-Aware Image Smoothing", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6c28/9ce7cd1c8514f71bf7dc25b1b203b98f8129.pdf"]}, {"id": "995998f46ce5cb82a214fad9b4604bd52e836f0a", "title": "Coarse adaptive color image segmentation for visual object classification", "year": "2008", "pdf": ["http://liris.cnrs.fr/Documents/Liris-3453.pdf"]}, {"id": "3e50e351687779c05390daf117f0394d1556cd3c", "title": "Die Detektion interessanter Objekte unter Verwendung eines objektbasierten Aufmerksamkeitsmodells", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3e50/e351687779c05390daf117f0394d1556cd3c.pdf"]}, {"id": "83acbf0bee402b0472ff101cee5942f4137d91c3", "title": "Semi-automatic Annotation on Image Segmentation Hierarchies", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/83ac/bf0bee402b0472ff101cee5942f4137d91c3.pdf"]}, {"id": "4b726a43e201f320b906e1f155aa27c32d43bbc6", "title": "Simultaneous Object Classification and Viewpoint Estimation using Deep Multi-task Convolutional Neural Network", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4b72/6a43e201f320b906e1f155aa27c32d43bbc6.pdf"]}, {"id": "f1d8c377093ecf64afd7f17383738e81666fe5ae", "title": "Remote Detection of Idling Cars Using Infrared Imaging and Deep Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10805.pdf"]}, {"id": "03a2235fea70317461222fac05e38ee35ead9711", "title": "Implementation of a Computer Vision Algorithm for Onboard Detection of Unmanned Aircraft submitted by Luk\u00e1\u0161 Bauer", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03a2/235fea70317461222fac05e38ee35ead9711.pdf"]}, {"id": "393d34faf86df2c9d8246a7d6ba669133fe9207d", "title": "Visual tracking of a moving object via the soft cosine measure", "year": "2017", "pdf": []}, {"id": "4ba503d8f173880d8e8402808f54b78b653e5d20", "title": "Accelerating Stochastic Gradient Descent via Online Learning to Sample", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/4ba5/03d8f173880d8e8402808f54b78b653e5d20.pdf"]}, {"id": "1a20ddce2349bc995dceea66cd2378f8888c8027", "title": "SAN: Learning Relationship Between Convolutional Features for Multi-scale Object Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04974.pdf"]}, {"id": "afad16c9fee11d8f78785af6b1856beb86b5ccf4", "title": "Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08011.pdf"]}, {"id": "369bd35ab8bad4c7bc5e376cc776a5366d97b12e", "title": "An Object Detector Trained on Line Drawings", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/369b/d35ab8bad4c7bc5e376cc776a5366d97b12e.pdf"]}, {"id": "095ccb4e2e0f3934dc1aa51c685b2f54c8a6e588", "title": "Derivate-based Component-Trees for Multi-Channel Image Segmentation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.01906.pdf"]}, {"id": "b1369e4785dd0b23f89ca76f45468049c8667863", "title": "1 DARTS : Deceiving Autonomous Cars with Toxic Signs", "year": "2018", "pdf": []}, {"id": "83b2dc1b81e5dd420bc030a8d67b5ed36b5b0c5e", "title": "Supervised hierarchical Pitman-Yor process for natural scene segmentation", "year": "2011", "pdf": ["http://ttic.uchicago.edu/~rurtasun/publications/shyr_etal_cvpr11.pdf"]}, {"id": "065f05c9cb2a6080191851dd82cd9b439a77499a", "title": "Comparing Boosted Cascades to Deep Learning Architectures for Fast and Robust Coconut Tree Detection in Aerial Images", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/065f/05c9cb2a6080191851dd82cd9b439a77499a.pdf"]}, {"id": "12ff1c48f5776fda9d156c7b324af3f2674420a9", "title": "Are Large Scale Training Images or Discriminative Features Important for Codebook Construction?", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/12ff/1c48f5776fda9d156c7b324af3f2674420a9.pdf"]}, {"id": "cb4fc4d49783f2049c48a062169f04eb744443ec", "title": "Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.08474.pdf"]}, {"id": "46971fb6caa61c606b046da855be4e196a830ccf", "title": "Identification of Scene Text by Character Descriptor in Smart Mobile Devices", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/4697/1fb6caa61c606b046da855be4e196a830ccf.pdf"]}, {"id": "fd23dda0abe2d6a3ae0c8253c89110364cdecbc9", "title": "Deep Learning for People Detection on Beach Images", "year": "2018", "pdf": []}, {"id": "f8f14c0248a4974ce9a6226db81f9745a6b1ea97", "title": "Part based pedestrian detection based on Logic inference", "year": "2013", "pdf": ["http://portal.uc3m.es/portal/page/portal/dpto_ing_sistemas_automatica/investigacion/lab_sist_inteligentes_old/publications/2013-ITSC-Olmeda.pdf"]}, {"id": "e047bcb9721c36fb61df1f4d6f7de83f290ec1d4", "title": "Flower classification: Training augmentation using manifold images", "year": "2015", "pdf": []}, {"id": "32bebe84ffbd4fd81f0e5bb30dbc90774aa3b14b", "title": "Segmentation Results Stimuli Final Saliency Map Ground Truth Constructed Graph CCA", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/32be/be84ffbd4fd81f0e5bb30dbc90774aa3b14b.pdf"]}, {"id": "71c966967fe77132a6c87999bde17a80e76b1202", "title": "Object Detection Using Deep Learning - Learning where to search using visual attention", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/71c9/66967fe77132a6c87999bde17a80e76b1202.pdf"]}, {"id": "bf3aae7293f664d512c0904916d804327af22f52", "title": "STDnet: A ConvNet for Small Target Detection", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/bf3a/ae7293f664d512c0904916d804327af22f52.pdf"]}, {"id": "29aa3dc15450e6eb46c34f30f0e224e5ea16615e", "title": "Sketch Me That Shoe", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Yu_Sketch_Me_That_CVPR_2016_paper.pdf", "http://vision.cs.utexas.edu/381V-fall2016/slides/hsiao_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yu_Sketch_Me_That_CVPR_2016_paper.pdf", "https://www.eecs.qmul.ac.uk/~qian/SketchMeThatShoe.pdf"]}, {"id": "c37fe13f94dfc2f3494a35a63336689ce4392135", "title": "MPNET: An End-to-End Deep Neural Network for Object Detection in Surveillance Video", "year": "2018", "pdf": []}, {"id": "549c719c4429812dff4d02753d2db11dd490b2ae", "title": "YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00824.pdf"]}, {"id": "6f2819172d270ceb568bf7586d812b298266bcbf", "title": "Edge Fields for Robust Object Proposal", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6f28/19172d270ceb568bf7586d812b298266bcbf.pdf"]}, {"id": "22cf367d14e646914cc959bbcd402df0c20cd0dc", "title": "Towards Automated Melanoma Screening: Proper Computer Vision & Reliable Results", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.04024.pdf"]}, {"id": "c8ba499e8d8daa32637885f03137f41d61023bf9", "title": "Weak supervision for detecting object classes from activities", "year": "2017", "pdf": ["https://ps.is.tue.mpg.de/uploads_file/attachment/attachment/296/weak_supervision_object_detection.pdf"]}, {"id": "b800f6b02c32c54cb07e6b8655171bbb2ca5cc0e", "title": "Computer Vision : Visual Extent of an Object", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/b800/f6b02c32c54cb07e6b8655171bbb2ca5cc0e.pdf"]}, {"id": "094f5e36dae2602e179f2c1d95a616df3dbe967f", "title": "Bilinear classifiers for visual recognition", "year": "2009", "pdf": ["https://pdfs.semanticscholar.org/094f/5e36dae2602e179f2c1d95a616df3dbe967f.pdf"]}, {"id": "46c82cfadd9f885f5480b2d7155f0985daf949fc", "title": "3D Shape Attributes", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Fouhey_3D_Shape_Attributes_CVPR_2016_paper.pdf", "http://www.cs.cmu.edu/~dfouhey/2016/shapeAttr/shapeAttr.pdf", "http://www.cs.cmu.edu/~dfouhey/2016/shapeAttr/talk_final.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Fouhey_3D_Shape_Attributes_CVPR_2016_paper.pdf", "http://www.robots.ox.ac.uk/~vgg/publications/2016/Fouhey16/fouhey16.pdf", "https://people.eecs.berkeley.edu/~dfouhey/2016/shapeAttr/shapeAttr.pdf", "https://people.eecs.berkeley.edu/~dfouhey/2016/shapeAttr/talk_final.pdf"]}, {"id": "9c4365a56fb3cf41b15712657b15f7422ca0dab2", "title": "A Hybrid Supervised-Unsupervised Vocabulary Generation Algorithm for Visual Concept Recognition", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/9c43/65a56fb3cf41b15712657b15f7422ca0dab2.pdf"]}, {"id": "90e994a802a0038f24c8e3735d7619ebb40e6e93", "title": "Semantic Foggy Scene Understanding with Synthetic Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.07819.pdf"]}, {"id": "cd1a636c1261208084cb8395c877c7ca22c76df1", "title": "Fast Deep Vehicle Detection in Aerial Images", "year": "2017", "pdf": ["https://www.computer.org/csdl/proceedings/wacv/2017/4822/00/07926624.pdf"]}, {"id": "1999d5e0700bf8fa50bb1bab5b981bda1d111a4f", "title": "Monocular Road Terrain Detection by Combining Visual and Spatial Information", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/73b1/10df4809d0a015f90fa6e7a7dce351bcc52e.pdf", "https://www.researchgate.net/profile/Jannik_Fritsch/publication/261073577_Monocular_Road_Terrain_Detection_by_Combining_Visual_and_Spatial_Information/links/5475ef240cf29afed612e5a8.pdf"]}, {"id": "895c5a6f2915d95d518e78d6a0224dad7399492b", "title": "Beyond Bounding Boxes: Precise Localization of Objects in Images", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/b43d/d1c7c058831ba3f242997e7743425325b0bd.pdf"]}, {"id": "e8ffef3d4d74720e766e506e175e533bdc8ee705", "title": "Object Detection Networks on Convolutional Feature Maps", "year": "2017", "pdf": ["https://arxiv.org/pdf/1504.06066.pdf"]}, {"id": "5e0f8c355a37a5a89351c02f174e7a5ddcb98683", "title": "Microsoft COCO: Common Objects in Context", "year": "2014", "pdf": ["https://arxiv.org/pdf/1405.0312.pdf"]}, {"id": "304aa9bfd6bc32d3d87abce6a229d973270bbd73", "title": "Fast Neural Cell Detection Using Light-Weight SSD Neural Network", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w8/papers/Yi_Fast_Neural_Cell_CVPR_2017_paper.pdf"]}, {"id": "084bd219dd239dc4c9a02621a5333d3bc1446566", "title": "DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking", "year": "2015", "pdf": ["https://arxiv.org/pdf/1503.00072.pdf"]}, {"id": "284be8be0c6bedc36dfe43229bc84345ab0aedc2", "title": "Faster Training of Mask R-CNN by Focusing on Instance Boundaries", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07069.pdf"]}, {"id": "c56da136b8d62125009a131f6dc21fcd0dd6a559", "title": "ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT)", "year": "2017", "pdf": []}, {"id": "0083a395fded81d562317d83e194dfbc47b5c04a", "title": "AT&T Research at TRECVID 2010", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/955f/e9a0ba02d82e469c5e719bbde9a5f14a3d32.pdf"]}, {"id": "25a3ae06419787770f8040938232a77f29bd0bc2", "title": "PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects", "year": "2013", "pdf": ["http://liris.cnrs.fr/Documents/Liris-6293.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Duffner_PixelTrack_A_Fast_2013_ICCV_paper.pdf", "https://hal.archives-ouvertes.fr/hal-00976387/file/Liris-6293.pdf"]}, {"id": "c1e53c31202d7c9512857d4dd73a8e6d05a48849", "title": "An Improved Faster R-CNN for Same Object Retrieval", "year": "2017", "pdf": []}, {"id": "a74b045f28670e8f85173e0e483581520d667f02", "title": "Object tracking using Langevin Monte Carlo particle filter and locality sensitive histogram based likelihood model", "year": "2018", "pdf": []}, {"id": "2d15a7546c16d5821ffa8f769eb7ec18e435e64d", "title": "Recognition in Terra Incognita", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04975.pdf"]}, {"id": "66586f1d755362f485f25acfc60153c2a5ed1533", "title": "A Comparison of Deep Learning Architectures for Semantic Mapping of Very High Resolution Images", "year": "2018", "pdf": []}, {"id": "81ea29bde0216e41420c4591bebb800142fa3269", "title": "Learning Active Learning from Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.03365.pdf"]}, {"id": "fa11e3517ed9b08ca1d0dcca2cc5bc3a6ada9fcb", "title": "The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics", "year": "2015", "pdf": []}, {"id": "8d74fbd46f9d5d615e350c4593cbc5b5ca63fa8b", "title": "Data driven visual tracking via representation learning and online multi-class LPBoost learning", "year": "2016", "pdf": []}, {"id": "9452d029f5d140aece06619b6fd8e47b070cacd1", "title": "Urban classification by pixel and object-based approaches for very high resolution imagery", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/9452/d029f5d140aece06619b6fd8e47b070cacd1.pdf"]}, {"id": "f852d7ff0b1ade73fdb2dc43578cf414a6c57cab", "title": "Deep learning on small datasets using online image search", "year": "2016", "pdf": []}, {"id": "47c31fd5edce58007df1b61dd671283722047da4", "title": "Decomposition, discovery and detection of visual categories using topic models", "year": "2008", "pdf": ["http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/463.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2008/data/papers/463.pdf", "http://www.icsi.berkeley.edu/pubs/vision/decompositiondiscover08.pdf", "https://scalable.mpi-inf.mpg.de/files/2013/04/fritz08cvpr.pdf"]}, {"id": "ed62a56b81511d7fcf6d247014987163d9668982", "title": "\"What happens if...\" Learning to Predict the Effect of Forces in Images", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.05600.pdf"]}, {"id": "8502c089c9affe5955810073b4c814457790065c", "title": "Learning Single-view 3D Reconstruction of Objects and Scenes", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8502/c089c9affe5955810073b4c814457790065c.pdf"]}, {"id": "d6b514a68abff3ab14af9fc0152cd5b28bd0192c", "title": "Instance Segmentation by Deep Coloring", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.10007.pdf"]}, {"id": "af7310abcbac6b43ffa850be2315282185b933bc", "title": "Detection and recognition of traffic signs inside the attentional visual field of drivers", "year": "2017", "pdf": []}, {"id": "193a69489230de1013dff9af1232e5379cc5282f", "title": "Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/193a/69489230de1013dff9af1232e5379cc5282f.pdf"]}, {"id": "2851efe83633a1c80272ba2c9302a1333dd32523", "title": "Understanding and localizing activities from correspondences of clustered trajectories", "year": "2017", "pdf": ["https://www.micc.unifi.it/wp-content/uploads/2017/01/1-s2.0-S1077314216301965-main.pdf"]}, {"id": "0f8f9253c81fd90fe44d474cc185d4ae2487e5b4", "title": "NYC3DCars: A Dataset of 3D Vehicles in Geographic Context", "year": "2013", "pdf": ["http://nyc3d.cs.cornell.edu/static/paper.pdf", "http://www.cs.cornell.edu/~snavely/publications/papers/nyc3dcars_iccv13.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Matzen_NYC3DCars_A_Dataset_2013_ICCV_paper.pdf"]}, {"id": "be2d326fa588b4ffd1d8d3d4408ae680e1a26277", "title": "JOURNA A Survey on Modern Era \u2019 s Online Object Tracking Algorithms", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/be2d/326fa588b4ffd1d8d3d4408ae680e1a26277.pdf"]}, {"id": "a228ba020bd321d29ab24485cb2988a62707fd64", "title": "Using objective ground-truth labels created by multiple annotators for improved video classification: A comparative study", "year": "2013", "pdf": ["https://engineering.purdue.edu/RVL/Publications/Srivastava2013.pdf"]}, {"id": "3e9d04b62d3469fb155e02c1f30b8900381e1419", "title": "Fast and Accurate, Convolutional Neural Network Based Approach for Object Detection from UAV", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05756.pdf"]}, {"id": "2d5589ad3a228670eac7251b6508cb326793051c", "title": "A comparison of late fusion methods for object detection", "year": "2013", "pdf": ["http://www2.informatik.hu-berlin.de/~knauer/Publikationen/knauer2013c.pdf"]}, {"id": "5c45a1abc51fe059987bcfba19b1d5076a8d9afb", "title": "Autonomous Object Category Learning for Service Robots Using Internet Resources", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5c45/a1abc51fe059987bcfba19b1d5076a8d9afb.pdf"]}, {"id": "c9d73438bf5e66bd0c4f512c5a4e53c3e33e721e", "title": "Adding spatial distribution clue to aggregated vector in image retrieval", "year": "2018", "pdf": ["https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-018-0247-0?site=jivp-eurasipjournals.springeropen.com"]}, {"id": "64c1158a4061882d610f1cffd5ddb1e8fc9a74b4", "title": "Gated Feedback Refinement Network for Dense Image Labeling", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Islam_Gated_Feedback_Refinement_CVPR_2017_paper.pdf", "http://www.cs.umanitoba.ca/~ywang/papers/cvpr17.pdf"]}, {"id": "02e5372e439c09f8a8ce8c4784b044ce116ca11c", "title": "DeepCorrect: Correcting DNN models against Image Distortions", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.02406.pdf"]}, {"id": "451ed51346fe2e6c5de2dbf29733711b31f5fd68", "title": "Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05573.pdf"]}, {"id": "b12c9773c6d948d36698666ec351a78c449c0d06", "title": "Figure-Aware Tracking under Occlusion from Monocular Videos", "year": "2014", "pdf": []}, {"id": "c3c4f0caf1b42b6466306360c4ebe16f66489df0", "title": "Gated Feedback Refinement Network for Coarse-to-Fine Dense Semantic Image Labeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.11266.pdf"]}, {"id": "aa1c888d43f1d254e9fece485c3d6fd2454b894f", "title": "Structured Prediction for Object Detection in Deep Neural Networks", "year": "2014", "pdf": ["http://www.ais.uni-bonn.de/papers/icann2014_schulz.pdf"]}, {"id": "a85e287343379eb80793345bbff733cbc128a5bc", "title": "Improving a Real-Time Object Detector with Compact Temporal Information", "year": "2017", "pdf": ["http://vbn.aau.dk/files/272717858/ahrnbom_jensen_etal_iccvw2_17.pdf", "http://www2.maths.lth.se/vision/publdb/reports/pdf/ahrnbom-jensen-etal-iccvw2-17.pdf"]}, {"id": "182c91f619e0b7a8cd2120139d530750aa0b85a7", "title": "Compressing the Input for CNNs with the First-Order Scattering Transform", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.10200.pdf"]}, {"id": "b87eeb3b873d27c68a5a1cdfd9409c14db352d92", "title": "Hierarchical Cellular Automata for Visual Saliency", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.09425.pdf"]}, {"id": "37b9ea1bf5b6ce8ecb656628af3933c64c632c2b", "title": "Transfer Learning for 3 D LiDAR-based Human Classification with a Mobile Robot", "year": "2018", "pdf": []}, {"id": "073c9ec4ff069218f358b9dd8451a040cf1a4a82", "title": "Object Classification and Detection in High Dimensional Feature Space", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/073c/9ec4ff069218f358b9dd8451a040cf1a4a82.pdf"]}, {"id": "3b304585d5af0afe98a85d6e0559315fbf3a7807", "title": "An Improved Labelling for the INRIA Person Data Set for Pedestrian Detection", "year": "2013", "pdf": ["http://welcome.isr.ist.utl.pt/img/pdfs/2999_2013_IbPRIA_Taiana_Nascimento_Bernardino.pdf", "http://welcome.isr.tecnico.ulisboa.pt/wp-content/uploads/2015/05/2999_2013_IbPRIA_Taiana_Nascimento_Bernardino.pdf"]}, {"id": "81763bb718dc6630be210c056a250b1c2ed57fd7", "title": "3D Semantic Parsing of Large-Scale Indoor Spaces", "year": "2016", "pdf": ["http://buildingparser.stanford.edu/images/CVPR_2016_poster.pdf", "http://buildingparser.stanford.edu/images/supp_mat.pdf", "http://openaccess.thecvf.com/content_cvpr_2016/papers/Armeni_3D_Semantic_Parsing_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Armeni_3D_Semantic_Parsing_CVPR_2016_paper.pdf"]}, {"id": "80ab008243b5a61c8a74a0a3e2aaf702b1f906b3", "title": "Ship detection for automating navigational watch", "year": "2014", "pdf": []}, {"id": "065eb1ac981cbb422d8e22d51d416807e612df0f", "title": "Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few % Performance from Vision Models with Just Three More Parameters", "year": "2014", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Premachandran_Empirical_Minimum_Bayes_2014_CVPR_paper.pdf", "https://filebox.ece.vt.edu/~dbatra/papers/ptb_cvpr14.pdf", "https://www.cc.gatech.edu/~dbatra/papers/ptb_cvpr14.pdf"]}, {"id": "17e997e6f724f8b92c0b91ad5d7f828714a510c6", "title": "Interactive adaptation of real-time object detectors", "year": "2014", "pdf": ["http://www.drgoehring.de/bib/goehring14icra/goehring14icra-slides.pdf", "https://people.eecs.berkeley.edu/~jhoffman/papers/Goehring_ICRA2014.pdf", "https://www.eecs.berkeley.edu/~jhoffman/papers/Goehring_ICRA2014.pdf"]}, {"id": "8645fe95f3f503f854b08096c2874a3f7ea6b79b", "title": "BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Sochor_BoxCars_3D_Boxes_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Sochor_BoxCars_3D_Boxes_CVPR_2016_paper.pdf"]}, {"id": "f79c4bf83371627ba139b61eb427463b93cd687b", "title": "Learning from Few Examples for Visual Recognition Problems", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/f79c/4bf83371627ba139b61eb427463b93cd687b.pdf"]}, {"id": "d23ac99cdab20a9a3eca2784a5b262649c717988", "title": "Rotation Invariant Angular Descriptor Via A Bandlimited Gaussian-like Kernel", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.02753.pdf"]}, {"id": "810eafc9e854ea9b1d7a9e9f755f8102310d5db6", "title": "Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.02257.pdf"]}, {"id": "10d3f77225eca1d576268ba84ed83f230a5e47c4", "title": "Crafting a multi-task CNN for viewpoint estimation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.03894.pdf"]}, {"id": "dcb6f06631021811091ce691592b12a237c12907", "title": "SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection", "year": "2018", "pdf": []}, {"id": "c7780cff11068fecb322a43e459c56267a88aee7", "title": "DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion", "year": "2017", "pdf": []}, {"id": "581fb0f0405c7f0e60610d88ceaceb9af44d8569", "title": "Final Report : Smart Trash Net : Waste Localization and Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/581f/b0f0405c7f0e60610d88ceaceb9af44d8569.pdf"]}, {"id": "149f3cc167b046dc790b1f4f1c48eeb31e898403", "title": "A study of vehicle detector generalization on U.S. highway", "year": "2016", "pdf": ["http://cvrr.ucsd.edu/publications/2016/0669.pdf"]}, {"id": "e6e5949464c38ecea94c3c295ea65220bc19f338", "title": "BOP: Benchmark for 6D Object Pose Estimation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.08319.pdf"]}, {"id": "a43f460f6c1abbe8eb0097594df6eafc0f651d49", "title": "Saliency-based object recognition in video", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a43f/460f6c1abbe8eb0097594df6eafc0f651d49.pdf"]}, {"id": "c23734cf46af7c299b72089e5cbc0e50b833e434", "title": "Edge color transform: a new operator for natural scene text localization", "year": "2017", "pdf": []}, {"id": "4ff486644be5e451784d6ae83f8073c8320fa974", "title": "Visual Tracking with Convolutional Neural Network", "year": "2015", "pdf": []}, {"id": "0dc0823a7485e2dfba9cdbcec788fe705c9bd8a1", "title": "Lazy dragging: effortless bounding-box drawing for touch-screen devices", "year": "2017", "pdf": []}, {"id": "a738bd92c2be3b61b7a4b55c028550559b7d9d96", "title": "Selective Weakly Supervised Human Detection under Arbitrary Poses", "year": "2017", "pdf": ["http://parnec.nuaa.edu.cn/xtan/paper/y-cai-pr-2017.pdf"]}, {"id": "4e4f2c4d2ea47636ca2ab795770d6b3214640f37", "title": "Efficient Maximum Appearance Search for Large-Scale Object Detection", "year": "2013", "pdf": ["http://researcher.watson.ibm.com/researcher/files/us-liangliang.cao/qiangcvpr2013_final.pdf", "http://rogerioferis.com/publications/ChenCVPR2013.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d190.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Efficient_Maximum_Appearance_2013_CVPR_paper.pdf"]}, {"id": "2a70068b2da3c75632e2896a2da567a5f3b35231", "title": "Visual Localisation and Individual Identification of Holstein Friesian Cattle via Deep Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w41/Andrew_Visual_Localisation_and_ICCV_2017_paper.pdf", "https://research-information.bristol.ac.uk/files/127299906/Tilo_Burghardt_Visual_Localisation_and_Individual_Identification_of_Helstein_Friesian_Cattle_via_Deep_Learning.pdf"]}, {"id": "2284ba28bd3b1afaf06afb8c2a94638e350b3ecb", "title": "Boosting Object Proposals: From Pascal to COCO", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Pont-Tuset_Boosting_Object_Proposals_ICCV_2015_paper.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pont-Tuset_Boosting_Object_Proposals_ICCV_2015_paper.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01226.pdf"]}, {"id": "b31f37fd71b7b45e6fd8978960e271a7db1ee212", "title": "DICTING IMAGE ROTATIONS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b31f/37fd71b7b45e6fd8978960e271a7db1ee212.pdf"]}, {"id": "2c0f0b4304e2823df4fe7cf2ac74e06f46d40dcb", "title": "Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study", "year": "2010", "pdf": ["http://lastchance.inf.cs.cmu.edu/alex/itm_yjiang10.pdf", "http://www.researchgate.net/profile/Chong-Wah_Ngo/publication/224079997_Representations_of_Keypoint-Based_Semantic_Concept_Detection_A_Comprehensive_Study/links/0912f50cbe0debcb79000000.pdf", "http://www.yugangjiang.info/publication/itm_yjiang.pdf"]}, {"id": "576ffe2304aba0b799b4d3b8880f4b5a244ece5f", "title": "Learning Class-to-Image Distance with Object Matchings", "year": "2013", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a795.pdf", "http://www.cs.sfu.ca/~gza11/personal/research/om_cvpr13.pdf", "http://www.cs.sfu.ca/~mori/research/papers/zhou-cvpr13.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Zhou_Learning_Class-to-Image_Distance_2013_CVPR_paper.pdf"]}, {"id": "42832bcb36ee3f69327c38d0d17e6e2a73aaa2a6", "title": "SUN Database: Exploring a Large Collection of Scene Categories", "year": "2014", "pdf": ["http://cvcl.mit.edu/Papers/SUN-IJCV2014.pdf", "http://vision.cs.princeton.edu/projects/2010/SUN/paperIJCV.pdf", "http://vision.princeton.edu/projects/2010/SUN/paperIJCV.pdf"]}, {"id": "20a0b23741824a17c577376fdd0cf40101af5880", "title": "Learning to Track for Spatio-Temporal Action Localization", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.01929.pdf"]}, {"id": "71f7be73a575f3689b0137446289d02462e1c5b0", "title": "Adaptive Multi-Scale Information Flow for Object Detection.", "year": "2018", "pdf": ["http://bmvc2018.org/contents/papers/0266.pdf"]}, {"id": "eacb95e81156c48f4ff7470567ba205225170fa7", "title": "Learning Aerial Image Segmentation From Online Maps", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06879.pdf"]}, {"id": "d6bdc70d259b38bbeb3a78db064232b4b4acc88f", "title": "Video-Based Face Association and Identification", "year": "2017", "pdf": []}, {"id": "367008b91eb57c5ea64ef7520dfcabc0c5c85532", "title": "Person Re-identification: Past, Present and Future", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.02984.pdf"]}, {"id": "3dba6c86541aad3ec8f54c55d57eca9aa98f4ed2", "title": "PAC-Bayesian Majority Vote for Late Classifier Fusion", "year": "2012", "pdf": ["https://arxiv.org/pdf/1207.1019.pdf"]}, {"id": "af9cc1767f50f63291d7ca9ab709f6849cd1e46c", "title": "Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation.", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/af9c/c1767f50f63291d7ca9ab709f6849cd1e46c.pdf"]}, {"id": "02534fabd5ffbb98d1c09581eb410e29bec9da01", "title": "Fast Vehicle Detection in Aerial Imagery.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.08666.pdf"]}, {"id": "ceee9ba72a021ae5604db04a93fdcff421d60216", "title": "Encoder Based Lifelong Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.01920.pdf"]}, {"id": "94d8de8793aa6c0e1a9fcf14e73e3860690c727f", "title": "Image context classification based on visual codebook feature boosting", "year": "2013", "pdf": []}, {"id": "feaedf4b24f8d7673c59659cadd4237c2a1dbc90", "title": "A large-scale solar image dataset with labeled event regions", "year": "2013", "pdf": []}, {"id": "c4a0e89793961dc486964802df55ae73fbba60ee", "title": "Soccer: Who Has the Ball? Generating Visual Analytics and Player Statistics", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w34/Theagarajan_Soccer_Who_Has_CVPR_2018_paper.pdf", "http://vislab.ucr.edu/PUBLICATIONS/pubs/Journal%20and%20Conference%20Papers/after10-1-1997/Conference/2018/FINAL-published-soccer-ball-generating.pdf"]}, {"id": "98bf42055160845e6f8f3c022298e3b8e4e55f80", "title": "Vision Meets Drones: A Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.07437.pdf"]}, {"id": "1114c2aba97a5782a48341817811df2438d0fdbf", "title": "Robust Visual Tracking using Multi-Frame Multi-Feature Joint Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07498.pdf"]}, {"id": "1b8b9332886ea661e5a46bb87118956f1f4c15f3", "title": "Temporal Hallucinating for Action Recognition with Few Still Images", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/Supplemental/1664-supp.pdf", "http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Temporal_Hallucinating_for_CVPR_2018_paper.pdf"]}, {"id": "7b3a63d030d03e536ddcbc217bc8d6fd630e3b53", "title": "xView: Objects in Context in Overhead Imagery", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.07856.pdf"]}, {"id": "4bf2f88176484e15bb673abb6fca093af7935c55", "title": "Personal driving diary: Automated recognition of driving events from first-person videos", "year": "2013", "pdf": ["http://michaelryoo.com/papers/cviu13_driving_ryoo.pdf"]}, {"id": "b9b21cfa7de32677151571ab44d27d2d246b7a03", "title": "Towards Explanation of DNN-based Prediction with Guided Feature Inversion", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00506.pdf"]}, {"id": "5950512e21114236208b9eaeebc9a09735e367a6", "title": "Master research Internship Internship report Segmentation and recognition of symbols for printed and handwritten music scores", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5950/512e21114236208b9eaeebc9a09735e367a6.pdf"]}, {"id": "4152d2c8585f7e3f85d3b3d84036171de104cbd7", "title": "Rethinking ImageNet Pre-training", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08883.pdf"]}, {"id": "0199150ccad6479eac9d693a7cc0406935d877a8", "title": "Towards Real-Time Accurate Object Detection in Both Images and Videos Based on Dual Refinement.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08638.pdf"]}, {"id": "eb2ab9caa61b021c1cd7aff6d08163768faba99e", "title": "Cleaning Up Multiple Detections Caused by Sliding Window Based Object Detectors", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/eb2a/b9caa61b021c1cd7aff6d08163768faba99e.pdf"]}, {"id": "2e62b4f2f5a8e6c1bf6a21ebb860c40463d72917", "title": "Adversarial background augmentation improves object localisation using convolutional neural networks", "year": "", "pdf": ["https://pdfs.semanticscholar.org/2e62/b4f2f5a8e6c1bf6a21ebb860c40463d72917.pdf"]}, {"id": "d2e8efaa0d095c22455fe4eab260f94994bfb116", "title": "Stand-alone quality estimation of background subtraction algorithms", "year": "2017", "pdf": []}, {"id": "4893ce89df7afde71534af9b9fd5becb947f112e", "title": "Instance-level Sketch-based Retrieval by Deep Triplet Classification Siamese Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11375.pdf"]}, {"id": "1a1654456decd116f4ca84c98006dfda0a8a3134", "title": "INTEGRATED VISUAL INFORMATION FOR MARITIME SURVEILLANCE", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1a16/54456decd116f4ca84c98006dfda0a8a3134.pdf"]}, {"id": "e9d82ae7530e605c03440d362d78663c4af0edb6", "title": "Object Detection Using Color Entropies and a Fuzzy Classifier", "year": "2013", "pdf": []}, {"id": "4a6049e1926cc8e574301cfb229599cdc0a64e62", "title": "Characterizing the performance of an image-based recognizer for planar mechanical linkages in textbook graphics and hand-drawn sketches", "year": "2015", "pdf": ["http://vdel.me.cmu.edu/publications/2015cag/paper.pdf"]}, {"id": "4fe91feab83d947a0d3bd85adcf18ab1b3d9e05f", "title": "Transductive People Tracking in Unconstrained Surveillance", "year": "2016", "pdf": ["http://imagelab.ing.unimore.it/Pubblicazioni/pubblicazioni/2015TCSVT.pdf"]}, {"id": "a5fa91dbc72f200970e70debe88375b71ddef40b", "title": "A new performance measure and evaluation benchmark for road detection algorithms", "year": "2013", "pdf": ["http://www.cvlibs.net/publications/Fritsch2013ITSC.pdf"]}, {"id": "c96f012f4915398259e7e223810c57898b5e1a76", "title": "Fast LIDAR-based Road Detection Using Convolutional Neural Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c96f/012f4915398259e7e223810c57898b5e1a76.pdf"]}, {"id": "1281e443d2cf1c1dd71ed3b7b0376d408d0958af", "title": "SALICON: Reducing the Semantic Gap in Saliency Prediction by Adapting Deep Neural Networks", "year": "2015", "pdf": ["http://www.cs.cornell.edu/~xhuang/publications/salicon_poster.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_SALICON_Reducing_the_ICCV_2015_paper.pdf"]}, {"id": "e295c1aa47422eb35123053038e62e9aa50a2e3a", "title": "ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Escalera_ChaLearn_Looking_at_ICCV_2015_paper.pdf"]}, {"id": "b4df58f1fd8a3bd0815e7fb957f7f07fddd77338", "title": "Rethinking the sGLOH Descriptor", "year": "2018", "pdf": ["http://cvg.dsi.unifi.it/colombo_now/CC/Public/sGLOH2_TPAMI_2017.pdf"]}, {"id": "2e1f0b522014c942197e51b556eeb48b6ad66cda", "title": "Automatic object classification using motion blob based local feature fusion for traffic scene surveillance", "year": "2012", "pdf": []}, {"id": "0431e8a01bae556c0d8b2b431e334f7395dd803a", "title": "Learning Localized Perceptual Similarity Metrics for Interactive Categorization", "year": "2015", "pdf": ["http://people.cs.umass.edu/~smaji/papers/localized-wacv15.pdf", "http://vision.cs.utexas.edu/hmcv2014/wah_etal_hmcv2014.pdf", "https://vision.cornell.edu/se3/wp-content/uploads/2014/11/wacv2015_localized_final.pdf"]}, {"id": "3f74b70e304a957655e2bedc360c4fe5fcd54318", "title": "Detecting objects of a category in range data by comparing to a single geometric prototype", "year": "2013", "pdf": ["http://elib.dlr.de/85396/1/Hillenbrand_13.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_IROS_2013/media/files/2658.pdf"]}, {"id": "1e5edbd39b4c61f785515e117a74e2d280aefbe7", "title": "The urrent tate and TRL ssessment of eople racking echnology for ideo urveillance pplications", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1e5e/dbd39b4c61f785515e117a74e2d280aefbe7.pdf"]}, {"id": "a01c7eec51fa901b2526325f563480c152c58ee5", "title": "Contour Box: Rejecting Object Proposals without Explicit Closed Contours", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/Lu_Contour_Box_Rejecting_ICCV_2015_paper.pdf", "http://www.cse.cuhk.edu.hk/leojia/papers/contour_iccv15.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Lu_Contour_Box_Rejecting_ICCV_2015_paper.pdf"]}, {"id": "4e5be30a51f6f5cde38b4917ab9e8c51d85ad16c", "title": "Fast dynamic video content exploration", "year": "2013", "pdf": []}, {"id": "e251714d84e018fa2ec0c8c9948b9ece40613140", "title": "Multilayer feature combination for visual tracking", "year": "2015", "pdf": []}, {"id": "eb69f89588e9538194750f12bf8c8df6d5301f3b", "title": "Object Tracking by a Combination of Discriminative Global and Generative Multi-Scale Local Models", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/eb69/f89588e9538194750f12bf8c8df6d5301f3b.pdf"]}, {"id": "b61b4eb2e28b9cf35578498e1bbcc35ec0a07651", "title": "Backtracking ScSPM Image Classifier for Weakly Supervised Top-Down Saliency", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Cholakkal_Backtracking_ScSPM_Image_CVPR_2016_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2016/supplemental/Cholakkal_Backtracking_ScSPM_Image_2016_CVPR_supplemental.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cholakkal_Backtracking_ScSPM_Image_CVPR_2016_paper.pdf"]}, {"id": "833ada09759039b7c620b8930a50a0521d70b2c7", "title": "Attend in Groups: A Weakly-Supervised Deep Learning Framework for Learning from Web Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09960.pdf"]}, {"id": "87c2e267fadac9d4f4f694125eb86eaaf7121797", "title": "Fine tuning CNNS with scarce training data \u2014 Adapting imagenet to art epoch classification", "year": "2016", "pdf": ["https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web_3.0/ICIP2016-hentschel.pdf"]}, {"id": "cda356a979c0a57e1051830551f657db249e3c45", "title": "Architecture for Dynamic Allocation of Computer Vision Tasks", "year": "2016", "pdf": []}, {"id": "72d7e11b30767f4f5993d794fc040328b23868b5", "title": "Deep neural network acceleration framework under hardware uncertainty", "year": "2018", "pdf": ["http://moimani.weebly.com/uploads/2/3/8/6/23860882/isqed_18_nn__1_.pdf"]}, {"id": "7a81967598c2c0b3b3771c1af943efb1defd4482", "title": "Do We Need More Training Data?", "year": "2015", "pdf": ["https://arxiv.org/pdf/1503.01508.pdf"]}, {"id": "2cea306754ed83eaf1d0433abbfb05b5a4c4cf48", "title": "BIG-OH: BInarization of gradient orientation histograms", "year": "2014", "pdf": ["http://vgl-ait.org/mdailey/uploads/publication_file/filename/110/Baber-BIG-OH.pdf"]}, {"id": "f0418d8029323e37e14ccf2e2a7143e197fb36e4", "title": "Robust tracking via weighted online extreme learning machine", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.10211.pdf"]}, {"id": "f542d59ce3f2ae32404046416fb7dbb1d5c0c336", "title": "Multi-view 6D Object Pose Estimation and Camera Motion Planning Using RGBD Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w31/Sock_Multi-View_6D_Object_ICCV_2017_paper.pdf"]}, {"id": "7142e659d6466717cdb8a242d8e34fce176b3f4a", "title": "Improved scene identification and object detection on egocentric vision of daily activities", "year": "2017", "pdf": ["http://crcv.ucf.edu/news&info/DefenseBooklet_FA17.pdf", "http://crcv.ucf.edu/papers/cviu2016-gonzalo.pdf", "http://vision.eecs.ucf.edu/papers/cviu2016-gonzalo.pdf"]}, {"id": "34072c31c2c778df471c9f0c43ba6198dfd0db32", "title": "Arbitrary Category Classification of Websites Based on Image Content", "year": "2015", "pdf": ["http://users.ics.aalto.fi/juha/papers/ELM2014.pdf", "http://www.engineering.uiowa.edu/sites/default/files/files/newpaper.pdf"]}, {"id": "259f0699d7e4066966a38860ad3227fe123d1660", "title": "Convolutional Neural Networks for joint object detection and pose estimation: A comparative study.", "year": "2014", "pdf": ["https://arxiv.org/pdf/1412.7190.pdf"]}, {"id": "7ca600523495b3d6c9addf26cd89d3bd23ce4cf3", "title": "ReDMark : Framework for Residual Diffusion Watermarking based on Deep Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/7ca6/00523495b3d6c9addf26cd89d3bd23ce4cf3.pdf"]}, {"id": "f57891b2e5860f42c9cbe3c58e926b891270277e", "title": "50 Years of object recognition: Directions forward", "year": "2013", "pdf": ["http://researcher.watson.ibm.com/researcher/files/us-aandreo/andreopoulos_cviu2013.pdf"]}, {"id": "ab1719f573a6c121d7d7da5053fe5f12de0182e7", "title": "Combining visual recognition and computational linguistics : linguistic knowledge for visual recognition and natural language descriptions of visual content", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/ab17/19f573a6c121d7d7da5053fe5f12de0182e7.pdf"]}, {"id": "2901da4464c1ec652eebd0155f23b9c8a82e2fe8", "title": "Tropel: Crowdsourcing Detectors with Minimal Training", "year": "2015", "pdf": ["http://cs.brown.edu/people/gen/pub_papers/patterson_hcomp2015.pdf", "http://cs.brown.edu/~gen/pub_papers/patterson_hcomp2015.pdf"]}, {"id": "6f41e2ba877ec690bd1c9e5e8742c4088f95c346", "title": "Video Frames Segmentation time Modular Network Clock Fires Executed", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/6f41/e2ba877ec690bd1c9e5e8742c4088f95c346.pdf"]}, {"id": "3de3c479164312ab3a1795ee84f20c16632c04c4", "title": "Scalable Deep Learning Logo Detection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.11417.pdf"]}, {"id": "1287bfe73e381cc8042ac0cc27868ae086e1ce3b", "title": "Computational Mid-Level Vision: From Border Ownership to Categorical Object Recognition", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/1287/bfe73e381cc8042ac0cc27868ae086e1ce3b.pdf"]}, {"id": "4ad75b110b52d1cc44e76664bab42e9e49eb95b2", "title": "Localizing scene texts by fuzzy inference systems and low rank matrix recovery model", "year": "2016", "pdf": []}, {"id": "ac5c93b789bdd557b90ce77221f1c01ead63041f", "title": "Robust People Detection using Computer Vision Spring Term 2013", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/ac5c/93b789bdd557b90ce77221f1c01ead63041f.pdf"]}, {"id": "aabcbe3ee81ff4f696c7cefc49d28a41fb760987", "title": "Automated annotation of coral reef survey images", "year": "2012", "pdf": ["http://vision.cornell.edu/se3/wp-content/uploads/2014/09/automated_coral_annotation.pdf", "http://vision.ucsd.edu/sites/default/files/automated_coral_annotation.pdf"]}, {"id": "12fd613bc68101176d8fdf1b28d4d6fb3e3fec6f", "title": "Training a Scene-Specific Pedestrian Detector Using Tracklets", "year": "2015", "pdf": ["http://web.mst.edu/~yinz/Papers/WACV2015_SceneSpecificPedestrianDetector.pdf"]}, {"id": "89fff8387432878db240a044a98ff9c9200f3197", "title": "Learning Globally Optimized Object Detector via Policy Gradient", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf"]}, {"id": "d6684b382bed96f7ad84087f9b8f81753065ecf3", "title": "Matrix factorization for co-training algorithm to classify human rights abuses", "year": "2018", "pdf": []}, {"id": "7d96ecb24b3d8595267365cfc9878d46280f1e8c", "title": "End-to-end steering angle prediction and object detection using convolutional neural networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7d96/ecb24b3d8595267365cfc9878d46280f1e8c.pdf"]}, {"id": "ddfdc4bf9fe440926e5e80909d444316fb7bc694", "title": "UvA-DARE ( Digital Academic Repository ) Selective Search for Object Recognition", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/ddfd/c4bf9fe440926e5e80909d444316fb7bc694.pdf"]}, {"id": "b46f96ee1ef0c7b31e5cec9abc60aa5f77fe4245", "title": "Literature Review on Real Time People Tracking in a Camera Network", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/b46f/96ee1ef0c7b31e5cec9abc60aa5f77fe4245.pdf"]}, {"id": "29d94f275b1483f575c05b90464994ecfa86e27f", "title": "A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/29d9/4f275b1483f575c05b90464994ecfa86e27f.pdf"]}, {"id": "7c3e09e0bd992d3f4670ffacb4ec3a911141c51f", "title": "Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.00162.pdf"]}, {"id": "f1a0010f588a41682c1efd770541c4c381949d88", "title": "VisGraB: A benchmark for vision-based grasping", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/f1a0/010f588a41682c1efd770541c4c381949d88.pdf"]}, {"id": "a67d54cf585c9491ab8a3e2d58d9c4b223359602", "title": "Spatial information and end-to-end learning for visual recognition. (Informations spatiales et apprentissage bout-en-bout pour la reconnaissance visuelle)", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/fda4/1c4b51e5a10d2e07dc67beb9f3375a43fa51.pdf"]}, {"id": "f3f7df3315fcb8d651efaa85ce59b82c4f46cc08", "title": "Object detection for big data", "year": "2014", "pdf": []}, {"id": "08ff22f76a567fcbc1afec6bfbf957a560cfadc7", "title": "Exploring Person Context and Local Scene Context for Object Detection.", "year": "2015", "pdf": ["https://arxiv.org/pdf/1511.08177.pdf"]}, {"id": "981449cdd5b820268c0876477419cba50d5d1316", "title": "Learning Deep Features for One-Class Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05365.pdf"]}, {"id": "02f90eb252ab3bdab420690570b16effdee53b3f", "title": "Unsupervised Object Discovery and Segmentation in Videos", "year": "2013", "pdf": ["http://lrs.icg.tugraz.at/pubs/schulter_bmvc_13.pdf", "http://www.bmva.org/bmvc/2013/Papers/paper0053/abstract0053.pdf", "http://www.bmva.org/bmvc/2013/Papers/paper0053/paper0053.pdf"]}, {"id": "427c24c75128412166326e2afda1e3cd5a35a16a", "title": "A Survey of Research on Cloud Robotics and Automation", "year": "2015", "pdf": ["http://goldberg.berkeley.edu/pubs/T-ASE-Cloud-RA-Survey-Paper-Final-2015.pdf", "http://rll.berkeley.edu/~sachin/papers/Kehoe-TASE2015a.pdf", "http://www-users.cselabs.umn.edu/classes/Spring-2015/csci8980/papers/CloudRobotics/cloud_robotics_survey.pdf", "http://www.cs.berkeley.edu/~pabbeel/papers/2014_TASE_cloud_robotics_survey.pdf", "http://www.docum-enter.com/get/H3LgmYsUIxL6Gt8YqpZpPqOtCsTQyXohukkVTxw58zc,/IEEE-TRANSACTIONS-ON-AUTOMATION-SCIENCE.pdf", "https://cloudfront.escholarship.org/dist/prd/content/qt3t04p9m1/qt3t04p9m1.pdf?t=o6m2d0", "https://people.eecs.berkeley.edu/~pabbeel/papers/2015-TASE-cloud-robotics-survey.pdf"]}, {"id": "7bf694a54c7c94a32d85ae6018a558c817b2ceee", "title": "Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene", "year": "2016", "pdf": ["http://www.scitepress.org/Papers/2016/57251/57251.pdf"]}, {"id": "9595fa763c4f1d92c604a131cfc624b9edbd8b02", "title": "Integral Histogram Image Computing For Parallel Hardware Architecture", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/9595/fa763c4f1d92c604a131cfc624b9edbd8b02.pdf"]}, {"id": "a81165542cdf04e2e1bf4572f42a468b14b4d3b3", "title": "Webly Supervised Semantic Segmentation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Jin_Webly_Supervised_Semantic_CVPR_2017_paper.pdf", "https://infoscience.epfl.ch/record/227361/files/2017-CVPR-1333_final-Bin.pdf"]}, {"id": "4c5a07ab1700a67afaf16fc9a7a2647f51358255", "title": "DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection", "year": "2016", "pdf": ["https://arxiv.org/pdf/1510.05484.pdf"]}, {"id": "4cea60c30d404abfd4044a6367d436fa6f67bb89", "title": "ConTagNet: Exploiting User Context for Image Tag Recommendation", "year": "2016", "pdf": []}, {"id": "7feff9a8f31520310ce99ffd591178feacdd98bb", "title": "Confidence-Rated Multiple Instance Boosting for Object Detection", "year": "2014", "pdf": ["http://karimali.org/publications/AS_CVPR14.pdf", "http://openaccess.thecvf.com/content_cvpr_2014/papers/Ali_Confidence-Rated_Multiple_Instance_2014_CVPR_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ali_Confidence-Rated_Multiple_Instance_2014_CVPR_paper.pdf", "http://www.karimali.org/publications/AS_CVPR14.pdf"]}, {"id": "abeda55a7be0bbe25a25139fb9a3d823215d7536", "title": "Understanding Human-Centric Images: From Geometry to Fashion", "year": "2015", "pdf": ["https://arxiv.org/pdf/1604.08164.pdf"]}, {"id": "8e7886d42fac00d0b2ab3b0ea7bbb449dcc6b690", "title": "Online Camera LiDAR Fusion and Object Detection on Hybrid Data for Autonomous Driving", "year": "2018", "pdf": []}, {"id": "e22979cdf147a63be74f3816ef59ef11f3508919", "title": "Learning Image Representations by Completing Damaged Jigsaw Puzzles", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01880.pdf"]}, {"id": "3981997df8613efd955a8f48a0eb97249bfced41", "title": "A Robust Appearance Model for Object Tracking", "year": "2016", "pdf": []}, {"id": "53f0b39c88f3973f74f65455d0d77dfe6feede84", "title": "Fine-grained sketch-based image retrieval by matching deformable part models", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/53f0/b39c88f3973f74f65455d0d77dfe6feede84.pdf"]}, {"id": "167c058b008c358ce5a3cd298c5859ffea441e51", "title": "The role of context in image annotation and recommendation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/167c/058b008c358ce5a3cd298c5859ffea441e51.pdf"]}, {"id": "2a53677037a56297163661dc1afe44fc020f3d35", "title": "Convolutional neural networks for license plate detection in images", "year": "2017", "pdf": []}, {"id": "13cfaf55ca5241d3cc7e8553e5800839292ed699", "title": "Collaborative object tracking model with local sparse representation", "year": "2014", "pdf": []}, {"id": "239ee313cc75c01fb658ebf86183e366c21ab253", "title": "Im2Flow: Motion Hallucination from Static Images for Action Recognition", "year": "2018", "pdf": []}, {"id": "22dfc98d9641ac008043cad987a13f9d63ad8418", "title": "Video Scene Change Detection Using Convolution Neural Network", "year": "2017", "pdf": []}, {"id": "f7dcadc5288653ec6764600c7c1e2b49c305dfaa", "title": "Interactive Image Search with Attributes by", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/f7dc/adc5288653ec6764600c7c1e2b49c305dfaa.pdf"]}, {"id": "84f911432ba8a3356013b3abfbf1947f1145c953", "title": "Online Object Tracking with Proposal Selection", "year": "2015", "pdf": ["https://arxiv.org/pdf/1509.09114.pdf"]}, {"id": "31ac2acbc16ae0e7d4ff2ef0f283cdcb21641709", "title": "An Animal Detection Pipeline for Identification", "year": "2018", "pdf": []}, {"id": "0f4fce9385f1d383ac27e9d43f03cc45d10584f8", "title": "Dual Uncertainty Minimization Regularization and Its Applications on Heterogeneous Data", "year": "2014", "pdf": []}, {"id": "6a8a3b27a78c78bc80984fca29554de3269d34d3", "title": "Speeding-Up Object Detection Training for Robotics with FALKON", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08740.pdf"]}, {"id": "8850a9748da6579b939ab9f1aa705b7886c4417b", "title": "Serving Self Loading Video Composition", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8850/a9748da6579b939ab9f1aa705b7886c4417b.pdf"]}, {"id": "75031316b3d1473d8994a068f43d57ad069d22ba", "title": "Inter-dependent CNNs for joint scene and object recognition", "year": "2016", "pdf": ["http://www.ee.ucr.edu/~amitrc/publications/ICPR2016_SO_Jawad.pdf", "http://www.ee.ucr.edu/~mbappy/pubs/ICPR2016.pdf", "http://www.ee.ucr.edu/~mbappy/pubs/ICPR_PPT.pdf"]}, {"id": "3c94f3380206bf4f53a6d971f9195d3811fab8f5", "title": "Exploiting Test Time Evidence to Improve Predictions of Deep Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09796.pdf"]}, {"id": "e25e07cfd0818a499033caf9d7aa8ef4feec981b", "title": "Semantic Segmentation for Real-World Data by Jointly Exploiting Supervised and Transferrable Knowledge", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e25e/07cfd0818a499033caf9d7aa8ef4feec981b.pdf"]}, {"id": "399f321089a3a35ddf0e92435dfc374cbcc3dbbd", "title": "A Novel Approach for Automatic Standing Upper Body Extraction Based on Skin Detection and Anthropometric Constraint from Single Image", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/399f/321089a3a35ddf0e92435dfc374cbcc3dbbd.pdf"]}, {"id": "1552548a1020a90744dad335bf18032b483dc852", "title": "Efficient Object Recognition Using Sampling of Keypoint Triples and Keygraph Structure", "year": "2016", "pdf": []}, {"id": "c95cd791ad0cb0a08cb39e987f725eabe3a08648", "title": "Are all objects equal? Deep spatio-temporal importance prediction in driving videos", "year": "2017", "pdf": ["http://cvrr.ucsd.edu/eshed/papers/areall.pdf", "http://cvrr.ucsd.edu/publications/2017/eshed_all_objects_2017.pdf", "https://eshed1.github.io/papers/areall.pdf"]}, {"id": "f75a4f6f852f282336cb0803475edacf3397f485", "title": "A New Data Transformation Method Based on Adaptive Binarization for Bag-of-Features Model", "year": "2009", "pdf": []}, {"id": "386a5c06d334d20227e8b2daf5433a2bef385648", "title": "Cross and Learn: Cross-Modal Self-Supervision", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03879.pdf"]}, {"id": "4f4f646b65921850b7812a376fc2ac5ff806b1c8", "title": "Joint Stem Detection and Crop-Weed Classification for Plant-Specific Treatment in Precision Farming", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03413.pdf"]}, {"id": "d58516957d376e1e682130825efd74a8d34e81d6", "title": "Pedestrian Detection Using Thermal Imaging for Night Driving Assistance", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/d585/16957d376e1e682130825efd74a8d34e81d6.pdf"]}, {"id": "dff1e32111bf0c4ed659ece19f5be2fcfd528b4d", "title": "From sample selection to model update: A robust online visual tracking algorithm against drifting", "year": "2016", "pdf": []}, {"id": "4cfe0a11f11a2b8f9d16c4226280774de9a43f07", "title": "Can Object Detectors Aid Internet Video Event Retrieval ?", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/4cfe/0a11f11a2b8f9d16c4226280774de9a43f07.pdf"]}, {"id": "5eac16cf7551d2968bc2d73200883dca0b5f7f13", "title": "Combining complementary kernels in complex visual categorization", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/5eac/16cf7551d2968bc2d73200883dca0b5f7f13.pdf"]}, {"id": "366595171c9f4696ec5eef7c3686114fd3f116ad", "title": "Algorithms and Representations for Visual Recognition", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/3665/95171c9f4696ec5eef7c3686114fd3f116ad.pdf"]}, {"id": "e91ea0179977bd295751c6436f385fb3fe1ca3ff", "title": "Pointwise and pairwise clothing annotation: combining features from social media", "year": "2015", "pdf": []}, {"id": "0edafa576c8c89035db8ad24a8a1af5d457b746b", "title": "Articulated Human Detection with Flexible Mixtures of Parts", "year": "2013", "pdf": ["http://vision.ics.uci.edu/papers/YangR_TPAMI_2013/YangR_TPAMI_2013.pdf", "http://www.ics.uci.edu/~dramanan/papers/pose_pami.pdf"]}, {"id": "02b8e7e8724359e4a830b001914a8ba54046fbd2", "title": "Efficient 2D and 3D Facade Segmentation Using Auto-Context", "year": "2018", "pdf": ["https://arxiv.org/pdf/1606.06437.pdf"]}, {"id": "0874a262c2ec7082658cbfc55892ec6e5ca6a374", "title": "CaTDet: Cascaded Tracked Detector for Efficient Object Detection from Video", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.00434.pdf"]}, {"id": "6370a7f8752ddff07c30f327a71d3fb5f856daf6", "title": "Damage Assessment from Social Media Imagery Data During Disasters", "year": "2017", "pdf": []}, {"id": "4ecaa651722a98c2847377f3ae1c70294b4791ce", "title": "Few-Example Object Detection with Model Communication.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.08249.pdf"]}, {"id": "de696b93641c8d1e7762d8ea85ede7032d1a5af2", "title": "Unsupervised object discovery via self-organisation", "year": "2012", "pdf": ["http://personal.lut.fi/users/joni.kamarainen/downloads/publications/PRL2012_accepted.pdf", "http://vision.cs.tut.fi/data/publications/PRL2012_accepted.pdf"]}, {"id": "90dd6e7051a2dd8639d6f2d9f7b02acb43eb94c7", "title": "BlitzNet: A Real-Time Deep Network for Scene Understanding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02813.pdf"]}, {"id": "36968feec92887682858d9aa58ab1c98d90c13da", "title": "A region-centered topic model for object discovery and category-based image segmentation", "year": "2013", "pdf": ["https://e-archivo.uc3m.es/bitstream/handle/10016/21534/region_PR_2013_ps.pdf;jsessionid=95E48306A0DD57937AD6A5B96BF057FE?sequence=1"]}, {"id": "e16a9a9762b6506fb1e63c775b5348110646111d", "title": "Automated Detection of Threat Objects Using Adapted Implicit Shape Model", "year": "2016", "pdf": ["http://vriffo1.sitios.ing.uc.cl/papers/journals/Riffo2016_IEEE_SMCA_borrador.pdf"]}, {"id": "151b6c519c77cda9ff5542fecee166a166e0928f", "title": "Mobile Applications Scene Text Recognition by Character Descriptor and Structure Configuration", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/151b/6c519c77cda9ff5542fecee166a166e0928f.pdf"]}, {"id": "4682fee7dc045aea7177d7f3bfe344aabf153bd5", "title": "Tabula rasa: Model transfer for object category detection", "year": "2011", "pdf": ["http://cs.brown.edu/~ls/teaching_CMU_16-824/slides_tz-1.pdf", "http://eprints.pascal-network.org/archive/00008313/01/aytar11.pdf", "http://www.cs.utexas.edu/~cv-fall2012/slides/elad-paper.pdf", "http://www.robots.ox.ac.uk/~vgg/publications/2011/Aytar11/aytar11.pdf", "http://www.robots.ox.ac.uk/~vgg/publications/2011/Aytar11/poster.pdf"]}, {"id": "44a3ee0429a6d1b79d431b4d396962175c28ace6", "title": "Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Yang_Exploit_All_the_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_Exploit_All_the_CVPR_2016_paper.pdf", "http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/cvpr16_scaledependentpooling.pdf", "http://www.umiacs.umd.edu/~fyang/papers/cvpr16.pdf"]}, {"id": "54830a1cf8606a5183561357b4004088718e4141", "title": "Deep Watershed Detector for Music Object Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10548.pdf"]}, {"id": "9caa7605c16da42761c8a27327f5f037dbf901fa", "title": "q-Gaussian mixture models for image and video semantic indexing", "year": "2013", "pdf": []}, {"id": "571d2b173c2db8ac751dabdfcf5a18c06f365e05", "title": "Improved Part Segmentation Performance by Optimising Realism of Synthetic Images using Cycle Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06301.pdf"]}, {"id": "4bb84c9b24456fb0bb920ca83280bd9c48ad4b66", "title": "Instance-Level Video Segmentation from Object Tracks", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Seguin_Instance-Level_Video_Segmentation_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Seguin_Instance-Level_Video_Segmentation_CVPR_2016_paper.pdf", "http://www.di.ens.fr/willow/pdfscurrent/seguin2016.pdf", "http://www.di.ens.fr/willow/research/instancelevel/seguin16instancelevel.pdf", "http://www.di.ens.fr/~bojanowski/papers/seguin16instance.pdf"]}, {"id": "a0e5afb1237d47f7a8ac66e7b5ada24cec5222cb", "title": "Semantic pooling for image categorization using multiple kernel learning", "year": "2014", "pdf": ["http://cedric.cnam.fr/~thomen/papers/Durand_Picard_ICIP_2014.pdf", "http://webia.lip6.fr/~thomen/papers/Durand_Picard_ICIP_2014.pdf"]}, {"id": "0678a8abea82793993cd89383319da75f6dc4be3", "title": "ProNet: Learning to Propose Object-Specific Boxes for Cascaded Neural Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.03776.pdf"]}, {"id": "cac8bb0e393474b9fb3b810c61efdbc2e2c25c29", "title": "Visual Segmentation of Simple Objects for Robots", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/67c5/e2ff4bc630dfbc0cabf812e5e927266f071c.pdf"]}, {"id": "839e7491cd6032162ee4bb6d73b7122cc4af12f1", "title": "Improved Person Detection on Omnidirectional Images with Non-maxima Supression", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08503.pdf"]}, {"id": "5ca467072ec40acb1b6bbf59f1119300741c0aba", "title": "Content-Based Photo Quality Assessment", "year": "2011", "pdf": ["http://mmlab.ie.cuhk.edu.hk/archive/2011/cvpr11_WLuo_XWang_XTang.pdf", "http://www.ee.cuhk.edu.hk/~xgwang/papers/luoWTiccv11.pdf", "http://www.ee.cuhk.edu.hk/~xgwang/papers/tangLWtmm13.pdf"]}, {"id": "2a6890c9d8877199cc34ba5e70cbb8b307e956db", "title": "Region-based progressive localization of cell nuclei in microscopic images with data adaptive modeling", "year": "2013", "pdf": ["http://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-14-173?site=bmcbioinformatics.biomedcentral.com", "https://vtechworks.lib.vt.edu/bitstream/handle/10919/23296/1471-2105-14-173.pdf?isAllowed=y&sequence=2"]}, {"id": "bd88bb2e4f351352d88ee7375af834360e223498", "title": "HDA dataset-DRAFT 1 A Multi-camera video data set for research on High-Definition surveillance", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/bd88/bb2e4f351352d88ee7375af834360e223498.pdf"]}, {"id": "2aa362740ac9a2b304a74122da820e3829689842", "title": "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.05830.pdf"]}, {"id": "b9128ff3b0b96815ff41a7d5fb2b4bef69f635ca", "title": "Deconvolutional Feature Stacking for Weakly-Supervised Semantic Segmentation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.04984.pdf"]}, {"id": "7fd5d2b0a034da43a747f6b8be3e51d775a05625", "title": "A Method to Detect Boats in Images of the Amazonian Rivers", "year": "2017", "pdf": []}, {"id": "7411761e789ccb1da80984472f5df5cb084e8ba3", "title": "Towards Scene Understanding with Detailed 3D Object Representations", "year": "2014", "pdf": ["https://arxiv.org/pdf/1411.5935.pdf"]}, {"id": "6306ee4a2bab01890eacd74e55aedb207fed0353", "title": "Structure-Measure: A New Way to Evaluate Foreground Maps", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.00786.pdf"]}, {"id": "09dace372d15fa3381ade36f5cf892b5ce15a982", "title": "Efficient human computation: the distributed labeling problem", "year": "2009", "pdf": []}, {"id": "5020a75c45416073d0b07b1deb7382bc80de1779", "title": "Human Detection Using Learned Part Alphabet and Pose Dictionary", "year": "2014", "pdf": ["http://cis-linux1.temple.edu/~latecki/Papers/HumanDetectionECCV2014.pdf", "http://mc.eistar.net/UpLoadFiles/Papers/%5B38%5D%202014%20ECCV%20Yaocong.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8693/86930251.pdf", "https://cis.temple.edu/~latecki/Papers/HumanDetectionECCV2014.pdf"]}, {"id": "35f345ebe3831e4741dcdc1931da59043acf4b83", "title": "Towards High Performance Video Object Detection for Mobiles 3 2 Revisiting Video Object Detection Baseline", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/35f3/45ebe3831e4741dcdc1931da59043acf4b83.pdf"]}, {"id": "a6eb6ad9142130406fb4ffd4d60e8348c2442c29", "title": "Video Description: A Survey of Methods, Datasets and Evaluation Metrics", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00186.pdf"]}, {"id": "587caa61ac2ff1b45acf5c8f4ae1478addd79b7f", "title": "Higher Order Potentials in End-to-End Trainable Conditional Random Fields", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/c98b/6fc86d0e806be52bf470b27fe81f0d8563cb.pdf"]}, {"id": "0755ee472e2bc2968b16f851a16c39b3f3e2d0d0", "title": "From Weakly Supervised Object Localization to Semantic Segmentation by Probabilistic Image Modeling", "year": "2017", "pdf": []}, {"id": "51ea36ff126f8b4546e46a8876b0a644659fc2f5", "title": "Higher Order Conditional Random Fields in Deep Neural Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.08119.pdf"]}, {"id": "821ba3eba1e36a29cc482f5378f4a0d0f6893159", "title": "Unsupervised Domain Adaptation for Learning Eye Gaze from a Million Synthetic Images: An Adversarial Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.07926.pdf"]}, {"id": "ad173dd56894fe00ab1bca68c284dc34b5e67a0e", "title": "Multi-scale object detection by clustering lines", "year": "2009", "pdf": ["http://hci.iwr.uni-heidelberg.de/COMPVIS/research/voting/ommer_cvl_iccv09.pdf", "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/ommer_cvl_iccv09.pdf"]}, {"id": "fb710e9d897b7c1fd5275a0bcfa22711c5768990", "title": "A Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/fb71/0e9d897b7c1fd5275a0bcfa22711c5768990.pdf"]}, {"id": "9cbd49a55724da2249ac1810b9e6d31f5d41a4ac", "title": "Viewpoint-aware object detection and continuous pose estimation", "year": "2012", "pdf": ["http://www.weizmann.ac.il/math/meirav/sites/math.meirav/files/uploads/viewpoint_aware_object_detection.pdf", "http://www.wisdom.weizmann.ac.il/~vision/viewpoint-aware/files/GGABS12.pdf"]}, {"id": "659fc2a483a97dafb8fb110d08369652bbb759f9", "title": "Improving the Fisher Kernel for Large-Scale Image Classification", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/659f/c2a483a97dafb8fb110d08369652bbb759f9.pdf"]}, {"id": "e0e19769ad446c2a74c0616fcfb551059c899ce6", "title": "Part level transfer regularization for enhancing exemplar SVMs", "year": "2015", "pdf": ["http://people.csail.mit.edu/yusuf/publications/2015/Aytar15/aytar15.pdf"]}, {"id": "8cf3b70f9247be23de9cc42272464e0363acb426", "title": "Multi-label classification of a real-world image dataset", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/8cf3/b70f9247be23de9cc42272464e0363acb426.pdf"]}, {"id": "37668092cf8b7695d4a85eb7a25e9a2ef0fd0739", "title": "Robust object detection under partial occlusion", "year": "2016", "pdf": []}, {"id": "43fe9006b90137d6ce85a539685ce66c13f0e38e", "title": "A review of image-based automatic facial landmark identification techniques", "year": "", "pdf": ["https://pdfs.semanticscholar.org/43fe/9006b90137d6ce85a539685ce66c13f0e38e.pdf"]}, {"id": "071680ca97de050a372ea79f2b99f102bb3ca6ef", "title": "Inferring Unseen Views of People", "year": "2014", "pdf": ["http://vision.cs.utexas.edu/projects/infering_unseen_views_of_people/inferring-unseen-views-of-people-paper.pdf", "http://vision.cs.utexas.edu/projects/infering_unseen_views_of_people/inferring-unseen-views-of-people-poster.pdf", "http://vision.cs.utexas.edu/projects/infering_unseen_views_of_people/supp.pdf", "http://www.cs.utexas.edu/~chaoyeh/cvpr_2014_Inferring_Unseen_Views_of_People%20(2).pdf", "http://www.cs.utexas.edu/~grauman/papers/chen-pose-cvpr2014.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chen_Inferring_Unseen_Views_2014_CVPR_paper.pdf"]}, {"id": "6bcc2b50e32bdbb0c668f75000badf21e6cd0839", "title": "Knowledge Projection for Deep Neural Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.09505.pdf"]}, {"id": "bdfb5f11d497b44b17d0315c3b6892f835723832", "title": "Object Captioning and Retrieval with Natural Language", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06152.pdf"]}, {"id": "51df7590828e7e6f7f9d38e5cd0cacebb1221837", "title": "L1 Graph Based Sparse Model for Label De-noising", "year": "2016", "pdf": ["http://www.bmva.org/bmvc/2016/papers/paper074/abstract074.pdf", "http://www.bmva.org/bmvc/2016/papers/paper074/paper074.pdf", "https://www.research.ed.ac.uk/portal/files/28312823/chang2016robustDenoise.pdf"]}, {"id": "4affeed766c5edc6d5e16f5aa427873ec7d79a76", "title": "Video Anomaly Detection in Real Time on a Power-Aware Heterogeneous Platform", "year": "2016", "pdf": ["http://homepages.ed.ac.uk/cblair2/papers/csvt_15_cb.pdf", "https://pure.qub.ac.uk/portal/files/120162443/video_anomaly.pdf"]}, {"id": "efe133717899b41cd4c0b0c999da312d3af60a6e", "title": "Depth-Based Hand Pose Estimation: Methods, Data, and Challenges", "year": "2018", "pdf": ["https://arxiv.org/pdf/1504.06378.pdf"]}, {"id": "bfa6ad4d71008505729274d008a9b4a7d92b2985", "title": "Semantic Understanding of Scenes Through the ADE20K Dataset", "year": "2018", "pdf": ["https://arxiv.org/pdf/1608.05442.pdf"]}, {"id": "3481a544e28cfc14108b0785eef7c12747e622ee", "title": "Online Multi-object Tracking via Structural Constraint Event Aggregation", "year": "2016", "pdf": ["http://faculty.ucmerced.edu/mhyang/papers/cvpr16_mot.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/melu/201703210652/Online%20Multi-Object%20Tracking%20via%20Structural%20Constraint%20Event%20Aggregation.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yoon_Online_Multi-Object_Tracking_CVPR_2016_paper.pdf"]}, {"id": "ba51ce1ec7b18fa808985b919f4a201fe5e4bafb", "title": "Semantic parsing for priming object detection in indoors RGB-D scenes", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/ba51/ce1ec7b18fa808985b919f4a201fe5e4bafb.pdf"]}, {"id": "b50156e76ae03a1c0b04cd2076a99b7f2b441506", "title": "An image classification method that considers privacy-preservation", "year": "2016", "pdf": []}, {"id": "087337fdad69caaab8ebd8ae68a731c5bf2e8b14", "title": "Fully Convolutional Networks for Semantic Segmentation", "year": "2015", "pdf": ["https://arxiv.org/pdf/1411.4038.pdf"]}, {"id": "1426045c4188f09fec46d0d2f246357a230a1748", "title": "Structured Labels in Random Forests for Semantic Labelling and Object Detection", "year": "2014", "pdf": []}, {"id": "472de7b3c674e8f06702385569779d11b71bc8f2", "title": "Superpixel Coherency and Uncertainty Models for Semantic Segmentation", "year": "2013", "pdf": ["http://cvlab.postech.ac.kr/~tgx.lim/paper/iccv2013_semantic.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W08/papers/Baek_Superpixel_Coherency_and_2013_ICCV_paper.pdf"]}, {"id": "49f276e1b8fd162ac3cd996becc63cab2b2535b7", "title": "Trained 3D Models for CNN based Object Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/49f2/76e1b8fd162ac3cd996becc63cab2b2535b7.pdf"]}, {"id": "806aea24148fc2ef851803c216a0a25894d78bf4", "title": "Correlation filter based visual trackers for person pursuit using a low-cost Quadrotor", "year": "2015", "pdf": []}, {"id": "773fd71d3d24c268c99e1c53ae87a28da3bbe0f6", "title": "Conditional Entropies as Over-Segmentation and Under-Segmentation Metrics for Multi-Part Image Segmentation", "year": "2011", "pdf": []}, {"id": "90e36f66c25a4c73a252102c6c6c329c36d82676", "title": "Probably Unknown: Deep Inverse Sensor Modelling In Radar", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.08151.pdf"]}, {"id": "8047586d2223f3076a1fc028197f54d0997bccfc", "title": "Pelee: A Real-Time Object Detection System on Mobile Devices", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.06882.pdf"]}, {"id": "9ea7205ef136f207123cd6b54e15075835ae0049", "title": "Self-supervised language grounding by active sensing combined with Internet acquired images and text", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/9ea7/205ef136f207123cd6b54e15075835ae0049.pdf"]}, {"id": "51a162f6d21e48c3731aec8f676ba7c18c65bd26", "title": "From trajectories to behaviors : an algorithm to track and describe dancing birds", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/51a1/62f6d21e48c3731aec8f676ba7c18c65bd26.pdf"]}, {"id": "557e5e38a4c5b95e2bc86f491b03e5c8c7add857", "title": "Thin-Slicing for Pose: Learning to Understand Pose without Explicit Pose Estimation", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Kwak_Thin-Slicing_for_Pose_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Kwak_Thin-Slicing_for_Pose_CVPR_2016_paper.pdf", "http://www.di.ens.fr/willow/pdfscurrent/kwak2016.pdf", "https://vlg.dgist.ac.kr/research/pose_emb/data/CVPR2016_pose.pdf"]}, {"id": "a8bf49021017e19df051a3efb7337d93ea263e37", "title": "Deep Multiple Instance Hashing for Object-based Image Retrieval", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a8bf/49021017e19df051a3efb7337d93ea263e37.pdf"]}, {"id": "60efdb2e204b2be6701a8e168983fa666feac1be", "title": "Transferring Deep Object and Scene Representations for Event Recognition in Still Images", "year": "2017", "pdf": ["http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01387.pdf"]}, {"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": []}, {"id": "6e7248f33be3f6b44d6089b7039a5c2d84acaed0", "title": "Object cosegmentation using deep Siamese network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02555.pdf"]}, {"id": "23e707600c3e9a240e24eaa4ed4b0e4ec6a436c1", "title": "Automatic foreground extraction via joint CRF and online learning", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/7f3b/115dd38a933f3a88e3b20b58862216297d63.pdf"]}, {"id": "13105c611a059b4825bc92ff9778f532b6a849b2", "title": "Compressing Sparse Feature Vectors Using Random Ortho-Projections", "year": "2010", "pdf": ["http://www.ee.oulu.fi/mvg/files/pdf/PID1267977.pdf", "http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/PID1267977.pdf", "http://www.rni.helsinki.fi/~msa/pub/ICPR2010.pdf"]}, {"id": "f865248065b8d6bcbce4a4053b73e4de2080ba23", "title": "Efficient object detection for high resolution images", "year": "2015", "pdf": ["https://arxiv.org/pdf/1510.01257.pdf"]}, {"id": "191beb87f84326d2cc9c427efe2a5abee8f67574", "title": "Dual Local-Global Contextual Pathways for Recognition in Aerial Imagery", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.05462.pdf"]}, {"id": "63ed42249d7cbb21a4b0d42419d42b014ff114eb", "title": "Comprehensive Parameter Sweep for Learning-Based Detector on Traffic Lights", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/4817/826f1af10e0c31dee067f8d9255d6387d486.pdf"]}, {"id": "1b1323b4677c640ae8835a9ccab611ca1e9652e3", "title": "Robust object tracking with a hierarchical ensemble framework", "year": "2016", "pdf": ["https://arxiv.org/pdf/1509.06925.pdf"]}, {"id": "a5683661e80668e05170bf17bcbd754d1b07af74", "title": "Comparison of Data Set Bias in Object Recognition Benchmarks", "year": "2015", "pdf": ["http://vfacstaff.ltu.edu/lshamir/publications/object_recognition_dataset_bias.pdf"]}, {"id": "2b0d2b5a536e2eaa6a1cdab6f1e8d11f602abdab", "title": "Annotating images with suggestions: user study of a tagging system", "year": "2012", "pdf": ["http://www.fit.vutbr.cz/research/view_pub.php?file=/pub/9990/HRADIS-ACIVS-2012.pdf&id=9990", "https://page-one.springer.com/pdf/preview/10.1007/978-3-642-33140-4_14"]}, {"id": "7fdab95ff454a900c710f464c1129cd173059912", "title": "Pattern Recognition and Image Analysis", "year": "2013", "pdf": []}, {"id": "8d2459ada191d496eeee70f1e817d0ba92075160", "title": "The evaluation of different approaches towards using Kinect sensor as a Laser scanner", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8d24/59ada191d496eeee70f1e817d0ba92075160.pdf"]}, {"id": "c5632e2117d268159225d5c307b7efbb6428ccba", "title": "Understanding image concepts using ISTOP model", "year": "2016", "pdf": ["http://www.cs.uu.nl/groups/MG/multimedia/publications/art/PR2016b.pdf"]}, {"id": "7c03a0ad5202a6a31ad3b78b11f6b45ecd840616", "title": "Scale-Invariant Feature Learning using Deconvolutional Neural Networks for Weakly-Supervised Semantic Segmentation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7c03/a0ad5202a6a31ad3b78b11f6b45ecd840616.pdf"]}, {"id": "76f73c884e4437a22afcba60193bbd7f35e64aaf", "title": "Title of dissertation : RESOURCE ALLOCATION IN COMPUTER VISION", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/76f7/3c884e4437a22afcba60193bbd7f35e64aaf.pdf"]}, {"id": "7543cf85a3fb56470b0020c0fc6db45e64f7ae5e", "title": "Object Proposals Estimation in Depth Image Using Compact 3D Shape Manifolds", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/7543/cf85a3fb56470b0020c0fc6db45e64f7ae5e.pdf"]}, {"id": "18ccd8bd64b50c1b6a83a71792fd808da7076bc9", "title": "Object detection and segmentation from joint embedding of parts and pixels", "year": "2011", "pdf": ["http://ttic.uchicago.edu/~mmaire/papers/pdf/seg_obj_iccv2011.pdf", "http://ttic.uchicago.edu/~mmaire/papers/pdf/seg_obj_iccv2011_slides.pdf", "http://vision.caltech.edu/~mmaire/papers/pdf/seg_obj_iccv2011.pdf", "http://vision.caltech.edu/~mmaire/papers/pdf/seg_obj_iccv2011_slides.pdf", "http://www.eecs.berkeley.edu/~stellayu/publication/doc/2011objSlides.pdf", "http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2011objSlides.pdf"]}, {"id": "8a3b481d8e06b4acf6e95d8bc2484016f5862668", "title": "Text Detection in Traffic Informatory Signs Using Synthetic Data", "year": "2017", "pdf": []}, {"id": "a13dac9255dd738932f463a8f462c11419f072db", "title": "Use of Generative Adversarial Network for Cross-Domain Change Detection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.08868.pdf"]}, {"id": "4acf31294e940d85a4eea56c244205e3a66d8b8e", "title": "Improving Product Classification Using Images", "year": "2011", "pdf": ["http://talukdar.net/papers/ImageText-ICDM2011.pdf"]}, {"id": "05db46c7745c360fa5938ee204c81efdcc84c1da", "title": "An Empirical Evaluation of Current Convolutional Architectures\u2019 Ability to Manage Nuisance Location and Scale Variability", "year": "2016", "pdf": ["https://arxiv.org/pdf/1505.06795.pdf"]}, {"id": "f9f86d087e84eaf0e6a09575982aa7b41fa62451", "title": "Image Synthesis for Self-Supervised Visual Representation Learning", "year": "2018", "pdf": []}, {"id": "c11a2501204e9e7c4a53d8a3c87055b2b11c73df", "title": "Adaptive Learning Algorithms for Transferable Visual Recognition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/c11a/2501204e9e7c4a53d8a3c87055b2b11c73df.pdf"]}, {"id": "18bf90d6f77bb3731cdae14315c0cf4724f0e6c1", "title": "When VLAD Met Hilbert", "year": "2016", "pdf": ["https://arxiv.org/pdf/1507.08373.pdf"]}, {"id": "c2be82ed0db509087b08423c8cf39ab3c36549c3", "title": "Pixel-level guided face editing with fully convolution networks", "year": "2017", "pdf": []}, {"id": "aa2ad3df24d8d8c4a4d2fe85f0d4e635d595f0a2", "title": "PedCut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues", "year": "2013", "pdf": ["https://pdfs.semanticscholar.org/c029/edca476ddda4050c3c67748056c6189cd1e3.pdf"]}, {"id": "1642358cd9410abe9ee512d34ba68296b308770e", "title": "Robustness Analysis of Pedestrian Detectors for Surveillance", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04562.pdf"]}, {"id": "697646fafee79fc1df05417cf39dad2a7732d270", "title": "Where computer vision needs help from computer science", "year": "2011", "pdf": []}, {"id": "9d5db7427b44d83bf036ff4cff382c23c6c7b6d8", "title": "Video redaction: a survey and comparison of enabling technologies", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f78d/6d092deaafee550fb58d6ea6e8b559325876.pdf"]}, {"id": "f92ceb6875f614bbccb25e4b11ca55353773890f", "title": "Saliency Detection via Boundary Prior and Center Prior", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f92c/eb6875f614bbccb25e4b11ca55353773890f.pdf"]}, {"id": "53822d61e829ef02a95a6c89fea082114fd3e16b", "title": "A General Framework for Tracking Multiple People from a Moving Camera", "year": "2013", "pdf": ["http://www.willowgarage.com/sites/default/files/pami_preprint.pdf"]}, {"id": "7d35fe4f4a932d7598d94d64b72cfa7e6a70286d", "title": "Experimental Evaluation of Multiplicative Kernel SVM Classifiers for Multi-Class Detection", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/7d35/fe4f4a932d7598d94d64b72cfa7e6a70286d.pdf"]}, {"id": "5f0e9cc18374a670dfea4698424c9d48494f3093", "title": "Online Domain Adaptation for Multi-Object Tracking", "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.00776.pdf"]}, {"id": "5d16ce0c66cd87dd48cb8c53f5b6a7ee73d33abb", "title": "Robust and Real-Time Object Tracking Using Scale-Adaptive Correlation Filters", "year": "2016", "pdf": []}, {"id": "044ae9738c2445d4fda30fcd6c289eddf8b3add9", "title": "Multiple Instance Learning: A Survey of Problem Characteristics and Applications", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.03365.pdf"]}, {"id": "99c37dba394b100ba8f3d895c0ee0e57d5852347", "title": "Are Cars Just 3D Boxes? Jointly Estimating the 3D Shape of Multiple Objects", "year": "2014", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2014/papers/Zia_Are_Cars_Just_2014_CVPR_paper.pdf", "http://resources.mpi-inf.mpg.de/publications/D2/2014/zia14cvpr.pdf", "http://www.igp.ethz.ch/photogrammetry/publications/pdf_folder/cvpr2014zz.pdf"]}, {"id": "8209445ce555d166580159ee18059fa41c0433cd", "title": "Real-world Object Recognition with Off-the-shelf Deep Conv Nets: How Many Objects can iCub Learn?", "year": "2015", "pdf": ["https://arxiv.org/pdf/1504.03154.pdf"]}, {"id": "415c0eecce9fde7d1ba9c70bd0bfa5471760c117", "title": "Oriented Object Proposals", "year": "2015", "pdf": ["http://openaccess.thecvf.com/content_iccv_2015/papers/He_Oriented_Object_Proposals_ICCV_2015_paper.pdf", "http://www.cs.cityu.edu.hk/~rynson/papers/iccv15.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Oriented_Object_Proposals_ICCV_2015_paper.pdf"]}, {"id": "4ace7c8edd9467c7d5bfa00e942531e7b889e650", "title": "Depth-Based Hand Pose Estimation: Data, Methods, and Challenges", "year": "2015", "pdf": ["http://vision.ics.uci.edu/papers/SupancicRYSR_ICCV_2015/SupancicRYSR_ICCV_2015.pdf", "http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Supancic_Depth-Based_Hand_Pose_ICCV_2015_paper.pdf"]}, {"id": "24ff2797234e26bb2ffd4558eb4412df0625687e", "title": "Mind Your Language: Abuse and Offense Detection for Code-Switched Languages", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.08652.pdf"]}, {"id": "e502dad3aa196a47ed3cfb727b6b75c65be8a871", "title": "A Baseline for Multi-Label Image Classification Using Ensemble Deep CNN.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08412.pdf"]}, {"id": "c2cb4da617168c76c4560a01de8b5e68b5250749", "title": "FineTag: Multi-attribute Classification at Fine-grained Level in Images", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.07124.pdf"]}, {"id": "94780b00dc2807ec507ae91500b622ec7a8ddb12", "title": "Selective Feature Connection Mechanism: Concatenating Multi-layer CNN Features with a Feature Selector", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.06295.pdf"]}, {"id": "670b10569c5f978ee70d99cf8c14ad9cabb9d454", "title": "Masked face detection via a modified LeNet", "year": "2016", "pdf": []}, {"id": "4404a99e2f6db3e703609168a3595e0fbdeabc38", "title": "Online Video SEEDS for Temporal Window Objectness", "year": "2013", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Van_Den_Bergh_Online_Video_SEEDS_2013_ICCV_paper.pdf", "http://www.mvdblive.org/research/videoseeds.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01056.pdf"]}, {"id": "3de71ddc07619c0dd6bbaa3f7b412a9262a0e761", "title": "Discriminatively Trained And-Or Tree Models for Object Detection", "year": "2013", "pdf": ["http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d278.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Song_Discriminatively_Trained_And-Or_2013_CVPR_paper.pdf", "http://www.stat.ucla.edu/~sczhu/papers/Conf_2013/DiscriminativeAOG_cvpr2013.pdf"]}, {"id": "a887937b813f267507203d4faef1013043cf09d0", "title": "Automatic Process to Build a Contextualized Detector", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/5891/b87c0eecd76f067c5bafd9cd0702ac6d2fc7.pdf"]}, {"id": "050e5b4043009e54dff9319877fe947885db2d6e", "title": "Saliency Guided Dictionary Learning for Weakly-Supervised Image Parsing", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016/papers/Lai_Saliency_Guided_Dictionary_CVPR_2016_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lai_Saliency_Guided_Dictionary_CVPR_2016_paper.pdf"]}, {"id": "ffd73d1956163a4160ec2c96b3ab256f79fc92e8", "title": "Attributes as Semantic Units between Natural Language and Visual Recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.03249.pdf"]}, {"id": "748305f0b2d686d51ccf893207697d6cfb39e890", "title": "COVER LOCALIZATION IN AERIAL IMAGES WITH A DEEP LEARNING APPROACH", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7483/05f0b2d686d51ccf893207697d6cfb39e890.pdf"]}, {"id": "d250e57f6b7e06bb1dac41c8b89700086a85999e", "title": "Self-Supervised Generalisation with Meta Auxiliary Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.08933.pdf"]}, {"id": "87d5b53580ca5f77ccc3ff157337ef3456308943", "title": "Augmented Autoencoders for object orientation estimation trained on synthetic RGB images", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/87d5/b53580ca5f77ccc3ff157337ef3456308943.pdf"]}, {"id": "2114b25727a21275e88e30dad0423752f6047dae", "title": "Generic Visual Recognition on Non-Uniform Distributions Based on AdaBoost Codebooks", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/cac0/c534e02784a3a873690d213dd8c92b81992f.pdf"]}, {"id": "2ba540ca70c7dee81e13768792aa7571952987f6", "title": "Drivable Road Detection Based on Dilated FPN with Feature Aggregation", "year": "2017", "pdf": []}, {"id": "6e5363af2bfb7d1b2bd13feb41c2688bd0cf12b3", "title": "Detection of US Traffic Signs", "year": "2015", "pdf": ["https://pdfs.semanticscholar.org/6e53/63af2bfb7d1b2bd13feb41c2688bd0cf12b3.pdf"]}, {"id": "115e8a4f76a57b893c985ea4f7530b90d071679c", "title": "FSSD: Feature Fusion Single Shot Multibox Detector", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00960.pdf"]}, {"id": "d47d72afc590f5b96117a5227d45157135da21ad", "title": "Attribute-based knowledge transfer learning for human pose estimation", "year": "2013", "pdf": []}, {"id": "a0e286f3c6a72c857ffd03bd8ab9a9f9b98c4432", "title": "AI Learns to Recognize Bengali Handwritten Digits: Bengali.AI Computer Vision Challenge 2018", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04452.pdf"]}, {"id": "a422c2bd9030c8a2c89b6db79be2743c4a4609fb", "title": "Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.02886.pdf"]}, {"id": "c77c094faf7b1a4e293609a0909c7c50b468675a", "title": "Satyam: Democratizing Groundtruth for Machine Vision", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03621.pdf"]}, {"id": "14b311b848b51b7b5345573a289b1cedcbb4d581", "title": "Instance Similarity Deep Hashing for Multi-Label Image Retrieval", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02987.pdf"]}, {"id": "7cb4d30b3bfb0d4b02499c15c7c7a9dfddda8049", "title": "Object Tracking using L 1 / L 2 Sparse Coding and Multi Scale Max Pooling", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/7cb4/d30b3bfb0d4b02499c15c7c7a9dfddda8049.pdf"]}, {"id": "899e7ff67aa2630edc8776758cc5d65823f099c1", "title": "G-CNN: Object Detection via Grid Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "1c0e8c3fb143eb5eb5af3026eae7257255fcf814", "title": "Weakly Supervised Deep Detection Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.02853.pdf"]}, {"id": "057f5ffda59a3412f1e62159e96f84faa352628e", "title": "Tracking with scattering descriptor", "year": "2014", "pdf": []}, {"id": "32deaec54b9860bb4b81c8c9a64d11b0eea382b8", "title": "Large-Scale Image Segmentation with Convolutional Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/35ea/703bf8a5361a7a8014c7d00adbd9ea0779d9.pdf"]}, {"id": "c85aa12331bdeaba06d4c3e44b969e6060c3310c", "title": "Ensemble of Part Detectors for Simultaneous Classification and Localization", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10034.pdf"]}, {"id": "8a382f000f98cdab7f7b79e543c75c6b8f93b6f9", "title": "Learning Semantic Image Representations at a Large Scale", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/8a38/2f000f98cdab7f7b79e543c75c6b8f93b6f9.pdf"]}, {"id": "46a1172c784c3741e79781ef2353209b08dbea67", "title": "YouTube2Text: Recognizing and Describing Arbitrary Activities Using Semantic Hierarchies and Zero-Shot Recognition", "year": "2013", "pdf": ["http://www.cs.utexas.edu/users/ml/papers/guadarrama.iccv13.pdf", "http://www.cs.utexas.edu/users/ml/posters/guadarrama.iccv13.pdf", "http://www.eecs.berkeley.edu/~sguada/pdfs/2013-ICCV-YouTube2Text-final.pdf", "https://www.cs.utexas.edu/~vsub/pdf/YouTube2Text_Recognizing_and_2013_ICCV_paper.pdf", "https://www.icsi.berkeley.edu/pubs/vision/youtube2text13.pdf"]}, {"id": "fab39542b04d5aac48349e456cdb300e7786ee6b", "title": "Object recognition and retrieval by context dependent similarity kernels", "year": "2008", "pdf": ["http://certis.enpc.fr/publications/papers/CBMI08.pdf"]}, {"id": "14d1a458f49e251cbbab34349e379469300a2bae", "title": "Scene Parsing with Object Instances and Occlusion Ordering", "year": "2014", "pdf": ["http://slazebni.cs.illinois.edu/publications/jtighe-cvpr14.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Tighe_Scene_Parsing_with_2014_CVPR_paper.pdf", "http://wwwx.cs.unc.edu/~mn/sites/default/files/jtighe-cvpr14.pdf"]}, {"id": "828b73e8a4d539eeae82601b5f5a4392818c6430", "title": "Long-Term Tracking by Decision Making", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/828b/73e8a4d539eeae82601b5f5a4392818c6430.pdf"]}, {"id": "f541dac9d0d49cadb3cfd018e87b26e03e3f13aa", "title": "Trio Constrained Adaptive Noise Removal ( TCANR ) Mechanism for Salt and Pepper Noise in Image Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f541/dac9d0d49cadb3cfd018e87b26e03e3f13aa.pdf"]}, {"id": "77830a8d2e6fed5678f91dbc9a0a278c3f051266", "title": "SURFing the point clouds: Selective 3D spatial pyramids for category-level object recognition", "year": "2012", "pdf": ["http://agamenon.tsc.uah.es/Investigacion/gram/publications/cvpr2012-lopez.pdf", "http://agamenon.tsc.uah.es/Personales/rlopez/docs/lopez2012-cvpr.pdf"]}, {"id": "24ff832171cb774087a614152c21f54589bf7523", "title": "Beat-Event Detection in Action Movie Franchises", "year": "2015", "pdf": ["https://arxiv.org/pdf/1508.03755.pdf"]}, {"id": "250466b42c0b690724c4d2c7ff61ecae489be356", "title": "Recognizing Products: A Per-exemplar Multi-label Image Classification Approach", "year": "2014", "pdf": ["http://people.inf.ethz.ch/mageorge/eccv14/marian_george_eccv_2014.pdf", "http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/ECCV_2014/papers/8690/86900440.pdf", "http://www.vs.inf.ethz.ch/publ/papers/mageorge_products_eccv2014.pdf"]}, {"id": "f2828ae81327276407504caab558c13362439476", "title": "Modeling , Representing and Learning of Visual Categories", "year": "2009", "pdf": ["https://pdfs.semanticscholar.org/f282/8ae81327276407504caab558c13362439476.pdf"]}, {"id": "6c9f45c76b4f96fe66d8e1d7b31f89b7cc6caa44", "title": "DeNet: Scalable Real-Time Object Detection with Directed Sparse Sampling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.10295.pdf"]}, {"id": "fc2c39b6439623c00b10e8d9826b1c82e8487805", "title": "Generalized Semantic Preserving Hashing for N-Label Cross-Modal Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Mandal_Generalized_Semantic_Preserving_CVPR_2017_paper.pdf"]}, {"id": "ae4577f3a49ee56ea1c80f6884012c416d083ee5", "title": "Adaptive estimation of inlier and outlier threshold", "year": "2013", "pdf": []}, {"id": "b705ca751a947e3b761e2305b41891051525d9df", "title": "Exploring Context with Deep Structured Models for Semantic Segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1603.03183.pdf"]}, {"id": "8093b784be493efc1d833af7e99c5de72eb5afe9", "title": "Understanding object descriptions in robotics by open-vocabulary object retrieval and detection", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/8093/b784be493efc1d833af7e99c5de72eb5afe9.pdf"]}, {"id": "b2f63863e73a8565895ca3d9d7d6a1e10a7695b1", "title": "Efficient Neural Network Compression via Transfer Learning for Industrial Optical Inspection", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b2f6/3863e73a8565895ca3d9d7d6a1e10a7695b1.pdf"]}, {"id": "59ee0f67bcf2d8ea0bbbfcbc71159725fc3a7059", "title": "Object Detection with Appearance-based Mixture Models Anonymous CVPR submission", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/59ee/0f67bcf2d8ea0bbbfcbc71159725fc3a7059.pdf"]}, {"id": "0ceda9dae8b9f322df65ca2ef02caca9758aec6f", "title": "Context-Aware CNNs for Person Head Detection", "year": "2015", "pdf": ["https://arxiv.org/pdf/1511.07917.pdf"]}, {"id": "b6dc1cd3cabdfea7363d41773a315a0d241dc836", "title": "Local Context Priors for Object Proposal Generation", "year": "2012", "pdf": ["https://pdfs.semanticscholar.org/b6dc/1cd3cabdfea7363d41773a315a0d241dc836.pdf"]}, {"id": "e8def76dd702df44b0e1af7dbc0360bb7ef14562", "title": "Rendering Physically Correct Raindrops on Windshields for Robustness Verification of Camera-based Object Recognition", "year": "2018", "pdf": []}, {"id": "509abc3031dbf347c29e2a42d88650e0b8545f3d", "title": "OBJECT DETECTION WITH LARGE INTRA-CLASS VARIATION", "year": "2011", "pdf": ["https://pdfs.semanticscholar.org/509a/bc3031dbf347c29e2a42d88650e0b8545f3d.pdf"]}, {"id": "70b420850e16ec2afe42d5c0006742d9045b3e7f", "title": "If You Can't Beat Them, Join Them: Learning with Noisy Data", "year": "2015", "pdf": []}, {"id": "1297e68cbfd314697817fd1eb2901fa391594b5c", "title": "The Research of the Real-time Detection and Recognition of Targets in Streetscape Videos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04070.pdf"]}, {"id": "3bccc5621b14f2e6b07a5936acecdf957724c6ff", "title": "Convolutional Fisher Kernels for RGB-D Object Recognition", "year": "2015", "pdf": []}, {"id": "165c27a4bfb56562c807279bef9d15f1bced5ca0", "title": "Scene parsing using inference Embedded Deep Networks", "year": "2016", "pdf": ["http://www.adv-ci.com/publications/2016_PR_Bu.pdf"]}, {"id": "4be10db13a9210e078d78a4a072c569d9bbd9939", "title": "Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.06098.pdf"]}, {"id": "11a3084768f035c824662a85a348f02466693d2a", "title": "Lifting Object Detection Datasets into 3D", "year": "2016", "pdf": ["https://arxiv.org/pdf/1503.06465.pdf"]}, {"id": "df8aee8aef6f0c71f968979318dafcd53da04bdc", "title": "Bending the Curve: Improving the ROC Curve Through Error Redistribution", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.06652.pdf"]}, {"id": "75a66e636021bcfde447135ba9a9ed893d3bc436", "title": "Using Visual Saliency to Improve Human Detection with Convolutional Networks", "year": "2018", "pdf": []}, {"id": "361b19d2c00d086fa8ef860374f5e1d862fd2f30", "title": "Learning to Refine Object Segments", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.08695.pdf"]}, {"id": "26eadb307d62ab28713931beb8be9ff0f04c6ea0", "title": "Synthetic Viewpoint Prediction", "year": "2016", "pdf": []}, {"id": "20bc4145bfa389f40768a7206ba6e5515925af29", "title": "A category-level 3-D object dataset: Putting the Kinect to work", "year": "2011", "pdf": ["http://sergeykarayev.com/files/iccvw2011.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/HJCHEN/201410171124/A%20Category-Level%203-D%20Object%20Dataset%20%20Putting%20the%20Kinect%20to%20Work.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/HJCHEN/201410171124/B3DO_ICCV_2011.pdf", "http://vc.cs.nthu.edu.tw/home/paper/codfiles/hjchen/201501231440/A%20Category-Level%203-D%20Object%20Dataset%20%20Putting%20the%20Kinect%20to%20Work.pdf", "http://www.cs.berkeley.edu/~barron/B3DO_ICCV_2011.pdf", "http://www.icsi.berkeley.edu/pubs/vision/categorylevel11.pdf", "https://www.d2.mpi-inf.mpg.de/sites/default/files/janoch13cvpr.pdf"]}, {"id": "8ba686c99684c6be46988ed3ab1003312c2fbf80", "title": "A non-temporal texture driven approach to real-time fire detection", "year": "2011", "pdf": ["http://breckon.eu/toby/publications/papers/chenebert11fire.pdf", "https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/7588/Real-time_fire_detection-2011.pdf;jsessionid=BFF4BCF2CC5EF353D82416490C8E1B85?sequence=1"]}, {"id": "39149c51c5ab3442b43b8d19eca704efde450f51", "title": "Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals", "year": "2015", "pdf": ["https://arxiv.org/pdf/1501.06170.pdf"]}, {"id": "377ad65969b98823dc5f28815d8a01b74fc1b79a", "title": "Action Localization with Tubelets from Motion", "year": "2014", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Jain_Action_Localization_with_2014_CVPR_paper.pdf", "https://staff.fnwi.uva.nl/j.c.vangemert/pub/jain-tubelets-cvpr2014.pdf", "https://staff.fnwi.uva.nl/m.jain/pub/jain-tubelets-cvpr2014.pdf"]}, {"id": "bf26ccc92bca086195c5f250aef2e409a1c7cd85", "title": "Local Bayes Risk Minimization Based Stopping Strategy for Hierarchical Classification", "year": "2017", "pdf": []}, {"id": "ad52d047a44f20416f9dd6655cef54169d481454", "title": "Perceptual modeling in the problem of active object recognition in visual scenes", "year": "2016", "pdf": []}, {"id": "013e0fe2d203eaa33a4b42d057688815116cc6bb", "title": "Recognizing Car Fluents from Video", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.08067.pdf"]}, {"id": "dab8b00e5619ceec615b179265cd6d315a97911d", "title": "A two-stage training deep neural network for small pedestrian detection", "year": "2017", "pdf": []}, {"id": "02f86370fd467f0d03948a94a346034d8a111ffd", "title": "Semantic Video Retrieval Using High Level Context", "year": "2008", "pdf": ["https://pdfs.semanticscholar.org/02f8/6370fd467f0d03948a94a346034d8a111ffd.pdf"]}, {"id": "49862833149ddebc2b2007cb5e417d99ecdb05f1", "title": "Learning to propose objects", "year": "2015", "pdf": ["http://vladlen.info/papers/lpo.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_051_ext.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Krahenbuhl_Learning_to_Propose_2015_CVPR_paper.pdf"]}, {"id": "eaf65c7cf4e9f7868c61f48656cb608fae0adcee", "title": "Visual dictionaries as intermediate features in the human brain", "year": "2014", "pdf": ["http://journal-cdn.frontiersin.org/article/104962/files/pubmed-zip/versions/1/pdf", "http://journal.frontiersin.org/article/10.3389/fncom.2014.00168/pdf", "https://pure.uva.nl/ws/files/2455021/162945_fncom_08_00168.pdf"]}, {"id": "05e9e85b5137016c93d042170e82f77bb551a108", "title": "A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Perazzi_A_Benchmark_Dataset_CVPR_2016_paper.pdf", "https://graphics.ethz.ch/~perazzif/davis/files/davis.pdf", "https://graphics.ethz.ch/~perazzif/davis/files/davis_poster_cvpr_2016.pdf", "https://graphics.ethz.ch/~perazzif/davis/files/davis_supplementary.pdf"]}, {"id": "3f0b0ffe315ee111fc028561ec4ecf2c93f94a05", "title": "Pose Normalization Network for Object Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3f0b/0ffe315ee111fc028561ec4ecf2c93f94a05.pdf"]}, {"id": "74a1336f1fbc8b7bb3b6e159711af1a91336ce22", "title": "An overview of traffic sign detection methods", "year": "2010", "pdf": ["https://pdfs.semanticscholar.org/74a1/336f1fbc8b7bb3b6e159711af1a91336ce22.pdf"]}, {"id": "0d760e7d762fa449737ad51431f3ff938d6803fe", "title": "LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.05922.pdf"]}, {"id": "236db916e2c73eccfe8821110274affcc9b54360", "title": "From Virtual to Reality: Fast Adaptation of Virtual Object Detectors to Real Domains", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/533d/7b1875bd2f8b0656aaba0d6b5a035f0280d8.pdf"]}, {"id": "21d1225296aad388406824eb113715c4b90ed3da", "title": "Dirichlet-Based Concentric Circle Feature Transform for Breast Mass Classification", "year": "2015", "pdf": []}, {"id": "87f9a4ff64fb4ab9b066203f360c0b676a9e5a6b", "title": "Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition", "year": "2012", "pdf": ["http://www.nada.kth.se/~tony/LinLin12-CVIU.pdf", "http://www.researchgate.net/profile/Tony_Lindeberg/publication/220135455_Composed_complex-cue_histograms_An_investigation_of_the_information_content_in_receptive_field_based_image_descriptors_for_object_recognition/links/0fcfd50420f7864d60000000.pdf", "https://pdfs.semanticscholar.org/87f9/a4ff64fb4ab9b066203f360c0b676a9e5a6b.pdf"]}, {"id": "cae6f7249783b102e8b05216709a780f47c57f7c", "title": "Subjective evaluation of image understanding results", "year": "2010", "pdf": ["http://www.eurasip.org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569291909.pdf"]}, {"id": "76bcd8cce40892aee1bc46de17a3b803373172d9", "title": "A 58 . 6 mW 30 fps Real-Time Programmable Multi-Object Detection Accelerator with Deformable Parts Models on Full HD 1920", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6734/a3d0325474be381d5c7872b7aed25ea68a49.pdf"]}, {"id": "3ea8d289313b0fe14031ea0d29f517f92a3b0fd3", "title": "Probability-based Detection Quality (PDQ): A Probabilistic Approach to Detection Evaluation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.10800.pdf"]}, {"id": "d88d43504f2be7e26ab1ec731dfc8af6e407aa59", "title": "Model-based Optical Flow: Layers, Learning, and Geometry", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/d88d/43504f2be7e26ab1ec731dfc8af6e407aa59.pdf"]}, {"id": "4c500c84e16e5ebb50b33f9bcff36854e5131c16", "title": "All-Transfer Learning for Deep Neural Networks and its Application to Sepsis Classification", "year": "2016", "pdf": ["https://arxiv.org/pdf/1711.04450.pdf"]}, {"id": "cda617c98020c18f8fefa122b3d55c37255e93a3", "title": "Piecewise Flat Embedding for Image Segmentation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4fe5/d4e7b943657b710c82d1f57aeea4869a1ae5.pdf"]}, {"id": "9d8747468f0fed8e335656d7fe9737e4dc21c798", "title": "RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.03353.pdf"]}, {"id": "1876095a9387a84e594d81675c9c2c17cb10f7cf", "title": "Accurate segmentation of complex document image using digital shearlet transform with neutrosophic set as uncertainty handling tool", "year": "2017", "pdf": ["http://fs.gallup.unm.edu/neut/AccurateSegmentationOfComplex.pdf"]}, {"id": "92a5af98c47bce7208d043c7c418633cd537701c", "title": "Improving Image Captioning by Leveraging Knowledge Graphs", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.08942.pdf"]}, {"id": "6a405e7284ff7e2127a241d60646b4abd3da92f2", "title": "Generate To Adapt : Unsupervised Domain Adaptation using Generative Adversarial Networks", "year": "2017", "pdf": []}, {"id": "d111faa1990f80e3351ea1eef0e5fc177d4e44b4", "title": "Iteratively Training Look-Up Tables for Network Quantization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05355.pdf"]}, {"id": "0e9bc48544dc5a4b88c0c17bf55ad2d5c9d886c4", "title": "Domain Adaptive Classification", "year": "2013", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Mirrashed_Domain_Adaptive_Classification_2013_ICCV_paper.pdf", "http://www.umiacs.umd.edu/~mrastega/paper/dom.pdf"]}, {"id": "1b3ee5455956a40c6e9e09ccda0f4fb162838629", "title": "The Recognition of License Plate Restrictions Based on Faster R-CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1b3e/e5455956a40c6e9e09ccda0f4fb162838629.pdf"]}, {"id": "e33bc0cd79d92d6868989a29c3ab06b75f808590", "title": "Deep Nets: What have they ever done for Vision?", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.04025.pdf"]}]}
\ No newline at end of file |
