summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/vgg_faces2.json
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/unknown/vgg_faces2.json')
-rw-r--r--site/datasets/unknown/vgg_faces2.json2
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/vgg_faces2.json b/site/datasets/unknown/vgg_faces2.json
index c61be415..3b449b98 100644
--- a/site/datasets/unknown/vgg_faces2.json
+++ b/site/datasets/unknown/vgg_faces2.json
@@ -1 +1 @@
-{"id": "70c59dc3470ae867016f6ab0e008ac8ba03774a1", "citations": [{"id": "d041c8cb05a5555046f6e62a4efbb964fb560c31", "title": "Generating faces for affect analysis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05027.pdf"], "doi": []}, {"id": "13e3a68dd49b2098c2cad2acc799953abdcaa3ee", "title": "Learning Discriminative Aggregation Network for Video-Based Face Recognition and Person Re-identification", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s11263-018-1135-x"]}, {"id": "3d85cf942efda695347c7d95485fcd1e6796ee3a", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"], "doi": []}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8622251", "http://doi.org/10.1109/BigData.2018.8622251"]}, {"id": "b4f3e9fc0a2b40595ae0a625d1d768a57a7c2eba", "title": "Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08837.pdf"], "doi": []}, {"id": "37922bcfd75d50b7a500fbf61174ed3151fddfce", "title": "Efficient Statistical Face Recognition Using Trigonometric Series and CNN Features", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545308"]}, {"id": "20f87ed94a423b5d8599d85d1f2f80bab8902107", "title": "Pose-Guided Photorealistic Face Rotation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578974"]}, {"id": "7d0b7a42368d7fb78ade5e21cad713b5c5611ee4", "title": "SensitiveNets: Learning Agnostic Representations with Application to Face Recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.00334.pdf"], "doi": []}, {"id": "0a23bdc55fb0d04acdac4d3ea0a9994623133562", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"], "doi": []}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"], "doi": []}, {"id": "ac5ab8f71edde6d1a2129da12d051ed03a8446a1", "title": "Comparator Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11440.pdf"], "doi": []}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "b612bbd751d94996a02b85829e0b2ac0511350ff", "title": "Learning Representations for Utility and Privacy : An Information-Theoretic Based Approach", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b612/bbd751d94996a02b85829e0b2ac0511350ff.pdf"], "doi": []}, {"id": "b7ec41005ce4384e76e3be854ecccd564d2f89fb", "title": "Granular Computing and Sequential Analysis of Deep Embeddings in Fast Still-to-Video Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009", "http://doi.org/10.1109/SACI.2018.8441009", "https://doi.org/10.1109/SACI.2018.8441009"]}, {"id": "34a0d0cab4fd24b14554bf4d46caf07f2037eaed", "title": "Teachers' Perception in the Classroom", "year": "2018", "pdf": ["http://export.arxiv.org/pdf/1805.08897", "http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w47/Sumer_Teachers_Perception_in_CVPR_2018_paper.pdf"], "doi": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/w47/html/Sumer_Teachers_Perception_in_CVPR_2018_paper.html"]}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"], "doi": []}, {"id": "5ec94635977929ccd1e2a8b6a0138868e6ac0543", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579012"]}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"], "doi": []}, {"id": "9ebe5d78163a91239f10c453d76082dfa329851d", "title": "Teacher's Perception in the Classroom", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08897.pdf"], "doi": []}, {"id": "0095f7ea55fc04feb5fbd532e8c07fa281faffd7", "title": "Enabling Deep Learning on IoT Edge: Approaches and Evaluation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8567692"]}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30040629", "http://doi.org/10.1109/TPAMI.2018.2858819"]}, {"id": "efb56e7488148d52d3b8a2dae9f8880b273f4226", "title": "Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"], "doi": []}, {"id": "e36fdb50844132fc7925550398e68e7ae95467de", "title": "Face Verification with Disguise Variations via Deep Disguise Recognizer", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575251"]}, {"id": "a2344004f0e1409c0c9473d071a5cfd74bff0a5d", "title": "Learnable PINs: Cross-modal Embeddings for Person Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00833.pdf"], "doi": []}, {"id": "9b666e20f570387214926eee542965f3fbe3cfce", "title": "Side Information for Face Completion: a Robust PCA Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.07580.pdf"], "doi": []}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"], "doi": []}, {"id": "b82058b4bf630d33e129ab097b8cacf6cc3d4556", "title": "FaceForensics: A Large-scale Video Dataset for Forgery Detection in Human Faces.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09179.pdf"], "doi": []}, {"id": "266766818dbc5a4ca1161ae2bc14c9e269ddc490", "title": "Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf"], "doi": []}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"], "doi": []}, {"id": "9ea37d031a8f112292c0d0f8d731b837462714e9", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"], "doi": []}, {"id": "9286eab328444401a848cd2e13186840be8f0409", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"], "doi": []}, {"id": "f15b7c317f106816bf444ac4ffb6c280cd6392c7", "title": "Deep Disguised Faces Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Zhang_Deep_Disguised_Faces_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575272", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00012", "http://doi.org/10.1109/CVPRW.2018.00012"]}, {"id": "ddfde808af8dc8b737d115869d6cca780d050884", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"], "doi": []}, {"id": "12ba7c6f559a69fbfaacf61bfb2f8431505b09a0", "title": "DocFace+: ID Document to Selfie Matching", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05620.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "1dd3faf5488751c9de10977528ab96be24616138", "title": "Detecting Anomalous Faces with 'No Peeking' Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05798.pdf"], "doi": []}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"], "doi": []}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"], "doi": []}, {"id": "03e60b7ea55f3bd30ccd50394723c63ce9b8d14c", "title": "The Impact of Preprocessing on Deep Representations for Iris Recognition on Unconstrained Environments", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614341"]}, {"id": "17c0d99171efc957b88c31a465c59485ab033234", "title": "To learn image super-resolution, use a GAN to learn how to do image degradation first", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11458.pdf"], "doi": []}]} \ No newline at end of file
+{"id": "70c59dc3470ae867016f6ab0e008ac8ba03774a1", "citations": [{"id": "d041c8cb05a5555046f6e62a4efbb964fb560c31", "title": "Generating faces for affect analysis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05027.pdf"], "doi": []}, {"id": "13e3a68dd49b2098c2cad2acc799953abdcaa3ee", "title": "Learning Discriminative Aggregation Network for Video-Based Face Recognition and Person Re-identification", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s11263-018-1135-x"]}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8622251", "http://doi.org/10.1109/BigData.2018.8622251"]}, {"id": "b4f3e9fc0a2b40595ae0a625d1d768a57a7c2eba", "title": "Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08837.pdf"], "doi": []}, {"id": "37922bcfd75d50b7a500fbf61174ed3151fddfce", "title": "Efficient Statistical Face Recognition Using Trigonometric Series and CNN Features", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8545308"]}, {"id": "20f87ed94a423b5d8599d85d1f2f80bab8902107", "title": "Pose-Guided Photorealistic Face Rotation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578974"]}, {"id": "7d0b7a42368d7fb78ade5e21cad713b5c5611ee4", "title": "SensitiveNets: Learning Agnostic Representations with Application to Face Recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1902.00334.pdf"], "doi": []}, {"id": "0a23bdc55fb0d04acdac4d3ea0a9994623133562", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"], "doi": []}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"], "doi": []}, {"id": "ac5ab8f71edde6d1a2129da12d051ed03a8446a1", "title": "Comparator Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11440.pdf"], "doi": []}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "b612bbd751d94996a02b85829e0b2ac0511350ff", "title": "Learning Representations for Utility and Privacy : An Information-Theoretic Based Approach", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b612/bbd751d94996a02b85829e0b2ac0511350ff.pdf"], "doi": []}, {"id": "b7ec41005ce4384e76e3be854ecccd564d2f89fb", "title": "Granular Computing and Sequential Analysis of Deep Embeddings in Fast Still-to-Video Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8441009", "http://doi.org/10.1109/SACI.2018.8441009", "https://doi.org/10.1109/SACI.2018.8441009"]}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"], "doi": []}, {"id": "5ec94635977929ccd1e2a8b6a0138868e6ac0543", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579012"]}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"], "doi": []}, {"id": "0095f7ea55fc04feb5fbd532e8c07fa281faffd7", "title": "Enabling Deep Learning on IoT Edge: Approaches and Evaluation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8567692"]}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30040629", "http://doi.org/10.1109/TPAMI.2018.2858819"]}, {"id": "efb56e7488148d52d3b8a2dae9f8880b273f4226", "title": "Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"], "doi": []}, {"id": "e36fdb50844132fc7925550398e68e7ae95467de", "title": "Face Verification with Disguise Variations via Deep Disguise Recognizer", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575251"]}, {"id": "a2344004f0e1409c0c9473d071a5cfd74bff0a5d", "title": "Learnable PINs: Cross-modal Embeddings for Person Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00833.pdf"], "doi": []}, {"id": "9b666e20f570387214926eee542965f3fbe3cfce", "title": "Side Information for Face Completion: a Robust PCA Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.07580.pdf"], "doi": []}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"], "doi": []}, {"id": "266766818dbc5a4ca1161ae2bc14c9e269ddc490", "title": "Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf"], "doi": []}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"], "doi": []}, {"id": "9286eab328444401a848cd2e13186840be8f0409", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"], "doi": []}, {"id": "f15b7c317f106816bf444ac4ffb6c280cd6392c7", "title": "Deep Disguised Faces Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Zhang_Deep_Disguised_Faces_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575272", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00012", "http://doi.org/10.1109/CVPRW.2018.00012"]}, {"id": "ddfde808af8dc8b737d115869d6cca780d050884", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"], "doi": []}, {"id": "12ba7c6f559a69fbfaacf61bfb2f8431505b09a0", "title": "DocFace+: ID Document to Selfie Matching", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05620.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "1dd3faf5488751c9de10977528ab96be24616138", "title": "Detecting Anomalous Faces with 'No Peeking' Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05798.pdf"], "doi": []}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"], "doi": []}, {"id": "03e60b7ea55f3bd30ccd50394723c63ce9b8d14c", "title": "The Impact of Preprocessing on Deep Representations for Iris Recognition on Unconstrained Environments", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614341"]}, {"id": "17c0d99171efc957b88c31a465c59485ab033234", "title": "To learn image super-resolution, use a GAN to learn how to do image degradation first", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11458.pdf"], "doi": []}]} \ No newline at end of file