diff options
Diffstat (limited to 'site/datasets/unknown/msceleb.json')
| -rw-r--r-- | site/datasets/unknown/msceleb.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/msceleb.json b/site/datasets/unknown/msceleb.json index 78954aa4..e17f919d 100644 --- a/site/datasets/unknown/msceleb.json +++ b/site/datasets/unknown/msceleb.json @@ -1 +1 @@ -{"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "citations": [{"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": [], "doi": []}, {"id": "9ea37d031a8f112292c0d0f8d731b837462714e9", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"], "doi": []}, {"id": "406c5aeca71011fd8f8bd233744a81b53ccf635a", "title": "Scalable softmax loss for face verification", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8248342", "http://doi.org/10.1109/ICSAI.2017.8248342"]}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018", "http://doi.ieeecomputersociety.org/10.1109/MIPR.2018.00062", "http://doi.org/10.1109/MIPR.2018.00062"]}, {"id": "67a9659de0bf671fafccd7f39b7587f85fb6dfbd", "title": "Ring Loss: Convex Feature Normalization for Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578632"]}, {"id": "a35483c9becc95faa16bf70a8c6355566a205091", "title": "FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578190"]}, {"id": "332548fd2e52b27e062bd6dcc1db0953ced6ed48", "title": "Low-Shot Face Recognition with Hybrid Classifiers", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Wu_Low-Shot_Face_Recognition_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265438", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.228", "http://doi.org/10.1109/ICCVW.2017.228"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"], "doi": []}, {"id": "5121f42de7cb9e41f93646e087df82b573b23311", "title": "Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04347.pdf"], "doi": []}, {"id": "19d53bb35baf6ab02368756412800c218a2df71c", "title": "DeepDeblur: Fast one-step blurry face images restoration.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09515.pdf"], "doi": []}, {"id": "65984ea40c3b17bb8965c215b61972cd660f61a7", "title": "Doppelganger Mining for Face Representation Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Smirnov_Doppelganger_Mining_for_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265436", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226", "http://doi.org/10.1109/ICCVW.2017.226"]}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"], "doi": []}, {"id": "12ba7c6f559a69fbfaacf61bfb2f8431505b09a0", "title": "DocFace+: ID Document to Selfie Matching", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05620.pdf"], "doi": []}, {"id": "1d2639042b72191c04f0b7928313b8dc2bd4184f", "title": "Morphing Detection Using a General- Purpose Face Recognition System", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8553375"]}, {"id": "4874daed0f6a42d03011ed86e5ab46f231b02c13", "title": "GridFace: Face Rectification via Learning Local Homography Transformations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06210.pdf"], "doi": []}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30040629", "http://doi.org/10.1109/TPAMI.2018.2858819"]}, {"id": "c808c784237f167c78a87cc5a9d48152579c27a4", "title": "Know You at One Glance: A Compact Vector Representation for Low-Shot Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Cheng_Know_You_at_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265437", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.227", "http://doi.org/10.1109/ICCVW.2017.227"]}, {"id": "f47518fcd69cdbb43dc88fe5259f4f4c61921313", "title": "A Compact Embedding for Facial Expression Similarity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11283.pdf"], "doi": []}, {"id": "b35ff9985aaee9371588330bcef0dfc88d1401d7", "title": "Deep Density Clustering of Unconstrained Faces", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578946"]}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"], "doi": []}, {"id": "76cd5e43df44e389483f23cb578a9015d1483d70", "title": "Face Verification from Depth using Privileged Information", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/76cd/5e43df44e389483f23cb578a9015d1483d70.pdf"], "doi": []}, {"id": "726f76f11e904d7fcb12736c276a0b00eb5cde49", "title": "A Performance Comparison of Loss Functions for Deep Face Recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.05903.pdf"], "doi": []}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"], "doi": []}, {"id": "59b6e9320a4e1de9216c6fc49b4b0309211b17e8", "title": "Robust Representations for unconstrained Face Recognition and its Applications", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf"], "doi": []}, {"id": "95df57cf3e15d75a8526b4fd3212d39538d31100", "title": "Towards Pose Invariant Face Recognition in the Wild", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578333"]}, {"id": "6cacda04a541d251e8221d70ac61fda88fb61a70", "title": "One-shot Face Recognition by Promoting Underrepresented Classes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.05574.pdf"], "doi": []}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"], "doi": []}, {"id": "266766818dbc5a4ca1161ae2bc14c9e269ddc490", "title": "Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf"], "doi": []}, {"id": "c76251049b370f8258d6bbb944c696c30b8bbb85", "title": "Clothing Change Aware Person Identification", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Xue_Clothing_Change_Aware_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575455", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00285", "http://doi.org/10.1109/CVPRW.2018.00285"]}, {"id": "944ea33211d67663e04d0181843db634e42cb2ca", "title": "Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01159.pdf"], "doi": []}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"], "doi": []}, {"id": "20f87ed94a423b5d8599d85d1f2f80bab8902107", "title": "Pose-Guided Photorealistic Face Rotation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578974"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265434", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.224", "http://doi.org/10.1109/ICCVW.2017.224"]}, {"id": "a50fa5048c61209149de0711b5f1b1806b43da00", "title": "Deep Features for Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Bansal_Deep_Features_for_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575241", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00009", "http://doi.org/10.1109/CVPRW.2018.00009"]}, {"id": "9ccf528ef8df99372ce6286ffbb0bf6f9a505cca", "title": "Learning Compositional Visual Concepts with Mutual Consistency", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579001"]}, {"id": "2b2acf2de016f0fb3538ceaaf3a9ba869b466089", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8622251", "http://doi.org/10.1109/BigData.2018.8622251"]}, {"id": "0c65226edb466204189b5aec8f1033542e2c17aa", "title": "A study of CNN outside of training conditions", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296997", "http://doi.org/10.1109/ICIP.2017.8296997"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"], "doi": []}, {"id": "ddfde808af8dc8b737d115869d6cca780d050884", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"], "doi": []}, {"id": "e36fdb50844132fc7925550398e68e7ae95467de", "title": "Face Verification with Disguise Variations via Deep Disguise Recognizer", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575251"]}, {"id": "98b2f21db344b8b9f7747feaf86f92558595990c", "title": "PACES OF G ENERATIVE A DVERSARIAL N ETWORKS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/98b2/f21db344b8b9f7747feaf86f92558595990c.pdf"], "doi": []}, {"id": "779904cb019c9d622b90948c99aded91cab9524a", "title": "Facial-based Intrusion Detection System with Deep Learning in Embedded Devices", "year": "2018", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3290598"]}, {"id": "f15b7c317f106816bf444ac4ffb6c280cd6392c7", "title": "Deep Disguised Faces Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Zhang_Deep_Disguised_Faces_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575272", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00012", "http://doi.org/10.1109/CVPRW.2018.00012"]}, {"id": "b4f58d7fc87a9c276965e604fbe83592bae7f4e5", "title": "ROC-GAN: ROBUST CONDITIONAL GAN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b4f5/8d7fc87a9c276965e604fbe83592bae7f4e5.pdf"], "doi": []}, {"id": "b26d5d929cc3c0d14da058961ddd024f4c9690f5", "title": "Robust Conditional Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08657.pdf"], "doi": []}, {"id": "32aeb90992f6cf8494b1b5c67f4b912feef05e9c", "title": "Incremental Classifier Learning with Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00853.pdf"], "doi": []}, {"id": "5c54e0f46330787c4fac48aecced9a8f8e37658a", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265404", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.194", "http://doi.org/10.1109/ICCVW.2017.194"]}, {"id": "352a620f0b96a7e76b9195a7038d5eec257fd994", "title": "Kinship Classification through Latent Adaptive Subspace", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00030", "http://doi.org/10.1109/FG.2018.00030"]}, {"id": "3d85cf942efda695347c7d95485fcd1e6796ee3a", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"], "doi": []}, {"id": "5209758096819efee15751c8875121bd27f2ee78", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"], "doi": []}, {"id": "5b7a5b8ea99ea79e0a0ae53b45bc9b2b1aa99952", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"], "doi": []}, {"id": "1b805f8cbcffe7f5e2cc7af86b5649330b15298d", "title": "Heterogeneous Face Recognition Using Domain Specific Units", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1b80/5f8cbcffe7f5e2cc7af86b5649330b15298d.pdf"], "doi": []}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"], "doi": []}, {"id": "b4f3e9fc0a2b40595ae0a625d1d768a57a7c2eba", "title": "Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08837.pdf"], "doi": []}, {"id": "c7c8d150ece08b12e3abdb6224000c07a6ce7d47", "title": "DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1611.05271.pdf"], "doi": []}, {"id": "4a56d3240a924240c2392c0d5dea8715f6715277", "title": "Under review as a conference paper at ICLR 2019 Sampled Latents D iscrim inator G enerator Real Images Real or Fake ? Generated Images Contrastive Loss Pull Push", "year": "", "pdf": ["https://pdfs.semanticscholar.org/4a56/d3240a924240c2392c0d5dea8715f6715277.pdf"], "doi": []}, {"id": "eb526174fa071345ff7b1fad1fad240cd943a6d7", "title": "Deeply vulnerable: a study of the robustness of face recognition to presentation attacks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf"], "doi": []}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272729", "http://doi.org/10.1109/BTAS.2017.8272729"]}, {"id": "4739b47af26137ec52bbfb582e6f37e9e9f5aba0", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Smirnov_Hard_Example_Mining_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575283", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00013", "http://doi.org/10.1109/CVPRW.2018.00013"]}, {"id": "ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a", "title": "Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf"], "doi": []}, {"id": "c1482491f553726a8349337351692627a04d5dbe", "title": "When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00048.pdf"], "doi": []}, {"id": "3827f1cab643a57e3cd22fbffbf19dd5e8a298a8", "title": "One-Shot Face Recognition via Generative Learning", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373804", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00011", "http://doi.org/10.1109/FG.2018.00011"]}, {"id": "e13360cda1ebd6fa5c3f3386c0862f292e4dbee4", "title": "Range Loss for Deep Face Recognition with Long-Tailed Training Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.08976.pdf"], "doi": []}, {"id": "5ec94635977929ccd1e2a8b6a0138868e6ac0543", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579012"]}, {"id": "53840c83f7b6ae78d4310c5b84ab3fde1a33bc4f", "title": "Accelerated Training for Massive Classification via Dynamic Class Selection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.01687.pdf"], "doi": []}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"], "doi": []}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "3ac09c2589178dac0b6a2ea2edf04b7629672d81", "title": "Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.02412.pdf"], "doi": []}, {"id": "7323b594d3a8508f809e276aa2d224c4e7ec5a80", "title": "An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05508.pdf"], "doi": []}, {"id": "10384cbe0ed2c44c4d0059745d8bf1509be75941", "title": "iQIYI-VID: A Large Dataset for Multi-modal Person Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07548.pdf"], "doi": []}, {"id": "727d03100d4a8e12620acd7b1d1972bbee54f0e6", "title": "von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04264.pdf"], "doi": []}, {"id": "6d91da37627c05150cb40cac323ca12a91965759", "title": "Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02806.pdf"], "doi": []}, {"id": "9286eab328444401a848cd2e13186840be8f0409", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"], "doi": []}, {"id": "d8526863f35b29cbf8ac2ae756eaae0d2930ffb1", "title": "Face Generation for Low-Shot Learning Using Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Choe_Face_Generation_for_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265439", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.229", "http://doi.org/10.1109/ICCVW.2017.229"]}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"], "doi": []}, {"id": "83447d47bb2837b831b982ebf9e63616742bfdec", "title": "An Automatic System for Unconstrained Video-Based Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.04058.pdf"], "doi": []}, {"id": "5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9", "title": "Scalable Object Detection for Stylized Objects", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09822.pdf"], "doi": []}, {"id": "8509abbde2f4b42dc26a45cafddcccb2d370712f", "title": "A way to improve precision of face recognition in SIPP without retrain of the deep neural network model", "year": "2017", "pdf": [], "doi": []}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": [], "doi": []}, {"id": "c5b324f7f9abdffc1be83f640674beda81b74315", "title": "Towards Open-Set Identity Preserving Face Synthesis", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578800"]}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"], "doi": []}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.173", "http://doi.org/10.1109/CVPRW.2017.173"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"], "doi": []}, {"id": "436d80cc1b52365ed7b2477c0b385b6fbbb51d3b", "title": "Probabilistic Knowledge Transfer for Deep Representation Learning", "year": "2018", "pdf": [], "doi": []}, {"id": "ae284bc18eb5e7ebe43d824b967287a5494ed17f", "title": "Human Identification Based on Deep Feature and Transfer Learning", "year": "2018", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3289464"]}, {"id": "3e3227c8e9f44593d2499f4d1302575c77977b2e", "title": "Facial Expression Recognition Using a Large Out-of-Context Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112", "http://doi.ieeecomputersociety.org/10.1109/WACVW.2018.00012", "http://doi.org/10.1109/WACVW.2018.00012"]}]}
\ No newline at end of file +{"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "citations": [{"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": [], "doi": []}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8397018", "http://doi.ieeecomputersociety.org/10.1109/MIPR.2018.00062", "http://doi.org/10.1109/MIPR.2018.00062"]}, {"id": "67a9659de0bf671fafccd7f39b7587f85fb6dfbd", "title": "Ring Loss: Convex Feature Normalization for Face Recognition", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578632"]}, {"id": "a35483c9becc95faa16bf70a8c6355566a205091", "title": "FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578190"]}, {"id": "332548fd2e52b27e062bd6dcc1db0953ced6ed48", "title": "Low-Shot Face Recognition with Hybrid Classifiers", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Wu_Low-Shot_Face_Recognition_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265438", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.228", "http://doi.org/10.1109/ICCVW.2017.228"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"], "doi": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"], "doi": []}, {"id": "5121f42de7cb9e41f93646e087df82b573b23311", "title": "Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04347.pdf"], "doi": []}, {"id": "19d53bb35baf6ab02368756412800c218a2df71c", "title": "DeepDeblur: Fast one-step blurry face images restoration.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09515.pdf"], "doi": []}, {"id": "65984ea40c3b17bb8965c215b61972cd660f61a7", "title": "Doppelganger Mining for Face Representation Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Smirnov_Doppelganger_Mining_for_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265436", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.226", "http://doi.org/10.1109/ICCVW.2017.226"]}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"], "doi": []}, {"id": "12ba7c6f559a69fbfaacf61bfb2f8431505b09a0", "title": "DocFace+: ID Document to Selfie Matching", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05620.pdf"], "doi": []}, {"id": "1d2639042b72191c04f0b7928313b8dc2bd4184f", "title": "Morphing Detection Using a General- Purpose Face Recognition System", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8553375"]}, {"id": "4874daed0f6a42d03011ed86e5ab46f231b02c13", "title": "GridFace: Face Rectification via Learning Local Homography Transformations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06210.pdf"], "doi": []}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": [], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/30040629", "http://doi.org/10.1109/TPAMI.2018.2858819"]}, {"id": "c808c784237f167c78a87cc5a9d48152579c27a4", "title": "Know You at One Glance: A Compact Vector Representation for Low-Shot Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Cheng_Know_You_at_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265437", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.227", "http://doi.org/10.1109/ICCVW.2017.227"]}, {"id": "f47518fcd69cdbb43dc88fe5259f4f4c61921313", "title": "A Compact Embedding for Facial Expression Similarity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11283.pdf"], "doi": []}, {"id": "b35ff9985aaee9371588330bcef0dfc88d1401d7", "title": "Deep Density Clustering of Unconstrained Faces", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578946"]}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"], "doi": []}, {"id": "726f76f11e904d7fcb12736c276a0b00eb5cde49", "title": "A Performance Comparison of Loss Functions for Deep Face Recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.05903.pdf"], "doi": []}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"], "doi": []}, {"id": "59b6e9320a4e1de9216c6fc49b4b0309211b17e8", "title": "Robust Representations for unconstrained Face Recognition and its Applications", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf"], "doi": []}, {"id": "95df57cf3e15d75a8526b4fd3212d39538d31100", "title": "Towards Pose Invariant Face Recognition in the Wild", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578333"]}, {"id": "266766818dbc5a4ca1161ae2bc14c9e269ddc490", "title": "Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf"], "doi": []}, {"id": "c76251049b370f8258d6bbb944c696c30b8bbb85", "title": "Clothing Change Aware Person Identification", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Xue_Clothing_Change_Aware_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575455", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00285", "http://doi.org/10.1109/CVPRW.2018.00285"]}, {"id": "944ea33211d67663e04d0181843db634e42cb2ca", "title": "Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01159.pdf"], "doi": []}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"], "doi": []}, {"id": "20f87ed94a423b5d8599d85d1f2f80bab8902107", "title": "Pose-Guided Photorealistic Face Rotation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578974"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265434", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.224", "http://doi.org/10.1109/ICCVW.2017.224"]}, {"id": "a50fa5048c61209149de0711b5f1b1806b43da00", "title": "Deep Features for Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Bansal_Deep_Features_for_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575241", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00009", "http://doi.org/10.1109/CVPRW.2018.00009"]}, {"id": "9ccf528ef8df99372ce6286ffbb0bf6f9a505cca", "title": "Learning Compositional Visual Concepts with Mutual Consistency", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579001"]}, {"id": "2b2acf2de016f0fb3538ceaaf3a9ba869b466089", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"], "doi": []}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8614364", "http://doi.org/10.1109/SIBGRAPI.2018.00067"]}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8622251", "http://doi.org/10.1109/BigData.2018.8622251"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"], "doi": []}, {"id": "ddfde808af8dc8b737d115869d6cca780d050884", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"], "doi": []}, {"id": "e36fdb50844132fc7925550398e68e7ae95467de", "title": "Face Verification with Disguise Variations via Deep Disguise Recognizer", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575251"]}, {"id": "98b2f21db344b8b9f7747feaf86f92558595990c", "title": "PACES OF G ENERATIVE A DVERSARIAL N ETWORKS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/98b2/f21db344b8b9f7747feaf86f92558595990c.pdf"], "doi": []}, {"id": "779904cb019c9d622b90948c99aded91cab9524a", "title": "Facial-based Intrusion Detection System with Deep Learning in Embedded Devices", "year": "2018", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3290598"]}, {"id": "f15b7c317f106816bf444ac4ffb6c280cd6392c7", "title": "Deep Disguised Faces Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Zhang_Deep_Disguised_Faces_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575272", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00012", "http://doi.org/10.1109/CVPRW.2018.00012"]}, {"id": "b4f58d7fc87a9c276965e604fbe83592bae7f4e5", "title": "ROC-GAN: ROBUST CONDITIONAL GAN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b4f5/8d7fc87a9c276965e604fbe83592bae7f4e5.pdf"], "doi": []}, {"id": "b26d5d929cc3c0d14da058961ddd024f4c9690f5", "title": "Robust Conditional Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08657.pdf"], "doi": []}, {"id": "32aeb90992f6cf8494b1b5c67f4b912feef05e9c", "title": "Incremental Classifier Learning with Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00853.pdf"], "doi": []}, {"id": "5c54e0f46330787c4fac48aecced9a8f8e37658a", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265404", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.194", "http://doi.org/10.1109/ICCVW.2017.194"]}, {"id": "352a620f0b96a7e76b9195a7038d5eec257fd994", "title": "Kinship Classification through Latent Adaptive Subspace", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373823", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00030", "http://doi.org/10.1109/FG.2018.00030"]}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"], "doi": []}, {"id": "5209758096819efee15751c8875121bd27f2ee78", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"], "doi": []}, {"id": "5b7a5b8ea99ea79e0a0ae53b45bc9b2b1aa99952", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"], "doi": []}, {"id": "1b805f8cbcffe7f5e2cc7af86b5649330b15298d", "title": "Heterogeneous Face Recognition Using Domain Specific Units", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1b80/5f8cbcffe7f5e2cc7af86b5649330b15298d.pdf"], "doi": []}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"], "doi": []}, {"id": "b4f3e9fc0a2b40595ae0a625d1d768a57a7c2eba", "title": "Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08837.pdf"], "doi": []}, {"id": "4a56d3240a924240c2392c0d5dea8715f6715277", "title": "Under review as a conference paper at ICLR 2019 Sampled Latents D iscrim inator G enerator Real Images Real or Fake ? Generated Images Contrastive Loss Pull Push", "year": "", "pdf": ["https://pdfs.semanticscholar.org/4a56/d3240a924240c2392c0d5dea8715f6715277.pdf"], "doi": []}, {"id": "eb526174fa071345ff7b1fad1fad240cd943a6d7", "title": "Deeply vulnerable: a study of the robustness of face recognition to presentation attacks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf"], "doi": []}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272729", "http://doi.org/10.1109/BTAS.2017.8272729"]}, {"id": "4739b47af26137ec52bbfb582e6f37e9e9f5aba0", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Smirnov_Hard_Example_Mining_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575283", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00013", "http://doi.org/10.1109/CVPRW.2018.00013"]}, {"id": "ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a", "title": "Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf"], "doi": []}, {"id": "c1482491f553726a8349337351692627a04d5dbe", "title": "When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00048.pdf"], "doi": []}, {"id": "3827f1cab643a57e3cd22fbffbf19dd5e8a298a8", "title": "One-Shot Face Recognition via Generative Learning", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373804", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00011", "http://doi.org/10.1109/FG.2018.00011"]}, {"id": "e13360cda1ebd6fa5c3f3386c0862f292e4dbee4", "title": "Range Loss for Deep Face Recognition with Long-Tailed Training Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.08976.pdf"], "doi": []}, {"id": "5ec94635977929ccd1e2a8b6a0138868e6ac0543", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8579012"]}, {"id": "53840c83f7b6ae78d4310c5b84ab3fde1a33bc4f", "title": "Accelerated Training for Massive Classification via Dynamic Class Selection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.01687.pdf"], "doi": []}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"], "doi": []}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"], "doi": []}, {"id": "3ac09c2589178dac0b6a2ea2edf04b7629672d81", "title": "Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.02412.pdf"], "doi": []}, {"id": "7323b594d3a8508f809e276aa2d224c4e7ec5a80", "title": "An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05508.pdf"], "doi": []}, {"id": "10384cbe0ed2c44c4d0059745d8bf1509be75941", "title": "iQIYI-VID: A Large Dataset for Multi-modal Person Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.07548.pdf"], "doi": []}, {"id": "727d03100d4a8e12620acd7b1d1972bbee54f0e6", "title": "von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04264.pdf"], "doi": []}, {"id": "6d91da37627c05150cb40cac323ca12a91965759", "title": "Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02806.pdf"], "doi": []}, {"id": "9286eab328444401a848cd2e13186840be8f0409", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"], "doi": []}, {"id": "d8526863f35b29cbf8ac2ae756eaae0d2930ffb1", "title": "Face Generation for Low-Shot Learning Using Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Choe_Face_Generation_for_ICCV_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8265439", "http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.229", "http://doi.org/10.1109/ICCVW.2017.229"]}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"], "doi": []}, {"id": "83447d47bb2837b831b982ebf9e63616742bfdec", "title": "An Automatic System for Unconstrained Video-Based Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.04058.pdf"], "doi": []}, {"id": "5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9", "title": "Scalable Object Detection for Stylized Objects", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09822.pdf"], "doi": []}, {"id": "8509abbde2f4b42dc26a45cafddcccb2d370712f", "title": "A way to improve precision of face recognition in SIPP without retrain of the deep neural network model", "year": "2017", "pdf": [], "doi": []}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": [], "doi": []}, {"id": "c5b324f7f9abdffc1be83f640674beda81b74315", "title": "Towards Open-Set Identity Preserving Face Synthesis", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578800"]}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"], "doi": []}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8014907", "http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.173", "http://doi.org/10.1109/CVPRW.2017.173"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"], "doi": []}, {"id": "436d80cc1b52365ed7b2477c0b385b6fbbb51d3b", "title": "Probabilistic Knowledge Transfer for Deep Representation Learning", "year": "2018", "pdf": [], "doi": []}, {"id": "3e3227c8e9f44593d2499f4d1302575c77977b2e", "title": "Facial Expression Recognition Using a Large Out-of-Context Dataset", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8347112", "http://doi.ieeecomputersociety.org/10.1109/WACVW.2018.00012", "http://doi.org/10.1109/WACVW.2018.00012"]}]}
\ No newline at end of file |
