diff options
Diffstat (limited to 'site/datasets/unknown/msceleb.json')
| -rw-r--r-- | site/datasets/unknown/msceleb.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/msceleb.json b/site/datasets/unknown/msceleb.json index 2d620b3a..30915474 100644 --- a/site/datasets/unknown/msceleb.json +++ b/site/datasets/unknown/msceleb.json @@ -1 +1 @@ -{"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "citations": [{"id": "39ed31ced75e6151dde41944a47b4bdf324f922b", "title": "Pose-Guided Photorealistic Face Rotation", "year": "", "pdf": ["https://pdfs.semanticscholar.org/39ed/31ced75e6151dde41944a47b4bdf324f922b.pdf"]}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": []}, {"id": "352a620f0b96a7e76b9195a7038d5eec257fd994", "title": "Kinship Classification through Latent Adaptive Subspace", "year": "2018", "pdf": []}, {"id": "571b83f7fc01163383e6ca6a9791aea79cafa7dd", "title": "SeqFace: Make full use of sequence information for face recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06524.pdf"]}, {"id": "c220f457ad0b28886f8b3ef41f012dd0236cd91a", "title": "Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01159.pdf"]}, {"id": "7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae", "title": "Incremental Classifier Learning with Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00853.pdf"]}, {"id": "fed8cc533037d7d925df572a440fd89f34d9c1fd", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "377c6563f97e76a4dc836a0bd23d7673492b1aae", "title": "Motion deblurring of faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03330.pdf"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"]}, {"id": "8509abbde2f4b42dc26a45cafddcccb2d370712f", "title": "A way to improve precision of face recognition in SIPP without retrain of the deep neural network model", "year": "2017", "pdf": []}, {"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": []}, {"id": "cb38b4a5e517b4bcb00efbb361f4bdcbcf1dca2c", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"]}, {"id": "d8526863f35b29cbf8ac2ae756eaae0d2930ffb1", "title": "Face Generation for Low-Shot Learning Using Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Choe_Face_Generation_for_ICCV_2017_paper.pdf"]}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": []}, {"id": "fb3ff56ab12bd250caf8254eca30cd97984a949a", "title": "Face recognition Face2vec based on deep learning: Small database case", "year": "2017", "pdf": []}, {"id": "76cd5e43df44e389483f23cb578a9015d1483d70", "title": "Face Verification from Depth using Privileged Information", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/76cd/5e43df44e389483f23cb578a9015d1483d70.pdf"]}, {"id": "98b2f21db344b8b9f7747feaf86f92558595990c", "title": "PACES OF G ENERATIVE A DVERSARIAL N ETWORKS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/98b2/f21db344b8b9f7747feaf86f92558595990c.pdf"]}, {"id": "459e840ec58ef5ffcee60f49a94424eb503e8982", "title": "One-shot Face Recognition by Promoting Underrepresented Classes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.05574.pdf"]}, {"id": "eb526174fa071345ff7b1fad1fad240cd943a6d7", "title": "Deeply vulnerable: a study of the robustness of face recognition to presentation attacks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf"]}, {"id": "040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"]}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"]}, {"id": "282a3ee79a08486f0619caf0ada210f5c3572367", "title": "Accelerated Training for Massive Classification via Dynamic Class Selection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.01687.pdf"]}, {"id": "c808c784237f167c78a87cc5a9d48152579c27a4", "title": "Know You at One Glance: A Compact Vector Representation for Low-Shot Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Cheng_Know_You_at_ICCV_2017_paper.pdf"]}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"]}, {"id": "4b48e912a17c79ac95d6a60afed8238c9ab9e553", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"]}, {"id": "c1482491f553726a8349337351692627a04d5dbe", "title": "When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00048.pdf"]}, {"id": "727d03100d4a8e12620acd7b1d1972bbee54f0e6", "title": "von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04264.pdf"]}, {"id": "5121f42de7cb9e41f93646e087df82b573b23311", "title": "Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04347.pdf"]}, {"id": "2770b095613d4395045942dc60e6c560e882f887", "title": "GridFace: Face Rectification via Learning Local Homography Transformations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06210.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "332548fd2e52b27e062bd6dcc1db0953ced6ed48", "title": "Low-Shot Face Recognition with Hybrid Classifiers", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Wu_Low-Shot_Face_Recognition_ICCV_2017_paper.pdf"]}, {"id": "5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9", "title": "Scalable Object Detection for Stylized Objects", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09822.pdf"]}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"]}, {"id": "0c65226edb466204189b5aec8f1033542e2c17aa", "title": "A study of CNN outside of training conditions", "year": "2017", "pdf": []}, {"id": "a98316980b126f90514f33214dde51813693fe0d", "title": "Collaborations on YouTube: From Unsupervised Detection to the Impact on Video and Channel Popularity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01887.pdf"]}, {"id": "c6eb026d3a0081f4cb5cde16d3170f8ecf8ce706", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"]}, {"id": "7323b594d3a8508f809e276aa2d224c4e7ec5a80", "title": "An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05508.pdf"]}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"]}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": []}, {"id": "e13360cda1ebd6fa5c3f3386c0862f292e4dbee4", "title": "Range Loss for Deep Face Recognition with Long-Tailed Training Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.08976.pdf"]}, {"id": "3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f", "title": "Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.07923.pdf"]}, {"id": "beab10d1bdb0c95b2f880a81a747f6dd17caa9c2", "title": "DeepDeblur: Fast one-step blurry face images restoration.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09515.pdf"]}, {"id": "3b4da93fbdf7ae520fa00d39ffa694e850b85162", "title": "Face-Voice Matching using Cross-modal Embeddings", "year": "2018", "pdf": []}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"]}, {"id": "406c5aeca71011fd8f8bd233744a81b53ccf635a", "title": "Scalable softmax loss for face verification", "year": "2017", "pdf": []}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"]}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"]}, {"id": "b4ee64022cc3ccd14c7f9d4935c59b16456067d3", "title": "Unsupervised Cross-Domain Image Generation", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b4ee/64022cc3ccd14c7f9d4935c59b16456067d3.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01484.pdf"]}, {"id": "f553f8022b1417bc7420523220924b04e3f27b8e", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"]}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": []}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"]}, {"id": "d1a43737ca8be02d65684cf64ab2331f66947207", "title": "IJB \u2013 S : IARPA Janus Surveillance Video Benchmark \u2217", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/d1a4/3737ca8be02d65684cf64ab2331f66947207.pdf"]}, {"id": "3ac09c2589178dac0b6a2ea2edf04b7629672d81", "title": "Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.02412.pdf"]}, {"id": "266766818dbc5a4ca1161ae2bc14c9e269ddc490", "title": "Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf"]}, {"id": "ba788365d70fa6c907b71a01d846532ba3110e31", "title": "Robust Conditional Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08657.pdf"]}, {"id": "c866a2afc871910e3282fd9498dce4ab20f6a332", "title": "Surveillance Face Recognition Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09691.pdf"]}, {"id": "6d91da37627c05150cb40cac323ca12a91965759", "title": "Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02806.pdf"]}, {"id": "3827f1cab643a57e3cd22fbffbf19dd5e8a298a8", "title": "One-Shot Face Recognition via Generative Learning", "year": "2018", "pdf": []}, {"id": "6afe1f668eea8dfdd43f0780634073ed4545af23", "title": "Deep learning for content-based video retrieval in film and television production", "year": "2017", "pdf": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"]}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"]}, {"id": "12ba7c6f559a69fbfaacf61bfb2f8431505b09a0", "title": "DocFace+: ID Document to Selfie Matching", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05620.pdf"]}, {"id": "9a42c519f0aaa68debbe9df00b090ca446d25bc4", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "3e3227c8e9f44593d2499f4d1302575c77977b2e", "title": "Facial Expression Recognition Using a Large Out-of-Context Dataset", "year": "2018", "pdf": []}, {"id": "c7c8d150ece08b12e3abdb6224000c07a6ce7d47", "title": "DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1611.05271.pdf"]}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"]}, {"id": "7fa4e972da46735971aad52413d17c4014c49e6e", "title": "How to Train Triplet Networks with 100K Identities?", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02940.pdf"]}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"]}, {"id": "8199803f476c12c7f6c0124d55d156b5d91314b6", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06642.pdf"]}, {"id": "768f6a14a7903099729872e0db231ea814eb05e9", "title": "De-Mark GAN: Removing Dense Watermark with Generative Adversarial Network", "year": "2018", "pdf": []}, {"id": "65984ea40c3b17bb8965c215b61972cd660f61a7", "title": "Doppelganger Mining for Face Representation Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Smirnov_Doppelganger_Mining_for_ICCV_2017_paper.pdf"]}, {"id": "ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a", "title": "Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf"]}, {"id": "832a9584e85af1675d49ee35fd13283b21ce3a3f", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"]}, {"id": "069bb452e015ef53f0ef30e9690e460ccc73cf03", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"]}, {"id": "2e0d56794379c436b2d1be63e71a215dd67eb2ca", "title": "Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.03872.pdf"]}, {"id": "38f1fac3ed0fd054e009515e7bbc72cdd4cf801a", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"]}, {"id": "0ed91520390ebdee13a0ac13d028f65d959bdc10", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "", "pdf": ["https://pdfs.semanticscholar.org/0ed9/1520390ebdee13a0ac13d028f65d959bdc10.pdf"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"]}, {"id": "436d80cc1b52365ed7b2477c0b385b6fbbb51d3b", "title": "Probabilistic Knowledge Transfer for Deep Representation Learning", "year": "2018", "pdf": []}, {"id": "6ca6ade6c9acb833790b1b4e7ee8842a04c607f7", "title": "Deep Transfer Network for Unconstrained Face Verification", "year": "2018", "pdf": []}]}
\ No newline at end of file +{"id": "291265db88023e92bb8c8e6390438e5da148e8f5", "citations": [{"id": "39ed31ced75e6151dde41944a47b4bdf324f922b", "title": "Pose-Guided Photorealistic Face Rotation", "year": "", "pdf": ["https://pdfs.semanticscholar.org/39ed/31ced75e6151dde41944a47b4bdf324f922b.pdf"]}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": []}, {"id": "352a620f0b96a7e76b9195a7038d5eec257fd994", "title": "Kinship Classification through Latent Adaptive Subspace", "year": "2018", "pdf": []}, {"id": "7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae", "title": "Incremental Classifier Learning with Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.00853.pdf"]}, {"id": "fed8cc533037d7d925df572a440fd89f34d9c1fd", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "377c6563f97e76a4dc836a0bd23d7673492b1aae", "title": "Motion deblurring of faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03330.pdf"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"]}, {"id": "8509abbde2f4b42dc26a45cafddcccb2d370712f", "title": "A way to improve precision of face recognition in SIPP without retrain of the deep neural network model", "year": "2017", "pdf": []}, {"id": "3dc522a6576c3475e4a166377cbbf4ba389c041f", "title": "The iNaturalist Challenge 2017 Dataset.", "year": "2017", "pdf": []}, {"id": "cb38b4a5e517b4bcb00efbb361f4bdcbcf1dca2c", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"]}, {"id": "d8526863f35b29cbf8ac2ae756eaae0d2930ffb1", "title": "Face Generation for Low-Shot Learning Using Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Choe_Face_Generation_for_ICCV_2017_paper.pdf"]}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": []}, {"id": "fb3ff56ab12bd250caf8254eca30cd97984a949a", "title": "Face recognition Face2vec based on deep learning: Small database case", "year": "2017", "pdf": []}, {"id": "76cd5e43df44e389483f23cb578a9015d1483d70", "title": "Face Verification from Depth using Privileged Information", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/76cd/5e43df44e389483f23cb578a9015d1483d70.pdf"]}, {"id": "98b2f21db344b8b9f7747feaf86f92558595990c", "title": "PACES OF G ENERATIVE A DVERSARIAL N ETWORKS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/98b2/f21db344b8b9f7747feaf86f92558595990c.pdf"]}, {"id": "eb526174fa071345ff7b1fad1fad240cd943a6d7", "title": "Deeply vulnerable: a study of the robustness of face recognition to presentation attacks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/eb52/6174fa071345ff7b1fad1fad240cd943a6d7.pdf"]}, {"id": "040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"]}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"]}, {"id": "282a3ee79a08486f0619caf0ada210f5c3572367", "title": "Accelerated Training for Massive Classification via Dynamic Class Selection", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.01687.pdf"]}, {"id": "c808c784237f167c78a87cc5a9d48152579c27a4", "title": "Know You at One Glance: A Compact Vector Representation for Low-Shot Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Cheng_Know_You_at_ICCV_2017_paper.pdf"]}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"]}, {"id": "c1482491f553726a8349337351692627a04d5dbe", "title": "When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00048.pdf"]}, {"id": "727d03100d4a8e12620acd7b1d1972bbee54f0e6", "title": "von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04264.pdf"]}, {"id": "5121f42de7cb9e41f93646e087df82b573b23311", "title": "Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04347.pdf"]}, {"id": "2770b095613d4395045942dc60e6c560e882f887", "title": "GridFace: Face Rectification via Learning Local Homography Transformations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06210.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "332548fd2e52b27e062bd6dcc1db0953ced6ed48", "title": "Low-Shot Face Recognition with Hybrid Classifiers", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Wu_Low-Shot_Face_Recognition_ICCV_2017_paper.pdf"]}, {"id": "5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9", "title": "Scalable Object Detection for Stylized Objects", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09822.pdf"]}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"]}, {"id": "0c65226edb466204189b5aec8f1033542e2c17aa", "title": "A study of CNN outside of training conditions", "year": "2017", "pdf": []}, {"id": "a98316980b126f90514f33214dde51813693fe0d", "title": "Collaborations on YouTube: From Unsupervised Detection to the Impact on Video and Channel Popularity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01887.pdf"]}, {"id": "c6eb026d3a0081f4cb5cde16d3170f8ecf8ce706", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"]}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"]}, {"id": "fbc2f5cf943f440b1ba2374ecf82d0176a44f1eb", "title": "3D-Aided Dual-Agent GANs for Unconstrained Face Recognition.", "year": "2018", "pdf": []}, {"id": "e13360cda1ebd6fa5c3f3386c0862f292e4dbee4", "title": "Range Loss for Deep Face Recognition with Long-Tailed Training Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.08976.pdf"]}, {"id": "3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f", "title": "Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.07923.pdf"]}, {"id": "beab10d1bdb0c95b2f880a81a747f6dd17caa9c2", "title": "DeepDeblur: Fast one-step blurry face images restoration.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09515.pdf"]}, {"id": "3b4da93fbdf7ae520fa00d39ffa694e850b85162", "title": "Face-Voice Matching using Cross-modal Embeddings", "year": "2018", "pdf": []}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"]}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"]}, {"id": "b4ee64022cc3ccd14c7f9d4935c59b16456067d3", "title": "Unsupervised Cross-Domain Image Generation", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b4ee/64022cc3ccd14c7f9d4935c59b16456067d3.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01484.pdf"]}, {"id": "f553f8022b1417bc7420523220924b04e3f27b8e", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"]}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": []}, {"id": "d1a43737ca8be02d65684cf64ab2331f66947207", "title": "IJB \u2013 S : IARPA Janus Surveillance Video Benchmark \u2217", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/d1a4/3737ca8be02d65684cf64ab2331f66947207.pdf"]}, {"id": "266766818dbc5a4ca1161ae2bc14c9e269ddc490", "title": "Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2667/66818dbc5a4ca1161ae2bc14c9e269ddc490.pdf"]}, {"id": "ba788365d70fa6c907b71a01d846532ba3110e31", "title": "Robust Conditional Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08657.pdf"]}, {"id": "c866a2afc871910e3282fd9498dce4ab20f6a332", "title": "Surveillance Face Recognition Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09691.pdf"]}, {"id": "6d91da37627c05150cb40cac323ca12a91965759", "title": "Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02806.pdf"]}, {"id": "3827f1cab643a57e3cd22fbffbf19dd5e8a298a8", "title": "One-Shot Face Recognition via Generative Learning", "year": "2018", "pdf": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"]}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"]}, {"id": "12ba7c6f559a69fbfaacf61bfb2f8431505b09a0", "title": "DocFace+: ID Document to Selfie Matching", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05620.pdf"]}, {"id": "9a42c519f0aaa68debbe9df00b090ca446d25bc4", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "3e3227c8e9f44593d2499f4d1302575c77977b2e", "title": "Facial Expression Recognition Using a Large Out-of-Context Dataset", "year": "2018", "pdf": []}, {"id": "c7c8d150ece08b12e3abdb6224000c07a6ce7d47", "title": "DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1611.05271.pdf"]}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"]}, {"id": "ad01c5761c89fdf523565cc0dec77b9a6ec8e694", "title": "Global and Local Consistent Wavelet-domain Age Synthesis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07764.pdf"]}, {"id": "8199803f476c12c7f6c0124d55d156b5d91314b6", "title": "The iNaturalist Species Classification and Detection Dataset", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.06642.pdf"]}, {"id": "768f6a14a7903099729872e0db231ea814eb05e9", "title": "De-Mark GAN: Removing Dense Watermark with Generative Adversarial Network", "year": "2018", "pdf": []}, {"id": "65984ea40c3b17bb8965c215b61972cd660f61a7", "title": "Doppelganger Mining for Face Representation Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Smirnov_Doppelganger_Mining_for_ICCV_2017_paper.pdf"]}, {"id": "ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a", "title": "Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/ff44/d8938c52cfdca48c80f8e1618bbcbf91cb2a.pdf"]}, {"id": "832a9584e85af1675d49ee35fd13283b21ce3a3f", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"]}, {"id": "069bb452e015ef53f0ef30e9690e460ccc73cf03", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"]}, {"id": "2e0d56794379c436b2d1be63e71a215dd67eb2ca", "title": "Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.03872.pdf"]}, {"id": "38f1fac3ed0fd054e009515e7bbc72cdd4cf801a", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"]}, {"id": "0ed91520390ebdee13a0ac13d028f65d959bdc10", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "", "pdf": ["https://pdfs.semanticscholar.org/0ed9/1520390ebdee13a0ac13d028f65d959bdc10.pdf"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"]}, {"id": "436d80cc1b52365ed7b2477c0b385b6fbbb51d3b", "title": "Probabilistic Knowledge Transfer for Deep Representation Learning", "year": "2018", "pdf": []}, {"id": "6ca6ade6c9acb833790b1b4e7ee8842a04c607f7", "title": "Deep Transfer Network for Unconstrained Face Verification", "year": "2018", "pdf": []}]}
\ No newline at end of file |
