summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/celeba.json
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/unknown/celeba.json')
-rw-r--r--site/datasets/unknown/celeba.json2
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/celeba.json b/site/datasets/unknown/celeba.json
index 3150150a..849673af 100644
--- a/site/datasets/unknown/celeba.json
+++ b/site/datasets/unknown/celeba.json
@@ -1 +1 @@
-{"id": "6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4", "citations": [{"id": "17c0d99171efc957b88c31a465c59485ab033234", "title": "To learn image super-resolution, use a GAN to learn how to do image degradation first", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11458.pdf"]}, {"id": "95ea564bd983129ddb5535a6741e72bb1162c779", "title": "Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00111.pdf"]}, {"id": "f881d2a04de838c8950a279e1ed8c0f9886452af", "title": "Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07202.pdf"]}, {"id": "f89e5a8800b318fa03289b5cc67df54b956875b4", "title": "Do GANs actually learn the distribution? An empirical study", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.08224.pdf"]}, {"id": "24205a60cbf1cc12d7e0a9d44ed3c2ea64ed7852", "title": "Deep Multi-Task Learning for Joint Prediction of Heterogeneous Face Attributes", "year": "2017", "pdf": []}, {"id": "e2afea1a84a5bdbcb64d5ceadaa2249195e1fd82", "title": "DOOM Level Generation Using Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09154.pdf"]}, {"id": "7ef0cc4f3f7566f96f168123bac1e07053a939b2", "title": "Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarit\u00e9 triangulaire en utilisant des r\u00e9seaux siamois)", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/e735/b8212d8a81909753291d5d06789a917014f8.pdf"]}, {"id": "1fd54172f7388cd83ed78ff9165519296de5cf20", "title": "Changing the Image Memorability: From Basic Photo Editing to GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03825.pdf"]}, {"id": "b69badabc3fddc9710faa44c530473397303b0b9", "title": "Unsupervised Image-to-Image Translation Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00848.pdf"]}, {"id": "7c0c9ab92d49941089979c1e344fe66efc873bdd", "title": "Generative Adversarial Examples", "year": "2018", "pdf": []}, {"id": "7dab6fbf42f82f0f5730fc902f72c3fb628ef2f0", "title": "An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.07281.pdf"]}, {"id": "40c3f90f0abf842ee6f6009c414fde4f86b82005", "title": "Synchronization Detection and Recovery of Steganographic Messages with Adversarial Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.10365.pdf"]}, {"id": "fa60521dabd2b64137392b4885e4d989f4b86430", "title": "Physics-Based Generative Adversarial Models for Image Restoration and Beyond", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.00605.pdf"]}, {"id": "e72c5fb54c3d14404ebd1bf993e51d0056f6c429", "title": "Tempered Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04374.pdf"]}, {"id": "a90226c41b79f8b06007609f39f82757073641e2", "title": "\u0392-vae: Learning Basic Visual Concepts with a Constrained Variational Framework", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/a902/26c41b79f8b06007609f39f82757073641e2.pdf"]}, {"id": "cb30c1370885033bc833bc7ef90a25ee0900c461", "title": "FaceOff: Anonymizing Videos in the Operating Rooms", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04440.pdf"]}, {"id": "833cd4265bd8162d3cfb483ce8f31eaef28e7a2e", "title": "TOWARDS EFFECTIVE GANS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/833c/d4265bd8162d3cfb483ce8f31eaef28e7a2e.pdf"]}, {"id": "c86afba9c77a9b1085ccc6c44c36fa3a1fdb51c5", "title": "New Losses for Generative Adversarial Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01290.pdf"]}, {"id": "b50f2ad8d7f08f99d4ba198120120f599f98095e", "title": "Spatiotemporal data fusion for precipitation nowcasting", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b50f/2ad8d7f08f99d4ba198120120f599f98095e.pdf"]}, {"id": "2785c5769489825671a6138fdf0537fcd444038a", "title": "A Deep Cascade Network for Unaligned Face Attribute Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1709.03851.pdf"]}, {"id": "284b5dafe6d8d7552794ccd2efb4eabb12dc3512", "title": "Efficient and accurate inversion of multiple scattering with deep learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06594.pdf"]}, {"id": "40a63746a710baf4a694fd5a4dd8b5a3d9fc2846", "title": "Invertible Conditional GANs for image editing", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.06355.pdf"]}, {"id": "02aff7faf2f6b775844809805424417eed30f440", "title": "A Tale of Three Probabilistic Families: Discriminative, Descriptive and Generative Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04261.pdf"]}, {"id": "96390f95a73a6bd495728b6cd2a97554ef187f76", "title": "Pan Olympus : Sensor Privacy through Utility Aware", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9639/0f95a73a6bd495728b6cd2a97554ef187f76.pdf"]}, {"id": "744fe47157477235032f7bb3777800f9f2f45e52", "title": "Progressive Growing of GANs for Improved Quality, Stability, and Variation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.10196.pdf"]}, {"id": "ba397fe5d4f0beaa7370b88e9875dbba19aa7bfc", "title": "SmileNet: Registration-Free Smiling Face Detection In The Wild", "year": "2017", "pdf": ["https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/36405/Jang%20SmileNet%20Registration-Free%202018%20Published.pdf?sequence=1", "https://www.cl.cam.ac.uk/~hg410/JangEtAl_ICCVW2017.pdf"]}, {"id": "47e14fdc6685f0b3800f709c32e005068dfc8d47", "title": "Secure Face Matching Using Fully Homomorphic Encryption", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00577.pdf"]}, {"id": "46471a285b1d13530f1885622d4551b48c19fc67", "title": "Generating Artificial Data for Private Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03148.pdf"]}, {"id": "c866a2afc871910e3282fd9498dce4ab20f6a332", "title": "Surveillance Face Recognition Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09691.pdf"]}, {"id": "0d1a87dad1e4538cc7bd3c923767c8bf1a9b779f", "title": "The Riemannian Geometry of Deep Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08014.pdf"]}, {"id": "f2b2d50d6ca72666bab34e0f101ae1b18b434925", "title": "High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder.", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f2b2/d50d6ca72666bab34e0f101ae1b18b434925.pdf"]}, {"id": "1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee", "title": "Deep fusion of visual signatures for client-server facial analysis", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.00142.pdf"]}, {"id": "dde5125baefa1141f1ed50479a3fd67c528a965f", "title": "Synthesizing Normalized Faces from Facial Identity Features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.04851.pdf"]}, {"id": "fd4537b92ab9fa7c653e9e5b9c4f815914a498c0", "title": "One-Sided Unsupervised Domain Mapping", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.00826.pdf"]}, {"id": "290c8196341bbac80efc8c89af5fc60e1b8c80e6", "title": "Learning deep representations by mutual information estimation and maximization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06670.pdf"]}, {"id": "5a4a53339068eebd1544b9f430098f2f132f641b", "title": "Hierarchical Disentangled Representations", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e3ba/139c5a739f5c27d2cb7e0f93e76daddcee66.pdf"]}, {"id": "c86e6ed734d3aa967deae00df003557b6e937d3d", "title": "Generative Adversarial Networks with Decoder-Encoder Output Noise", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.03923.pdf"]}, {"id": "81d67fa2f5eb76c9b0afb2d887e95ba78b6e46c9", "title": "Learning Implicit Generative Models with the Method of Learned Moments", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.11006.pdf"]}, {"id": "04cdc847f3b10d894582969feee0f37fbd3745e5", "title": "Compressed Sensing with Deep Image Prior and Learned Regularization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.06438.pdf"]}, {"id": "784a83437b3dba49c0d7ccc10ac40497b84661a5", "title": "Generative Attribute Controller with Conditional Filtered Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/supplemental/Kaneko_Generative_Attribute_Controller_2017_CVPR_supplemental.pdf"]}, {"id": "a81769a36c9ed7b6146a408eb253eb8e0d3ad41e", "title": "Super-Fine Attributes with Crowd Prototyping.", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a817/69a36c9ed7b6146a408eb253eb8e0d3ad41e.pdf"]}, {"id": "6075c07ecb29d551ffa474c3eca45f2da5fd5007", "title": "Shallow convolutional neural network for eyeglasses detection in facial images", "year": "2017", "pdf": []}, {"id": "41dd2ca8929bfdae49a4bf85de74df4723ef9c3b", "title": "Correction by Projection: Denoising Images with Generative Adversarial Networks.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04477.pdf"]}, {"id": "3f6a6050609ba205ec94b8af186a9dca60a8f65e", "title": "Harmonizing Maximum Likelihood with Gans", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3f6a/6050609ba205ec94b8af186a9dca60a8f65e.pdf"]}, {"id": "a59e338fec32adee012e31cdb0513ec20d6c8232", "title": "Phase Retrieval Under a Generative Prior", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04261.pdf"]}, {"id": "e909b9e0bbfc37d0b99acad5014e977daac7e2bd", "title": "Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10323.pdf"]}, {"id": "12417ed7ae81fb4e6c07f501ace9ea463349481b", "title": "Pairwise Augmented GANs with Adversarial Reconstruction Loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04920.pdf"]}, {"id": "834f5ab0cb374b13a6e19198d550e7a32901a4b2", "title": "Face Translation between Images and Videos using Identity-aware CycleGAN", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00971.pdf"]}, {"id": "250449a9827e125d6354f019fc7bc6205c5fd549", "title": "Adversarial Reconstruction Loss", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2504/49a9827e125d6354f019fc7bc6205c5fd549.pdf"]}, {"id": "4131aa28d640d17e1d63ca82e55cc0b280db0737", "title": "COULOMB GANS: PROVABLY OPTIMAL NASH EQUI-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/827c/08151b92dbf8fa307c4e5928340d7294bcff.pdf"]}, {"id": "e4fb693d8b2755b8e989e0c59b28db3c75591503", "title": "Classification of E-Commerce-Related Images Using Hierarchical Classification with Deep Neural Networks", "year": "2017", "pdf": []}, {"id": "4ed0be0b5d67cff63461ba79f2a7928d652cf310", "title": "Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.00553.pdf"]}, {"id": "af6af58ba12920762638e1d0b8310a0d9961b7be", "title": "Sketch-to-Image Generation Using Deep Contextual Completion", "year": "2017", "pdf": []}, {"id": "4cfdd0c8313ac4f92845dcd658115beb115b97ce", "title": "Multi-Task Learning as Multi-Objective Optimization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04650.pdf"]}, {"id": "775c15a5dfca426d53c634668e58dd5d3314ea89", "title": "Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/775c/15a5dfca426d53c634668e58dd5d3314ea89.pdf"]}, {"id": "cb8b2db657cd6b6ccac13b56e2ca62b7d88eda68", "title": "Log Hyperbolic Cosine Loss Improves Varia-", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4b89/03b4eb3a60c0fb01c229e3192a5f9159d460.pdf"]}, {"id": "fdaf65b314faee97220162980e76dbc8f32db9d6", "title": "Face recognition using both visible light image and near-infrared image and a deep network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fdaf/65b314faee97220162980e76dbc8f32db9d6.pdf"]}, {"id": "18ec3b37a33db39ac0633677e944cc81be58f7ba", "title": "Cooperative Training of Descriptor and Generator Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1609.09408.pdf"]}, {"id": "5fd147f57fc087b35650f7f3891d457e4c745d48", "title": "Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.08819.pdf"]}, {"id": "d87ccfc42cf6a72821d357aab0990e946918350b", "title": "Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.00370.pdf"]}, {"id": "2b507f659b341ed0f23106446de8e4322f4a3f7e", "title": "Deep Identity-aware Transfer of Facial Attributes", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.05586.pdf"]}, {"id": "551b75dd57829b584de5f51b63426efac81018db", "title": "Recision T Raining", "year": "2017", "pdf": []}, {"id": "79fc3c10ce0d0f48b25c8cf460048087c97e2e90", "title": "Variational Bi-domain Triplet Autoencoder", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08672.pdf"]}, {"id": "257e61e6b38ae23b7ddce9907c05b0e78be4d79d", "title": "The LORACs prior for VAEs: Letting the Trees Speak for the Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06891.pdf"]}, {"id": "641fd2edcf93fa29181952356e93a83a26012aa2", "title": "Following are some examples from CIFAR dataset : Goal : To alter the training criteria to obtain \u2018 objectness \u2019 in the synthesis of images", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/424a/f8e96c76de69153a0d528cf7d41d5c69a1a1.pdf"]}, {"id": "2da1a80955df1612766ffdf63916a6a374780161", "title": "Generating steganographic images via adversarial training", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00371.pdf"]}, {"id": "c3955d74f2a084a8ddcbd7e73952c326e81804b2", "title": "Mutual Information Neural Estimation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c395/5d74f2a084a8ddcbd7e73952c326e81804b2.pdf"]}, {"id": "cfcf66e4b22dc7671a5941e94e9d4afae75ba2f8", "title": "The Cramer Distance as a Solution to Biased Wasserstein Gradients", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10743.pdf"]}, {"id": "7da7678882d06a1f93636f58fe89635da5b1dd0c", "title": "EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.07919.pdf"]}, {"id": "fcc6fd9b243474cd96d5a7f4a974f0ef85e7ddf7", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"]}, {"id": "4a855d86574c9bd0a8cfc522bc1c77164819c0bc", "title": "PixelCNN Models with Auxiliary Variables for Natural Image Modeling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.08185.pdf"]}, {"id": "a75ee7f4c4130ef36d21582d5758f953dba03a01", "title": "Human face attributes prediction with Deep Learning", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/a75e/e7f4c4130ef36d21582d5758f953dba03a01.pdf"]}, {"id": "4941f92222d660f9b60791ba95796e51a7157077", "title": "Conditional CycleGAN for Attribute Guided Face Image Generation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.09966.pdf"]}, {"id": "34a4c733bc2b53253dbebe67f1af83b969c2e657", "title": "Learning Cross-Domain Disentangled Deep Representation with Supervision from A Single Domain", "year": "2017", "pdf": []}, {"id": "b0c3bc3e3ca143444f5193735f2aad89d1776276", "title": "Training Generative Reversible Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.01610.pdf"]}, {"id": "8e24db957be2b643db464cc566bfabc650f1ffac", "title": "Geometry-Aware Generative Adverserial Networks", "year": "2017", "pdf": []}, {"id": "3555d849b85e9416e9496c9976084b0e692b63cd", "title": "TOWARDS EFFECTIVE GANS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3555/d849b85e9416e9496c9976084b0e692b63cd.pdf"]}, {"id": "0b783e750da34c61ea404be8bc40788fd66c867d", "title": "Generative Autotransporters", "year": "2017", "pdf": []}, {"id": "ff83aade985b981fbf2233efbbd749600e97454c", "title": "Towards Understanding Adversarial Learning for Joint Distribution Matching", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01215.pdf"]}, {"id": "2f587ab6694fdcfe6bd2977120ebeb758e28d77f", "title": "Coupled Generative Adversarial Nets", "year": "", "pdf": ["https://pdfs.semanticscholar.org/2f58/7ab6694fdcfe6bd2977120ebeb758e28d77f.pdf"]}, {"id": "76ec5c774bb3fd04f9e68864a411286536a544c5", "title": "Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.05772.pdf"]}, {"id": "b348d5c7ac93d1148265284d71234e200c9c5f02", "title": "GibbsNet: Iterative Adversarial Inference for Deep Graphical Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.04120.pdf"]}, {"id": "26690f2548c6dbf630de202b40dec417b20c9b6c", "title": "Variational Inference of Disentangled Latent Concepts from Unlabeled Observations", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00848.pdf"]}, {"id": "b2504b0b2a7e06eab02a3584dd46d94a3f05ffdf", "title": "Conditional Neural Processes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01613.pdf"]}, {"id": "0e8760fc198a7e7c9f4193478c0e0700950a86cd", "title": "Brute-Force Facial Landmark Analysis With a 140, 000-Way Classifier", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01777.pdf"]}, {"id": "385750bcf95036c808d63db0e0b14768463ff4c6", "title": "Autoencoding beyond pixels using a learned similarity metric", "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.09300.pdf"]}, {"id": "7f217ff1f3c21c84ed116d32e3b8d1509a306fbd", "title": "Direct Optimization through arg max for Discrete Variational Auto-Encoder", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.02867.pdf"]}, {"id": "0677dd5377895b3c61cea0e6a143f38b84f1ebd7", "title": "Multimedia super-resolution via deep learning: A survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.09077.pdf"]}, {"id": "174ddb6379b91a0e799e9988d0e522a5af18f91d", "title": "ChatPainter: Improving Text to Image Generation using Dialogue", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.08216.pdf"]}, {"id": "bd17d6ba5525dec8762dbaacf6cc3e0cc3f5ff90", "title": "Necst: Neural Joint Source-channel Coding", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/bd17/d6ba5525dec8762dbaacf6cc3e0cc3f5ff90.pdf"]}, {"id": "907fbe706ec14101978a63c6252e0d75e657e8dd", "title": "The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.00043.pdf"]}, {"id": "485f8b28dcb7a5ffc98beb49fcbb50cf0a0b6331", "title": "A Latent Space Understandable Generative Adversarial Network: SelfExGAN", "year": "2017", "pdf": []}, {"id": "0dd74bbda5dd3d9305636d4b6f0dad85d6e19572", "title": "Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.00906.pdf"]}, {"id": "68b01afed57ed7130d993dffc03dcbfa36d4e038", "title": "Adversarial Learning with Local Coordinate Coding", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04895.pdf"]}, {"id": "b972683d702a65d3ee7a25bc931a5890d1072b6b", "title": "Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers", "year": "2018", "pdf": []}, {"id": "d0fdf0f3f47d9f9d11e84961573b324c51518f34", "title": "Painting completion with generative translation models", "year": "2018", "pdf": []}, {"id": "8699268ee81a7472a0807c1d3b1db0d0ab05f40d", "title": "Channel-Recurrent Autoencoding for Image Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.03729.pdf"]}, {"id": "626c12d6ccb1405c97beca496a3456edbf351643", "title": "Conditional Variance Penalties and Domain Shift Robustness", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.11469.pdf"]}, {"id": "1450296fb936d666f2f11454cc8f0108e2306741", "title": "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.05192.pdf"]}, {"id": "df999184b1bb5691cd260b2b77df7ef00c0fe7b1", "title": "On Latent Distributions Without Finite Mean in Generative Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.01670.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01484.pdf"]}, {"id": "380d5138cadccc9b5b91c707ba0a9220b0f39271", "title": "Deep Imbalanced Learning for Face Recognition and Attribute Prediction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00194.pdf"]}, {"id": "fed9e971e042b40cc659aca6e338d79dc1d4b59c", "title": "GROUPING-BY-ID: GUARDING AGAINST ADVERSAR-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fed9/e971e042b40cc659aca6e338d79dc1d4b59c.pdf"]}, {"id": "bf15ba4db09fd805763738ec2cb48c09481785dd", "title": "Training Deep Neural Network in Limited Precision", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.05486.pdf"]}, {"id": "4a45b8f8decc178305af06d758ac7428a9070fad", "title": "Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.10151.pdf"]}, {"id": "11f732fe8f127c393cc8404ee8db2b3e85dd3d59", "title": "Disentangling Latent Factors with Whitening", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03444.pdf"]}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"]}, {"id": "8326d3e57796dad294ab1c14a0688221550098b6", "title": "ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/8326/d3e57796dad294ab1c14a0688221550098b6.pdf"]}, {"id": "6b95a3dbec92071c8552576930e69455c70e529c", "title": "BEGAN: Boundary Equilibrium Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.10717.pdf"]}, {"id": "fd6d2e4f939b8d804a6b5908bded8f1ad2563e38", "title": "Stabilizing GAN Training with Multiple Random Projections", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07831.pdf"]}, {"id": "a5531b5626c1ee3b6f9aed281a98338439d06d12", "title": "Multichannel Attention Network for Analyzing Visual Behavior in Public Speaking", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.06830.pdf"]}, {"id": "366d20f8fd25b4fe4f7dc95068abc6c6cabe1194", "title": "Are facial attributes adversarially robust?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.05411.pdf"]}, {"id": "f8a2a6b821a092ac43acd4e7366fe7c1e9285317", "title": "Attribute-controlled face photo synthesis from simple line drawing", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.02805.pdf"]}, {"id": "1ec59aece51a698bce34f393cf6474b926fd89ad", "title": "Exemplar Guided Unsupervised Image-to-Image Translation", "year": "2018", "pdf": []}, {"id": "8134b052a9aedd573dd16649a611f68b48e30cb2", "title": "InverseFaceNet: Deep Monocular Inverse Face Rendering", "year": "2018", "pdf": ["https://arxiv.org/pdf/1703.10956.pdf"]}, {"id": "8395cf3535a6628c3bdc9b8d0171568d551f5ff0", "title": "Entropy Non-increasing Games for the Improvement of Dataflow Programming", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04389.pdf"]}, {"id": "ecf2ba5ea183a6be63b57543a19dd41e8017daaf", "title": "Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/58f8/90f76930b49ed517ff03fbf57ab1fc0c5608.pdf"]}, {"id": "404c7839afe2fec48a06f83d2a532c05ad8ba0d3", "title": "Vehicle Classification using Transferable Deep Neural Network Features", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/404c/7839afe2fec48a06f83d2a532c05ad8ba0d3.pdf"]}, {"id": "b4fe9594e1de682e7270645ba95ab64727b6632e", "title": "Generative Adversarial Positive-Unlabelled Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.08054.pdf"]}, {"id": "d50c6d22449cc9170ab868b42f8c72f8d31f9b6c", "title": "Dynamic MultiTask Learning with Convolutional Neural Network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/d50c/6d22449cc9170ab868b42f8c72f8d31f9b6c.pdf"]}, {"id": "79815f31f42708fd59da345f8fa79f635a070730", "title": "Autoregressive Quantile Networks for Generative Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05575.pdf"]}, {"id": "9939498315777b40bed9150d8940fc1ac340e8ba", "title": "ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Escalera_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "76b11c281ac47fe6d95e124673a408ee9eb568e3", "title": "Real-time Multi View Face Detection and Pose Estimation Aishwarya", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/76b1/1c281ac47fe6d95e124673a408ee9eb568e3.pdf"]}, {"id": "312afff739d1e0fcd3410adf78be1c66b3480396", "title": "Facial Attributes: Accuracy and Adversarial Robustness", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.02480.pdf"]}, {"id": "04d09bed8b05ed10d25c1cc2ab47381b0ee34c2f", "title": "YesilcamGAN: Automatic face translation to Yesilcam artists", "year": "2018", "pdf": []}, {"id": "c35724d227eb1e3d680333469fb9b94c677e871f", "title": "Multi-view Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02019.pdf"]}, {"id": "c8855bebdaa985dfc4c1a07e5f74a0e29787e47e", "title": "Multi-label Object Attribute Classification using a Convolutional Neural Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.04309.pdf"]}, {"id": "8bff7353fa4f75629ea418ca8db60477a751db93", "title": "Invariance of Weight Distributions in Rectified MLPs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.09090.pdf"]}, {"id": "ab3b196c5386f7ec2d05870eeb8872c8b8e33d77", "title": "Unconditional Generative Models", "year": "2017", "pdf": []}, {"id": "8e723e8a3a5a9ea258591d384232e0251f842a1c", "title": "Twin-GAN - Unpaired Cross-Domain Image Translation with Weight-Sharing GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.00946.pdf"]}, {"id": "056be8a896f71be4a1dee67b01f4d59e3e982304", "title": "Generative Models of Visually Grounded Imagination", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10762.pdf"]}, {"id": "72edc24c67c34b5f2c98086a689bf0f3591e393d", "title": "An Introduction to Image Synthesis with Generative Adversarial Nets", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04469.pdf"]}, {"id": "4d3cbc5799d7963477da279dae9a08ac4d459157", "title": "Deep Learning for Nonlinear Diffractive Imaging", "year": "2018", "pdf": []}, {"id": "a8db91308f59bc9452e87fc553eecea67632c443", "title": "Energy-relaxed Wasserstein GANs(EnergyWGAN): Towards More Stable and High Resolution Image Generation", "year": "2017", "pdf": []}, {"id": "9fb372fd2fb79571de1cc388154d4a3f0547d440", "title": "PBGAN: Partial Binarization of Deconvolution Based Generators", "year": "2018", "pdf": []}, {"id": "7fa62c091a14830ae256dc00b512f7d4b4cf5b94", "title": "Stabilizing GAN Training with Multiple Random Projections", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7fa6/2c091a14830ae256dc00b512f7d4b4cf5b94.pdf"]}, {"id": "6f9873e2a7bc279c4f0a45c1a6e831ef3ba78ae7", "title": "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.03644.pdf"]}, {"id": "318c4c25d86511690cc5df7b041a6392e8cc4ea8", "title": "Fashion-Gen: The Generative Fashion Dataset and Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08317.pdf"]}, {"id": "9aab33ce8d6786b3b77900a9b25f5f4577cea461", "title": "Automatic Semantic Face Recognition", "year": "2017", "pdf": []}, {"id": "7b6f0c4b22aee0cb4987cba9df121d4076fac5a5", "title": "On Learning 3D Face Morphable Model from In-the-wild Images", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.09560.pdf"]}, {"id": "74a1e28dd2c03076124282482074e10bb02bc643", "title": "Coulomb Gans: Provably Optimal Nash Equi-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/74a1/e28dd2c03076124282482074e10bb02bc643.pdf"]}, {"id": "c8adbe00b5661ab9b3726d01c6842c0d72c8d997", "title": "Deep Architectures for Face Attributes", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.09018.pdf"]}, {"id": "bea185a15d5df7bbfce83bc684c316412703efbb", "title": "PIXELNN: EXAMPLE-BASED IMAGE SYNTHESIS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/bea1/85a15d5df7bbfce83bc684c316412703efbb.pdf"]}, {"id": "60bc358296ae11ac8f11286bba0a49ac7e797d26", "title": "Diverse Image-to-Image Translation via Disentangled Representations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.00948.pdf"]}, {"id": "9063b17ccfdf73fc789d01d3c44c451244638528", "title": "Detecting Both Machine and Human Created Fake Face Images In the Wild", "year": "2018", "pdf": []}, {"id": "fc3e097ea7dd5daa7d314ecebe7faad9af5e62fb", "title": "Variational Inference and Model Selection with Generalized Evidence Bounds", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/fc3e/097ea7dd5daa7d314ecebe7faad9af5e62fb.pdf"]}, {"id": "4fec382efed4e08a36fafa3710b97f0b20de1ebe", "title": "BINARIZED REPRESENTATION ENTROPY (BRE) REGULARIZATION", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4fec/382efed4e08a36fafa3710b97f0b20de1ebe.pdf"]}, {"id": "9b19be86280c8dbb3fdccc24297449290bd2b6aa", "title": "Robust Compressive Phase Retrieval via Deep Generative Priors", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05854.pdf"]}, {"id": "85cad2b23e2ed7098841285bae74aafbff921659", "title": "Pa-gan: Improving Gan Training by Progressive Augmentation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/85ca/d2b23e2ed7098841285bae74aafbff921659.pdf"]}, {"id": "e667ba14fd3ea15491ad7c7f2f7e3622d231eeae", "title": "Face verification using convolutional neural networks with Siamese architecture", "year": "2017", "pdf": []}, {"id": "341de07abfb89bf78f3a72513c8bce40d654e0a3", "title": "Sparse and Deep Generalizations of the FRAME Model", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/4d54/360c1eb3c7f3485ee450e7979aef7ec8019e.pdf"]}, {"id": "b63041d05b78a66724fbcb2803508999bf885d6b", "title": "Deep Sets", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.06114.pdf"]}, {"id": "e22cf1ca10c11991c2a43007e37ca652d8f0d814", "title": "A Biologically Inspired Visual Working Memory", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e22c/f1ca10c11991c2a43007e37ca652d8f0d814.pdf"]}, {"id": "fed8cc533037d7d925df572a440fd89f34d9c1fd", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "fd96432675911a702b8a4ce857b7c8619498bf9f", "title": "Improved Face Detection and Alignment using Cascade Deep Convolutional Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.09364.pdf"]}, {"id": "947399fef66bd8c536c6f784a0501b34e4e094bf", "title": "Towards Recovery of Conditional Vectors from Conditional Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.01833.pdf"]}, {"id": "bb97664df153ac563e46ec2233346129cafe601b", "title": "A study on the use of Boundary Equilibrium GAN for Approximate Frontalization of Unconstrained Faces to aid in Surveillance", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.05611.pdf"]}, {"id": "22bebedc1a5f3556cb4f577bdbe032299a2865e8", "title": "Effective training of convolutional neural networks for face-based gender and age prediction", "year": "2017", "pdf": ["http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf"]}, {"id": "8d9067da4ba5c57643ee7a84cd5c5d5674384937", "title": "Sorting out Lipschitz function approximation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05381.pdf"]}, {"id": "a47ac8569ab1970740cff9f1643f77e9143a62d4", "title": "Associative Compression Networks for Representation Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.02476.pdf"]}, {"id": "d80564cea654d11b52c0008891a0fd2988112049", "title": "Semi-supervised Conditional GANs", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.05789.pdf"]}, {"id": "372bf2716c53e353be6c3f027493f1a40edb6640", "title": "MINE: Mutual Information Neural Estimation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.04062.pdf"]}, {"id": "65ec52a3e0a0f6a46fd140ff83bb82d7d02a2d45", "title": "Learning Hierarchical Features from Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.08396.pdf"]}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"]}, {"id": "66f55dc04aaf4eefdecef202211ad7563f7a703b", "title": "Synthesizing Programs for Images using Reinforced Adversarial Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01118.pdf"]}, {"id": "fa32b29e627086d4302db4d30c07a9d11dcd6b84", "title": "Weakly Supervised Facial Attribute Manipulation via Deep Adversarial Network", "year": "2018", "pdf": ["http://www.public.asu.edu/~swang187/publications/WACV18.pdf"]}, {"id": "d9ee64038aea3a60120e9f7de16eb4130940a103", "title": "Message Passing Multi-Agent GANs", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.01294.pdf"]}, {"id": "cbdca5e0f1fd3fd745430497d372a2a30b7bb0c5", "title": "Towards Distributed Coevolutionary GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08194.pdf"]}, {"id": "d1697250de6f91d3a3266c1ff0fdce0bf96acfe3", "title": "A C Lassification \u2013 B Ased P Erspective on Gan D Istributions", "year": "2017", "pdf": []}, {"id": "84e9de36dd7915f9334db5cc1fe567e17d717495", "title": "Fine-Grained Categorization via CNN-Based Automatic Extraction and Integration of Object-Level and Part-Level Features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.07397.pdf"]}, {"id": "b22b4817757778bdca5b792277128a7db8206d08", "title": "SCAN: Learning Hierarchical Compositional Visual Concepts", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.03389.pdf"]}, {"id": "3802da31c6d33d71b839e260f4022ec4fbd88e2d", "title": "Deep Attributes for One-Shot Face Recognition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3802/da31c6d33d71b839e260f4022ec4fbd88e2d.pdf"]}, {"id": "ec2027c2dd93e4ee8316cc0b3069e8abfdcc2ecf", "title": "Latent Variable PixelCNNs for Natural Image Modeling", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/252c/2e5e59d7b08887095b272d19dcd76fcf4a82.pdf"]}, {"id": "cd5ef3aeebc231e2c833ef55cf0571aa990c5ff8", "title": "IMAGE QUALITY ASSESSMENT TECHNIQUES IMPROVE TRAINING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cd5e/f3aeebc231e2c833ef55cf0571aa990c5ff8.pdf"]}, {"id": "296502c6370cabd2b7e38e71cfc757d2e5fa2199", "title": "Detection of Deep Network Generated Images Using Disparities in Color Components", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.07276.pdf"]}, {"id": "f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a", "title": "LOTS about attacking deep features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.06179.pdf"]}, {"id": "4cb48924acdcc0b20ef05ea5f5e856b081d9b40f", "title": "A Classification-Based Study of Covariate Shift in GAN Distributions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.00970.pdf"]}, {"id": "6903496ee5d4c24ca5f3f18211f406e0ba8442d6", "title": "Multi-Mapping Image-to-Image Translation with Central Biasing Normalization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.10050.pdf"]}, {"id": "68b6ec13d06facacf5637f90828ab5b6e352be60", "title": "Neural Proximal Gradient Descent for Compressive Imaging", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03963.pdf"]}, {"id": "9baf0509f63a3322d127ae4374aa5b0f9d5439b8", "title": "Two Birds with One Stone: Iteratively Learn Facial Attributes with GANs", "year": "2017", "pdf": []}, {"id": "6e911227e893d0eecb363015754824bf4366bdb7", "title": "Wasserstein Divergence for GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.01026.pdf"]}, {"id": "4d90d7834ae25ee6176c096d5d6608555766c0b1", "title": "Face and Body Association for Video-Based Face Recognition", "year": "2018", "pdf": []}, {"id": "d81dbc2960e527e91c066102aabdaf9eb8b15f85", "title": "Deep Directed Generative Models with Energy-Based Probability Estimation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.03439.pdf"]}, {"id": "2d6d4899c892346a9bc8902481212d7553f1bda4", "title": "Neural Face Editing with Intrinsic Image Disentangling SUPPLEMENTARY MATERIAL", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/2d6d/4899c892346a9bc8902481212d7553f1bda4.pdf"]}, {"id": "6b7f27cff688d5305c65fbd90ae18f3c6190f762", "title": "Generative networks as inverse problems with Scattering transforms", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06621.pdf"]}, {"id": "84c35fc21db3bcd407a4ffb009912b6ac5a47e3c", "title": "MGAN: TRAINING GENERATIVE ADVERSARIAL NETS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/84c3/5fc21db3bcd407a4ffb009912b6ac5a47e3c.pdf"]}, {"id": "b44d8ecac21867c540d9122a150c8d8c0875cbe6", "title": "Mixture Density Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00152.pdf"]}, {"id": "d8526863f35b29cbf8ac2ae756eaae0d2930ffb1", "title": "Face Generation for Low-Shot Learning Using Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Choe_Face_Generation_for_ICCV_2017_paper.pdf"]}, {"id": "9cc4abd2ec10e5fa94ff846c5ee27377caf17cf0", "title": "Improved Techniques for GAN based Facial Inpainting", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.08774.pdf"]}, {"id": "0217fb2a54a4f324ddf82babc6ec6692a3f6194f", "title": "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.03657.pdf"]}, {"id": "7e654380bd0d1f4c00e85da71a3081d3ada432ef", "title": "MGAN: TRAINING GENERATIVE ADVERSARIAL NETS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7e65/4380bd0d1f4c00e85da71a3081d3ada432ef.pdf"]}, {"id": "e6ca412a05002b51d358c2e3061913c3dab6b810", "title": "MoFA: Model-Based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.10580.pdf"]}, {"id": "eef29a4fef85c7ed8acde9ca42f8f09d944f361d", "title": "Learning to Super-Resolve Blurry Face and Text Images", "year": "2017", "pdf": ["http://faculty.ucmerced.edu/mhyang/papers/iccv2017_gan_super_deblur.pdf", "http://openaccess.thecvf.com/content_ICCV_2017/papers/Xu_Learning_to_Super-Resolve_ICCV_2017_paper.pdf"]}, {"id": "b19f24ec92388513d1516d71292559417c776006", "title": "CAUSALGAN: LEARNING CAUSAL IMPLICIT GENER-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b19f/24ec92388513d1516d71292559417c776006.pdf"]}, {"id": "09879f7956dddc2a9328f5c1472feeb8402bcbcf", "title": "Density estimation using Real NVP", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.08803.pdf"]}, {"id": "f8d68084931f296abfb5a1c4cd971f0b0294eaa4", "title": "UNCONDITIONAL GENERATIVE MODELS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f8d6/8084931f296abfb5a1c4cd971f0b0294eaa4.pdf"]}, {"id": "82821e227683d66543a303f4faddc1376a91a463", "title": "Learning Multi-grid Generative ConvNets by Minimal Contrastive Divergence", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/8282/1e227683d66543a303f4faddc1376a91a463.pdf"]}, {"id": "72a6044a0108e0f8f1e68cd70ada46c81a416324", "title": "Improved Training of Generative Adversarial Networks Using Representative Features", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.09195.pdf"]}, {"id": "c9d7219d54eccb9e49b72044d805e103fe17ba80", "title": "Towards Information-Seeking Agents", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.02605.pdf"]}, {"id": "8d6d0fdf4811bc9572326d12a7edbbba59d2a4cc", "title": "SchiNet: Automatic Estimation of Symptoms of Schizophrenia from Facial Behaviour Analysis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.02531.pdf"]}, {"id": "9cc3172efb42d2f9fa1b9ae7b7eef9cc349cdef9", "title": "Imbalanced Deep Learning by Minority Class Incremental Rectification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10851.pdf"]}, {"id": "0ee737085af468f264f57f052ea9b9b1f58d7222", "title": "SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08370.pdf"]}, {"id": "57235f22abcd6bb928007287b17e235dbef83347", "title": "Exemplar Guided Unsupervised Image-to-Image Translation with Semantic Consistency", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.11145.pdf"]}, {"id": "69c8b0ec77d3164df2069a5133780a36ec8e91ad", "title": "Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09312.pdf"]}, {"id": "0e31e5e899e2c22d5871054f954f6dd01a33b9d0", "title": "Unsupervised Transformation Network Based on GANs for Target-Domain Oriented Image Translation", "year": "2018", "pdf": []}, {"id": "2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924", "title": "Compare and Contrast : Learning Prominent Differences in Relative Attributes by", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/2a6b/ba2e81d5fb3c0fd0e6b757cf50ba7bf8e924.pdf"]}, {"id": "7f6cd03e3b7b63fca7170e317b3bb072ec9889e0", "title": "A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09359.pdf"]}, {"id": "9da2b79c6942852e8076cdaa4d4c93eb1ae363f1", "title": "Constraint-Based Visual Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09202.pdf"]}, {"id": "d9c0310203179d5328c4f1475fa4d68c5f0c7324", "title": "Face Analysis in the Wild", "year": "2017", "pdf": []}, {"id": "419fec1a76d9233dcaa8d2c98ea622d19f663261", "title": "Unsupervised learning of object frames by dense equivariant image labelling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.02932.pdf"]}, {"id": "bc17c2075d7f7bc414acc00a88ff5a464eedaebe", "title": "Solving Bilinear Inverse Problems using Deep Generative Priors", "year": "2018", "pdf": []}, {"id": "189eedfc81ee47b2b44caf8bfe816726697ba421", "title": "Facial Attributes Guided Deep Sketch-to-Photo Synthesis", "year": "2018", "pdf": []}, {"id": "2727927c7493cef9785b3a06a38f5c1ce126fc23", "title": "Semi-supervised FusedGAN for Conditional Image Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05551.pdf"]}, {"id": "424259e9e917c037208125ccc1a02f8276afb667", "title": "Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.06433.pdf"]}, {"id": "102a2096ba2e2947dc252445f764e7583b557680", "title": "Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.04382.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "6211ba456908d605e85d102d63b106f1acb52186", "title": "Visual Interpretability forDeepLearning", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/6211/ba456908d605e85d102d63b106f1acb52186.pdf"]}, {"id": "f1aa120fb720f6cfaab13aea4b8379275e6d40a2", "title": "InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f1aa/120fb720f6cfaab13aea4b8379275e6d40a2.pdf"]}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"]}, {"id": "c6c3cee8adacff8a63ab84dc847141315e874400", "title": "Disentangling by Factorising", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05983.pdf"]}, {"id": "f672d6352a5864caab5a5a286fbc1ce042b55c16", "title": "Stabilizing GAN Training with Multiple Random Projections", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f672/d6352a5864caab5a5a286fbc1ce042b55c16.pdf"]}, {"id": "04fd269c96f11235fbbb985bb16dacedaa3098fd", "title": "Guarding Against Adversarial Domain Shifts with Counterfactual Regularization", "year": "2017", "pdf": []}, {"id": "fe030b87e3c985c9dedab130949e2868e3e5e7d5", "title": "Explaining Neural Networks Semantically", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/fe03/0b87e3c985c9dedab130949e2868e3e5e7d5.pdf"]}, {"id": "76cb2ecc96f02b1d8a7a0d1681fbb55367a4b765", "title": "Learning Object States from Videos", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/76cb/2ecc96f02b1d8a7a0d1681fbb55367a4b765.pdf"]}, {"id": "42f8ef9d5ebf969a7e2b4d1eef4b332db562e5d4", "title": "Which Training Methods for GANs do actually Converge?", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.04406.pdf"]}, {"id": "8ea9093542075bd8cc4928a4c671a95f363c61ef", "title": "Sliced-Wasserstein Autoencoder : An Embarrassingly Simple Generative Model", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8ea9/093542075bd8cc4928a4c671a95f363c61ef.pdf"]}, {"id": "2d2102d3fe127444e203a2ab11c2b3d5f56874cc", "title": "Wasserstein Auto-Encoders", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.01558.pdf"]}, {"id": "c9b90cf9cdd901bd3072d6dfd8ddc523c55944b1", "title": "Adversarial Generator-Encoder Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c9b9/0cf9cdd901bd3072d6dfd8ddc523c55944b1.pdf"]}, {"id": "0ed91520390ebdee13a0ac13d028f65d959bdc10", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "", "pdf": ["https://pdfs.semanticscholar.org/0ed9/1520390ebdee13a0ac13d028f65d959bdc10.pdf"]}, {"id": "16f48e8b7f1f6c03c888e3f4664ce3fa1261296b", "title": "Steganographic Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.05502.pdf"]}, {"id": "0c0db39cac8cb76b52cfdbe10bde1c53d68d202f", "title": "Metric-based Generative Adversarial Network", "year": "2017", "pdf": []}, {"id": "37381718559f767fc496cc34ceb98ff18bc7d3e1", "title": "Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3738/1718559f767fc496cc34ceb98ff18bc7d3e1.pdf"]}, {"id": "4563cbfbdba1779fc598081071ae40be021cb81d", "title": "Adversarial Attacks on Variational Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04646.pdf"]}, {"id": "08809165154c9c557d368cddfa3ae66ccaceaed9", "title": "Taming VAEs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.00597.pdf"]}, {"id": "a4ee9f089ab9a48a6517a6967281247339a51747", "title": "Resembled Generative Adversarial Networks: Two Domains with Similar Attributes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00947.pdf"]}, {"id": "9ce4541d21ee3511bf3dc55bc3cd01222194d95a", "title": "Face inpainting based on high-level facial attributes", "year": "2017", "pdf": []}, {"id": "04221205249bdffd0f155ac68ac477613654aa42", "title": "Semantic facial scores and compact deep transferred descriptors for scalable face image retrieval", "year": "2018", "pdf": ["http://pesona.mmu.edu.my/~johnsee/research/papers/files/semantic-neurocomp18.pdf"]}, {"id": "35800a537017803dd08274710388734db66b54f0", "title": "Sliced Wasserstein Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.02631.pdf"]}, {"id": "ea94d834f912f092618d030f080de8395fe39b3f", "title": "Joint autoencoders : a flexible meta-learning framework", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3027/8a460e2936596b671d20599f2598c4d284ed.pdf"]}, {"id": "e0162dea3746d58083dd1d061fb276015d875b2e", "title": "Unconstrained Face Alignment Without Face Detection", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Shao_Unconstrained_Face_Alignment_CVPR_2017_paper.pdf"]}, {"id": "9a989c7032051566d3ade03e5650ea6a41a5a9ed", "title": "Building an automatic sprite generator with deep convolutional generative adversarial networks", "year": "2017", "pdf": ["http://diego-perez.net/papers/building-automatic-sprites.pdf", "http://www.cig2017.com/wp-content/uploads/2017/08/paper_50.pdf"]}, {"id": "0ae192e146431a52d7bb51923e9bdd7292ab12ef", "title": "Multi-Generator Generative Adversarial Nets", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02556.pdf"]}, {"id": "f8796b8e8246ce41efb2904c053fe0ea2868e373", "title": "A Variational U-Net for Conditional Appearance and Shape Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04694.pdf"]}, {"id": "d7fe2a52d0ad915b78330340a8111e0b5a66513a", "title": "Photo-to-Caricature Translation on Faces in the Wild", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10735.pdf"]}, {"id": "e260847323b48a79bd88dd95a1499cd3053d3645", "title": "Reconstructing perceived faces from brain activations with deep adversarial neural decoding", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/937b/78204a7ac4aac6a8782f29c68322621dc1c2.pdf"]}, {"id": "b7c4fe5c89df51ebd1f89a34c66b94cc6019d8e6", "title": "Model Cards for Model Reporting", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.03993.pdf"]}, {"id": "f29a24ee71940aa46b2c3438d4ddb89b33acdbc4", "title": "Towards High-Resolution Face Pose Synthesis", "year": "2018", "pdf": []}, {"id": "4e97b53926d997f451139f74ec1601bbef125599", "title": "Discriminative Regularization for Generative Models", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03220.pdf"]}, {"id": "b362b812ececef21100d7a702447fcf5ab6d4715", "title": "Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07543.pdf"]}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"]}, {"id": "a562180056cc4906d6d5ef9d2b4ed098d8512317", "title": "Dropout-GAN: Learning from a Dynamic Ensemble of Discriminators", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11346.pdf"]}, {"id": "70e14e216b12bed2211c4df66ef5f0bdeaffe774", "title": "Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Hu_Attribute-Enhanced_Face_Recognition_ICCV_2017_paper.pdf", "http://www.research.ed.ac.uk/portal/files/41072997/hu2017neuralTensor.pdf"]}, {"id": "d84263e22c7535cb1a2a72c88780d5a407bd9673", "title": "Stability of Scattering Decoder For Nonlinear Diffractive Imaging", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08015.pdf"]}, {"id": "0dcdef6b8d97483f4d4dab461e1cb5b3c4d1fe1a", "title": "Probabilistic Semantic Inpainting with Pixel Constrained CNNs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.03728.pdf"]}, {"id": "56bc524d7cc1ff2fad8f27c0414cac437fc2b4f0", "title": "Protest Activity Detection and Perceived Violence Estimation from Social Media Images", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.06204.pdf"]}, {"id": "15aa6c457678e25f6bc0e818e5fc39e42dd8e533", "title": "Conditional Image Generation for Learning the Structure of Visual Objects", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.07823.pdf"]}, {"id": "07a8a4b8f207b2db2a19e519027f70cd1c276294", "title": "Pixel Recursive Super Resolution", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00783.pdf"]}, {"id": "35f3c4012e802332faf0a1426e9acf8365601551", "title": "Bidirectional Conditional Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.07461.pdf"]}, {"id": "751e11880b54536a89bfcc4fd904b0989345a601", "title": "Hierarchical Adversarially Learned Inference", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01071.pdf"]}, {"id": "9817e0d11701e9ce0e31a32338ff3ff0969621ed", "title": "Dppnet: Approximating Determinantal Point Processes with Deep Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9817/e0d11701e9ce0e31a32338ff3ff0969621ed.pdf"]}, {"id": "a7e5a46e47dd21cc9347b913dd3dde2f0ad832ed", "title": "On denoising autoencoders trained to minimise binary cross-entropy", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.08487.pdf"]}, {"id": "621ea1f1e364262348135c803557e7b3454a804e", "title": "Generative spatiotemporal modeling of neutrophil behavior", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00393.pdf"]}, {"id": "6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81", "title": "Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Uricar_Structured_Output_SVM_CVPR_2016_paper.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/125793/eth-50297-01.pdf"]}, {"id": "d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576", "title": "Neural Face Editing with Intrinsic Image Disentangling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.04131.pdf"]}, {"id": "f792f75f6d2bf265569d4e63dd139c4d04ec7fdb", "title": "Introspective Neural Networks for Generative Modeling", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Lazarow_Introspective_Neural_Networks_ICCV_2017_paper.pdf", "http://pages.ucsd.edu/~ztu/publication/iccv17_inng.pdf"]}, {"id": "56f5005c4be6f816f6f43795cc4825d798cd53ef", "title": "GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium", "year": "2017", "pdf": []}, {"id": "b8658fc3b17e75afce025bcbb161dd02e7004b1f", "title": "Deep Mesh Projectors for Inverse Problems", "year": "2018", "pdf": []}, {"id": "09137e3c267a3414314d1e7e4b0e3a4cae801f45", "title": "Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.06078.pdf"]}, {"id": "c8dcb7b3c5ed43e61b90b50fedc76568d8e30675", "title": "GUARDING AGAINST ADVERSARIAL DOMAIN SHIFTS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c8dc/b7b3c5ed43e61b90b50fedc76568d8e30675.pdf"]}, {"id": "e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5", "title": "Improving Facial Landmark Detection via a Super-Resolution Inception Network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e617/8de1ef15a6a973aad2791ce5fbabc2cb8ae5.pdf"]}, {"id": "a157ebc849d57ccff00a52a68b24e4ac8eba9536", "title": "The Contextual Loss for Image Transformation with Non-aligned Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02077.pdf"]}, {"id": "22f656d0f8426c84a33a267977f511f127bfd7f3", "title": "From Facial Expression Recognition to Interpersonal Relation Prediction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1609.06426.pdf"]}, {"id": "c05ae45c262b270df1e99a32efa35036aae8d950", "title": "Predicting Facial Attributes in Video Using Temporal Coherence and Motion-Attention", "year": "2018", "pdf": []}, {"id": "5da53a17165fcc64e8fb6e9ca532bfb6d95ff622", "title": "RSCM: Region Selection and Concurrency Model for Multi-Class Weather Recognition", "year": "2017", "pdf": ["http://www.cse.cuhk.edu.hk/~leojia/papers/rscm_pami17.pdf"]}, {"id": "82088af865626e2340db12b2e42f3a258053d593", "title": "Learning Generative ConvNets via Multi-grid Modeling and Sampling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.08868.pdf"]}, {"id": "3352426a67eabe3516812cb66a77aeb8b4df4d1b", "title": "Joint Multi-view Face Alignment in the Wild", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.06023.pdf"]}, {"id": "2a8aedea2031128868f1c6dd44329c5bb7afc419", "title": "A Convex Duality Framework for GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11740.pdf"]}, {"id": "878301453e3d5cb1a1f7828002ea00f59cbeab06", "title": "Faceness-Net: Face Detection through Deep Facial Part Responses", "year": "2018", "pdf": ["https://arxiv.org/pdf/1701.08393.pdf"]}, {"id": "2c94682176f320f406f78c484f9135f085d1c0f0", "title": "Geometric Enclosing Networks", "year": "2017", "pdf": []}, {"id": "8818dafda0cf230731ac2f962d8591c89a9fac09", "title": "xGEMs: Generating Examplars to Explain Black-Box Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08867.pdf"]}, {"id": "ec3eb92b9a56b1fa84b127b8acc980555cd1f2e0", "title": "Channel-Recurrent Variational Autoencoders", "year": "2017", "pdf": []}, {"id": "a4cd3fc63ddc8468d3f684f32cb0578e41fed226", "title": "Generative Adversarial Style Transfer Networks for Face Aging", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ea7d/ff897a6618a5ae9c7fed19899ac0d3a4a04e.pdf"]}, {"id": "6baaa8b763cc5553715766e7fbe7abb235fae33c", "title": "Facial Attributes Classification Using Multi-task Representation Learning", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Ehrlich_Facial_Attributes_Classification_CVPR_2016_paper.pdf"]}, {"id": "6a9e240e5d84b33c0835cd85c96c70ad5ffdc49c", "title": "Photographic image synthesis with improved U-net", "year": "2018", "pdf": []}, {"id": "d2860bb05f747e4628e95e4d84018263831bab0d", "title": "Learning to Generate Samples from Noise through Infusion Training", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.06975.pdf"]}, {"id": "73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c", "title": "Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.02193.pdf"]}, {"id": "0ad318510969560e2fca3d7b257e6b6f7a541b3e", "title": "High-Resolution Deep Convolutional Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.06491.pdf"]}, {"id": "6bb95a0f3668cd36407c85899b71c9fe44bf9573", "title": "Face attribute prediction using off-the-shelf CNN features", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03935.pdf"]}, {"id": "bfffcd2818a1679ac7494af63f864652d87ef8fa", "title": "Neural Importance Sampling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.03856.pdf"]}, {"id": "f67afec4226aba674e786698b39b85b124945ddd", "title": "Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.06821.pdf"]}, {"id": "7b07a87ff71b85f3493d1944034a960917b8482f", "title": "Alternating BackPropagation for Generator Network", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7b07/a87ff71b85f3493d1944034a960917b8482f.pdf"]}, {"id": "02b0bf28f34c3c403abecd2fb4fb7d4969c0e0db", "title": "Learning Disentangled Joint Continuous and Discrete Representations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00104.pdf"]}, {"id": "63db76fc3ab23beb921be682d70eb021cb6c4f16", "title": "How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00617.pdf"]}, {"id": "442ee5a3f51ca93a642c20fa69326f3b17367565", "title": "Detection of rail surface defects based on CNN image recognition and classification", "year": "2018", "pdf": []}, {"id": "c5b311152a4e611288a77fbb1460eb0fbb049de3", "title": "An Efficient Training Strategy for Face Detector in Specific Scenes", "year": "2016", "pdf": []}, {"id": "4eaaefc53fd61d27b9ce310c188fe76003a341bd", "title": "Assessing Generative Models via Precision and Recall", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00035.pdf"]}, {"id": "d5c4e3c101041556e00b25c0dcb09716827ed5b3", "title": "Unsupervised Image-to-Image Translation with Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.02676.pdf"]}, {"id": "330b3db69f70f01afd674a2b7bce4bb5000bf164", "title": "Learning the Base Distribution in Implicit Generative Models", "year": "2018", "pdf": []}, {"id": "6066e13aea80f64b6ad1415cfc3839c1f8590c04", "title": "Grouping-By-ID : Guarding Against Adversarial Domain Shifts", "year": "2017", "pdf": []}, {"id": "40638a7a9e0a0499af46053c6efc05ce0b088a28", "title": "On the convergence properties of GAN training", "year": "2018", "pdf": []}, {"id": "0ad4a814b30e096ad0e027e458981f812c835aa0", "title": "Leveraging mid-level deep representations for predicting face attributes in the wild", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.01827.pdf"]}, {"id": "b1c80444ecf42c303dbf65e47bea999af7a172bf", "title": "Exploring generative perspective of convolutional neural networks by learning random field models \u2217", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/bea1/3cc5e7b39a05f858f69318b16c398863d610.pdf"]}, {"id": "e0515dc0157a89de48e1120662afdd7fe606b544", "title": "Perception Science in the Age of Deep Neural Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e051/5dc0157a89de48e1120662afdd7fe606b544.pdf"]}, {"id": "d98a36081a434451184fa4becb59bf5ec55f3a1e", "title": "Computational face reader based on facial attribute estimation", "year": "2017", "pdf": []}, {"id": "2f88d3189723669f957d83ad542ac5c2341c37a5", "title": "Attribute-correlated local regions for deep relative attributes learning", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2f88/d3189723669f957d83ad542ac5c2341c37a5.pdf"]}, {"id": "8f772d9ce324b2ef5857d6e0b2a420bc93961196", "title": "Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01760.pdf"]}, {"id": "e23ed8642a719ff1ab08799257d9566ed3bba403", "title": "Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.09798.pdf"]}, {"id": "2e10560579f2bdeae0143141f26bd9f0a195b4b7", "title": "Mixed Precision Training", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.03740.pdf"]}, {"id": "57fd8bafa4526b9a56fe43fac22dd62b2ab94563", "title": "BEYOND SHARED HIERARCHIES: DEEP MULTITASK LEARNING THROUGH SOFT LAYER ORDERING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/57fd/8bafa4526b9a56fe43fac22dd62b2ab94563.pdf"]}, {"id": "96fc93175169b788acd98f0a676dffab00651cbc", "title": "On Matching Faces with Alterations due to Plastic Surgery and Disguise", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/96fc/93175169b788acd98f0a676dffab00651cbc.pdf"]}, {"id": "b7ccfc78cb54525f9cba996b73c780068a05527e", "title": "Task-Aware Compressed Sensing With Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01284.pdf"]}, {"id": "725597072c76dad5caa92b7baa6e1c761addc300", "title": "Deep adversarial neural decoding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07109.pdf"]}, {"id": "471908e99d6965f0f6d249c9cd013485dc2b21df", "title": "Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.08446.pdf"]}, {"id": "bc995457cf5f4b2b5ef62106856571588d7d70f2", "title": "Comparison of Maximum Likelihood and GAN-based training of Real NVPs", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.05263.pdf"]}, {"id": "5d7070067a75f57c841d0d30b23e21101da606b2", "title": "Generative Modeling using the Sliced Wasserstein Distance", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.11188.pdf"]}, {"id": "3e4bd583795875c6550026fc02fb111daee763b4", "title": "Convolutional Sketch Inversion", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.03073.pdf"]}, {"id": "ba788365d70fa6c907b71a01d846532ba3110e31", "title": "Robust Conditional Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08657.pdf"]}, {"id": "62b90583723174220b26c92bd67f6c422ad75570", "title": "DNA-GAN: LEARNING DISENTANGLED REPRESEN-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/62b9/0583723174220b26c92bd67f6c422ad75570.pdf"]}, {"id": "1dd3faf5488751c9de10977528ab96be24616138", "title": "Detecting Anomalous Faces with 'No Peeking' Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05798.pdf"]}, {"id": "b1ffd13e8f68401a603eea9806bc37e396a3c77d", "title": "Face Generation with Conditional Generative Adversarial Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b1ff/d13e8f68401a603eea9806bc37e396a3c77d.pdf"]}, {"id": "3d38022d7ba71e865ca406d28acd3fe547024319", "title": "Unsupervised Local Facial Attributes Transfer Using Dual Discriminative Adversarial Networks", "year": "2018", "pdf": []}, {"id": "e68ef9597613cd2b6cf76e81c13eb061ee468485", "title": "Latent Convolutional Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.06284.pdf"]}, {"id": "cc2bb4318191a04e3fc82c008c649f5b90151e4d", "title": "Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00108.pdf"]}, {"id": "cfcb4d0d9ba7eb86f068c4fe0f9e6676a37481bc", "title": "Max-Boost-GAN: Max Operation to Boost Generative Ability of Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w18/Di_Max-Boost-GAN_Max_Operation_ICCV_2017_paper.pdf"]}, {"id": "a022eff5470c3446aca683eae9c18319fd2406d5", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf"]}, {"id": "9941a408ae031d1254bbc0fe7a63fac5f85fe347", "title": "Neural Processes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01622.pdf"]}, {"id": "de60ee528db713d264ffea870b33f8be054fb8c7", "title": "A Classification-Based Perspective on GAN Distributions", "year": "2017", "pdf": []}, {"id": "a91fd02ed2231ead51078e3e1f055d8be7828d02", "title": "The Robust Manifold Defense: Adversarial Training using Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.09196.pdf"]}, {"id": "c231d8638e8b5292c479d20f7dd387c53e581a1a", "title": "Multi-View Data Generation Without View Supervision", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00305.pdf"]}, {"id": "2baea24cc71793ba40cf738b7ad1914f0e549863", "title": "Attribute Augmented Convolutional Neural Network for Face Hallucination", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2bae/a24cc71793ba40cf738b7ad1914f0e549863.pdf"]}, {"id": "e1740c8a562901ac1b94c78b33c4416500cedebc", "title": "JOINT-VAE: LEARNING DISENTANGLED JOINT CON-", "year": "2018", "pdf": []}, {"id": "4efb08fcd652c60764b6fd278cee132b71c612a1", "title": "Pixel Deconvolutional Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.06820.pdf"]}, {"id": "db0d33590dc15de2d30cf0407b7a26ae79cd51b5", "title": "Deep Probabilistic Modeling of Natural Images using a Pyramid Decomposition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/db0d/33590dc15de2d30cf0407b7a26ae79cd51b5.pdf"]}, {"id": "021e008282714eaefc0796303f521c9e4f199d7e", "title": "NCC-Net: Normalized Cross Correlation Based Deep Matcher with Robustness to Illumination Variations", "year": "2018", "pdf": []}, {"id": "eb72dcf0ba423d0e12d63cd7881f2ac5dfda7984", "title": "Associative Compression Networks", "year": "2018", "pdf": []}, {"id": "a54d63c1a8c4db3c5034b1fdb08526459bb3c0b1", "title": "Multi-Gait Recognition Based on Attribute Discovery", "year": "2018", "pdf": []}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": []}, {"id": "06560d5721ecc487a4d70905a485e22c9542a522", "title": "Deep Facial Attribute Detection in the Wild: From General to Specific", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/0656/0d5721ecc487a4d70905a485e22c9542a522.pdf"]}, {"id": "e21c45b14d75545d40ed07896f26ec6f766f6a4b", "title": "Fisher GAN", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.09675.pdf"]}, {"id": "06be17bcc4136476855fc594759dddc6f8b6150f", "title": "MMGAN: Manifold Matching Generative Adversarial Network for Generating Images", "year": "2017", "pdf": []}, {"id": "6b327af674145a34597986ec60f2a49cff7ed155", "title": "Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1805.06605.pdf"]}, {"id": "6f900e683ea1fc85825a403d1ba2df7875f35bb9", "title": "Joint-VAE: Learning Disentangled Joint Continuous and Discrete Representations", "year": "2018", "pdf": []}, {"id": "8929e704b6af7f09ad027714b75972cb9df57483", "title": "Image Inpainting for Irregular Holes Using Partial Convolutions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.07723.pdf"]}, {"id": "5a9103153c7f36d8a28bfd66e89ff05c93129415", "title": "Multi-task convolutional neural network for car attribute recognition", "year": "2017", "pdf": []}, {"id": "33658ee91ae67f3c92542dd0f0838b48c994ae4d", "title": "Robust Head Detection in Collaborative Learning Environments Using AM-FM Representations", "year": "2018", "pdf": ["http://ivpcl.unm.edu/bibtex_php/Conferences_Pdfs/RobustHeadDetectioninCollaborativeLearning.pdf"]}, {"id": "c03ef6e94808185c1080ac9b155ac3b159b4f1ec", "title": "Learning to Avoid Errors in GANs by Manipulating Input Spaces", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.00768.pdf"]}, {"id": "14a022a3eb8cc9681b1ab075650d462788de1fa0", "title": "GANs for Biological Image Synthesis", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.04692.pdf"]}, {"id": "f0483ebab9da2ba4ae6549b681cf31aef2bb6562", "title": "3 C-GAN : A N CONDITION-CONTEXT-COMPOSITE GENERATIVE ADVERSARIAL NETWORKS FOR GENERATING IMAGES SEPARATELY", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f048/3ebab9da2ba4ae6549b681cf31aef2bb6562.pdf"]}, {"id": "91edca64a666c46b0cbca18c3e4938e557eeb21a", "title": "Guiding InfoGAN with Semi-Supervision", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.04487.pdf"]}, {"id": "23fd82c04852b74d655015ff0876e6c5defc6e61", "title": "Deep-based Ingredient Recognition for Cooking Recipe Retrieval", "year": "2016", "pdf": []}, {"id": "b04d4b1e8b510180726f49a66dbaaf23c9ef64a0", "title": "Introspective Generative Modeling: Decide Discriminatively.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.07820.pdf"]}, {"id": "e8c6853135856515fc88fff7c55737a292b0a15b", "title": "BoxFlow: Unsupervised Face Detector Adaptation from Images to Videos", "year": "2017", "pdf": []}, {"id": "e0082ae9e466f7c855fb2c2300215ced08f61432", "title": "Generative Temporal Models with Spatial Memory for Partially Observed Environments", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09401.pdf"]}, {"id": "ae2b2493f35cecf1673eb3913fdce37e037b53a2", "title": "Optimal Transport Maps for Distribution Pre- Serving Operations on Latent Spaces of Gener-", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ae2b/2493f35cecf1673eb3913fdce37e037b53a2.pdf"]}, {"id": "3d0b2da6169d38b56c58fe5f13342cf965992ece", "title": "Spatio-temporal representation for face authentication by using multi-task learning with human attributes", "year": "2016", "pdf": []}, {"id": "b64cc1f0772e9620ecf916019de85b7adb357b7a", "title": "Fast Face-Swap Using Convolutional Neural Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09577.pdf"]}, {"id": "fac36fa1b809b71756c259f2c5db20add0cb0da0", "title": "Transferring GANs: Generating Images from Limited Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01677.pdf"]}, {"id": "31af1f2614823504d1d643d1b019c6f9d2150b15", "title": "Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.02765.pdf"]}, {"id": "ddefb92908e6174cf48136ae139efbb4bd198896", "title": "Feature-wise Bias Amplification", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ddef/b92908e6174cf48136ae139efbb4bd198896.pdf"]}, {"id": "708f4787bec9d7563f4bb8b33834de445147133b", "title": "Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.pdf"]}, {"id": "d979dbc55f73304a5d839079c070062e0b3ddbc5", "title": "Deep Learning Markov Random Field for Semantic Segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1606.07230.pdf"]}, {"id": "6dcf418c778f528b5792104760f1fbfe90c6dd6a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "c3293ef751d3fb041bd3016fbc3fa5cc16f962fa", "title": "Inferencing based on unsupervised learning of disentangled representations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02627.pdf"]}, {"id": "61f04606528ecf4a42b49e8ac2add2e9f92c0def", "title": "Deep Deformation Network for Object Landmark Localization", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.01014.pdf"]}, {"id": "7c2174a02f355a00f1fd5aac6dd62c84a919a2d1", "title": "Normal Residual Blocks Albedo Residual Blocks Light Estimator SH light Normal Conv . Albedo Conv . Conv . Normal Albedo Shading Image Recon", "year": "2017", "pdf": []}, {"id": "9d8978ee319d671283a90761aaed150c7cc9154b", "title": "Fader Networks: Manipulating Images by Sliding Attributes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.00409.pdf"]}, {"id": "801a80f7a18fccb2e8068996a73aee2cf04ae460", "title": "Optimal transport maps for distribution preserving operations on latent spaces of Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.01970.pdf"]}, {"id": "f553f8022b1417bc7420523220924b04e3f27b8e", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"]}, {"id": "b768cb6fc2616f3dbe9ef4e25dedd7d95781ba66", "title": "Distribution Matching in Variational Inference", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.06847.pdf"]}, {"id": "8bddd0afd064e2d45ab6cf9510f2631f7438c17b", "title": "Outlier Detection using Generative Models with Theoretical Performance Guarantees", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11335.pdf"]}, {"id": "101569eeef2cecc576578bd6500f1c2dcc0274e2", "title": "Multiaccuracy: Black-Box Post-Processing for Fairness in Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.12317.pdf"]}, {"id": "56fd4c05869e11e4935d48aa1d7abb96072ac242", "title": "OpenFace 2.0: Facial Behavior Analysis Toolkit", "year": "2018", "pdf": []}, {"id": "e309632d479b8f59e615d0f3c4bc69938361d187", "title": "Deep Learning for Imbalance Data Classification using Class Expert Generative Adversarial Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04585.pdf"]}, {"id": "db1a9b8d8ce9a5696a96f8db4206b6f72707730e", "title": "Cross-Modal Facial Attribute Recognition with Geometric Features", "year": "2017", "pdf": ["https://www.jventura.net/sites/default/files/bradley_hfr17.pdf"]}, {"id": "d5cf6a02f8308e948e3bcd1fd1ca660ea8ea8921", "title": "G ENERATIVE NETWORKS AS INVERSE PROBLEMS WITH SCATTERING TRANSFORMS", "year": "", "pdf": ["https://pdfs.semanticscholar.org/d5cf/6a02f8308e948e3bcd1fd1ca660ea8ea8921.pdf"]}, {"id": "e9afb44fa1bf048e90d68f755945bc2b81642239", "title": "Data-Driven Geometric Face Image Smilization Featuring Moving Least Square Based Deformation", "year": "2017", "pdf": []}, {"id": "9e0285debd4b0ba7769b389181bd3e0fd7a02af6", "title": "From Face Images and Attributes to Attributes", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf"]}, {"id": "6b2db002cbc5312e4796de4d4b14573df2c01648", "title": "Learning Hierarchical Features from Deep Generative Models", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6b2d/b002cbc5312e4796de4d4b14573df2c01648.pdf"]}, {"id": "389b2390fd310c9070e72563181547cf23dceea3", "title": "\u03b2-VAE : L EARNING B ASIC", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/389b/2390fd310c9070e72563181547cf23dceea3.pdf"]}, {"id": "af6cae71f24ea8f457e581bfe1240d5fa63faaf7", "title": "Multi-Task Zipping via Layer-wise Neuron Sharing", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09791.pdf"]}, {"id": "788a3faa14ca191d7f187b812047190a70798428", "title": "Interpretable Set Functions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00050.pdf"]}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": []}, {"id": "d59404354f84ad98fa809fd1295608bf3d658bdc", "title": "Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.00077.pdf"]}, {"id": "d3d887aebeeae44cefd5c2bdbb388d9ce109e335", "title": "Image Manipulation with Perceptual Discriminators", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.01396.pdf"]}, {"id": "28121cd9150250fe51de62521065c7e2246a73e9", "title": "Blind Image Deconvolution using Deep Generative Priors", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04073.pdf"]}, {"id": "92e5708ed3b622ca1f0f6ac28ffd6e789c528cdf", "title": "Adversarial Inversion : Inverse Graphics with Adversarial Priors", "year": "2017", "pdf": []}, {"id": "147b7998526ebbdf64b1662503b378d9f6456ccd", "title": "GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/147b/7998526ebbdf64b1662503b378d9f6456ccd.pdf"]}, {"id": "7910d3a86e03f4c41fbbe8029fab115547be151b", "title": "Taming Adversarial Domain Transfer with Structural Constraints for Image Enhancement", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00598.pdf"]}, {"id": "372bc106c61e7eb004835e85bbfee997409f176a", "title": "Coupled Generative Adversarial Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.07536.pdf"]}, {"id": "1cce875bf085602a2b0e486eb37dadc47e4efbb4", "title": "An optimized skin texture model using gray-level co-occurrence matrix", "year": "2017", "pdf": []}, {"id": "e3582dffe5f3466cc5bc9d736934306c551ab33c", "title": "AttGAN: Facial Attribute Editing by Only Changing What You Want", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.10678.pdf"]}, {"id": "346578304ff943b97b3efb1171ecd902cb4f6081", "title": "Generative Multi-Adversarial Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.01673.pdf"]}, {"id": "231af7dc01a166cac3b5b01ca05778238f796e41", "title": "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.08500.pdf"]}, {"id": "73d57e2c855c39b4ff06f2d7394ab4ea35f597d4", "title": "First Order Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04591.pdf"]}, {"id": "654ad3b6f7c6de7184a9e8eec724e56274f27e3f", "title": "Alternating Back-Propagation for Generator Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1606.08571.pdf"]}, {"id": "3355aff37b5e4ba40fc689119fb48d403be288be", "title": "Deep Private-Feature Extraction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03151.pdf"]}, {"id": "45824905119ec09447d60e1809434062d5f4c1e4", "title": "Detecting Smiles of Young Children via Deep Transfer Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Xia_Detecting_Smiles_of_ICCV_2017_paper.pdf"]}, {"id": "62007c30f148334fb4d8975f80afe76e5aef8c7f", "title": "Eye In-Painting with Exemplar Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.03999.pdf"]}, {"id": "be4c2b6fdde83179dd601541f57ee5d14fe1e98a", "title": "Graphical Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.03429.pdf"]}, {"id": "a45450824c6e8e6b42fd9bbf52871104b6c6ce8b", "title": "Optimizing the Latent Space of Generative Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.05776.pdf"]}, {"id": "6789bddbabf234f31df992a3356b36a47451efc7", "title": "Unsupervised Generation of Free-Form and Parameterized Avatars.", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/6789/bddbabf234f31df992a3356b36a47451efc7.pdf"]}, {"id": "614a7c42aae8946c7ad4c36b53290860f6256441", "title": "Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.02878.pdf"]}, {"id": "0bb574ad77f55f395450b4a9f863ecfdd4880bcd", "title": "Learning the Base Distribution in Implicit Generative Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04357.pdf"]}, {"id": "c4f3375dab1886f37f542d998e61d8c30a927682", "title": "BEYOND SHARED HIERARCHIES: DEEP MULTITASK LEARNING THROUGH SOFT LAYER ORDERING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c4f3/375dab1886f37f542d998e61d8c30a927682.pdf"]}, {"id": "70f3d3d9a7402a0f62a5646a16583c6c58e3b07a", "title": "An Architecture for Deep, Hierarchical Generative Models", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.04739.pdf"]}, {"id": "99f565df31ef710a2d8a1b606e3b7f5f92ab657c", "title": "Geometry Score: A Method For Comparing Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.02664.pdf"]}, {"id": "39d08fa8b028217384daeb3e622848451809a422", "title": "Variational Approaches for Auto-Encoding Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04987.pdf"]}, {"id": "710011644006c18291ad512456b7580095d628a2", "title": "Learning Residual Images for Face Attribute Manipulation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.05363.pdf"]}, {"id": "2d42b5915ca18fdc5fa3542bad48981c65f0452b", "title": "Generalization and Equilibrium in Generative Adversarial Nets (GANs)", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00573.pdf"]}, {"id": "dfcb4773543ee6fbc7d5319b646e0d6168ffa116", "title": "Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.04722.pdf"]}, {"id": "f580b0e1020ad67bdbb11e8d99a59c21a8df1e7d", "title": "Compressed Sensing using Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.03208.pdf"]}, {"id": "43a2c871450ba4d8888e8692aa98cb10e861ea71", "title": "Learning Generative ConvNet with Continuous Latent Factors by Alternating Back-Propagation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/43a2/c871450ba4d8888e8692aa98cb10e861ea71.pdf"]}, {"id": "1a8a2539cffba25ed9a7f2b869ebb737276ccee1", "title": "Pros and Cons of GAN Evaluation Measures", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03446.pdf"]}, {"id": "f8cfabecbe587c611de2696a37f96e3f77ac8555", "title": "NEMGAN: Noise Engineered Mode-matching GAN", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03692.pdf"]}, {"id": "305346d01298edeb5c6dc8b55679e8f60ba97efb", "title": "Fine-Grained Face Annotation Using Deep Multi-Task CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf"]}, {"id": "7689d23a22682c92bdf9a1df975fa2cdd24f1b87", "title": "MMD with Kernel Learning In practice we use finite samples from distributions to estimate", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7689/d23a22682c92bdf9a1df975fa2cdd24f1b87.pdf"]}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": []}, {"id": "e58f08ad6e0edd567f217ef08de1701a8c29fcc8", "title": "Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing - and Back", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04062.pdf"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": []}, {"id": "03889b0e8063532ae56d36dd9c54c3784a69e4d4", "title": "Learning to Play Guess Who? and Inventing a Grounded Language as a Consequence", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.03218.pdf"]}, {"id": "59b6ff409ae6f57525faff4b369af85c37a8dd80", "title": "Deep Attribute Driven Image Similarity Learning Using Limited Data", "year": "2017", "pdf": []}, {"id": "a0a950f513b4fd58cee54bccc49b852943ffd02c", "title": "Image Inpainting using Block-wise Procedural Training with Annealed Adversarial Counterpart", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08943.pdf"]}, {"id": "2780f8fc25320f4fb258442ceb790ffe301730fe", "title": "Generative Reversible Networks", "year": "2018", "pdf": []}, {"id": "c3a3f7758bccbead7c9713cb8517889ea6d04687", "title": "Funnel-structured cascade for multi-view face detection with alignment-awareness", "year": "2017", "pdf": ["https://arxiv.org/pdf/1609.07304.pdf"]}, {"id": "55cad1f4943018459b761f89afd9292d347610f2", "title": "Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.02859.pdf"]}]} \ No newline at end of file
+{"id": "6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4", "citations": [{"id": "17c0d99171efc957b88c31a465c59485ab033234", "title": "To learn image super-resolution, use a GAN to learn how to do image degradation first", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11458.pdf"]}, {"id": "95ea564bd983129ddb5535a6741e72bb1162c779", "title": "Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00111.pdf"]}, {"id": "f881d2a04de838c8950a279e1ed8c0f9886452af", "title": "Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07202.pdf"]}, {"id": "f89e5a8800b318fa03289b5cc67df54b956875b4", "title": "Do GANs actually learn the distribution? An empirical study", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.08224.pdf"]}, {"id": "24205a60cbf1cc12d7e0a9d44ed3c2ea64ed7852", "title": "Deep Multi-Task Learning for Joint Prediction of Heterogeneous Face Attributes", "year": "2017", "pdf": []}, {"id": "e2afea1a84a5bdbcb64d5ceadaa2249195e1fd82", "title": "DOOM Level Generation Using Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09154.pdf"]}, {"id": "7ef0cc4f3f7566f96f168123bac1e07053a939b2", "title": "Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarit\u00e9 triangulaire en utilisant des r\u00e9seaux siamois)", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/e735/b8212d8a81909753291d5d06789a917014f8.pdf"]}, {"id": "1fd54172f7388cd83ed78ff9165519296de5cf20", "title": "Changing the Image Memorability: From Basic Photo Editing to GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03825.pdf"]}, {"id": "b69badabc3fddc9710faa44c530473397303b0b9", "title": "Unsupervised Image-to-Image Translation Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00848.pdf"]}, {"id": "7c0c9ab92d49941089979c1e344fe66efc873bdd", "title": "Generative Adversarial Examples", "year": "2018", "pdf": []}, {"id": "7dab6fbf42f82f0f5730fc902f72c3fb628ef2f0", "title": "An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.07281.pdf"]}, {"id": "40c3f90f0abf842ee6f6009c414fde4f86b82005", "title": "Synchronization Detection and Recovery of Steganographic Messages with Adversarial Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.10365.pdf"]}, {"id": "fa60521dabd2b64137392b4885e4d989f4b86430", "title": "Physics-Based Generative Adversarial Models for Image Restoration and Beyond", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.00605.pdf"]}, {"id": "e72c5fb54c3d14404ebd1bf993e51d0056f6c429", "title": "Tempered Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04374.pdf"]}, {"id": "a90226c41b79f8b06007609f39f82757073641e2", "title": "\u0392-vae: Learning Basic Visual Concepts with a Constrained Variational Framework", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/a902/26c41b79f8b06007609f39f82757073641e2.pdf"]}, {"id": "cb30c1370885033bc833bc7ef90a25ee0900c461", "title": "FaceOff: Anonymizing Videos in the Operating Rooms", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04440.pdf"]}, {"id": "833cd4265bd8162d3cfb483ce8f31eaef28e7a2e", "title": "TOWARDS EFFECTIVE GANS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/833c/d4265bd8162d3cfb483ce8f31eaef28e7a2e.pdf"]}, {"id": "c86afba9c77a9b1085ccc6c44c36fa3a1fdb51c5", "title": "New Losses for Generative Adversarial Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01290.pdf"]}, {"id": "2785c5769489825671a6138fdf0537fcd444038a", "title": "A Deep Cascade Network for Unaligned Face Attribute Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1709.03851.pdf"]}, {"id": "284b5dafe6d8d7552794ccd2efb4eabb12dc3512", "title": "Efficient and accurate inversion of multiple scattering with deep learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06594.pdf"]}, {"id": "40a63746a710baf4a694fd5a4dd8b5a3d9fc2846", "title": "Invertible Conditional GANs for image editing", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.06355.pdf"]}, {"id": "02aff7faf2f6b775844809805424417eed30f440", "title": "A Tale of Three Probabilistic Families: Discriminative, Descriptive and Generative Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04261.pdf"]}, {"id": "96390f95a73a6bd495728b6cd2a97554ef187f76", "title": "Pan Olympus : Sensor Privacy through Utility Aware", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9639/0f95a73a6bd495728b6cd2a97554ef187f76.pdf"]}, {"id": "744fe47157477235032f7bb3777800f9f2f45e52", "title": "Progressive Growing of GANs for Improved Quality, Stability, and Variation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.10196.pdf"]}, {"id": "ba397fe5d4f0beaa7370b88e9875dbba19aa7bfc", "title": "SmileNet: Registration-Free Smiling Face Detection In The Wild", "year": "2017", "pdf": ["https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/36405/Jang%20SmileNet%20Registration-Free%202018%20Published.pdf?sequence=1", "https://www.cl.cam.ac.uk/~hg410/JangEtAl_ICCVW2017.pdf"]}, {"id": "47e14fdc6685f0b3800f709c32e005068dfc8d47", "title": "Secure Face Matching Using Fully Homomorphic Encryption", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00577.pdf"]}, {"id": "46471a285b1d13530f1885622d4551b48c19fc67", "title": "Generating Artificial Data for Private Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.03148.pdf"]}, {"id": "c866a2afc871910e3282fd9498dce4ab20f6a332", "title": "Surveillance Face Recognition Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09691.pdf"]}, {"id": "0d1a87dad1e4538cc7bd3c923767c8bf1a9b779f", "title": "The Riemannian Geometry of Deep Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08014.pdf"]}, {"id": "f2b2d50d6ca72666bab34e0f101ae1b18b434925", "title": "High-Fidelity Monocular Face Reconstruction based on an Unsupervised Model-based Face Autoencoder.", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f2b2/d50d6ca72666bab34e0f101ae1b18b434925.pdf"]}, {"id": "dde5125baefa1141f1ed50479a3fd67c528a965f", "title": "Synthesizing Normalized Faces from Facial Identity Features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.04851.pdf"]}, {"id": "fd4537b92ab9fa7c653e9e5b9c4f815914a498c0", "title": "One-Sided Unsupervised Domain Mapping", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.00826.pdf"]}, {"id": "290c8196341bbac80efc8c89af5fc60e1b8c80e6", "title": "Learning deep representations by mutual information estimation and maximization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.06670.pdf"]}, {"id": "5a4a53339068eebd1544b9f430098f2f132f641b", "title": "Hierarchical Disentangled Representations", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e3ba/139c5a739f5c27d2cb7e0f93e76daddcee66.pdf"]}, {"id": "81d67fa2f5eb76c9b0afb2d887e95ba78b6e46c9", "title": "Learning Implicit Generative Models with the Method of Learned Moments", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.11006.pdf"]}, {"id": "04cdc847f3b10d894582969feee0f37fbd3745e5", "title": "Compressed Sensing with Deep Image Prior and Learned Regularization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.06438.pdf"]}, {"id": "784a83437b3dba49c0d7ccc10ac40497b84661a5", "title": "Generative Attribute Controller with Conditional Filtered Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/supplemental/Kaneko_Generative_Attribute_Controller_2017_CVPR_supplemental.pdf"]}, {"id": "a81769a36c9ed7b6146a408eb253eb8e0d3ad41e", "title": "Super-Fine Attributes with Crowd Prototyping.", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/a817/69a36c9ed7b6146a408eb253eb8e0d3ad41e.pdf"]}, {"id": "6075c07ecb29d551ffa474c3eca45f2da5fd5007", "title": "Shallow convolutional neural network for eyeglasses detection in facial images", "year": "2017", "pdf": []}, {"id": "41dd2ca8929bfdae49a4bf85de74df4723ef9c3b", "title": "Correction by Projection: Denoising Images with Generative Adversarial Networks.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04477.pdf"]}, {"id": "3f6a6050609ba205ec94b8af186a9dca60a8f65e", "title": "Harmonizing Maximum Likelihood with Gans", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3f6a/6050609ba205ec94b8af186a9dca60a8f65e.pdf"]}, {"id": "a59e338fec32adee012e31cdb0513ec20d6c8232", "title": "Phase Retrieval Under a Generative Prior", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04261.pdf"]}, {"id": "e909b9e0bbfc37d0b99acad5014e977daac7e2bd", "title": "Adversarial Training of Variational Auto-Encoders for High Fidelity Image Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10323.pdf"]}, {"id": "12417ed7ae81fb4e6c07f501ace9ea463349481b", "title": "Pairwise Augmented GANs with Adversarial Reconstruction Loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04920.pdf"]}, {"id": "834f5ab0cb374b13a6e19198d550e7a32901a4b2", "title": "Face Translation between Images and Videos using Identity-aware CycleGAN", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00971.pdf"]}, {"id": "250449a9827e125d6354f019fc7bc6205c5fd549", "title": "Adversarial Reconstruction Loss", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2504/49a9827e125d6354f019fc7bc6205c5fd549.pdf"]}, {"id": "4131aa28d640d17e1d63ca82e55cc0b280db0737", "title": "COULOMB GANS: PROVABLY OPTIMAL NASH EQUI-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/827c/08151b92dbf8fa307c4e5928340d7294bcff.pdf"]}, {"id": "e4fb693d8b2755b8e989e0c59b28db3c75591503", "title": "Classification of E-Commerce-Related Images Using Hierarchical Classification with Deep Neural Networks", "year": "2017", "pdf": []}, {"id": "4ed0be0b5d67cff63461ba79f2a7928d652cf310", "title": "Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.00553.pdf"]}, {"id": "af6af58ba12920762638e1d0b8310a0d9961b7be", "title": "Sketch-to-Image Generation Using Deep Contextual Completion", "year": "2017", "pdf": []}, {"id": "4cfdd0c8313ac4f92845dcd658115beb115b97ce", "title": "Multi-Task Learning as Multi-Objective Optimization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04650.pdf"]}, {"id": "775c15a5dfca426d53c634668e58dd5d3314ea89", "title": "Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/775c/15a5dfca426d53c634668e58dd5d3314ea89.pdf"]}, {"id": "cb8b2db657cd6b6ccac13b56e2ca62b7d88eda68", "title": "Log Hyperbolic Cosine Loss Improves Varia-", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4b89/03b4eb3a60c0fb01c229e3192a5f9159d460.pdf"]}, {"id": "fdaf65b314faee97220162980e76dbc8f32db9d6", "title": "Face recognition using both visible light image and near-infrared image and a deep network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fdaf/65b314faee97220162980e76dbc8f32db9d6.pdf"]}, {"id": "18ec3b37a33db39ac0633677e944cc81be58f7ba", "title": "Cooperative Training of Descriptor and Generator Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1609.09408.pdf"]}, {"id": "5fd147f57fc087b35650f7f3891d457e4c745d48", "title": "Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.08819.pdf"]}, {"id": "d87ccfc42cf6a72821d357aab0990e946918350b", "title": "Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.00370.pdf"]}, {"id": "2b507f659b341ed0f23106446de8e4322f4a3f7e", "title": "Deep Identity-aware Transfer of Facial Attributes", "year": "2016", "pdf": ["https://arxiv.org/pdf/1610.05586.pdf"]}, {"id": "551b75dd57829b584de5f51b63426efac81018db", "title": "Recision T Raining", "year": "2017", "pdf": []}, {"id": "79fc3c10ce0d0f48b25c8cf460048087c97e2e90", "title": "Variational Bi-domain Triplet Autoencoder", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08672.pdf"]}, {"id": "257e61e6b38ae23b7ddce9907c05b0e78be4d79d", "title": "The LORACs prior for VAEs: Letting the Trees Speak for the Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06891.pdf"]}, {"id": "641fd2edcf93fa29181952356e93a83a26012aa2", "title": "Following are some examples from CIFAR dataset : Goal : To alter the training criteria to obtain \u2018 objectness \u2019 in the synthesis of images", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/424a/f8e96c76de69153a0d528cf7d41d5c69a1a1.pdf"]}, {"id": "2da1a80955df1612766ffdf63916a6a374780161", "title": "Generating steganographic images via adversarial training", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00371.pdf"]}, {"id": "c3955d74f2a084a8ddcbd7e73952c326e81804b2", "title": "Mutual Information Neural Estimation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c395/5d74f2a084a8ddcbd7e73952c326e81804b2.pdf"]}, {"id": "cfcf66e4b22dc7671a5941e94e9d4afae75ba2f8", "title": "The Cramer Distance as a Solution to Biased Wasserstein Gradients", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10743.pdf"]}, {"id": "7da7678882d06a1f93636f58fe89635da5b1dd0c", "title": "EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.07919.pdf"]}, {"id": "fcc6fd9b243474cd96d5a7f4a974f0ef85e7ddf7", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"]}, {"id": "4a855d86574c9bd0a8cfc522bc1c77164819c0bc", "title": "PixelCNN Models with Auxiliary Variables for Natural Image Modeling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.08185.pdf"]}, {"id": "a75ee7f4c4130ef36d21582d5758f953dba03a01", "title": "Human face attributes prediction with Deep Learning", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/a75e/e7f4c4130ef36d21582d5758f953dba03a01.pdf"]}, {"id": "4941f92222d660f9b60791ba95796e51a7157077", "title": "Conditional CycleGAN for Attribute Guided Face Image Generation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.09966.pdf"]}, {"id": "34a4c733bc2b53253dbebe67f1af83b969c2e657", "title": "Learning Cross-Domain Disentangled Deep Representation with Supervision from A Single Domain", "year": "2017", "pdf": []}, {"id": "b0c3bc3e3ca143444f5193735f2aad89d1776276", "title": "Training Generative Reversible Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.01610.pdf"]}, {"id": "8e24db957be2b643db464cc566bfabc650f1ffac", "title": "Geometry-Aware Generative Adverserial Networks", "year": "2017", "pdf": []}, {"id": "3555d849b85e9416e9496c9976084b0e692b63cd", "title": "TOWARDS EFFECTIVE GANS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3555/d849b85e9416e9496c9976084b0e692b63cd.pdf"]}, {"id": "0b783e750da34c61ea404be8bc40788fd66c867d", "title": "Generative Autotransporters", "year": "2017", "pdf": []}, {"id": "ff83aade985b981fbf2233efbbd749600e97454c", "title": "Towards Understanding Adversarial Learning for Joint Distribution Matching", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01215.pdf"]}, {"id": "2f587ab6694fdcfe6bd2977120ebeb758e28d77f", "title": "Coupled Generative Adversarial Nets", "year": "", "pdf": ["https://pdfs.semanticscholar.org/2f58/7ab6694fdcfe6bd2977120ebeb758e28d77f.pdf"]}, {"id": "76ec5c774bb3fd04f9e68864a411286536a544c5", "title": "Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.05772.pdf"]}, {"id": "b348d5c7ac93d1148265284d71234e200c9c5f02", "title": "GibbsNet: Iterative Adversarial Inference for Deep Graphical Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.04120.pdf"]}, {"id": "26690f2548c6dbf630de202b40dec417b20c9b6c", "title": "Variational Inference of Disentangled Latent Concepts from Unlabeled Observations", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00848.pdf"]}, {"id": "b2504b0b2a7e06eab02a3584dd46d94a3f05ffdf", "title": "Conditional Neural Processes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01613.pdf"]}, {"id": "0e8760fc198a7e7c9f4193478c0e0700950a86cd", "title": "Brute-Force Facial Landmark Analysis With a 140, 000-Way Classifier", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01777.pdf"]}, {"id": "385750bcf95036c808d63db0e0b14768463ff4c6", "title": "Autoencoding beyond pixels using a learned similarity metric", "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.09300.pdf"]}, {"id": "7f217ff1f3c21c84ed116d32e3b8d1509a306fbd", "title": "Direct Optimization through arg max for Discrete Variational Auto-Encoder", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.02867.pdf"]}, {"id": "0677dd5377895b3c61cea0e6a143f38b84f1ebd7", "title": "Multimedia super-resolution via deep learning: A survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.09077.pdf"]}, {"id": "174ddb6379b91a0e799e9988d0e522a5af18f91d", "title": "ChatPainter: Improving Text to Image Generation using Dialogue", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.08216.pdf"]}, {"id": "bd17d6ba5525dec8762dbaacf6cc3e0cc3f5ff90", "title": "Necst: Neural Joint Source-channel Coding", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/bd17/d6ba5525dec8762dbaacf6cc3e0cc3f5ff90.pdf"]}, {"id": "907fbe706ec14101978a63c6252e0d75e657e8dd", "title": "The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.00043.pdf"]}, {"id": "485f8b28dcb7a5ffc98beb49fcbb50cf0a0b6331", "title": "A Latent Space Understandable Generative Adversarial Network: SelfExGAN", "year": "2017", "pdf": []}, {"id": "68b01afed57ed7130d993dffc03dcbfa36d4e038", "title": "Adversarial Learning with Local Coordinate Coding", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04895.pdf"]}, {"id": "b972683d702a65d3ee7a25bc931a5890d1072b6b", "title": "Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers", "year": "2018", "pdf": []}, {"id": "8699268ee81a7472a0807c1d3b1db0d0ab05f40d", "title": "Channel-Recurrent Autoencoding for Image Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.03729.pdf"]}, {"id": "626c12d6ccb1405c97beca496a3456edbf351643", "title": "Conditional Variance Penalties and Domain Shift Robustness", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.11469.pdf"]}, {"id": "1450296fb936d666f2f11454cc8f0108e2306741", "title": "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.05192.pdf"]}, {"id": "df999184b1bb5691cd260b2b77df7ef00c0fe7b1", "title": "On Latent Distributions Without Finite Mean in Generative Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.01670.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.01484.pdf"]}, {"id": "380d5138cadccc9b5b91c707ba0a9220b0f39271", "title": "Deep Imbalanced Learning for Face Recognition and Attribute Prediction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00194.pdf"]}, {"id": "fed9e971e042b40cc659aca6e338d79dc1d4b59c", "title": "GROUPING-BY-ID: GUARDING AGAINST ADVERSAR-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/fed9/e971e042b40cc659aca6e338d79dc1d4b59c.pdf"]}, {"id": "bf15ba4db09fd805763738ec2cb48c09481785dd", "title": "Training Deep Neural Network in Limited Precision", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.05486.pdf"]}, {"id": "4a45b8f8decc178305af06d758ac7428a9070fad", "title": "Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.10151.pdf"]}, {"id": "11f732fe8f127c393cc8404ee8db2b3e85dd3d59", "title": "Disentangling Latent Factors with Whitening", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03444.pdf"]}, {"id": "9329523dc0bd4e2896d5f63cf2440f21b7a16f16", "title": "Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1610.01854.pdf"]}, {"id": "8326d3e57796dad294ab1c14a0688221550098b6", "title": "ABC-GAN: Adaptive Blur and Control for improved training stability of Generative Adversarial Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/8326/d3e57796dad294ab1c14a0688221550098b6.pdf"]}, {"id": "6b95a3dbec92071c8552576930e69455c70e529c", "title": "BEGAN: Boundary Equilibrium Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.10717.pdf"]}, {"id": "a5531b5626c1ee3b6f9aed281a98338439d06d12", "title": "Multichannel Attention Network for Analyzing Visual Behavior in Public Speaking", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.06830.pdf"]}, {"id": "366d20f8fd25b4fe4f7dc95068abc6c6cabe1194", "title": "Are facial attributes adversarially robust?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.05411.pdf"]}, {"id": "1ec59aece51a698bce34f393cf6474b926fd89ad", "title": "Exemplar Guided Unsupervised Image-to-Image Translation", "year": "2018", "pdf": []}, {"id": "8134b052a9aedd573dd16649a611f68b48e30cb2", "title": "InverseFaceNet: Deep Monocular Inverse Face Rendering", "year": "2018", "pdf": ["https://arxiv.org/pdf/1703.10956.pdf"]}, {"id": "8395cf3535a6628c3bdc9b8d0171568d551f5ff0", "title": "Entropy Non-increasing Games for the Improvement of Dataflow Programming", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04389.pdf"]}, {"id": "ecf2ba5ea183a6be63b57543a19dd41e8017daaf", "title": "Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/58f8/90f76930b49ed517ff03fbf57ab1fc0c5608.pdf"]}, {"id": "404c7839afe2fec48a06f83d2a532c05ad8ba0d3", "title": "Vehicle Classification using Transferable Deep Neural Network Features", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/404c/7839afe2fec48a06f83d2a532c05ad8ba0d3.pdf"]}, {"id": "b4fe9594e1de682e7270645ba95ab64727b6632e", "title": "Generative Adversarial Positive-Unlabelled Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.08054.pdf"]}, {"id": "d50c6d22449cc9170ab868b42f8c72f8d31f9b6c", "title": "Dynamic MultiTask Learning with Convolutional Neural Network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/d50c/6d22449cc9170ab868b42f8c72f8d31f9b6c.pdf"]}, {"id": "79815f31f42708fd59da345f8fa79f635a070730", "title": "Autoregressive Quantile Networks for Generative Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05575.pdf"]}, {"id": "9939498315777b40bed9150d8940fc1ac340e8ba", "title": "ChaLearn Looking at People and Faces of the World: Face AnalysisWorkshop and Challenge 2016", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Escalera_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "76b11c281ac47fe6d95e124673a408ee9eb568e3", "title": "Real-time Multi View Face Detection and Pose Estimation Aishwarya", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/76b1/1c281ac47fe6d95e124673a408ee9eb568e3.pdf"]}, {"id": "312afff739d1e0fcd3410adf78be1c66b3480396", "title": "Facial Attributes: Accuracy and Adversarial Robustness", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.02480.pdf"]}, {"id": "04d09bed8b05ed10d25c1cc2ab47381b0ee34c2f", "title": "YesilcamGAN: Automatic face translation to Yesilcam artists", "year": "2018", "pdf": []}, {"id": "c35724d227eb1e3d680333469fb9b94c677e871f", "title": "Multi-view Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.02019.pdf"]}, {"id": "c8855bebdaa985dfc4c1a07e5f74a0e29787e47e", "title": "Multi-label Object Attribute Classification using a Convolutional Neural Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.04309.pdf"]}, {"id": "8bff7353fa4f75629ea418ca8db60477a751db93", "title": "Invariance of Weight Distributions in Rectified MLPs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.09090.pdf"]}, {"id": "ab3b196c5386f7ec2d05870eeb8872c8b8e33d77", "title": "Unconditional Generative Models", "year": "2017", "pdf": []}, {"id": "8e723e8a3a5a9ea258591d384232e0251f842a1c", "title": "Twin-GAN - Unpaired Cross-Domain Image Translation with Weight-Sharing GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.00946.pdf"]}, {"id": "056be8a896f71be4a1dee67b01f4d59e3e982304", "title": "Generative Models of Visually Grounded Imagination", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10762.pdf"]}, {"id": "72edc24c67c34b5f2c98086a689bf0f3591e393d", "title": "An Introduction to Image Synthesis with Generative Adversarial Nets", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04469.pdf"]}, {"id": "4d3cbc5799d7963477da279dae9a08ac4d459157", "title": "Deep Learning for Nonlinear Diffractive Imaging", "year": "2018", "pdf": []}, {"id": "a8db91308f59bc9452e87fc553eecea67632c443", "title": "Energy-relaxed Wasserstein GANs(EnergyWGAN): Towards More Stable and High Resolution Image Generation", "year": "2017", "pdf": []}, {"id": "9fb372fd2fb79571de1cc388154d4a3f0547d440", "title": "PBGAN: Partial Binarization of Deconvolution Based Generators", "year": "2018", "pdf": []}, {"id": "7fa62c091a14830ae256dc00b512f7d4b4cf5b94", "title": "Stabilizing GAN Training with Multiple Random Projections", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7fa6/2c091a14830ae256dc00b512f7d4b4cf5b94.pdf"]}, {"id": "6f9873e2a7bc279c4f0a45c1a6e831ef3ba78ae7", "title": "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.03644.pdf"]}, {"id": "318c4c25d86511690cc5df7b041a6392e8cc4ea8", "title": "Fashion-Gen: The Generative Fashion Dataset and Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08317.pdf"]}, {"id": "9aab33ce8d6786b3b77900a9b25f5f4577cea461", "title": "Automatic Semantic Face Recognition", "year": "2017", "pdf": []}, {"id": "74a1e28dd2c03076124282482074e10bb02bc643", "title": "Coulomb Gans: Provably Optimal Nash Equi-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/74a1/e28dd2c03076124282482074e10bb02bc643.pdf"]}, {"id": "c8adbe00b5661ab9b3726d01c6842c0d72c8d997", "title": "Deep Architectures for Face Attributes", "year": "2016", "pdf": ["https://arxiv.org/pdf/1609.09018.pdf"]}, {"id": "bea185a15d5df7bbfce83bc684c316412703efbb", "title": "PIXELNN: EXAMPLE-BASED IMAGE SYNTHESIS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/bea1/85a15d5df7bbfce83bc684c316412703efbb.pdf"]}, {"id": "60bc358296ae11ac8f11286bba0a49ac7e797d26", "title": "Diverse Image-to-Image Translation via Disentangled Representations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.00948.pdf"]}, {"id": "9063b17ccfdf73fc789d01d3c44c451244638528", "title": "Detecting Both Machine and Human Created Fake Face Images In the Wild", "year": "2018", "pdf": []}, {"id": "fc3e097ea7dd5daa7d314ecebe7faad9af5e62fb", "title": "Variational Inference and Model Selection with Generalized Evidence Bounds", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/fc3e/097ea7dd5daa7d314ecebe7faad9af5e62fb.pdf"]}, {"id": "4fec382efed4e08a36fafa3710b97f0b20de1ebe", "title": "BINARIZED REPRESENTATION ENTROPY (BRE) REGULARIZATION", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4fec/382efed4e08a36fafa3710b97f0b20de1ebe.pdf"]}, {"id": "9b19be86280c8dbb3fdccc24297449290bd2b6aa", "title": "Robust Compressive Phase Retrieval via Deep Generative Priors", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.05854.pdf"]}, {"id": "85cad2b23e2ed7098841285bae74aafbff921659", "title": "Pa-gan: Improving Gan Training by Progressive Augmentation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/85ca/d2b23e2ed7098841285bae74aafbff921659.pdf"]}, {"id": "e667ba14fd3ea15491ad7c7f2f7e3622d231eeae", "title": "Face verification using convolutional neural networks with Siamese architecture", "year": "2017", "pdf": []}, {"id": "341de07abfb89bf78f3a72513c8bce40d654e0a3", "title": "Sparse and Deep Generalizations of the FRAME Model", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/4d54/360c1eb3c7f3485ee450e7979aef7ec8019e.pdf"]}, {"id": "b63041d05b78a66724fbcb2803508999bf885d6b", "title": "Deep Sets", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.06114.pdf"]}, {"id": "e22cf1ca10c11991c2a43007e37ca652d8f0d814", "title": "A Biologically Inspired Visual Working Memory", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/e22c/f1ca10c11991c2a43007e37ca652d8f0d814.pdf"]}, {"id": "fed8cc533037d7d925df572a440fd89f34d9c1fd", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "fd96432675911a702b8a4ce857b7c8619498bf9f", "title": "Improved Face Detection and Alignment using Cascade Deep Convolutional Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.09364.pdf"]}, {"id": "947399fef66bd8c536c6f784a0501b34e4e094bf", "title": "Towards Recovery of Conditional Vectors from Conditional Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.01833.pdf"]}, {"id": "22bebedc1a5f3556cb4f577bdbe032299a2865e8", "title": "Effective training of convolutional neural networks for face-based gender and age prediction", "year": "2017", "pdf": ["http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf"]}, {"id": "8d9067da4ba5c57643ee7a84cd5c5d5674384937", "title": "Sorting out Lipschitz function approximation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05381.pdf"]}, {"id": "a47ac8569ab1970740cff9f1643f77e9143a62d4", "title": "Associative Compression Networks for Representation Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.02476.pdf"]}, {"id": "d80564cea654d11b52c0008891a0fd2988112049", "title": "Semi-supervised Conditional GANs", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.05789.pdf"]}, {"id": "372bf2716c53e353be6c3f027493f1a40edb6640", "title": "MINE: Mutual Information Neural Estimation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.04062.pdf"]}, {"id": "65ec52a3e0a0f6a46fd140ff83bb82d7d02a2d45", "title": "Learning Hierarchical Features from Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.08396.pdf"]}, {"id": "5e39deb4bff7b887c8f3a44dfe1352fbcde8a0bd", "title": "Supervised COSMOS Autoencoder: Learning Beyond the Euclidean Loss!", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.06221.pdf"]}, {"id": "66f55dc04aaf4eefdecef202211ad7563f7a703b", "title": "Synthesizing Programs for Images using Reinforced Adversarial Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.01118.pdf"]}, {"id": "fa32b29e627086d4302db4d30c07a9d11dcd6b84", "title": "Weakly Supervised Facial Attribute Manipulation via Deep Adversarial Network", "year": "2018", "pdf": ["http://www.public.asu.edu/~swang187/publications/WACV18.pdf"]}, {"id": "d9ee64038aea3a60120e9f7de16eb4130940a103", "title": "Message Passing Multi-Agent GANs", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.01294.pdf"]}, {"id": "cbdca5e0f1fd3fd745430497d372a2a30b7bb0c5", "title": "Towards Distributed Coevolutionary GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08194.pdf"]}, {"id": "d1697250de6f91d3a3266c1ff0fdce0bf96acfe3", "title": "A C Lassification \u2013 B Ased P Erspective on Gan D Istributions", "year": "2017", "pdf": []}, {"id": "84e9de36dd7915f9334db5cc1fe567e17d717495", "title": "Fine-Grained Categorization via CNN-Based Automatic Extraction and Integration of Object-Level and Part-Level Features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.07397.pdf"]}, {"id": "b22b4817757778bdca5b792277128a7db8206d08", "title": "SCAN: Learning Hierarchical Compositional Visual Concepts", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.03389.pdf"]}, {"id": "3802da31c6d33d71b839e260f4022ec4fbd88e2d", "title": "Deep Attributes for One-Shot Face Recognition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3802/da31c6d33d71b839e260f4022ec4fbd88e2d.pdf"]}, {"id": "ec2027c2dd93e4ee8316cc0b3069e8abfdcc2ecf", "title": "Latent Variable PixelCNNs for Natural Image Modeling", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/252c/2e5e59d7b08887095b272d19dcd76fcf4a82.pdf"]}, {"id": "cd5ef3aeebc231e2c833ef55cf0571aa990c5ff8", "title": "IMAGE QUALITY ASSESSMENT TECHNIQUES IMPROVE TRAINING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/cd5e/f3aeebc231e2c833ef55cf0571aa990c5ff8.pdf"]}, {"id": "296502c6370cabd2b7e38e71cfc757d2e5fa2199", "title": "Detection of Deep Network Generated Images Using Disparities in Color Components", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.07276.pdf"]}, {"id": "f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a", "title": "LOTS about attacking deep features", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.06179.pdf"]}, {"id": "4cb48924acdcc0b20ef05ea5f5e856b081d9b40f", "title": "A Classification-Based Study of Covariate Shift in GAN Distributions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.00970.pdf"]}, {"id": "68b6ec13d06facacf5637f90828ab5b6e352be60", "title": "Neural Proximal Gradient Descent for Compressive Imaging", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03963.pdf"]}, {"id": "9baf0509f63a3322d127ae4374aa5b0f9d5439b8", "title": "Two Birds with One Stone: Iteratively Learn Facial Attributes with GANs", "year": "2017", "pdf": []}, {"id": "6e911227e893d0eecb363015754824bf4366bdb7", "title": "Wasserstein Divergence for GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1712.01026.pdf"]}, {"id": "4d90d7834ae25ee6176c096d5d6608555766c0b1", "title": "Face and Body Association for Video-Based Face Recognition", "year": "2018", "pdf": []}, {"id": "d81dbc2960e527e91c066102aabdaf9eb8b15f85", "title": "Deep Directed Generative Models with Energy-Based Probability Estimation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.03439.pdf"]}, {"id": "2d6d4899c892346a9bc8902481212d7553f1bda4", "title": "Neural Face Editing with Intrinsic Image Disentangling SUPPLEMENTARY MATERIAL", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/2d6d/4899c892346a9bc8902481212d7553f1bda4.pdf"]}, {"id": "6b7f27cff688d5305c65fbd90ae18f3c6190f762", "title": "Generative networks as inverse problems with Scattering transforms", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06621.pdf"]}, {"id": "84c35fc21db3bcd407a4ffb009912b6ac5a47e3c", "title": "MGAN: TRAINING GENERATIVE ADVERSARIAL NETS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/84c3/5fc21db3bcd407a4ffb009912b6ac5a47e3c.pdf"]}, {"id": "b44d8ecac21867c540d9122a150c8d8c0875cbe6", "title": "Mixture Density Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00152.pdf"]}, {"id": "d8526863f35b29cbf8ac2ae756eaae0d2930ffb1", "title": "Face Generation for Low-Shot Learning Using Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Choe_Face_Generation_for_ICCV_2017_paper.pdf"]}, {"id": "9cc4abd2ec10e5fa94ff846c5ee27377caf17cf0", "title": "Improved Techniques for GAN based Facial Inpainting", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.08774.pdf"]}, {"id": "0217fb2a54a4f324ddf82babc6ec6692a3f6194f", "title": "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.03657.pdf"]}, {"id": "7e654380bd0d1f4c00e85da71a3081d3ada432ef", "title": "MGAN: TRAINING GENERATIVE ADVERSARIAL NETS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7e65/4380bd0d1f4c00e85da71a3081d3ada432ef.pdf"]}, {"id": "e6ca412a05002b51d358c2e3061913c3dab6b810", "title": "MoFA: Model-Based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.10580.pdf"]}, {"id": "eef29a4fef85c7ed8acde9ca42f8f09d944f361d", "title": "Learning to Super-Resolve Blurry Face and Text Images", "year": "2017", "pdf": ["http://faculty.ucmerced.edu/mhyang/papers/iccv2017_gan_super_deblur.pdf", "http://openaccess.thecvf.com/content_ICCV_2017/papers/Xu_Learning_to_Super-Resolve_ICCV_2017_paper.pdf"]}, {"id": "b19f24ec92388513d1516d71292559417c776006", "title": "CAUSALGAN: LEARNING CAUSAL IMPLICIT GENER-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b19f/24ec92388513d1516d71292559417c776006.pdf"]}, {"id": "09879f7956dddc2a9328f5c1472feeb8402bcbcf", "title": "Density estimation using Real NVP", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.08803.pdf"]}, {"id": "f8d68084931f296abfb5a1c4cd971f0b0294eaa4", "title": "UNCONDITIONAL GENERATIVE MODELS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f8d6/8084931f296abfb5a1c4cd971f0b0294eaa4.pdf"]}, {"id": "82821e227683d66543a303f4faddc1376a91a463", "title": "Learning Multi-grid Generative ConvNets by Minimal Contrastive Divergence", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/8282/1e227683d66543a303f4faddc1376a91a463.pdf"]}, {"id": "72a6044a0108e0f8f1e68cd70ada46c81a416324", "title": "Improved Training of Generative Adversarial Networks Using Representative Features", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.09195.pdf"]}, {"id": "c9d7219d54eccb9e49b72044d805e103fe17ba80", "title": "Towards Information-Seeking Agents", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.02605.pdf"]}, {"id": "8d6d0fdf4811bc9572326d12a7edbbba59d2a4cc", "title": "SchiNet: Automatic Estimation of Symptoms of Schizophrenia from Facial Behaviour Analysis", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.02531.pdf"]}, {"id": "9cc3172efb42d2f9fa1b9ae7b7eef9cc349cdef9", "title": "Imbalanced Deep Learning by Minority Class Incremental Rectification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.10851.pdf"]}, {"id": "57235f22abcd6bb928007287b17e235dbef83347", "title": "Exemplar Guided Unsupervised Image-to-Image Translation with Semantic Consistency", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.11145.pdf"]}, {"id": "0e31e5e899e2c22d5871054f954f6dd01a33b9d0", "title": "Unsupervised Transformation Network Based on GANs for Target-Domain Oriented Image Translation", "year": "2018", "pdf": []}, {"id": "2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924", "title": "Compare and Contrast : Learning Prominent Differences in Relative Attributes by", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/2a6b/ba2e81d5fb3c0fd0e6b757cf50ba7bf8e924.pdf"]}, {"id": "7f6cd03e3b7b63fca7170e317b3bb072ec9889e0", "title": "A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09359.pdf"]}, {"id": "9da2b79c6942852e8076cdaa4d4c93eb1ae363f1", "title": "Constraint-Based Visual Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09202.pdf"]}, {"id": "d9c0310203179d5328c4f1475fa4d68c5f0c7324", "title": "Face Analysis in the Wild", "year": "2017", "pdf": []}, {"id": "419fec1a76d9233dcaa8d2c98ea622d19f663261", "title": "Unsupervised learning of object frames by dense equivariant image labelling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.02932.pdf"]}, {"id": "bc17c2075d7f7bc414acc00a88ff5a464eedaebe", "title": "Solving Bilinear Inverse Problems using Deep Generative Priors", "year": "2018", "pdf": []}, {"id": "189eedfc81ee47b2b44caf8bfe816726697ba421", "title": "Facial Attributes Guided Deep Sketch-to-Photo Synthesis", "year": "2018", "pdf": []}, {"id": "2727927c7493cef9785b3a06a38f5c1ce126fc23", "title": "Semi-supervised FusedGAN for Conditional Image Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05551.pdf"]}, {"id": "424259e9e917c037208125ccc1a02f8276afb667", "title": "Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.06433.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "6211ba456908d605e85d102d63b106f1acb52186", "title": "Visual Interpretability forDeepLearning", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/6211/ba456908d605e85d102d63b106f1acb52186.pdf"]}, {"id": "f1aa120fb720f6cfaab13aea4b8379275e6d40a2", "title": "InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f1aa/120fb720f6cfaab13aea4b8379275e6d40a2.pdf"]}, {"id": "e3d76f1920c5bf4a60129516abb4a2d8683e48ae", "title": "I Know That Person: Generative Full Body and Face De-identification of People in Images", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w16/papers/Kalafatic_I_Know_That_CVPR_2017_paper.pdf"]}, {"id": "c6c3cee8adacff8a63ab84dc847141315e874400", "title": "Disentangling by Factorising", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05983.pdf"]}, {"id": "f672d6352a5864caab5a5a286fbc1ce042b55c16", "title": "Stabilizing GAN Training with Multiple Random Projections", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f672/d6352a5864caab5a5a286fbc1ce042b55c16.pdf"]}, {"id": "04fd269c96f11235fbbb985bb16dacedaa3098fd", "title": "Guarding Against Adversarial Domain Shifts with Counterfactual Regularization", "year": "2017", "pdf": []}, {"id": "fe030b87e3c985c9dedab130949e2868e3e5e7d5", "title": "Explaining Neural Networks Semantically", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/fe03/0b87e3c985c9dedab130949e2868e3e5e7d5.pdf"]}, {"id": "76cb2ecc96f02b1d8a7a0d1681fbb55367a4b765", "title": "Learning Object States from Videos", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/76cb/2ecc96f02b1d8a7a0d1681fbb55367a4b765.pdf"]}, {"id": "42f8ef9d5ebf969a7e2b4d1eef4b332db562e5d4", "title": "Which Training Methods for GANs do actually Converge?", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.04406.pdf"]}, {"id": "8ea9093542075bd8cc4928a4c671a95f363c61ef", "title": "Sliced-Wasserstein Autoencoder : An Embarrassingly Simple Generative Model", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8ea9/093542075bd8cc4928a4c671a95f363c61ef.pdf"]}, {"id": "2d2102d3fe127444e203a2ab11c2b3d5f56874cc", "title": "Wasserstein Auto-Encoders", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.01558.pdf"]}, {"id": "c9b90cf9cdd901bd3072d6dfd8ddc523c55944b1", "title": "Adversarial Generator-Encoder Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c9b9/0cf9cdd901bd3072d6dfd8ddc523c55944b1.pdf"]}, {"id": "0ed91520390ebdee13a0ac13d028f65d959bdc10", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "", "pdf": ["https://pdfs.semanticscholar.org/0ed9/1520390ebdee13a0ac13d028f65d959bdc10.pdf"]}, {"id": "16f48e8b7f1f6c03c888e3f4664ce3fa1261296b", "title": "Steganographic Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.05502.pdf"]}, {"id": "37381718559f767fc496cc34ceb98ff18bc7d3e1", "title": "Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3738/1718559f767fc496cc34ceb98ff18bc7d3e1.pdf"]}, {"id": "4563cbfbdba1779fc598081071ae40be021cb81d", "title": "Adversarial Attacks on Variational Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.04646.pdf"]}, {"id": "08809165154c9c557d368cddfa3ae66ccaceaed9", "title": "Taming VAEs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.00597.pdf"]}, {"id": "a4ee9f089ab9a48a6517a6967281247339a51747", "title": "Resembled Generative Adversarial Networks: Two Domains with Similar Attributes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.00947.pdf"]}, {"id": "9ce4541d21ee3511bf3dc55bc3cd01222194d95a", "title": "Face inpainting based on high-level facial attributes", "year": "2017", "pdf": []}, {"id": "04221205249bdffd0f155ac68ac477613654aa42", "title": "Semantic facial scores and compact deep transferred descriptors for scalable face image retrieval", "year": "2018", "pdf": ["http://pesona.mmu.edu.my/~johnsee/research/papers/files/semantic-neurocomp18.pdf"]}, {"id": "35800a537017803dd08274710388734db66b54f0", "title": "Sliced Wasserstein Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.02631.pdf"]}, {"id": "ea94d834f912f092618d030f080de8395fe39b3f", "title": "Joint autoencoders : a flexible meta-learning framework", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3027/8a460e2936596b671d20599f2598c4d284ed.pdf"]}, {"id": "e0162dea3746d58083dd1d061fb276015d875b2e", "title": "Unconstrained Face Alignment Without Face Detection", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Shao_Unconstrained_Face_Alignment_CVPR_2017_paper.pdf"]}, {"id": "9a989c7032051566d3ade03e5650ea6a41a5a9ed", "title": "Building an automatic sprite generator with deep convolutional generative adversarial networks", "year": "2017", "pdf": ["http://diego-perez.net/papers/building-automatic-sprites.pdf", "http://www.cig2017.com/wp-content/uploads/2017/08/paper_50.pdf"]}, {"id": "0ae192e146431a52d7bb51923e9bdd7292ab12ef", "title": "Multi-Generator Generative Adversarial Nets", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.02556.pdf"]}, {"id": "f8796b8e8246ce41efb2904c053fe0ea2868e373", "title": "A Variational U-Net for Conditional Appearance and Shape Generation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.04694.pdf"]}, {"id": "e260847323b48a79bd88dd95a1499cd3053d3645", "title": "Reconstructing perceived faces from brain activations with deep adversarial neural decoding", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/937b/78204a7ac4aac6a8782f29c68322621dc1c2.pdf"]}, {"id": "b7c4fe5c89df51ebd1f89a34c66b94cc6019d8e6", "title": "Model Cards for Model Reporting", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.03993.pdf"]}, {"id": "f29a24ee71940aa46b2c3438d4ddb89b33acdbc4", "title": "Towards High-Resolution Face Pose Synthesis", "year": "2018", "pdf": []}, {"id": "4e97b53926d997f451139f74ec1601bbef125599", "title": "Discriminative Regularization for Generative Models", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03220.pdf"]}, {"id": "b362b812ececef21100d7a702447fcf5ab6d4715", "title": "Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07543.pdf"]}, {"id": "a562180056cc4906d6d5ef9d2b4ed098d8512317", "title": "Dropout-GAN: Learning from a Dynamic Ensemble of Discriminators", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.11346.pdf"]}, {"id": "70e14e216b12bed2211c4df66ef5f0bdeaffe774", "title": "Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Hu_Attribute-Enhanced_Face_Recognition_ICCV_2017_paper.pdf", "http://www.research.ed.ac.uk/portal/files/41072997/hu2017neuralTensor.pdf"]}, {"id": "d84263e22c7535cb1a2a72c88780d5a407bd9673", "title": "Stability of Scattering Decoder For Nonlinear Diffractive Imaging", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08015.pdf"]}, {"id": "0dcdef6b8d97483f4d4dab461e1cb5b3c4d1fe1a", "title": "Probabilistic Semantic Inpainting with Pixel Constrained CNNs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.03728.pdf"]}, {"id": "56bc524d7cc1ff2fad8f27c0414cac437fc2b4f0", "title": "Protest Activity Detection and Perceived Violence Estimation from Social Media Images", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.06204.pdf"]}, {"id": "15aa6c457678e25f6bc0e818e5fc39e42dd8e533", "title": "Conditional Image Generation for Learning the Structure of Visual Objects", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.07823.pdf"]}, {"id": "07a8a4b8f207b2db2a19e519027f70cd1c276294", "title": "Pixel Recursive Super Resolution", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.00783.pdf"]}, {"id": "35f3c4012e802332faf0a1426e9acf8365601551", "title": "Bidirectional Conditional Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.07461.pdf"]}, {"id": "751e11880b54536a89bfcc4fd904b0989345a601", "title": "Hierarchical Adversarially Learned Inference", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01071.pdf"]}, {"id": "9817e0d11701e9ce0e31a32338ff3ff0969621ed", "title": "Dppnet: Approximating Determinantal Point Processes with Deep Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/9817/e0d11701e9ce0e31a32338ff3ff0969621ed.pdf"]}, {"id": "a7e5a46e47dd21cc9347b913dd3dde2f0ad832ed", "title": "On denoising autoencoders trained to minimise binary cross-entropy", "year": "2017", "pdf": ["https://arxiv.org/pdf/1708.08487.pdf"]}, {"id": "621ea1f1e364262348135c803557e7b3454a804e", "title": "Generative spatiotemporal modeling of neutrophil behavior", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00393.pdf"]}, {"id": "6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81", "title": "Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Uricar_Structured_Output_SVM_CVPR_2016_paper.pdf", "http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01293.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/125793/eth-50297-01.pdf"]}, {"id": "d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576", "title": "Neural Face Editing with Intrinsic Image Disentangling", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.04131.pdf"]}, {"id": "f792f75f6d2bf265569d4e63dd139c4d04ec7fdb", "title": "Introspective Neural Networks for Generative Modeling", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Lazarow_Introspective_Neural_Networks_ICCV_2017_paper.pdf", "http://pages.ucsd.edu/~ztu/publication/iccv17_inng.pdf"]}, {"id": "56f5005c4be6f816f6f43795cc4825d798cd53ef", "title": "GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium", "year": "2017", "pdf": []}, {"id": "b8658fc3b17e75afce025bcbb161dd02e7004b1f", "title": "Deep Mesh Projectors for Inverse Problems", "year": "2018", "pdf": []}, {"id": "09137e3c267a3414314d1e7e4b0e3a4cae801f45", "title": "Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.06078.pdf"]}, {"id": "c8dcb7b3c5ed43e61b90b50fedc76568d8e30675", "title": "GUARDING AGAINST ADVERSARIAL DOMAIN SHIFTS", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c8dc/b7b3c5ed43e61b90b50fedc76568d8e30675.pdf"]}, {"id": "e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5", "title": "Improving Facial Landmark Detection via a Super-Resolution Inception Network", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e617/8de1ef15a6a973aad2791ce5fbabc2cb8ae5.pdf"]}, {"id": "a157ebc849d57ccff00a52a68b24e4ac8eba9536", "title": "The Contextual Loss for Image Transformation with Non-aligned Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02077.pdf"]}, {"id": "22f656d0f8426c84a33a267977f511f127bfd7f3", "title": "From Facial Expression Recognition to Interpersonal Relation Prediction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1609.06426.pdf"]}, {"id": "c05ae45c262b270df1e99a32efa35036aae8d950", "title": "Predicting Facial Attributes in Video Using Temporal Coherence and Motion-Attention", "year": "2018", "pdf": []}, {"id": "2a8aedea2031128868f1c6dd44329c5bb7afc419", "title": "A Convex Duality Framework for GANs", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11740.pdf"]}, {"id": "878301453e3d5cb1a1f7828002ea00f59cbeab06", "title": "Faceness-Net: Face Detection through Deep Facial Part Responses", "year": "2018", "pdf": ["https://arxiv.org/pdf/1701.08393.pdf"]}, {"id": "2c94682176f320f406f78c484f9135f085d1c0f0", "title": "Geometric Enclosing Networks", "year": "2017", "pdf": []}, {"id": "8818dafda0cf230731ac2f962d8591c89a9fac09", "title": "xGEMs: Generating Examplars to Explain Black-Box Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08867.pdf"]}, {"id": "ec3eb92b9a56b1fa84b127b8acc980555cd1f2e0", "title": "Channel-Recurrent Variational Autoencoders", "year": "2017", "pdf": []}, {"id": "a4cd3fc63ddc8468d3f684f32cb0578e41fed226", "title": "Generative Adversarial Style Transfer Networks for Face Aging", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ea7d/ff897a6618a5ae9c7fed19899ac0d3a4a04e.pdf"]}, {"id": "6baaa8b763cc5553715766e7fbe7abb235fae33c", "title": "Facial Attributes Classification Using Multi-task Representation Learning", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Ehrlich_Facial_Attributes_Classification_CVPR_2016_paper.pdf"]}, {"id": "d2860bb05f747e4628e95e4d84018263831bab0d", "title": "Learning to Generate Samples from Noise through Infusion Training", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.06975.pdf"]}, {"id": "73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c", "title": "Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.02193.pdf"]}, {"id": "0ad318510969560e2fca3d7b257e6b6f7a541b3e", "title": "High-Resolution Deep Convolutional Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.06491.pdf"]}, {"id": "6bb95a0f3668cd36407c85899b71c9fe44bf9573", "title": "Face attribute prediction using off-the-shelf CNN features", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03935.pdf"]}, {"id": "f67afec4226aba674e786698b39b85b124945ddd", "title": "Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.06821.pdf"]}, {"id": "7b07a87ff71b85f3493d1944034a960917b8482f", "title": "Alternating BackPropagation for Generator Network", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7b07/a87ff71b85f3493d1944034a960917b8482f.pdf"]}, {"id": "02b0bf28f34c3c403abecd2fb4fb7d4969c0e0db", "title": "Learning Disentangled Joint Continuous and Discrete Representations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.00104.pdf"]}, {"id": "63db76fc3ab23beb921be682d70eb021cb6c4f16", "title": "How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00617.pdf"]}, {"id": "c5b311152a4e611288a77fbb1460eb0fbb049de3", "title": "An Efficient Training Strategy for Face Detector in Specific Scenes", "year": "2016", "pdf": []}, {"id": "4eaaefc53fd61d27b9ce310c188fe76003a341bd", "title": "Assessing Generative Models via Precision and Recall", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00035.pdf"]}, {"id": "d5c4e3c101041556e00b25c0dcb09716827ed5b3", "title": "Unsupervised Image-to-Image Translation with Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.02676.pdf"]}, {"id": "330b3db69f70f01afd674a2b7bce4bb5000bf164", "title": "Learning the Base Distribution in Implicit Generative Models", "year": "2018", "pdf": []}, {"id": "6066e13aea80f64b6ad1415cfc3839c1f8590c04", "title": "Grouping-By-ID : Guarding Against Adversarial Domain Shifts", "year": "2017", "pdf": []}, {"id": "40638a7a9e0a0499af46053c6efc05ce0b088a28", "title": "On the convergence properties of GAN training", "year": "2018", "pdf": []}, {"id": "0ad4a814b30e096ad0e027e458981f812c835aa0", "title": "Leveraging mid-level deep representations for predicting face attributes in the wild", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.01827.pdf"]}, {"id": "b1c80444ecf42c303dbf65e47bea999af7a172bf", "title": "Exploring generative perspective of convolutional neural networks by learning random field models \u2217", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/bea1/3cc5e7b39a05f858f69318b16c398863d610.pdf"]}, {"id": "e0515dc0157a89de48e1120662afdd7fe606b544", "title": "Perception Science in the Age of Deep Neural Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e051/5dc0157a89de48e1120662afdd7fe606b544.pdf"]}, {"id": "d98a36081a434451184fa4becb59bf5ec55f3a1e", "title": "Computational face reader based on facial attribute estimation", "year": "2017", "pdf": []}, {"id": "2f88d3189723669f957d83ad542ac5c2341c37a5", "title": "Attribute-correlated local regions for deep relative attributes learning", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2f88/d3189723669f957d83ad542ac5c2341c37a5.pdf"]}, {"id": "8f772d9ce324b2ef5857d6e0b2a420bc93961196", "title": "Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01760.pdf"]}, {"id": "e23ed8642a719ff1ab08799257d9566ed3bba403", "title": "Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.09798.pdf"]}, {"id": "2e10560579f2bdeae0143141f26bd9f0a195b4b7", "title": "Mixed Precision Training", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.03740.pdf"]}, {"id": "57fd8bafa4526b9a56fe43fac22dd62b2ab94563", "title": "BEYOND SHARED HIERARCHIES: DEEP MULTITASK LEARNING THROUGH SOFT LAYER ORDERING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/57fd/8bafa4526b9a56fe43fac22dd62b2ab94563.pdf"]}, {"id": "b7ccfc78cb54525f9cba996b73c780068a05527e", "title": "Task-Aware Compressed Sensing With Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.01284.pdf"]}, {"id": "725597072c76dad5caa92b7baa6e1c761addc300", "title": "Deep adversarial neural decoding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.07109.pdf"]}, {"id": "471908e99d6965f0f6d249c9cd013485dc2b21df", "title": "Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.08446.pdf"]}, {"id": "bc995457cf5f4b2b5ef62106856571588d7d70f2", "title": "Comparison of Maximum Likelihood and GAN-based training of Real NVPs", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.05263.pdf"]}, {"id": "5d7070067a75f57c841d0d30b23e21101da606b2", "title": "Generative Modeling using the Sliced Wasserstein Distance", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.11188.pdf"]}, {"id": "3e4bd583795875c6550026fc02fb111daee763b4", "title": "Convolutional Sketch Inversion", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.03073.pdf"]}, {"id": "ba788365d70fa6c907b71a01d846532ba3110e31", "title": "Robust Conditional Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.08657.pdf"]}, {"id": "62b90583723174220b26c92bd67f6c422ad75570", "title": "DNA-GAN: LEARNING DISENTANGLED REPRESEN-", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/62b9/0583723174220b26c92bd67f6c422ad75570.pdf"]}, {"id": "1dd3faf5488751c9de10977528ab96be24616138", "title": "Detecting Anomalous Faces with 'No Peeking' Autoencoders", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.05798.pdf"]}, {"id": "b1ffd13e8f68401a603eea9806bc37e396a3c77d", "title": "Face Generation with Conditional Generative Adversarial Networks", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b1ff/d13e8f68401a603eea9806bc37e396a3c77d.pdf"]}, {"id": "cc2bb4318191a04e3fc82c008c649f5b90151e4d", "title": "Beyond Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00108.pdf"]}, {"id": "cfcb4d0d9ba7eb86f068c4fe0f9e6676a37481bc", "title": "Max-Boost-GAN: Max Operation to Boost Generative Ability of Generative Adversarial Networks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w18/Di_Max-Boost-GAN_Max_Operation_ICCV_2017_paper.pdf"]}, {"id": "a022eff5470c3446aca683eae9c18319fd2406d5", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/a022/eff5470c3446aca683eae9c18319fd2406d5.pdf"]}, {"id": "9941a408ae031d1254bbc0fe7a63fac5f85fe347", "title": "Neural Processes", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.01622.pdf"]}, {"id": "de60ee528db713d264ffea870b33f8be054fb8c7", "title": "A Classification-Based Perspective on GAN Distributions", "year": "2017", "pdf": []}, {"id": "a91fd02ed2231ead51078e3e1f055d8be7828d02", "title": "The Robust Manifold Defense: Adversarial Training using Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.09196.pdf"]}, {"id": "c231d8638e8b5292c479d20f7dd387c53e581a1a", "title": "Multi-View Data Generation Without View Supervision", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.00305.pdf"]}, {"id": "2baea24cc71793ba40cf738b7ad1914f0e549863", "title": "Attribute Augmented Convolutional Neural Network for Face Hallucination", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2bae/a24cc71793ba40cf738b7ad1914f0e549863.pdf"]}, {"id": "e1740c8a562901ac1b94c78b33c4416500cedebc", "title": "JOINT-VAE: LEARNING DISENTANGLED JOINT CON-", "year": "2018", "pdf": []}, {"id": "4efb08fcd652c60764b6fd278cee132b71c612a1", "title": "Pixel Deconvolutional Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.06820.pdf"]}, {"id": "db0d33590dc15de2d30cf0407b7a26ae79cd51b5", "title": "Deep Probabilistic Modeling of Natural Images using a Pyramid Decomposition", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/db0d/33590dc15de2d30cf0407b7a26ae79cd51b5.pdf"]}, {"id": "021e008282714eaefc0796303f521c9e4f199d7e", "title": "NCC-Net: Normalized Cross Correlation Based Deep Matcher with Robustness to Illumination Variations", "year": "2018", "pdf": []}, {"id": "eb72dcf0ba423d0e12d63cd7881f2ac5dfda7984", "title": "Associative Compression Networks", "year": "2018", "pdf": []}, {"id": "69adf2f122ff18848ff85e8de3ee3b2bc495838e", "title": "Arbitrary Facial Attribute Editing: Only Change What You Want", "year": "2017", "pdf": []}, {"id": "e21c45b14d75545d40ed07896f26ec6f766f6a4b", "title": "Fisher GAN", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.09675.pdf"]}, {"id": "06be17bcc4136476855fc594759dddc6f8b6150f", "title": "MMGAN: Manifold Matching Generative Adversarial Network for Generating Images", "year": "2017", "pdf": []}, {"id": "6b327af674145a34597986ec60f2a49cff7ed155", "title": "Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1805.06605.pdf"]}, {"id": "6f900e683ea1fc85825a403d1ba2df7875f35bb9", "title": "Joint-VAE: Learning Disentangled Joint Continuous and Discrete Representations", "year": "2018", "pdf": []}, {"id": "8929e704b6af7f09ad027714b75972cb9df57483", "title": "Image Inpainting for Irregular Holes Using Partial Convolutions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.07723.pdf"]}, {"id": "33658ee91ae67f3c92542dd0f0838b48c994ae4d", "title": "Robust Head Detection in Collaborative Learning Environments Using AM-FM Representations", "year": "2018", "pdf": ["http://ivpcl.unm.edu/bibtex_php/Conferences_Pdfs/RobustHeadDetectioninCollaborativeLearning.pdf"]}, {"id": "c03ef6e94808185c1080ac9b155ac3b159b4f1ec", "title": "Learning to Avoid Errors in GANs by Manipulating Input Spaces", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.00768.pdf"]}, {"id": "f0483ebab9da2ba4ae6549b681cf31aef2bb6562", "title": "3 C-GAN : A N CONDITION-CONTEXT-COMPOSITE GENERATIVE ADVERSARIAL NETWORKS FOR GENERATING IMAGES SEPARATELY", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/f048/3ebab9da2ba4ae6549b681cf31aef2bb6562.pdf"]}, {"id": "91edca64a666c46b0cbca18c3e4938e557eeb21a", "title": "Guiding InfoGAN with Semi-Supervision", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.04487.pdf"]}, {"id": "23fd82c04852b74d655015ff0876e6c5defc6e61", "title": "Deep-based Ingredient Recognition for Cooking Recipe Retrieval", "year": "2016", "pdf": []}, {"id": "b04d4b1e8b510180726f49a66dbaaf23c9ef64a0", "title": "Introspective Generative Modeling: Decide Discriminatively.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.07820.pdf"]}, {"id": "e8c6853135856515fc88fff7c55737a292b0a15b", "title": "BoxFlow: Unsupervised Face Detector Adaptation from Images to Videos", "year": "2017", "pdf": []}, {"id": "e0082ae9e466f7c855fb2c2300215ced08f61432", "title": "Generative Temporal Models with Spatial Memory for Partially Observed Environments", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09401.pdf"]}, {"id": "ae2b2493f35cecf1673eb3913fdce37e037b53a2", "title": "Optimal Transport Maps for Distribution Pre- Serving Operations on Latent Spaces of Gener-", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ae2b/2493f35cecf1673eb3913fdce37e037b53a2.pdf"]}, {"id": "b64cc1f0772e9620ecf916019de85b7adb357b7a", "title": "Fast Face-Swap Using Convolutional Neural Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1611.09577.pdf"]}, {"id": "fac36fa1b809b71756c259f2c5db20add0cb0da0", "title": "Transferring GANs: Generating Images from Limited Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.01677.pdf"]}, {"id": "31af1f2614823504d1d643d1b019c6f9d2150b15", "title": "Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.02765.pdf"]}, {"id": "ddefb92908e6174cf48136ae139efbb4bd198896", "title": "Feature-wise Bias Amplification", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ddef/b92908e6174cf48136ae139efbb4bd198896.pdf"]}, {"id": "708f4787bec9d7563f4bb8b33834de445147133b", "title": "Wavelet-SRNet: A Wavelet-Based CNN for Multi-scale Face Super Resolution", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.pdf"]}, {"id": "d979dbc55f73304a5d839079c070062e0b3ddbc5", "title": "Deep Learning Markov Random Field for Semantic Segmentation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1606.07230.pdf"]}, {"id": "6dcf418c778f528b5792104760f1fbfe90c6dd6a", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "c3293ef751d3fb041bd3016fbc3fa5cc16f962fa", "title": "Inferencing based on unsupervised learning of disentangled representations", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02627.pdf"]}, {"id": "61f04606528ecf4a42b49e8ac2add2e9f92c0def", "title": "Deep Deformation Network for Object Landmark Localization", "year": "2016", "pdf": ["https://arxiv.org/pdf/1605.01014.pdf"]}, {"id": "7c2174a02f355a00f1fd5aac6dd62c84a919a2d1", "title": "Normal Residual Blocks Albedo Residual Blocks Light Estimator SH light Normal Conv . Albedo Conv . Conv . Normal Albedo Shading Image Recon", "year": "2017", "pdf": []}, {"id": "9d8978ee319d671283a90761aaed150c7cc9154b", "title": "Fader Networks: Manipulating Images by Sliding Attributes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.00409.pdf"]}, {"id": "801a80f7a18fccb2e8068996a73aee2cf04ae460", "title": "Optimal transport maps for distribution preserving operations on latent spaces of Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.01970.pdf"]}, {"id": "f553f8022b1417bc7420523220924b04e3f27b8e", "title": "Finding your Lookalike: Measuring Face Similarity Rather than Face Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.05252.pdf"]}, {"id": "b768cb6fc2616f3dbe9ef4e25dedd7d95781ba66", "title": "Distribution Matching in Variational Inference", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.06847.pdf"]}, {"id": "8bddd0afd064e2d45ab6cf9510f2631f7438c17b", "title": "Outlier Detection using Generative Models with Theoretical Performance Guarantees", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.11335.pdf"]}, {"id": "101569eeef2cecc576578bd6500f1c2dcc0274e2", "title": "Multiaccuracy: Black-Box Post-Processing for Fairness in Classification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.12317.pdf"]}, {"id": "56fd4c05869e11e4935d48aa1d7abb96072ac242", "title": "OpenFace 2.0: Facial Behavior Analysis Toolkit", "year": "2018", "pdf": []}, {"id": "e309632d479b8f59e615d0f3c4bc69938361d187", "title": "Deep Learning for Imbalance Data Classification using Class Expert Generative Adversarial Network", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.04585.pdf"]}, {"id": "db1a9b8d8ce9a5696a96f8db4206b6f72707730e", "title": "Cross-Modal Facial Attribute Recognition with Geometric Features", "year": "2017", "pdf": ["https://www.jventura.net/sites/default/files/bradley_hfr17.pdf"]}, {"id": "d5cf6a02f8308e948e3bcd1fd1ca660ea8ea8921", "title": "G ENERATIVE NETWORKS AS INVERSE PROBLEMS WITH SCATTERING TRANSFORMS", "year": "", "pdf": ["https://pdfs.semanticscholar.org/d5cf/6a02f8308e948e3bcd1fd1ca660ea8ea8921.pdf"]}, {"id": "e9afb44fa1bf048e90d68f755945bc2b81642239", "title": "Data-Driven Geometric Face Image Smilization Featuring Moving Least Square Based Deformation", "year": "2017", "pdf": []}, {"id": "9e0285debd4b0ba7769b389181bd3e0fd7a02af6", "title": "From Face Images and Attributes to Attributes", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/9e02/85debd4b0ba7769b389181bd3e0fd7a02af6.pdf"]}, {"id": "6b2db002cbc5312e4796de4d4b14573df2c01648", "title": "Learning Hierarchical Features from Deep Generative Models", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6b2d/b002cbc5312e4796de4d4b14573df2c01648.pdf"]}, {"id": "389b2390fd310c9070e72563181547cf23dceea3", "title": "\u03b2-VAE : L EARNING B ASIC", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/389b/2390fd310c9070e72563181547cf23dceea3.pdf"]}, {"id": "af6cae71f24ea8f457e581bfe1240d5fa63faaf7", "title": "Multi-Task Zipping via Layer-wise Neuron Sharing", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09791.pdf"]}, {"id": "788a3faa14ca191d7f187b812047190a70798428", "title": "Interpretable Set Functions", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00050.pdf"]}, {"id": "cb2470aade8e5630dcad5e479ab220db94ecbf91", "title": "Exploring Facial Differences in European Countries Boundary by Fine-Tuned Neural Networks", "year": "2018", "pdf": []}, {"id": "d59404354f84ad98fa809fd1295608bf3d658bdc", "title": "Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.00077.pdf"]}, {"id": "28121cd9150250fe51de62521065c7e2246a73e9", "title": "Blind Image Deconvolution using Deep Generative Priors", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04073.pdf"]}, {"id": "92e5708ed3b622ca1f0f6ac28ffd6e789c528cdf", "title": "Adversarial Inversion : Inverse Graphics with Adversarial Priors", "year": "2017", "pdf": []}, {"id": "147b7998526ebbdf64b1662503b378d9f6456ccd", "title": "GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/147b/7998526ebbdf64b1662503b378d9f6456ccd.pdf"]}, {"id": "7910d3a86e03f4c41fbbe8029fab115547be151b", "title": "Taming Adversarial Domain Transfer with Structural Constraints for Image Enhancement", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00598.pdf"]}, {"id": "372bc106c61e7eb004835e85bbfee997409f176a", "title": "Coupled Generative Adversarial Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1606.07536.pdf"]}, {"id": "1cce875bf085602a2b0e486eb37dadc47e4efbb4", "title": "An optimized skin texture model using gray-level co-occurrence matrix", "year": "2017", "pdf": []}, {"id": "346578304ff943b97b3efb1171ecd902cb4f6081", "title": "Generative Multi-Adversarial Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.01673.pdf"]}, {"id": "231af7dc01a166cac3b5b01ca05778238f796e41", "title": "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.08500.pdf"]}, {"id": "73d57e2c855c39b4ff06f2d7394ab4ea35f597d4", "title": "First Order Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.04591.pdf"]}, {"id": "654ad3b6f7c6de7184a9e8eec724e56274f27e3f", "title": "Alternating Back-Propagation for Generator Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1606.08571.pdf"]}, {"id": "3355aff37b5e4ba40fc689119fb48d403be288be", "title": "Deep Private-Feature Extraction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03151.pdf"]}, {"id": "45824905119ec09447d60e1809434062d5f4c1e4", "title": "Detecting Smiles of Young Children via Deep Transfer Learning", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Xia_Detecting_Smiles_of_ICCV_2017_paper.pdf"]}, {"id": "62007c30f148334fb4d8975f80afe76e5aef8c7f", "title": "Eye In-Painting with Exemplar Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.03999.pdf"]}, {"id": "be4c2b6fdde83179dd601541f57ee5d14fe1e98a", "title": "Graphical Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.03429.pdf"]}, {"id": "a45450824c6e8e6b42fd9bbf52871104b6c6ce8b", "title": "Optimizing the Latent Space of Generative Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.05776.pdf"]}, {"id": "614a7c42aae8946c7ad4c36b53290860f6256441", "title": "Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.02878.pdf"]}, {"id": "0bb574ad77f55f395450b4a9f863ecfdd4880bcd", "title": "Learning the Base Distribution in Implicit Generative Models", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04357.pdf"]}, {"id": "c4f3375dab1886f37f542d998e61d8c30a927682", "title": "BEYOND SHARED HIERARCHIES: DEEP MULTITASK LEARNING THROUGH SOFT LAYER ORDERING", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c4f3/375dab1886f37f542d998e61d8c30a927682.pdf"]}, {"id": "70f3d3d9a7402a0f62a5646a16583c6c58e3b07a", "title": "An Architecture for Deep, Hierarchical Generative Models", "year": "2016", "pdf": ["https://arxiv.org/pdf/1612.04739.pdf"]}, {"id": "99f565df31ef710a2d8a1b606e3b7f5f92ab657c", "title": "Geometry Score: A Method For Comparing Generative Adversarial Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.02664.pdf"]}, {"id": "39d08fa8b028217384daeb3e622848451809a422", "title": "Variational Approaches for Auto-Encoding Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04987.pdf"]}, {"id": "710011644006c18291ad512456b7580095d628a2", "title": "Learning Residual Images for Face Attribute Manipulation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.05363.pdf"]}, {"id": "2d42b5915ca18fdc5fa3542bad48981c65f0452b", "title": "Generalization and Equilibrium in Generative Adversarial Nets (GANs)", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.00573.pdf"]}, {"id": "dfcb4773543ee6fbc7d5319b646e0d6168ffa116", "title": "Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1701.04722.pdf"]}, {"id": "f580b0e1020ad67bdbb11e8d99a59c21a8df1e7d", "title": "Compressed Sensing using Generative Models", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.03208.pdf"]}, {"id": "43a2c871450ba4d8888e8692aa98cb10e861ea71", "title": "Learning Generative ConvNet with Continuous Latent Factors by Alternating Back-Propagation", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/43a2/c871450ba4d8888e8692aa98cb10e861ea71.pdf"]}, {"id": "1a8a2539cffba25ed9a7f2b869ebb737276ccee1", "title": "Pros and Cons of GAN Evaluation Measures", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.03446.pdf"]}, {"id": "305346d01298edeb5c6dc8b55679e8f60ba97efb", "title": "Fine-Grained Face Annotation Using Deep Multi-Task CNN", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3053/46d01298edeb5c6dc8b55679e8f60ba97efb.pdf"]}, {"id": "7689d23a22682c92bdf9a1df975fa2cdd24f1b87", "title": "MMD with Kernel Learning In practice we use finite samples from distributions to estimate", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/7689/d23a22682c92bdf9a1df975fa2cdd24f1b87.pdf"]}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": []}, {"id": "e58f08ad6e0edd567f217ef08de1701a8c29fcc8", "title": "Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing - and Back", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.04062.pdf"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": []}, {"id": "03889b0e8063532ae56d36dd9c54c3784a69e4d4", "title": "Learning to Play Guess Who? and Inventing a Grounded Language as a Consequence", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.03218.pdf"]}, {"id": "59b6ff409ae6f57525faff4b369af85c37a8dd80", "title": "Deep Attribute Driven Image Similarity Learning Using Limited Data", "year": "2017", "pdf": []}, {"id": "a0a950f513b4fd58cee54bccc49b852943ffd02c", "title": "Image Inpainting using Block-wise Procedural Training with Annealed Adversarial Counterpart", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.08943.pdf"]}, {"id": "2780f8fc25320f4fb258442ceb790ffe301730fe", "title": "Generative Reversible Networks", "year": "2018", "pdf": []}, {"id": "c3a3f7758bccbead7c9713cb8517889ea6d04687", "title": "Funnel-structured cascade for multi-view face detection with alignment-awareness", "year": "2017", "pdf": ["https://arxiv.org/pdf/1609.07304.pdf"]}, {"id": "55cad1f4943018459b761f89afd9292d347610f2", "title": "Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.02859.pdf"]}]} \ No newline at end of file