diff options
Diffstat (limited to 'site/datasets/unknown/casia_webface.json')
| -rw-r--r-- | site/datasets/unknown/casia_webface.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/casia_webface.json b/site/datasets/unknown/casia_webface.json index 310912cf..1f1e8416 100644 --- a/site/datasets/unknown/casia_webface.json +++ b/site/datasets/unknown/casia_webface.json @@ -1 +1 @@ -{"id": "853bd61bc48a431b9b1c7cab10c603830c488e39", "citations": [{"id": "0c65226edb466204189b5aec8f1033542e2c17aa", "title": "A study of CNN outside of training conditions", "year": "2017", "pdf": []}, {"id": "f49b4ab188dd090367d9f6762473879b2bba16cf", "title": "Extreme 3D Face Reconstruction: Seeing Through Occlusions", "year": "2018", "pdf": []}, {"id": "b4f3e9fc0a2b40595ae0a625d1d768a57a7c2eba", "title": "Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08837.pdf"]}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"]}, {"id": "2c052a1c77a3ec2604b3deb702d77c41418c7d3e", "title": "What Is the Challenge for Deep Learning in Unconstrained Face Recognition?", "year": "2018", "pdf": []}, {"id": "2b251294bea1e49f9a646a67e6c57c9d3e1af483", "title": "Learning to generate filters for convolutional neural networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.01894.pdf"]}, {"id": "f20e0eefd007bc310d2a753ba526d33a8aba812c", "title": "Accurate and robust face recognition from RGB-D images with a deep learning approach", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/116e/c3a1a8225362a3e3e445df45036fae7cadc6.pdf"]}, {"id": "2e0d56794379c436b2d1be63e71a215dd67eb2ca", "title": "Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.03872.pdf"]}, {"id": "8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889", "title": "Noisy Face Image Sets Refining Collaborated with Discriminant Feature Space Learning", "year": "2017", "pdf": []}, {"id": "f294278e03868257bfce132b8cf189359ada915a", "title": "Boosting Face in Video Recognition via CNN Based Key Frame Extraction", "year": "2018", "pdf": ["https://www.clarkson.edu/sites/default/files/2018-03/Boosting%20Face%20in%20Video%20Recognition%20via%20CNN%20based%20Key%20Frame%20Extraction.pdf"]}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"]}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": []}, {"id": "0aebe97a92f590bdf21cdadfddec8061c682cdb2", "title": "Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification", "year": "2018", "pdf": []}, {"id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "title": "IARPA Janus Benchmark-B Face Dataset", "year": "2017", "pdf": []}, {"id": "128d99fbe91b0ee593d70f3e78fe582aaa9f8ded", "title": "Residual Encoder Decoder Network and Adaptive Prior for Face Parsing", "year": "2018", "pdf": []}, {"id": "d44a93027208816b9e871101693b05adab576d89", "title": "On the Capacity of Face Representation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.10433.pdf"]}, {"id": "10e4172dd4f4a633f10762fc5d4755e61d52dc36", "title": "Learning Multifunctional Binary Codes for Both Category and Attribute Oriented Retrieval Tasks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Liu_Learning_Multifunctional_Binary_CVPR_2017_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/supplemental/Liu_Learning_Multifunctional_Binary_2017_CVPR_supplemental.pdf", "http://vipl.ict.ac.cn/homepage/rpwang/publications/Learning%20Multifunctional%20Binary%20Codes%20for%20Both%20Category%20and%20Attribute%20Oriented%20Retrieval%20Tasks_CVPR2017.pdf"]}, {"id": "6bb95a0f3668cd36407c85899b71c9fe44bf9573", "title": "Face attribute prediction using off-the-shelf CNN features", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03935.pdf"]}, {"id": "014b4335d055679bc680a6ceb6f1a264d8ce8a4a", "title": "Are You Sure You Want To Do That? Classification with Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.02652.pdf"]}, {"id": "1b805f8cbcffe7f5e2cc7af86b5649330b15298d", "title": "Heterogeneous Face Recognition Using Domain Specific Units", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1b80/5f8cbcffe7f5e2cc7af86b5649330b15298d.pdf"]}, {"id": "c607572fd2594ca83f732c9790fd590da9e69eb1", "title": "Comparative Evaluation of Deep Architectures for Face Recognition in Unconstrained Environment ( FRUE )", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c607/572fd2594ca83f732c9790fd590da9e69eb1.pdf"]}, {"id": "b6259115b819424de53bb92f64cc459dcb649f31", "title": "Learning Feature Representation for Face Verification", "year": "2017", "pdf": []}, {"id": "42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830", "title": "Coordinated Local Metric Learning", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Saxena_Coordinated_Local_Metric_ICCV_2015_paper.pdf"]}, {"id": "47e14fdc6685f0b3800f709c32e005068dfc8d47", "title": "Secure Face Matching Using Fully Homomorphic Encryption", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00577.pdf"]}, {"id": "02c7740af5540f23a2da23d1769e64a8042ec62e", "title": "Big Data", "year": "2018", "pdf": ["https://ai.arizona.edu/sites/ai/files/MIS510/big_data_-_the_management_revolution_0.pdf", "https://www.bsc.es/ca/printpdf/research-and-development/research-areas/big-data"]}, {"id": "1ef4aac0ebc34e76123f848c256840d89ff728d0", "title": "Rapid Synthesis of Massive Face Sets for Improved Face Recognition", "year": "2017", "pdf": ["http://www.openu.ac.il/home/hassner/projects/augmented_faces/Masietal2017rapid.pdf"]}, {"id": "8699268ee81a7472a0807c1d3b1db0d0ab05f40d", "title": "Channel-Recurrent Autoencoding for Image Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.03729.pdf"]}, {"id": "4b2b2b496262cc85172c1fa70bfea9dcd2ecf019", "title": "Deep learning and face recognition: the state of the art", "year": "2015", "pdf": ["https://arxiv.org/pdf/1902.03524.pdf"]}, {"id": "6278b2586a1240e3184d8d9c26e6efb50e55bc30", "title": "A Compact Deep Learning Model for Robust Facial Expression Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Kuo_A_Compact_Deep_CVPR_2018_paper.pdf"]}, {"id": "ae5e92abd5929ee7f0a5aa1622aa094bac4fae29", "title": "RGB-D Face Recognition via Deep Complementary and Common Feature Learning", "year": "2018", "pdf": []}, {"id": "5c54e0f46330787c4fac48aecced9a8f8e37658a", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "fca6df7d36f449d48a8d1e48a78c860d52e3baf8", "title": "Fine-Grained Age Estimation in the wild with Attention LSTM Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10445.pdf"]}, {"id": "9e297343da13cf9ba0ad8b5b75c07723136f4885", "title": "Regularizing Face Net for Discrete-valued Pain Regression", "year": "2017", "pdf": []}, {"id": "60e2b9b2e0db3089237d0208f57b22a3aac932c1", "title": "Frankenstein: Learning Deep Face Representations Using Small Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1603.06470.pdf"]}, {"id": "1e8eee51fd3bf7a9570d6ee6aa9a09454254689d", "title": "Face Search at Scale", "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf"]}, {"id": "0db8e6eb861ed9a70305c1839eaef34f2c85bbaf", "title": "Towards Large-Pose Face Frontalization in the Wild", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06244.pdf"]}, {"id": "1280b35e4a20036fcfd82ee09f45a3fca190276f", "title": "Face Verification Based on Feature Transfer via PCA-SVM Framework", "year": "2017", "pdf": []}, {"id": "a3ab2a7d596626a25f680b7dc9710ea2d34a8cbb", "title": "Machine Learning in Radiology: Applications Beyond Image Interpretation.", "year": "2018", "pdf": ["https://cerf.radiologie.fr/sites/cerf.radiologie.fr/files/Enseignement/pdf/Machine%20Learning%20in%20Radiology%20Applications%20Beyond%20Image%20Interpretation_Lakhani_JACR%202017.pdf"]}, {"id": "a8117a4733cce9148c35fb6888962f665ae65b1e", "title": "A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.00438.pdf"]}, {"id": "b5ca8d4f259f35c1f3edfd9f108ce29881e478b0", "title": "Disentangled Representation Learning GAN for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["http://cvlab.cse.msu.edu/pdfs/Tran_Yin_Liu_CVPR2017.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/papers/Tran_Disentangled_Representation_Learning_CVPR_2017_paper.pdf"]}, {"id": "28d4e027c7e90b51b7d8908fce68128d1964668a", "title": "Level Playing Field for Million Scale Face Recognition", "year": "2017", "pdf": []}, {"id": "03f7041515d8a6dcb9170763d4f6debd50202c2b", "title": "Clustering Millions of Faces by Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1604.00989.pdf"]}, {"id": "ef559d5f02e43534168fbec86707915a70cd73a0", "title": "DeepInsight: Multi-Task Multi-Scale Deep Learning for Mental Disorder Diagnosis", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ef55/9d5f02e43534168fbec86707915a70cd73a0.pdf"]}, {"id": "1ffe20eb32dbc4fa85ac7844178937bba97f4bf0", "title": "Face Clustering: Representation and Pairwise Constraints", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.05067.pdf"]}, {"id": "8813368c6c14552539137aba2b6f8c55f561b75f", "title": "Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1607.05427.pdf"]}, {"id": "0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e", "title": "Large age-gap face verification by feature injection in deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1602.06149.pdf"]}, {"id": "e13360cda1ebd6fa5c3f3386c0862f292e4dbee4", "title": "Range Loss for Deep Face Recognition with Long-Tailed Training Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.08976.pdf"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"]}, {"id": "ddf099f0e0631da4a6396a17829160301796151c", "title": "Chen et al . Face Quality Value : Input : Feat -\u2010 5 Features : L 2 R + PKM Model : Feat -\u2010", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf"]}, {"id": "7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22", "title": "Labeled Faces in the Wild: A Survey", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf"]}, {"id": "380d5138cadccc9b5b91c707ba0a9220b0f39271", "title": "Deep Imbalanced Learning for Face Recognition and Attribute Prediction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00194.pdf"]}, {"id": "2b2896f41480399e7182acfa9466a3f915885387", "title": "CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00408.pdf"]}, {"id": "cc47368fe303c6cbda38caf5ac0e1d1c9d7e2a52", "title": "University Classroom Attendance Based on Deep Learning", "year": "2017", "pdf": []}, {"id": "d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0", "title": "Minimalistic CNN-based ensemble model for gender prediction from face images", "year": "2016", "pdf": ["http://www.eurecom.fr/en/publication/4768/download/mm-publi-4768.pdf"]}, {"id": "050a149051a5d268fcc5539e8b654c2240070c82", "title": "Magisterske\u0301 a doktorske\u0301 studijn\u0131\u0301 programy", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/050a/149051a5d268fcc5539e8b654c2240070c82.pdf"]}, {"id": "f3850d8ec9779e8e15da9831ba23d4cdca1dd4ee", "title": "Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials", "year": "2018", "pdf": []}, {"id": "6412d8bbcc01f595a2982d6141e4b93e7e982d0f", "title": "Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Kang_Deep_Convolutional_Neural_CVPR_2017_paper.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/PaperID56_CVPRW_BNKANG_Oral.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/PaperID56_CVPRW_BNKANG_Poster.pdf"]}, {"id": "6962505b78d0cec04b992a059cc58870c361c971", "title": "Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1811.00218.pdf"]}, {"id": "fa641327dc5873276f0af453a2caa1634c16f143", "title": "ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for Gesture Recognition", "year": "2016", "pdf": ["http://sergioescalera.com/wp-content/uploads/2016/05/gesture_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Wan_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "9ea37d031a8f112292c0d0f8d731b837462714e9", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"]}, {"id": "2306b2a8fba28539306052764a77a0d0f5d1236a", "title": "Surveillance Face Recognition Challenge", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09691.pdf"]}, {"id": "054738ce39920975b8dcc97e01b3b6cc0d0bdf32", "title": "Towards the design of an end-to-end automated system for image and video-based recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1601.07883.pdf"]}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"]}, {"id": "b49425f78907fcc447d181eb713abffc74dd85e4", "title": "Sampling Matters in Deep Embedding Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.07567.pdf"]}, {"id": "a13a27e65c88b6cb4a414fd4f6bca780751a59db", "title": "Deep convolution neural network with stacks of multi-scale convolutional layer block using triplet of faces for face recognition in the wild", "year": "2016", "pdf": []}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "01e14d8ffd6767336d50c2b817a7b7744903e567", "title": "Deep Network Shrinkage Applied to Cross-Spectrum Face Recognition", "year": "2017", "pdf": []}, {"id": "26ebe98753acec806b7281d085110c06d9cd1e16", "title": "Self-Error-Correcting Convolutional Neural Network for Learning with Noisy Labels", "year": "2017", "pdf": []}, {"id": "7789252476073a77e80fb0668eecf94a99b81d8d", "title": "Fast Landmark Localization With 3D Component Reconstruction and CNN for Cross-Pose Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.09580.pdf"]}, {"id": "ddfde808af8dc8b737d115869d6cca780d050884", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"]}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"]}, {"id": "2ea78e128bec30fb1a623c55ad5d55bb99190bd2", "title": "Residual vs. Inception vs. Classical Networks for Low-Resolution Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/2ea7/8e128bec30fb1a623c55ad5d55bb99190bd2.pdf"]}, {"id": "339937141ffb547af8e746718fbf2365cc1570c8", "title": "Facial Emotion Recognition in Real Time", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3399/37141ffb547af8e746718fbf2365cc1570c8.pdf"]}, {"id": "ec39e9c21d6e2576f21936b1ecc1574dadaf291e", "title": "Pose-Robust Face Verification by Exploiting Competing Tasks", "year": "2017", "pdf": []}, {"id": "6cacda04a541d251e8221d70ac61fda88fb61a70", "title": "One-shot Face Recognition by Promoting Underrepresented Classes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.05574.pdf"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": []}, {"id": "98b2f21db344b8b9f7747feaf86f92558595990c", "title": "PACES OF G ENERATIVE A DVERSARIAL N ETWORKS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/98b2/f21db344b8b9f7747feaf86f92558595990c.pdf"]}, {"id": "e7144f5c19848e037bb96e225d1cfd961f82bd9f", "title": "Heterogeneous Face Recognition: Recent Advances in Infrared-to-Visible Matching", "year": "2017", "pdf": []}, {"id": "406c5aeca71011fd8f8bd233744a81b53ccf635a", "title": "Scalable softmax loss for face verification", "year": "2017", "pdf": []}, {"id": "37922bcfd75d50b7a500fbf61174ed3151fddfce", "title": "Efficient Statistical Face Recognition Using Trigonometric Series and CNN Features", "year": "2018", "pdf": []}, {"id": "b0c1615ebcad516b5a26d45be58068673e2ff217", "title": "How Image Degradations Affect Deep CNN-Based Face Recognition?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1608.05246.pdf"]}, {"id": "91d513af1f667f64c9afc55ea1f45b0be7ba08d4", "title": "Automatic Face Image Quality Prediction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.09887.pdf"]}, {"id": "e988be047b28ba3b2f1e4cdba3e8c94026139fcf", "title": "Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1702.04710.pdf"]}, {"id": "8395cf3535a6628c3bdc9b8d0171568d551f5ff0", "title": "Entropy Non-increasing Games for the Improvement of Dataflow Programming", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04389.pdf"]}, {"id": "4268ae436db79c4eee8bc06e9475caff3ff70d57", "title": "Five Principles for Crowd-Source Experiments in Face Recognition", "year": "2017", "pdf": []}, {"id": "c5b324f7f9abdffc1be83f640674beda81b74315", "title": "Towards Open-Set Identity Preserving Face Synthesis", "year": "2018", "pdf": []}, {"id": "b12431e61172443c534ea523a4d7407e847b5c5b", "title": "Yu\u0308z Tan\u0131maya Dayal\u0131 Kis\u0327i Bazl\u0131 Test Otomasyonu", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b124/31e61172443c534ea523a4d7407e847b5c5b.pdf"]}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": []}, {"id": "98c548a4be0d3b62971e75259d7514feab14f884", "title": "Deep generative-contrastive networks for facial expression recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.07140.pdf"]}, {"id": "727d03100d4a8e12620acd7b1d1972bbee54f0e6", "title": "von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04264.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "565f7c767e6b150ebda491e04e6b1de759fda2d4", "title": "Fine-grained face verification", "year": "2017", "pdf": []}, {"id": "cfd4004054399f3a5f536df71f9b9987f060f434", "title": "Person Recognition in Social Media Photos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1710.03224.pdf"]}, {"id": "1bc214c39536c940b12c3a2a6b78cafcbfddb59a", "title": "Leveraging Gabor Phase for Face Identification in Controlled Scenarios", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5cec/4dda1ba90aa61d54e4c5b61961915ffaf08c.pdf"]}, {"id": "f15b7c317f106816bf444ac4ffb6c280cd6392c7", "title": "Deep Disguised Faces Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Zhang_Deep_Disguised_Faces_CVPR_2018_paper.pdf"]}, {"id": "635158d2da146e9de559d2742a2fa234e06b52db", "title": "Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns", "year": "2015", "pdf": []}, {"id": "d0441970a9f19751e6c047b364f580c30bf9754a", "title": "Pose-Aware Person Recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10120.pdf"]}, {"id": "2025392b7ebe267fbe13cb9fcd022ded8f7d1972", "title": "Multi-task Adversarial Network for Disentangled Feature Learning", "year": "2018", "pdf": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"]}, {"id": "d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c", "title": "Face Album: Towards automatic photo management based on person identity on mobile phones", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0003031.pdf"]}, {"id": "9ce12c9f1d1661f56908edc8ef3848e91b24d557", "title": "Query Adaptive Late Fusion for Image Retrieval", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.13103.pdf"]}, {"id": "6c40fc9df6588f7cb721537883167eede1b8d369", "title": "3D Face Reconstruction Based on Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "4739b47af26137ec52bbfb582e6f37e9e9f5aba0", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Smirnov_Hard_Example_Mining_CVPR_2018_paper.pdf"]}, {"id": "20e504782951e0c2979d9aec88c76334f7505393", "title": "Robust LSTM-Autoencoders for Face De-Occlusion in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.08534.pdf"]}, {"id": "571b83f7fc01163383e6ca6a9791aea79cafa7dd", "title": "SeqFace: Make full use of sequence information for face recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06524.pdf"]}, {"id": "9ca542d744149f0efc8b8aac8289f5e38e6d200c", "title": "Gender and Smile Classification Using Deep Convolutional Neural Networks", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016_workshops/w18/papers/Zhang_Gender_and_Smile_CVPR_2016_paper.pdf"]}, {"id": "a35483c9becc95faa16bf70a8c6355566a205091", "title": "FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "year": "2018", "pdf": []}, {"id": "57178b36c21fd7f4529ac6748614bb3374714e91", "title": "IARPA Janus Benchmark - C: Face Dataset and Protocol", "year": "2018", "pdf": []}, {"id": "d31328b12eef33e7722b8e5505d0f9d9abe2ffd9", "title": "Deep Unsupervised Domain Adaptation for Face Recognition", "year": "2018", "pdf": []}, {"id": "d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d", "title": "Robust Face Recognition via Multimodal Deep Face Representation", "year": "2015", "pdf": ["https://arxiv.org/pdf/1509.00244.pdf"]}, {"id": "7aa4c16a8e1481629f16167dea313fe9256abb42", "title": "Multi-task learning for face identification and attribute estimation", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf"]}, {"id": "0ba6614ff9ed1cd00e07d44c5c61879958e7566b", "title": "Representation Learning by Rotating Your Faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.11136.pdf"]}, {"id": "84c5b45328dee855c4855a104ac9c0558cc8a328", "title": "Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition", "year": "2018", "pdf": []}, {"id": "486a82f50835ea888fbc5c6babf3cf8e8b9807bc", "title": "Face Search at Scale: 80 Million Gallery", "year": "2015", "pdf": ["https://arxiv.org/pdf/1507.07242.pdf"]}, {"id": "19d53bb35baf6ab02368756412800c218a2df71c", "title": "DeepDeblur: Fast one-step blurry face images restoration.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09515.pdf"]}, {"id": "f0b30a9bb9740c2886d96fc44d6f35b8eacab4f3", "title": "Are You Sure You Want To Do That ? Classification with Interpretable Queries", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f0b3/0a9bb9740c2886d96fc44d6f35b8eacab4f3.pdf"]}, {"id": "77d31d2ec25df44781d999d6ff980183093fb3de", "title": "The Multiverse Loss for Robust Transfer Learning", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.09033.pdf"]}, {"id": "27da432cf2b9129dce256e5bf7f2f18953eef5a5", "title": "Face Recognition in Low Quality Images: A Survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.11519.pdf"]}, {"id": "204b2b9c33d2c3be77dbd6d82dfefd1dfa95d8a3", "title": "Deep Face Recognition under Eyeglass and Scale Variation Using Extended Siamese Network", "year": "2017", "pdf": []}, {"id": "0c0db39cac8cb76b52cfdbe10bde1c53d68d202f", "title": "Metric-based Generative Adversarial Network", "year": "2017", "pdf": []}, {"id": "be4faea0971ef74096ec9800750648b7601dda65", "title": "Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "9286eab328444401a848cd2e13186840be8f0409", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": []}, {"id": "de0eb358b890d92e8f67592c6e23f0e3b2ba3f66", "title": "Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.01587.pdf"]}, {"id": "c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8", "title": "Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Zheng_Age_Estimation_Guided_CVPR_2017_paper.pdf"]}, {"id": "3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f", "title": "Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.07923.pdf"]}, {"id": "e79bacc03152ea55343e6af97bcd17d8904cf5ef", "title": "Recursive Spatial Transformer (ReST) for Alignment-Free Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Wu_Recursive_Spatial_Transformer_ICCV_2017_paper.pdf"]}, {"id": "5b7a5b8ea99ea79e0a0ae53b45bc9b2b1aa99952", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"]}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"]}, {"id": "78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c", "title": "Improved Deep Metric Learning with Multi-class N-pair Loss Objective", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/78a1/1b7d2d7e1b19d92d2afd51bd3624eca86c3c.pdf"]}, {"id": "62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4", "title": "Noise-resistant network: a deep-learning method for face recognition under noise", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/62d1/a31b8acd2141d3a994f2d2ec7a3baf0e6dc4.pdf"]}, {"id": "44078d0daed8b13114cffb15b368acc467f96351", "title": "Triplet probabilistic embedding for face verification and clustering", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.05417.pdf"]}, {"id": "4aa18f3a1c85f7a09d3b0d6b28c0339199892d60", "title": "The Application of Neural Networks for Facial Landmarking on Mobile Devices", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4aa1/8f3a1c85f7a09d3b0d6b28c0339199892d60.pdf"]}, {"id": "3504907a2e3c81d78e9dfe71c93ac145b1318f9c", "title": "An End-to-End System for Unconstrained Face Verification with Deep Convolutional Neural Networks", "year": "2015", "pdf": ["https://arxiv.org/pdf/1605.02686.pdf"]}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"]}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"]}, {"id": "48121f5937accc8050b0c9bf2be6d1c58b07a8a0", "title": "Multi-pose face recognition by dynamic loss weights", "year": "2017", "pdf": []}, {"id": "d6bdc70d259b38bbeb3a78db064232b4b4acc88f", "title": "Video-Based Face Association and Identification", "year": "2017", "pdf": []}, {"id": "2c92839418a64728438c351a42f6dc5ad0c6e686", "title": "Pose-Aware Face Recognition in the Wild", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf"]}, {"id": "5209758096819efee15751c8875121bd27f2ee78", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"]}, {"id": "3fe269cbe3a15aca4663d7086e0622ec5eb93c2d", "title": "Neural Information Processing", "year": "2018", "pdf": []}, {"id": "badde061da20510ca74b94818eb726d27ff2f491", "title": "Improving speech embedding using crossmodal transfer learning with audio-visual data", "year": "2018", "pdf": []}, {"id": "eb3066de677f9f6131aab542d9d426aaf50ed2ce", "title": "Deep Transfer Network with 3D Morphable Models for Face Recognition", "year": "2018", "pdf": []}, {"id": "59b6e9320a4e1de9216c6fc49b4b0309211b17e8", "title": "Robust Representations for unconstrained Face Recognition and its Applications", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf"]}, {"id": "61825a32a8cb28045ef4769e35a9fea6a372a1a1", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6182/5a32a8cb28045ef4769e35a9fea6a372a1a1.pdf"]}, {"id": "d754586d1bed2074824d650305cb361ef2706f44", "title": "Deep convolutional BiLSTM fusion network for facial expression recognition", "year": "2019", "pdf": []}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"]}, {"id": "f1280f76933ba8b7f4a6b8662580504f02bb4ab6", "title": "Gender Classification by Deep Learning on Millions of Weakly Labelled Images", "year": "2016", "pdf": ["https://research-information.bristol.ac.uk/files/90114160/Sen_Jia_Gender_Classification_by_Deep_Learning_on_Millions_of_Weakly_Labelled_Images.pdf"]}, {"id": "83447d47bb2837b831b982ebf9e63616742bfdec", "title": "An Automatic System for Unconstrained Video-Based Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.04058.pdf"]}, {"id": "c758b9c82b603904ba8806e6193c5fefa57e9613", "title": "Heterogeneous Face Recognition with CNNs", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/c758/b9c82b603904ba8806e6193c5fefa57e9613.pdf"]}, {"id": "3d85cf942efda695347c7d95485fcd1e6796ee3a", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"]}, {"id": "f2004fff215a17ac132310882610ddafe25ba153", "title": "Facial Expression Recognition via Deep Learning", "year": "2017", "pdf": []}, {"id": "e4232e8fd566a7289ccb33f732c9093c9beb84a6", "title": "UHDB31: A Dataset for Better Understanding Face Recognition Across Pose and Illumination Variation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w37/Le_UHDB31_A_Dataset_ICCV_2017_paper.pdf"]}, {"id": "0b82bf595e76898993ed4f4b2883c42720c0f277", "title": "Improving Face Recognition by Exploring Local Features with Visual Attention", "year": "2018", "pdf": ["http://biometrics.cse.msu.edu/Publications/Fingerprint/Shietal_ImprovingFaceRecognitionByExploringLocalRegionsWithVisuaAttention_ICB2018.pdf"]}, {"id": "b6b24dfaf4c9e498ca9b9ee9f82d8d0c5bdb77e9", "title": "Rethinking Feature Distribution for Loss Functions in Image Classification", "year": "2018", "pdf": []}, {"id": "a1feab9029e49d1a5d4ad511be30bd40a423a1eb", "title": "Effective multiple person recognition in random video sequences using a convolutional neural network", "year": "2019", "pdf": []}, {"id": "d818568838433a6d6831adde49a58cef05e0c89f", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "b13ab3647352c3af2ba656f93b69bb5ae9a69fe5", "title": "Using deep learning for social analysis in egocentric images", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b13a/b3647352c3af2ba656f93b69bb5ae9a69fe5.pdf"]}, {"id": "77c7d8012fe4179a814c1241a37a2256361bc1a4", "title": "BGP Face Retrieval Based on Coding Pyramid", "year": "2018", "pdf": []}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"]}, {"id": "e295c1aa47422eb35123053038e62e9aa50a2e3a", "title": "ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Escalera_ChaLearn_Looking_at_ICCV_2015_paper.pdf"]}, {"id": "7ce03597b703a3b6754d1adac5fbc98536994e8f", "title": "On the Intrinsic Dimensionality of Face Representation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09672.pdf"]}, {"id": "a2e0966f303f38b58b898d388d1c83e40b605262", "title": "ECLIPSE: Ensembles of Centroids Leveraging Iteratively Processed Spatial Eclipse Clustering", "year": "2018", "pdf": []}, {"id": "011e6146995d5d63c852bd776f782cc6f6e11b7b", "title": "Fast Training of Triplet-Based Deep Binary Embedding Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.02844.pdf"]}, {"id": "12e4545d07e1793df87520f384b37a015815d2f7", "title": "Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging", "year": "2018", "pdf": []}, {"id": "e278218ba1ff1b85d06680e99b08e817d0962dab", "title": "Tracking Persons-of-Interest via Unsupervised Representation Adaptation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02139.pdf"]}, {"id": "f442a2f2749f921849e22f37e0480ac04a3c3fec", "title": "Critical Features for Face Recognition in Humans and Machines", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f442/a2f2749f921849e22f37e0480ac04a3c3fec.pdf"]}, {"id": "97f3d35d3567cd3d973c4c435cdd6832461b7c3c", "title": "Unleash the Black Magic in Age: A Multi-Task Deep Neural Network Approach for Cross-Age Face Verification", "year": "2017", "pdf": []}, {"id": "b6967d6096294bbac242b6f27e1fee51da24eb11", "title": "Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition", "year": "2018", "pdf": []}, {"id": "a50fa5048c61209149de0711b5f1b1806b43da00", "title": "Deep Features for Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Bansal_Deep_Features_for_CVPR_2018_paper.pdf"]}, {"id": "726f76f11e904d7fcb12736c276a0b00eb5cde49", "title": "A Performance Comparison of Loss Functions for Deep Face Recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.05903.pdf"]}, {"id": "2a7b7de7488211471a001044a3a249a117af488a", "title": "Physical Attribute Prediction Using Deep Residual Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.07857.pdf"]}, {"id": "0ad4a814b30e096ad0e027e458981f812c835aa0", "title": "Leveraging mid-level deep representations for predicting face attributes in the wild", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.01827.pdf"]}, {"id": "0ee737085af468f264f57f052ea9b9b1f58d7222", "title": "SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08370.pdf"]}, {"id": "1174b869c325222c3446d616975842e8d2989cf2", "title": "CosFace: Large Margin Cosine Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.09414.pdf"]}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": []}, {"id": "6ac1dc59e823d924e797afaf5c4a960ed7106f2a", "title": "Deep Facial Expression Recognition: A Survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.08348.pdf"]}, {"id": "a52a69bf304d49fba6eac6a73c5169834c77042d", "title": "Margin Loss: Making Faces More Separable", "year": "2018", "pdf": []}, {"id": "80097a879fceff2a9a955bf7613b0d3bfa68dc23", "title": "Active Self-Paced Learning for Cost-Effective and Progressive Face Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1701.03555.pdf"]}, {"id": "0077cd8f97cafd2b389783858a6e4ab7887b0b6b", "title": "Face Image Reconstruction from Deep Templates", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/0077/cd8f97cafd2b389783858a6e4ab7887b0b6b.pdf"]}, {"id": "de0ee491d2747a6f3d171f813fe6f5cdb3a27fd6", "title": "FPGA-accelerated deep convolutional neural networks for high throughput and energy efficiency", "year": "2017", "pdf": []}, {"id": "e7906370eae8655fb69844ae1a3d986c9f37c902", "title": "Face recognition using Deep Learning", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e790/6370eae8655fb69844ae1a3d986c9f37c902.pdf"]}, {"id": "09f5033e1e91dae1f7f31cba2b65bbff1d5f8ca3", "title": "Face Recognition Based on Densely Connected Convolutional Networks", "year": "2018", "pdf": []}, {"id": "72a55554b816b66a865a1ec1b4a5b17b5d3ba784", "title": "Real-Time Face Identification via CNN and Boosted Hashing Forest", "year": "2016", "pdf": ["http://vislab.ucr.edu/Biometrics16/CVPRW_Vizilter.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Vizilter_Real-Time_Face_Identification_CVPR_2016_paper.pdf"]}, {"id": "ca5e9973a4494c608548f639eb9a391f6235d4f0", "title": "Robust RGB-D Face Recognition Using Attribute-Aware Loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09847.pdf"]}, {"id": "b35ff9985aaee9371588330bcef0dfc88d1401d7", "title": "Deep Density Clustering of Unconstrained Faces", "year": "2018", "pdf": []}, {"id": "1f94734847c15fa1da68d4222973950d6b683c9e", "title": "Embedding Label Structures for Fine-Grained Feature Representation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.02895.pdf"]}, {"id": "c7c21e78bdadd1d2d98c43f0be3230e59f008b27", "title": "Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.00906.pdf"]}, {"id": "dbced84d839165d9b494982449aa2eb9109b8467", "title": "Extreme 3D Face Reconstruction: Looking Past Occlusions", "year": "2017", "pdf": []}, {"id": "193bc8b663d041bc34134a8407adc3e546daa9cc", "title": "A Quantitative Comparison of Methods for 3D Face Reconstruction from 2D Images", "year": "2018", "pdf": []}, {"id": "81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f", "title": "Comparison of Face Recognition Neural Networks", "year": "", "pdf": ["https://pdfs.semanticscholar.org/8169/5fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f.pdf"]}, {"id": "5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f", "title": "Targeting Ultimate Accuracy: Face Recognition via Deep Embedding", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.07310.pdf"]}, {"id": "d40c4e370d35264e324e4e3d5df59e51518c9979", "title": "A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04068.pdf"]}, {"id": "7d40e7e5c01bd551edf65902386401e1b8b8014b", "title": "Channel-Level Acceleration of Deep Face Representations", "year": "2015", "pdf": ["http://www.cs.tau.ac.il/~wolf/papers/RRR_cameraready.pdf"]}, {"id": "7b455cbb320684f78cd8f2443f14ecf5f50426db", "title": "A Fast and Robust Negative Mining Approach for Enrollment in Face Recognition Systems", "year": "2017", "pdf": ["http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/275553/1/Martins_SamuelBotter_M.pdf"]}, {"id": "0a23bdc55fb0d04acdac4d3ea0a9994623133562", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"]}, {"id": "93d11da02205bbc5ae68e521e421f70a4b74a7f7", "title": "Emotion recognition and reaction prediction in videos", "year": "2017", "pdf": []}, {"id": "8da32ff9e3759dc236878ac240728b344555e4e9", "title": "Investigating Nuisance Factors in Face Recognition with DCNN Representation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Ferrari_Investigating_Nuisance_Factors_CVPR_2017_paper.pdf"]}]}
\ No newline at end of file +{"id": "853bd61bc48a431b9b1c7cab10c603830c488e39", "citations": [{"id": "0c65226edb466204189b5aec8f1033542e2c17aa", "title": "A study of CNN outside of training conditions", "year": "2017", "pdf": []}, {"id": "f49b4ab188dd090367d9f6762473879b2bba16cf", "title": "Extreme 3D Face Reconstruction: Seeing Through Occlusions", "year": "2018", "pdf": []}, {"id": "b4f3e9fc0a2b40595ae0a625d1d768a57a7c2eba", "title": "Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.08837.pdf"]}, {"id": "8de1c724a42d204c0050fe4c4b4e81a675d7f57c", "title": "Deep Face Recognition: A Survey", "year": "2018", "pdf": ["https://talhassner.github.io/home/projects/DeepFaceSurvey/Masietal2018deepfacesurvey.pdf"]}, {"id": "2c052a1c77a3ec2604b3deb702d77c41418c7d3e", "title": "What Is the Challenge for Deep Learning in Unconstrained Face Recognition?", "year": "2018", "pdf": []}, {"id": "2b251294bea1e49f9a646a67e6c57c9d3e1af483", "title": "Learning to generate filters for convolutional neural networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.01894.pdf"]}, {"id": "f20e0eefd007bc310d2a753ba526d33a8aba812c", "title": "Accurate and robust face recognition from RGB-D images with a deep learning approach", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/116e/c3a1a8225362a3e3e445df45036fae7cadc6.pdf"]}, {"id": "2e0d56794379c436b2d1be63e71a215dd67eb2ca", "title": "Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.03872.pdf"]}, {"id": "8cd9475a3a1b2bcccf2034ce8f4fe691c57a4889", "title": "Noisy Face Image Sets Refining Collaborated with Discriminant Feature Space Learning", "year": "2017", "pdf": []}, {"id": "f294278e03868257bfce132b8cf189359ada915a", "title": "Boosting Face in Video Recognition via CNN Based Key Frame Extraction", "year": "2018", "pdf": ["https://www.clarkson.edu/sites/default/files/2018-03/Boosting%20Face%20in%20Video%20Recognition%20via%20CNN%20based%20Key%20Frame%20Extraction.pdf"]}, {"id": "e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227", "title": "Pairwise Relational Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04976.pdf"]}, {"id": "173657da03e3249f4e47457d360ab83b3cefbe63", "title": "HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1736/57da03e3249f4e47457d360ab83b3cefbe63.pdf"]}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": []}, {"id": "0aebe97a92f590bdf21cdadfddec8061c682cdb2", "title": "Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification", "year": "2018", "pdf": []}, {"id": "0cb2dd5f178e3a297a0c33068961018659d0f443", "title": "IARPA Janus Benchmark-B Face Dataset", "year": "2017", "pdf": []}, {"id": "128d99fbe91b0ee593d70f3e78fe582aaa9f8ded", "title": "Residual Encoder Decoder Network and Adaptive Prior for Face Parsing", "year": "2018", "pdf": []}, {"id": "d44a93027208816b9e871101693b05adab576d89", "title": "On the Capacity of Face Representation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.10433.pdf"]}, {"id": "10e4172dd4f4a633f10762fc5d4755e61d52dc36", "title": "Learning Multifunctional Binary Codes for Both Category and Attribute Oriented Retrieval Tasks", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Liu_Learning_Multifunctional_Binary_CVPR_2017_paper.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/supplemental/Liu_Learning_Multifunctional_Binary_2017_CVPR_supplemental.pdf", "http://vipl.ict.ac.cn/homepage/rpwang/publications/Learning%20Multifunctional%20Binary%20Codes%20for%20Both%20Category%20and%20Attribute%20Oriented%20Retrieval%20Tasks_CVPR2017.pdf"]}, {"id": "6bb95a0f3668cd36407c85899b71c9fe44bf9573", "title": "Face attribute prediction using off-the-shelf CNN features", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.03935.pdf"]}, {"id": "014b4335d055679bc680a6ceb6f1a264d8ce8a4a", "title": "Are You Sure You Want To Do That? Classification with Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.02652.pdf"]}, {"id": "1b805f8cbcffe7f5e2cc7af86b5649330b15298d", "title": "Heterogeneous Face Recognition Using Domain Specific Units", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1b80/5f8cbcffe7f5e2cc7af86b5649330b15298d.pdf"]}, {"id": "c607572fd2594ca83f732c9790fd590da9e69eb1", "title": "Comparative Evaluation of Deep Architectures for Face Recognition in Unconstrained Environment ( FRUE )", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/c607/572fd2594ca83f732c9790fd590da9e69eb1.pdf"]}, {"id": "b6259115b819424de53bb92f64cc459dcb649f31", "title": "Learning Feature Representation for Face Verification", "year": "2017", "pdf": []}, {"id": "42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830", "title": "Coordinated Local Metric Learning", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Saxena_Coordinated_Local_Metric_ICCV_2015_paper.pdf"]}, {"id": "47e14fdc6685f0b3800f709c32e005068dfc8d47", "title": "Secure Face Matching Using Fully Homomorphic Encryption", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.00577.pdf"]}, {"id": "02c7740af5540f23a2da23d1769e64a8042ec62e", "title": "Big Data", "year": "2018", "pdf": ["https://ai.arizona.edu/sites/ai/files/MIS510/big_data_-_the_management_revolution_0.pdf", "https://www.bsc.es/ca/printpdf/research-and-development/research-areas/big-data"]}, {"id": "1ef4aac0ebc34e76123f848c256840d89ff728d0", "title": "Rapid Synthesis of Massive Face Sets for Improved Face Recognition", "year": "2017", "pdf": ["http://www.openu.ac.il/home/hassner/projects/augmented_faces/Masietal2017rapid.pdf"]}, {"id": "8699268ee81a7472a0807c1d3b1db0d0ab05f40d", "title": "Channel-Recurrent Autoencoding for Image Modeling", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.03729.pdf"]}, {"id": "4b2b2b496262cc85172c1fa70bfea9dcd2ecf019", "title": "Deep learning and face recognition: the state of the art", "year": "2015", "pdf": ["https://arxiv.org/pdf/1902.03524.pdf"]}, {"id": "6278b2586a1240e3184d8d9c26e6efb50e55bc30", "title": "A Compact Deep Learning Model for Robust Facial Expression Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w41/Kuo_A_Compact_Deep_CVPR_2018_paper.pdf"]}, {"id": "ae5e92abd5929ee7f0a5aa1622aa094bac4fae29", "title": "RGB-D Face Recognition via Deep Complementary and Common Feature Learning", "year": "2018", "pdf": []}, {"id": "5c54e0f46330787c4fac48aecced9a8f8e37658a", "title": "Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w23/Ming_Simple_Triplet_Loss_ICCV_2017_paper.pdf"]}, {"id": "fca6df7d36f449d48a8d1e48a78c860d52e3baf8", "title": "Fine-Grained Age Estimation in the wild with Attention LSTM Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10445.pdf"]}, {"id": "9e297343da13cf9ba0ad8b5b75c07723136f4885", "title": "Regularizing Face Net for Discrete-valued Pain Regression", "year": "2017", "pdf": []}, {"id": "60e2b9b2e0db3089237d0208f57b22a3aac932c1", "title": "Frankenstein: Learning Deep Face Representations Using Small Data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1603.06470.pdf"]}, {"id": "1e8eee51fd3bf7a9570d6ee6aa9a09454254689d", "title": "Face Search at Scale", "year": "2017", "pdf": ["http://biometrics.cse.msu.edu/Publications/Face/WangOttoJain_FaceSearchAtScale_TPAMI.pdf"]}, {"id": "0db8e6eb861ed9a70305c1839eaef34f2c85bbaf", "title": "Towards Large-Pose Face Frontalization in the Wild", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.06244.pdf"]}, {"id": "1280b35e4a20036fcfd82ee09f45a3fca190276f", "title": "Face Verification Based on Feature Transfer via PCA-SVM Framework", "year": "2017", "pdf": []}, {"id": "a3ab2a7d596626a25f680b7dc9710ea2d34a8cbb", "title": "Machine Learning in Radiology: Applications Beyond Image Interpretation.", "year": "2018", "pdf": ["https://cerf.radiologie.fr/sites/cerf.radiologie.fr/files/Enseignement/pdf/Machine%20Learning%20in%20Radiology%20Applications%20Beyond%20Image%20Interpretation_Lakhani_JACR%202017.pdf"]}, {"id": "a8117a4733cce9148c35fb6888962f665ae65b1e", "title": "A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.00438.pdf"]}, {"id": "b5ca8d4f259f35c1f3edfd9f108ce29881e478b0", "title": "Disentangled Representation Learning GAN for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["http://cvlab.cse.msu.edu/pdfs/Tran_Yin_Liu_CVPR2017.pdf", "http://openaccess.thecvf.com/content_cvpr_2017/papers/Tran_Disentangled_Representation_Learning_CVPR_2017_paper.pdf"]}, {"id": "28d4e027c7e90b51b7d8908fce68128d1964668a", "title": "Level Playing Field for Million Scale Face Recognition", "year": "2017", "pdf": []}, {"id": "03f7041515d8a6dcb9170763d4f6debd50202c2b", "title": "Clustering Millions of Faces by Identity", "year": "2018", "pdf": ["https://arxiv.org/pdf/1604.00989.pdf"]}, {"id": "ef559d5f02e43534168fbec86707915a70cd73a0", "title": "DeepInsight: Multi-Task Multi-Scale Deep Learning for Mental Disorder Diagnosis", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ef55/9d5f02e43534168fbec86707915a70cd73a0.pdf"]}, {"id": "1ffe20eb32dbc4fa85ac7844178937bba97f4bf0", "title": "Face Clustering: Representation and Pairwise Constraints", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.05067.pdf"]}, {"id": "8813368c6c14552539137aba2b6f8c55f561b75f", "title": "Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1607.05427.pdf"]}, {"id": "0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e", "title": "Large age-gap face verification by feature injection in deep networks", "year": "2017", "pdf": ["https://arxiv.org/pdf/1602.06149.pdf"]}, {"id": "e13360cda1ebd6fa5c3f3386c0862f292e4dbee4", "title": "Range Loss for Deep Face Recognition with Long-Tailed Training Data", "year": "2016", "pdf": ["https://arxiv.org/pdf/1611.08976.pdf"]}, {"id": "a89cbc90bbb4477a48aec185f2a112ea7ebe9b4d", "title": "High Performance Large Scale Face Recognition with Multi-cognition Softmax and Feature Retrieval", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w27/Xu_High_Performance_Large_ICCV_2017_paper.pdf"]}, {"id": "ddf099f0e0631da4a6396a17829160301796151c", "title": "Chen et al . Face Quality Value : Input : Feat -\u2010 5 Features : L 2 R + PKM Model : Feat -\u2010", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ddf0/99f0e0631da4a6396a17829160301796151c.pdf"]}, {"id": "7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22", "title": "Labeled Faces in the Wild: A Survey", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7de6/e81d775e9cd7becbfd1bd685f4e2a5eebb22.pdf"]}, {"id": "380d5138cadccc9b5b91c707ba0a9220b0f39271", "title": "Deep Imbalanced Learning for Face Recognition and Attribute Prediction", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00194.pdf"]}, {"id": "2b2896f41480399e7182acfa9466a3f915885387", "title": "CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00408.pdf"]}, {"id": "cc47368fe303c6cbda38caf5ac0e1d1c9d7e2a52", "title": "University Classroom Attendance Based on Deep Learning", "year": "2017", "pdf": []}, {"id": "d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0", "title": "Minimalistic CNN-based ensemble model for gender prediction from face images", "year": "2016", "pdf": ["http://www.eurecom.fr/en/publication/4768/download/mm-publi-4768.pdf"]}, {"id": "050a149051a5d268fcc5539e8b654c2240070c82", "title": "Magisterske\u0301 a doktorske\u0301 studijn\u0131\u0301 programy", "year": "2014", "pdf": ["https://pdfs.semanticscholar.org/050a/149051a5d268fcc5539e8b654c2240070c82.pdf"]}, {"id": "f3850d8ec9779e8e15da9831ba23d4cdca1dd4ee", "title": "Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials", "year": "2018", "pdf": []}, {"id": "6412d8bbcc01f595a2982d6141e4b93e7e982d0f", "title": "Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Kang_Deep_Convolutional_Neural_CVPR_2017_paper.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/PaperID56_CVPRW_BNKANG_Oral.pdf", "http://www.vislab.ucr.edu/Biometrics2017/program_slides/PaperID56_CVPRW_BNKANG_Poster.pdf"]}, {"id": "6962505b78d0cec04b992a059cc58870c361c971", "title": "Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1811.00218.pdf"]}, {"id": "fa641327dc5873276f0af453a2caa1634c16f143", "title": "ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for Gesture Recognition", "year": "2016", "pdf": ["http://sergioescalera.com/wp-content/uploads/2016/05/gesture_paper.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Wan_ChaLearn_Looking_at_CVPR_2016_paper.pdf"]}, {"id": "9ea37d031a8f112292c0d0f8d731b837462714e9", "title": "Face Recognition: From Traditional to Deep Learning Methods", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00116.pdf"]}, {"id": "054738ce39920975b8dcc97e01b3b6cc0d0bdf32", "title": "Towards the design of an end-to-end automated system for image and video-based recognition", "year": "2016", "pdf": ["https://arxiv.org/pdf/1601.07883.pdf"]}, {"id": "cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce", "title": "Git Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08512.pdf"]}, {"id": "b49425f78907fcc447d181eb713abffc74dd85e4", "title": "Sampling Matters in Deep Embedding Learning", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.07567.pdf"]}, {"id": "a13a27e65c88b6cb4a414fd4f6bca780751a59db", "title": "Deep convolution neural network with stacks of multi-scale convolutional layer block using triplet of faces for face recognition in the wild", "year": "2016", "pdf": []}, {"id": "f60070d3a4d333aa1436e4c372b1feb5b316a7ba", "title": "Face Recognition via Centralized Coordinate Learning", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.05678.pdf"]}, {"id": "01e14d8ffd6767336d50c2b817a7b7744903e567", "title": "Deep Network Shrinkage Applied to Cross-Spectrum Face Recognition", "year": "2017", "pdf": []}, {"id": "26ebe98753acec806b7281d085110c06d9cd1e16", "title": "Self-Error-Correcting Convolutional Neural Network for Learning with Noisy Labels", "year": "2017", "pdf": []}, {"id": "7789252476073a77e80fb0668eecf94a99b81d8d", "title": "Fast Landmark Localization With 3D Component Reconstruction and CNN for Cross-Pose Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1708.09580.pdf"]}, {"id": "ddfde808af8dc8b737d115869d6cca780d050884", "title": "Minimum Margin Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.06741.pdf"]}, {"id": "59fc69b3bc4759eef1347161e1248e886702f8f7", "title": "Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/59fc/69b3bc4759eef1347161e1248e886702f8f7.pdf"]}, {"id": "2ea78e128bec30fb1a623c55ad5d55bb99190bd2", "title": "Residual vs. Inception vs. Classical Networks for Low-Resolution Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/2ea7/8e128bec30fb1a623c55ad5d55bb99190bd2.pdf"]}, {"id": "339937141ffb547af8e746718fbf2365cc1570c8", "title": "Facial Emotion Recognition in Real Time", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/3399/37141ffb547af8e746718fbf2365cc1570c8.pdf"]}, {"id": "ec39e9c21d6e2576f21936b1ecc1574dadaf291e", "title": "Pose-Robust Face Verification by Exploiting Competing Tasks", "year": "2017", "pdf": []}, {"id": "6cacda04a541d251e8221d70ac61fda88fb61a70", "title": "One-shot Face Recognition by Promoting Underrepresented Classes", "year": "2017", "pdf": ["https://arxiv.org/pdf/1707.05574.pdf"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": []}, {"id": "98b2f21db344b8b9f7747feaf86f92558595990c", "title": "PACES OF G ENERATIVE A DVERSARIAL N ETWORKS", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/98b2/f21db344b8b9f7747feaf86f92558595990c.pdf"]}, {"id": "e7144f5c19848e037bb96e225d1cfd961f82bd9f", "title": "Heterogeneous Face Recognition: Recent Advances in Infrared-to-Visible Matching", "year": "2017", "pdf": []}, {"id": "406c5aeca71011fd8f8bd233744a81b53ccf635a", "title": "Scalable softmax loss for face verification", "year": "2017", "pdf": []}, {"id": "37922bcfd75d50b7a500fbf61174ed3151fddfce", "title": "Efficient Statistical Face Recognition Using Trigonometric Series and CNN Features", "year": "2018", "pdf": []}, {"id": "b0c1615ebcad516b5a26d45be58068673e2ff217", "title": "How Image Degradations Affect Deep CNN-Based Face Recognition?", "year": "2016", "pdf": ["https://arxiv.org/pdf/1608.05246.pdf"]}, {"id": "91d513af1f667f64c9afc55ea1f45b0be7ba08d4", "title": "Automatic Face Image Quality Prediction", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.09887.pdf"]}, {"id": "e988be047b28ba3b2f1e4cdba3e8c94026139fcf", "title": "Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1702.04710.pdf"]}, {"id": "8395cf3535a6628c3bdc9b8d0171568d551f5ff0", "title": "Entropy Non-increasing Games for the Improvement of Dataflow Programming", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04389.pdf"]}, {"id": "4268ae436db79c4eee8bc06e9475caff3ff70d57", "title": "Five Principles for Crowd-Source Experiments in Face Recognition", "year": "2017", "pdf": []}, {"id": "c5b324f7f9abdffc1be83f640674beda81b74315", "title": "Towards Open-Set Identity Preserving Face Synthesis", "year": "2018", "pdf": []}, {"id": "b12431e61172443c534ea523a4d7407e847b5c5b", "title": "Yu\u0308z Tan\u0131maya Dayal\u0131 Kis\u0327i Bazl\u0131 Test Otomasyonu", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b124/31e61172443c534ea523a4d7407e847b5c5b.pdf"]}, {"id": "4f0b641860d90dfa4c185670bf636149a2b2b717", "title": "Improve Cross-Domain Face Recognition with IBN-block", "year": "2018", "pdf": []}, {"id": "98c548a4be0d3b62971e75259d7514feab14f884", "title": "Deep generative-contrastive networks for facial expression recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.07140.pdf"]}, {"id": "727d03100d4a8e12620acd7b1d1972bbee54f0e6", "title": "von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04264.pdf"]}, {"id": "06bd34951305d9f36eb29cf4532b25272da0e677", "title": "A Fast and Accurate System for Face Detection, Identification, and Verification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.07586.pdf"]}, {"id": "565f7c767e6b150ebda491e04e6b1de759fda2d4", "title": "Fine-grained face verification", "year": "2017", "pdf": []}, {"id": "cfd4004054399f3a5f536df71f9b9987f060f434", "title": "Person Recognition in Social Media Photos", "year": "2018", "pdf": ["https://arxiv.org/pdf/1710.03224.pdf"]}, {"id": "1bc214c39536c940b12c3a2a6b78cafcbfddb59a", "title": "Leveraging Gabor Phase for Face Identification in Controlled Scenarios", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/5cec/4dda1ba90aa61d54e4c5b61961915ffaf08c.pdf"]}, {"id": "f15b7c317f106816bf444ac4ffb6c280cd6392c7", "title": "Deep Disguised Faces Recognition", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Zhang_Deep_Disguised_Faces_CVPR_2018_paper.pdf"]}, {"id": "635158d2da146e9de559d2742a2fa234e06b52db", "title": "Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns", "year": "2015", "pdf": []}, {"id": "d0441970a9f19751e6c047b364f580c30bf9754a", "title": "Pose-Aware Person Recognition", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10120.pdf"]}, {"id": "2025392b7ebe267fbe13cb9fcd022ded8f7d1972", "title": "Multi-task Adversarial Network for Disentangled Feature Learning", "year": "2018", "pdf": []}, {"id": "3933e323653ff27e68c3458d245b47e3e37f52fd", "title": "Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3933/e323653ff27e68c3458d245b47e3e37f52fd.pdf"]}, {"id": "d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c", "title": "Face Album: Towards automatic photo management based on person identity on mobile phones", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0003031.pdf"]}, {"id": "9ce12c9f1d1661f56908edc8ef3848e91b24d557", "title": "Query Adaptive Late Fusion for Image Retrieval", "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.13103.pdf"]}, {"id": "6c40fc9df6588f7cb721537883167eede1b8d369", "title": "3D Face Reconstruction Based on Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "4739b47af26137ec52bbfb582e6f37e9e9f5aba0", "title": "Hard Example Mining with Auxiliary Embeddings", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Smirnov_Hard_Example_Mining_CVPR_2018_paper.pdf"]}, {"id": "20e504782951e0c2979d9aec88c76334f7505393", "title": "Robust LSTM-Autoencoders for Face De-Occlusion in the Wild", "year": "2018", "pdf": ["https://arxiv.org/pdf/1612.08534.pdf"]}, {"id": "571b83f7fc01163383e6ca6a9791aea79cafa7dd", "title": "SeqFace: Make full use of sequence information for face recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.06524.pdf"]}, {"id": "9ca542d744149f0efc8b8aac8289f5e38e6d200c", "title": "Gender and Smile Classification Using Deep Convolutional Neural Networks", "year": "2016", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2016_workshops/w18/papers/Zhang_Gender_and_Smile_CVPR_2016_paper.pdf"]}, {"id": "a35483c9becc95faa16bf70a8c6355566a205091", "title": "FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis", "year": "2018", "pdf": []}, {"id": "57178b36c21fd7f4529ac6748614bb3374714e91", "title": "IARPA Janus Benchmark - C: Face Dataset and Protocol", "year": "2018", "pdf": []}, {"id": "d31328b12eef33e7722b8e5505d0f9d9abe2ffd9", "title": "Deep Unsupervised Domain Adaptation for Face Recognition", "year": "2018", "pdf": []}, {"id": "d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d", "title": "Robust Face Recognition via Multimodal Deep Face Representation", "year": "2015", "pdf": ["https://arxiv.org/pdf/1509.00244.pdf"]}, {"id": "7aa4c16a8e1481629f16167dea313fe9256abb42", "title": "Multi-task learning for face identification and attribute estimation", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf"]}, {"id": "0ba6614ff9ed1cd00e07d44c5c61879958e7566b", "title": "Representation Learning by Rotating Your Faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1705.11136.pdf"]}, {"id": "84c5b45328dee855c4855a104ac9c0558cc8a328", "title": "Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition", "year": "2018", "pdf": []}, {"id": "486a82f50835ea888fbc5c6babf3cf8e8b9807bc", "title": "Face Search at Scale: 80 Million Gallery", "year": "2015", "pdf": ["https://arxiv.org/pdf/1507.07242.pdf"]}, {"id": "19d53bb35baf6ab02368756412800c218a2df71c", "title": "DeepDeblur: Fast one-step blurry face images restoration.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.09515.pdf"]}, {"id": "f0b30a9bb9740c2886d96fc44d6f35b8eacab4f3", "title": "Are You Sure You Want To Do That ? Classification with Interpretable Queries", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f0b3/0a9bb9740c2886d96fc44d6f35b8eacab4f3.pdf"]}, {"id": "77d31d2ec25df44781d999d6ff980183093fb3de", "title": "The Multiverse Loss for Robust Transfer Learning", "year": "2016", "pdf": ["https://arxiv.org/pdf/1511.09033.pdf"]}, {"id": "27da432cf2b9129dce256e5bf7f2f18953eef5a5", "title": "Face Recognition in Low Quality Images: A Survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.11519.pdf"]}, {"id": "204b2b9c33d2c3be77dbd6d82dfefd1dfa95d8a3", "title": "Deep Face Recognition under Eyeglass and Scale Variation Using Extended Siamese Network", "year": "2017", "pdf": []}, {"id": "0c0db39cac8cb76b52cfdbe10bde1c53d68d202f", "title": "Metric-based Generative Adversarial Network", "year": "2017", "pdf": []}, {"id": "be4faea0971ef74096ec9800750648b7601dda65", "title": "Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network", "year": "2017", "pdf": []}, {"id": "9286eab328444401a848cd2e13186840be8f0409", "title": "Multicolumn Networks for Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.09192.pdf"]}, {"id": "31b05f65405534a696a847dd19c621b7b8588263", "title": "UMDFaces: An annotated face dataset for training deep networks", "year": "2017", "pdf": []}, {"id": "de0eb358b890d92e8f67592c6e23f0e3b2ba3f66", "title": "Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1711.01587.pdf"]}, {"id": "c2bd9322fa2d0a00fc62075cc0f1996fc75d42a8", "title": "Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Zheng_Age_Estimation_Guided_CVPR_2017_paper.pdf"]}, {"id": "3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f", "title": "Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1707.07923.pdf"]}, {"id": "e79bacc03152ea55343e6af97bcd17d8904cf5ef", "title": "Recursive Spatial Transformer (ReST) for Alignment-Free Face Recognition", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Wu_Recursive_Spatial_Transformer_ICCV_2017_paper.pdf"]}, {"id": "5b7a5b8ea99ea79e0a0ae53b45bc9b2b1aa99952", "title": "Learning towards Minimum Hyperspherical Energy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.09298.pdf"]}, {"id": "9e1b0f50417867317a8cb8fe35c6b2617ad9641e", "title": "Diversity in Faces", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.10436.pdf"]}, {"id": "78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c", "title": "Improved Deep Metric Learning with Multi-class N-pair Loss Objective", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/78a1/1b7d2d7e1b19d92d2afd51bd3624eca86c3c.pdf"]}, {"id": "62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4", "title": "Noise-resistant network: a deep-learning method for face recognition under noise", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/62d1/a31b8acd2141d3a994f2d2ec7a3baf0e6dc4.pdf"]}, {"id": "44078d0daed8b13114cffb15b368acc467f96351", "title": "Triplet probabilistic embedding for face verification and clustering", "year": "2016", "pdf": ["https://arxiv.org/pdf/1604.05417.pdf"]}, {"id": "4aa18f3a1c85f7a09d3b0d6b28c0339199892d60", "title": "The Application of Neural Networks for Facial Landmarking on Mobile Devices", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4aa1/8f3a1c85f7a09d3b0d6b28c0339199892d60.pdf"]}, {"id": "3504907a2e3c81d78e9dfe71c93ac145b1318f9c", "title": "An End-to-End System for Unconstrained Face Verification with Deep Convolutional Neural Networks", "year": "2015", "pdf": ["https://arxiv.org/pdf/1605.02686.pdf"]}, {"id": "48499deeaa1e31ac22c901d115b8b9867f89f952", "title": "Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4849/9deeaa1e31ac22c901d115b8b9867f89f952.pdf"]}, {"id": "3cb2841302af1fb9656f144abc79d4f3d0b27380", "title": "When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf"]}, {"id": "dd8084b2878ca95d8f14bae73e1072922f0cc5da", "title": "Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.02929.pdf"]}, {"id": "48121f5937accc8050b0c9bf2be6d1c58b07a8a0", "title": "Multi-pose face recognition by dynamic loss weights", "year": "2017", "pdf": []}, {"id": "d6bdc70d259b38bbeb3a78db064232b4b4acc88f", "title": "Video-Based Face Association and Identification", "year": "2017", "pdf": []}, {"id": "2c92839418a64728438c351a42f6dc5ad0c6e686", "title": "Pose-Aware Face Recognition in the Wild", "year": "2016", "pdf": ["http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Masi_Pose-Aware_Face_Recognition_CVPR_2016_paper.pdf"]}, {"id": "5209758096819efee15751c8875121bd27f2ee78", "title": "Finding Person Relations in Image Data of the Internet Archive", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08246.pdf"]}, {"id": "3fe269cbe3a15aca4663d7086e0622ec5eb93c2d", "title": "Neural Information Processing", "year": "2018", "pdf": []}, {"id": "badde061da20510ca74b94818eb726d27ff2f491", "title": "Improving speech embedding using crossmodal transfer learning with audio-visual data", "year": "2018", "pdf": []}, {"id": "eb3066de677f9f6131aab542d9d426aaf50ed2ce", "title": "Deep Transfer Network with 3D Morphable Models for Face Recognition", "year": "2018", "pdf": []}, {"id": "59b6e9320a4e1de9216c6fc49b4b0309211b17e8", "title": "Robust Representations for unconstrained Face Recognition and its Applications", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/59b6/e9320a4e1de9216c6fc49b4b0309211b17e8.pdf"]}, {"id": "61825a32a8cb28045ef4769e35a9fea6a372a1a1", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6182/5a32a8cb28045ef4769e35a9fea6a372a1a1.pdf"]}, {"id": "d754586d1bed2074824d650305cb361ef2706f44", "title": "Deep convolutional BiLSTM fusion network for facial expression recognition", "year": "2019", "pdf": []}, {"id": "4209783b0cab1f22341f0600eed4512155b1dee6", "title": "Accurate and Efficient Similarity Search for Large Scale Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.00365.pdf"]}, {"id": "f1280f76933ba8b7f4a6b8662580504f02bb4ab6", "title": "Gender Classification by Deep Learning on Millions of Weakly Labelled Images", "year": "2016", "pdf": ["https://research-information.bristol.ac.uk/files/90114160/Sen_Jia_Gender_Classification_by_Deep_Learning_on_Millions_of_Weakly_Labelled_Images.pdf"]}, {"id": "83447d47bb2837b831b982ebf9e63616742bfdec", "title": "An Automatic System for Unconstrained Video-Based Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.04058.pdf"]}, {"id": "c758b9c82b603904ba8806e6193c5fefa57e9613", "title": "Heterogeneous Face Recognition with CNNs", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/c758/b9c82b603904ba8806e6193c5fefa57e9613.pdf"]}, {"id": "3d85cf942efda695347c7d95485fcd1e6796ee3a", "title": "Generating Photo-Realistic Training Data to Improve Face Recognition Accuracy", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.00112.pdf"]}, {"id": "f2004fff215a17ac132310882610ddafe25ba153", "title": "Facial Expression Recognition via Deep Learning", "year": "2017", "pdf": []}, {"id": "e4232e8fd566a7289ccb33f732c9093c9beb84a6", "title": "UHDB31: A Dataset for Better Understanding Face Recognition Across Pose and Illumination Variation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w37/Le_UHDB31_A_Dataset_ICCV_2017_paper.pdf"]}, {"id": "0b82bf595e76898993ed4f4b2883c42720c0f277", "title": "Improving Face Recognition by Exploring Local Features with Visual Attention", "year": "2018", "pdf": ["http://biometrics.cse.msu.edu/Publications/Fingerprint/Shietal_ImprovingFaceRecognitionByExploringLocalRegionsWithVisuaAttention_ICB2018.pdf"]}, {"id": "b6b24dfaf4c9e498ca9b9ee9f82d8d0c5bdb77e9", "title": "Rethinking Feature Distribution for Loss Functions in Image Classification", "year": "2018", "pdf": []}, {"id": "a1feab9029e49d1a5d4ad511be30bd40a423a1eb", "title": "Effective multiple person recognition in random video sequences using a convolutional neural network", "year": "2019", "pdf": []}, {"id": "d818568838433a6d6831adde49a58cef05e0c89f", "title": "AgeDB: The First Manually Collected, In-the-Wild Age Database", "year": "2017", "pdf": ["http://eprints.mdx.ac.uk/22044/1/agedb_kotsia.pdf", "http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf", "https://ibug.doc.ic.ac.uk/media/uploads/documents/agedb.pdf"]}, {"id": "b13ab3647352c3af2ba656f93b69bb5ae9a69fe5", "title": "Using deep learning for social analysis in egocentric images", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/b13a/b3647352c3af2ba656f93b69bb5ae9a69fe5.pdf"]}, {"id": "77c7d8012fe4179a814c1241a37a2256361bc1a4", "title": "BGP Face Retrieval Based on Coding Pyramid", "year": "2018", "pdf": []}, {"id": "94f74c6314ffd02db581e8e887b5fd81ce288dbf", "title": "A Light CNN for Deep Face Representation With Noisy Labels", "year": "2018", "pdf": ["https://arxiv.org/pdf/1511.02683.pdf"]}, {"id": "e295c1aa47422eb35123053038e62e9aa50a2e3a", "title": "ChaLearn Looking at People 2015: Apparent Age and Cultural Event Recognition Datasets and Results", "year": "2015", "pdf": ["http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Escalera_ChaLearn_Looking_at_ICCV_2015_paper.pdf"]}, {"id": "7ce03597b703a3b6754d1adac5fbc98536994e8f", "title": "On the Intrinsic Dimensionality of Face Representation", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.09672.pdf"]}, {"id": "a2e0966f303f38b58b898d388d1c83e40b605262", "title": "ECLIPSE: Ensembles of Centroids Leveraging Iteratively Processed Spatial Eclipse Clustering", "year": "2018", "pdf": []}, {"id": "011e6146995d5d63c852bd776f782cc6f6e11b7b", "title": "Fast Training of Triplet-Based Deep Binary Embedding Networks", "year": "2016", "pdf": ["https://arxiv.org/pdf/1603.02844.pdf"]}, {"id": "12e4545d07e1793df87520f384b37a015815d2f7", "title": "Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging", "year": "2018", "pdf": []}, {"id": "e278218ba1ff1b85d06680e99b08e817d0962dab", "title": "Tracking Persons-of-Interest via Unsupervised Representation Adaptation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1710.02139.pdf"]}, {"id": "f442a2f2749f921849e22f37e0480ac04a3c3fec", "title": "Critical Features for Face Recognition in Humans and Machines", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f442/a2f2749f921849e22f37e0480ac04a3c3fec.pdf"]}, {"id": "97f3d35d3567cd3d973c4c435cdd6832461b7c3c", "title": "Unleash the Black Magic in Age: A Multi-Task Deep Neural Network Approach for Cross-Age Face Verification", "year": "2017", "pdf": []}, {"id": "b6967d6096294bbac242b6f27e1fee51da24eb11", "title": "Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition", "year": "2018", "pdf": []}, {"id": "a50fa5048c61209149de0711b5f1b1806b43da00", "title": "Deep Features for Recognizing Disguised Faces in the Wild", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w1/Bansal_Deep_Features_for_CVPR_2018_paper.pdf"]}, {"id": "726f76f11e904d7fcb12736c276a0b00eb5cde49", "title": "A Performance Comparison of Loss Functions for Deep Face Recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.05903.pdf"]}, {"id": "2a7b7de7488211471a001044a3a249a117af488a", "title": "Physical Attribute Prediction Using Deep Residual Neural Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.07857.pdf"]}, {"id": "0ad4a814b30e096ad0e027e458981f812c835aa0", "title": "Leveraging mid-level deep representations for predicting face attributes in the wild", "year": "2016", "pdf": ["https://arxiv.org/pdf/1602.01827.pdf"]}, {"id": "0ee737085af468f264f57f052ea9b9b1f58d7222", "title": "SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.08370.pdf"]}, {"id": "1174b869c325222c3446d616975842e8d2989cf2", "title": "CosFace: Large Margin Cosine Loss for Deep Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.09414.pdf"]}, {"id": "1fc249ec69b3e23856b42a4e591c59ac60d77118", "title": "Evaluation of a 3D-aided pose invariant 2D face recognition system", "year": "2017", "pdf": []}, {"id": "6ac1dc59e823d924e797afaf5c4a960ed7106f2a", "title": "Deep Facial Expression Recognition: A Survey", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.08348.pdf"]}, {"id": "a52a69bf304d49fba6eac6a73c5169834c77042d", "title": "Margin Loss: Making Faces More Separable", "year": "2018", "pdf": []}, {"id": "80097a879fceff2a9a955bf7613b0d3bfa68dc23", "title": "Active Self-Paced Learning for Cost-Effective and Progressive Face Identification", "year": "2018", "pdf": ["https://arxiv.org/pdf/1701.03555.pdf"]}, {"id": "0077cd8f97cafd2b389783858a6e4ab7887b0b6b", "title": "Face Image Reconstruction from Deep Templates", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/0077/cd8f97cafd2b389783858a6e4ab7887b0b6b.pdf"]}, {"id": "de0ee491d2747a6f3d171f813fe6f5cdb3a27fd6", "title": "FPGA-accelerated deep convolutional neural networks for high throughput and energy efficiency", "year": "2017", "pdf": []}, {"id": "e7906370eae8655fb69844ae1a3d986c9f37c902", "title": "Face recognition using Deep Learning", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/e790/6370eae8655fb69844ae1a3d986c9f37c902.pdf"]}, {"id": "09f5033e1e91dae1f7f31cba2b65bbff1d5f8ca3", "title": "Face Recognition Based on Densely Connected Convolutional Networks", "year": "2018", "pdf": []}, {"id": "72a55554b816b66a865a1ec1b4a5b17b5d3ba784", "title": "Real-Time Face Identification via CNN and Boosted Hashing Forest", "year": "2016", "pdf": ["http://vislab.ucr.edu/Biometrics16/CVPRW_Vizilter.pdf", "http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w4/papers/Vizilter_Real-Time_Face_Identification_CVPR_2016_paper.pdf"]}, {"id": "ca5e9973a4494c608548f639eb9a391f6235d4f0", "title": "Robust RGB-D Face Recognition Using Attribute-Aware Loss", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.09847.pdf"]}, {"id": "b35ff9985aaee9371588330bcef0dfc88d1401d7", "title": "Deep Density Clustering of Unconstrained Faces", "year": "2018", "pdf": []}, {"id": "1f94734847c15fa1da68d4222973950d6b683c9e", "title": "Embedding Label Structures for Fine-Grained Feature Representation", "year": "2016", "pdf": ["https://arxiv.org/pdf/1512.02895.pdf"]}, {"id": "c7c21e78bdadd1d2d98c43f0be3230e59f008b27", "title": "Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach", "year": "2018", "pdf": ["https://arxiv.org/pdf/1706.00906.pdf"]}, {"id": "dbced84d839165d9b494982449aa2eb9109b8467", "title": "Extreme 3D Face Reconstruction: Looking Past Occlusions", "year": "2017", "pdf": []}, {"id": "193bc8b663d041bc34134a8407adc3e546daa9cc", "title": "A Quantitative Comparison of Methods for 3D Face Reconstruction from 2D Images", "year": "2018", "pdf": []}, {"id": "81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f", "title": "Comparison of Face Recognition Neural Networks", "year": "", "pdf": ["https://pdfs.semanticscholar.org/8169/5fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f.pdf"]}, {"id": "5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f", "title": "Targeting Ultimate Accuracy: Face Recognition via Deep Embedding", "year": "2015", "pdf": ["https://arxiv.org/pdf/1506.07310.pdf"]}, {"id": "d40c4e370d35264e324e4e3d5df59e51518c9979", "title": "A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering", "year": "2018", "pdf": ["https://arxiv.org/pdf/1808.04068.pdf"]}, {"id": "7d40e7e5c01bd551edf65902386401e1b8b8014b", "title": "Channel-Level Acceleration of Deep Face Representations", "year": "2015", "pdf": ["http://www.cs.tau.ac.il/~wolf/papers/RRR_cameraready.pdf"]}, {"id": "7b455cbb320684f78cd8f2443f14ecf5f50426db", "title": "A Fast and Robust Negative Mining Approach for Enrollment in Face Recognition Systems", "year": "2017", "pdf": ["http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/275553/1/Martins_SamuelBotter_M.pdf"]}, {"id": "0a23bdc55fb0d04acdac4d3ea0a9994623133562", "title": "Large-scale Bisample Learning on ID vs. Spot Face Recognition", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.03018.pdf"]}, {"id": "93d11da02205bbc5ae68e521e421f70a4b74a7f7", "title": "Emotion recognition and reaction prediction in videos", "year": "2017", "pdf": []}, {"id": "8da32ff9e3759dc236878ac240728b344555e4e9", "title": "Investigating Nuisance Factors in Face Recognition with DCNN Representation", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Ferrari_Investigating_Nuisance_Factors_CVPR_2017_paper.pdf"]}]}
\ No newline at end of file |
