diff options
Diffstat (limited to 'site/datasets/unknown/afad.json')
| -rw-r--r-- | site/datasets/unknown/afad.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/afad.json b/site/datasets/unknown/afad.json index 3d0266e6..79b90254 100644 --- a/site/datasets/unknown/afad.json +++ b/site/datasets/unknown/afad.json @@ -1 +1 @@ -{"id": "6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c", "citations": [{"id": "732e8d8f5717f8802426e1b9debc18a8361c1782", "title": "Unimodal Probability Distributions for Deep Ordinal Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/732e/8d8f5717f8802426e1b9debc18a8361c1782.pdf"], "doi": []}, {"id": "db24a2c27656db88486479b26f99d8754a44f4b8", "title": "Age estimation via face images : a survey", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/db24/a2c27656db88486479b26f99d8754a44f4b8.pdf"], "doi": []}, {"id": "6a951a47aa545e08508b0b2c6a2bef45e154a3a9", "title": "DeepCoder: Semi-Parametric Variational Autoencoders for Automatic Facial Action Coding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.02206.pdf"], "doi": []}, {"id": "0d3d290e93ac76d5ef2d6c8bbced79fb3101ad36", "title": "Conditional Adversarial Synthesis of 3D Facial Action Units.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.07421.pdf"], "doi": []}, {"id": "d6c8f5674030cf3f5a2f7cc929bad37a422b26a0", "title": "Face Aging Simulation with Deep Convolutional Generative Adversarial Networks", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337371"]}, {"id": "d7c2f972c21290e9df8cce1b4f89389983268cb7", "title": "Deep Regression Forests for Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578343"]}, {"id": "7942d0c6e5d1a2440061f2ea4bc27e32badb9c3d", "title": "Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.", "year": "2017", "pdf": ["http://protocols.netlab.uky.edu/~rvkavu2/research/rdoc-rios-jbi-17.pdf"], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/28506904", "http://doi.org/10.1016/j.jbi.2017.05.008"]}, {"id": "fc2b5fa51a275af4c96029ca18789504f9f55393", "title": "Relationships Self-Learning Based Gender-Aware Age Estimation", "year": "2019", "pdf": [], "doi": ["https://doi.org/10.1007/s11063-019-09993-9"]}, {"id": "7d20c8afb1815205bd696c0dd2e4dbcc66ab4d31", "title": "Ordinal Deep Feature Learning for Facial Age Estimation", "year": "2017", "pdf": ["http://ivg.au.tsinghua.edu.cn/paper/2017_Ordinal%20deep%20feature%20learning%20for%20facial%20age%20estimation.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961736", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.28", "http://doi.org/10.1109/FG.2017.28"]}, {"id": "0b07e4341303272b26be11262feb66c0a4412c43", "title": "Deep Learned Cumulative Attribute Regression", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373906", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00113", "http://doi.org/10.1109/FG.2018.00113"]}, {"id": "710011644006c18291ad512456b7580095d628a2", "title": "Learning Residual Images for Face Attribute Manipulation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.05363.pdf"], "doi": []}, {"id": "f46a526c423dd09a3f14f2c9a3838fb4f56fa730", "title": "Anchored Regression Networks Applied to Age Estimation and Super Resolution", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-ICCV-2017.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237444", "http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.182", "http://doi.org/10.1109/ICCV.2017.182"]}, {"id": "dd6bdc336a8cbcde80725922b637617b5abb26af", "title": "Weakly-Supervised Deep Convolutional Neural Network Learning for Facial Action Unit Intensity Estimation", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/Supplemental/1467-supp.pdf", "http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Weakly-Supervised_Deep_Convolutional_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578344", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00246", "http://doi.org/10.1109/CVPR.2018.00246"]}, {"id": "5da29e393a92632633095ddd5e1b343bc5b11876", "title": "Deep Ordinal Regression Network for Monocular Depth Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578312"]}, {"id": "677251fae7ccc62bb776374daee146cc2b7f0f4b", "title": "DeepCoder: Semi-parametric Variational Autoencoders for Facial Action Unit Intensity Estimation", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6772/51fae7ccc62bb776374daee146cc2b7f0f4b.pdf"], "doi": []}, {"id": "9427c56810d422bdff00adaec42f13ecbc0aa811", "title": "Recurrent convolutional network for video-based smoke detection", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/s11042-017-5561-5"]}, {"id": "3540625bc996601a9d04c4027169b7fcad1b9eae", "title": "TECHNIQUES IN ORDINAL CLASSIFICATION AND IMAGE-TO-IMAGE TRANSLATION", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3540/625bc996601a9d04c4027169b7fcad1b9eae.pdf"], "doi": []}, {"id": "555222f2ad6dae447eef04f96fa40c1b8a397150", "title": "CaloriNet: From silhouettes to calorie estimation in private environments", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08152.pdf"], "doi": []}, {"id": "f9bce7bd7909f1c75dbeb44900d374bc89072df0", "title": "Weakly-Supervised Attention and Relation Learning for Facial Action Unit Detection", "year": "2018", "pdf": [], "doi": []}, {"id": "806c07757431ab3fd91f4276d350186cf6f9b7e4", "title": "Copula Ordinal Regression Framework for Joint Estimation of Facial Action Unit Intensity", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1892/5ac92f9c8f6e82e0cc7a843234c6c494c4cc.pdf"], "doi": []}, {"id": "b1301c722886b6028d11e4c2084ee96466218be4", "title": "Facial Aging and Rejuvenation by Conditional Multi-Adversarial Autoencoder with Ordinal Regression.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.02740.pdf"], "doi": []}, {"id": "b2543a583d7c6e74ed69f49d4f9a592ef54c6dcb", "title": "Mean-Variance Loss for Deep Age Estimation from a Face", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578652"]}, {"id": "9ee35b278064554a1e3c2f9d8396f5a2fe5caa8e", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578147"]}, {"id": "02e17f547dd75eee7282af1b5ad2626829615ac9", "title": "Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking", "year": "2017", "pdf": ["https://arxiv.org/pdf/1705.10118.pdf"], "doi": []}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": [], "doi": []}, {"id": "dfabe7ef245ca68185f4fcc96a08602ee1afb3f7", "title": "Group-aware deep feature learning for facial age estimation", "year": "2017", "pdf": ["http://ivg.au.tsinghua.edu.cn/paper/2017_Group-aware%20deep%20feature%20learning%20for%20facial%20age%20estimation.pdf"], "doi": ["http://doi.org/10.1016/j.patcog.2016.10.026"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575487"]}, {"id": "22bebedc1a5f3556cb4f577bdbe032299a2865e8", "title": "Effective training of convolutional neural networks for face-based gender and age prediction", "year": "2017", "pdf": ["http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf"], "doi": ["http://doi.org/10.1016/j.patcog.2017.06.031"]}, {"id": "390dc36d547dbf9bc9774ec8de454e6317a2d170", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"], "doi": []}, {"id": "acc37d228f6cb2205497df81532c582ed71dd9fe", "title": "Deep Ordinal Ranking for Multi-Category Diagnosis of Alzheimer's Disease using Hippocampal MRI data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01599.pdf"], "doi": []}, {"id": "8f89aed13cb3555b56fccd715753f9ea72f27f05", "title": "Attended End-to-end Architecture for Age Estimation from Facial Expression Videos.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08690.pdf"], "doi": []}, {"id": "b034cc919af30e96ee7bed769b93ea5828ae361b", "title": "Soft-Margin Mixture of Regressions", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Soft-Margin_Mixture_of_CVPR_2017_paper.pdf", "http://www.ca.cs.cmu.edu/sites/default/files/08099915.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099915", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.432", "http://doi.org/10.1109/CVPR.2017.432"]}, {"id": "1b9472907f5b7a1815c98b4562dce6c46dd2cf34", "title": "Consistent Rank Logits for Ordinal Regression with Convolutional Neural Networks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.07884.pdf"], "doi": []}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072", "http://doi.org/10.1109/ACCESS.2018.2836924"]}, {"id": "330126c9dd71b3b0319d6429737186f1f20057a7", "title": "Deep Ordinal Regression Based on Data Relationship for Small Datasets", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3301/26c9dd71b3b0319d6429737186f1f20057a7.pdf"], "doi": []}, {"id": "61825a32a8cb28045ef4769e35a9fea6a372a1a1", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6182/5a32a8cb28045ef4769e35a9fea6a372a1a1.pdf"], "doi": []}]}
\ No newline at end of file +{"id": "6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c", "citations": [{"id": "732e8d8f5717f8802426e1b9debc18a8361c1782", "title": "Unimodal Probability Distributions for Deep Ordinal Classification", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/732e/8d8f5717f8802426e1b9debc18a8361c1782.pdf"], "doi": []}, {"id": "db24a2c27656db88486479b26f99d8754a44f4b8", "title": "Age estimation via face images : a survey", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/db24/a2c27656db88486479b26f99d8754a44f4b8.pdf"], "doi": []}, {"id": "6a951a47aa545e08508b0b2c6a2bef45e154a3a9", "title": "DeepCoder: Semi-Parametric Variational Autoencoders for Automatic Facial Action Coding", "year": "2017", "pdf": ["https://arxiv.org/pdf/1704.02206.pdf"], "doi": []}, {"id": "0d3d290e93ac76d5ef2d6c8bbced79fb3101ad36", "title": "Conditional Adversarial Synthesis of 3D Facial Action Units.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1802.07421.pdf"], "doi": []}, {"id": "d6c8f5674030cf3f5a2f7cc929bad37a422b26a0", "title": "Face Aging Simulation with Deep Convolutional Generative Adversarial Networks", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337371"]}, {"id": "d7c2f972c21290e9df8cce1b4f89389983268cb7", "title": "Deep Regression Forests for Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578343"]}, {"id": "7942d0c6e5d1a2440061f2ea4bc27e32badb9c3d", "title": "Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.", "year": "2017", "pdf": ["http://protocols.netlab.uky.edu/~rvkavu2/research/rdoc-rios-jbi-17.pdf"], "doi": ["https://www.ncbi.nlm.nih.gov/pubmed/28506904", "http://doi.org/10.1016/j.jbi.2017.05.008"]}, {"id": "fc2b5fa51a275af4c96029ca18789504f9f55393", "title": "Relationships Self-Learning Based Gender-Aware Age Estimation", "year": "2019", "pdf": [], "doi": ["https://doi.org/10.1007/s11063-019-09993-9"]}, {"id": "7d20c8afb1815205bd696c0dd2e4dbcc66ab4d31", "title": "Ordinal Deep Feature Learning for Facial Age Estimation", "year": "2017", "pdf": ["http://ivg.au.tsinghua.edu.cn/paper/2017_Ordinal%20deep%20feature%20learning%20for%20facial%20age%20estimation.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961736", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.28", "http://doi.org/10.1109/FG.2017.28"]}, {"id": "0b07e4341303272b26be11262feb66c0a4412c43", "title": "Deep Learned Cumulative Attribute Regression", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8373906", "http://doi.ieeecomputersociety.org/10.1109/FG.2018.00113", "http://doi.org/10.1109/FG.2018.00113"]}, {"id": "710011644006c18291ad512456b7580095d628a2", "title": "Learning Residual Images for Face Attribute Manipulation", "year": "2017", "pdf": ["https://arxiv.org/pdf/1612.05363.pdf"], "doi": []}, {"id": "f46a526c423dd09a3f14f2c9a3838fb4f56fa730", "title": "Anchored Regression Networks Applied to Age Estimation and Super Resolution", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_ICCV_2017/papers/Agustsson_Anchored_Regression_Networks_ICCV_2017_paper.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-ICCV-2017.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237444", "http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.182", "http://doi.org/10.1109/ICCV.2017.182"]}, {"id": "dd6bdc336a8cbcde80725922b637617b5abb26af", "title": "Weakly-Supervised Deep Convolutional Neural Network Learning for Facial Action Unit Intensity Estimation", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2018/Supplemental/1467-supp.pdf", "http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Weakly-Supervised_Deep_Convolutional_CVPR_2018_paper.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578344", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00246", "http://doi.org/10.1109/CVPR.2018.00246"]}, {"id": "5da29e393a92632633095ddd5e1b343bc5b11876", "title": "Deep Ordinal Regression Network for Monocular Depth Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578312"]}, {"id": "677251fae7ccc62bb776374daee146cc2b7f0f4b", "title": "DeepCoder: Semi-parametric Variational Autoencoders for Facial Action Unit Intensity Estimation", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6772/51fae7ccc62bb776374daee146cc2b7f0f4b.pdf"], "doi": []}, {"id": "9427c56810d422bdff00adaec42f13ecbc0aa811", "title": "Recurrent convolutional network for video-based smoke detection", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1007/s11042-017-5561-5"]}, {"id": "3540625bc996601a9d04c4027169b7fcad1b9eae", "title": "TECHNIQUES IN ORDINAL CLASSIFICATION AND IMAGE-TO-IMAGE TRANSLATION", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3540/625bc996601a9d04c4027169b7fcad1b9eae.pdf"], "doi": []}, {"id": "555222f2ad6dae447eef04f96fa40c1b8a397150", "title": "CaloriNet: From silhouettes to calorie estimation in private environments", "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.08152.pdf"], "doi": []}, {"id": "f9bce7bd7909f1c75dbeb44900d374bc89072df0", "title": "Weakly-Supervised Attention and Relation Learning for Facial Action Unit Detection", "year": "2018", "pdf": [], "doi": []}, {"id": "806c07757431ab3fd91f4276d350186cf6f9b7e4", "title": "Copula Ordinal Regression Framework for Joint Estimation of Facial Action Unit Intensity", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/1892/5ac92f9c8f6e82e0cc7a843234c6c494c4cc.pdf"], "doi": []}, {"id": "b1301c722886b6028d11e4c2084ee96466218be4", "title": "Facial Aging and Rejuvenation by Conditional Multi-Adversarial Autoencoder with Ordinal Regression.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.02740.pdf"], "doi": []}, {"id": "b2543a583d7c6e74ed69f49d4f9a592ef54c6dcb", "title": "Mean-Variance Loss for Deep Age Estimation from a Face", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578652"]}, {"id": "9ee35b278064554a1e3c2f9d8396f5a2fe5caa8e", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578147"]}, {"id": "380dd0ddd5d69adc52defc095570d1c22952f5cc", "title": "Improving Smiling Detection with Race and Gender Diversity", "year": "2017", "pdf": [], "doi": []}, {"id": "dfabe7ef245ca68185f4fcc96a08602ee1afb3f7", "title": "Group-aware deep feature learning for facial age estimation", "year": "2017", "pdf": ["http://ivg.au.tsinghua.edu.cn/paper/2017_Group-aware%20deep%20feature%20learning%20for%20facial%20age%20estimation.pdf"], "doi": ["http://doi.org/10.1016/j.patcog.2016.10.026"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575487"]}, {"id": "22bebedc1a5f3556cb4f577bdbe032299a2865e8", "title": "Effective training of convolutional neural networks for face-based gender and age prediction", "year": "2017", "pdf": ["http://www.eurecom.fr/fr/publication/5252/download/sec-publi-5252.pdf"], "doi": ["http://doi.org/10.1016/j.patcog.2017.06.031"]}, {"id": "390dc36d547dbf9bc9774ec8de454e6317a2d170", "title": "InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity", "year": "2017", "pdf": ["https://arxiv.org/pdf/1712.00193.pdf"], "doi": []}, {"id": "acc37d228f6cb2205497df81532c582ed71dd9fe", "title": "Deep Ordinal Ranking for Multi-Category Diagnosis of Alzheimer's Disease using Hippocampal MRI data", "year": "2017", "pdf": ["https://arxiv.org/pdf/1709.01599.pdf"], "doi": []}, {"id": "8f89aed13cb3555b56fccd715753f9ea72f27f05", "title": "Attended End-to-end Architecture for Age Estimation from Facial Expression Videos.", "year": "2017", "pdf": ["https://arxiv.org/pdf/1711.08690.pdf"], "doi": []}, {"id": "b034cc919af30e96ee7bed769b93ea5828ae361b", "title": "Soft-Margin Mixture of Regressions", "year": "2017", "pdf": ["http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Soft-Margin_Mixture_of_CVPR_2017_paper.pdf", "http://www.ca.cs.cmu.edu/sites/default/files/08099915.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099915", "http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.432", "http://doi.org/10.1109/CVPR.2017.432"]}, {"id": "1b9472907f5b7a1815c98b4562dce6c46dd2cf34", "title": "Consistent Rank Logits for Ordinal Regression with Convolutional Neural Networks", "year": "2019", "pdf": ["https://arxiv.org/pdf/1901.07884.pdf"], "doi": []}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072", "http://doi.org/10.1109/ACCESS.2018.2836924"]}, {"id": "330126c9dd71b3b0319d6429737186f1f20057a7", "title": "Deep Ordinal Regression Based on Data Relationship for Small Datasets", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3301/26c9dd71b3b0319d6429737186f1f20057a7.pdf"], "doi": []}, {"id": "61825a32a8cb28045ef4769e35a9fea6a372a1a1", "title": "Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description s\u00e9mantique des traits visuels humains)", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/6182/5a32a8cb28045ef4769e35a9fea6a372a1a1.pdf"], "doi": []}]}
\ No newline at end of file |
