summaryrefslogtreecommitdiff
path: root/site/datasets/unknown/adience.json
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/unknown/adience.json')
-rw-r--r--site/datasets/unknown/adience.json2
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/unknown/adience.json b/site/datasets/unknown/adience.json
index 9d481e38..1818dcb6 100644
--- a/site/datasets/unknown/adience.json
+++ b/site/datasets/unknown/adience.json
@@ -1 +1 @@
-{"id": "1be498d4bbc30c3bfd0029114c784bc2114d67c0", "citations": [{"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": [], "doi": []}, {"id": "02138f475677ca1f9a5919870a78a3e4518b395a", "title": "Fusion of Domain-Specific and Trainable Features for Gender Recognition From Face Images", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979"]}, {"id": "03f3bde03f83c3ff4f346d761fde4ce031dd4c69", "title": "Deep Models Calibration with Bayesian Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03f3/bde03f83c3ff4f346d761fde4ce031dd4c69.pdf"], "doi": []}, {"id": "772a30f1a7a3071e5ce6ad4b0dbddc67889f5873", "title": "FDAR-Net: Joint Convolutional Neural Networks for Face Detection and Attribute Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7830820"]}, {"id": "0435a34e93b8dda459de49b499dd71dbb478dc18", "title": "VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks", "year": "2018", "pdf": [], "doi": []}, {"id": "f77c9bf5beec7c975584e8087aae8d679664a1eb", "title": "Local Deep Neural Networks for Age and Gender Classification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08497.pdf"], "doi": []}, {"id": "633c851ebf625ad7abdda2324e9de093cf623141", "title": "Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727"]}, {"id": "dedbf5d18bbb995215d513abb21c8555fcd1b5f4", "title": "Contributions to Deep Learning Models", "year": "2016", "pdf": ["https://riunet.upv.es/bitstream/handle/10251/61296/MANSANET%20-%20Contributions%20to%20Deep%20Learning%20Models.pdf;jsessionid=118A8263B301DE77F2C02BDA0178D474?sequence=1", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_castellano.pdf?isAllowed=y&sequence=3", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_ingles.pdf?isAllowed=y&sequence=5", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_valenciano.pdf?isAllowed=y&sequence=4"], "doi": ["https://doi.org/10.4995/Thesis%2F10251%2F61296"]}, {"id": "341ed69a6e5d7a89ff897c72c1456f50cfb23c96", "title": "DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04280.pdf"], "doi": []}, {"id": "8355d095d3534ef511a9af68a3b2893339e3f96b", "title": "DEX: Deep EXpectation of Apparent Age from a Single Image", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390"]}, {"id": "166186e551b75c9b5adcc9218f0727b73f5de899", "title": "Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf"], "doi": []}, {"id": "635158d2da146e9de559d2742a2fa234e06b52db", "title": "Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns", "year": "2015", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=2830587"]}, {"id": "9ee35b278064554a1e3c2f9d8396f5a2fe5caa8e", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578147"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575487"]}, {"id": "b839bc95794dc65340b6e5fea098fa6e6ea5e430", "title": "Soft Biometrics in Online Social Networks: A Case Study on Twitter User Gender Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912201", "http://doi.org/10.1109/WACVW.2017.8"]}, {"id": "b8b9cef0938975c5b640b7ada4e3dea6c06d64e9", "title": "Metric-Promoted Siamese Network for Gender Classification", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961849", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.119", "http://doi.org/10.1109/FG.2017.119"]}, {"id": "7361b900018f22e37499443643be1ff9d20edfd6", "title": "Predictive biometrics: a review and analysis of predicting personal characteristics from biometric data", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1049/iet-bmt.2016.0169"]}, {"id": "e8951cc76af80da43e3528fe6d984071f17f57e7", "title": "Online Cost Efficient Customer Recognition System for Retail Analytics", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912202", "http://doi.org/10.1109/WACVW.2017.9"]}, {"id": "7cee802e083c5e1731ee50e731f23c9b12da7d36", "title": "2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02181.pdf"], "doi": []}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "d9c0310203179d5328c4f1475fa4d68c5f0c7324", "title": "Face Analysis in the Wild", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8250221", "http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI-T.2017.11", "http://doi.org/10.1109/SIBGRAPI-T.2017.11"]}, {"id": "7aa4c16a8e1481629f16167dea313fe9256abb42", "title": "Multi-task learning for face identification and attribute estimation", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952703", "http://doi.org/10.1109/ICASSP.2017.7952703"]}, {"id": "8879083463a471898ff9ed9403b84db277be5bf6", "title": "Regression Facial Attribute Classification via simultaneous dictionary learning", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1016/j.patcog.2016.08.031"]}, {"id": "2c03df8b48bf3fa39054345bafabfeff15bfd11d", "title": "Deep Residual Learning for Image Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780459"]}, {"id": "d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0", "title": "Minimalistic CNN-based ensemble model for gender prediction from face images", "year": "2016", "pdf": ["http://www.eurecom.fr/en/publication/4768/download/mm-publi-4768.pdf"], "doi": ["http://doi.org/10.1016/j.patrec.2015.11.011"]}, {"id": "6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c", "title": "Ordinal Regression with Multiple Output CNN for Age Estimation", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780901"]}, {"id": "9871aa511ca7e3c61c083c327063442bc2c411bf", "title": "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1109/iccv.2017.244"]}, {"id": "140c95e53c619eac594d70f6369f518adfea12ef", "title": "Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298803"]}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072", "http://doi.org/10.1109/ACCESS.2018.2836924"]}, {"id": "d019a79c98bf094b99a103a7481e8d975e4a0685", "title": "Implementation of machine learning for gender detection using CNN on raspberry Pi platform", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398872"]}, {"id": "091f6541ffd83985405334842dc60e16d4c52a12", "title": "Real-time demographic profiling from face imagery with Fisher vectors", "year": "2018", "pdf": ["http://www.micc.unifi.it/seidenari/wp-content/papercite-data/pdf/mva18.pdf", "https://www.micc.unifi.it/wp-content/uploads/2019/01/realtime-demographic.pdf"], "doi": ["https://doi.org/10.1007/s00138-018-0991-2"]}]} \ No newline at end of file
+{"id": "1be498d4bbc30c3bfd0029114c784bc2114d67c0", "citations": [{"id": "48d6ec99c63993793195a97e851bf48d6f100dbd", "title": "Improving Borderline Adulthood Facial Age Estimation through Ensemble Learning", "year": "2019", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3341491"]}, {"id": "b286bd248a25a21433ff1be716a9f26b86b19eed", "title": "Face Recognition Algorithm Bias : Performance Differences on Images of Children and Adults", "year": "", "pdf": ["https://pdfs.semanticscholar.org/b286/bd248a25a21433ff1be716a9f26b86b19eed.pdf"], "doi": []}, {"id": "3b3c27db723528d8f66a2f30d15ed61f1034f93c", "title": "A survey on facial soft biometrics for video surveillance and forensic applications", "year": "2019", "pdf": [], "doi": ["https://doi.org/10.1007/s10462-019-09689-5"]}, {"id": "37af4ca31bb680a3f82bb5eb22c826e14d53b9a3", "title": "Face Attributes Prediction Based on Deep Learning", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8663729"]}, {"id": "879cd69657a64d279614b86795ec94b9c3ce9c42", "title": "Pyramidal RoR for image classification", "year": "2017", "pdf": ["http://arxiv.org/pdf/1710.00307", "http://arxiv-export-lb.library.cornell.edu/pdf/1710.00307", "https://arxiv.org/pdf/1710.00307.pdf"], "doi": ["https://doi.org/10.1007/s10586-017-1443-x"]}, {"id": "72d0522fca819d738a14e04f427ea900b58e3020", "title": "POSITIONAL TERNARY PATTERN FEATURES BASED HUMAN AGE CLASSIFICATION AND ESTIMATION USING ARTIFICIAL NEURAL NETWORK", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/72d0/522fca819d738a14e04f427ea900b58e3020.pdf"], "doi": []}, {"id": "03f3bde03f83c3ff4f346d761fde4ce031dd4c69", "title": "Deep Models Calibration with Bayesian Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/03f3/bde03f83c3ff4f346d761fde4ce031dd4c69.pdf"], "doi": []}, {"id": "32acf8a0ce2f3dc66742d74f85f36dcc60dc4cfb", "title": "Pyramid multi-level features for facial demographic estimation", "year": "2017", "pdf": ["http://salah.bekhouche.com/publications/journal-articles/eswa2017.pdf"], "doi": ["https://doi.org/10.1016/j.eswa.2017.03.030"]}, {"id": "3fa1adfe6a28574df2c98d1c7d4f8f8941201b1f", "title": "Age group recognition from face images using a fusion of CNN- and COSFIRE-based features", "year": "2019", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3309784"]}, {"id": "24905a1c307a2108cb3b1b575f50fa8fe0fcb584", "title": "Sentiment analysis in organizational work: Towards an ontology of people analytics", "year": "2018", "pdf": ["http://epubs.surrey.ac.uk/846414/1/Sentiment%20Analysis%20in%20Organizational%20Work.pdf"], "doi": ["https://doi.org/10.1111/exsy.12289"]}, {"id": "629d5af2878f79d4503a177e3bbc166a127f9e40", "title": "Efficient facial representations for age, gender and identity recognition in organizing photo albums using multi-output ConvNet", "year": "2018", "pdf": ["https://arxiv.org/pdf/1807.07718.pdf"], "doi": []}, {"id": "3a3525e7c0ddb50580c929d6330b759df9f568ec", "title": "Deep Neural Network Augmentation: Generating Faces for Affect Analysis.", "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.05027.pdf"], "doi": []}, {"id": "9e6556b405770ed05e4eb047155d32057caee939", "title": "Distill-2 MD-MTL : Data Distillation based on Multi-Dataset Multi-Domain MultiTask Frame Work to Solve Face Related Tasks", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/9e65/56b405770ed05e4eb047155d32057caee939.pdf"], "doi": []}, {"id": "d19305efa13576943cebc8fb67f3f1435db2b829", "title": "Age Estimation using Deep Learning on 3D Facial Features", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/d193/05efa13576943cebc8fb67f3f1435db2b829.pdf"], "doi": []}, {"id": "b79fe48ae523dc66185aa04df2dac7041afa8683", "title": "Learning Not to Learn: Training Deep Neural Networks with Biased Data", "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.10352.pdf"], "doi": []}, {"id": "72eca2bcb8ea7a1434b0ac08ca9ea8ab339bd307", "title": "Fusion of Domain-Specific and Trainable Features for Gender Recognition From Face Images", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8331979"]}, {"id": "e89a1c7fb17a8b5a42bc97a9535e679bb9437536", "title": "Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/d4b0/25da42685a507b9e15d17269fadef6b99b84.pdf"], "doi": []}, {"id": "4a92326420f59cd9aec1a6b21b7f9d07f9ed2899", "title": "Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7789586"]}, {"id": "ad804d4ac5f23027997e6a70f1a356d3cd482ded", "title": "A New Cost Function Combining Deep Neural Networks (DNNs) and l2,1-Norm with Extraction of Robust Facial and Superpixels Features in Age Estimation", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ad80/4d4ac5f23027997e6a70f1a356d3cd482ded.pdf"], "doi": []}, {"id": "a18339daf3f41f42b381b98ab20fb53cfc5120bc", "title": "Wavelet-based convolutional neural networks for gender classification", "year": "2019", "pdf": [], "doi": ["https://doi.org/10.1117/1.JEI.28.1.013012"]}, {"id": "54a970d2e08925704a06287fa64bdcab7b4cc4ed", "title": "Simultaneous Adversarial Training - Learn from Others\u2019 Mistakes", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8756539"]}, {"id": "4e7dae85dde772c739c5185dafe7f3c0555f5d15", "title": "A Deep Learning Approach on Gender and Age Recognition using a Single Inertial Sensor", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8771075"]}, {"id": "b143cf896cdc00965a24637f4c5b36b08b88a923", "title": "Modeling and Mapping Location-Dependent Human Appearance", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3368/975637d9b1a0ba217c4b9f41b79bda23a655.pdf"], "doi": []}, {"id": "091f6541ffd83985405334842dc60e16d4c52a12", "title": "Real-time demographic profiling from face imagery with Fisher vectors", "year": "2018", "pdf": ["http://www.micc.unifi.it/seidenari/wp-content/papercite-data/pdf/mva18.pdf", "https://www.micc.unifi.it/wp-content/uploads/2019/01/realtime-demographic.pdf"], "doi": ["https://doi.org/10.1007/s00138-018-0991-2"]}, {"id": "b839bc95794dc65340b6e5fea098fa6e6ea5e430", "title": "Soft Biometrics in Online Social Networks: A Case Study on Twitter User Gender Recognition", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912201", "http://doi.org/10.1109/WACVW.2017.8"]}, {"id": "7b92d1e53cc87f7a4256695de590098a2f30261e", "title": "From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8575487"]}, {"id": "d838a02048b6107d09108c6e40be5ad1051de90f", "title": "Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.11191.pdf"], "doi": []}, {"id": "457f62b174cefe11ff671ec4909980ade87ba2ab", "title": "Quantum-inspired associative memories for incorporating emotion in a humanoid/ Naoki Masuyama", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/457f/62b174cefe11ff671ec4909980ade87ba2ab.pdf"], "doi": []}, {"id": "4feb796537a7c62543ffbf70b4c067b7aa418edd", "title": "Relevant features for gender classification in NIR periocular images", "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.12007.pdf"], "doi": []}, {"id": "9226675e413bb4b82ad419a10e4ac9ebd6aa7fef", "title": "Addressing and Understanding Shortcomings in Vision and Language", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/9226/675e413bb4b82ad419a10e4ac9ebd6aa7fef.pdf"], "doi": []}, {"id": "8efa9c08ee51383410fa7c6f74c30c8c418f091d", "title": "Competing Ratio Loss for Discriminative Multi-class Image Classification", "year": "2019", "pdf": ["https://arxiv.org/pdf/1907.13349.pdf"], "doi": []}, {"id": "659c15db147539006b08f238bf3ef5be0a9634f3", "title": "LEARNING QUALITY, AESTHETICS, AND FACIAL ATTRIBUTES FOR IMAGE ANNOTATION", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/659c/15db147539006b08f238bf3ef5be0a9634f3.pdf"], "doi": []}, {"id": "1561eeb05fc2284456f61403380283d6e519c7d0", "title": "Age & Gender Classifier for Edge Computing", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8760160"]}, {"id": "8ca80c5c32546e31737c8b7366eb4243c396ad0f", "title": "Improving Predictive Uncertainty Estimation using Dropout-Hamiltonian", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/8ca8/0c5c32546e31737c8b7366eb4243c396ad0f.pdf"], "doi": []}, {"id": "f4fe1337f786d3aa103008bfb9c0109f8ddc4aa3", "title": "Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/f4fe/1337f786d3aa103008bfb9c0109f8ddc4aa3.pdf"], "doi": []}, {"id": "f77c9bf5beec7c975584e8087aae8d679664a1eb", "title": "Local Deep Neural Networks for Age and Gender Classification", "year": "2017", "pdf": ["https://arxiv.org/pdf/1703.08497.pdf"], "doi": []}, {"id": "c601b185b6080ded463d3c236fa4f9f849f0435b", "title": "Opening the machine learning black box with Layer-wise Relevance Propagation", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/c601/b185b6080ded463d3c236fa4f9f849f0435b.pdf"], "doi": []}, {"id": "0598704b50ca85672f721e20a559df6d1a363787", "title": "Deep Learning for Face Recognition: Pride or Prejudiced?", "year": "2019", "pdf": ["https://arxiv.org/pdf/1904.01219.pdf"], "doi": []}, {"id": "51b190da3a4f74c55519935b702df21c8b466328", "title": "Enhancing Biometric-Capsule-based Authentication and Facial Recognition via Deep Learning", "year": "2019", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3325417"]}, {"id": "51c510db487d5d33d6c06671b592c84321c0cc72", "title": "Robust Facial Biometrics using Multi-Spectral Imaging", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/51c5/10db487d5d33d6c06671b592c84321c0cc72.pdf"], "doi": []}, {"id": "2ff3a9adb58edaa630b264b39d6495d5620aea97", "title": "Deep, Landmark-Free FAME: Face Alignment, Modeling, and Expression Estimation", "year": "2019", "pdf": ["https://talhassner.github.io/home/projects/FAME/IJCV__web_revision__FAME.pdf"], "doi": ["https://doi.org/10.1007/s11263-019-01151-x"]}, {"id": "3dced9b381570a52d77e8c3470d31d3ee9507f9c", "title": "Age and gender classification in the wild with unsupervised feature learning", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1117/1.JEI.26.2.023007"]}, {"id": "dedbf5d18bbb995215d513abb21c8555fcd1b5f4", "title": "Contributions to Deep Learning Models", "year": "2016", "pdf": ["https://riunet.upv.es/bitstream/handle/10251/61296/MANSANET%20-%20Contributions%20to%20Deep%20Learning%20Models.pdf;jsessionid=118A8263B301DE77F2C02BDA0178D474?sequence=1", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_castellano.pdf?isAllowed=y&sequence=3", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_ingles.pdf?isAllowed=y&sequence=5", "https://riunet.upv.es/bitstream/handle/10251/61296/resumen_valenciano.pdf?isAllowed=y&sequence=4"], "doi": ["https://doi.org/10.4995/Thesis%2F10251%2F61296"]}, {"id": "cd545daa24d4a05db40c12efcd4114dfa76f205b", "title": "Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658965"]}, {"id": "633c851ebf625ad7abdda2324e9de093cf623141", "title": "Apparent and Real Age Estimation in Still Images with Deep Residual Regressors on Appa-Real Database", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961727"]}, {"id": "b090bf0d5b4a780821b4f45fc216ac614493020d", "title": "A Generative Model of Worldwide Facial Appearance", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8658761"]}, {"id": "7c0a91ba7428894a06ce59fef46da11362a72b43", "title": "Automatic age and gender classification using supervised appearance model", "year": "2016", "pdf": ["https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-25/issue-6/061605/Automatic-age-and-gender-classification-using-supervised-appearance-model/10.1117/1.JEI.25.6.061605.pdf", "https://bradscholars.brad.ac.uk/bitstream/handle/10454/8760/Ugail_Journal_of_Electronic_Imaging.pdf;jsessionid=E55C0CC685CC06835220302A31D9329E?sequence=1", "https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging/volume-25/issue-06/061605/Automatic-age-and-gender-classification-using-supervised-appearance-model/10.1117/1.JEI.25.6.061605.pdf"], "doi": ["https://doi.org/10.1117/1.JEI.25.6.061605", "https://www.spiedigitallibrary.org/journalArticle/Download?fullDOI=10.1117/1.JEI.25.6.061605"]}, {"id": "9ee35b278064554a1e3c2f9d8396f5a2fe5caa8e", "title": "Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578147"]}, {"id": "adbb648528a9fdfd983c6326161a55d09b8b6cb6", "title": "Clusters of Features Using Complementary Information Applied to Gender Classification From Face Images", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8738897"]}, {"id": "3d48595beacdc12397669154e5d9badf0d07b52e", "title": "Age and Gender Detection", "year": "2017", "pdf": ["https://pdfs.semanticscholar.org/3d48/595beacdc12397669154e5d9badf0d07b52e.pdf"], "doi": []}, {"id": "772a30f1a7a3071e5ce6ad4b0dbddc67889f5873", "title": "FDAR-Net: Joint Convolutional Neural Networks for Face Detection and Attribute Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7830820"]}, {"id": "ae2214b965057d01e021a9ab3ac80679c4ac4c43", "title": "VirtualIdentity: Privacy preserving user profiling", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7752438"]}, {"id": "ca9a0af048a76207dcdedf8f498cd06b280c7dba", "title": "Visual-based sentiment logging in magic smart mirrors", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8576217"]}, {"id": "7d67489d8380546e19da8b22bc51df0decbdfbb3", "title": "An\u00e1lisis de descriptores locales para la detecci\u00f3n de menores en im\u00e1genes", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/7d67/489d8380546e19da8b22bc51df0decbdfbb3.pdf"], "doi": []}, {"id": "7e4b587576c8d2957f1265811a51619ec61a1e8c", "title": "Real-time face analysis for gender recognition on video sequences", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/8664/508ff589dee1a8696770a313a9117d25489f.pdf"], "doi": []}, {"id": "fb6ea593800078825c0851a4d5e6550b34ebb3aa", "title": "Articulated Motion and Deformable Objects", "year": "2016", "pdf": ["http://epubs.surrey.ac.uk/846274/1/Articulated%20motion%20and%20deformable%20objects.pdf"], "doi": ["https://doi.org/10.1007/978-3-319-41778-3"]}, {"id": "230a4e0589c4f5cb8c51c36488b1cf3a39d7df9a", "title": "AFIF4: Deep gender classification based on AdaBoost-based fusion of isolated facial features and foggy faces", "year": "2017", "pdf": ["https://arxiv.org/pdf/1706.04277.pdf"], "doi": []}, {"id": "9adbf9fb7095f244a8548007609bc4075c73daa5", "title": "Increasingly Packing Multiple Facial-Informatics Modules in A Unified Deep-Learning Model via Lifelong Learning", "year": "2019", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=3325053"]}, {"id": "138ab62d195660075f3a70bd45a997a8a1ac8c82", "title": "Dual Local Binary Pattern based Gender Detection from Facial Image", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/138a/b62d195660075f3a70bd45a997a8a1ac8c82.pdf"], "doi": []}, {"id": "255485196a869c98aacce60a86074fccf07c01eb", "title": "A Survey of Deep Learning Solutions for Multimedia Visual Content Analysis", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8744516"]}, {"id": "210daca9de8e83a378201c434d368cfe372dd418", "title": "Deep ordinal classification based on cumulative link models", "year": "2019", "pdf": ["https://arxiv.org/pdf/1905.13392.pdf"], "doi": []}, {"id": "b8b9cef0938975c5b640b7ada4e3dea6c06d64e9", "title": "Metric-Promoted Siamese Network for Gender Classification", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7961849", "http://doi.ieeecomputersociety.org/10.1109/FG.2017.119", "http://doi.org/10.1109/FG.2017.119"]}, {"id": "605526cc37e442679a4b5147ff28c683dba8ef24", "title": "Pay attention to the activations: a modular attention mechanism for fine-grained image recognition", "year": "2019", "pdf": ["https://arxiv.org/pdf/1907.13075.pdf"], "doi": []}, {"id": "3f15295038dac67d74d37edfd1acd5cb1db87b70", "title": "Facial Soft Biometrics Detection on Low Power Devices", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/3f15/295038dac67d74d37edfd1acd5cb1db87b70.pdf"], "doi": []}, {"id": "26075c304a6947ceb16d42b249d28b00692fbcce", "title": "GF-CapsNet: Using Gabor Jet and Capsule Networks for Facial Age, Gender, and Expression Recognition", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8756552"]}, {"id": "1824ad94533c138d9f424f64a8f17117ba72d74b", "title": "Segment-based Methods for Facial Attribute Detection from Partial Faces", "year": "2018", "pdf": ["https://arxiv.org/pdf/1801.03546.pdf"], "doi": []}, {"id": "a9ef09708260a14387fe5c655ebb967b989bf507", "title": "Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo", "year": "2018", "pdf": [], "doi": []}, {"id": "d900f7b4ec029b5dc0170db0ef347a29da18179a", "title": "A Gender Recognition System from Facial Image", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf"], "doi": []}, {"id": "cdae8e9cc9d605856cf5709b2fdf61f722d450c1", "title": "Deep Learning for Biometrics : A Survey KALAIVANI SUNDARARAJAN", "year": "2018", "pdf": [], "doi": []}, {"id": "ce28e6bc34982b7f78186c97af39c01c40d8ce9b", "title": "Number 23", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/0491/9efe5ddf490cb15239d3bdd7088f495d6269.pdf"], "doi": []}, {"id": "aad9dda20dbeb1d6a6dfcd55ff8bd08f1709d0ae", "title": "A compact deep convolutional neural network architecture for video based age and gender estimation", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7733330"]}, {"id": "fdffe8b220ac02b0e4d18de66cba8520e66da937", "title": "Fine-Grained Age Estimation in the wild with Attention LSTM Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.10445.pdf"], "doi": []}, {"id": "b525d3fe8c9b59b46b368007cd5f7b6b3ca9dd2d", "title": "Color-Theoretic Experiments to Understand Unequal Gender Classification Accuracy From Face Images", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/b525/d3fe8c9b59b46b368007cd5f7b6b3ca9dd2d.pdf"], "doi": []}, {"id": "0435a34e93b8dda459de49b499dd71dbb478dc18", "title": "VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks", "year": "2018", "pdf": [], "doi": []}, {"id": "89f38c3ea4bf4677741a391612ef7cd79e90e8a7", "title": "Retrieval of Facial Images Re-rendered with Natural Aging Effect using Child Facial Image and Age", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8706213"]}, {"id": "7361b900018f22e37499443643be1ff9d20edfd6", "title": "Predictive biometrics: a review and analysis of predicting personal characteristics from biometric data", "year": "2017", "pdf": [], "doi": ["http://doi.org/10.1049/iet-bmt.2016.0169"]}, {"id": "200ce6cf3fe4cbb0f201fb8013c4b25ebe7dddc7", "title": "Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1007/s10462-018-9661-z"]}, {"id": "7989a271a07534886540fc42bf8ec6bdde673165", "title": "Gender classification based on isolated facial features and foggy faces using jointly trained deep convolutional neural network", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1117/1.JEI.27.5.053023"]}, {"id": "f5abcc4846ff7d2a4f91c14383508f345439a299", "title": "The Integrated Usage of LBP and HOG Transformations and Machine Learning Algorithms for Age Range Prediction from Facial Images", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f5ab/cc4846ff7d2a4f91c14383508f345439a299.pdf"], "doi": []}, {"id": "341ed69a6e5d7a89ff897c72c1456f50cfb23c96", "title": "DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network", "year": "2017", "pdf": ["https://arxiv.org/pdf/1702.04280.pdf"], "doi": []}, {"id": "166186e551b75c9b5adcc9218f0727b73f5de899", "title": "Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System", "year": "2016", "pdf": ["https://pdfs.semanticscholar.org/1661/86e551b75c9b5adcc9218f0727b73f5de899.pdf"], "doi": []}, {"id": "bcc64a75f0e8427a6443b61c6272fec39f210549", "title": "Double channel CNN for accurate age and gender estimation in complex scenarios", "year": "2018", "pdf": [], "doi": ["https://doi.org/10.1117/12.2503070"]}, {"id": "63fb840284ec978a5b9503f6faf3b835fb08fcf8", "title": "DEX: Deep EXpectation of Apparent Age from a Single Image", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7406390"]}, {"id": "0ab7cff2ccda7269b73ff6efd9d37e1318f7db25", "title": "Facial Coding Scheme Reference 1 Craniofacial Distances", "year": "2019", "pdf": [], "doi": []}, {"id": "f4a076ff461099f860af9f6ad4a6f309f9bb672e", "title": "Face and Gender Recognition System Based on Convolutional Neural networks", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8816192"]}, {"id": "635158d2da146e9de559d2742a2fa234e06b52db", "title": "Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns", "year": "2015", "pdf": [], "doi": ["http://dl.acm.org/citation.cfm?id=2830587"]}, {"id": "533f7135c347a61f5f236fec5efe05a33100845d", "title": "Comprehensive Analysis of the Literature for Age Estimation From Facial Images", "year": "2019", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8758426"]}, {"id": "44d84387ddff58f6a06804df96c6661d2efa273f", "title": "A Unified Framework for Head Pose, Age and Gender Classification through End-to-End Face Segmentation", "year": "2019", "pdf": ["https://pdfs.semanticscholar.org/44d8/4387ddff58f6a06804df96c6661d2efa273f.pdf"], "doi": []}, {"id": "08f7ac64b420210aa46fcbbdb0f206215f2e0644", "title": "Trojaning Attack on Neural Networks", "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/08f7/ac64b420210aa46fcbbdb0f206215f2e0644.pdf"], "doi": []}, {"id": "e8951cc76af80da43e3528fe6d984071f17f57e7", "title": "Online Cost Efficient Customer Recognition System for Retail Analytics", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7912202", "http://doi.org/10.1109/WACVW.2017.9"]}, {"id": "55ab7975301d4791ba53881f1d70e26520c0f6b7", "title": "Face Analysis in the Wild", "year": "2017", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8250221"]}, {"id": "074bae8ea98f45082ab54249032c3b00dedc787f", "title": "Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks", "year": "2016", "pdf": ["http://www.vision.ee.ethz.ch/en/publications/papers/articles/eth_biwi_01299.pdf", "http://www.vision.ee.ethz.ch/~timofter/publications/Rothe-IJCV-2016.pdf", "https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/156130/eth-50296-01.pdf"], "doi": ["https://doi.org/10.1007/s11263-016-0940-3"]}, {"id": "fd3a40084154881fa9e339fd9014d61546101269", "title": "Deep Ordinal Regression for Pledge Specificity Prediction", "year": "2019", "pdf": ["https://arxiv.org/pdf/1909.00187.pdf"], "doi": []}, {"id": "3cfd7bfbfb58b777284b4005422e95bc81348f3d", "title": "Ordinal Regression with Neuron Stick-Breaking for Medical Diagnosis", "year": "2018", "pdf": ["http://openaccess.thecvf.com/content_ECCVW_2018/papers/11134/Liu_Ordinal_Regression_with_Neuron_Stick-breaking_for_Medical_Diagnosis_ECCVW_2018_paper.pdf"], "doi": ["https://doi.org/10.1007/978-3-030-11024-6_23"]}, {"id": "7cee802e083c5e1731ee50e731f23c9b12da7d36", "title": "2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks", "year": "2018", "pdf": ["https://arxiv.org/pdf/1803.02181.pdf"], "doi": []}, {"id": "90db832c4d93bd88271379cb00cdcce3a85d57f2", "title": "Revisiting image ordinal estimation: how to deal with ordinal relationship in deep learning?", "year": "2019", "pdf": [], "doi": ["https://doi.org/10.1117/1.JEI.28.1.013025"]}, {"id": "86effa47676edd477a906f0063e55b752ec32d9a", "title": "SAF-BAGE: Salient Approach for Facial Soft-Biometric Classification - Age, Gender, and Facial Expression", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8659083"]}, {"id": "7aa4c16a8e1481629f16167dea313fe9256abb42", "title": "Multi-task learning for face identification and attribute estimation", "year": "2017", "pdf": ["http://mirlab.org/conference_papers/International_Conference/ICASSP%202017/pdfs/0002981.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952703", "http://doi.org/10.1109/ICASSP.2017.7952703"]}, {"id": "8708d64e41729eedba484b1e4256fe5584b0f5f4", "title": "Regression Facial Attribute Classification via simultaneous dictionary learning", "year": "2017", "pdf": ["http://isiarticles.com/bundles/Article/pre/pdf/129843.pdf"], "doi": ["https://doi.org/10.1016/j.patcog.2016.08.031"]}, {"id": "eaed84c05fb871d2c849ffcab08c20db326c5570", "title": "Distill-2MD-MTL: Data Distillation based on Multi-Dataset Multi-Domain Multi-Task Frame Work to Solve Face Related Tasksks, Multi Task Learning, Semi-Supervised Learning", "year": "2019", "pdf": ["https://arxiv.org/pdf/1907.03402.pdf"], "doi": []}, {"id": "2c03df8b48bf3fa39054345bafabfeff15bfd11d", "title": "Deep Residual Learning for Image Recognition", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780459"]}, {"id": "d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0", "title": "Minimalistic CNN-based ensemble model for gender prediction from face images", "year": "2016", "pdf": ["http://www.eurecom.fr/en/publication/4768/download/mm-publi-4768.pdf"], "doi": ["http://doi.org/10.1016/j.patrec.2015.11.011"]}, {"id": "6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c", "title": "Ordinal Regression with Multiple Output CNN for Age Estimation", "year": "2016", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780901"]}, {"id": "9871aa511ca7e3c61c083c327063442bc2c411bf", "title": "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks", "year": "2017", "pdf": [], "doi": ["https://doi.org/10.1109/iccv.2017.244"]}, {"id": "140c95e53c619eac594d70f6369f518adfea12ef", "title": "Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A", "year": "2015", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298803"]}, {"id": "ca50e441e275a3c04299bb6b59f6c098abecec1d", "title": "Face Recognition and Age Estimation Implications of Changes in Facial Features: A Critical Review Study", "year": "2018", "pdf": ["https://umexpert.um.edu.my/file/publication/00005433_161555_73291.pdf"], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8361072", "http://doi.org/10.1109/ACCESS.2018.2836924"]}, {"id": "d019a79c98bf094b99a103a7481e8d975e4a0685", "title": "Implementation of machine learning for gender detection using CNN on raspberry Pi platform", "year": "2018", "pdf": [], "doi": ["http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398872"]}]} \ No newline at end of file