summaryrefslogtreecommitdiff
path: root/site/datasets/final/laofiw.json
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/final/laofiw.json')
-rw-r--r--site/datasets/final/laofiw.json2
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/final/laofiw.json b/site/datasets/final/laofiw.json
index 3ec79384..2a172aa3 100644
--- a/site/datasets/final/laofiw.json
+++ b/site/datasets/final/laofiw.json
@@ -1 +1 @@
-{"id": "4eab317b5ac436a949849ed286baa3de2a541eef", "dataset": {"key": "laofiw", "name_short": "LAOFIW", "name_full": "LAOFIW \u2013 Labeled Ancestral Faces in the Wild", "purpose": "", "url": "http://www.robots.ox.ac.uk/~vgg/data/laofiw/", "downloaded": "Y", "mp_pub": "Y", "ft_share": "Y", "wild": "Y", "indoor": "", "outdoor": "", "campus": "", "cyberspace": "", "flickr": "", "facebook": "", "youtube": "", "vimeo": "", "google": "", "bing": "", "parent": "", "child": "", "source": "", "usernames": "", "names": "", "year_start": "", "year_end": "", "year_published": "", "ongoing": "", "images": "", "videos": "", "identities": "", "img_per_person": "", "num_cameras": "", "faces_persons": "", "female": "", "male": "", "landmarks": "", "width": "", "height": "", "color": "", "gray": "", "derivative_of": "", "tags": "", "size_gb": "", "agreement": "", "agree_requied": "", "agreement_signed": "", "downloaded_from": "", "comment": "LAOFIW is a dataset of 14,000 images divided into four equally sized classes: sub-Saharan Africa, East Asia, Indian subcontinent, Western Europe.", "adam": "", "berit": "", "charlie": "", "notes": ""}, "paper": {"paper_id": "4eab317b5ac436a949849ed286baa3de2a541eef", "key": "laofiw", "title": "Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.02169.pdf"], "address": "", "name": "LAOFIW", "doi": []}, "addresses": [], "additional_papers": [], "citations": [{"id": "3c5ba48d25fbe24691ed060fa8f2099cc9eba14f", "title": "Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation", "addresses": [{"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00194.pdf"]}]} \ No newline at end of file
+{"id": "4eab317b5ac436a949849ed286baa3de2a541eef", "dataset": {"key": "laofiw", "name_short": "LAOFIW", "name_display": "LAOFIW", "name_full": "LAOFIW \u2013 Labeled Ancestral Faces in the Wild", "purpose": "", "url": "http://www.robots.ox.ac.uk/~vgg/data/laofiw/", "downloaded": "Y", "mp_pub": "Y", "ft_share": "Y", "wild": "Y", "indoor": "", "outdoor": "", "campus": "", "cyberspace": "", "flickr": "", "facebook": "", "youtube": "", "vimeo": "", "google": "", "bing": "", "parent": "", "child": "", "source": "", "usernames": "", "names": "", "year_start": "", "year_end": "", "year_published": "", "ongoing": "", "images": "", "videos": "", "identities": "", "img_per_person": "", "num_cameras": "", "faces_persons": "", "female": "", "male": "", "landmarks": "", "width": "", "height": "", "color": "", "gray": "", "derivative_of": "", "tags": "", "size_gb": "", "agreement": "", "agree_requied": "", "agreement_signed": "", "downloaded_from": "", "comment": "LAOFIW is a dataset of 14,000 images divided into four equally sized classes: sub-Saharan Africa, East Asia, Indian subcontinent, Western Europe.", "adam": "", "berit": "", "charlie": "", "notes": ""}, "paper": {"paper_id": "4eab317b5ac436a949849ed286baa3de2a541eef", "key": "laofiw", "title": "Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings", "year": "2018", "pdf": ["https://arxiv.org/pdf/1809.02169.pdf"], "address": "", "name": "LAOFIW", "doi": []}, "addresses": [], "additional_papers": [], "citations": [{"id": "3c5ba48d25fbe24691ed060fa8f2099cc9eba14f", "title": "Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation", "addresses": [{"name": "Beijing University of Posts and Telecommunications", "source_name": "Beijing University of Posts and Telecommunications", "street_adddress": "\u5317\u4eac\u90ae\u7535\u5927\u5b66, \u897f\u571f\u57ce\u8def, \u6d77\u6dc0\u533a, \u5317\u4eac\u5e02, 100082, \u4e2d\u56fd", "lat": "39.96014880", "lng": "116.35193921", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1812.00194.pdf"]}]} \ No newline at end of file