diff options
Diffstat (limited to 'site/datasets/citations/tud_motionpairs.json')
| -rw-r--r-- | site/datasets/citations/tud_motionpairs.json | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/citations/tud_motionpairs.json b/site/datasets/citations/tud_motionpairs.json index 9ab59e4e..0eee1ead 100644 --- a/site/datasets/citations/tud_motionpairs.json +++ b/site/datasets/citations/tud_motionpairs.json @@ -1 +1 @@ -{"id": "6ad5a38df8dd4cdddd74f31996ce096d41219f72", "paper": {"paperId": "6ad5a38df8dd4cdddd74f31996ce096d41219f72", "key": "tud_motionpairs", "title": "Multi-cue onboard pedestrian detection", "journal": "2009 IEEE Conference on Computer Vision and Pattern Recognition", "address": "", "address_type": "", "lat": "", "lng": "", "pdf_link": "https://www.mpi-inf.mpg.de/fileadmin/inf/d2/wojek/poster_cwojek_cvpr09.pdf", "report_link": "papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html", "citation_count": 217, "citations_geocoded": 41, "citations_unknown": 176, "citations_empty": 14, "citations_pdf": 131, "citations_doi": 1, "name": "TUD-Motionparis"}, "address": null, "citations": [["Multi-stage Contextual Deep Learning for Pedestrian Detection", "", "Chinese University of Hong Kong", "The Chinese University of Hong Kong", "\u4e2d\u5927 CUHK, NA\u68af New Asia Stairs, \u99ac\u6599\u6c34 Ma Liu Shui, \u4e5d\u809a\u6751 Kau To Village, \u6c99\u7530\u5340 Sha Tin District, \u65b0\u754c New Territories, HK, DD193 1191, \u4e2d\u56fd", "22.42031295", "114.20788644", "edu", ""], ["Ten Years of Pedestrian Detection, What Have We Learned?", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", ""], ["Multiple People Tracking-by-Detection in a Multi-camera Environment", "", "Technical University Munich", "Technical University Munich", "TUM, 21, Arcisstra\u00dfe, Bezirksteil K\u00f6nigsplatz, Stadtbezirk 03 Maxvorstadt, M\u00fcnchen, Obb, Bayern, 80333, Deutschland", "48.14955455", "11.56775314", "edu", ""], ["Informed Haar-Like Features Improve Pedestrian Detection", "", "University of Bonn", "University of Bonn", "Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk K\u00f6ln, Nordrhein-Westfalen, 53113, Deutschland", "50.73381240", "7.10224650", "edu", ""], ["Contextual Combination of Appearance and Motion for Intersection Videos with Vehicles and Pedestrians", "", "University of Nevada", "University of Nevada", "Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA", "39.54694490", "-119.81346566", "edu", ""], ["Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters", "", "Beijing, China", "Beijing, China", "\u5317\u4eac\u5e02, \u4e1c\u57ce\u533a, \u5317\u4eac\u5e02, 100010, \u4e2d\u56fd", "39.90621700", "116.39127570", "edu", ""], ["Fused DNN: A Deep Neural Network Fusion Approach to Fast and Robust Pedestrian Detection", "", "University of Maryland", "University of Maryland", "The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA", "39.28996850", "-76.62196103", "edu", ""], ["Pyramid Center-Symmetric Local Binary/Trinary Patterns for Effective Pedestrian Detection", "", "Australian National University", "Australian National University", "Canberra ACT 0200, Australia", "-35.27769990", "149.11852700", "edu", ""], ["End-to-End People Detection in Crowded Scenes", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", ""], ["Person Re-identification Meets Image Search", "", "University of Texas at San Antonio", "University of Texas at San Antonio", "UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA", "29.58333105", "-98.61944505", "edu", ""], ["Isotropic Granularity-tunable gradients partition (IGGP) descriptors for human detection", "", "University of Oulu", "University of Oulu", "Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi", "65.05921570", "25.46632601", "edu", ""], ["Efficient Online Spatio-Temporal Filtering for Video Event Detection", "University of Michigan", "University of Michigan", "University of Michigan", "University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA", "42.29421420", "-83.71003894", "edu", ""], ["Multi-pedestrian detection in crowded scenes: A global view", "", "Chinese Academy of Sciences", "Chinese Academy of Sciences", "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "40.00447950", "116.37023800", "edu", ""], ["Pedestrian Attribute Detection Using CNN", "", "Stanford University", "Stanford University", "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "37.43131385", "-122.16936535", "edu", ""], ["SPID: Surveillance Pedestrian Image Dataset and Performance Evaluation for Pedestrian Detection", "", "Shanghai Jiao Tong University", "Shanghai Jiao Tong University", "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "31.20081505", "121.42840681", "edu", ""], ["Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation", "", "Hefei University of Technology", "Hefei University of Technology", "\u5408\u80a5\u5de5\u4e1a\u5927\u5b66\uff08\u5c6f\u6eaa\u8def\u6821\u533a\uff09, 193\u53f7, \u5357\u4e00\u73af\u8def, \u822a\u8fd0\u5357\u6751, \u5305\u516c\u8857\u9053, \u5408\u80a5\u5e02\u533a, \u5408\u80a5\u5e02, \u5b89\u5fbd\u7701, 230009, \u4e2d\u56fd", "31.84691800", "117.29053367", "edu", ""], ["Efficient Boosted Weak Classifiers for Object Detection", "", "Chinese Academy of Sciences", "Chinese Academy of Sciences", "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "40.00447950", "116.37023800", "edu", ""], ["Human Detection in Video over Large Viewpoint Changes", "", "OMRON Corporation, Kyoto, Japan", "Core Technology Center, OMRON Corporation, Kyoto, Japan", "Kyoto, Kyoto Prefecture, Japan", "35.01163630", "135.76802940", "company", ""], ["CityPersons: A Diverse Dataset for Pedestrian Detection", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", ""], ["The Fastest Pedestrian Detector in the West", "", "University of California, San Diego", "University of California, San Diego", "UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA", "32.87935255", "-117.23110049", "edu", ""], ["Object class detection: A survey", "University of Alberta, Canada", "University of Alberta", "University of Alberta", "University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada", "53.52385720", "-113.52282665", "edu", ""], ["Scalable Person Re-identification: A Benchmark", "", "University of Texas at San Antonio", "University of Texas at San Antonio", "UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA", "29.58333105", "-98.61944505", "edu", ""], ["UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking", "University at Albany, SUNY", "Hanyang University", "Hanyang University", "\ud55c\uc591\ub300, 206, \uc655\uc2ed\ub9ac\ub85c, \uc0ac\uadfc\ub3d9, \uc131\ub3d9\uad6c, \uc11c\uc6b8\ud2b9\ubcc4\uc2dc, 04763, \ub300\ud55c\ubbfc\uad6d", "37.55572710", "127.04366420", "edu", ""], ["Single-Pedestrian Detection Aided by Multi-pedestrian Detection", "", "Chinese University of Hong Kong", "The Chinese University of Hong Kong", "\u4e2d\u5927 CUHK, NA\u68af New Asia Stairs, \u99ac\u6599\u6c34 Ma Liu Shui, \u4e5d\u809a\u6751 Kau To Village, \u6c99\u7530\u5340 Sha Tin District, \u65b0\u754c New Territories, HK, DD193 1191, \u4e2d\u56fd", "22.42031295", "114.20788644", "edu", ""], ["Vehicle Detection Method Based on Edge Information and Local Transform Histogram", "", "Hanyang University", "Hanyang University", "\ud55c\uc591\ub300, 206, \uc655\uc2ed\ub9ac\ub85c, \uc0ac\uadfc\ub3d9, \uc131\ub3d9\uad6c, \uc11c\uc6b8\ud2b9\ubcc4\uc2dc, 04763, \ub300\ud55c\ubbfc\uad6d", "37.55572710", "127.04366420", "edu", ""], ["Quality-adaptive deep learning for pedestrian detection", "", "Purdue University", "Purdue University", "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "40.43197220", "-86.92389368", "edu", ""], ["Pedestrian Detection and Tracking Using HOG and Oriented-LBP Features", "", "Shenzhen Institutes of Advanced Technology", "Shenzhen Institutes of Advanced Technology", "\u4e2d\u56fd\u79d1\u5b66\u9662\u6df1\u5733\u5148\u8fdb\u6280\u672f\u7814\u7a76\u9662, 1068, \u79d1\u7814\u8def, \u6df1\u5733\u5927\u5b66\u57ce, \u4e09\u5751\u6751, \u5357\u5c71\u533a, \u6df1\u5733\u5e02, \u5e7f\u4e1c\u7701, 518000, \u4e2d\u56fd", "22.59805605", "113.98533784", "edu", ""], ["Learning and Exploiting Camera Geometry for Computer Vision", "", "Duke University", "Duke University", "Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA", "35.99905220", "-78.92906290", "edu", ""], ["Robust Multi-resolution Pedestrian Detection in Traffic Scenes", "", "Chinese Academy of Sciences", "Chinese Academy of Sciences", "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "40.00447950", "116.37023800", "edu", ""], ["Recognition in-the-Tail: Training Detectors for Unusual Pedestrians with Synthetic Imposters", "", "Carnegie Mellon University", "Carnegie Mellon University", "Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA", "37.41021930", "-122.05965487", "edu", ""], ["A Diverse Dataset for Pedestrian Detection", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", ""], ["MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding", "", "Columbia University", "Columbia University", "Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA", "40.84198360", "-73.94368971", "edu", ""], ["Pedestrian Detection Based on Sparse and Low-Rank Matrix Decomposition", "", "Jiangsu University", "Jiangsu University", "\u6c5f\u82cf\u5927\u5b66, 301, \u5b66\u5e9c\u8def, \u4eac\u53e3\u533a, \u8c61\u5c71\u8857\u9053, \u4eac\u53e3\u533a (Jingkou), \u9547\u6c5f\u5e02 / Zhenjiang, \u6c5f\u82cf\u7701, 212013, \u4e2d\u56fd", "32.20302965", "119.50968362", "edu", ""], ["Fusion of Depth and Vision Information for Human Detection \u22c6", "", "Wayne State University", "Wayne State University", "Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA", "42.35775700", "-83.06286711", "edu", ""], ["Spatial-Temporal Granularity-Tunable Gradients Partition (STGGP) Descriptors for Human Detection", "", "University of Oulu", "University of Oulu", "Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi", "65.05921570", "25.46632601", "edu", ""], ["Integrating Perception and Cognition for AGI", "", "Carnegie Mellon University", "Carnegie Mellon University", "Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA", "37.41021930", "-122.05965487", "edu", ""], ["Co-occurrence flow for pedestrian detection", "", "University of Cambridge", "University of Cambridge", "Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK", "52.17638955", "0.14308882", "edu", ""], ["Enabling Pedestrian Safety using Computer Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car Crash", "", "Texas A&M University", "Texas A&M University", "Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA", "30.61083650", "-96.35212800", "edu", ""], ["Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice", "York University, Toronto, ON, Canada", "York University", "York University", "York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada", "43.77439110", "-79.50481085", "edu", ""], ["Viewpoint Adaptation for Person Detection", "", "Duke University", "Duke University", "Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA", "35.99905220", "-78.92906290", "edu", ""], ["Pedestrian Detection with Semantic Regions of Interest", "", "University of Chinese Academy of Sciences", "University of Chinese Academy of Sciences", "University of Chinese Academy of Sciences, UCAS, Yuquanlu, \u7389\u6cc9\u8def, \u7530\u6751, \u6d77\u6dc0\u533a, 100049, \u4e2d\u56fd", "39.90828040", "116.24585270", "edu", ""]]}
\ No newline at end of file +{"id": "6ad5a38df8dd4cdddd74f31996ce096d41219f72", "paper": {"paperId": "6ad5a38df8dd4cdddd74f31996ce096d41219f72", "key": "tud_motionpairs", "title": "Multi-cue onboard pedestrian detection", "journal": "2009 IEEE Conference on Computer Vision and Pattern Recognition", "address": "", "address_type": "", "lat": "", "lng": "", "pdf_link": "https://www.mpi-inf.mpg.de/fileadmin/inf/d2/wojek/poster_cwojek_cvpr09.pdf", "report_link": "papers/6ad5a38df8dd4cdddd74f31996ce096d41219f72.html", "citation_count": 217, "citations_geocoded": 41, "citations_unknown": 176, "citations_empty": 14, "citations_pdf": 131, "citations_doi": 60, "name": "TUD-Motionparis"}, "address": null, "citations": [["Multi-stage Contextual Deep Learning for Pedestrian Detection", "", "Chinese University of Hong Kong", "The Chinese University of Hong Kong", "\u4e2d\u5927 CUHK, NA\u68af New Asia Stairs, \u99ac\u6599\u6c34 Ma Liu Shui, \u4e5d\u809a\u6751 Kau To Village, \u6c99\u7530\u5340 Sha Tin District, \u65b0\u754c New Territories, HK, DD193 1191, \u4e2d\u56fd", "22.42031295", "114.20788644", "edu", "", 2013], ["Ten Years of Pedestrian Detection, What Have We Learned?", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", "", 2014], ["Multiple People Tracking-by-Detection in a Multi-camera Environment", "", "Technical University Munich", "Technical University Munich", "TUM, 21, Arcisstra\u00dfe, Bezirksteil K\u00f6nigsplatz, Stadtbezirk 03 Maxvorstadt, M\u00fcnchen, Obb, Bayern, 80333, Deutschland", "48.14955455", "11.56775314", "edu", "", "2015"], ["Informed Haar-Like Features Improve Pedestrian Detection", "", "University of Bonn", "University of Bonn", "Rheinische Friedrich-Wilhelms-Universit\u00e4t Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk K\u00f6ln, Nordrhein-Westfalen, 53113, Deutschland", "50.73381240", "7.10224650", "edu", "", 2014], ["Contextual Combination of Appearance and Motion for Intersection Videos with Vehicles and Pedestrians", "", "University of Nevada", "University of Nevada", "Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA", "39.54694490", "-119.81346566", "edu", "", 2014], ["Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters", "", "Tsinghua University", "Tsinghua University", "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "40.00229045", "116.32098908", "edu", "", "2017"], ["Fused DNN: A Deep Neural Network Fusion Approach to Fast and Robust Pedestrian Detection", "", "University of Maryland", "University of Maryland", "The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA", "39.28996850", "-76.62196103", "edu", "", "2017"], ["Pyramid Center-Symmetric Local Binary/Trinary Patterns for Effective Pedestrian Detection", "", "Australian National University", "Australian National University", "Canberra ACT 0200, Australia", "-35.27769990", "149.11852700", "edu", "", 2010], ["End-to-End People Detection in Crowded Scenes", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", "", 2016], ["Person Re-identification Meets Image Search", "", "University of Texas at San Antonio", "University of Texas at San Antonio", "UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA", "29.58333105", "-98.61944505", "edu", "", 2015], ["Isotropic Granularity-tunable gradients partition (IGGP) descriptors for human detection", "", "University of Oulu", "University of Oulu", "Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi", "65.05921570", "25.46632601", "edu", "", 2010], ["Efficient Online Spatio-Temporal Filtering for Video Event Detection", "University of Michigan", "University of Michigan", "University of Michigan", "University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA", "42.29421420", "-83.71003894", "edu", "", 2014], ["Multi-pedestrian detection in crowded scenes: A global view", "", "Chinese Academy of Sciences", "Chinese Academy of Sciences", "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "40.00447950", "116.37023800", "edu", "", 2012], ["Pedestrian Attribute Detection Using CNN", "", "Stanford University", "Stanford University", "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "37.43131385", "-122.16936535", "edu", "", 2016], ["SPID: Surveillance Pedestrian Image Dataset and Performance Evaluation for Pedestrian Detection", "", "Shanghai Jiao Tong University", "Shanghai Jiao Tong University", "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "31.20081505", "121.42840681", "edu", "", 2016], ["Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation", "", "Hefei University of Technology", "Hefei University of Technology", "\u5408\u80a5\u5de5\u4e1a\u5927\u5b66\uff08\u5c6f\u6eaa\u8def\u6821\u533a\uff09, 193\u53f7, \u5357\u4e00\u73af\u8def, \u822a\u8fd0\u5357\u6751, \u5305\u516c\u8857\u9053, \u5408\u80a5\u5e02\u533a, \u5408\u80a5\u5e02, \u5b89\u5fbd\u7701, 230009, \u4e2d\u56fd", "31.84691800", "117.29053367", "edu", "", 2016], ["Efficient Boosted Weak Classifiers for Object Detection", "", "Chinese Academy of Sciences", "Chinese Academy of Sciences", "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "40.00447950", "116.37023800", "edu", "", 2013], ["Human Detection in Video over Large Viewpoint Changes", "", "OMRON Corporation, Kyoto, Japan", "Core Technology Center, OMRON Corporation, Kyoto, Japan", "Kyoto, Kyoto Prefecture, Japan", "35.01163630", "135.76802940", "company", "", 2010], ["CityPersons: A Diverse Dataset for Pedestrian Detection", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", "", "2017"], ["The Fastest Pedestrian Detector in the West", "", "University of California, San Diego", "University of California, San Diego", "UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA", "32.87935255", "-117.23110049", "edu", "", 2010], ["Object class detection: A survey", "University of Alberta, Canada", "University of Alberta", "University of Alberta", "University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada", "53.52385720", "-113.52282665", "edu", "", 2013], ["Scalable Person Re-identification: A Benchmark", "", "University of Texas at San Antonio", "University of Texas at San Antonio", "UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA", "29.58333105", "-98.61944505", "edu", "", 2015], ["UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking", "University at Albany, SUNY", "Hanyang University", "Hanyang University", "\ud55c\uc591\ub300, 206, \uc655\uc2ed\ub9ac\ub85c, \uc0ac\uadfc\ub3d9, \uc131\ub3d9\uad6c, \uc11c\uc6b8\ud2b9\ubcc4\uc2dc, 04763, \ub300\ud55c\ubbfc\uad6d", "37.55572710", "127.04366420", "edu", "", "2015"], ["Single-Pedestrian Detection Aided by Multi-pedestrian Detection", "", "Chinese University of Hong Kong", "The Chinese University of Hong Kong", "\u4e2d\u5927 CUHK, NA\u68af New Asia Stairs, \u99ac\u6599\u6c34 Ma Liu Shui, \u4e5d\u809a\u6751 Kau To Village, \u6c99\u7530\u5340 Sha Tin District, \u65b0\u754c New Territories, HK, DD193 1191, \u4e2d\u56fd", "22.42031295", "114.20788644", "edu", "", 2013], ["Vehicle Detection Method Based on Edge Information and Local Transform Histogram", "", "Hanyang University", "Hanyang University", "\ud55c\uc591\ub300, 206, \uc655\uc2ed\ub9ac\ub85c, \uc0ac\uadfc\ub3d9, \uc131\ub3d9\uad6c, \uc11c\uc6b8\ud2b9\ubcc4\uc2dc, 04763, \ub300\ud55c\ubbfc\uad6d", "37.55572710", "127.04366420", "edu", "", 2013], ["Quality-adaptive deep learning for pedestrian detection", "", "Purdue University", "Purdue University", "Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA", "40.43197220", "-86.92389368", "edu", "", 2017], ["Pedestrian Detection and Tracking Using HOG and Oriented-LBP Features", "", "Shenzhen Institutes of Advanced Technology", "Shenzhen Institutes of Advanced Technology", "\u4e2d\u56fd\u79d1\u5b66\u9662\u6df1\u5733\u5148\u8fdb\u6280\u672f\u7814\u7a76\u9662, 1068, \u79d1\u7814\u8def, \u6df1\u5733\u5927\u5b66\u57ce, \u4e09\u5751\u6751, \u5357\u5c71\u533a, \u6df1\u5733\u5e02, \u5e7f\u4e1c\u7701, 518000, \u4e2d\u56fd", "22.59805605", "113.98533784", "edu", "", 2011], ["Learning and Exploiting Camera Geometry for Computer Vision", "", "Duke University", "Duke University", "Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA", "35.99905220", "-78.92906290", "edu", "", "2016"], ["Robust Multi-resolution Pedestrian Detection in Traffic Scenes", "", "Chinese Academy of Sciences", "Chinese Academy of Sciences", "\u4e2d\u56fd\u79d1\u5b66\u9662\u5fc3\u7406\u7814\u7a76\u6240, 16, \u6797\u8403\u8def, \u671d\u9633\u533a / Chaoyang, \u5317\u4eac\u5e02, 100101, \u4e2d\u56fd", "40.00447950", "116.37023800", "edu", "", 2013], ["Recognition in-the-Tail: Training Detectors for Unusual Pedestrians with Synthetic Imposters", "", "Carnegie Mellon University", "Carnegie Mellon University", "Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA", "37.41021930", "-122.05965487", "edu", "", "2017"], ["A Diverse Dataset for Pedestrian Detection", "", "Max Planck Institute for Informatics", "Max Planck Institute for Informatics", "MPII, E1 4, Campus, Universit\u00e4t, Sankt Johann, Bezirk Mitte, Saarbr\u00fccken, Regionalverband Saarbr\u00fccken, Saarland, 66123, Deutschland", "49.25795660", "7.04577417", "edu", "", ""], ["MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding", "", "Columbia University", "Columbia University", "Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA", "40.84198360", "-73.94368971", "edu", "", 2015], ["Pedestrian Detection Based on Sparse and Low-Rank Matrix Decomposition", "", "Jiangsu University", "Jiangsu University", "\u6c5f\u82cf\u5927\u5b66, 301, \u5b66\u5e9c\u8def, \u4eac\u53e3\u533a, \u8c61\u5c71\u8857\u9053, \u4eac\u53e3\u533a (Jingkou), \u9547\u6c5f\u5e02 / Zhenjiang, \u6c5f\u82cf\u7701, 212013, \u4e2d\u56fd", "32.20302965", "119.50968362", "edu", "", 2013], ["Fusion of Depth and Vision Information for Human Detection \u22c6", "", "Wayne State University", "Wayne State University", "Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA", "42.35775700", "-83.06286711", "edu", "", 2013], ["Spatial-Temporal Granularity-Tunable Gradients Partition (STGGP) Descriptors for Human Detection", "", "University of Oulu", "University of Oulu", "Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi", "65.05921570", "25.46632601", "edu", "", 2010], ["Integrating Perception and Cognition for AGI", "", "Carnegie Mellon University", "Carnegie Mellon University", "Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA", "37.41021930", "-122.05965487", "edu", "", 2011], ["Co-occurrence flow for pedestrian detection", "", "University of Cambridge", "University of Cambridge", "Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK", "52.17638955", "0.14308882", "edu", "", 2011], ["Enabling Pedestrian Safety using Computer Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car Crash", "", "Texas A&M University", "Texas A&M University", "Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA", "30.61083650", "-96.35212800", "edu", "", "2018"], ["Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice", "York University, Toronto, ON, Canada", "York University", "York University", "York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada", "43.77439110", "-79.50481085", "edu", "", "2018"], ["Viewpoint Adaptation for Person Detection", "", "Duke University", "Duke University", "Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA", "35.99905220", "-78.92906290", "edu", "", 2016], ["Pedestrian Detection with Semantic Regions of Interest", "", "University of Chinese Academy of Sciences", "University of Chinese Academy of Sciences", "University of Chinese Academy of Sciences, UCAS, Yuquanlu, \u7389\u6cc9\u8def, \u7530\u6751, \u6d77\u6dc0\u533a, 100049, \u4e2d\u56fd", "39.90828040", "116.24585270", "edu", "", 2017]]}
\ No newline at end of file |
