summaryrefslogtreecommitdiff
path: root/site/datasets/citations/moments_in_time.json
diff options
context:
space:
mode:
Diffstat (limited to 'site/datasets/citations/moments_in_time.json')
-rw-r--r--site/datasets/citations/moments_in_time.json2
1 files changed, 1 insertions, 1 deletions
diff --git a/site/datasets/citations/moments_in_time.json b/site/datasets/citations/moments_in_time.json
index 04684d4b..a6bf162a 100644
--- a/site/datasets/citations/moments_in_time.json
+++ b/site/datasets/citations/moments_in_time.json
@@ -1 +1 @@
-{"id": "a5a44a32a91474f00a3cda671a802e87c899fbb4", "paper": {"paperId": "a5a44a32a91474f00a3cda671a802e87c899fbb4", "key": "moments_in_time", "title": "Moments in Time Dataset: one million videos for event understanding", "journal": "CoRR", "address": "", "country": "", "address_type": "", "lat": "", "lng": "", "pdf_link": "https://arxiv.org/pdf/1801.03150.pdf", "report_link": "papers/a5a44a32a91474f00a3cda671a802e87c899fbb4.html", "citation_count": 25, "citations_geocoded": 16, "citations_unknown": 9, "citations_empty": 2, "citations_pdf": 25, "citations_doi": 0, "name": "Moments in Time"}, "address": null, "citations": [["DEEPEYE: A Compact and Accurate Video Comprehension at Terminal Devices Compressed with Quantization and Tensorization", "", "University of California, Riverside", "University of California, Riverside", "University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA", "33.98071305", "-117.33261035", "edu", "", "United States", "2018"], ["Temporal Modular Networks for Retrieving Complex Compositional Activities in Videos", "", "Stanford University", "Stanford University", "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "37.43131385", "-122.16936535", "edu", "", "United States", "2018"], ["Multi-Modal Fusion for Moment in Time Video Classification", "", "National Taiwan University", "National Taiwan University", "\u81fa\u5927;\u53f0\u5927, 1, \u7f85\u65af\u798f\u8def\u56db\u6bb5, \u5b78\u5e9c\u91cc, \u5927\u5b89\u5340, \u81fa\u5317\u5e02, 10617, \u81fa\u7063", "25.01682835", "121.53846924", "edu", "", "Taiwan", "2018"], ["Recurrent Residual Module for Fast Inference in Videos", "", "Shanghai Jiao Tong University", "Shanghai Jiao Tong University", "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "31.20081505", "121.42840681", "edu", "", "China", "2018"], ["Trimmed Event Recognition : submission to ActivityNet Challenge 2018", "", "Shenzhen Institutes of Advanced Technology", "Shenzhen Institutes of Advanced Technology", "\u4e2d\u56fd\u79d1\u5b66\u9662\u6df1\u5733\u5148\u8fdb\u6280\u672f\u7814\u7a76\u9662, 1068, \u79d1\u7814\u8def, \u6df1\u5733\u5927\u5b66\u57ce, \u4e09\u5751\u6751, \u5357\u5c71\u533a, \u6df1\u5733\u5e02, \u5e7f\u4e1c\u7701, 518000, \u4e2d\u56fd", "22.59805605", "113.98533784", "edu", "", "China", "2018"], ["Alibaba-Venus at ActivityNet Challenge 2018-Task C Trimmed Event Recognition ( Moments in Time )", "", "Alibaba Group, Hangzhou, China", "Alibaba Group, Hangzhou, China", "Alibaba Group, \u4e94\u5e38\u8857\u9053, \u4f59\u676d\u533a (Yuhang), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, \u4e2d\u56fd", "30.28106540", "120.02139087", "edu", "", "China", "2018"], ["Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior", "", "University of Illinois, Urbana-Champaign", "University of Illinois, Urbana-Champaign", "B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA", "40.11116745", "-88.22587665", "edu", "", "United States", "2018"], ["Non-local NetVLAD Encoding for Video Classification", "", "Fudan University", "Fudan University", "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "31.30104395", "121.50045497", "edu", "", "China", "2018"], ["Video Classification System for Moments in Time Challenge 2018", "", "University of New South Wales", "University of New South Wales", "UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia", "-33.91758275", "151.23124025", "edu", "", "Australia", "2018"], ["Morph: Flexible Acceleration for 3D CNN-based Video Understanding", "", "University of Illinois, Urbana-Champaign", "University of Illinois, Urbana-Champaign", "B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA", "40.11116745", "-88.22587665", "edu", "", "United States", "2018"], ["Reconstructive Memory for Abstract Selective Recall", "", "Stanford University", "Stanford University", "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "37.43131385", "-122.16936535", "edu", "", "United States", "2018"], ["CMU-AML Submission to Moments in Time Challenge 2018", "", "Carnegie Mellon University Silicon Valley", "CARNEGIE MELLON UNIVERSITY", "Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA", "37.41021930", "-122.05965487", "edu", "", "United States", "2018"], ["Object Level Visual Reasoning in Videos", "", "Simon Fraser University", "Simon Fraser University", "SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada", "49.27674540", "-122.91777375", "edu", "", "Canada", "2018"], ["Where and When to Look? Spatio-temporal Attention for Action Recognition in Videos", "", "University of British Columbia", "University of British Columbia", "University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada", "49.25839375", "-123.24658161", "edu", "", "Canada", "2018"], ["Submission to Moments in Time Challenge 2018", "", "Tsinghua University", "Tsinghua University", "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "40.00229045", "116.32098908", "edu", "", "China", "2018"], ["BAR: Bayesian Activity Recognition using variational inference", "", "Intel Labs", "Intel Labs", "4720 Forbes Ave, Pittsburgh, PA 15213, USA", "40.44397890", "-79.94646340", "company", "", "United States", "2018"]]} \ No newline at end of file
+{"id": "41976ebc8ab76d9a6861487c97cc7fcbe3b6015f", "paper": {"key": "moments_in_time", "name": "Moments in Time", "title": "Moments in Time Dataset: one million videos for event understanding", "year": "2017", "addresses": []}, "citations": [{"id": "5f724a84647c5a70865509910070077962433dca", "title": "Reconstructive Memory for Abstract Selective Recall", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/5f72/4a84647c5a70865509910070077962433dca.pdf"], "doi": []}, {"id": "b04e96e1fc56c11c43a6fc3e84ba4ca95905e2de", "title": "DEEPEYE: A Compact and Accurate Video Comprehension at Terminal Devices Compressed with Quantization and Tensorization", "addresses": [{"name": "Shanghai Jiao Tong University", "source_name": "Shanghai Jiao Tong University", "street_adddress": "\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\uff08\u5f90\u6c47\u6821\u533a\uff09, \u6dee\u6d77\u897f\u8def, \u756a\u79ba\u5c0f\u533a, \u5e73\u9634\u6865, \u5f90\u6c47\u533a, \u4e0a\u6d77\u5e02, 200052, \u4e2d\u56fd", "lat": "31.20081505", "lng": "121.42840681", "type": "edu", "country": "China"}, {"name": "University of California, Riverside", "source_name": "University of California, Riverside", "street_adddress": "University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA", "lat": "33.98071305", "lng": "-117.33261035", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1805.07935.pdf"], "doi": []}, {"id": "b0526f25acba719a4e85f54ab1f164292f7c0f13", "title": "Non-local NetVLAD Encoding for Video Classification", "addresses": [{"name": "Fudan University", "source_name": "Fudan University", "street_adddress": "\u590d\u65e6\u5927\u5b66, 220, \u90af\u90f8\u8def, \u4e94\u89d2\u573a\u8857\u9053, \u6768\u6d66\u533a, \u4e0a\u6d77\u5e02, 200433, \u4e2d\u56fd", "lat": "31.30104395", "lng": "121.50045497", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.00207.pdf"], "doi": []}, {"id": "c66eb0e17076bff559d8f94a8f967d52db2bab01", "title": "Video Classification System for Moments in Time Challenge 2018", "addresses": [{"name": "University of New South Wales", "source_name": "University of New South Wales", "street_adddress": "UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia", "lat": "-33.91758275", "lng": "151.23124025", "type": "edu", "country": "Australia"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c66e/b0e17076bff559d8f94a8f967d52db2bab01.pdf"], "doi": []}, {"id": "ac559873b288f3ac28ee8a38c0f3710ea3f986d9", "title": "Team DEEP-HRI Moments in Time Challenge 2018 Technical Report", "addresses": [{"name": "Hikvision Digital Technology Co., Ltd.", "source_name": "Hangzhou Hikvision Digital Technology Co., Ltd.", "street_adddress": "555 Qianmo Rd, Binjiang Qu, Hangzhou Shi, Zhejiang Sheng, China, 310051", "lat": "30.20948400", "lng": "120.22091200", "type": "company", "country": "China"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/ac55/9873b288f3ac28ee8a38c0f3710ea3f986d9.pdf"], "doi": []}, {"id": "c59aa01d1859f3b2d0db11b3d768cb3e526b0464", "title": "The more fine-grained , the better for transfer learning", "addresses": [{"name": "University of Toronto", "source_name": "University of Toronto", "street_adddress": "University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada", "lat": "43.66333345", "lng": "-79.39769975", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/c59a/a01d1859f3b2d0db11b3d768cb3e526b0464.pdf"], "doi": []}, {"id": "1cca57d2532a4085fb357c10237bdded69541310", "title": "Uncertainty aware multimodal activity recognition with Bayesian inference", "addresses": [{"name": "Intel Labs", "source_name": "Intel Labs", "street_adddress": "4720 Forbes Ave, Pittsburgh, PA 15213, USA", "lat": "40.44397890", "lng": "-79.94646340", "type": "company", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.10811.pdf"], "doi": []}, {"id": "9abd6bac662e8fdf4f71ccc26a89f7e360b7b879", "title": "Object Level Visual Reasoning in Videos", "addresses": [{"name": "LIRIS", "source_name": "LIRIS, École Centrale de Lyon, UMR5205, F-69134, France", "street_adddress": "Lyon, France", "lat": "45.76404300", "lng": "4.83565900", "type": "edu", "country": "France"}, {"name": "INRIA", "source_name": "INRIA Grenoble Rhone-Alpes, Grenoble, France", "street_adddress": "655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France", "lat": "45.21788600", "lng": "5.80736900", "type": "edu", "country": "France"}, {"name": "Simon Fraser University", "source_name": "Simon Fraser University", "street_adddress": "SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada", "lat": "49.27674540", "lng": "-122.91777375", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1806.06157.pdf"], "doi": []}, {"id": "3eb9f4ca21bd104b1d9963a5a74e0ad48a1a1bdf", "title": "Self-supervised Spatiotemporal Feature Learning by Video Geometric Transformations", "addresses": [{"name": "City University of New York", "source_name": "The City University of New York", "street_adddress": "Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA", "lat": "40.87228250", "lng": "-73.89489171", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.11387.pdf"], "doi": []}, {"id": "79a78ba93f3d4d7dc30eb6f943a2d2ac7cabb048", "title": "Trajectory Convolution for Action Recognition", "addresses": [{"name": "Chinese University of Hong Kong", "source_name": "Chinese University of Hong Kong", "street_adddress": "Hong Kong, \u99ac\u6599\u6c34\u6c60\u65c1\u8def", "lat": "22.41626320", "lng": "114.21093180", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/79a7/8ba93f3d4d7dc30eb6f943a2d2ac7cabb048.pdf"], "doi": []}, {"id": "36091ff6b5d5a53d9641f5c3388b8c31b9ad4b49", "title": "Temporal Modular Networks for Retrieving Complex Compositional Activities in Videos", "addresses": [{"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/f1f4/5a961cd429d3257d98a9a7f803a2783f11a8.pdf"], "doi": []}, {"id": "b613ea6c4fb5efdf17af090d64e9bdce41e28711", "title": "Where and When to Look? Spatio-temporal Attention for Action Recognition in Videos", "addresses": [{"name": "University of British Columbia", "source_name": "University of British Columbia", "street_adddress": "University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada", "lat": "49.25839375", "lng": "-123.24658161", "type": "edu", "country": "Canada"}, {"name": "Cornell University", "source_name": "Cornell University", "street_adddress": "Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA", "lat": "42.45055070", "lng": "-76.47835130", "type": "edu", "country": "United States"}, {"name": "Simon Fraser University", "source_name": "Simon Fraser University", "street_adddress": "SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada", "lat": "49.27674540", "lng": "-122.91777375", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1810.04511.pdf"], "doi": []}, {"id": "093da3310d98b3c09e2770c2a6aa49eeca58cebe", "title": "Trimmed Event Recognition : submission to ActivityNet Challenge 2018", "addresses": [{"name": "Shenzhen Institutes of Advanced Technology", "source_name": "Shenzhen Institutes of Advanced Technology", "street_adddress": "\u4e2d\u56fd\u79d1\u5b66\u9662\u6df1\u5733\u5148\u8fdb\u6280\u672f\u7814\u7a76\u9662, 1068, \u79d1\u7814\u8def, \u6df1\u5733\u5927\u5b66\u57ce, \u4e09\u5751\u6751, \u5357\u5c71\u533a, \u6df1\u5733\u5e02, \u5e7f\u4e1c\u7701, 518000, \u4e2d\u56fd", "lat": "22.59805605", "lng": "113.98533784", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/093d/a3310d98b3c09e2770c2a6aa49eeca58cebe.pdf"], "doi": []}, {"id": "38283e35371f2a426305dee60e80cd28abb4f349", "title": "CMU-AML Submission to Moments in Time Challenge 2018", "addresses": [{"name": "Carnegie Mellon University", "source_name": "Carnegie Mellon University Pittsburgh, PA - 15213, USA", "street_adddress": "Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA", "lat": "40.44416190", "lng": "-79.94272826", "type": "edu", "country": "United States"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/3828/3e35371f2a426305dee60e80cd28abb4f349.pdf"], "doi": []}, {"id": "b0bf1be8731c60b2caf3a27f1e95b73875c4220b", "title": "Submission to Moments in Time Challenge 2018", "addresses": [{"name": "Zhejiang University", "source_name": "Zhejiang University", "street_adddress": "\u6d59\u6c5f\u5927\u5b66\u4e4b\u6c5f\u6821\u533a, \u4e4b\u6c5f\u8def, \u8f6c\u5858\u8857\u9053, \u897f\u6e56\u533a (Xihu), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, 310008, \u4e2d\u56fd", "lat": "30.19331415", "lng": "120.11930822", "type": "edu", "country": "China"}, {"name": "Beihang University", "source_name": "Beihang University", "street_adddress": "\u5317\u4eac\u822a\u7a7a\u822a\u5929\u5927\u5b66, 37, \u5b66\u9662\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100083, \u4e2d\u56fd", "lat": "39.98083330", "lng": "116.34101249", "type": "edu", "country": "China"}, {"name": "Huazhong University of Science and Technology", "source_name": "Huazhong University of Science and Technology", "street_adddress": "\u534e\u4e2d\u5927, \u73de\u55bb\u8def, \u4e1c\u6e56\u65b0\u6280\u672f\u5f00\u53d1\u533a, \u5173\u4e1c\u8857\u9053, \u4e1c\u6e56\u65b0\u6280\u672f\u5f00\u53d1\u533a\uff08\u6258\u7ba1\uff09, \u6d2a\u5c71\u533a (Hongshan), \u6b66\u6c49\u5e02, \u6e56\u5317\u7701, 430074, \u4e2d\u56fd", "lat": "30.50975370", "lng": "114.40628810", "type": "edu", "country": "China"}, {"name": "Xian Jiaotong University", "source_name": "Institute of Artificial Intelligence and Robotics, Xian Jiaotong University, Xian, China", "street_adddress": "28 Xianning W Rd, JiaoDa ShangYe JieQu, Beilin Qu, Xian Shi, Shaanxi Sheng, China", "lat": "34.25080300", "lng": "108.98369300", "type": "edu", "country": "China"}, {"name": "Tsinghua University", "source_name": "Tsinghua University", "street_adddress": "\u6e05\u534e\u5927\u5b66, 30, \u53cc\u6e05\u8def, \u4e94\u9053\u53e3, \u540e\u516b\u5bb6, \u6d77\u6dc0\u533a, 100084, \u4e2d\u56fd", "lat": "40.00229045", "lng": "116.32098908", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/b0bf/1be8731c60b2caf3a27f1e95b73875c4220b.pdf"], "doi": []}, {"id": "496e7b1c02a786ff0e2ee86711f03a59ae0abea9", "title": "Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior", "addresses": [{"name": "National Institutes of Health", "source_name": "National Institutes of Health", "street_adddress": "NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA", "lat": "39.00041165", "lng": "-77.10327775", "type": "edu", "country": "United States"}, {"name": "New York University", "source_name": "New York University", "street_adddress": "NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA", "lat": "40.72925325", "lng": "-73.99625394", "type": "edu", "country": "United States"}, {"name": "Princeton University", "source_name": "Princeton University", "street_adddress": "Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA", "lat": "40.34829285", "lng": "-74.66308325", "type": "edu", "country": "United States"}, {"name": "Stanford University", "source_name": "Stanford University", "street_adddress": "Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA", "lat": "37.43131385", "lng": "-122.16936535", "type": "edu", "country": "United States"}, {"name": "University of Illinois", "source_name": "Advanced Digital Sciences Center (ADSC) of the University of Illinois, Singapore, Singapore", "street_adddress": "1 Create Way, 14-02 Create Tower, Singapore 138602", "lat": "1.30372570", "lng": "103.77377630", "type": "edu", "country": "Singapore"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/1cea/72fb523432d80b77224433d57828da44828c.pdf"], "doi": []}, {"id": "f8e10b9a85ac0785e1230124b1dd36987293170b", "title": "On the effectiveness of task granularity for transfer learning.", "addresses": [{"name": "University of Toronto", "source_name": "University of Toronto", "street_adddress": "University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada", "lat": "43.66333345", "lng": "-79.39769975", "type": "edu", "country": "Canada"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1804.09235.pdf"], "doi": []}, {"id": "6987aa3d6896c5837124dbb14af529133984104a", "title": "BAR: Bayesian Activity Recognition using variational inference", "addresses": [{"name": "Intel Labs", "source_name": "Intel Labs", "street_adddress": "4720 Forbes Ave, Pittsburgh, PA 15213, USA", "lat": "40.44397890", "lng": "-79.94646340", "type": "company", "country": "United States"}], "year": "2018", "pdf": ["https://arxiv.org/pdf/1811.03305.pdf"], "doi": []}, {"id": "7e49a6f11a8843b2ff5bdbf7cf95617c6219f757", "title": "Multi-Modal Fusion for Moment in Time Video Classification", "addresses": [{"name": "National Taiwan University", "source_name": "National Taiwan University", "street_adddress": "\u81fa\u5927;\u53f0\u5927, 1, \u7f85\u65af\u798f\u8def\u56db\u6bb5, \u5b78\u5e9c\u91cc, \u5927\u5b89\u5340, \u81fa\u5317\u5e02, 10617, \u81fa\u7063", "lat": "25.01682835", "lng": "121.53846924", "type": "edu", "country": "Taiwan"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/7e49/a6f11a8843b2ff5bdbf7cf95617c6219f757.pdf"], "doi": []}, {"id": "488370572904a8fd97f5bc68fbdf0b3b3984cc76", "title": "Alibaba-Venus at ActivityNet Challenge 2018-Task C Trimmed Event Recognition ( Moments in Time )", "addresses": [{"name": "Alibaba Group, Hangzhou, China", "source_name": "Alibaba Group, Hangzhou, China", "street_adddress": "Alibaba Group, \u4e94\u5e38\u8857\u9053, \u4f59\u676d\u533a (Yuhang), \u676d\u5dde\u5e02 Hangzhou, \u6d59\u6c5f\u7701, \u4e2d\u56fd", "lat": "30.28106540", "lng": "120.02139087", "type": "edu", "country": "China"}], "year": "2018", "pdf": ["https://pdfs.semanticscholar.org/4883/70572904a8fd97f5bc68fbdf0b3b3984cc76.pdf"], "doi": []}]} \ No newline at end of file