diff options
Diffstat (limited to 'site/content/pages/datasets/duke_mtmc')
| -rw-r--r-- | site/content/pages/datasets/duke_mtmc/index.md | 27 |
1 files changed, 13 insertions, 14 deletions
diff --git a/site/content/pages/datasets/duke_mtmc/index.md b/site/content/pages/datasets/duke_mtmc/index.md index 55dd8c2b..1dd189ac 100644 --- a/site/content/pages/datasets/duke_mtmc/index.md +++ b/site/content/pages/datasets/duke_mtmc/index.md @@ -30,17 +30,17 @@ Despite [repeated](https://www.hrw.org/news/2017/11/19/china-police-big-data-sys | Organization | Paper | Link | Year | Used Duke MTMC | |---|---|---|---| -| SenseNets, SenseTime | Attention-Aware Compositional Network for Person Re-identification | [SemanticScholar](https://www.semanticscholar.org/paper/Attention-Aware-Compositional-Network-for-Person-Xu-Zhao/14ce502bc19b225466126b256511f9c05cadcb6e) | 2018 | ✔ | -|SenseTime| End-to-End Deep Kronecker-Product Matching for Person Re-identification | [thcvf.com](http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_End-to-End_Deep_Kronecker-Product_CVPR_2018_paper.pdf) | 2018| ✔ | +| Beihang University | Orientation-Guided Similarity Learning for Person Re-identification | [ieee.org](https://ieeexplore.ieee.org/document/8545620) | 2018 | ✔ | +| Beihang University | Online Inter-Camera Trajectory Association Exploiting Person Re-Identification and Camera Topology | [acm.org](https://dl.acm.org/citation.cfm?id=3240663) | 2018 | ✔ | +| CloudWalk | CloudWalk re-identification technology extends facial biometric tracking with improved accuracy | [BiometricUpdate.com](https://www.biometricupdate.com/201903/cloudwalk-re-identification-technology-extends-facial-biometric-tracking-with-improved-accuracy) | 2019 | ✔ | |CloudWalk| Horizontal Pyramid Matching for Person Re-identification | [arxiv.org](https://arxiv.org/pdf/1804.05275.pdf) | 2018 | ✔ | -| Megvii | Multi-Target, Multi-Camera Tracking by Hierarchical Clustering: Recent Progress on DukeMTMC Project | [SemanticScholar](https://www.semanticscholar.org/paper/Multi-Target%2C-Multi-Camera-Tracking-by-Hierarchical-Zhang-Wu/10c20cf47d61063032dce4af73a4b8e350bf1128) | 2018 | ✔ | | Megvii | Person Re-Identification (slides) | [github.io](https://zsc.github.io/megvii-pku-dl-course/slides/Lecture%2011,%20Human%20Understanding_%20ReID%20and%20Pose%20and%20Attributes%20and%20Activity%20.pdf) | 2017 | ✔ | +| Megvii | Multi-Target, Multi-Camera Tracking by Hierarchical Clustering: Recent Progress on DukeMTMC Project | [SemanticScholar](https://www.semanticscholar.org/paper/Multi-Target%2C-Multi-Camera-Tracking-by-Hierarchical-Zhang-Wu/10c20cf47d61063032dce4af73a4b8e350bf1128) | 2018 | ✔ | | Megvii | SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial PersonRe-Identification | [arxiv.org](https://arxiv.org/abs/1810.06996) | 2018 | ✔ | -| CloudWalk | CloudWalk re-identification technology extends facial biometric tracking with improved accuracy | [BiometricUpdate.com](https://www.biometricupdate.com/201903/cloudwalk-re-identification-technology-extends-facial-biometric-tracking-with-improved-accuracy) | 2018 | ✔ | | National University of Defense Technology | Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers | [SemanticScholar.org](https://www.semanticscholar.org/paper/Tracking-by-Animation%3A-Unsupervised-Learning-of-He-Liu/e90816e1a0e14ea1e7039e0b2782260999aef786) | 2018 | ✔ | | National University of Defense Technology | Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks | [SemanticScholar.org](https://www.semanticscholar.org/paper/Unsupervised-Multi-Object-Detection-for-Video-Using-He-He/59f357015054bab43fb8cbfd3f3dbf17b1d1f881) | 2018 | ✔ | -| Beihang University | Orientation-Guided Similarity Learning for Person Re-identification | [ieee.org](https://ieeexplore.ieee.org/document/8545620) | 2018 | ✔ | -| Beihang University | Online Inter-Camera Trajectory Association Exploiting Person Re-Identification and Camera Topology | [acm.org](https://dl.acm.org/citation.cfm?id=3240663) | 2018 | ✔ | +| SenseNets, SenseTime | Attention-Aware Compositional Network for Person Re-identification | [SemanticScholar](https://www.semanticscholar.org/paper/Attention-Aware-Compositional-Network-for-Person-Xu-Zhao/14ce502bc19b225466126b256511f9c05cadcb6e) | 2018 | ✔ | +|SenseTime| End-to-End Deep Kronecker-Product Matching for Person Re-identification | [thcvf.com](http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_End-to-End_Deep_Kronecker-Product_CVPR_2018_paper.pdf) | 2018| ✔ | The reasons that companies in China use the Duke MTMC dataset for research are technically no different than the reasons it is used in the United States and Europe. In fact the original creators of the dataset published a follow up report in 2017 titled [Tracking Social Groups Within and Across Cameras](https://www.semanticscholar.org/paper/Tracking-Social-Groups-Within-and-Across-Cameras-Solera-Calderara/9e644b1e33dd9367be167eb9d832174004840400) with specific applications to "automated analysis of crowds and social gatherings for surveillance and security applications". Their work, as well as the creation of the original dataset in 2014 were both supported in part by the United States Army Research Laboratory. @@ -52,8 +52,8 @@ Citations from the United States and Europe show a similar trend to that in Chin | Microsoft | ReXCam: Resource-Efficient, Cross-CameraVideo Analytics at Enterprise Scale | [arxiv.org](https://arxiv.org/abs/1811.01268) | 2018 | ✔ | | Microsoft | Scaling Video Analytics Systems to Large Camera Deployments | [arxiv.org](https://arxiv.org/pdf/1809.02318.pdf) | 2018 | ✔ | | University College of London | Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based RecurrentAttention Networks | [SemanticScholar.org](https://pdfs.semanticscholar.org/59f3/57015054bab43fb8cbfd3f3dbf17b1d1f881.pdf) | 2018 | ✔ | -| Vision Semantics Ltd. | Unsupervised Person Re-identification by Deep Learning Tracklet Association | [arxiv.org](https://arxiv.org/abs/1809.02874) | 2018 | ✔ | | US Dept. of Homeland Security | Re-Identification with Consistent Attentive Siamese Networks | [arxiv.org](https://arxiv.org/abs/1811.07487/) | 2019 | ✔ | +| Vision Semantics Ltd. | Unsupervised Person Re-identification by Deep Learning Tracklet Association | [arxiv.org](https://arxiv.org/abs/1809.02874) | 2018 | ✔ | By some metrics the dataset is considered a huge success. It is regarded as highly influential research and has contributed to hundreds, if not thousands, of projects to advance artificial intelligence for person tracking and monitoring. All the above citations, regardless of which country is using it, align perfectly with the original [intent](http://vision.cs.duke.edu/DukeMTMC/) of the Duke MTMC dataset: "to accelerate advances in multi-target multi-camera tracking". @@ -79,7 +79,7 @@ For the approximately 2,000 students in Duke MTMC dataset there is unfortunately #### Video Timestamps -The video timestamps contain the likely, but not yet confirmed, date and times the video recorded. Because the video timestamps align with the start and stop [time sync data](http://vision.cs.duke.edu/DukeMTMC/details.html#time-sync) provided by the researchers, it at least confirms the relative timing. The [[precipitous weather](https://www.wunderground.com/history/daily/KIGX/date/2014-3-19?req_city=Durham&req_state=NC&req_statename=North%20Carolina&reqdb.zip=27708&reqdb.magic=1&reqdb.wmo=99999) on March 14, 2014 in Durham, North Carolina supports, but does not confirm, that this day is a potential capture date. +The video timestamps contain the likely, but not yet confirmed, date and times the video recorded. Because the video timestamps align with the start and stop [time sync data](http://vision.cs.duke.edu/DukeMTMC/details.html#time-sync) provided by the researchers, it at least confirms the relative timing. The [precipitous weather](https://www.wunderground.com/history/daily/KIGX/date/2014-3-19?req_city=Durham&req_state=NC&req_statename=North%20Carolina&reqdb.zip=27708&reqdb.magic=1&reqdb.wmo=99999) on March 14, 2014 in Durham, North Carolina supports, but does not confirm, that this day is a potential capture date. === columns 2 @@ -104,7 +104,11 @@ The video timestamps contain the likely, but not yet confirmed, date and times t #### Notes -- The original Duke MTMC dataset paper mentions 2,700 identities, but their ground truth file only lists annotations for 1,812, and their own research typically mentions 2,000. For this write up we used 2,000 to describe the approximate number of students. +The original Duke MTMC dataset paper mentions 2,700 identities, but their ground truth file only lists annotations for 1,812, and their own research typically mentions 2,000. For this write up we used 2,000 to describe the approximate number of students. + +#### Ethics + +Please direct any questions about the ethics of the dataset to Duke University's [Institutional Ethics & Compliance Office](https://hr.duke.edu/policies/expectations/compliance/) using the number at the bottom of the page. {% include 'cite_our_work.html' %} @@ -120,11 +124,6 @@ If you use any data from the Duke MTMC please follow their [license](http://visi </pre> - -#### ToDo - -- clean up citations, formatting - ### Footnotes [^xinjiang_nyt]: Mozur, Paul. "One Month, 500,000 Face Scans: How China Is Using A.I. to Profile a Minority". https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html. April 14, 2019. |
