diff options
Diffstat (limited to 'reports')
| -rw-r--r-- | reports/all_institutions.csv | 1499 | ||||
| -rw-r--r-- | reports/all_institutions_sorted.csv | 1745 | ||||
| -rw-r--r-- | reports/doi_institutions.csv | 3 | ||||
| -rw-r--r-- | reports/first_pages.html | 11653 | ||||
| -rw-r--r-- | reports/institution_names.csv | 709 | ||||
| -rw-r--r-- | reports/institutions.html | 2 | ||||
| -rw-r--r-- | reports/institutions_missing.html | 2679 | ||||
| -rw-r--r-- | reports/map.js | 35 | ||||
| -rw-r--r-- | reports/reports.css | 4 | ||||
| -rw-r--r-- | reports/stats/empty_papers.csv | 579 | ||||
| -rw-r--r-- | reports/stats/geocoded_papers.csv | 4580 | ||||
| -rw-r--r-- | reports/stats/no_separator_papers.csv | 344 | ||||
| -rw-r--r-- | reports/stats/unknown_papers.csv | 17347 |
13 files changed, 40294 insertions, 885 deletions
diff --git a/reports/all_institutions.csv b/reports/all_institutions.csv new file mode 100644 index 00000000..7ff27b0d --- /dev/null +++ b/reports/all_institutions.csv @@ -0,0 +1,1499 @@ +"University of Delaware, USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA"
+AALTO UNIVERSITY,60.18558755,24.824273298775,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi"
+"AGH University of Science and Technology, Kraków, Poland",50.0657033,19.9189586670586,"AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP"
+AI Institute,-34.6102167,-58.3752244291708,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina"
+ALICE Institute,-8.82143045,13.2347076178375,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola"
+ARISTOTLE UNIVERSITY OF THESSALONIKI,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+"Aalborg University, Denmark",57.01590275,9.97532826658991,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark"
+"Aalto University, Finland",60.18558755,24.824273298775,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi"
+"Aberystwyth University, UK",52.4107358,-4.05295500914411,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK"
+"Ahmedabad University, Gujarat, India 380009",23.0378743,72.5518004573221,"School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India"
+Ajou Univ.,37.2830003,127.045484689222,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국"
+Ajou University,37.2830003,127.045484689222,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국"
+Akita Prefectural University,39.8011499,140.045911602376,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本"
+"Akita Prefectural University, Yurihonjo, Japan",39.39325745,140.073500465928,"秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本"
+Akita University,39.7278142,140.133225661449,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本"
+"Akita University, Akita, Japan",39.7291921,140.136565773585,"秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本"
+"Alexandria University, Alexandria, Egypt",31.21051105,29.9131456239399,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر"
+"Alibaba Group, Hangzhou, China",30.2810654,120.021390874339,"Alibaba Group, 五常街道, 余杭区 (Yuhang), 杭州市 Hangzhou, 浙江省, 中国"
+"Amazon, Berkshire, U.K.",51.43522855,-1.07155123817349,"Amazon Logistics, Exeter Road, Theale, West Berkshire, South East, England, RG7 4PL, UK"
+"American University, Washington, DC, USA",38.93804505,-77.0893922365193,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA"
+Amherst College,42.37289,-72.518814,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA"
+Amirkabir University of Technology,35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران"
+"Amirkabir University of Technology, Tehran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران"
+"Amirkabir University of Technology, Tehran, Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران"
+"Amirkabir University of Technology, Tehran. Iran",35.704514,51.4097205774739,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران"
+"Amity University Uttar Pradesh, Noida",28.54322285,77.3327482973395,"Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India"
+"Amity University, Lucknow, India",26.85095965,81.0495096452828,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India"
+"Anhui Polytechnic University, Wuhu, China",31.34185955,118.407397117034,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国"
+"Anhui University, Hefei, China",31.76909325,117.17795091346,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国"
+Anna University,13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India"
+"Anna University Chennai, India",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India"
+"Anna University, Chennai",13.0105838,80.2353736,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India"
+Aristotle University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+Aristotle University of Thessaloniki GR,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+"Aristotle University of Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+"Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+"Aristotle University of Thessaloniki, Thessaloniki, Greece",40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+Arizona State University,33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA"
+"Arizona State University, AZ, USA",33.30715065,-111.676531568996,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA"
+"Arizona State University, Tempe AZ",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA"
+"Arizona State University, Tempe, AZ, USA",33.4206602,-111.932634924965,"Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA"
+"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia",3.0552109,101.7005831,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia"
+"Assiut University, Asyut, Egypt",27.18794105,31.1700949818453,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر"
+"Aston University, Birmingham, U.K.",52.48620785,-1.88849915088515,"Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK"
+Australia,-24.7761086,134.755,Australia
+Australian Institute of Sport,-35.24737535,149.104454269689,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia"
+Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia"
+"Australian National University, Canberra",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia"
+"Australian National University, Canberra, ACT 0200, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia"
+"Azad University, Qazvin, Iran",36.3173432,50.0367286,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ایران"
+B.S. University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA"
+Bahcesehir University,41.02451875,28.9769795349346,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye"
+"Bahcesehir University, Istanbul, Turkey",41.02451875,28.9769795349346,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye"
+Banaras Hindu University,25.2662887,82.9927969,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India"
+Bangalore Institute of Technology,12.9551259,77.5741985,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India"
+"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India",14.4443949,75.9027655185535,"Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India"
+"Bar Ilan University, Israel",32.06932925,34.8433433861531,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל"
+Bas kent University,52.08340265,5.14828494152362,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland"
+Beckman Institute,40.11571585,-88.2275077179639,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA"
+Beihang University,39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国"
+"Beihang University, Beijing 100191, China",39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国"
+"Beihang University, Beijing, China",39.9808333,116.341012492788,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国"
+"Beijing Institute of Technology University, P. R. China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国"
+"Beijing Institute of Technology, Beijing 100081 CHINA",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国"
+"Beijing Institute of Technology, Beijing, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国"
+"Beijing Institute of Technology, China",39.9586652,116.309712808455,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国"
+Beijing Jiaotong University,39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国"
+"Beijing Jiaotong University, Beijing, 100044, China",39.94976005,116.33629045844,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国"
+"Beijing Normal University, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国"
+"Beijing Union University, 100101, China",39.9890068,116.420677175386,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国"
+Beijing University of Posts and Telecommunications,39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国"
+"Beijing University of Posts and Telecommunications, Beijing",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国"
+"Beijing University of Posts and Telecommunications, Beijing, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国"
+"Beijing University of Posts and Telecommunications, Beijing, P.R. China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国"
+"Beijing University of Posts and Telecommunications, China",39.9601488,116.351939210403,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国"
+"Beijing University of Technology, Beijing 100022, China",39.87391435,116.477222846574,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国"
+"Beijing, China",39.906217,116.3912757,"北京市, 东城区, 北京市, 100010, 中国"
+"Beijing, Haidian, China",39.96014155,116.359704380265,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国"
+"Benha University, Egypt",30.0818727,31.2445484105016,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر"
+"Bharathidasan University, Trichy, India",10.7778845,78.6966319,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India"
+Bielefeld University,52.0280421,8.51148270115395,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland"
+"Bilkent University, 06800 Cankaya, Turkey",39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye"
+"Binghamton University, Binghamton, NY",42.0958077,-75.9145568939543,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA"
+"Bogazici University, Bebek",41.0868841,29.0441316722649,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye"
+"Bogazici University, Turkey",41.08327335,29.0503931951846,"Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye"
+Boston College,42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA"
+"Boston College, USA",42.3354481,-71.1681386402306,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA"
+Boston University,42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA"
+"Boston University, Boston, MA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA"
+"Boston University, USA",42.3504253,-71.1005611418395,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA"
+Bournemouth University,50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK"
+"Bournemouth University, UK",50.74223495,-1.89433738695589,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK"
+Brown University,41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA"
+"Brown University, Providence Rhode Island, 02912, USA",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA"
+"Brown University, Providence, RI",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA"
+"Brown University, United States",41.8268682,-71.4012314581107,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA"
+Brunel University,51.53255315,-0.473993562050575,"Brunel University London, The Strip, Hillingdon, London, Greater London, England, UB8 3PH, UK"
+CALIFORNIA INSTITUTE OF TECHNOLOGY,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA"
+CARNEGIE MELLON UNIVERSITY,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA"
+COLUMBIA UNIVERSITY,40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+COMSATS Institute of Information Technology,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان"
+"COMSATS Institute of Information Technology, Islamabad",33.65010145,73.1551494914791,"COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, پاکستان"
+"COMSATS Institute of Information Technology, Lahore 54000, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان"
+"COMSATS Institute of Information Technology, Pakistan",31.4006332,74.2137296,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان"
+CUNY City College,45.5546608,5.4065255,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France"
+California Institute of Technology,34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA"
+"California Institute of Technology, Pasadena, CA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA"
+"California Institute of Technology, Pasadena, CA, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA"
+"California Institute of Technology, Pasadena, California, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA"
+"California Institute of Technology, USA",34.13710185,-118.125274866116,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA"
+"Callaghan, NSW 2308, Australia",-32.8892352,151.6998983,"Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia"
+Cambridge Research Laboratory,52.17333465,0.149899463173698,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK"
+Cambridge University,50.7944026,-1.0971748,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK"
+"Capital Normal University, 100048, China",39.92864575,116.30104052087,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国"
+Cardi University,10.6435074,-61.4022996445292,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago"
+"Cardiff University, UK",51.4879961,-3.17969747443907,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK"
+Carleton University,45.3860843,-75.6953926739404,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada"
+Carnegie Mellon University,37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA"
+"Carnegie Mellon University Pittsburgh, PA - 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh, PA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh, PA 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh, PA, 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh, PA, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, Pittsburgh, USA",40.4441619,-79.942728259225,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"Carnegie Mellon University, USA",37.4102193,-122.059654865858,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA"
+"Central Tehran Branch, Azad University",35.753318,51.370631,"دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ایران"
+Central Washington University,47.00646895,-120.53673039883,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA"
+"Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain",41.5007811,2.11143663166357,"Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España"
+"Chang Gung University, Taoyuan, Taiwan",25.030438,121.390095126629,"長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣"
+Charles Sturt University,-35.0636071,147.3552234,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia"
+China,35.000074,104.999927,中国
+"China University of Mining and Technology, Xuzhou, China",34.2152538,117.1398541,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国"
+Chinese Academy of Sciences,40.0044795,116.370238,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国"
+"Chinese Academy of Sciences, Beijing",40.0044795,116.370238,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国"
+"Chinese Academy of Sciences, China",40.0044795,116.370238,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国"
+"Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh",22.46221665,91.9694226317318,"Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ"
+"Chonbuk National University, Jeonju-si",35.84658875,127.135013303058,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국"
+"Chongqing University of Posts and Telecommunications, Chongqing, China",29.5357046,106.604824742826,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国"
+"Chongqing University, China",29.5084174,106.578585515028,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国"
+"Chongqing University, Chongqing, China",29.5084174,106.578585515028,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国"
+Chosun University,35.1441031,126.9257858,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국"
+"Chu Hai College of Higher Education, Hong Kong",22.3760643,113.987153890134,"珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国"
+"Chu Hai College of Higher Education, Tsuen Wan, Hong Kong",22.375601,113.987140797925,"珠海學院, 80, 青山公路-青山灣段 Castle Peak Road – Castle Peak Bay, 良田村 Leung Tin Tsuen, 青山灣 Castle Peak Bay, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国"
+Chubu University,35.2742655,137.013278412463,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本"
+"Chulalongkorn University Bangkok, Thailand",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย"
+"Chulalongkorn University, Bangkok",13.74311795,100.532879009091,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย"
+"Chung-Ang University, Seoul, Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국"
+"Chung-Ang University, Seoul, South Korea",37.50882,126.9619,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국"
+Chungnam National University,36.37029045,127.347804575184,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국"
+City University of Hong Kong,22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国"
+"City University of Hong Kong, Hong Kong",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国"
+"City University of Hong Kong, Hong Kong, China",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国"
+"City University of Hong Kong, Kowloon, Hong Kong",22.34000115,114.169702912423,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国"
+Clemson University,34.66869155,-82.837434756078,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA"
+"Clemson University, Clemson, SC",34.67871075,-82.8346790794026,"E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA"
+Coburg University,50.26506145,10.9519648264628,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland"
+"College Heights Blvd, Bowling Green, KY",36.9881671,-86.4542111,"College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA"
+"College Park, MD",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA"
+"College Park, MD 20742 USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA"
+"College Park, MD, 20740, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA"
+"College Park, Maryland",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA"
+"College Park, USA",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA"
+"College Park, United States",38.980666,-76.9369189,"College Park, Prince George's County, Maryland, USA"
+College of Computer and Information Science,42.3192923,-83.2343465549018,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA"
+College of Computing,-6.1992922,39.3081862,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania"
+College of Electrical and Information Engineering,42.0049791,21.40834315,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија"
+"College of Engineering Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India"
+College of Engineering and Computer Science,25.7589624,-80.3738881489383,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA"
+"College of Engineering, Pune, India",18.52930005,73.8568253702551,"College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India"
+College of Informatics,14.6173885,121.101327315511,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines"
+Colorado State University,40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA"
+"Colorado State University, Fort Collins",40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA"
+"Colorado State University, Fort Collins, Colorado, USA",40.5709358,-105.086552556269,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA"
+Columbia University in the City of New York,40.8071772,-73.9625279772072,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA"
+"Columbia University, New York",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+"Columbia University, New York NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA"
+"Columbia University, New York, NY",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+"Columbia University, New York, NY 10027, USA",40.81779415,-73.9578531933627,"Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA"
+"Columbia University, New York, NY, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+"Columbia University, New York, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+"Columbia University, USA",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+"Columbia University, United States",40.8419836,-73.9436897071772,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA"
+"Communication University of China, Beijing, China",39.91199955,116.551891408714,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国"
+"Computer Science, Loughborough University, Loughborough, UK",52.7663577,-1.2292461,"Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK"
+Concordia University,45.57022705,-122.637093463826,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA"
+"Concordia University, Canada",45.4955911,-73.5775043,"FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada"
+"Concordia University, Montreal, QC, Canada",45.4955911,-73.5775043,"FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada"
+Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA"
+"Cornell University, Ithaca, NY, USA",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA"
+"Cornell University, Ithaca, New York",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA"
+"Cornell University, USA",42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA"
+Courant Institute,40.7286994,-73.9957151,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA"
+Courant Institute of Mathematical Sciences,40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA"
+"Courant Institute of Mathematical Sciences, New York, NY",40.7286484,-73.9956863,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA"
+"Curtin University, Perth WA 6102, Australia",-32.00686365,115.89691775,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia"
+"Curtin University, Perth WA, Australia",-32.00319745,115.891774804686,"A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia"
+"Curtin University, Perth, Australia",-32.00574155,115.892864389257,"Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia"
+"Curtin University, Perth, Western Australia 6012",-32.00319745,115.891774804686,"A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia"
+Cyprus University of Technology,34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs"
+"Cyprus University of Technology, Cyprus",34.67567405,33.0457764820597,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs"
+Czech Technical University,50.0764296,14.418023122743,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko"
+"DIT UNIVERSITY, DEHRADUN",30.3983396,78.0753455,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India"
+DUBLIN CITY UNIVERSITY,53.38522185,-6.25740874081493,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland"
+Dalian University of Technology,38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国"
+"Dalian University of Technology, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国"
+"Dalian University of Technology, Dalian 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国"
+"Dalian University of Technology, Dalian, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国"
+"Dalian University of Technology, Dalian, Liaoning, 116024, China",38.88140235,121.522810980755,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国"
+"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea",37.3219575,127.1250723,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국"
+"Dankook University, Yongin, South Korea",37.3219575,127.1250723,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국"
+Dartmouth College,43.7047927,-72.2925909,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA"
+"Dartmouth College, NH 03755 USA",43.7070046,-72.2869048,"Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA"
+"Deakin University, Geelong, VIC 3216, Australia",-38.19928505,144.303652287331,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia"
+Delft University of Technology,51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland"
+"Delft University of Technology, Mekelweg 4, Netherlands",51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland"
+"Delft University of Technology, The Netherlands",51.99882735,4.37396036815404,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland"
+Democritus University of Thrace,40.84941785,25.8344493892098,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα"
+"Dermalog Identification Systems GmbH, Hamburg, Germany",53.5722826,9.9947826,"DERMALOG Identification Systems GmbH, 120, Mittelweg, Rotherbaum, Eimsbüttel, Hamburg, 20148, Deutschland"
+"Deutsche Welle, Bonn, Germany",50.7171497,7.12825184326238,"DW, Gronau, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland"
+Dhaka University,23.7317915,90.3805625,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ"
+"Disney Research, CH",47.3804685,8.5430355,"Disney Research Zürich, 48, Stampfenbachstrasse, Unterstrass, Kreis 6, Zürich, Bezirk Zürich, Zürich, 8006, Schweiz/Suisse/Svizzera/Svizra"
+"Donghua University, China",31.2061939,121.410471009388,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国"
+Dr. B. C. Roy Engineering College,23.54409755,87.342697070434,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India"
+Dr. Babasaheb Ambedkar Marathwada University,19.8960918,75.3089470267316,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India"
+Drexel University,39.9574,-75.1902670552555,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA"
+Duke University,35.9990522,-78.9290629011139,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA"
+East China Normal University,31.2284923,121.402113889769,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国"
+Eastern Mediterranean University,35.14479945,33.90492318497,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs"
+Eastern University,40.0505672,-75.3710932636663,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA"
+"Ecole Centrale de Lyon, Lyon, 69134, France",45.7833631,4.76877035614228,"EC de Lyon, 36, Avenue Guy de Collongue, Écully, Lyon, Métropole de Lyon, Circonscription départementale du Rhône, Auvergne-Rhône-Alpes, France métropolitaine, 69134, France"
+Edge Hill University,53.5582155,-2.86904651022128,"Edge Hill University, St Helens Road, West Lancashire, Lancs, North West England, England, L39 4QP, UK"
+"Eindhoven University of Technology, The Netherlands",51.4486602,5.49039956550805,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland"
+"Electrical Engineering, University of",47.6532412,-122.3061707,"Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA"
+Electrical and Computer Engineering,33.5866784,-101.875392037548,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA"
+Elon University,36.1017956,-79.501733,"Amphitheater, North Antioch Avenue, Elon, Alamance County, North Carolina, 27244, USA"
+Eskisehir Osmangazi University,39.7487516,30.4765307102195,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye"
+FL,27.7567667,-81.4639835,"Florida, USA"
+"Facebook Inc., San Francisco, CA, USA",37.4828007,-122.150711572363,"Facebook Inc., San Francisco Bay Trail, Menlo Park, San Mateo County, California, 94025-1246, USA"
+"Facebook, Singapore",1.3170417,103.8321041,"Ewe Boon back lane, between Palm Spring, City Towers and Wing On Life Garden, Farrer Park Gardens, Novena, Singapore, Central, 259803, Singapore"
+"Feng Chia University, Taichung, Taiwan",24.18005755,120.648360719503,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣"
+"Ferdowsi University of Mashhad, Mashhad, Iran",36.3076616,59.5269051097667,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ایران"
+Firat University,39.7275037,39.4712703382844,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye"
+"Florida Institute Of Technology, Melbourne Fl",28.0642296,-80.6230097241205,"Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA"
+"Florida Institute of Technology, Melbourne, USA",28.0642296,-80.6230097241205,"Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA"
+Florida International University,25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA"
+"Florida International University, Miami, FL",25.75533775,-80.3762889746807,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA"
+Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA"
+"Florida State University, Tallahassee, FL 32306, USA",30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA"
+"Fordham University, New York, 10023, USA",40.7710604,-73.9852807046561,"Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA"
+"Foundation University Rawalpindi Campus, Pakistan",33.5609504,73.0712596618793,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, پاکستان"
+Fraser University,44.9689836,-93.2094162948556,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA"
+Fudan University,31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国"
+"Fudan University, Shanghai, China",31.30104395,121.500454969435,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国"
+GE Global Research,42.8298248,-73.8771938492793,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA"
+GE Global Research Center,42.8298248,-73.8771938492793,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA"
+"GIPSA-Lab, Grenoble, France",45.1929245,5.7661983,"GIPSA-lab, 11, Rue des Mathématiques, Médiat Rhône-Alpes, Saint-Martin-d'Hères, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38400, France"
+Gdansk University of Technology,54.37086525,18.6171601574695,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP"
+George Mason University,38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA"
+"George Mason University, Fairfax Virginia, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA"
+"George Mason University, Fairfax, VA 22030",38.8345539,-77.3152142,"George Mason University, University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA"
+"George Mason University, Fairfax, VA, USA",38.83133325,-77.3079883887912,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA"
+Georgia Institute of Technology,33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA"
+"Georgia Institute of Technology, Atlanta, 30332-0250, USA",33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA"
+"Georgia Institute of Technology, Atlanta, Georgia, USA",33.776033,-84.3988408600158,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA"
+"Georgia Southern University, Statesboro, USA",32.42143805,-81.7845052864662,"Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA"
+Glyndwr University,53.05373795,-3.00482075353073,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK"
+"Golden, CO, USA",39.755543,-105.2210997,"Golden, Jefferson County, Colorado, USA"
+Graz University of Technology,47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich"
+"Graz University of Technology, Austria",47.05821,15.460195677136,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich"
+Griffith University,-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia"
+"Griffith University, Australia",-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia"
+"Griffith University, Brisbane",-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia"
+"Griffith University, Nathan, QLD, Australia",-27.5533975,153.053362338641,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia"
+Guangdong Medical College,23.1294489,113.343761097683,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国"
+"Guangdong University of Technology, China",23.1353836,113.294704958268,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国"
+"Guangzhou University, Guangzhou, China",23.04436505,113.366684576444,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国"
+"Guilin University of Electronic Technology Guangxi Guilin, China",25.2873992,110.332427699352,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国"
+Hacettepe University,39.86742125,32.7351907206768,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye"
+Halmstad University,56.66340325,12.8792972689712,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige"
+"Halmstad University, Halmstad, Sweden",56.66340325,12.8792972689712,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige"
+"Hangzhou Dianzi University, Hangzhou, China",30.3125525,120.3430946,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国"
+"Hankuk University of Foreign Studies, South Korea",37.5953979,127.0630499,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국"
+Hanoi University of Science and Technology,21.003952,105.843601832826,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam"
+Hanyang University,37.5557271,127.0436642,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국"
+"Harbin Engineering University, Harbin, Heilongjiang, 150001, China",45.77445695,126.676849168143,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国"
+Harbin Institute of Technology,45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国"
+"Harbin Institute of Technology, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国"
+"Harbin Institute of Technology, China, 150001",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国"
+"Harbin Institute of Technology, Harbin 150001, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国"
+"Harbin Institute of Technology, Harbin, China",45.7413921,126.625527550394,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国"
+Harbin Institute of Technology;Shenzhen University,22.5895016,113.965710495775,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国"
+Harvard University,42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA"
+"Harvard University, Cambridge",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA"
+"Harvard University, Cambridge, MA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA"
+"Harvard University, Cambridge, MA 02138",42.36300645,-71.1245674978516,"Harvard University, Rotterdam Street, North Brighton, Allston, Boston, Suffolk County, Massachusetts, 02163, USA"
+"Harvard University, Cambridge, MA, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA"
+"Harvard University, USA",42.36782045,-71.1266665287448,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA"
+Harvard and Massachusetts Institute,42.5268445,-71.6525446,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA"
+"Hebei, China",39.0000001,116.0,"河北省, 中国"
+"Hefei University of Technology, Hefei, Anhui, 230601, China",31.846918,117.290533667908,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国"
+"Hefei University of Technology, Hefei, China",31.846918,117.290533667908,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国"
+"Hengyang Normal University, Hengyang, China",26.8661136,112.620921219792,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国"
+Heriot-Watt University,55.91029135,-3.32345776559167,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK"
+"Hiroshima University, Japan",34.4019766,132.7123195,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本"
+HoHai University,32.05765485,118.755000398628,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国"
+"Hofstra University, Hempstead, NY 11549",40.71703345,-73.599835005538,"Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA"
+Hong Kong Baptist University,22.3874201,114.2082222,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国"
+"Hong Kong Baptist University, Hong Kong",22.3874201,114.2082222,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国"
+Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国"
+"Hong Kong University of Science and Technology, Hong Kong",22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国"
+"Howard University, Washington DC",38.921525,-77.019535656678,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA"
+"Huaqiao University, Xiamen, China",24.6004712,118.0816574,"华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国"
+Huazhong University of,22.53367445,113.917874206261,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国"
+Huazhong University of Science and Technology,30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国"
+"Huazhong University of Science and Technology, Wuhan, China",30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国"
+"Huazhong University of Science and Technology, Wuhan, China 430074",30.5097537,114.4062881,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国"
+"Humboldt-University, Berlin, Germany",52.51875685,13.3935604936378,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland"
+Hunan University,26.88111275,112.628506656425,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国"
+"IBM Almaden Research Center, San Jose CA",37.21095605,-121.807486683178,"IBM Almaden Research Center, San José, Santa Clara County, California, USA"
+IBM Research,35.9042272,-78.8556576330566,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA"
+"IBM Research, USA",35.9042272,-78.8556576330566,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA"
+IBM Thomas J. Watson Research Center,41.21002475,-73.8040705573196,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA"
+IDIAP RESEARCH INSTITUTE,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+IDIAP Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+"IDIAP Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+"IDIAP, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+IIIT-Delhi,28.54632595,77.2732550434418,"IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India"
+"IIIT-Delhi, India",28.54632595,77.2732550434418,"IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India"
+"IIT Guwahati, Guwahati, India",26.19247875,91.6946356873113,"Indian Institute of Technology Guwahati - IIT Guwahati, NH27, Amingaon, Guwahati, Kamrup, Assam, 781015, India"
+IMPERIAL COLLEGE,39.9458551,116.406973072869,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国"
+"INRIA Grenoble Rhone-Alpes, FRANCE",45.2182986,5.80703193086113,"INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France"
+Idiap Research Institute,46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+"Idiap Research Institute, Martigny, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+"Idiap Research Institute, Switzerland",46.109237,7.08453548522408,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra"
+Illinois Institute of Technology,41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA"
+"Illinois Institute of Technology, Chicago, Illinois, USA",41.8361963,-87.6265591274291,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA"
+Imperial College London,51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College London, London, U.K.",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College London, London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College London, U.K",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College London, U.K.",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College London, UK",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College London, United Kingdom",51.49887085,-0.175607973937072,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK"
+"Imperial College, London, UK",51.5004171,-0.1782711,"Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK"
+India,22.3511148,78.6677428,India
+Indian Institute of Science,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India"
+Indian Institute of Science Bangalore,13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India"
+"Indian Institute of Science, India",13.0222347,77.5671832476811,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India"
+Indian Institute of Technology,28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India"
+"Indian Institute of Technology Delhi, New Delhi, India",28.5444176,77.1893001,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India"
+Indian Institute of Technology Kanpur,26.513188,80.2365194538339,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India"
+"Indian Institute of Technology Kanpur, Kanpur, India",26.513188,80.2365194538339,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India"
+"Indian Institute of Technology, Roorkee",29.8662461,77.8958708109136,"Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India"
+Indiana University,39.86948105,-84.8795690544362,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA"
+Indiana University Bloomington,39.17720475,-86.5154003022128,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA"
+"Industrial Technology Research Institute, Hsinchu, Taiwan",24.7741756,121.045092787653,"工研院, 195, 中興路四段, 頭重里, 竹東鎮, 新竹縣, 31040, 臺灣"
+Information Technologies Institute,33.5934539,130.3557837,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本"
+"Information Technology University (ITU), Punjab, Lahore, Pakistan",31.4760299,74.3427526,"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, پاکستان"
+"Information, Keio University",35.5416969,139.6347184,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本"
+Institute,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA"
+Institute for Advanced,38.7468877,139.824707282407,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本"
+Institute for Communication Systems,51.2433692,-0.593220895014599,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK"
+Institute for System Programming,55.7449881,37.6645042069876,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ"
+Institute of,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA"
+Institute of Automation,54.1720834,12.0790983,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland"
+Institute of Communications Engineering,54.1718573,12.0784417,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland"
+Institute of Computer Science,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국"
+Institute of Computer Science III,35.15456615,128.098476040221,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국"
+Institute of Computing,43.47878995,-80.5548480959375,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada"
+Institute of Computing Technology,34.6988529,135.1936779,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本"
+Institute of Digital Media,20.28907925,85.84232125,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India"
+Institute of Electronics and Computer Science,56.97734805,24.1951425550775,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija"
+"Institute of Engineering and Management, Kolkata, India",22.57423855,88.4337303,"Institute of Engineering and Management, Block -EP, Ring Road, GP Block, Kolkata, Twenty-four Parganas, West Bengal, 700091, India"
+Institute of Industrial Science,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本"
+Institute of Information Science,25.0410728,121.614756201755,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣"
+Institute of Information Technology,23.7289899,90.3982682,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ"
+Institute of Media Innovation,1.3433937,103.6793303,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore"
+Institute of Road and,38.3836097,-81.7654665,"Institute, Kanawha County, West Virginia, 25112, USA"
+Institute of Systems and Robotics,53.8338371,10.7035939,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland"
+International Institute of Information Technology,17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India"
+"International Institute of Information Technology (IIIT) Hyderabad, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India"
+"International Institute of Information Technology, Hyderabad, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India"
+"International Institute of Information Technology, Hyderabad, Telangana, India",17.4454957,78.3485469754447,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India"
+International University of,11.5744201,104.8775841,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រកម្ពុជា"
+Ionian University,38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα"
+"Iowa State University, Ames, IA, USA",42.02791015,-93.6446441473745,"Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA"
+Iran,32.9407495,52.9471344,ایران
+Islamic Azad University,34.8452999,48.5596212013643,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران"
+Islamic University of Gaza - Palestine,31.51368535,34.4401934143135,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, قطاع غزة, PO BOX 108, الأراضي الفلسطينية"
+Istanbul Technical University,41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye"
+"Istanbul Technical University (ITU), Turkey",41.10539,29.0213673,"ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye"
+"Istanbul Technical University, Istanbul, 34469, TURKEY",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye"
+"Istanbul Technical University, Istanbul, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye"
+"Istanbul Technical University, Turkey",41.10427915,29.022311592943,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye"
+Istanbul University,41.0132424,28.9637609,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye"
+"Istanbul University, Istanbul, Turkey",41.0132424,28.9637609,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye"
+Jacobs University,53.4129148,-2.96897915394896,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK"
+Jadavpur University,22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India"
+"Jadavpur University, India",22.5611537,88.4131019353334,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India"
+Jahangirnagar University,23.883312,90.2693921,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ"
+"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh",23.88277575,90.2671009927283,"Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ"
+"Jaipur, Rajasthan, India",26.916194,75.820349,"Jaipur, Rajasthan, 302001, India"
+Japan,36.5748441,139.2394179,日本
+Japan Advanced Institute of Science and Technology,36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本"
+"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan",36.4442949,136.5928587,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本"
+Jaypee Institute of Information Technology,28.6300443,77.3720823,"Jaypee Institute of Information Technology, Noida, A-10, National Highway 24 Bypass, Asha Pushp Vihar, Kaushambi, Ghaziabad, Uttar Pradesh, 201001, India"
+"Jiangnan University Jiangsu Wuxi, PR China",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国"
+"Jiangnan University, Jiangsu Wuxi, PR China",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国"
+"Jiangnan University, Wuxi",31.4854255,120.2739581,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国"
+"Jiangsu University of Science and Technology, Zhenjiang, China",32.198055,119.4632679083,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国"
+"Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China",32.20302965,119.509683619281,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国"
+"Jiangsu University, Zhenjiang, China",32.20302965,119.509683619281,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国"
+"Jilin University, China",22.053565,113.39913285497,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国"
+"Joint Research Institute, Foshan, China",22.83388935,113.285418245471,"广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国"
+"Jordan University of Science and Technology, Irbid, Jordan",32.49566485,35.9916071719283,"Jordan University of Science and Technology, شارع الأردن, إربد, إربد, الأردن"
+"K.N. Toosi University of Technology, Tehran, Iran",35.76427925,51.409702762313,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ایران"
+"KAIST, Daejeon, Korea",36.3646244,127.352251416793,"궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국"
+"KAIST, Korea",36.3646244,127.352251416793,"궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국"
+"KTH Royal Institute of Technology, Stockholm",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige"
+"KTH Royal Institute of Technology, 100 44 Stockholm, Sweden",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige"
+"KTH Royal Institute of Technology, Stockholm, Sweden",59.34986645,18.0706321329842,"KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige"
+Karlsruhe Institute of,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland"
+Karlsruhe Institute of Technology,49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland"
+"Karlsruhe Institute of Technology (KIT), Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland"
+"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland"
+"Karlsruhe Institute of Technology, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland"
+"Karlsruhe Institute of Technology, Karlsruhe, Germany",49.10184375,8.43312559623876,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland"
+Katholieke Universiteit Leuven,50.8830686,4.7019503,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien"
+"Keio University, Yokohama 223-8522, Japan",35.55536215,139.654582444136,"慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本"
+Kent State University,41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA"
+"Kent State University, Kent, Ohio, USA",41.1443525,-81.3398283284572,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA"
+"Khalifa University, Abu Dhabi, United Arab Emirates",24.4469025,54.3942563,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة"
+"Khon Kaen University, Khon Kaen, 40002, Thailand",16.46007565,102.812117979662,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย"
+"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia",22.31055485,39.1051548637793,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية"
+King Faisal University,26.397778,50.183056,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية"
+"King Saud University, Riyadh",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية"
+"King Saud University, Riyadh 11543, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية"
+"King Saud University, Riyadh, Saudi Arabia",24.7246403,46.623350123456,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية"
+Kingston University,51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK"
+"Kingston University, UK",51.4293086,-0.2684044,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK"
+Kobe University,34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本"
+"Kobe University, Japan",34.7275714,135.237099997686,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本"
+"Kogakuin University, Tokyo, Japan",35.6902784,139.695400958171,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本"
+"Kookmin University, Seoul, Korea",37.6107554,126.9946635,"국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국"
+Korea Advanced Institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국"
+"Korea Advanced Institute of Science and Technology, Daejeon, Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국"
+"Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국"
+"Korea Advanced Institute of Science and Technology, Daejeon, South Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국"
+"Korea Advanced Institute of Science and Technology, Korea",36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국"
+Korea Advanced institute of Science and Technology,36.3697191,127.362537001151,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국"
+Korea University,37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국"
+"Korea University, Seoul, South Korea",37.5901411,127.0362318,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국"
+"Kumamoto University, Kumamoto, Japan",32.8164178,130.727039687562,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本"
+"Kurukshetra University, Kurukshetra",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India"
+"Kurukshetra University, Kurukshetra, India",29.95826275,76.8156304467532,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India"
+"Kyoto University, Kyoto, Japan",35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本"
+Kyung Hee University,32.8536333,-117.2035286,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA"
+"Kyung Hee University, Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국"
+"Kyung Hee University, Seoul, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국"
+"Kyung Hee University, South Korea",37.5948716,127.0530887,"경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국"
+"Kyung Hee University, Yongin, South Korea",37.24244405,127.080937489679,"경희대학교 국제캠퍼스, 서천동로21번길, 서천동, 기흥구, 용인시, 경기, 17108, 대한민국"
+Kyushu University,33.59914655,130.223598480987,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本"
+"La Trobe University, Australia",-36.7784754,144.298047,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia"
+"Lancaster University, Lancaster, UK",54.00975365,-2.78757490881378,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK"
+"Lehigh University, Bethlehem, PA 18015, USA",40.6068028,-75.3782488,"Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA"
+Liverpool John Moores University,53.4050747,-2.97030028586709,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK"
+Lomonosov Moscow State University,55.70229715,37.5317977694291,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ"
+"London, United Kingdom",51.5073219,-0.1276474,"London, Greater London, England, SW1A 2DU, UK"
+Louisiana State University,30.40550035,-91.1862047410405,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA"
+"Lund University, Lund, Sweden",55.7039571,13.1902011,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige"
+"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India",13.0309553,77.5648559396817,"M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India"
+MASSACHUSETTS INSTITUTE OF TECHNOLOGY,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+METs Institute of Engineering,28.2140454,83.9607104993073,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल"
+"MO, USA",38.7604815,-92.5617875,"Missouri, USA"
+"MPI Informatics, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland"
+MULTIMEDIA UNIVERSITY,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia"
+Maastricht University,50.8336712,5.71589,"UNS60, Professor Ten Hoorlaan, Randwyck, Maastricht, Limburg, Nederland, 6229EV, Nederland"
+"Maastricht University, Maastricht, Netherlands",50.8444528,5.6884711,"University College Maastricht, 4, Zwingelput, Jekerkwartier, Maastricht, Limburg, Nederland, 6211KH, Nederland"
+Macau University of Science and,22.3358031,114.265903983304,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国"
+Macau University of Science and Technology,22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国"
+"Macau University of Science and Technology, Macau",22.15263985,113.568032061523,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国"
+Mahanakorn University of Technology,13.84450465,100.856208183836,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย"
+"Manchester University, UK",53.47020165,-2.23932183309859,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK"
+"Mangalore University, India",12.81608485,74.9244927772961,"Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India"
+"Manonmaniam Sundaranar University, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India"
+"Manonmaniam Sundaranar University, Tirunelveli",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India"
+"Manonmaniam Sundaranar University, Tirunelveli, India",8.76554685,77.65100444813,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India"
+Marquette University,43.03889625,-87.9315544990507,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA"
+"Massachusetts General Hospital, Boston, MA, USA",42.36291795,-71.0687374226199,"Mass General, 55, Fruit Street, Downtown Crossing, Beacon Hill, Boston, Suffolk County, Massachusetts, 02114, USA"
+Massachusetts Institute,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+Massachusetts Institute of Technology,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+Massachusetts Institute of Technology (MIT,42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+"Massachusetts Institute of Technology, Cambridge, MA 02139, USA",42.3583961,-71.0956778766393,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+Math Institute,43.65879595,-79.3975504060101,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada"
+Max Planck Institute for Biological Cybernetics,48.5369125,9.05922532743396,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland"
+Max Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland"
+"Max Planck Institute for Informatics, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland"
+"Max Planck Institute for Informatics, Saarbrucken, Germany",49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland"
+Max-Planck Institute for Informatics,49.2579566,7.04577416640431,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland"
+McGill University,45.5039761,-73.5749687,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada"
+"McGill University, Montreal, Canada",45.50691775,-73.5791162596496,"McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada"
+McGovern Institute,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+McGovern Institute for Brain Research,42.3626295,-71.0914481,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA"
+McMaster University,43.26336945,-79.9180968401692,"McMaster University, Westdale, Hamilton, Ontario, Canada"
+Meiji University,35.6975029,139.761391749285,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本"
+"Memorial University of Newfoundland, Canada",47.5727251,-52.7330544350478,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada"
+"Memorial University of Newfoundland, Saint John's, NL, Canada",47.5727251,-52.7330544350478,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada"
+Michigan State University,42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, E. Lansing, MI 48823, USA",42.7337998,-84.4804243,"Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, East Lansing 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, East Lansing MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, East Lansing, 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, East Lansing, MI",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, East Lansing, MI 48824, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, East Lansing, MI, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, USA",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Michigan State University, United States of America",42.718568,-84.4779157093052,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA"
+"Microsoft Res. Asia, Beijing, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国"
+Microsoft Research,52.19495145,0.135010835076038,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK"
+"Microsoft Research Asia, Beijing, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国"
+"Microsoft Research Asia, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国"
+"Microsoft Research, Beijing, China",39.97834785,116.304119070565,"微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国"
+"Microsoft, Bellevue, WA, USA",47.6164826,-122.2008506,"Microsoft, 10455, Northeast 8th Street, Bellevue, King County, Washington, 98004-5002, USA"
+"Microsoft, Redmond, WA",47.6592914,-122.140633217997,"Microsoft Cafe RedW-F, Bridle Crest Trail, Microsoft Redwest Campus, Redmond, King County, Washington, W LAKE SAMMAMISH PKWY NE, USA"
+Middle East Technical University,39.87549675,32.7855350558467,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye"
+Middlebury College,44.0090777,-73.1767946,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA"
+Middlesex University London,51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK"
+"Middlesex University London, London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK"
+"Middlesex University London, UK",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK"
+"Middlesex University, London",51.59029705,-0.229632209454029,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK"
+Monash University,-37.78397455,144.958674326093,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia"
+"Monash University Malaysia, Bandar Sunway, Malaysia",3.06405715,101.6005974,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia"
+"Monash University, Caulfield East, Australia",-37.8774135,145.044982494489,"Monash University (Caulfield campus), Queens Avenue, Caulfield East, City of Glen Eira, Victoria, 3163, Australia"
+"Monash University, Victoria, Australia",-37.9011951,145.130584919767,"Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia"
+"Moscow Institute of Physics and Technology, Russia",55.929035,37.5186680829482,"МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ"
+Muhlenberg College,40.5967637,-75.5124062,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA"
+Multimedia University,2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia"
+"Multimedia University, Cyberjaya, Malaysia",2.92749755,101.641853013536,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia"
+Myongji University,37.2381023,127.1903431,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국"
+"NCCU, USA",44.2962202,-84.7116495,"nccu, South Reserve Road, Houghton Lake, Roscommon County, Michigan, 48629, USA"
+"Nagaoka University of Technology, Japan",37.42354445,138.77807276029,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本"
+Nagoya University,43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本"
+"Nagoya University, Japan",43.53750985,143.60768225282,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本"
+"Nanjing Normal University, China",32.1066811,118.90863080932,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国"
+"Nanjing Normal University, Nanjing, China",32.1066811,118.90863080932,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国"
+"Nanjing University of Aeronautics and Astronautics, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国"
+"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国"
+"Nanjing University of Aeronautics and Astronautics, Nanjing, China",32.0373496,118.8140686,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国"
+Nanjing University of Information Science and Technology,32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国"
+"Nanjing University of Information Science and Technology, Nanjing, China",32.2068102,118.718472893883,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国"
+Nanjing University of Science and Technology,32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国"
+"Nanjing University of Science and Technology, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国"
+"Nanjing University of Science and Technology, Nanjing, China",32.031826,118.852142742792,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国"
+"Nanjing University, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国"
+"Nanjing University, Nanjing 210023, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国"
+"Nanjing University, Nanjing 210093, China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国"
+"Nanjing University, Nanjing 210093, P.R.China",32.0565957,118.774088328078,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国"
+"Nantong University, Nantong, China",31.9747463,120.907792637552,"南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国"
+Nanyang Technological University,1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+"Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+"Nanyang Technological University, Singapore 639798",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+"Nanyang Technological University, Singapore 639798, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+"Nanyang Technological University, Singapore, 639798",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+"Nanyang Technological University, Singapore, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+"National Central University, Taoyuan County, Taiwan",24.96841805,121.191396961005,"NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣"
+National Cheng Kung University,22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣"
+"National Cheng Kung University, Tainan, Taiwan",22.9991916,120.216251337909,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣"
+"National Chiao Tung University, Hsinchu, Taiwan",24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣"
+"National Chiao Tung University, Taiwan",24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣"
+National Chiao-Tung University,24.78676765,120.997244116807,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣"
+"National Chung Cheng University, Chiayi, Taiwan",23.56306355,120.475105312324,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣"
+"National Chung Hsing University, Taichung",24.12084345,120.675711652432,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣"
+"National Chung Hsing University, Taiwan",24.12084345,120.675711652432,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣"
+National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本"
+National Institute of Standards and Technology,39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA"
+"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA",39.1254938,-77.2229347515,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA"
+National Institute of Technology Karnataka,13.01119095,74.7949882494716,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India"
+National Institute of Technology Rourkela,22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India"
+"National Institute of Technology, Durgapur, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India"
+"National Institute of Technology, Durgapur, West Bengal, India",23.54869625,87.291057119111,"National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India"
+"National Institute of Technology, Rourkela (Odisha), India",22.2501589,84.9066855698087,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India"
+National Institutes of Health,39.00041165,-77.1032777503325,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA"
+"National Institutes of Health, Bethesda, Maryland 20892",39.00041165,-77.1032777503325,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA"
+"National Sun Yat Sen University, 804 Kaohsiung, Taiwan",22.62794005,120.266318480249,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣"
+"National Taichung University of science and Technology, Taichung",24.15031065,120.683255008879,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣"
+National Taipei University,24.94314825,121.368629787836,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣"
+"National Taipei University of Technology, Taipei, Taiwan",25.04306355,121.534687724212,"NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣"
+National Taiwan Normal University,25.00823205,121.535771533186,"師大分部, 88, 汀州路四段, 萬年里, 文山區, 臺北市, 11677, 臺灣"
+National Taiwan University,25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣"
+National Taiwan University of Science and Technology,25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣"
+"National Taiwan University of Science and Technology, Taipei 10607, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣"
+"National Taiwan University of Science and Technology, Taipei, Taiwan",25.01353105,121.541737363138,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣"
+"National Taiwan University, 10647, Taipei, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣"
+"National Taiwan University, Taipei, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣"
+"National Taiwan University, Taiwan",25.01682835,121.538469235773,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣"
+National Technical University of Athens,37.98782705,23.7317973260904,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα"
+"National Tsing Hua University, Hsinchu, Taiwan",24.7925484,120.9951183,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣"
+"National Tsing Hua University, Taiwan",24.7925484,120.9951183,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣"
+National University,14.6042947,120.994285201104,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines"
+National University of Defense Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国"
+"National University of Defense Technology, Changsha 410073, China",28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国"
+"National University of Defense Technology, Changsha, China",28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国"
+National University of Defense and Technology,28.2290209,112.994832044032,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国"
+"National University of Ireland Galway, Galway, Ireland",53.27639715,-9.05829960688327,"National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland"
+"National University of Ireland Maynooth, Co. Kildare, Ireland",53.3846975,-6.60039458177959,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland"
+"National University of Kaohsiung, 811 Kaohsiung, Taiwan",22.73424255,120.283497550993,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣"
+National University of Science and Technology,33.6450855,72.9915892221655,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان"
+"National University of Sciences and Technology (NUST), Islamabad, Pakistan",33.644347,72.9885079,"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان"
+National University of Singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore"
+"National University of Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore"
+"National University of Singapore, Singapore 117576",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore"
+"National University of Singapore, Singapore, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore"
+National University of Technology Technology,33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق"
+National University of singapore,1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore"
+"Naval Research Laboratory, Washington DC",38.8231381,-77.0178902,"Naval Research Laboratory Post Office, 4555, Overlook Avenue Southwest, Washington, D.C., 20375, USA"
+"Nazarbayev University, Astana, Kazakhstan",51.0902854,71.3972526281434,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан"
+"Neurological Institute, USA",40.84211085,-73.9428460313244,"Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA"
+New Jersey Institute of Technology,40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA"
+"New Jersey Institute of Technology, Newark , NJ, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA"
+"New Jersey Institute of Technology, Newark, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA"
+"New Jersey Institute of Technology, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA"
+"New Jersey Institute of Technology, University Heights Newark, NJ 07102 USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA"
+"New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA",40.7423025,-74.1792817237128,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA"
+New York University,40.72925325,-73.9962539360963,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA"
+"Newcastle University, Newcastle upon Tyne",54.98023235,-1.61452627035949,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK"
+"Normal University, Kunming, China",25.0580509,102.6955241,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国"
+"North Acton, London",51.52344665,-0.259735350000002,"North Acton, Victoria Road, Acton, London Borough of Ealing, London, Greater London, England, W3 6UP, UK"
+North Carolina Central University,35.97320905,-78.897550537484,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA"
+"North Carolina State University, Raleigh, United States of America",35.77184965,-78.6740869545263,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA"
+"North China Electric Power University, Baoding, China",38.8760446,115.4973873,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国"
+"North Dakota State University, Fargo, ND 58108-6050, USA",46.897155,-96.8182760282419,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA"
+Northeastern University,42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA"
+"Northeastern University, Boston, MA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA"
+"Northeastern University, Boston, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA"
+"Northeastern University, Boston, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA"
+"Northeastern University, Boston, USA, 02115",42.34255795,-71.0905490240477,"Northeastern University, Public Alley 807, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA"
+"Northeastern University, MA, USA",42.3383668,-71.0879352428284,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA"
+Northumbria University,55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK"
+"Northumbria University, Newcastle Upon Tyne, Tyne and Wear",55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK"
+"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK",54.9781026,-1.6067699,"Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK"
+"Northumbria University, Newcastle upon Tyne, U.K.",55.0030632,-1.57463231052026,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK"
+Northwestern Polytechnical University,34.2469152,108.910619816771,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国"
+"Northwestern Polytechnical University, Xian 710072, Shaanxi, China",34.2469152,108.910619816771,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国"
+"Northwestern Polytechnical University, Xi’an, China",34.2469152,108.910619816771,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国"
+Northwestern University,42.0551164,-87.6758111348217,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA"
+"Northwestern University, Evanston, IL, USA",42.0551164,-87.6758111348217,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA"
+Nottingham Trent University,52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK"
+"Nottingham Trent University, Nottingham, UK",52.9577322,-1.15617099267709,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK"
+"Nottingham University Hospital, Nottingham, UK",52.9434967,-1.18631123153121,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK"
+OF PRINCETON UNIVERSITY,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA"
+OF STANFORD UNIVERSITY,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"Oak Ridge National Laboratory, USA",35.93006535,-84.3124003215133,"Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA"
+Oakland University,42.66663325,-83.2065575175658,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA"
+"Ocean University of China, Qingdao, China",36.16161795,120.493552763931,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国"
+Okayama University,34.6893393,133.9222272,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本"
+"Okayama University, Okayama, Japan",34.6893393,133.9222272,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本"
+"Oklahoma State University, Stillwater, OK, USA",36.1244756,-97.050043825,"Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA"
+"Old Dominion University, Norfolk, VA 23529, USA",36.885682,-76.3076857937011,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA"
+"Old Dominion University, Norfolk, VA, 23529",36.885682,-76.3076857937011,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA"
+Open University of Israel,32.77824165,34.9956567288188,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל"
+"Orange Labs, R&D, Meylan, France",45.21011775,5.79551075456301,"Orange Labs, 28, Chemin du Vieux Chêne, Inovallée Meylan, Le Mas du Bruchet, Meylan, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38240, France"
+Oregon State University,45.5198289,-122.677979643331,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA"
+"Osaka university, Japan",34.80809035,135.45785218408,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本"
+Otto von Guericke University,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland"
+Otto-von-Guericke University Magdeburg,52.14005065,11.6447124822347,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland"
+Oxford Brookes University,51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK"
+"Oxford Brookes University, Oxford, United Kingdom",51.7555205,-1.2261597,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK"
+Oxford University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK"
+"Oxford University, UK",51.7488051,-1.23874457456279,"James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK"
+"PA, 15213, USA",44.289627,-70.042577,"Pa, North Monmouth, Kennebec County, Maine, 04265, USA"
+"POSTECH, Pohang, South Korea, 37673",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국"
+"PSG College of Technology, Coimbatore, Tamil Nadu, India",11.0246833,77.0028424564731,"PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India"
+Peking University,39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国"
+"Peking University, Beijing",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国"
+"Peking University, Beijing 100871, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国"
+"Peking University, Beijing, China",39.9922379,116.303938156219,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国"
+Pennsylvania,40.9699889,-77.7278831,"Pennsylvania, USA"
+"Perth, Western Australia 6012",-31.9527121,115.8604796,"Perth, Western Australia, 6000, Australia"
+"Philipps-Universität Marburg, D-35032, Germany",50.8142701,8.771435,"FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland"
+"Pittsburgh Univ., PA, USA",40.4462779,-79.9637743112056,"WQEX-TV (Pittsburgh);WQED-TV (Pittsburgh);WQED-FM (Pittsburgh);WINP-TV (Pittsburgh);WEPA-CD (Pittsburgh), 3801, University Drive, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA"
+Plymouth University,50.3755269,-4.13937687442817,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK"
+Pohang University of Science and Technology,36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국"
+"Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국"
+"Pohang University of Science and Technology (POSTECH), South Korea",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국"
+"Pohang University of Science and Technology, Pohang, Korea",36.01773095,129.321075092352,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국"
+"Politecnico di Torino, Italy",45.0636974,7.65752730185847,"Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia"
+"Politecnico di Torino, Torino, Italy",45.0636974,7.65752730185847,"Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia"
+Politehnica University of Timisoara,45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România"
+Pondicherry Engineering College,12.0148693,79.8480910431981,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India"
+Pontificia Universidad Catolica de Chile,-33.41916095,-70.6178224038096,"Pontificia Universidad Católica de Chile - Campus Lo Contador, 1916, El Comendador, Pedro de Valdivia Norte, Providencia, Provincia de Santiago, Región Metropolitana de Santiago, 7500000, Chile"
+Portland State University,45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA"
+"Portland State University, USA",45.51181205,-122.684929993829,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA"
+Portugal,40.033265,-7.8896263,Portugal
+Poznan University of Technology,52.4004837,16.9515808278647,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP"
+Princeton University,40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA"
+"Princeton University, Princeton, NJ, USA",40.34725815,-74.6513455119257,"Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA"
+"Princeton University, Princeton, New Jersey, USA",40.34829285,-74.66308325,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA"
+"Pune Institute of Computer Technology, Pune, ( India",18.4575638,73.8507352,"Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India"
+Punjabi University Patiala,30.3568981,76.4551272,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India"
+Purdue University,40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA"
+"Purdue University, West Lafayette, IN 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA"
+"Purdue University, West Lafayette, IN, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA"
+"Purdue University, West Lafayette, IN. 47907, USA",40.4262569,-86.9157551,"Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA"
+"Purdue University, West Lafayette, Indiana, 47906, USA",40.4319722,-86.923893679845,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA"
+"Qatar University, Doha, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, قطر"
+"Qatar University, Qatar",25.37461295,51.4898035392337,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, قطر"
+"Quanzhou Normal University, Quanzhou, China",24.87147415,118.667386868962,"泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国"
+Queen Mary University,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România"
+Queen Mary University of London,51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK"
+"Queen Mary University of London, London",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK"
+"Queen Mary University of London, London E1 4NS, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK"
+"Queen Mary University of London, London, U.K.",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK"
+"Queen Mary University of London, UK",51.5247272,-0.0393103466301624,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK"
+Queensland University of Technology,-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia"
+Queensland University of Technology (QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia"
+Queensland University of Technology(QUT,-27.4770485,153.028373791304,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia"
+"Queensland University of Technology, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia"
+"Queensland University of Technology, Brisbane, QLD, Australia",-27.47715625,153.028410039129,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia"
+"R V College of Engineering, Bangalore, India",12.9231039,77.5006395299617,"R. V. College of Engineering, Bangalore-Mysore Road, Kengeri, Rajarajeshwari Nagar Zone, Bengaluru, Bangalore Urban, Karnataka, 560059, India"
+"RMIT University, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia"
+"RMIT University, Melbourne, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia"
+"RMIT University, Melbourne, VIC, Australia",-37.8087465,144.9638875,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia"
+"RMIT University, Vietnam",10.72991265,106.693208239997,"RMIT University Vietnam - Saigon South Campus, 702, Nguyễn Văn Linh, Khu 3 - Khu Đại học, Phường Tân Phong, Quận 7, Tp HCM, 756604, Việt Nam"
+RWTH Aachen University,50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland"
+"RWTH Aachen University, Aachen, Germany",50.7791703,6.06728732851292,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland"
+Raipur institute of technology,21.2262243,81.8013664,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India"
+"Rajasthan, India",26.8105777,73.7684549,"Rajasthan, India"
+Rensselaer Polytechnic Institute,42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA"
+"Rensselaer Polytechnic Institute, Troy, NY 12180, USA",42.73280325,-73.6622354488153,"Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA"
+"Rensselaer Polytechnic Institute, USA",42.7298459,-73.6795021620135,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA"
+Research Center,24.7261991,46.6365468966391,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية"
+Reutlingen University,48.48187645,9.18682403998887,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland"
+"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany",50.5722562,7.25318610053143,"RheinAhrCampus, 2, Joseph-Rovan-Allee, Remagen, Landkreis Ahrweiler, Rheinland-Pfalz, 53424, Deutschland"
+"Rheinische-Friedrich-Wilhelms University, Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland"
+Rice University,29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA"
+"Rice University, Houston, TX, 77005, USA",29.71679145,-95.4047811339379,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA"
+"Rio de Janeiro State University, Brazil",-22.91117105,-43.2357797110467,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil"
+"Ritsumeikan University, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本"
+"Ritsumeikan University, Kyoto, Japan",35.0333281,135.7249154,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本"
+"Ritsumeikan, University",49.26007165,-123.253442836235,"Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada"
+Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย"
+Rochester Institute of Technology,43.08250655,-77.6712166264273,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA"
+Rowan University,39.7103526,-75.1193266647699,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA"
+"Rowan University, Glassboro, NJ- 08028",39.7082432,-75.1170342529732,"Wellness Center (Winans Hall), Mullica Hill Road, Beau Rivage, Glassboro, Gloucester County, New Jersey, 08028:08062, USA"
+Rowland Institute,42.3639862,-71.0778293,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA"
+Ruhr University Bochum,51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland"
+"Ruhr-University Bochum, Germany",51.44415765,7.26096541306078,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland"
+Rutgers University,40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA"
+"Rutgers University, New Brunswick, NJ",40.50007595,-74.4457915242934,"Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA"
+"Rutgers University, Newark, NJ, USA",40.7417586,-74.1750462269524,"Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA"
+"Rutgers University, Piscataway",40.52251655,-74.4373851411688,"James Dickson Carr Library, 75, Avenue E, Piscataway Township, Middlesex County, New Jersey, 08854-8040, USA"
+"Rutgers University, Piscataway NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA"
+"Rutgers University, Piscataway, NJ",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA"
+"Rutgers University, Piscataway, NJ 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA"
+"Rutgers University, Piscataway, NJ, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA"
+"Rutgers University, Piscataway, New Jersey 08854, USA",40.5234675,-74.436975,"The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA"
+"Rutgers University, USA",40.47913175,-74.431688684404,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA"
+"Ryerson University, Canada",43.65815275,-79.3790801045263,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada"
+"Ryerson University, Toronto, ON, Canada",43.65815275,-79.3790801045263,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada"
+"SASTRA University, Thanjavur, Tamil Nadu, India",10.9628655,79.3853065130097,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India"
+SIMON FRASER UNIVERSITY,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada"
+"SRI International, Menlo Park, USA",37.4585796,-122.17560525105,"SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA"
+SUNY Buffalo,42.9336278,-78.8839447903448,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA"
+Sabanci University,40.8927159,29.3786332263582,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye"
+Sakarya University,40.76433515,30.3940787517111,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye"
+"San Jose State University, San Jose, CA",37.3351908,-121.881260081527,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA"
+"Santa Clara University, Santa Clara, CA. 95053, USA",37.34820285,-121.935635412063,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA"
+Santa Fe Institute,35.7002878,-105.908648471331,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA"
+"School, The University of Sydney, Sydney, NSW, Australia",-33.8893229,151.180068,"Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia"
+"Science, University of Amsterdam",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland"
+"Selçuk University, Konya, Turkey",38.02420685,32.5057052418378,"Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye"
+Semarang State University,-7.00349485,110.417749486905,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia"
+"Semnan University, Semnan, Iran",35.6037444,53.434458770112,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ایران"
+Seoul Nat'l Univ.,37.481223,126.9527151,"서울대입구, 지하 1822, 남부순환로, 중앙동, 봉천동, 관악구, 서울특별시, 08787, 대한민국"
+Seoul National University,37.26728,126.9841151,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국"
+"Seoul National University, Korea",37.26728,126.9841151,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국"
+"Seoul National University, Seoul, Korea",37.46685,126.94892,"서울대학교, 1, 관악로, 서림동, 신림동, 관악구, 서울특별시, 08825, 대한민국"
+Shaheed Zulfikar Ali Bhutto Institute of,24.8186587,67.0316585,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, پاکستان"
+Shandong University of Science and Technology,36.00146435,120.116240565627,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国"
+"Shandong University, Shandong, China",36.3693473,120.673818,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国"
+"Shanghai Institute of Technology, Shanghai, China",31.1678395,121.417382632476,"上海应用技术大学, 康健路, 长桥, 徐汇区, 上海市, 200233, 中国"
+Shanghai Jiao Tong University,31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国"
+"Shanghai Jiao Tong University, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国"
+"Shanghai Jiao Tong University, People's Republic of China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国"
+"Shanghai Jiao Tong University, Shanghai 200240, China",31.02775885,121.432219256081,"上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国"
+"Shanghai Jiao Tong University, Shanghai, China",31.20081505,121.428406809373,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国"
+Shanghai University,31.32235655,121.384009410929,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国"
+"Shanghai University, Shanghai, China",31.32235655,121.384009410929,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国"
+Shanghai university,31.32235655,121.384009410929,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国"
+"Sharda University, Greater Noida, India",28.4737512,77.4836148,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India"
+Sharif University of Technology,35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران"
+"Sharif University of Technology, Tehran. Iran",35.7036227,51.351250969544,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران"
+Shenzhen Institutes of Advanced Technology,22.59805605,113.985337841399,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国"
+"Shenzhen University, Shenzhen China",22.53521465,113.931591101679,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国"
+"Shenzhen University, Shenzhen, China",22.53521465,113.931591101679,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国"
+"Shibaura Institute of Technology, Tokyo, Japan",35.66053325,139.795031213151,"芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本"
+Shiraz University,29.6385474,52.5245706,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ایران"
+"Sichuan Univ., Chengdu",30.642769,104.067511751425,"四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国"
+Simon Fraser University,49.2767454,-122.917773749103,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada"
+Singapore,1.3408528,103.878446863736,"Singapore, Southeast, Singapore"
+"Singapore Management University, Singapore",1.29500195,103.849092139632,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore"
+"Singapore University of Technology and Design, Singapore",1.340216,103.965089,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore"
+Sinhgad College of,19.0993293,74.7691424,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India"
+"Soochow University, Suzhou, China",31.3070951,120.635739868117,"苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国"
+"South China Normal University, Guangzhou, China",23.143197,113.34009651145,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国"
+South China University of China,23.0490047,113.3971571,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国"
+South China University of Technology,23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国"
+"South China University of Technology, China",23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国"
+"South China University of Technology, Guangzhou, China",23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国"
+"South China University of Technology, Guangzhou, Guangdong, China",23.0502042,113.398803226836,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国"
+South College Road,39.2715228,-76.6936807,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA"
+"South East European University, Tetovo, Macedonia",41.98676415,20.9625451620439,"Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија"
+"Southeast University, Nanjing, China",32.0575279,118.786822520439,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国"
+Southwest Jiaotong University,30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国"
+"Southwest Jiaotong University, Chengdu, China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国"
+"Southwest Jiaotong University, Chengdu, P.R. China",30.697847,104.0520811,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国"
+"Southwest University, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国"
+"Southwest University, Chongqing 400715, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国"
+"Southwest University, Chongqing, China",29.82366295,106.420500156445,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国"
+"Sri krishna College of Technology, Coimbatore, India",10.925861,76.9224672855261,"Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India"
+"Stamford University Bangladesh, Dhaka-1209, Bangladesh",23.7448166,90.4084351355108,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ"
+Stanford University,37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"Stanford University, CA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"Stanford University, CA, United States",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"Stanford University, Stanford, CA, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"Stanford University, Stanford, California",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"Stanford University, USA",37.43131385,-122.169365354983,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA"
+"State University of New York Polytechnic Institute, Utica, New York",43.13800205,-75.2294359077068,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA"
+State University of New York at Binghamton,42.08779975,-75.9706606561486,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA"
+"State University of New York at Binghamton, USA",42.08779975,-75.9706606561486,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA"
+State University of New York at Buffalo,42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA"
+"Statistics, University of",32.0731522,72.6814703364947,"Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, پاکستان"
+Stevens Institute of Technology,40.742252,-74.0270949,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA"
+"Stevens Institute of Technology, Hoboken, New Jersey, 07030",40.7451724,-74.027314,"Stevens Institute of Technology, Hudson Street, Hoboken, Hudson County, New Jersey, 07030, USA"
+Stony Brook University,40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+Stony Brook University Hospital,40.90826665,-73.1152089127966,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+"Stony Brook University, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+"Stony Brook University, NY, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+"Stony Brook University, Stony Brook NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+"Stony Brook University, Stony Brook, NY 11794, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+"Stony Brook University, Stony Brook, USA",40.9153196,-73.1270626,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA"
+Sun Yat-Sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+"Sun Yat-Sen University, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+"Sun Yat-Sen University, GuangZhou, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+"Sun Yat-Sen University, Guangzhou, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+"Sun Yat-Sen University, Guangzhou, P.R. China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+Sun Yat-sen University,23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+"Sun Yat-sen University, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+"Sun Yat-sen University, Guangzhou, China",23.09461185,113.287889943975,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国"
+SungKyunKwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국"
+Sungkyunkwan University,37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국"
+"Sungkyunkwan University, Suwon, Republic of Korea",37.3003127,126.972123,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국"
+Swansea University,51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK"
+"Swansea University, Swansea, UK",51.6091578,-3.97934429228629,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK"
+Swiss Federal Institute of Technology,47.3764534,8.54770931489751,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra"
+THE UNIVERSITY OF ARIZONA,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA"
+THE UNIVERSITY OF CHICAGO,41.78468745,-87.6007493265106,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA"
+"TU Darmstadt, D-64283, Germany",49.8754648,8.6594332,"Institut für Psychologie, 10, Alexanderstraße, Darmstadt-Mitte, Darmstadt, Regierungsbezirk Darmstadt, Hessen, 64283, Deutschland"
+Tafresh University,34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ایران"
+"Tafresh University, Tafresh, Iran",34.68092465,50.0534135183902,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ایران"
+"Tamkang University, Taipei, Taiwan",25.17500615,121.450767514156,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣"
+Tampere University of Technology,61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi"
+"Tampere University of Technology, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi"
+"Tampere University of Technology, Tampere 33720, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi"
+"Tampere University of Technology, Tampere, Finland",61.44964205,23.8587746189096,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi"
+"Technical University Munich, Germany",48.14955455,11.5677531417838,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland"
+"Technicolor, France",48.831533,2.28066282926829,"Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France"
+"Technicolor, Paris, France",48.831533,2.28066282926829,"Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France"
+Technion,32.774576,35.0236399,"טכניון, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל"
+Technion Israel Institute of Technology,32.7767536,35.0241452903301,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל"
+"Technological University, Davanagere, Karnataka, India",14.4525199,75.9179512,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India"
+"Teesside University, Middlesbrough, UK",54.5703695,-1.23509661862823,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK"
+"Teesside University, UK",54.5703695,-1.23509661862823,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK"
+Tel Aviv University,32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל"
+"Tel Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל"
+"Tel-Aviv University, Israel",32.1119889,34.8045970204252,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל"
+Temple University,39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA"
+"Temple University, Philadelphia, PA 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA"
+"Temple University, Philadelphia, PA, 19122, USA",39.9808569,-75.149594,"Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA"
+"Temple University, Philadelphia, PA, USA",39.981188,-75.1562826952332,"Temple University, Beasley's Walk, Stanton, Philadelphia, Philadelphia County, Pennsylvania, 19132:19133, USA"
+"Temple University, Philadelphia, USA",39.95472495,-75.1534690525548,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA"
+"Texas A&M University, College Station, TX, USA",30.6108365,-96.3521280026443,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA"
+Thapar University,30.35566105,76.3658164148513,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India"
+The American University in Cairo,30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر"
+"The American University in Cairo, Egypt",30.04287695,31.2366413899265,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر"
+The Australian National University,-37.81354365,144.971791681654,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia"
+"The Australian National University Canberra ACT 2601, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia"
+"The Australian National University, Canberra, ACT, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia"
+"The Australian National University, Canberra, Australia",-35.28121335,149.11665331324,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia"
+The Chinese University of Hong Kong,22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"The Chinese University of Hong Kong, China",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"The Chinese University of Hong Kong, Hong Kong",22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"The Chinese University of Hong Kong, Hong Kong, China",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"The Chinese University of Hong Kong, New Territories, Hong Kong",22.413656,114.2099405,"香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+The City College and the Graduate Center,37.76799565,-122.400099572569,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA"
+"The City College of New York, New York, NY 10031, USA",40.81819805,-73.9510089793336,"CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA"
+The City University of New York,40.8722825,-73.8948917141949,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA"
+The Education University of Hong Kong,22.46935655,114.19474193618,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国"
+The Florida State University,30.44235995,-84.2974786716626,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA"
+"The Hebrew University of Jerusalem, Israel",31.7918555,35.244723,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל"
+The Hong Kong Polytechnic University,22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"The Hong Kong Polytechnic University, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"The Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"The Hong Kong Polytechnic University, Hong Kong, China",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"The Hong Kong Polytechnic University, Kowloon, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+The Hong Kong University of Science and Technology,22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国"
+"The Hong Kong University of Science and Technology, Hong Kong",22.3386304,114.2620337,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国"
+The Institute of Electronics,12.8447999,77.6632389626693,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India"
+"The Nanyang Technological University, Singapore",1.3484104,103.682979653067,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore"
+The Ohio State University,40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA"
+"The Ohio State University, Columbus, OH, USA",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA"
+"The Ohio State University, OH",40.00471095,-83.0285936787604,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA"
+The Open University,52.02453775,-0.709274809394501,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK"
+The Open University of Israel,32.77824165,34.9956567288188,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל"
+The Robotics Institute,13.65450525,100.494231705059,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย"
+The State University of New Jersey,40.51865195,-74.4409980124119,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA"
+"The State University of New York at Buffalo, New York, USA",42.95485245,-78.8178238693065,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA"
+"The Univ of Hong Kong, China",22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国"
+"The University of Adelaide, Adelaide, SA, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia"
+"The University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia"
+The University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada"
+The University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK"
+"The University of Edinburgh, Edinburgh, U.K.",55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK"
+The University of Electro-Communications,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本"
+"The University of Electro-Communications, JAPAN",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本"
+"The University of Electro-Communications, Japan",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本"
+"The University of Electro-Communications, Tokyo",35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本"
+The University of Hong Kong,22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国"
+The University of Manchester,53.46600455,-2.23300880782987,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK"
+The University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA"
+"The University of New South Wales, Australia",-33.91758275,151.231240246527,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia"
+The University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia"
+"The University of Newcastle, Callaghan 2308, Australia",-32.8930923,151.705656,"University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia"
+The University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA"
+"The University of North Carolina at Charlotte, USA",35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA"
+"The University of North Carolina, Chapel Hill",35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA"
+The University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK"
+"The University of Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK"
+The University of Queensland,-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+"The University of Queensland, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+"The University of Queensland, Brisbane, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+"The University of Queensland, QLD 4072, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+"The University of Sheffield, Sheffield, U.K.",53.3815248,-1.480681425,"University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK"
+The University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia"
+"The University of Sydney, NSW 2006, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia"
+"The University of Sydney, Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia"
+"The University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA"
+The University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA"
+The University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA"
+The University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA"
+"The University of Texas at Austin Austin, Texas, USA",30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA"
+"The University of Texas at Dallas, Richardson, TX",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA"
+"The University of Texas at San Antonio, San Antonio, TX, USA",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA"
+"The University of Tokushima, Japan",34.0788068,134.558981,"大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本"
+The University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本"
+"The University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本"
+The University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia"
+"The University of Western Australia, Crawley, WA, Australia",-31.98027975,115.818084637301,"University of Western Australia (Crawley Campus), 35, Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia"
+The University of York,53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK"
+"The University of York, Heslington, York YO10 5DD, United Kingdom",53.94830175,-1.05154975017361,"Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK"
+"The University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK"
+"The University of York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK"
+The University of the Humanities,47.9218937,106.919552402206,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс"
+The Weizmann Institute of,31.904187,34.807378,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל"
+The Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל"
+"Tianjin University, 300072, China",36.20304395,117.058421125807,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国"
+"Tianjin University, China",38.99224515,117.306075265115,"Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国"
+"Tianjin University, Tianjin, China",38.99224515,117.306075265115,"Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国"
+"Tohoku University, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本"
+"Tohoku University, Sendai, Japan",38.2530945,140.8736593,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本"
+Tokyo Denki University,35.6572957,139.542558677257,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本"
+Tokyo Institute of Technology,35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本"
+"Tokyo Institute of Technology, Japan",35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本"
+"Tokyo Institute of Technology, Kanagawa, Japan",35.5167538,139.483422513406,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本"
+Tokyo Metropolitan University,35.6200925,139.38296706394,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本"
+Tomsk Polytechnic University,56.46255985,84.955654946724,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ"
+Tongji University,31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国"
+"Tongji University, Shanghai 201804, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国"
+"Tongji University, Shanghai, China",31.28473925,121.496949085887,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国"
+Toyota Research Institute,37.40253645,-122.116551067984,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA"
+"Toyota Technological Institute (Chicago, US",41.7847112,-87.5926056707507,"Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA"
+Tsinghua University,40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, 100084 Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing 100084, P.R. China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing 100084, P.R.China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing, 100084, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing, P. R. China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, Beijing,China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"Tsinghua University, China",40.00229045,116.320989081778,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国"
+"UC Merced, USA",37.302827,-120.484819845561,"UC Merced Venture Lab, 1735, M Street, Merced, Merced County, California, 95340, USA"
+UIUC,40.04650815,-88.2619752357129,"UIUC Golf Course, Hartwell Drive, Savoy, Champaign County, Illinois, 61874, USA"
+"UNCW, USA",34.16271505,-78.1162477961939,"Uncw- Ecological Botanical Gardens, Henrytown, Brunswick County, North Carolina, USA"
+UNIVERSITY IN PRAGUE,50.0714761,14.4542642,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko"
+UNIVERSITY OF CALIFORNIA,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA"
+"UNIVERSITY OF CALIFORNIA, BERKELEY",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA"
+"UNIVERSITY OF CALIFORNIA, SAN DIEGO",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+UNIVERSITY OF OULU,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi"
+UNIVERSITY OF TAMPERE,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi"
+UNIVERSITY OF TARTU,58.38131405,26.7207808104523,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti"
+UNIVERSITY OF WISCONSIN MADISON,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA"
+"Ulm University, Germany",48.38044335,10.0101011516362,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland"
+Universidad Autonoma de Madrid,40.48256135,-3.69060789542556,"Facultad de Medicina de la Universidad Autónoma de Madrid, Calle de Arturo Duperier, Fuencarral, Fuencarral-El Pardo, Madrid, Área metropolitana de Madrid y Corredor del Henares, Comunidad de Madrid, 28001, España"
+"Universidad Tecnica Federico Santa Maria, Valparaiso, Chile",-33.0362526,-71.595382,"Universidad Técnica Federico Santa María, Condominio Esmeralda, Valparaíso, Provincia de Valparaíso, V Región de Valparaíso, 2390382, Chile"
+"Universitat Oberta de Catalunya, Barcelona, Spain",41.40657415,2.1945341,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España"
+"Universitat Pompeu Fabra, Barcelona, Spain",41.39044285,2.18891949251166,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España"
+"Universitat de València, Valencia, Spain",39.47787665,-0.342577110177694,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España"
+"Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia",4.3830464,100.970015404936,"UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia"
+University,51.7520849,-1.25166460220888,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK"
+University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România"
+University (ITU,55.65965525,12.5910768893446,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark"
+"University City Blvd., Charlotte, NC",35.312224,-80.7084736,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA"
+University College London,51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK"
+"University College London, London WC1N 3BG, United Kingdom",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK"
+"University College London, London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK"
+"University College London, UK",51.5231607,-0.1282037,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK"
+University Drive,-21.1753214,149.1432747,"University Drive, Ooralea, Mackay, QLD, 4740, Australia"
+"University Drive, Fairfax, VA 22030-4444, USA",38.835411,-77.316447,"University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA"
+University Institute of Engineering and Technology,26.9302879,80.9278433,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India"
+"University Library, Singapore",1.30604775,103.7728987705,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore"
+University Of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+University Of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA"
+"University POLITEHNICA Timisoara, Timisoara, 300223, Romania",45.746189,21.2275507517647,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România"
+"University POLITEHNICA of Bucharest, Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România"
+University Politehnica of Bucharest,44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România"
+"University Politehnica of Bucharest, Romania",44.43918115,26.0504456538413,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România"
+University of,29.3758342,71.7528712910287,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان"
+University of Aberdeen,57.1646143,-2.10186013407315,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK"
+University of Abertay,56.46323375,-2.97447511707098,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK"
+University of Adelaide,-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia"
+"University of Adelaide, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia"
+"University of Adelaide, SA, Australia",-34.9189226,138.604236675404,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia"
+"University of Agder, Kristiansand, Norway",58.16308805,8.00144965545071,"UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge"
+"University of Aizu, Japan",37.5236728,139.938072464124,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本"
+"University of Akron, Akron",41.0789035,-81.5197127229943,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA"
+"University of Alberta, Edmonton, Canada",53.5238572,-113.522826652346,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada"
+University of Amsterdam,52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland"
+"University of Amsterdam, Amsterdam, The",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland"
+"University of Amsterdam, Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland"
+"University of Amsterdam, The Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland"
+"University of Amsterdam, the Netherlands",52.3553655,4.9501644,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland"
+University of Arizona,32.2351726,-110.950958317648,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA"
+University of Arkansas at Little Rock,34.72236805,-92.3383025526859,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA"
+University of Barcelona,41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España"
+"University of Barcelona, Spain",41.3868913,2.16352384576632,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España"
+University of Basel,47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra"
+"University of Basel, Switzerland",47.5612651,7.5752961,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra"
+University of Bath,51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK"
+"University of Bath, Bath, Somerset, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK"
+"University of Bath, Bath, United Kingdom",51.3791442,-2.3252332,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK"
+University of Birmingham,52.45044325,-1.93196134052244,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK"
+University of Bonn,50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland"
+"University of Bonn, Germany",50.7338124,7.1022465,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland"
+University of Brescia,37.7689374,-87.1113859,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA"
+University of Bridgeport,41.1664858,-73.1920564,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA"
+University of Bristol,51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK"
+"University of Bristol, Bristol, BS8 1UB, UK",51.4562363,-2.602779,"University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK"
+"University of Bristol, Bristol, UK",51.4584837,-2.60977519828372,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK"
+University of British Columbia,49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada"
+"University of British Columbia, Canada",49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada"
+"University of British Columbia, Vancouver, Canada",49.25839375,-123.246581610019,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada"
+University of Buffalo,40.7021766,-99.0985061173294,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA"
+University of Caen,35.0274996,135.781545126193,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本"
+"University of Calgary, Calgary, Alberta, Canada",51.0784038,-114.1287077,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada"
+University of California,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA"
+University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA"
+University of California Berkeley,37.87631055,-122.238859269443,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA"
+University of California Davis,38.5336349,-121.790772639747,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA"
+University of California San Diego,32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California San Diego, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California San Diego, United States of America",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+University of California Santa Barbara,34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA"
+"University of California, Berkeley",37.8687126,-122.255868148743,"Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA"
+"University of California, Berkeley, Berkeley CA 94720, USA",37.8756681,-122.257979979865,"Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA"
+"University of California, Irvine",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA"
+"University of California, Irvine, USA",33.6431901,-117.84016493553,"University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA"
+"University of California, Merced",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA"
+"University of California, Merced, CA 95344, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA"
+"University of California, Merced, USA",37.36566745,-120.421588883632,"University of California, Merced, Ansel Adams Road, Merced County, California, USA"
+"University of California, Riverside",33.98071305,-117.332610354677,"University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA"
+"University of California, Riverside CA 92521-0425, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA"
+"University of California, Riverside, California 92521, USA",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA"
+"University of California, Riverside, Riverside CA, California 92521 United States",33.9743275,-117.32558236636,"UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA"
+"University of California, San Diego",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California, San Diego, CA, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California, San Diego, California, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California, San Diego, La Jolla",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California, San Diego, USA",32.87935255,-117.231100493855,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA"
+"University of California, Santa Barbara",34.4145937,-119.84581949869,"UCSB, Santa Barbara County, California, 93106, USA"
+University of Cambridge,52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK"
+"University of Cambridge, United Kingdom",52.17638955,0.143088815415187,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK"
+University of Campinas,-27.5953995,-48.6154218,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil"
+University of Campinas (Unicamp,-22.8224781,-47.0642599309425,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil"
+University of Canberra,-35.23656905,149.084469935058,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia"
+"University of Canterbury, New Zealand",-43.5240528,172.580306253669,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa"
+University of Cape Town,-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa"
+"University of Cape Town, South Africa",-33.95828745,18.4599734888018,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa"
+University of Central Florida,28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA"
+"University of Central Florida, Orlando",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA"
+"University of Central Florida, Orlando, 32816, United States of America",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA"
+"University of Central Florida, Orlando, FL, USA",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA"
+"University of Central Florida, Orlando, USA",28.42903955,-81.4421617727936,"Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA"
+"University of Central Florida, USA",28.59899755,-81.1971250118395,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA"
+"University of Central Punjab, Pakistan",31.4466149,74.2679762,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن, Lahore District, پنجاب, 54000, پاکستان"
+University of Chinese Academy of Sciences,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+University of Chinese Academy of Sciences (UCAS,39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Chinese Academy of Sciences, Beijing 100190, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Chinese Academy of Sciences, Beijing 101408, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Chinese Academy of Sciences, Beijing, 100049, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Chinese Academy of Sciences, Beijing, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Chinese Academy of Sciences, China",39.9082804,116.2458527,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国"
+"University of Coimbra, Portugal",40.2075951,-8.42566147540816,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal"
+University of Colorado Colorado Springs,38.8920756,-104.797163894584,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA"
+"University of Colorado Denver, Denver, CO, USA",39.74287785,-105.005963984841,"University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA"
+"University of Colorado, Boulder",40.01407945,-105.266959437621,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA"
+University of Connecticut,41.8093779,-72.2536414,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA"
+University of Copenhagen,55.6801502,12.5723270014063,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark"
+"University of Crete, Crete, 73100, Greece",35.3713024,24.4754408,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα"
+"University of Dammam, Saudi Arabia",26.39793625,50.1980792430511,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية"
+"University of Dayton, Dayton, OH, USA",39.738444,-84.1791874663107,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA"
+"University of Dayton, Ohio, USA",39.738444,-84.1791874663107,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA"
+"University of Delaware, Newark, 19716, USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA"
+"University of Delaware, Newark, DE, USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA"
+"University of Delaware, Newark, DE. USA",39.6810328,-75.7540184,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA"
+"University of Denver, Denver, CO",39.6766541,-104.962203,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA"
+University of Dhaka,23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ"
+"University of Dhaka, Bangladesh",23.7316957,90.3965275,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ"
+"University of Dschang, Cameroon",5.4409448,10.0712056113589,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun"
+University of Dundee,56.45796755,-2.98214831353755,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK"
+"University of East Anglia, Norwich, U.K.",52.6221571,1.2409136,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK"
+University of Edinburgh,55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK"
+"University of Edinburgh, Edinburgh, UK",55.94951105,-3.19534912525441,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK"
+University of Engineering and Technology,31.6914689,74.2465617,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, پاکستان"
+University of Exeter,50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK"
+"University of Exeter, UK",50.7369302,-3.53647671702167,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK"
+University of Florida,29.6328784,-82.3490133048243,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA"
+"University of Florida, Gainesville, FL",29.6328784,-82.3490133048243,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA"
+"University of Florida, Gainesville, FL, 32611, USA",29.6447739,-82.3575193392276,"University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA"
+University of Frankfurt,50.13053055,8.69234223934388,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland"
+University of Geneva,42.57054745,-88.5557862661765,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA"
+University of Glasgow,55.87231535,-4.28921783557444,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK"
+University of Groningen,53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland"
+"University of Groningen, Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland"
+"University of Groningen, The Netherlands",53.21967825,6.56251482206542,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland"
+"University of Gujrat, Pakistan",32.63744845,74.1617455759799,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, پاکستان"
+"University of Haifa, Haifa, Israel",32.76162915,35.0198630428453,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל"
+"University of Hawaii, Manoa, Honolulu, HI, 96822",21.2982795,-157.818692295846,"University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA"
+"University of Hong Kong, China",22.2081469,114.259641148719,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国"
+University of Houston,29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA"
+"University of Houston, Houston, TX 77204, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA"
+"University of Houston, Houston, TX, USA",29.7207902,-95.3440627149137,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA"
+University of Iceland,64.137274,-21.9456145356869,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland"
+University of Illinois,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA"
+University of Illinois Urbana Champaign,40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA"
+University of Illinois at,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA"
+University of Illinois at Chicago,41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA"
+"University of Illinois at Chicago, Chicago, IL",41.86898915,-87.6485625597018,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA"
+University of Illinois at Urbana,40.1006938,-88.2313043272112,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA"
+University of Illinois at Urbana Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana Champaign, Urbana",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA",40.1066501,-88.2240260725426,"University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA"
+University of Illinois at Urbana-Champaign,40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana-Champaign, IL USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana-Champaign, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana-Champaign, Urbana, IL",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana-Champaign, Urbana, IL, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois at Urbana—Champaign, Champaign, IL, USA",40.101976,-88.2314378,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA"
+"University of Illinois, Urbana-Champaign",40.11116745,-88.2258766477716,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA"
+University of Information,34.17980475,-117.325843648456,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA"
+"University of Ioannina, 45110, Greece",39.6162306,20.8396301098796,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα"
+"University of Ioannina, Ioannina, Greece",39.6162306,20.8396301098796,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα"
+University of Iowa,41.6659,-91.573103065,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA"
+"University of Karlsruhe, Germany",49.00664235,8.39405151637065,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland"
+"University of Kent, Canterbury, U.K.",51.2975344,1.0729616473445,"University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK"
+University of Kentucky,38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA"
+"University of Kentucky, USA",38.0333742,-84.5017758,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA"
+University of Leeds,53.80387185,-1.55245712031677,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK"
+"University of Lincoln, U. K.",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK"
+"University of Lincoln, U.K",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK"
+"University of Lincoln, UK",53.22853665,-0.548734723802121,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK"
+University of Liverpool,53.406179,-2.96670818619252,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK"
+"University of Liverpool, Liverpool, U.K.",53.406179,-2.96670818619252,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK"
+University of Ljubljana,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija"
+University of Ljubljana Faculty,46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija"
+"University of Ljubljana, Ljubljana, Slovenia",46.0501558,14.4690732689076,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija"
+University of London,51.5217668,-0.130190717056655,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK"
+"University of Louisville, Louisville, KY 40292 USA",38.2167565,-85.7572502291168,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA"
+"University of Macau, Taipa, Macau",22.1240187,113.545109009671,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国"
+"University of Malaya, 50603 Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia"
+"University of Malaya, Kuala Lumpur, Malaysia",3.12267405,101.65356103394,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia"
+University of Malta,35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta"
+"University of Malta, Msida, Malta",35.9023226,14.4834189,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta"
+"University of Manchester, Manchester, U.K.",53.46600455,-2.23300880782987,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK"
+University of Manitoba,49.8091536,-97.133041790072,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada"
+University of Maryland,39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA"
+University of Maryland College Park,38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA"
+"University of Maryland, College Park, MD, USA",39.2899685,-76.6219610316858,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA"
+"University of Maryland-College Park, USA",38.99203005,-76.9461029019905,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA"
+University of Massachusetts,42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA"
+University of Massachusetts - Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA"
+University of Massachusetts Amherst,42.3869382,-72.5299147706745,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA"
+"University of Massachusetts Amherst, Amherst MA, 01003",42.3919154,-72.5270705589714,"Murray D. Lincoln Campus Center, 1, Campus Center Way, Amherst, Hampshire, Massachusetts, 01003, USA"
+"University of Massachusetts Dartmouth, Dartmouth, MA, USA",41.62772475,-71.0072450098225,"University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA"
+"University of Massachusetts, Amherst",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA"
+"University of Massachusetts, Amherst MA, USA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA"
+"University of Massachusetts, Amherst, MA",42.3889785,-72.5286987,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA"
+University of Memphis,35.1189387,-89.9372195996589,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA"
+University of Miami,25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA"
+"University of Miami, Coral Gables, FL",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA"
+"University of Miami, USA",25.7173339,-80.2786688657706,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA"
+University of Michigan,42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+"University of Michigan, Ann Arbor",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+"University of Michigan, Ann Arbor, MI",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+"University of Michigan, Ann Arbor, MI 48109 USA",42.2808797,-83.7357152493893,"Power Center for the Performing Arts, 121, Fletcher Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+"University of Michigan, Ann Arbor, MI, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+"University of Michigan, Ann Arbor, USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+"University of Michigan, Ann, Arbor, MI USA",42.2942142,-83.710038935096,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA"
+University of Milan,38.6796662,-90.3262816,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA"
+University of Minnesota,44.97308605,-93.2370881262941,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA"
+"University of Missouri, Columbia, MO",38.926761,-92.2919378337447,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA"
+University of Nebraska - Lincoln,40.8174723,-96.7044468,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA"
+"University of Nevada, Reno, Reno, NV, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA"
+"University of Nevada, Reno, USA",39.5469449,-119.813465660936,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA"
+"University of New South Wales, Sydney, NSW, Australia",-33.91758275,151.231240246527,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia"
+University of Newcastle,-33.3578899,151.37834708231,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia"
+"University of Newcastle, Newcastle, Australia",-32.9276256,151.77133087091,"University of Newcastle, Christie Street, Newcastle, Newcastle-Maitland, Newcastle, NSW, 2300, Australia"
+University of North Carolina,35.90503535,-79.0477532652511,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA"
+University of North Carolina Wilmington,34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA"
+"University of North Carolina Wilmington, USA",34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA"
+"University of North Carolina Wilmington, Wilmington, NC, USA",34.2377352,-77.92673494788,"Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA"
+"University of North Carolina Wilmington, Wilmington, United States",34.2375581,-77.9270129,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA"
+University of North Carolina at Chapel Hill,35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA"
+"University of North Carolina at Chapel Hill, Chapel Hill, NC",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA"
+"University of North Carolina at Chapel Hill, Chapel Hill, NC, USA",35.9105975,-79.0517871,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA"
+"University of North Carolina at Chapel Hill, NC, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA"
+"University of North Carolina at Chapel Hill, USA",35.9113971,-79.0504529,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA"
+University of North Carolina at Charlotte,35.3103441,-80.732616166699,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA"
+"University of North Carolina at Wilmington, USA",34.2249827,-77.8690774374448,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA"
+University of North Texas,33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA"
+"University of North Texas, Denton, Texas, USA",33.2098879,-97.1514748776857,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA"
+University of Northern British Columbia,53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada"
+"University of Northern British Columbia, Canada",53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada"
+"University of Northern British Columbia, Prince George, Canada",53.8925662,-122.814715920529,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada"
+University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA"
+"University of Notre Dame, Notre Dame, IN, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA"
+"University of Notre Dame, USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA"
+"University of Notre Dame. Notre Dame, IN 46556.USA",41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA"
+University of Nottingham,52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK"
+"University of Nottingham, Nottingham, UK",52.9387428,-1.20029569274574,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK"
+University of Oradea,47.0570222,21.922709,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România"
+"University of Oslo, Oslo, Norway",59.93891665,10.7217076488427,"UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge"
+University of Ottawa,45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada"
+"University of Ottawa, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada"
+"University of Ottawa, Ottawa, On, Canada",45.42580475,-75.6874011819989,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada"
+University of Oulu,65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi"
+"University of Oulu, Finland",65.0592157,25.466326012507,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi"
+University of Oxford,51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK"
+"University of Oxford, Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK"
+"University of Oxford, UK",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK"
+"University of Oxford, United Kingdom",51.7534538,-1.25400997048855,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK"
+"University of Patras, Greece",38.2899482,21.7886469,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα"
+University of Pennsylvania,39.9492344,-75.191989851901,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA"
+"University of Pennsylvania, Philadelphia, PA",39.95455675,-75.2029503620423,"40th Street Parking Lot, Walnut Street, Southwest Schuylkill, Philadelphia, Philadelphia County, Pennsylvania, 19104-1469, USA"
+University of Perugia,49.2622421,-123.2450052,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada"
+"University of Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان"
+"University of Peshawar, Peshawar, Pakistan",34.0092004,71.4877494739102,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان"
+University of Piraeus,37.94173275,23.6530326182197,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα"
+"University of Pisa, Pisa, Italy",43.7201299,10.4078976,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia"
+University of Pittsburgh,40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA"
+"University of Pittsburgh, PA 15213, USA",40.4444651,-79.9532347,"Nationality Rooms, 4200, Omicron Delta Kappa Walk, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"University of Pittsburgh, PA, 15260, USA",40.4437547,-79.9529557,"Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"University of Pittsburgh, PA, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA"
+"University of Pittsburgh, Pittsburgh",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA"
+"University of Pittsburgh, Pittsburgh PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA"
+"University of Pittsburgh, Pittsburgh, PA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA"
+"University of Pittsburgh, Pittsburgh, PA , USA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA"
+"University of Pittsburgh, Pittsburgh, PA 15260, USA",40.4437547,-79.9529557,"Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA"
+"University of Pittsburgh, Pittsburgh, PA, USA",40.4495417,-79.8957457221781,"Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA"
+"University of Pittsburgh, Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA"
+"University of Pittsburgh, USA",40.44415295,-79.9624399276271,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA"
+"University of Plymouth, UK",50.3752501,-4.13927692297343,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK"
+"University of Portsmouth, United Kingdom",50.79805775,-1.09834911234691,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK"
+University of Posts and Telecommunications,32.11527165,118.925956600436,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国"
+"University of Queensland, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+"University of Queensland, St Lucia, QLD, Australia",-27.497151,153.0117305,"Anthropology Museum, Chancellors Place, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+University of Rochester,43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA"
+"University of Rochester, NY 14627, USA",43.1242954,-77.6288352530005,"Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA"
+"University of Rochester, Rochester, NY, USA",43.1576969,-77.5882915756007,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA"
+"University of Salzburg, Austria",47.79475945,13.0541752486067,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich"
+University of Science and,5.35755715,100.303850375,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia"
+University of Science and Technology of China,31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国"
+"University of Science and Technology of China, Hefei 230026, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国"
+"University of Science and Technology of China, Hefei, 230027, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国"
+"University of Science and Technology of China, Hefei, Anhui, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国"
+"University of Science and Technology of China, Hefei, Anhui, P. R. China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国"
+"University of Science and Technology of China, Hefei, China",31.83907195,117.264207478576,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国"
+University of Siena,22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"University of South Carolina, Columbia, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA"
+"University of South Carolina, USA",33.9928298,-81.0268516781225,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA"
+"University of South Florida, Tampa, Florida 33620",28.0599999,-82.4138361902512,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA"
+University of Southampton,50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK"
+"University of Southampton, SO17 1BJ, UK",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK"
+"University of Southampton, Southampton, U.K.",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK"
+"University of Southampton, United Kingdom",50.89273635,-1.39464294664816,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK"
+University of Southern California,34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA"
+"University of Southern California, Los Angeles, CA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA"
+"University of Southern California, Los Angeles, CA 90089, USA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA"
+"University of Southern California, Los Angeles, USA",34.0224149,-118.286344073446,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA"
+"University of St Andrews, United Kingdom",56.3411984,-2.7930938,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK"
+University of Stuttgart,48.9095338,9.1831892,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland"
+University of Surrey,51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK"
+"University of Surrey, Guildford, Surrey GU2 7XH, UK",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK"
+"University of Surrey, Guildford, Surrey, GU2 7XH, UK",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK"
+"University of Surrey, United Kingdom",51.24303255,-0.590013824660236,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK"
+University of Sydney,-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia"
+"University of Sydney, Australia",-33.88890695,151.189433661925,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia"
+"University of Sydney, Sydney, NSW, Australia",-33.88578245,151.182068591379,"Sand Roll House, Parramatta Road, Camperdown, Sydney, NSW, 2050, Australia"
+"University of Tabriz, Tabriz, Iran",38.0612553,46.3298484,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ایران"
+University of Tampere,61.49412325,23.7792067776763,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi"
+University of Technology Sydney,-33.8809651,151.201072985483,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology Sydney, New South Wales, Australia",-33.8809651,151.201072985483,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology Sydney, Sydney, NSW, Australia",-33.8830909,151.20217235558,"University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology Sydney, Ultimo, NSW, Australia",-33.8830909,151.20217235558,"University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology, Baghdad, Iraq",33.3120263,44.4471829434368,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق"
+"University of Technology, Sydney",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology, Sydney, NSW, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Technology, Sydney, Sydney, Australia",-33.8828784,151.200682779726,"UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia"
+"University of Tennessee, Knoxville",35.9542493,-83.9307395,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA"
+University of Texas,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA"
+University of Texas at,32.3163078,-95.2536994379459,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA"
+University of Texas at Arlington,32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA"
+"University of Texas at Arlington, Arlington, TX",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA"
+"University of Texas at Arlington, Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA"
+"University of Texas at Arlington, Arlington, Texas 76019, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA"
+"University of Texas at Arlington, TX, USA",32.7283683,-97.112018348404,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA"
+University of Texas at Austin,30.284151,-97.7319559808022,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA"
+"University of Texas at Dallas, Richardson, 75080, USA",32.9820799,-96.7566278,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA"
+University of Texas at San Antonio,29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA"
+"University of Texas at San Antonio, 78249, USA",29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA"
+"University of Texas at San Antonio, San Antonio, TX",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA"
+"University of Texas at San Antonio, San Antonio, TX, USA",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA"
+"University of Texas at San Antonio, San Antonio, Texas",29.42182005,-98.5016869955163,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA"
+"University of Texas at San Antonio, San Antonio, United States",29.58333105,-98.6194450505688,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA"
+"University of Texas, Austin, TX 78712-1188, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA"
+"University of Texas, San Antonio, TX, USA",30.284458,-97.7342106,"University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA"
+University of Thessaloniki,40.62984145,22.9588934957528,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα"
+University of Tokyo,35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本"
+"University of Tokyo, Japan",35.9020448,139.936220089117,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本"
+University of Toronto,43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada"
+"University of Toronto Toronto, Canada",43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada"
+"University of Toronto, Toronto, ON, Canada",43.66333345,-79.3976997498952,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada"
+University of Toulouse,30.1781816,-93.2360581,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA"
+University of Trento,46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia"
+"University of Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia"
+"University of Trento, Trento, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia"
+"University of Trento, Trento, TN, Italy",46.0658836,11.1159894,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia"
+University of Tsukuba,36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本"
+"University of Tsukuba, Japan",36.1112058,140.1055176,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本"
+University of Twente,52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland"
+"University of Twente, Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland"
+"University of Twente, The Netherlands",52.2380139,6.8566761,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland"
+University of Venezia,45.4312742,12.3265377,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia"
+"University of Vermont, 33 Colchester Avenue, Burlington",44.48116865,-73.2002178989123,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA"
+"University of Vienna, Austria",48.2131302,16.3606865338016,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich"
+University of Virginia,38.0353682,-78.5035322,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA"
+"University of Virginia, Charlottesville, VA",38.0410576,-78.5054996018357,"University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA"
+University of Warwick,52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK"
+"University of Warwick, Coventry, U.K.",52.3793131,-1.5604252,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK"
+University of Washington,47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA"
+"University of Washington, Seattle, USA",47.6543238,-122.308008943203,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA"
+"University of Washington, Seattle, WA 98195, United States",47.6547795,-122.305818,"University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA"
+"University of Washington, Seattle, WA, USA",47.65249975,-122.2998748,"University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA"
+University of Waterloo,43.47061295,-80.5472473165632,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada"
+University of Western Australia,-31.95040445,115.797900374251,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia"
+"University of Windsor, Canada",42.30791465,-83.0717691461703,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada"
+"University of Windsor, Canada N9B 3P4",42.30791465,-83.0717691461703,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada"
+"University of Windsor, Ontario, Canada",42.30791465,-83.0717691461703,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada"
+University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA"
+University of Wisconsin - Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA"
+University of Wisconsin Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA"
+University of Wisconsin-Madison,43.07982815,-89.4306642542901,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA"
+"University of Wisconsin-Madison, Madison, WI, USA",43.0705257,-89.4059387,"UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA"
+University of Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa"
+University of Wollongong,-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia"
+"University of Wollongong, Wollongong, Australia",-34.40505545,150.878346547278,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia"
+"University of York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK"
+"University of York, York, UK",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK"
+"University of York, York, United Kingdom",53.94540365,-1.0313887829649,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK"
+"University of Zurich, Zurich, Switzerland",47.4968476,8.72981767380829,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra"
+"University of telecommunications and post, Sofia, Bulgaria",42.6560524,23.3476108351659,"Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия"
+"University of the Basque Country, San Sebastian, Spain",43.30927695,-2.01066784661227,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España"
+University of the Western Cape,-33.9327762,18.6291540714825,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa"
+University of the Witwatersrand,-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa"
+"University of the Witwatersrand, Johannesburg, South Africa",-26.1888813,28.0247907319205,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa"
+"University, China",22.4133862,114.210058,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"University, Guangzhou, China",23.1314851,113.2852239,"中山大学第一课室, 74号大院, 中山二路, 马棚岗, 农林街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国"
+"University, Hong Kong",54.0856448,13.389089,"Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland"
+"University, Singapore",1.2962018,103.776899437848,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore"
+"University, USA",25.7147949,-80.276947,"University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA"
+"University, Xi an Shaanxi Province, Xi an 710049, China",34.2707834,108.94449949951,"西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国"
+"Università degli Studi di Milano, Italy",45.47567215,9.23336232066359,"Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia"
+Università di Salerno Italy,40.7646949,14.7889151,"Università, Autostrada del Mediterraneo, Fisciano, SA, CAM, 84084, Italia"
+Université du Québec à Chicoutimi (UQAC),48.4200469,-71.0525344,"Université du Québec à Chicoutimi (UQAC), Chicoutimi, Ville de Saguenay, Saguenay - Lac-Saint-Jean, Québec, G7H 2B1, Canada"
+Ural Federal University (UrFU,56.8435083,60.6454805,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ"
+"Urmia University, Urmia, Iran",37.52914535,45.0488607694682,"دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ایران"
+"Ursinus College, Collegeville, PA",40.1917705,-75.4568484,"Ursinus College, East Main Street, Collegeville, Montgomery County, Pennsylvania, 19426, USA"
+"Utah State University, Logan UT",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA"
+"Utah State University, Logan, UT 84322-4205, USA",41.7411504,-111.8122309,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA"
+"Varendra University, Rajshahi, Bangladesh",24.3643231,88.6333105,"department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ"
+Victoria University of Wellington,-41.29052775,174.768469187426,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa"
+Vienna University of Technology,48.19853965,16.3698616762866,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich"
+"Vignan University, Andhra Pradesh, India",16.2329008,80.5475018,"Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India"
+Villanova University,40.0367774,-75.342023320028,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA"
+"Virginia Commonwealth University, Richmond, VA, USA",37.548215,-77.4530642444471,"Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA"
+Virginia Polytechnic Institute and State University,37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA"
+"Virginia Polytechnic Institute and State University, Blacksburg",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA"
+"Virginia Polytechnic Institute and State University, Blacksburg, Virginia",37.21872455,-80.4254251869494,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA"
+Virginia Tech Carilion Research Institute,37.2579548,-79.9423329131356,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA"
+"Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany",53.599482,9.93353435970931,"Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland"
+Vrije Universiteit Brussel,50.8411007,4.32377555279953,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien"
+"Vrije Universiteit Brussel, 1050 Brussels, Belgium",50.8223021,4.3967361,"Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien"
+"Vulcan Inc, Seattle, WA 98104",47.5980546,-122.3284865,"Vulcan Inc., 505, Downtown Seattle Transit Tunnel, Seattle Downtown, International District/Chinatown, Seattle, King County, Washington, 98191, USA"
+"WVU, USA",39.6349398,-79.9570056423469,"Stansbury Hall (WVU), Caperton Trail, Brewer Hill, Star City, Monongalia County, West Virginia, 26504, USA"
+"Walt Disney Imagineering, USA",34.1619174,-118.28837020278,"Walt Disney Imagineering, 1401, Flower Street, Grand Central Creative Campus, Glendale, Los Angeles County, California, 91201, USA"
+Warsaw University of Technology,52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP"
+"Warsaw University of Technology, Poland",52.22165395,21.0073577612511,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP"
+Waseda University,33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本"
+"Waseda University, Kitakyushu, Japan 808-0135",33.8898728,130.708562047107,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本"
+"Washington University, St. Louis, MO, USA",38.6480445,-90.3099667,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA"
+Wayne State University,42.357757,-83.0628671134125,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA"
+"Wayne State University, Detroit, MI 48202, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA"
+"Wayne State University, Detroit, MI, USA",42.3656423,-83.0711533990367,"Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA"
+Weizmann Institute of Science,31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל"
+"Weizmann Institute of Science, Rehovot, 76100, Israel",31.9078499,34.8133409244421,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל"
+West Virginia University,39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA"
+"West Virginia University, Morgantown WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA"
+"West Virginia University, Morgantown, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA"
+"West Virginia University, Morgantown, WV",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA"
+"West Virginia University, Morgantown, WV 26506, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA"
+"West Virginia University, Morgantown, WV, USA",39.65404635,-79.96475355,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA"
+Western Kentucky University,36.9845317,-86.4576443016944,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA"
+"Western Sydney University, Parramatta, NSW 2150, Australia",-33.8160848,151.00560034186,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia"
+Wolfson College,51.7711076,-1.25361700492597,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK"
+"Wuhan University of Technology, Wuhan, China",30.60903415,114.351428398184,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国"
+Xerox Research Center,43.5129109,-79.6664076152913,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada"
+"Xi'an Jiaotong University, Xi'an, China",34.2474949,108.978987508847,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国"
+Xiamen University,24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国"
+"Xiamen University, Xiamen 361005, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国"
+"Xiamen University, Xiamen, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国"
+"Xiamen University, Xiamen, Fujian, China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国"
+"Xiamen University, Xiamen, P. R. China",24.4399419,118.093017809127,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国"
+"Xiangtan University, Xiangtan, China",27.88707585,112.857109176016,"湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国"
+Xidian University,34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国"
+"Xidian University, Xi an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国"
+"Xidian University, Xi'an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国"
+"Xidian University, Xi’an, China",34.1235825,108.83546,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国"
+"Y. Li, University of Maryland",39.2864694,-76.6263409932124,"Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA"
+Yale University,41.25713055,-72.9896696015223,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA"
+Yaroslavl State University,57.6252103,39.8845656,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ"
+Yeungnam University,35.8365403,128.7534309,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국"
+"Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea",37.5600406,126.9369248,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국"
+"Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea",37.5600406,126.9369248,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국"
+York University,43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada"
+"York University, Toronto",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada"
+"York University, Toronto, Canada",43.7743911,-79.5048108538813,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada"
+"Yunnan University, Kunming, P. R. China",25.05703205,102.700275254918,"云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国"
+Zaragoza University,41.6406218,-0.900793992168927,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España"
+"Zhejiang Normal University, Jinhua, China",29.13646725,119.637686517179,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国"
+Zhejiang University,30.19331415,120.119308216677,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国"
+Zhejiang University of Technology,30.2931534,120.1620458,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国"
+"Zhejiang University of Technology, Hangzhou, China",30.2931534,120.1620458,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国"
+"Zhejiang University, Hangzhou, China",30.19331415,120.119308216677,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国"
+"Zhengzhou University, China",34.8088168,113.5352664,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国"
+"Zhengzhou University, Zhengzhou, Henan 450052, China",34.8088168,113.5352664,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国"
+a The University of Nottingham Malaysia Campus,2.9438432,101.8736196,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia"
+any other University,53.8012316,-1.5476213,"Northern Film School, Millennium Square, Steander, Woodhouse, Leeds, Yorkshire and the Humber, England, LS1 3DW, UK"
+college of Engineering,13.0110912,80.2354520862161,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India"
+of Cornell University,42.4505507,-76.4783512955428,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA"
+of bilkent university,39.8720489,32.7539515466323,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye"
+of the University of Notre Dame,41.70456775,-86.2382202601727,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA"
+the Chinese University of Hong Kong,22.42031295,114.207886442805,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国"
+"the Hong Kong Polytechnic University, Hong Kong",22.304572,114.179762852269,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国"
+"the University of Queensland, Brisbane, Qld, Australia",-27.49741805,153.013169559836,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia"
+to Michigan State University,42.7231021,-84.4449848597663,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA"
+"university, Shiraz, Iran",29.6284395,52.5181728343761,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران"
+y National Institute of Advanced Industrial Science and Technology,36.05238585,140.118523607658,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本"
+"École Polytechnique Fédérale de Lausanne (EPFL), Switzerland",46.5184121,6.5684654,"Bibliothèque de l'EPFL, Route des Noyerettes, Ecublens, District de l'Ouest lausannois, Vaud, 1024, Schweiz/Suisse/Svizzera/Svizra"
diff --git a/reports/all_institutions_sorted.csv b/reports/all_institutions_sorted.csv new file mode 100644 index 00000000..67604598 --- /dev/null +++ b/reports/all_institutions_sorted.csv @@ -0,0 +1,1745 @@ +AALTO UNIVERSITY,AALTO UNIVERSITY,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+AGH University of Science and Technology,AGH University of Science and Technology,"AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.0657033,19.9189586670586
+AGH University of Science and Technology,"AGH University of Science and Technology, Kraków, Poland","AGH, Władysława Reymonta, Czarna Wieś, Krowodrza, Kraków, małopolskie, 30-059, RP",50.0657033,19.9189586670586
+AI Institute,AI Institute,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina",-34.6102167,-58.3752244291708
+ALICE Institute,ALICE Institute,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola",-8.82143045,13.2347076178375
+ARISTOTLE UNIVERSITY OF THESSALONIKI,ARISTOTLE UNIVERSITY OF THESSALONIKI,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991
+Aalborg University,"Aalborg University, Denmark","AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991
+Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+Aalto University,"Aalto University, Finland","Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+Aberystwyth University,Aberystwyth University,"Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4107358,-4.05295500914411
+Aberystwyth University,"Aberystwyth University, UK","Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4107358,-4.05295500914411
+Ahmedabad University,Ahmedabad University,"School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.0378743,72.5518004573221
+Ahmedabad University,"Ahmedabad University, Gujarat, India 380009","School of Science and Technology, University Road, Gurukul, Gulbai tekra, Ahmedabad, Ahmedabad District, Gujarat, 380001, India",23.0378743,72.5518004573221
+Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.2830003,127.045484689222
+Akita Prefectural University,Akita Prefectural University,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本",39.8011499,140.045911602376
+Akita Prefectural University,"Akita Prefectural University, Yurihonjo, Japan","秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本",39.39325745,140.073500465928
+Akita University,Akita University,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本",39.7278142,140.133225661449
+Akita University,"Akita University, Akita, Japan","秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本",39.7291921,140.136565773585
+Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.9131456239399
+Alexandria University,"Alexandria University, Alexandria, Egypt","جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.9131456239399
+"Alibaba Group, Hangzhou, China","Alibaba Group, Hangzhou, China","Alibaba Group, 五常街道, 余杭区 (Yuhang), 杭州市 Hangzhou, 浙江省, 中国",30.2810654,120.021390874339
+"Amazon, Berkshire, U.K.","Amazon, Berkshire, U.K.","Amazon Logistics, Exeter Road, Theale, West Berkshire, South East, England, RG7 4PL, UK",51.43522855,-1.07155123817349
+American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193
+American University,"American University, Washington, DC, USA","American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193
+Amherst College,Amherst College,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA",42.37289,-72.518814
+Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+Amirkabir University of Technology,"Amirkabir University of Technology, Tehran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+Amirkabir University of Technology,"Amirkabir University of Technology, Tehran, Iran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+Amirkabir University of Technology,"Amirkabir University of Technology, Tehran. Iran","دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+Amity University,"Amity University, Lucknow, India","Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+Amity University Uttar Pradesh,Amity University Uttar Pradesh,"Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.54322285,77.3327482973395
+Amity University Uttar Pradesh,"Amity University Uttar Pradesh, Noida","Amity University, Noida, Greater Noida Expressway, Noida Special Economic Zone, Bakhtawarpur, Ghaziabad, Uttar Pradesh, 201304, India",28.54322285,77.3327482973395
+Anhui Polytechnic University,Anhui Polytechnic University,"安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.34185955,118.407397117034
+Anhui Polytechnic University,"Anhui Polytechnic University, Wuhu, China","安徽工程大学, 鸠江北路, 芜湖市, 芜湖市区, 芜湖市 / Wuhu, 安徽省, 241000, 中国",31.34185955,118.407397117034
+Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091346
+Anhui University,"Anhui University, Hefei, China","安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091346
+Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+Anna University,"Anna University, Chennai","Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+Anna University Chennai,Anna University Chennai,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+Anna University Chennai,"Anna University Chennai, India","Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Aristotle University of Thessaloniki GR,Aristotle University of Thessaloniki GR,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+Arizona State University,"Arizona State University, AZ, USA","Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+Arizona State University,"Arizona State University, Tempe AZ","Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA",33.4206602,-111.932634924965
+Arizona State University,"Arizona State University, Tempe, AZ, USA","Arizona State University, Palm Walk, Tempe, Maricopa County, Arizona, 85287, USA",33.4206602,-111.932634924965
+Asia Pacific University of Technology and Innovation,Asia Pacific University of Technology and Innovation,"Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia",3.0552109,101.7005831
+Asia Pacific University of Technology and Innovation,"Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia","Asia Pacific University of Technology and Innovation (APU), Astro North Entrance, Astro, Sungai Besi, KL, 57000, Malaysia",3.0552109,101.7005831
+Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.1700949818453
+Assiut University,"Assiut University, Asyut, Egypt","Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.1700949818453
+Aston University,Aston University,"Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.48620785,-1.88849915088515
+Aston University,"Aston University, Birmingham, U.K.","Aston University, Aston Street, Digbeth, Birmingham, West Midlands Combined Authority, West Midlands, England, B4, UK",52.48620785,-1.88849915088515
+Australian Institute of Sport,Australian Institute of Sport,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.24737535,149.104454269689
+Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+Australian National University,"Australian National University, Canberra","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+Australian National University,"Australian National University, Canberra, ACT 0200, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+Azad University,Azad University,"پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ایران",36.3173432,50.0367286
+Azad University,"Azad University, Qazvin, Iran","پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ایران",36.3173432,50.0367286
+Azad University,"Central Tehran Branch, Azad University","دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ایران",35.753318,51.370631
+B.S. University of Central Florida,B.S. University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+Bahcesehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.9769795349346
+Bahcesehir University,"Bahcesehir University, Istanbul, Turkey","BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.9769795349346
+Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.2662887,82.9927969
+Bangalore Institute of Technology,Bangalore Institute of Technology,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India",12.9551259,77.5741985
+"Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India","Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India","Bapuji Institute of Engineering and Technology, 2nd Cross Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4443949,75.9027655185535
+Bar Ilan University,Bar Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.8433433861531
+Bar Ilan University,"Bar Ilan University, Israel","אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.8433433861531
+Bas kent University,Bas kent University,"University College Utrecht 'Babel', 7, Campusplein, Utrecht, Nederland, 3584 ED, Nederland",52.08340265,5.14828494152362
+Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+Beihang University,"Beihang University, Beijing 100191, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+Beijing Institute of Technology University,Beijing Institute of Technology University,"北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+Beijing Institute of Technology University,"Beijing Institute of Technology University, P. R. China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+"Beijing Institute of Technology, Beijing 100081 CHINA","Beijing Institute of Technology, Beijing 100081 CHINA","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+"Beijing Institute of Technology, Beijing, China","Beijing Institute of Technology, Beijing, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+"Beijing Institute of Technology, China","Beijing Institute of Technology, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+Beijing Jiaotong University,"Beijing Jiaotong University, Beijing, 100044, China","北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+Beijing Normal University,Beijing Normal University,"北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265
+Beijing Normal University,"Beijing Normal University, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265
+Beijing Union University,Beijing Union University,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.9890068,116.420677175386
+Beijing Union University,"Beijing Union University, 100101, China","北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.9890068,116.420677175386
+Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, P.R. China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.477222846574
+Beijing University of Technology,"Beijing University of Technology, Beijing 100022, China","北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.477222846574
+"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+"Beijing, Haidian, China","Beijing, Haidian, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265
+Benha University,Benha University,"كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.0818727,31.2445484105016
+Benha University,"Benha University, Egypt","كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.0818727,31.2445484105016
+Bharathidasan University,Bharathidasan University,"Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.7778845,78.6966319
+Bharathidasan University,"Bharathidasan University, Trichy, India","Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.7778845,78.6966319
+Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.0280421,8.51148270115395
+Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+Bilkent University,"Bilkent University, 06800 Cankaya, Turkey","Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+Binghamton University,Binghamton University,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.0958077,-75.9145568939543
+Binghamton University,"Binghamton University, Binghamton, NY","Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.0958077,-75.9145568939543
+Bogazici University,Bogazici University,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.0868841,29.0441316722649
+Bogazici University,"Bogazici University, Bebek","Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.0868841,29.0441316722649
+Bogazici University,"Bogazici University, Turkey","Boğaziçi Üniversitesi Güney Yerleşkesi, Sehitlikdergahı Sokağı, Beşiktaş, İstanbul, Marmara Bölgesi, 33345, Türkiye",41.08327335,29.0503931951846
+Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306
+"Boston College, USA","Boston College, USA","Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306
+Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+Boston University,"Boston University, Boston, MA","BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+Boston University,"Boston University, USA","BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+Bournemouth University,"Bournemouth University, UK","Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+Brown University,"Brown University, Providence Rhode Island, 02912, USA","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+Brown University,"Brown University, Providence, RI","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+Brown University,"Brown University, United States","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+Brunel University,Brunel University,"Brunel University London, The Strip, Hillingdon, London, Greater London, England, UB8 3PH, UK",51.53255315,-0.473993562050575
+CALIFORNIA INSTITUTE OF TECHNOLOGY,CALIFORNIA INSTITUTE OF TECHNOLOGY,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+CARNEGIE MELLON UNIVERSITY,CARNEGIE MELLON UNIVERSITY,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+COLUMBIA UNIVERSITY,COLUMBIA UNIVERSITY,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+COMSATS Institute of Information Technology,COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان",31.4006332,74.2137296
+"COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, پاکستان",33.65010145,73.1551494914791
+"COMSATS Institute of Information Technology, Lahore 54000, Pakistan","COMSATS Institute of Information Technology, Lahore 54000, Pakistan","COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان",31.4006332,74.2137296
+"COMSATS Institute of Information Technology, Pakistan","COMSATS Institute of Information Technology, Pakistan","COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان",31.4006332,74.2137296
+CUNY City College,CUNY City College,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France",45.5546608,5.4065255
+California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+"California Institute of Technology, Pasadena, CA","California Institute of Technology, Pasadena, CA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+"California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+"California Institute of Technology, Pasadena, California, USA","California Institute of Technology, Pasadena, California, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+"California Institute of Technology, USA","California Institute of Technology, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+"Callaghan, NSW 2308, Australia","Callaghan, NSW 2308, Australia","Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.8892352,151.6998983
+Cambridge Research Laboratory,Cambridge Research Laboratory,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK",52.17333465,0.149899463173698
+Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748
+Capital Normal University,Capital Normal University,"首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052087
+Capital Normal University,"Capital Normal University, 100048, China","首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052087
+Cardi University,Cardi University,"CARDI, University of the West Indies, Saint Augustine, Tunapuna-Piarco, 686, Trinidad and Tobago",10.6435074,-61.4022996445292
+Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+Cardiff University,"Cardiff University, UK","Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.3860843,-75.6953926739404
+Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+Carnegie Mellon University Pittsburgh,Carnegie Mellon University Pittsburgh,"Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University Pittsburgh,"Carnegie Mellon University Pittsburgh, PA - 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Carnegie Mellon University Pittsburgh,"Carnegie Mellon University Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883
+Chang Gung University,Chang Gung University,"長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.030438,121.390095126629
+Chang Gung University,"Chang Gung University, Taoyuan, Taiwan","長庚科技大學林口校區, 261, 文化一路, A7合宜住宅, 樂善里, 木尾, 龜山區, 桃園市, 33301, 臺灣",25.030438,121.390095126629
+Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.0636071,147.3552234
+China University of Mining and Technology,China University of Mining and Technology,"China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.2152538,117.1398541
+China University of Mining and Technology,"China University of Mining and Technology, Xuzhou, China","China University of Mining and Technology, 1号, 大学路, 泉山区 (Quanshan), 徐州市 / Xuzhou, 江苏省, 221116, 中国",34.2152538,117.1398541
+Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+"Chinese Academy of Sciences, Beijing","Chinese Academy of Sciences, Beijing","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+"Chinese Academy of Sciences, China","Chinese Academy of Sciences, China","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+Chittagong University of Engineering and Technology,Chittagong University of Engineering and Technology,"Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.46221665,91.9694226317318
+Chittagong University of Engineering and Technology,"Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh","Shaheed Tareq Huda Hall, Goal Chattar, চট্টগ্রাম, চট্টগ্রাম জেলা, চট্টগ্রাম বিভাগ, 4349, বাংলাদেশ",22.46221665,91.9694226317318
+Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058
+Chonbuk National University,"Chonbuk National University, Jeonju-si","전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058
+Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028
+Chongqing University,"Chongqing University, China","重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028
+Chongqing University,"Chongqing University, Chongqing, China","重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028
+Chongqing University of Posts and Telecommunications,Chongqing University of Posts and Telecommunications,"重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.5357046,106.604824742826
+Chongqing University of Posts and Telecommunications,"Chongqing University of Posts and Telecommunications, Chongqing, China","重庆邮电大学, 崇文路, 渝中区, 黄桷垭, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400065, 中国",29.5357046,106.604824742826
+Chosun University,Chosun University,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국",35.1441031,126.9257858
+"Chu Hai College of Higher Education, Hong Kong","Chu Hai College of Higher Education, Hong Kong","珠海學院 Chu Hai College of Higher Education, 80, 青盈路 Tsing Ying Road, 嘉和里 Ka Wo Lei, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国",22.3760643,113.987153890134
+"Chu Hai College of Higher Education, Tsuen Wan, Hong Kong","Chu Hai College of Higher Education, Tsuen Wan, Hong Kong","珠海學院, 80, 青山公路-青山灣段 Castle Peak Road – Castle Peak Bay, 良田村 Leung Tin Tsuen, 青山灣 Castle Peak Bay, 小秀村 Siu Sau Tsuen, 屯門區 Tuen Mun District, 新界 New Territories, HK, DD132 586, 中国",22.375601,113.987140797925
+Chubu University,Chubu University,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本",35.2742655,137.013278412463
+Chulalongkorn University,Chulalongkorn University,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091
+Chulalongkorn University,"Chulalongkorn University, Bangkok","จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091
+Chulalongkorn University Bangkok,Chulalongkorn University Bangkok,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091
+Chulalongkorn University Bangkok,"Chulalongkorn University Bangkok, Thailand","จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091
+Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619
+Chung-Ang University,"Chung-Ang University, Seoul, Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619
+Chung-Ang University,"Chung-Ang University, Seoul, South Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619
+Chungnam National University,Chungnam National University,"충남대학교, 대덕사이언스길 2코스, 온천2동, 온천동, 유성구, 대전, 34140, 대한민국",36.37029045,127.347804575184
+City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+City University of Hong Kong,"City University of Hong Kong, Hong Kong","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+City University of Hong Kong,"City University of Hong Kong, Hong Kong, China","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+City University of Hong Kong,"City University of Hong Kong, Kowloon, Hong Kong","香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078
+Clemson University,"Clemson University, Clemson, SC","E-06 Parking, Parkway Drive, Pickens County, South Carolina, SC, USA",34.67871075,-82.8346790794026
+Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.9519648264628
+"College Heights Blvd, Bowling Green, KY","College Heights Blvd, Bowling Green, KY","College Heights Boulevard, Bowling Green, Warren County, Kentucky, 42101, USA",36.9881671,-86.4542111
+"College Park, MD","College Park, MD","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+"College Park, MD 20742 USA","College Park, MD 20742 USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+"College Park, MD, 20740, USA","College Park, MD, 20740, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+"College Park, Maryland","College Park, Maryland","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+"College Park, USA","College Park, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+"College Park, United States","College Park, United States","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+College of Computer and Information Science,College of Computer and Information Science,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA",42.3192923,-83.2343465549018
+College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862
+College of Electrical and Information Engineering,College of Electrical and Information Engineering,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија",42.0049791,21.40834315
+"College of Engineering Pune, India","College of Engineering Pune, India","College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India",18.52930005,73.8568253702551
+College of Engineering and Computer Science,College of Engineering and Computer Science,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA",25.7589624,-80.3738881489383
+"College of Engineering, Pune, India","College of Engineering, Pune, India","College of Engineering, Pune, NH753F, Mangalwar Peth, Pune, Pune District, Maharashtra, 411011, India",18.52930005,73.8568253702551
+College of Informatics,College of Informatics,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines",14.6173885,121.101327315511
+Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+Colorado State University,"Colorado State University, Fort Collins","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+Colorado State University,"Colorado State University, Fort Collins, Colorado, USA","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University,"Columbia University, New York","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University,"Columbia University, New York NY 10027, USA","Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.81779415,-73.9578531933627
+Columbia University,"Columbia University, New York, NY","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University,"Columbia University, New York, NY 10027, USA","Columbia University, West 131st Street, Manhattanville Houses, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.81779415,-73.9578531933627
+Columbia University,"Columbia University, New York, NY, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University,"Columbia University, New York, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University,"Columbia University, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University,"Columbia University, United States","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+Columbia University in the City of New York,Columbia University in the City of New York,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.8071772,-73.9625279772072
+Communication University of China,Communication University of China,"中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.91199955,116.551891408714
+Communication University of China,"Communication University of China, Beijing, China","中国传媒大学, 朝阳路, 定福庄, 朝阳区 / Chaoyang, 北京市, 100024, 中国",39.91199955,116.551891408714
+Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+Concordia University,"Concordia University, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.4955911,-73.5775043
+Concordia University,"Concordia University, Montreal, QC, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.4955911,-73.5775043
+Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+Cornell University,"Cornell University, Ithaca, NY, USA","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+Cornell University,"Cornell University, Ithaca, New York","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+Cornell University,"Cornell University, USA","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+Courant Institute,Courant Institute,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286994,-73.9957151
+Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286484,-73.9956863
+"Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286484,-73.9956863
+Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775
+Curtin University,"Curtin University, Perth WA 6102, Australia","Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775
+Curtin University,"Curtin University, Perth WA, Australia","A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia",-32.00319745,115.891774804686
+Curtin University,"Curtin University, Perth, Australia","Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia",-32.00574155,115.892864389257
+Curtin University,"Curtin University, Perth, Western Australia 6012","A1, Beazley Avenue, Karawara, Perth, Western Australia, 6102, Australia",-32.00319745,115.891774804686
+Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597
+Cyprus University of Technology,"Cyprus University of Technology, Cyprus","Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597
+Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.0764296,14.418023122743
+DIT UNIVERSITY,DIT UNIVERSITY,"DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.3983396,78.0753455
+DIT UNIVERSITY,"DIT UNIVERSITY, DEHRADUN","DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.3983396,78.0753455
+DUBLIN CITY UNIVERSITY,DUBLIN CITY UNIVERSITY,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland",53.38522185,-6.25740874081493
+Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+Dalian University of Technology,"Dalian University of Technology, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+Dalian University of Technology,"Dalian University of Technology, Dalian 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+Dalian University of Technology,"Dalian University of Technology, Dalian, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+Dalian University of Technology,"Dalian University of Technology, Dalian, Liaoning, 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+Dankook University,Dankook University,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723
+Dankook University,"Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea","단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723
+Dankook University,"Dankook University, Yongin, South Korea","단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723
+Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+"Dartmouth College, NH 03755 USA","Dartmouth College, NH 03755 USA","Dartmouth College, Maynard Street, Hanover, Grafton County, New Hampshire, 03755, USA",43.7070046,-72.2869048
+Deakin University,Deakin University,"Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.303652287331
+Deakin University,"Deakin University, Geelong, VIC 3216, Australia","Deakin University, Pigdons Lane, Waurn Ponds, Geelong, City of Greater Geelong, Barwon South West, Victoria, 3216, Australia",-38.19928505,144.303652287331
+Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+Delft University of Technology,"Delft University of Technology, Mekelweg 4, Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+Delft University of Technology,"Delft University of Technology, The Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+Democritus University of Thrace,Democritus University of Thrace,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα",40.84941785,25.8344493892098
+"Dermalog Identification Systems GmbH, Hamburg, Germany","Dermalog Identification Systems GmbH, Hamburg, Germany","DERMALOG Identification Systems GmbH, 120, Mittelweg, Rotherbaum, Eimsbüttel, Hamburg, 20148, Deutschland",53.5722826,9.9947826
+"Deutsche Welle, Bonn, Germany","Deutsche Welle, Bonn, Germany","DW, Gronau, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7171497,7.12825184326238
+Dhaka University,Dhaka University,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ",23.7317915,90.3805625
+"Disney Research, CH","Disney Research, CH","Disney Research Zürich, 48, Stampfenbachstrasse, Unterstrass, Kreis 6, Zürich, Bezirk Zürich, Zürich, 8006, Schweiz/Suisse/Svizzera/Svizra",47.3804685,8.5430355
+Donghua University,Donghua University,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2061939,121.410471009388
+Donghua University,"Donghua University, China","东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2061939,121.410471009388
+Dr. B. C. Roy Engineering College,Dr. B. C. Roy Engineering College,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India",23.54409755,87.342697070434
+Dr. Babasaheb Ambedkar Marathwada University,Dr. Babasaheb Ambedkar Marathwada University,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India",19.8960918,75.3089470267316
+Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9574,-75.1902670552555
+Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318497
+Eastern University,Eastern University,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA",40.0505672,-75.3710932636663
+"Ecole Centrale de Lyon, Lyon, 69134, France","Ecole Centrale de Lyon, Lyon, 69134, France","EC de Lyon, 36, Avenue Guy de Collongue, Écully, Lyon, Métropole de Lyon, Circonscription départementale du Rhône, Auvergne-Rhône-Alpes, France métropolitaine, 69134, France",45.7833631,4.76877035614228
+Edge Hill University,Edge Hill University,"Edge Hill University, St Helens Road, West Lancashire, Lancs, North West England, England, L39 4QP, UK",53.5582155,-2.86904651022128
+Eindhoven University of Technology,Eindhoven University of Technology,"Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805
+Eindhoven University of Technology,"Eindhoven University of Technology, The Netherlands","Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805
+Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+Elon University,Elon University,"Amphitheater, North Antioch Avenue, Elon, Alamance County, North Carolina, 27244, USA",36.1017956,-79.501733
+Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.7487516,30.4765307102195
+"Facebook Inc., San Francisco, CA, USA","Facebook Inc., San Francisco, CA, USA","Facebook Inc., San Francisco Bay Trail, Menlo Park, San Mateo County, California, 94025-1246, USA",37.4828007,-122.150711572363
+"Facebook, Singapore","Facebook, Singapore","Ewe Boon back lane, between Palm Spring, City Towers and Wing On Life Garden, Farrer Park Gardens, Novena, Singapore, Central, 259803, Singapore",1.3170417,103.8321041
+Feng Chia University,Feng Chia University,"逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.18005755,120.648360719503
+Feng Chia University,"Feng Chia University, Taichung, Taiwan","逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.18005755,120.648360719503
+Ferdowsi University of Mashhad,Ferdowsi University of Mashhad,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ایران",36.3076616,59.5269051097667
+Ferdowsi University of Mashhad,"Ferdowsi University of Mashhad, Mashhad, Iran","دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ایران",36.3076616,59.5269051097667
+Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.7275037,39.4712703382844
+"Florida Institute Of Technology, Melbourne Fl","Florida Institute Of Technology, Melbourne Fl","Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA",28.0642296,-80.6230097241205
+"Florida Institute of Technology, Melbourne, USA","Florida Institute of Technology, Melbourne, USA","Florida Institute of Technology, West University Boulevard, Melbourne, Brevard County, Florida, 32901, USA",28.0642296,-80.6230097241205
+Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+Florida International University,"Florida International University, Miami, FL","FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+Florida State University,"Florida State University, Tallahassee, FL 32306, USA","Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+Fordham University,Fordham University,"Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.7710604,-73.9852807046561
+Fordham University,"Fordham University, New York, 10023, USA","Fordham University Lincoln Center Campus, West 61st Street, 1 West End Ave trade area, Lincoln Square, Manhattan, Manhattan Community Board 7, New York County, NYC, New York, 10023, USA",40.7710604,-73.9852807046561
+Foundation University Rawalpindi Campus,Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, پاکستان",33.5609504,73.0712596618793
+Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Pakistan","Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, پاکستان",33.5609504,73.0712596618793
+Fraser University,Fraser University,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA",44.9689836,-93.2094162948556
+Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+GE Global Research,GE Global Research,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793
+GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793
+"GIPSA-Lab, Grenoble, France","GIPSA-Lab, Grenoble, France","GIPSA-lab, 11, Rue des Mathématiques, Médiat Rhône-Alpes, Saint-Martin-d'Hères, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38400, France",45.1929245,5.7661983
+Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.6171601574695
+George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+George Mason University,"George Mason University, Fairfax Virginia, USA","George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+George Mason University,"George Mason University, Fairfax, VA 22030","George Mason University, University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA",38.8345539,-77.3152142
+George Mason University,"George Mason University, Fairfax, VA, USA","George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+"Georgia Institute of Technology, Atlanta, 30332-0250, USA","Georgia Institute of Technology, Atlanta, 30332-0250, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+"Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+Georgia Southern University,Georgia Southern University,"Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.42143805,-81.7845052864662
+Georgia Southern University,"Georgia Southern University, Statesboro, USA","Georgia Southern University, Forrest Drive, Pine Cove, Statesboro, Bulloch County, Georgia, 30460, USA",32.42143805,-81.7845052864662
+Glyndwr University,Glyndwr University,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK",53.05373795,-3.00482075353073
+"Golden, CO, USA","Golden, CO, USA","Golden, Jefferson County, Colorado, USA",39.755543,-105.2210997
+Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+Graz University of Technology,"Graz University of Technology, Austria","TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+Griffith University,Griffith University,"Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641
+Griffith University,"Griffith University, Australia","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641
+Griffith University,"Griffith University, Brisbane","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641
+Griffith University,"Griffith University, Nathan, QLD, Australia","Griffith University Nathan Campus, Johnson Path, Nathan, Nathan Heights, QLD, 4111, Australia",-27.5533975,153.053362338641
+Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.1294489,113.343761097683
+Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+Guangdong University of Technology,"Guangdong University of Technology, China","广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+Guangzhou University,Guangzhou University,"广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04436505,113.366684576444
+Guangzhou University,"Guangzhou University, Guangzhou, China","广州大学, 大学城中环西路, 广州大学城, 南村镇, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.04436505,113.366684576444
+Guilin University of Electronic Technology Guangxi Guilin,Guilin University of Electronic Technology Guangxi Guilin,"桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.2873992,110.332427699352
+Guilin University of Electronic Technology Guangxi Guilin,"Guilin University of Electronic Technology Guangxi Guilin, China","桂林电子科技大学金鸡岭校区, 1号, 金鸡路, 七星区, 黄莺岩村, 七星区, 桂林市, 广西壮族自治区, 541004, 中国",25.2873992,110.332427699352
+Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.86742125,32.7351907206768
+Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712
+Halmstad University,"Halmstad University, Halmstad, Sweden","Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712
+Hangzhou Dianzi University,Hangzhou Dianzi University,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3125525,120.3430946
+Hangzhou Dianzi University,"Hangzhou Dianzi University, Hangzhou, China","杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3125525,120.3430946
+Hankuk University of Foreign Studies,Hankuk University of Foreign Studies,"외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.5953979,127.0630499
+Hankuk University of Foreign Studies,"Hankuk University of Foreign Studies, South Korea","외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.5953979,127.0630499
+Hanoi University of Science and Technology,Hanoi University of Science and Technology,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam",21.003952,105.843601832826
+Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.5557271,127.0436642
+Harbin Engineering University,Harbin Engineering University,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.676849168143
+Harbin Engineering University,"Harbin Engineering University, Harbin, Heilongjiang, 150001, China","哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.676849168143
+Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+"Harbin Institute of Technology, China","Harbin Institute of Technology, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+"Harbin Institute of Technology, China, 150001","Harbin Institute of Technology, China, 150001","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+"Harbin Institute of Technology, Harbin 150001, China","Harbin Institute of Technology, Harbin 150001, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+"Harbin Institute of Technology, Harbin, China","Harbin Institute of Technology, Harbin, China","哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+Harbin Institute of Technology;Shenzhen University,Harbin Institute of Technology;Shenzhen University,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国",22.5895016,113.965710495775
+Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+Harvard University,"Harvard University, Cambridge","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+Harvard University,"Harvard University, Cambridge, MA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+Harvard University,"Harvard University, Cambridge, MA 02138","Harvard University, Rotterdam Street, North Brighton, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36300645,-71.1245674978516
+Harvard University,"Harvard University, Cambridge, MA, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+Harvard University,"Harvard University, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+Harvard and Massachusetts Institute,Harvard and Massachusetts Institute,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA",42.5268445,-71.6525446
+"Hebei, China","Hebei, China","河北省, 中国",39.0000001,116.0
+Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+Hefei University of Technology,"Hefei University of Technology, Hefei, Anhui, 230601, China","合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+Hefei University of Technology,"Hefei University of Technology, Hefei, China","合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+Hengyang Normal University,Hengyang Normal University,"衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.8661136,112.620921219792
+Hengyang Normal University,"Hengyang Normal University, Hengyang, China","衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.8661136,112.620921219792
+Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.91029135,-3.32345776559167
+Hiroshima University,Hiroshima University,"Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4019766,132.7123195
+Hiroshima University,"Hiroshima University, Japan","Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4019766,132.7123195
+HoHai University,HoHai University,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国",32.05765485,118.755000398628
+Hofstra University,Hofstra University,"Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA",40.71703345,-73.599835005538
+Hofstra University,"Hofstra University, Hempstead, NY 11549","Hofstra University, Hempstead Turnpike Bike Path, East Garden City, Nassau County, New York, 11549, USA",40.71703345,-73.599835005538
+Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.3874201,114.2082222
+Hong Kong Baptist University,"Hong Kong Baptist University, Hong Kong","香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.3874201,114.2082222
+Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+Hong Kong Polytechnic University,"Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+Hong Kong Polytechnic University,"Hong Kong Polytechnic University, Hong Kong, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+Hong Kong University of Science and Technology,"Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.921525,-77.019535656678
+Howard University,"Howard University, Washington DC","Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.921525,-77.019535656678
+Huaqiao University,Huaqiao University,"华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.6004712,118.0816574
+Huaqiao University,"Huaqiao University, Xiamen, China","华侨大学站 HuaQiao University (BRT), 集美大道, 集美区, 集美区 (Jimei), 厦门市 / Xiamen, 福建省, 361024, 中国",24.6004712,118.0816574
+Huazhong University of,Huazhong University of,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国",22.53367445,113.917874206261
+Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881
+Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881
+Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China 430074","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881
+Humboldt-University,Humboldt-University,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.51875685,13.3935604936378
+Humboldt-University,"Humboldt-University, Berlin, Germany","Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.51875685,13.3935604936378
+Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.628506656425
+"IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San José, Santa Clara County, California, USA",37.21095605,-121.807486683178
+IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+"IBM Research, USA","IBM Research, USA","IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.8040705573196
+IDIAP RESEARCH INSTITUTE,IDIAP RESEARCH INSTITUTE,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+IDIAP Research Institute,IDIAP Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+"IDIAP Research Institute, Martigny, Switzerland","IDIAP Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+"IDIAP, Martigny, Switzerland","IDIAP, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+"IIT Guwahati, Guwahati, India","IIT Guwahati, Guwahati, India","Indian Institute of Technology Guwahati - IIT Guwahati, NH27, Amingaon, Guwahati, Kamrup, Assam, 781015, India",26.19247875,91.6946356873113
+IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869
+"INRIA Grenoble Rhone-Alpes, FRANCE","INRIA Grenoble Rhone-Alpes, FRANCE","INRIA, 655, Avenue de l'Europe, Innovallée Montbonnot, Montbonnot-Saint-Martin, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38330, France",45.2182986,5.80703193086113
+Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+"Idiap Research Institute, Switzerland","Idiap Research Institute, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8361963,-87.6265591274291
+"Illinois Institute of Technology, Chicago, Illinois, USA","Illinois Institute of Technology, Chicago, Illinois, USA","Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8361963,-87.6265591274291
+Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College London, London, U.K.","Imperial College London, London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College London, London, UK","Imperial College London, London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College London, U.K","Imperial College London, U.K","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College London, U.K.","Imperial College London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College London, United Kingdom","Imperial College London, United Kingdom","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+"Imperial College, London, UK","Imperial College, London, UK","Sung Chuan Kung Fu, Imperial College, Prince Consort Road, City of Westminster, London, Greater London, England, SW7 2QU, UK",51.5004171,-0.1782711
+Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+"Indian Institute of Science, India","Indian Institute of Science, India","IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+"Indian Institute of Technology Delhi, New Delhi, India","Indian Institute of Technology Delhi, New Delhi, India","Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.513188,80.2365194538339
+"Indian Institute of Technology Kanpur, Kanpur, India","Indian Institute of Technology Kanpur, Kanpur, India","Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.513188,80.2365194538339
+"Indian Institute of Technology, Roorkee","Indian Institute of Technology, Roorkee","Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India",29.8662461,77.8958708109136
+Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.8795690544362
+Indiana University Bloomington,Indiana University Bloomington,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA",39.17720475,-86.5154003022128
+"Industrial Technology Research Institute, Hsinchu, Taiwan","Industrial Technology Research Institute, Hsinchu, Taiwan","工研院, 195, 中興路四段, 頭重里, 竹東鎮, 新竹縣, 31040, 臺灣",24.7741756,121.045092787653
+Information Technologies Institute,Information Technologies Institute,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本",33.5934539,130.3557837
+Information Technology University (ITU),Information Technology University (ITU),"Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, پاکستان",31.4760299,74.3427526
+Information Technology University (ITU),"Information Technology University (ITU), Punjab, Lahore, Pakistan","Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, پاکستان",31.4760299,74.3427526
+Institute for Advanced,Institute for Advanced,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本",38.7468877,139.824707282407
+Institute for Communication Systems,Institute for Communication Systems,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK",51.2433692,-0.593220895014599
+Institute for System Programming,Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.7449881,37.6645042069876
+Institute of,Institute of,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+Institute of Communications Engineering,Institute of Communications Engineering,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1718573,12.0784417
+Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+Institute of Computer Science III,Institute of Computer Science III,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375
+Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+Institute of Digital Media,Institute of Digital Media,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India",20.28907925,85.84232125
+Institute of Electronics and Computer Science,Institute of Electronics and Computer Science,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija",56.97734805,24.1951425550775
+"Institute of Engineering and Management, Kolkata, India","Institute of Engineering and Management, Kolkata, India","Institute of Engineering and Management, Block -EP, Ring Road, GP Block, Kolkata, Twenty-four Parganas, West Bengal, 700091, India",22.57423855,88.4337303
+Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+Institute of Information Technology,Institute of Information Technology,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7289899,90.3982682
+Institute of Media Innovation,Institute of Media Innovation,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore",1.3433937,103.6793303
+Institute of Road and,Institute of Road and,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8338371,10.7035939
+International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+"International Institute of Information Technology (IIIT) Hyderabad, India","International Institute of Information Technology (IIIT) Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+"International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+"International Institute of Information Technology, Hyderabad, Telangana, India","International Institute of Information Technology, Hyderabad, Telangana, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+International University of,International University of,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រកម្ពុជា",11.5744201,104.8775841
+Ionian University,Ionian University,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469
+Iowa State University,Iowa State University,"Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA",42.02791015,-93.6446441473745
+Iowa State University,"Iowa State University, Ames, IA, USA","Iowa State University, Farm House Road, Ames, Story County, Iowa, 50014, USA",42.02791015,-93.6446441473745
+Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+Islamic University of Gaza - Palestine,Islamic University of Gaza - Palestine,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, قطاع غزة, PO BOX 108, الأراضي الفلسطينية",31.51368535,34.4401934143135
+Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+Istanbul Technical University,"Istanbul Technical University, Istanbul, 34469, TURKEY","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+Istanbul Technical University,"Istanbul Technical University, Istanbul, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+Istanbul Technical University,"Istanbul Technical University, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+Istanbul Technical University (ITU),Istanbul Technical University (ITU),"ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye",41.10539,29.0213673
+Istanbul Technical University (ITU),"Istanbul Technical University (ITU), Turkey","ITU Open Air Theater, Arı Yolu, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34485, Türkiye",41.10539,29.0213673
+Istanbul University,Istanbul University,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0132424,28.9637609
+Istanbul University,"Istanbul University, Istanbul, Turkey","İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0132424,28.9637609
+Jacobs University,Jacobs University,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK",53.4129148,-2.96897915394896
+Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334
+Jadavpur University,"Jadavpur University, India","Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334
+Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.883312,90.2693921
+Jahangirnagar University,"Jahangirnagar University, Savar, Dhaka 1342, Bangladesh","Jahangirnagar University, 1342, Dhaka - Aricha Highway, Nobinagar, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.88277575,90.2671009927283
+"Jaipur, Rajasthan, India","Jaipur, Rajasthan, India","Jaipur, Rajasthan, 302001, India",26.916194,75.820349
+Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+Jaypee Institute of Information Technology,Jaypee Institute of Information Technology,"Jaypee Institute of Information Technology, Noida, A-10, National Highway 24 Bypass, Asha Pushp Vihar, Kaushambi, Ghaziabad, Uttar Pradesh, 201001, India",28.6300443,77.3720823
+Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+Jiangnan University,"Jiangnan University, Jiangsu Wuxi, PR China","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+Jiangnan University,"Jiangnan University, Wuxi","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+Jiangnan University Jiangsu Wuxi,Jiangnan University Jiangsu Wuxi,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+Jiangnan University Jiangsu Wuxi,"Jiangnan University Jiangsu Wuxi, PR China","江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+Jiangsu University,Jiangsu University,"江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.509683619281
+Jiangsu University,"Jiangsu University, ZhenJiang, Jiangsu, 212013, P. R. China","江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.509683619281
+Jiangsu University,"Jiangsu University, Zhenjiang, China","江苏大学, 301, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212013, 中国",32.20302965,119.509683619281
+Jiangsu University of Science and Technology,Jiangsu University of Science and Technology,"江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.198055,119.4632679083
+Jiangsu University of Science and Technology,"Jiangsu University of Science and Technology, Zhenjiang, China","江苏科技大学, 学府路, 京口区, 象山街道, 京口区 (Jingkou), 镇江市 / Zhenjiang, 江苏省, 212000, 中国",32.198055,119.4632679083
+Jilin University,Jilin University,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.053565,113.39913285497
+Jilin University,"Jilin University, China","吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.053565,113.39913285497
+"Joint Research Institute, Foshan, China","Joint Research Institute, Foshan, China","广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国",22.83388935,113.285418245471
+Jordan University of Science and Technology,Jordan University of Science and Technology,"Jordan University of Science and Technology, شارع الأردن, إربد, إربد, الأردن",32.49566485,35.9916071719283
+Jordan University of Science and Technology,"Jordan University of Science and Technology, Irbid, Jordan","Jordan University of Science and Technology, شارع الأردن, إربد, إربد, الأردن",32.49566485,35.9916071719283
+K.N. Toosi University of Technology,K.N. Toosi University of Technology,"دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ایران",35.76427925,51.409702762313
+K.N. Toosi University of Technology,"K.N. Toosi University of Technology, Tehran, Iran","دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ایران",35.76427925,51.409702762313
+"KAIST, Daejeon, Korea","KAIST, Daejeon, Korea","궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국",36.3646244,127.352251416793
+"KAIST, Korea","KAIST, Korea","궁동 카이스트 아파트 (Gungdong KAIST Apartments), 온천2동, 온천동, 유성구, 대전, 대한민국",36.3646244,127.352251416793
+"KTH Royal Institute of Technology, Stockholm","KTH Royal Institute of Technology, Stockholm","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.0706321329842
+"KTH Royal Institute of Technology, 100 44 Stockholm, Sweden","KTH Royal Institute of Technology, 100 44 Stockholm, Sweden","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.0706321329842
+"KTH Royal Institute of Technology, Stockholm, Sweden","KTH Royal Institute of Technology, Stockholm, Sweden","KTH, Teknikringen, Lärkstaden, Norra Djurgården, Östermalms stadsdelsområde, Sthlm, Stockholm, Stockholms län, Svealand, 114 28, Sverige",59.34986645,18.0706321329842
+Karlsruhe Institute of,Karlsruhe Institute of,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+"Karlsruhe Institute of Technology (KIT), Germany","Karlsruhe Institute of Technology (KIT), Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+"Karlsruhe Institute of Technology, Germany","Karlsruhe Institute of Technology, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+"Karlsruhe Institute of Technology, Karlsruhe, Germany","Karlsruhe Institute of Technology, Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.8830686,4.7019503
+Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184
+Keio University,"Information, Keio University","綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184
+Keio University,"Keio University, Yokohama 223-8522, Japan","慶應義塾大学 (矢上キャンパス), 理工坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-8522, 日本",35.55536215,139.654582444136
+Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1443525,-81.3398283284572
+Kent State University,"Kent State University, Kent, Ohio, USA","Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1443525,-81.3398283284572
+Khalifa University,Khalifa University,"Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4469025,54.3942563
+Khalifa University,"Khalifa University, Abu Dhabi, United Arab Emirates","Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4469025,54.3942563
+Khon Kaen University,Khon Kaen University,"มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.46007565,102.812117979662
+Khon Kaen University,"Khon Kaen University, Khon Kaen, 40002, Thailand","มหาวิทยาลัยขอนแก่น, 4, บ้านหนองหัวช้าง, ขอนแก่น, จังหวัดขอนแก่น, 40002, ประเทศไทย",16.46007565,102.812117979662
+King Abdullah University of Science and Technology 4700,King Abdullah University of Science and Technology 4700,"KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.31055485,39.1051548637793
+King Abdullah University of Science and Technology 4700,"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia","KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.31055485,39.1051548637793
+King Faisal University,King Faisal University,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.397778,50.183056
+King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+King Saud University,"King Saud University, Riyadh","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+King Saud University,"King Saud University, Riyadh 11543, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+King Saud University,"King Saud University, Riyadh, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+Kingston University,Kingston University,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4293086,-0.2684044
+Kingston University,"Kingston University, UK","Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4293086,-0.2684044
+Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+Kobe University,"Kobe University, Japan","神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+Kogakuin University,Kogakuin University,"工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.6902784,139.695400958171
+Kogakuin University,"Kogakuin University, Tokyo, Japan","工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.6902784,139.695400958171
+Kookmin University,Kookmin University,"국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.6107554,126.9946635
+Kookmin University,"Kookmin University, Seoul, Korea","국민대학교앞, 정릉로, 정릉2동, 정릉동, 성북구, 서울특별시, 02708, 대한민국",37.6107554,126.9946635
+Korea Advanced Institute of Science and Technology,Korea Advanced Institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+"Korea Advanced Institute of Science and Technology, Daejeon, Korea","Korea Advanced Institute of Science and Technology, Daejeon, Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+"Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea","Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+"Korea Advanced Institute of Science and Technology, Daejeon, South Korea","Korea Advanced Institute of Science and Technology, Daejeon, South Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+"Korea Advanced Institute of Science and Technology, Korea","Korea Advanced Institute of Science and Technology, Korea","카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+Korea Advanced institute of Science and Technology,Korea Advanced institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318
+Korea University,"Korea University, Seoul, South Korea","고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318
+Kumamoto University,Kumamoto University,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8164178,130.727039687562
+Kumamoto University,"Kumamoto University, Kumamoto, Japan","熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8164178,130.727039687562
+Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+Kurukshetra University,"Kurukshetra University, Kurukshetra","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+Kurukshetra University,"Kurukshetra University, Kurukshetra, India","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+Kyoto University,"Kyoto University, Kyoto, Japan","京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+Kyung Hee University,"Kyung Hee University, Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.5948716,127.0530887
+Kyung Hee University,"Kyung Hee University, Seoul, South Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.5948716,127.0530887
+Kyung Hee University,"Kyung Hee University, South Korea","경희사이버대학교, 26, 경희대로, 회기동, 동대문구, 서울특별시, 02447, 대한민국",37.5948716,127.0530887
+Kyung Hee University,"Kyung Hee University, Yongin, South Korea","경희대학교 국제캠퍼스, 서천동로21번길, 서천동, 기흥구, 용인시, 경기, 17108, 대한민국",37.24244405,127.080937489679
+Kyushu University,Kyushu University,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本",33.59914655,130.223598480987
+La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.7784754,144.298047
+La Trobe University,"La Trobe University, Australia","La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.7784754,144.298047
+Lancaster University,Lancaster University,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757490881378
+Lancaster University,"Lancaster University, Lancaster, UK","Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757490881378
+Lehigh University,Lehigh University,"Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.6068028,-75.3782488
+Lehigh University,"Lehigh University, Bethlehem, PA 18015, USA","Lehigh University, Library Drive, Sayre Park, Bethlehem, Northampton County, Pennsylvania, 18015, USA",40.6068028,-75.3782488
+Liverpool John Moores University,Liverpool John Moores University,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK",53.4050747,-2.97030028586709
+Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.5317977694291
+"London, United Kingdom","London, United Kingdom","London, Greater London, England, SW1A 2DU, UK",51.5073219,-0.1276474
+Loughborough University,Loughborough University,"Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK",52.7663577,-1.2292461
+Loughborough University,"Computer Science, Loughborough University, Loughborough, UK","Computer Science, University Road, Charnwood, Leicestershire, East Midlands, England, LE11 3TP, UK",52.7663577,-1.2292461
+Louisiana State University,Louisiana State University,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA",30.40550035,-91.1862047410405
+Lund University,Lund University,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7039571,13.1902011
+Lund University,"Lund University, Lund, Sweden","TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7039571,13.1902011
+"M S Ramaiah Institute of Technology, Bangalore, Karnataka, India","M S Ramaiah Institute of Technology, Bangalore, Karnataka, India","M S Ramaiah Institute of Technology, MSRIT Quadrangle Path, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560054, India",13.0309553,77.5648559396817
+MASSACHUSETTS INSTITUTE OF TECHNOLOGY,MASSACHUSETTS INSTITUTE OF TECHNOLOGY,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+METs Institute of Engineering,METs Institute of Engineering,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल",28.2140454,83.9607104993073
+"MPI Informatics, Germany","MPI Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+MULTIMEDIA UNIVERSITY,MULTIMEDIA UNIVERSITY,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+Maastricht University,Maastricht University,"UNS60, Professor Ten Hoorlaan, Randwyck, Maastricht, Limburg, Nederland, 6229EV, Nederland",50.8336712,5.71589
+Maastricht University,"Maastricht University, Maastricht, Netherlands","University College Maastricht, 4, Zwingelput, Jekerkwartier, Maastricht, Limburg, Nederland, 6211KH, Nederland",50.8444528,5.6884711
+Macau University of Science and,Macau University of Science and,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3358031,114.265903983304
+Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.568032061523
+Macau University of Science and Technology,"Macau University of Science and Technology, Macau","Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.568032061523
+Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.856208183836
+Manchester University,Manchester University,"Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.47020165,-2.23932183309859
+Manchester University,"Manchester University, UK","Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.47020165,-2.23932183309859
+Mangalore University,Mangalore University,"Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.81608485,74.9244927772961
+Mangalore University,"Mangalore University, India","Mangalore University, LR, ದಕ್ಷಿಣ ಕನ್ನಡ, Bantwal taluk, Dakshina Kannada, Karnataka, 574153, India",12.81608485,74.9244927772961
+Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, India","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tirunelveli","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tirunelveli, India","Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+Marquette University,Marquette University,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA",43.03889625,-87.9315544990507
+"Massachusetts General Hospital, Boston, MA, USA","Massachusetts General Hospital, Boston, MA, USA","Mass General, 55, Fruit Street, Downtown Crossing, Beacon Hill, Boston, Suffolk County, Massachusetts, 02114, USA",42.36291795,-71.0687374226199
+Massachusetts Institute,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+Massachusetts Institute of Technology (MIT,Massachusetts Institute of Technology (MIT,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+"Massachusetts Institute of Technology, Cambridge, MA 02139, USA","Massachusetts Institute of Technology, Cambridge, MA 02139, USA","MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+Math Institute,Math Institute,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada",43.65879595,-79.3975504060101
+Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.5369125,9.05922532743396
+Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+"Max Planck Institute for Informatics, Saarbrucken, Germany","Max Planck Institute for Informatics, Saarbrucken, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+Max-Planck Institute for Informatics,Max-Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+McGill University,"McGill University, Montreal, Canada","McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada",45.50691775,-73.5791162596496
+McGovern Institute,McGovern Institute,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481
+McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481
+McMaster University,McMaster University,"McMaster University, Westdale, Hamilton, Ontario, Canada",43.26336945,-79.9180968401692
+Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.6975029,139.761391749285
+Memorial University of Newfoundland,Memorial University of Newfoundland,"Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.5727251,-52.7330544350478
+Memorial University of Newfoundland,"Memorial University of Newfoundland, Canada","Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.5727251,-52.7330544350478
+Memorial University of Newfoundland,"Memorial University of Newfoundland, Saint John's, NL, Canada","Memorial University of Newfoundland, Overpass, St. John's, Newfoundland and Labrador, A1B 5S7, Canada",47.5727251,-52.7330544350478
+Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, E. Lansing, MI 48823, USA","Dero Fixit Bike Station, Grand River Avenue, East Lansing, Ingham County, Michigan, 48824, USA",42.7337998,-84.4804243
+Michigan State University,"Michigan State University, East Lansing 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, East Lansing MI","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, East Lansing, 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, East Lansing, MI","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, East Lansing, MI 48824, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, East Lansing, MI, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+Michigan State University,"Michigan State University, United States of America","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+"Microsoft Res. Asia, Beijing, China","Microsoft Res. Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+"Microsoft Research Asia, Beijing, China","Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+"Microsoft Research Asia, China","Microsoft Research Asia, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+"Microsoft Research, Beijing, China","Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+"Microsoft, Bellevue, WA, USA","Microsoft, Bellevue, WA, USA","Microsoft, 10455, Northeast 8th Street, Bellevue, King County, Washington, 98004-5002, USA",47.6164826,-122.2008506
+"Microsoft, Redmond, WA","Microsoft, Redmond, WA","Microsoft Cafe RedW-F, Bridle Crest Trail, Microsoft Redwest Campus, Redmond, King County, Washington, W LAKE SAMMAMISH PKWY NE, USA",47.6592914,-122.140633217997
+Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.7855350558467
+Middlebury College,Middlebury College,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA",44.0090777,-73.1767946
+Middlesex University,Middlesex University,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+Middlesex University,"Middlesex University, London","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+Middlesex University London,"Middlesex University London, London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+Middlesex University London,"Middlesex University London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.958674326093
+Monash University,"Monash University, Caulfield East, Australia","Monash University (Caulfield campus), Queens Avenue, Caulfield East, City of Glen Eira, Victoria, 3163, Australia",-37.8774135,145.044982494489
+Monash University,"Monash University, Victoria, Australia","Monash University, Business Park Drive, Monash Business Park, Notting Hill, City of Monash, Victoria, 3800, Australia",-37.9011951,145.130584919767
+Monash University Malaysia,Monash University Malaysia,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.6005974
+Monash University Malaysia,"Monash University Malaysia, Bandar Sunway, Malaysia","Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.6005974
+"Moscow Institute of Physics and Technology, Russia","Moscow Institute of Physics and Technology, Russia","МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ",55.929035,37.5186680829482
+Muhlenberg College,Muhlenberg College,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA",40.5967637,-75.5124062
+Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.2381023,127.1903431
+Nagaoka University of Technology,Nagaoka University of Technology,"長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本",37.42354445,138.77807276029
+Nagaoka University of Technology,"Nagaoka University of Technology, Japan","長岡技術科学大学 (Nagaoka University of Technology), 長岡西山線, 長岡市, 新潟県, 中部地方, 日本",37.42354445,138.77807276029
+Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282
+Nagoya University,"Nagoya University, Japan","SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282
+Nanjing Normal University,Nanjing Normal University,"南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1066811,118.90863080932
+Nanjing Normal University,"Nanjing Normal University, China","南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1066811,118.90863080932
+Nanjing Normal University,"Nanjing Normal University, Nanjing, China","南京师范大学仙林校区, 敏行路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210046, 中国",32.1066811,118.90863080932
+Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+Nanjing University,"Nanjing University, Nanjing 210023, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+Nanjing University,"Nanjing University, Nanjing 210093, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+Nanjing University,"Nanjing University, Nanjing 210093, P.R.China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+Nanjing University of Aeronautics and Astronautics,Nanjing University of Aeronautics and Astronautics,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, Nanjing, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+Nanjing University of Information Science and Technology,Nanjing University of Information Science and Technology,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2068102,118.718472893883
+Nanjing University of Information Science and Technology,"Nanjing University of Information Science and Technology, Nanjing, China","南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2068102,118.718472893883
+Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+Nanjing University of Science and Technology,"Nanjing University of Science and Technology, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+Nanjing University of Science and Technology,"Nanjing University of Science and Technology, Nanjing, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+Nantong University,Nantong University,"南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",31.9747463,120.907792637552
+Nantong University,"Nantong University, Nantong, China","南通大学, 狼山镇街道, 崇川区 (Chongchuan), 南通市 / Nantong, 江苏省, 226000, 中国",31.9747463,120.907792637552
+Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+Nanyang Technological University,"Nanyang Technological University, Singapore 639798","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+Nanyang Technological University,"Nanyang Technological University, Singapore 639798, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+Nanyang Technological University,"Nanyang Technological University, Singapore, 639798","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+Nanyang Technological University,"Nanyang Technological University, Singapore, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+National Central University,National Central University,"NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",24.96841805,121.191396961005
+National Central University,"National Central University, Taoyuan County, Taiwan","NCU, 300, 中大路, 上三座屋, 五權里, 樹林子, 中壢區, 桃園市, 320, 臺灣",24.96841805,121.191396961005
+National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909
+National Cheng Kung University,"National Cheng Kung University, Tainan, Taiwan","成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909
+National Chiao Tung University,National Chiao Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+National Chiao Tung University,"National Chiao Tung University, Hsinchu, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+National Chiao Tung University,"National Chiao Tung University, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+National Chiao-Tung University,National Chiao-Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+National Chung Cheng University,National Chung Cheng University,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.475105312324
+National Chung Cheng University,"National Chung Cheng University, Chiayi, Taiwan","國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.475105312324
+National Chung Hsing University,National Chung Hsing University,"國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.675711652432
+National Chung Hsing University,"National Chung Hsing University, Taichung","國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.675711652432
+National Chung Hsing University,"National Chung Hsing University, Taiwan","國立中興大學, 145, 興大路, 積善里, 頂橋子頭, 南區, 臺中市, 402, 臺灣",24.12084345,120.675711652432
+National Institute of Advanced Industrial Science and Technology,National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+National Institute of Technology Karnataka,National Institute of Technology Karnataka,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India",13.01119095,74.7949882494716
+National Institute of Technology Rourkela,National Institute of Technology Rourkela,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.2501589,84.9066855698087
+"National Institute of Technology, Durgapur, India","National Institute of Technology, Durgapur, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.54869625,87.291057119111
+"National Institute of Technology, Durgapur, West Bengal, India","National Institute of Technology, Durgapur, West Bengal, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.54869625,87.291057119111
+"National Institute of Technology, Rourkela (Odisha), India","National Institute of Technology, Rourkela (Odisha), India","National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.2501589,84.9066855698087
+National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.1032777503325
+"National Institutes of Health, Bethesda, Maryland 20892","National Institutes of Health, Bethesda, Maryland 20892","NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.1032777503325
+National Sun Yat Sen University,National Sun Yat Sen University,"國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣",22.62794005,120.266318480249
+National Sun Yat Sen University,"National Sun Yat Sen University, 804 Kaohsiung, Taiwan","國立中山大學, 70, 蓮海路, 桃源里, 柴山, 鼓山區, 高雄市, 804, 臺灣",22.62794005,120.266318480249
+National Taichung University of science and Technology,National Taichung University of science and Technology,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.683255008879
+National Taichung University of science and Technology,"National Taichung University of science and Technology, Taichung","臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.683255008879
+National Taipei University,National Taipei University,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣",24.94314825,121.368629787836
+National Taipei University of Technology,National Taipei University of Technology,"NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.04306355,121.534687724212
+National Taipei University of Technology,"National Taipei University of Technology, Taipei, Taiwan","NTUT, 1, 忠孝東路三段, 民輝里, 東區商圈, 大安區, 臺北市, 10608, 臺灣",25.04306355,121.534687724212
+National Taiwan Normal University,National Taiwan Normal University,"師大分部, 88, 汀州路四段, 萬年里, 文山區, 臺北市, 11677, 臺灣",25.00823205,121.535771533186
+National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+National Taiwan University,"National Taiwan University, 10647, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+National Taiwan University,"National Taiwan University, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei 10607, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.7317973260904
+National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+National Tsing Hua University,"National Tsing Hua University, Hsinchu, Taiwan","國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+National Tsing Hua University,"National Tsing Hua University, Taiwan","國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+National University,National University,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines",14.6042947,120.994285201104
+National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+National University of Defense Technology,"National University of Defense Technology, Changsha 410073, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+National University of Defense Technology,"National University of Defense Technology, Changsha, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+National University of Defense and Technology,National University of Defense and Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+National University of Ireland Galway,National University of Ireland Galway,"National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.27639715,-9.05829960688327
+National University of Ireland Galway,"National University of Ireland Galway, Galway, Ireland","National University of Ireland, Galway, Earl's Island, Townparks, Nun's Island, Galway Municipal District, Cathair na Gaillimhe, County Galway, Connacht, H91 F5TE, Ireland",53.27639715,-9.05829960688327
+National University of Ireland Maynooth,National University of Ireland Maynooth,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.3846975,-6.60039458177959
+National University of Ireland Maynooth,"National University of Ireland Maynooth, Co. Kildare, Ireland","National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.3846975,-6.60039458177959
+National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.283497550993
+National University of Kaohsiung,"National University of Kaohsiung, 811 Kaohsiung, Taiwan","國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.283497550993
+National University of Science and Technology,National University of Science and Technology,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان",33.6450855,72.9915892221655
+National University of Sciences and Technology (NUST),National University of Sciences and Technology (NUST),"National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان",33.644347,72.9885079
+National University of Sciences and Technology (NUST),"National University of Sciences and Technology (NUST), Islamabad, Pakistan","National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان",33.644347,72.9885079
+National University of Singapore,National University of Singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+National University of Singapore,"National University of Singapore, Singapore 117576","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+National University of Singapore,"National University of Singapore, Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+National University of Technology Technology,National University of Technology Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+"Naval Research Laboratory, Washington DC","Naval Research Laboratory, Washington DC","Naval Research Laboratory Post Office, 4555, Overlook Avenue Southwest, Washington, D.C., 20375, USA",38.8231381,-77.0178902
+Nazarbayev University,Nazarbayev University,"Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.0902854,71.3972526281434
+Nazarbayev University,"Nazarbayev University, Astana, Kazakhstan","Назарбаев Университет, проспект Туран, BI village, Астана, район Есиль, Астана, 010000, Казахстан",51.0902854,71.3972526281434
+"Neurological Institute, USA","Neurological Institute, USA","Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA",40.84211085,-73.9428460313244
+New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+"New Jersey Institute of Technology, Newark , NJ, USA","New Jersey Institute of Technology, Newark , NJ, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+"New Jersey Institute of Technology, Newark, USA","New Jersey Institute of Technology, Newark, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+"New Jersey Institute of Technology, USA","New Jersey Institute of Technology, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.9962539360963
+Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949
+Newcastle University,"Newcastle University, Newcastle upon Tyne","Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949
+Normal University,Normal University,"云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.0580509,102.6955241
+Normal University,"Normal University, Kunming, China","云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.0580509,102.6955241
+"North Acton, London","North Acton, London","North Acton, Victoria Road, Acton, London Borough of Ealing, London, Greater London, England, W3 6UP, UK",51.52344665,-0.259735350000002
+North Carolina Central University,North Carolina Central University,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA",35.97320905,-78.897550537484
+North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.6740869545263
+North Carolina State University,"North Carolina State University, Raleigh, United States of America","North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.6740869545263
+North China Electric Power University,North China Electric Power University,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.8760446,115.4973873
+North China Electric Power University,"North China Electric Power University, Baoding, China","华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.8760446,115.4973873
+North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.897155,-96.8182760282419
+North Dakota State University,"North Dakota State University, Fargo, ND 58108-6050, USA","North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.897155,-96.8182760282419
+Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+Northeastern University,"Northeastern University, Boston, MA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+Northeastern University,"Northeastern University, Boston, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+Northeastern University,"Northeastern University, Boston, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+Northeastern University,"Northeastern University, Boston, USA, 02115","Northeastern University, Public Alley 807, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.34255795,-71.0905490240477
+Northeastern University,"Northeastern University, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+Northumbria University,"Northumbria University, Newcastle Upon Tyne, Tyne and Wear","Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+Northumbria University,"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK","Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK",54.9781026,-1.6067699
+Northumbria University,"Northumbria University, Newcastle upon Tyne, U.K.","Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+Northwestern Polytechnical University,"Northwestern Polytechnical University, Xian 710072, Shaanxi, China","西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+Northwestern Polytechnical University,"Northwestern Polytechnical University, Xi’an, China","西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+Northwestern University,"Northwestern University, Evanston, IL, USA","Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.9577322,-1.15617099267709
+Nottingham Trent University,"Nottingham Trent University, Nottingham, UK","Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.9577322,-1.15617099267709
+Nottingham University Hospital,Nottingham University Hospital,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9434967,-1.18631123153121
+Nottingham University Hospital,"Nottingham University Hospital, Nottingham, UK","Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9434967,-1.18631123153121
+OF PRINCETON UNIVERSITY,OF PRINCETON UNIVERSITY,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+OF STANFORD UNIVERSITY,OF STANFORD UNIVERSITY,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+"Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.3124003215133
+Oakland University,Oakland University,"Oakland University, 201, Meadow Brook Road, Rochester Hills, Oakland County, Michigan, 48309-4401, USA",42.66663325,-83.2065575175658
+Ocean University of China,Ocean University of China,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.493552763931
+Ocean University of China,"Ocean University of China, Qingdao, China","中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.493552763931
+Okayama University,Okayama University,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.6893393,133.9222272
+Okayama University,"Okayama University, Okayama, Japan","岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.6893393,133.9222272
+Oklahoma State University,Oklahoma State University,"Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA",36.1244756,-97.050043825
+Oklahoma State University,"Oklahoma State University, Stillwater, OK, USA","Walmart East Bus Stop, East Virginia Avenue, Stillwater, Payne County, Oklahoma, 74075, USA",36.1244756,-97.050043825
+Old Dominion University,Old Dominion University,"Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.885682,-76.3076857937011
+Old Dominion University,"Old Dominion University, Norfolk, VA 23529, USA","Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.885682,-76.3076857937011
+Old Dominion University,"Old Dominion University, Norfolk, VA, 23529","Old Dominion University, Elkhorn Avenue, Lamberts Point, Norfolk, Virginia, 23508, USA",36.885682,-76.3076857937011
+Open University of Israel,Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+"Orange Labs, R&D, Meylan, France","Orange Labs, R&D, Meylan, France","Orange Labs, 28, Chemin du Vieux Chêne, Inovallée Meylan, Le Mas du Bruchet, Meylan, Grenoble, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38240, France",45.21011775,5.79551075456301
+Oregon State University,Oregon State University,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA",45.5198289,-122.677979643331
+Osaka university,Osaka university,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218408
+Osaka university,"Osaka university, Japan","大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218408
+Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347
+Otto-von-Guericke University Magdeburg,Otto-von-Guericke University Magdeburg,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347
+Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+Oxford Brookes University,"Oxford Brookes University, Oxford, United Kingdom","Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+Oxford University,Oxford University,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK",51.7520849,-1.25166460220888
+Oxford University,"Oxford University, UK","James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK",51.7488051,-1.23874457456279
+"PA, 15213, USA","PA, 15213, USA","Pa, North Monmouth, Kennebec County, Maine, 04265, USA",44.289627,-70.042577
+"POSTECH, Pohang, South Korea, 37673","POSTECH, Pohang, South Korea, 37673","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+"PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Coimbatore, Tamil Nadu, India","PSG College of Technology, Avinashi Road, Ward 38, North Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",11.0246833,77.0028424564731
+Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+Peking University,"Peking University, Beijing","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+Peking University,"Peking University, Beijing 100871, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+Peking University,"Peking University, Beijing, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+"Perth, Western Australia 6012","Perth, Western Australia 6012","Perth, Western Australia, 6000, Australia",-31.9527121,115.8604796
+Philipps-Universität Marburg,Philipps-Universität Marburg,"FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland",50.8142701,8.771435
+Philipps-Universität Marburg,"Philipps-Universität Marburg, D-35032, Germany","FB 09 | Germanistik und Kunstwissenschaften (Dekanat), 3, Deutschhausstraße, Biegenhausen, Biegenviertel, Marburg, Landkreis Marburg-Biedenkopf, Regierungsbezirk Gießen, Hessen, 35037, Deutschland",50.8142701,8.771435
+"Pittsburgh Univ., PA, USA","Pittsburgh Univ., PA, USA","WQEX-TV (Pittsburgh);WQED-TV (Pittsburgh);WQED-FM (Pittsburgh);WINP-TV (Pittsburgh);WEPA-CD (Pittsburgh), 3801, University Drive, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4462779,-79.9637743112056
+Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3755269,-4.13937687442817
+Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+Pohang University of Science and Technology,"Pohang University of Science and Technology, Pohang, Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+Pohang University of Science and Technology (POSTECH),Pohang University of Science and Technology (POSTECH),"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+Pohang University of Science and Technology (POSTECH),"Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+Pohang University of Science and Technology (POSTECH),"Pohang University of Science and Technology (POSTECH), South Korea","포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+"Politecnico di Torino, Italy","Politecnico di Torino, Italy","Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia",45.0636974,7.65752730185847
+"Politecnico di Torino, Torino, Italy","Politecnico di Torino, Torino, Italy","Politecnico di Torino, Corso Castelfidardo, Crocetta, Circoscrizione 3, Torino, TO, PIE, 10129, Italia",45.0636974,7.65752730185847
+Politehnica University of Timisoara,Politehnica University of Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647
+Pondicherry Engineering College,Pondicherry Engineering College,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India",12.0148693,79.8480910431981
+Pontificia Universidad Catolica de Chile,Pontificia Universidad Catolica de Chile,"Pontificia Universidad Católica de Chile - Campus Lo Contador, 1916, El Comendador, Pedro de Valdivia Norte, Providencia, Provincia de Santiago, Región Metropolitana de Santiago, 7500000, Chile",-33.41916095,-70.6178224038096
+Portland State University,Portland State University,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.684929993829
+Portland State University,"Portland State University, USA","Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.684929993829
+Poznan University of Technology,Poznan University of Technology,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP",52.4004837,16.9515808278647
+Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+Princeton University,"Princeton University, Princeton, NJ, USA","Lot 25, Ivy Lane, Princeton Township, Mercer County, New Jersey, 08544, USA",40.34725815,-74.6513455119257
+Princeton University,"Princeton University, Princeton, New Jersey, USA","Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+"Pune Institute of Computer Technology, Pune, ( India","Pune Institute of Computer Technology, Pune, ( India","Pune Institute of Computer Technology, Mediacal College Road, Vadgaon Budruk, Katraj, Pune, Pune District, Maharashtra, 411043, India",18.4575638,73.8507352
+Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.3568981,76.4551272
+Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+Purdue University,"Purdue University, West Lafayette, IN 47907, USA","Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4262569,-86.9157551
+Purdue University,"Purdue University, West Lafayette, IN, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+Purdue University,"Purdue University, West Lafayette, IN. 47907, USA","Mathematical Sciences Library, 105, University Street, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4262569,-86.9157551
+Purdue University,"Purdue University, West Lafayette, Indiana, 47906, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+Qatar University,Qatar University,"Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, قطر",25.37461295,51.4898035392337
+Qatar University,"Qatar University, Doha, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, قطر",25.37461295,51.4898035392337
+Qatar University,"Qatar University, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, قطر",25.37461295,51.4898035392337
+Quanzhou Normal University,Quanzhou Normal University,"泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.87147415,118.667386868962
+Quanzhou Normal University,"Quanzhou Normal University, Quanzhou, China","泉州师范学院, 东滨路, 丰泽区, 丰泽区 (Fengze), 泉州市 / Quanzhou, 福建省, 362000, 中国",24.87147415,118.667386868962
+Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709
+Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+Queen Mary University of London,"Queen Mary University of London, London","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+Queen Mary University of London,"Queen Mary University of London, London E1 4NS, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+Queen Mary University of London,"Queen Mary University of London, London, U.K.","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+Queen Mary University of London,"Queen Mary University of London, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+Queensland University of Technology,"Queensland University of Technology, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+Queensland University of Technology,"Queensland University of Technology, Brisbane, QLD, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+Queensland University of Technology (QUT,Queensland University of Technology (QUT,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.4770485,153.028373791304
+Queensland University of Technology(QUT,Queensland University of Technology(QUT,"QUT Gardens Point Main Library, V, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.4770485,153.028373791304
+"R V College of Engineering, Bangalore, India","R V College of Engineering, Bangalore, India","R. V. College of Engineering, Bangalore-Mysore Road, Kengeri, Rajarajeshwari Nagar Zone, Bengaluru, Bangalore Urban, Karnataka, 560059, India",12.9231039,77.5006395299617
+RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+RMIT University,"RMIT University, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+RMIT University,"RMIT University, Melbourne, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+RMIT University,"RMIT University, Melbourne, VIC, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+RMIT University,"RMIT University, Vietnam","RMIT University Vietnam - Saigon South Campus, 702, Nguyễn Văn Linh, Khu 3 - Khu Đại học, Phường Tân Phong, Quận 7, Tp HCM, 756604, Việt Nam",10.72991265,106.693208239997
+RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+RWTH Aachen University,"RWTH Aachen University, Aachen, Germany","RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+Raipur institute of technology,Raipur institute of technology,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India",21.2262243,81.8013664
+"Rajasthan, India","Rajasthan, India","Rajasthan, India",26.8105777,73.7684549
+Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+"Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.73280325,-73.6622354488153
+"Rensselaer Polytechnic Institute, USA","Rensselaer Polytechnic Institute, USA","Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+Research Center,Research Center,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية",24.7261991,46.6365468966391
+Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682403998887
+"RheinAhrCampus der Hochschule Koblenz, Remagen, Germany","RheinAhrCampus der Hochschule Koblenz, Remagen, Germany","RheinAhrCampus, 2, Joseph-Rovan-Allee, Remagen, Landkreis Ahrweiler, Rheinland-Pfalz, 53424, Deutschland",50.5722562,7.25318610053143
+Rheinische-Friedrich-Wilhelms University,Rheinische-Friedrich-Wilhelms University,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+Rheinische-Friedrich-Wilhelms University,"Rheinische-Friedrich-Wilhelms University, Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+Rio de Janeiro State University,Rio de Janeiro State University,"UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.91117105,-43.2357797110467
+Rio de Janeiro State University,"Rio de Janeiro State University, Brazil","UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.91117105,-43.2357797110467
+Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154
+Ritsumeikan University,"Ritsumeikan University, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154
+Ritsumeikan University,"Ritsumeikan University, Kyoto, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154
+Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+Rowan University,Rowan University,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA",39.7103526,-75.1193266647699
+Rowan University,"Rowan University, Glassboro, NJ- 08028","Wellness Center (Winans Hall), Mullica Hill Road, Beau Rivage, Glassboro, Gloucester County, New Jersey, 08028:08062, USA",39.7082432,-75.1170342529732
+Rowland Institute,Rowland Institute,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA",42.3639862,-71.0778293
+Ruhr University Bochum,Ruhr University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078
+Ruhr-University Bochum,Ruhr-University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078
+Ruhr-University Bochum,"Ruhr-University Bochum, Germany","RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078
+Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+Rutgers University,"Rutgers University, New Brunswick, NJ","Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA",40.50007595,-74.4457915242934
+Rutgers University,"Rutgers University, Newark, NJ, USA","Dana Library, Bleeker Street, Teachers Village, Newark, Essex County, New Jersey, 07102, USA",40.7417586,-74.1750462269524
+Rutgers University,"Rutgers University, Piscataway","James Dickson Carr Library, 75, Avenue E, Piscataway Township, Middlesex County, New Jersey, 08854-8040, USA",40.52251655,-74.4373851411688
+Rutgers University,"Rutgers University, Piscataway NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975
+Rutgers University,"Rutgers University, Piscataway, NJ","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975
+Rutgers University,"Rutgers University, Piscataway, NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975
+Rutgers University,"Rutgers University, Piscataway, NJ, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975
+Rutgers University,"Rutgers University, Piscataway, New Jersey 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975
+Rutgers University,"Rutgers University, USA","Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263
+Ryerson University,"Ryerson University, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263
+Ryerson University,"Ryerson University, Toronto, ON, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263
+SASTRA University,SASTRA University,"SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",10.9628655,79.3853065130097
+SASTRA University,"SASTRA University, Thanjavur, Tamil Nadu, India","SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",10.9628655,79.3853065130097
+SIMON FRASER UNIVERSITY,SIMON FRASER UNIVERSITY,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+"SRI International, Menlo Park, USA","SRI International, Menlo Park, USA","SRI International Building, West 1st Street, Menlo Park, San Mateo County, California, 94025, USA",37.4585796,-122.17560525105
+SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.9336278,-78.8839447903448
+Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582
+Sakarya University,Sakarya University,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye",40.76433515,30.3940787517111
+San Jose State University,San Jose State University,"SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3351908,-121.881260081527
+San Jose State University,"San Jose State University, San Jose, CA","SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3351908,-121.881260081527
+Santa Clara University,Santa Clara University,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.34820285,-121.935635412063
+Santa Clara University,"Santa Clara University, Santa Clara, CA. 95053, USA","Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.34820285,-121.935635412063
+Santa Fe Institute,Santa Fe Institute,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA",35.7002878,-105.908648471331
+Selçuk University,Selçuk University,"Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.02420685,32.5057052418378
+Selçuk University,"Selçuk University, Konya, Turkey","Selçuk Üniversitesi, Ali Fuat Cebesoy Cad., Ardıçlı Mahallesi, Konya, Selçuklu, Konya, İç Anadolu Bölgesi, Türkiye",38.02420685,32.5057052418378
+Semarang State University,Semarang State University,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia",-7.00349485,110.417749486905
+Semnan University,Semnan University,"دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ایران",35.6037444,53.434458770112
+Semnan University,"Semnan University, Semnan, Iran","دانشگاه سمنان, بزرگراه امام رضا, شهرک مسکن مهر مصلی, ناسار, سمنان, بخش مرکزی, شهرستان سمنان, استان سمنان, ایران",35.6037444,53.434458770112
+Seoul Nat'l Univ.,Seoul Nat'l Univ.,"서울대입구, 지하 1822, 남부순환로, 중앙동, 봉천동, 관악구, 서울특별시, 08787, 대한민국",37.481223,126.9527151
+Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+Seoul National University,"Seoul National University, Korea","서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+Seoul National University,"Seoul National University, Seoul, Korea","서울대학교, 1, 관악로, 서림동, 신림동, 관악구, 서울특별시, 08825, 대한민국",37.46685,126.94892
+Shaheed Zulfikar Ali Bhutto Institute of,Shaheed Zulfikar Ali Bhutto Institute of,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, پاکستان",24.8186587,67.0316585
+Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+Shandong University,"Shandong University, Shandong, China","山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+Shandong University of Science and Technology,Shandong University of Science and Technology,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国",36.00146435,120.116240565627
+"Shanghai Institute of Technology, Shanghai, China","Shanghai Institute of Technology, Shanghai, China","上海应用技术大学, 康健路, 长桥, 徐汇区, 上海市, 200233, 中国",31.1678395,121.417382632476
+Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+Shanghai Jiao Tong University,"Shanghai Jiao Tong University, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+Shanghai Jiao Tong University,"Shanghai Jiao Tong University, People's Republic of China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai 200240, China","上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国",31.02775885,121.432219256081
+Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+Shanghai University,Shanghai University,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929
+Shanghai University,"Shanghai University, Shanghai, China","上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929
+Shanghai university,Shanghai university,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929
+Sharda University,Sharda University,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.4737512,77.4836148
+Sharda University,"Sharda University, Greater Noida, India","Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.4737512,77.4836148
+Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران",35.7036227,51.351250969544
+Sharif University of Technology,"Sharif University of Technology, Tehran. Iran","دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران",35.7036227,51.351250969544
+Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+Shenzhen University,"Shenzhen University, Shenzhen China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+Shenzhen University,"Shenzhen University, Shenzhen, China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+"Shibaura Institute of Technology, Tokyo, Japan","Shibaura Institute of Technology, Tokyo, Japan","芝浦工業大学 豊洲キャンパス, 晴海通り, 豊洲2, 豊洲, 富岡一丁目, 江東区, 東京都, 関東地方, 135-6001, 日本",35.66053325,139.795031213151
+Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ایران",29.6385474,52.5245706
+"Sichuan Univ., Chengdu","Sichuan Univ., Chengdu","四川大学(华西校区), 校东路, 武侯区, 武侯区 (Wuhou), 成都市 / Chengdu, 四川省, 610014, 中国",30.642769,104.067511751425
+Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.849092139632
+Singapore Management University,"Singapore Management University, Singapore","Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.849092139632
+Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089
+Singapore University of Technology and Design,"Singapore University of Technology and Design, Singapore","Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089
+Sinhgad College of,Sinhgad College of,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India",19.0993293,74.7691424
+Soochow University,Soochow University,"苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国",31.3070951,120.635739868117
+Soochow University,"Soochow University, Suzhou, China","苏州大学(天赐庄校区), 清荫路, 钟楼社区, 双塔街道, 姑苏区, 苏州市, 江苏省, 215001, 中国",31.3070951,120.635739868117
+South China Normal University,South China Normal University,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.143197,113.34009651145
+South China Normal University,"South China Normal University, Guangzhou, China","华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.143197,113.34009651145
+South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0490047,113.3971571
+South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+South China University of Technology,"South China University of Technology, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+South China University of Technology,"South China University of Technology, Guangzhou, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+South China University of Technology,"South China University of Technology, Guangzhou, Guangdong, China","华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+South College Road,South College Road,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA",39.2715228,-76.6936807
+South East European University,South East European University,"Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",41.98676415,20.9625451620439
+South East European University,"South East European University, Tetovo, Macedonia","Универзитет на Југоисточна Европа, 335, Мајка Тереза, Тетово, Општина Тетово, Полошки Регион, 1200, Македонија",41.98676415,20.9625451620439
+Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+Southeast University,"Southeast University, Nanjing, China","SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, P.R. China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+Southwest University,Southwest University,"西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445
+Southwest University,"Southwest University, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445
+Southwest University,"Southwest University, Chongqing 400715, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445
+Southwest University,"Southwest University, Chongqing, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445
+"Sri krishna College of Technology, Coimbatore, India","Sri krishna College of Technology, Coimbatore, India","Sri Krishna College of Technology, Kovaipudur to Golf Course Road dirt track, Ward 89, South Zone, Coimbatore, Coimbatore district, Tamil Nadu, 641001, India",10.925861,76.9224672855261
+Stamford University Bangladesh,Stamford University Bangladesh,"Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108
+Stamford University Bangladesh,"Stamford University Bangladesh, Dhaka-1209, Bangladesh","Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108
+Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+Stanford University,"Stanford University, CA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+Stanford University,"Stanford University, CA, United States","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+Stanford University,"Stanford University, Stanford, CA, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+Stanford University,"Stanford University, Stanford, California","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+Stanford University,"Stanford University, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+State University of New York Polytechnic Institute,State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.13800205,-75.2294359077068
+State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, Utica, New York","State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.13800205,-75.2294359077068
+State University of New York at Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486
+State University of New York at Binghamton,"State University of New York at Binghamton, USA","State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486
+State University of New York at Buffalo,State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065
+Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949
+"Stevens Institute of Technology, Hoboken, New Jersey, 07030","Stevens Institute of Technology, Hoboken, New Jersey, 07030","Stevens Institute of Technology, Hudson Street, Hoboken, Hudson County, New Jersey, 07030, USA",40.7451724,-74.027314
+Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+Stony Brook University,"Stony Brook University, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+Stony Brook University,"Stony Brook University, NY, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+Stony Brook University,"Stony Brook University, Stony Brook NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+Stony Brook University,"Stony Brook University, Stony Brook, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+Stony Brook University,"Stony Brook University, Stony Brook, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+Stony Brook University Hospital,Stony Brook University Hospital,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.90826665,-73.1152089127966
+Sun Yat-Sen University,Sun Yat-Sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-Sen University,"Sun Yat-Sen University, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-Sen University,"Sun Yat-Sen University, GuangZhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, P.R. China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-sen University,"Sun Yat-sen University, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+Sun Yat-sen University,"Sun Yat-sen University, Guangzhou, China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+SungKyunKwan University,SungKyunKwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123
+Sungkyunkwan University,Sungkyunkwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123
+Sungkyunkwan University,"Sungkyunkwan University, Suwon, Republic of Korea","성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123
+Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6091578,-3.97934429228629
+Swansea University,"Swansea University, Swansea, UK","Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6091578,-3.97934429228629
+Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.3764534,8.54770931489751
+THE UNIVERSITY OF ARIZONA,THE UNIVERSITY OF ARIZONA,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648
+THE UNIVERSITY OF CHICAGO,THE UNIVERSITY OF CHICAGO,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.78468745,-87.6007493265106
+"TU Darmstadt, D-64283, Germany","TU Darmstadt, D-64283, Germany","Institut für Psychologie, 10, Alexanderstraße, Darmstadt-Mitte, Darmstadt, Regierungsbezirk Darmstadt, Hessen, 64283, Deutschland",49.8754648,8.6594332
+Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ایران",34.68092465,50.0534135183902
+Tafresh University,"Tafresh University, Tafresh, Iran","دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ایران",34.68092465,50.0534135183902
+Tamkang University,Tamkang University,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.450767514156
+Tamkang University,"Tamkang University, Taipei, Taiwan","淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.450767514156
+Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+Tampere University of Technology,"Tampere University of Technology, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+Tampere University of Technology,"Tampere University of Technology, Tampere 33720, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+Tampere University of Technology,"Tampere University of Technology, Tampere, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+Technical University Munich,Technical University Munich,"TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.5677531417838
+Technical University Munich,"Technical University Munich, Germany","TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.5677531417838
+"Technicolor, France","Technicolor, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.831533,2.28066282926829
+"Technicolor, Paris, France","Technicolor, Paris, France","Technicolor, Rue d'Oradour-sur-Glane, Javel, 15e, Paris, Île-de-France, France métropolitaine, 75015, France",48.831533,2.28066282926829
+Technion Israel Institute of Technology,Technion Israel Institute of Technology,"הטכניון - מכון טכנולוגי לישראל, דוד רוז, חיפה, קרית הטכניון, חיפה, מחוז חיפה, NO, ישראל",32.7767536,35.0241452903301
+Technological University,Technological University,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4525199,75.9179512
+Technological University,"Technological University, Davanagere, Karnataka, India","UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4525199,75.9179512
+Teesside University,Teesside University,"Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.5703695,-1.23509661862823
+Teesside University,"Teesside University, Middlesbrough, UK","Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.5703695,-1.23509661862823
+Teesside University,"Teesside University, UK","Teesside University, Southfield Road, Southfield, Linthorpe, Middlesbrough, North East England, England, TS1 3BZ, UK",54.5703695,-1.23509661862823
+Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+Tel Aviv University,"Tel Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+Tel-Aviv University,"Tel-Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+Temple University,"Temple University, Philadelphia, PA 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",39.9808569,-75.149594
+Temple University,"Temple University, Philadelphia, PA, 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",39.9808569,-75.149594
+Temple University,"Temple University, Philadelphia, PA, USA","Temple University, Beasley's Walk, Stanton, Philadelphia, Philadelphia County, Pennsylvania, 19132:19133, USA",39.981188,-75.1562826952332
+Temple University,"Temple University, Philadelphia, USA","Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443
+Texas A&M University,"Texas A&M University, College Station, TX, USA","Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443
+Thapar University,Thapar University,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India",30.35566105,76.3658164148513
+The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+The American University in Cairo,"The American University in Cairo, Egypt","الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+The Australian National University,"The Australian National University, Canberra, ACT, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+The Australian National University,"The Australian National University, Canberra, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+The Australian National University Canberra ACT 2601,The Australian National University Canberra ACT 2601,"Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+The Australian National University Canberra ACT 2601,"The Australian National University Canberra ACT 2601, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+The Chinese University of Hong Kong,The Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+The Chinese University of Hong Kong,"The Chinese University of Hong Kong, China","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong, China","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.413656,114.2099405
+The Chinese University of Hong Kong,"The Chinese University of Hong Kong, New Territories, Hong Kong","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.413656,114.2099405
+The City College and the Graduate Center,The City College and the Graduate Center,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA",37.76799565,-122.400099572569
+"The City College of New York, New York, NY 10031, USA","The City College of New York, New York, NY 10031, USA","CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA",40.81819805,-73.9510089793336
+The City University of New York,The City University of New York,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA",40.8722825,-73.8948917141949
+The Education University of Hong Kong,The Education University of Hong Kong,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国",22.46935655,114.19474193618
+The Florida State University,The Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+The Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723
+The Hebrew University of Jerusalem,"The Hebrew University of Jerusalem, Israel","האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723
+The Hong Kong Polytechnic University,The Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Hong Kong, China","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+The Hong Kong Polytechnic University,"The Hong Kong Polytechnic University, Kowloon, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+The Hong Kong University of Science and Technology,"The Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+The Institute of Electronics,The Institute of Electronics,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India",12.8447999,77.6632389626693
+The Nanyang Technological University,The Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+The Nanyang Technological University,"The Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+The Ohio State University,"The Ohio State University, Columbus, OH, USA","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+The Ohio State University,"The Ohio State University, OH","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+The Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.709274809394501
+The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+The State University of New York at Buffalo,The State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065
+The State University of New York at Buffalo,"The State University of New York at Buffalo, New York, USA","University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065
+"The Univ of Hong Kong, China","The Univ of Hong Kong, China","海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+The University of Adelaide,The University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+The University of Adelaide,"The University of Adelaide, Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+The University of Adelaide,"The University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+The University of British Columbia,The University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019
+The University of Cambridge,The University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+The University of Edinburgh,The University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+The University of Edinburgh,"The University of Edinburgh, Edinburgh, U.K.","New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+The University of Electro-Communications,"The University of Electro-Communications, JAPAN","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+The University of Electro-Communications,"The University of Electro-Communications, Japan","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+The University of Electro-Communications,"The University of Electro-Communications, Tokyo","電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+The University of Hong Kong,The University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+The University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+The University of Maryland,The University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+The University of New South Wales,The University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527
+The University of New South Wales,"The University of New South Wales, Australia","UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527
+The University of Newcastle,The University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231
+The University of Newcastle,"The University of Newcastle, Callaghan 2308, Australia","University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.8930923,151.705656
+The University of North Carolina,The University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511
+The University of North Carolina,"The University of North Carolina, Chapel Hill","University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511
+The University of North Carolina at Charlotte,The University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+The University of North Carolina at Charlotte,"The University of North Carolina at Charlotte, USA","Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+The University of Nottingham,"The University of Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+The University of Queensland,The University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+The University of Queensland,"The University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+The University of Queensland,"The University of Queensland, Brisbane, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+The University of Queensland,"The University of Queensland, QLD 4072, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+The University of Sheffield,The University of Sheffield,"University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.3815248,-1.480681425
+The University of Sheffield,"The University of Sheffield, Sheffield, U.K.","University of Sheffield, Portobello, Port Mahon, Saint George's, Sheffield, Yorkshire and the Humber, England, S1 4DP, UK",53.3815248,-1.480681425
+The University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+The University of Sydney,"School, The University of Sydney, Sydney, NSW, Australia","Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia",-33.8893229,151.180068
+The University of Sydney,"The University of Sydney, NSW 2006, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+The University of Sydney,"The University of Sydney, Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+The University of Tennessee,The University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+The University of Tennessee,"The University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+The University of Texas,The University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+The University of Texas at,The University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+The University of Texas at Austin Austin,The University of Texas at Austin Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+The University of Texas at Austin Austin,"The University of Texas at Austin Austin, Texas, USA","University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+The University of Texas at Dallas,The University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278
+The University of Texas at Dallas,"The University of Texas at Dallas, Richardson, TX","University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278
+The University of Texas at San Antonio,The University of Texas at San Antonio,"Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163
+The University of Texas at San Antonio,"The University of Texas at San Antonio, San Antonio, TX, USA","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163
+The University of Tokushima,The University of Tokushima,"大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.0788068,134.558981
+The University of Tokushima,"The University of Tokushima, Japan","大学前, 国道11号, 徳島市, 徳島県, 四国地方, 770-0815, 日本",34.0788068,134.558981
+The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+The University of Tokyo,"The University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+The University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+The University of Western Australia,"The University of Western Australia, Crawley, WA, Australia","University of Western Australia (Crawley Campus), 35, Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia",-31.98027975,115.818084637301
+The University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+The University of York,"The University of York, Heslington, York YO10 5DD, United Kingdom","Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK",53.94830175,-1.05154975017361
+The University of York,"The University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+The University of York,"The University of York, United Kingdom","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+The University of the Humanities,The University of the Humanities,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс",47.9218937,106.919552402206
+The Weizmann Institute of,The Weizmann Institute of,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל",31.904187,34.807378
+The Weizmann Institute of Science,The Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+Tianjin University,"Tianjin University, 300072, China","泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+Tianjin University,"Tianjin University, China","Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国",38.99224515,117.306075265115
+Tianjin University,"Tianjin University, Tianjin, China","Tianjin University, South Qinmin Road, Haihe Education Park, 辛庄镇, 津南区 (Jinnan), 天津市, 中国",38.99224515,117.306075265115
+Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+Tohoku University,"Tohoku University, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+Tohoku University,"Tohoku University, Sendai, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406
+"Tokyo Institute of Technology, Japan","Tokyo Institute of Technology, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406
+"Tokyo Institute of Technology, Kanagawa, Japan","Tokyo Institute of Technology, Kanagawa, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406
+Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.6200925,139.38296706394
+Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.46255985,84.955654946724
+Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+Tongji University,"Tongji University, Shanghai 201804, China","同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+Tongji University,"Tongji University, Shanghai, China","同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.116551067984
+"Toyota Technological Institute (Chicago, US","Toyota Technological Institute (Chicago, US","Toyota Technological Institute, 6045, South Kenwood Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.7847112,-87.5926056707507
+Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, 100084 Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing 100084, P.R. China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing 100084, P.R.China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing, 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing, P. R. China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, Beijing,China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+Tsinghua University,"Tsinghua University, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+"UC Merced, USA","UC Merced, USA","UC Merced Venture Lab, 1735, M Street, Merced, Merced County, California, 95340, USA",37.302827,-120.484819845561
+UNIVERSITY IN PRAGUE,UNIVERSITY IN PRAGUE,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko",50.0714761,14.4542642
+UNIVERSITY OF CALIFORNIA,UNIVERSITY OF CALIFORNIA,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+UNIVERSITY OF CALIFORNIA,"UNIVERSITY OF CALIFORNIA, BERKELEY","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+UNIVERSITY OF CALIFORNIA,"UNIVERSITY OF CALIFORNIA, SAN DIEGO","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+UNIVERSITY OF OULU,UNIVERSITY OF OULU,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+UNIVERSITY OF TAMPERE,UNIVERSITY OF TAMPERE,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.7792067776763
+UNIVERSITY OF TARTU,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.7207808104523
+UNIVERSITY OF WISCONSIN MADISON,UNIVERSITY OF WISCONSIN MADISON,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362
+Ulm University,"Ulm University, Germany","HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362
+Universidad Autonoma de Madrid,Universidad Autonoma de Madrid,"Facultad de Medicina de la Universidad Autónoma de Madrid, Calle de Arturo Duperier, Fuencarral, Fuencarral-El Pardo, Madrid, Área metropolitana de Madrid y Corredor del Henares, Comunidad de Madrid, 28001, España",40.48256135,-3.69060789542556
+"Universidad Tecnica Federico Santa Maria, Valparaiso, Chile","Universidad Tecnica Federico Santa Maria, Valparaiso, Chile","Universidad Técnica Federico Santa María, Condominio Esmeralda, Valparaíso, Provincia de Valparaíso, V Región de Valparaíso, 2390382, Chile",-33.0362526,-71.595382
+Universitat Autònoma de Barcelona,Universitat Autònoma de Barcelona,"Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España",41.5007811,2.11143663166357
+Universitat Autònoma de Barcelona,"Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain","Centre de Visió per Computador (CVC), Carrer de l'Albareda, Serraperera, UAB, Cerdanyola del Vallès, Vallès Occidental, BCN, CAT, 08214, España",41.5007811,2.11143663166357
+Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, Barcelona, Spain","Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949251166
+Universitat Pompeu Fabra,"Universitat Pompeu Fabra, Barcelona, Spain","Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949251166
+Universitat de València,Universitat de València,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.342577110177694
+Universitat de València,"Universitat de València, Valencia, Spain","Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.342577110177694
+Universiti Teknologi PETRONAS,Universiti Teknologi PETRONAS,"UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.3830464,100.970015404936
+Universiti Teknologi PETRONAS,"Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Malaysia","UTP, Universiti Teknologi Petronas, Persiaran Desa Kediaman, Puncak Iskandar, Seri Iskandar, PRK, 32610, Malaysia",4.3830464,100.970015404936
+University,University,"Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26007165,-123.253442836235
+University,"Ritsumeikan, University","Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26007165,-123.253442836235
+University,"University, China","大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058
+University,"University, Guangzhou, China","中山大学第一课室, 74号大院, 中山二路, 马棚岗, 农林街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1314851,113.2852239
+University,"University, Hong Kong","Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland",54.0856448,13.389089
+University,"University, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+University,"University, USA","University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA",25.7147949,-80.276947
+University,"University, Xi an Shaanxi Province, Xi an 710049, China","西五路, 新城区, 新城区 (Xincheng), 西安市, 陕西省, 710003, 中国",34.2707834,108.94449949951
+University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+University (ITU,University (ITU,"IT-Universitetet i København, Emil Holms Kanal, Christianshavn, København, Københavns Kommune, Region Hovedstaden, 1424, Danmark",55.65965525,12.5910768893446
+University City Blvd.,University City Blvd.,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.312224,-80.7084736
+University City Blvd.,"University City Blvd., Charlotte, NC","University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.312224,-80.7084736
+University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+University College London,"University College London, London WC1N 3BG, United Kingdom","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+University College London,"University College London, London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+University College London,"University College London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+University Drive,University Drive,"University Drive, Ooralea, Mackay, QLD, 4740, Australia",-21.1753214,149.1432747
+University Drive,"University Drive, Fairfax, VA 22030-4444, USA","University Drive, Ardmore, Fairfax, Fairfax County, Virginia, 22030, USA",38.835411,-77.316447
+University Heights,University Heights,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+University Heights,"New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+University Heights Newark,University Heights Newark,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+University Heights Newark,"New Jersey Institute of Technology, University Heights Newark, NJ 07102 USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+University Institute of Engineering and Technology,University Institute of Engineering and Technology,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India",26.9302879,80.9278433
+University Library,University Library,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705
+University Library,"University Library, Singapore","University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705
+University Of California San Diego,University Of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University Of Maryland,University Of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+University POLITEHNICA Timisoara,University POLITEHNICA Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647
+University POLITEHNICA Timisoara,"University POLITEHNICA Timisoara, Timisoara, 300223, Romania","UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647
+University POLITEHNICA of Bucharest,University POLITEHNICA of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+University POLITEHNICA of Bucharest,"University POLITEHNICA of Bucharest, Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+University Politehnica of Bucharest,"University Politehnica of Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+University of,"Electrical Engineering, University of","Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.6532412,-122.3061707
+University of,"Statistics, University of","Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, پاکستان",32.0731522,72.6814703364947
+University of Aberdeen,University of Aberdeen,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK",57.1646143,-2.10186013407315
+University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447511707098
+University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+University of Adelaide,"University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+University of Adelaide,"University of Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+University of Agder,University of Agder,"UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.16308805,8.00144965545071
+University of Agder,"University of Agder, Kristiansand, Norway","UiA, Vegard Hauges plass, Gimlemoen, Kvadraturen, Kristiansand, Vest-Agder, 4630, Norge",58.16308805,8.00144965545071
+University of Aizu,University of Aizu,"会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5236728,139.938072464124
+University of Aizu,"University of Aizu, Japan","会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5236728,139.938072464124
+University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.0789035,-81.5197127229943
+University of Akron,"University of Akron, Akron","University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.0789035,-81.5197127229943
+University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346
+University of Alberta,"University of Alberta, Edmonton, Canada","University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346
+University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+University of Amsterdam,"Science, University of Amsterdam","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+University of Amsterdam,"University of Amsterdam, Amsterdam, The","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+University of Amsterdam,"University of Amsterdam, Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+University of Amsterdam,"University of Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+University of Amsterdam,"University of Amsterdam, the Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648
+University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.3383025526859
+University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+University of Barcelona,"University of Barcelona, Spain","Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+University of Basel,"University of Basel, Switzerland","Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+University of Bath,"University of Bath, Bath, Somerset, United Kingdom","University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+University of Bath,"University of Bath, Bath, United Kingdom","University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134052244
+University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+University of Brescia,University of Brescia,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA",37.7689374,-87.1113859
+University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.1664858,-73.1920564
+University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+University of Bristol,"University of Bristol, Bristol, BS8 1UB, UK","University of Bristol, Cantock's Close, Kingsdown, Canon's Marsh, Bristol, City of Bristol, South West England, England, BS8, UK",51.4562363,-2.602779
+University of Bristol,"University of Bristol, Bristol, UK","Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019
+University of British Columbia,"University of British Columbia, Canada","University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019
+University of British Columbia,"University of British Columbia, Vancouver, Canada","University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019
+University of Buffalo,University of Buffalo,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA",40.7021766,-99.0985061173294
+University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.0784038,-114.1287077
+University of Calgary,"University of Calgary, Calgary, Alberta, Canada","University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.0784038,-114.1287077
+University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+University of California,"University of California, Berkeley, Berkeley CA 94720, USA","Goldman School of Public Policy, Hearst Avenue, Northside, Berkeley, Alameda County, California, 94720, USA",37.8756681,-122.257979979865
+University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+University of California,"University of California, Irvine, USA","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+University of California,"University of California, Merced, CA 95344, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+University of California,"University of California, Merced, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+University of California,"University of California, Riverside CA 92521-0425, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636
+University of California,"University of California, Riverside, California 92521, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636
+University of California,"University of California, Riverside, Riverside CA, California 92521 United States","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636
+University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California,"University of California, San Diego, CA, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California,"University of California, San Diego, California, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California,"University of California, San Diego, La Jolla","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California,"University of California, San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California,"University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+University of California Davis,University of California Davis,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.5336349,-121.790772639747
+University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California San Diego,"University of California San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California San Diego,"University of California San Diego, United States of America","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+University of California Santa Barbara,University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+University of Cambridge,"University of Cambridge, United Kingdom","Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.5953995,-48.6154218
+University of Campinas (Unicamp,University of Campinas (Unicamp,"Universidade Estadual de Campinas - UNICAMP, Rua Josué de Castro, Barão Geraldo, Campinas, Microrregião de Campinas, RMC, Mesorregião de Campinas, SP, Região Sudeste, 13083-970, Brasil",-22.8224781,-47.0642599309425
+University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5240528,172.580306253669
+University of Canterbury,"University of Canterbury, New Zealand","University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5240528,172.580306253669
+University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018
+University of Cape Town,"University of Cape Town, South Africa","University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018
+University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+University of Central Florida,"University of Central Florida, Orlando","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936
+University of Central Florida,"University of Central Florida, Orlando, 32816, United States of America","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936
+University of Central Florida,"University of Central Florida, Orlando, FL, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936
+University of Central Florida,"University of Central Florida, Orlando, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936
+University of Central Florida,"University of Central Florida, USA","University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+University of Central Punjab,University of Central Punjab,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن, Lahore District, پنجاب, 54000, پاکستان",31.4466149,74.2679762
+University of Central Punjab,"University of Central Punjab, Pakistan","University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن, Lahore District, پنجاب, 54000, پاکستان",31.4466149,74.2679762
+University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 100190, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 101408, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences (UCAS,University of Chinese Academy of Sciences (UCAS,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences (UCAS),University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816
+University of Coimbra,"University of Coimbra, Portugal","Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816
+University of Colorado,University of Colorado,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621
+University of Colorado,"University of Colorado, Boulder","Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621
+University of Colorado Colorado Springs,University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.8920756,-104.797163894584
+University of Colorado Denver,University of Colorado Denver,"University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA",39.74287785,-105.005963984841
+University of Colorado Denver,"University of Colorado Denver, Denver, CO, USA","University of Colorado (Denver Auraria campus), Lawrence Way, Auraria, Denver, Denver County, Colorado, 80217, USA",39.74287785,-105.005963984841
+University of Connecticut,University of Connecticut,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA",41.8093779,-72.2536414
+University of Copenhagen,University of Copenhagen,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark",55.6801502,12.5723270014063
+University of Crete,University of Crete,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.3713024,24.4754408
+University of Crete,"University of Crete, Crete, 73100, Greece","House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.3713024,24.4754408
+University of Dammam,University of Dammam,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39793625,50.1980792430511
+University of Dammam,"University of Dammam, Saudi Arabia","University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39793625,50.1980792430511
+University of Dayton,University of Dayton,"University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.738444,-84.1791874663107
+University of Dayton,"University of Dayton, Dayton, OH, USA","University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.738444,-84.1791874663107
+University of Dayton,"University of Dayton, Ohio, USA","University of Dayton, Caldwell Street, South Park Historic District, Dayton, Montgomery, Ohio, 45409, USA",39.738444,-84.1791874663107
+University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184
+University of Delaware,"University of Delaware, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184
+University of Delaware,"University of Delaware, Newark, 19716, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184
+University of Delaware,"University of Delaware, Newark, DE, USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184
+University of Delaware,"University of Delaware, Newark, DE. USA","University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184
+University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+University of Denver,"University of Denver, Denver, CO","University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275
+University of Dhaka,"University of Dhaka, Bangladesh","World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275
+University of Dschang,University of Dschang,"Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4409448,10.0712056113589
+University of Dschang,"University of Dschang, Cameroon","Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4409448,10.0712056113589
+University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.45796755,-2.98214831353755
+University of East Anglia,University of East Anglia,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6221571,1.2409136
+University of East Anglia,"University of East Anglia, Norwich, U.K.","Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6221571,1.2409136
+University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+University of Edinburgh,"University of Edinburgh, Edinburgh, UK","New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+University of Engineering and Technology,University of Engineering and Technology,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, پاکستان",31.6914689,74.2465617
+University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167
+University of Exeter,"University of Exeter, UK","University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167
+University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+University of Florida,"University of Florida, Gainesville, FL","University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+University of Florida,"University of Florida, Gainesville, FL, 32611, USA","University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA",29.6447739,-82.3575193392276
+University of Frankfurt,University of Frankfurt,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland",50.13053055,8.69234223934388
+University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.57054745,-88.5557862661765
+University of Glasgow,University of Glasgow,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK",55.87231535,-4.28921783557444
+University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+University of Groningen,"University of Groningen, Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+University of Groningen,"University of Groningen, The Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+University of Gujrat,University of Gujrat,"University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, پاکستان",32.63744845,74.1617455759799
+University of Gujrat,"University of Gujrat, Pakistan","University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, پاکستان",32.63744845,74.1617455759799
+University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.0198630428453
+University of Haifa,"University of Haifa, Haifa, Israel","אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.0198630428453
+University of Hawaii,University of Hawaii,"University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.2982795,-157.818692295846
+University of Hawaii,"University of Hawaii, Manoa, Honolulu, HI, 96822","University of Hawaii at Manoa, Bachman Place, Lower Mānoa, Moiliili, Honolulu, Honolulu County, Hawaii, 96848, USA",21.2982795,-157.818692295846
+University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+University of Hong Kong,"University of Hong Kong, China","海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+University of Houston,"University of Houston, Houston, TX 77204, USA","UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+University of Houston,"University of Houston, Houston, TX, USA","UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+University of Iceland,University of Iceland,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland",64.137274,-21.9456145356869
+University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+University of Illinois,"University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+University of Illinois Urbana Champaign,University of Illinois Urbana Champaign,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+University of Illinois at,University of Illinois at,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1006938,-88.2313043272112
+University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.6485625597018
+University of Illinois at Chicago,"University of Illinois at Chicago, Chicago, IL","University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.6485625597018
+University of Illinois at Urbana,University of Illinois at Urbana,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1006938,-88.2313043272112
+University of Illinois at Urbana Champaign,University of Illinois at Urbana Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana Champaign,"University of Illinois at Urbana Champaign, Urbana","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana Champaign,"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA","University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1066501,-88.2240260725426
+University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, IL USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, Urbana, IL","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, Urbana, IL, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana—Champaign,University of Illinois at Urbana—Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Illinois at Urbana—Champaign,"University of Illinois at Urbana—Champaign, Champaign, IL, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+University of Information,University of Information,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA",34.17980475,-117.325843648456
+University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796
+University of Ioannina,"University of Ioannina, 45110, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796
+University of Ioannina,"University of Ioannina, Ioannina, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796
+University of Iowa,University of Iowa,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA",41.6659,-91.573103065
+University of Karlsruhe,University of Karlsruhe,"Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.00664235,8.39405151637065
+University of Karlsruhe,"University of Karlsruhe, Germany","Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.00664235,8.39405151637065
+University of Kent,University of Kent,"University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.2975344,1.0729616473445
+University of Kent,"University of Kent, Canterbury, U.K.","University of Kent, St. Stephen's Hill, Hackington, Canterbury, Kent, South East, England, CT2 7AS, UK",51.2975344,1.0729616473445
+University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+University of Kentucky,"University of Kentucky, USA","University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+University of Leeds,University of Leeds,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK",53.80387185,-1.55245712031677
+University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+University of Lincoln,"University of Lincoln, U. K.","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+University of Lincoln,"University of Lincoln, U.K","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+University of Lincoln,"University of Lincoln, UK","University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+University of Liverpool,University of Liverpool,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.406179,-2.96670818619252
+University of Liverpool,"University of Liverpool, Liverpool, U.K.","Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.406179,-2.96670818619252
+University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+University of Ljubljana,"University of Ljubljana, Ljubljana, Slovenia","UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+University of Ljubljana Faculty,University of Ljubljana Faculty,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2167565,-85.7572502291168
+University of Louisville,"University of Louisville, Louisville, KY 40292 USA","University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2167565,-85.7572502291168
+University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1240187,113.545109009671
+University of Macau,"University of Macau, Taipa, Macau","研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1240187,113.545109009671
+University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394
+University of Malaya,"University of Malaya, 50603 Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394
+University of Malaya,"University of Malaya, Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394
+University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9023226,14.4834189
+University of Malta,"University of Malta, Msida, Malta","University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9023226,14.4834189
+University of Manchester,University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+University of Manchester,"University of Manchester, Manchester, U.K.","University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072
+University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+University of Maryland,"University of Maryland, College Park, MD, USA","The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+University of Maryland,"Y. Li, University of Maryland","Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA",39.2864694,-76.6263409932124
+University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+University of Maryland-College Park,University of Maryland-College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+University of Maryland-College Park,"University of Maryland-College Park, USA","University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+University of Massachusetts,"University of Massachusetts, Amherst","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+University of Massachusetts,"University of Massachusetts, Amherst MA, USA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+University of Massachusetts,"University of Massachusetts, Amherst, MA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+University of Massachusetts Amherst,"University of Massachusetts Amherst, Amherst MA, 01003","Murray D. Lincoln Campus Center, 1, Campus Center Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3919154,-72.5270705589714
+University of Massachusetts Dartmouth,University of Massachusetts Dartmouth,"University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA",41.62772475,-71.0072450098225
+University of Massachusetts Dartmouth,"University of Massachusetts Dartmouth, Dartmouth, MA, USA","University of Massachusetts Dartmouth, University Ring Road, Dartmouth, Bristol County, Massachusetts, 02747, USA",41.62772475,-71.0072450098225
+University of Memphis,University of Memphis,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA",35.1189387,-89.9372195996589
+University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+University of Miami,"University of Miami, Coral Gables, FL","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+University of Miami,"University of Miami, USA","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+University of Michigan,"University of Michigan, Ann Arbor, MI","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+University of Michigan,"University of Michigan, Ann Arbor, MI 48109 USA","Power Center for the Performing Arts, 121, Fletcher Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2808797,-83.7357152493893
+University of Michigan,"University of Michigan, Ann Arbor, MI, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+University of Michigan,"University of Michigan, Ann Arbor, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+University of Michigan,"University of Michigan, Ann, Arbor, MI USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+University of Milan,University of Milan,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA",38.6796662,-90.3262816
+University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941
+University of Missouri,University of Missouri,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.926761,-92.2919378337447
+University of Missouri,"University of Missouri, Columbia, MO","L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.926761,-92.2919378337447
+University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.8174723,-96.7044468
+University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936
+University of Nevada,"University of Nevada, Reno, Reno, NV, USA","Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936
+University of Nevada,"University of Nevada, Reno, USA","Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936
+University of New South Wales,University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527
+University of New South Wales,"University of New South Wales, Sydney, NSW, Australia","UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527
+University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231
+University of Newcastle,"University of Newcastle, Newcastle, Australia","University of Newcastle, Christie Street, Newcastle, Newcastle-Maitland, Newcastle, NSW, 2300, Australia",-32.9276256,151.77133087091
+University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511
+University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+University of North Carolina Wilmington,"University of North Carolina Wilmington, USA","Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, NC, USA","Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA",34.2377352,-77.92673494788
+University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, United States","Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, Chapel Hill, NC","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9105975,-79.0517871
+University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9105975,-79.0517871
+University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+University of North Carolina at Wilmington,University of North Carolina at Wilmington,"University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2249827,-77.8690774374448
+University of North Carolina at Wilmington,"University of North Carolina at Wilmington, USA","University of North Carolina at Wilmington, Price Drive, University Suites, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2249827,-77.8690774374448
+University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2098879,-97.1514748776857
+University of North Texas,"University of North Texas, Denton, Texas, USA","University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2098879,-97.1514748776857
+University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529
+University of Northern British Columbia,"University of Northern British Columbia, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529
+University of Northern British Columbia,"University of Northern British Columbia, Prince George, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529
+University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+University of Notre Dame,"University of Notre Dame, Notre Dame, IN, USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+University of Notre Dame,"University of Notre Dame, USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+University of Notre Dame. Notre Dame,University of Notre Dame. Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+University of Notre Dame. Notre Dame,"University of Notre Dame. Notre Dame, IN 46556.USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+University of Nottingham,"University of Nottingham, Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+University of Oradea,University of Oradea,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709
+University of Oslo,University of Oslo,"UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.93891665,10.7217076488427
+University of Oslo,"University of Oslo, Oslo, Norway","UiO, Moltke Moes vei, Blindern, Nordre Aker, Oslo, 0851, Norge",59.93891665,10.7217076488427
+University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+University of Ottawa,"University of Ottawa, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+University of Ottawa,"University of Ottawa, Ottawa, On, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+University of Oxford,"University of Oxford, Oxford, United Kingdom","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+University of Oxford,"University of Oxford, UK","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+University of Oxford,"University of Oxford, United Kingdom","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+University of Patras,University of Patras,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469
+University of Patras,"University of Patras, Greece","Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469
+University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+University of Pennsylvania,"University of Pennsylvania, Philadelphia, PA","40th Street Parking Lot, Walnut Street, Southwest Schuylkill, Philadelphia, Philadelphia County, Pennsylvania, 19104-1469, USA",39.95455675,-75.2029503620423
+University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.2622421,-123.2450052
+University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+University of Peshawar,"University of Peshawar, Pakistan","University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+University of Peshawar,"University of Peshawar, Peshawar, Pakistan","University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+University of Piraeus,University of Piraeus,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα",37.94173275,23.6530326182197
+University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976
+University of Pisa,"University of Pisa, Pisa, Italy","Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976
+University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+University of Pittsburgh,"University of Pittsburgh, PA 15213, USA","Nationality Rooms, 4200, Omicron Delta Kappa Walk, North Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4444651,-79.9532347
+University of Pittsburgh,"University of Pittsburgh, PA, 15260, USA","Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4437547,-79.9529557
+University of Pittsburgh,"University of Pittsburgh, PA, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh PA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA , USA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA 15260, USA","Stephen Foster Memorial Museum, Forbes Avenue, Panther Hollow, Central Oakland, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4437547,-79.9529557
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh, PA, USA","Visitor Parking, Thomas Boulevard, Homewood, Point Breeze North, Wilkinsburg, Allegheny County, Pennsylvania, 15208, USA",40.4495417,-79.8957457221781
+University of Pittsburgh,"University of Pittsburgh, Pittsburgh, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+University of Pittsburgh,"University of Pittsburgh, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+University of Plymouth,University of Plymouth,"Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3752501,-4.13927692297343
+University of Plymouth,"University of Plymouth, UK","Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3752501,-4.13927692297343
+University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911234691
+University of Portsmouth,"University of Portsmouth, United Kingdom","University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911234691
+University of Posts and Telecommunications,University of Posts and Telecommunications,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国",32.11527165,118.925956600436
+University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+University of Queensland,"University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+University of Queensland,"University of Queensland, St Lucia, QLD, Australia","Anthropology Museum, Chancellors Place, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.497151,153.0117305
+University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+University of Rochester,"University of Rochester, NY 14627, USA","Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA",43.1242954,-77.6288352530005
+University of Rochester,"University of Rochester, Rochester, NY, USA","Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+University of Salzburg,University of Salzburg,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.79475945,13.0541752486067
+University of Salzburg,"University of Salzburg, Austria","Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.79475945,13.0541752486067
+University of Science and,University of Science and,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia",5.35755715,100.303850375
+University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+University of Science and Technology of China,"University of Science and Technology of China, Hefei 230026, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+University of Science and Technology of China,"University of Science and Technology of China, Hefei, 230027, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+University of Science and Technology of China,"University of Science and Technology of China, Hefei, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058
+University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225
+University of South Carolina,"University of South Carolina, Columbia, USA","University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225
+University of South Carolina,"University of South Carolina, USA","University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225
+University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.0599999,-82.4138361902512
+University of South Florida,"University of South Florida, Tampa, Florida 33620","University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.0599999,-82.4138361902512
+University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+University of Southampton,"University of Southampton, SO17 1BJ, UK","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+University of Southampton,"University of Southampton, Southampton, U.K.","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+University of Southampton,"University of Southampton, United Kingdom","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+University of Southern California,"University of Southern California, Los Angeles, CA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+University of Southern California,"University of Southern California, Los Angeles, CA 90089, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+University of Southern California,"University of Southern California, Los Angeles, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+University of St Andrews,University of St Andrews,"University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3411984,-2.7930938
+University of St Andrews,"University of St Andrews, United Kingdom","University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3411984,-2.7930938
+University of Stuttgart,University of Stuttgart,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland",48.9095338,9.1831892
+University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+University of Surrey,"University of Surrey, Guildford, Surrey GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+University of Surrey,"University of Surrey, Guildford, Surrey, GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+University of Surrey,"University of Surrey, United Kingdom","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+University of Sydney,"University of Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+University of Sydney,"University of Sydney, Sydney, NSW, Australia","Sand Roll House, Parramatta Road, Camperdown, Sydney, NSW, 2050, Australia",-33.88578245,151.182068591379
+University of Tabriz,University of Tabriz,"دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ایران",38.0612553,46.3298484
+University of Tabriz,"University of Tabriz, Tabriz, Iran","دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ایران",38.0612553,46.3298484
+University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.7792067776763
+University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+University of Technology,"University of Technology, Baghdad, Iraq","الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+University of Technology,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+University of Technology,"University of Technology, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+University of Technology,"University of Technology, Sydney, NSW, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+University of Technology,"University of Technology, Sydney, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+University of Technology Sydney,"University of Technology Sydney, New South Wales, Australia","University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+University of Technology Sydney,"University of Technology Sydney, Sydney, NSW, Australia","University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8830909,151.20217235558
+University of Technology Sydney,"University of Technology Sydney, Ultimo, NSW, Australia","University of Technology Sydney, Harris Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8830909,151.20217235558
+University of Tennessee,University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+University of Tennessee,"University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+University of Texas,University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+University of Texas,"University of Texas, Austin, TX 78712-1188, USA","University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA",30.284458,-97.7342106
+University of Texas,"University of Texas, San Antonio, TX, USA","University of Texas at Austin, 2152, San Jacinto Boulevard, Medical District, Austin, Travis County, Texas, 78712, USA",30.284458,-97.7342106
+University of Texas at,University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+University of Texas at Arlington,"University of Texas at Arlington, Arlington, TX","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+University of Texas at Arlington,"University of Texas at Arlington, Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+University of Texas at Arlington,"University of Texas at Arlington, Arlington, Texas 76019, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+University of Texas at Arlington,"University of Texas at Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+University of Texas at Dallas,University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278
+University of Texas at Dallas,"University of Texas at Dallas, Richardson, 75080, USA","University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278
+University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+University of Texas at San Antonio,"University of Texas at San Antonio, 78249, USA","UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, TX","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163
+University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, TX, USA","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163
+University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, Texas","Lot D3, South PanAm Expressway, Cattleman's Square, San Antonio, Bexar County, Texas, 78205, USA",29.42182005,-98.5016869955163
+University of Texas at San Antonio,"University of Texas at San Antonio, San Antonio, United States","UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+University of Thessaloniki,University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+University of Tokyo,"University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+University of Toronto,"University of Toronto, Toronto, ON, Canada","University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+University of Toronto Toronto,University of Toronto Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+University of Toronto Toronto,"University of Toronto Toronto, Canada","University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+University of Toulouse,University of Toulouse,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA",30.1781816,-93.2360581
+University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+University of Trento,"University of Trento, Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+University of Trento,"University of Trento, Trento, TN, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+University of Tsukuba,"University of Tsukuba, Japan","University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+University of Twente,"University of Twente, Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+University of Twente,"University of Twente, The Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+University of Venezia,University of Venezia,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia",45.4312742,12.3265377
+University of Vermont,University of Vermont,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.48116865,-73.2002178989123
+University of Vermont,"University of Vermont, 33 Colchester Avenue, Burlington","University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.48116865,-73.2002178989123
+University of Vienna,University of Vienna,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2131302,16.3606865338016
+University of Vienna,"University of Vienna, Austria","Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2131302,16.3606865338016
+University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0353682,-78.5035322
+University of Virginia,"University of Virginia, Charlottesville, VA","University of Virginia, Emmet Street North, Charlottesville, Virginia, 22901, USA",38.0410576,-78.5054996018357
+University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252
+University of Warwick,"University of Warwick, Coventry, U.K.","University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252
+University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+University of Washington,"University of Washington, Seattle, USA","University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+University of Washington,"University of Washington, Seattle, WA 98195, United States","University of Washington, Yakima Lane, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6547795,-122.305818
+University of Washington,"University of Washington, Seattle, WA, USA","University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.65249975,-122.2998748
+University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703
+University of Windsor,"University of Windsor, Canada","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703
+University of Windsor,"University of Windsor, Canada N9B 3P4","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703
+University of Windsor,"University of Windsor, Ontario, Canada","Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703
+University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+University of Wisconsin - Madison,University of Wisconsin - Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+University of Wisconsin Madison,University of Wisconsin Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+University of Wisconsin-Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+University of Wisconsin-Madison,"University of Wisconsin-Madison, Madison, WI, USA","UW Geology Museum, 1215, West Dayton Street, South Campus, Madison, Dane County, Wisconsin, 53715, USA",43.0705257,-89.4059387
+University of Witwatersrand,University of Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205
+University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+University of Wollongong,"University of Wollongong, Wollongong, Australia","University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+University of York,"University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+University of York,"University of York, York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+University of York,"University of York, York, United Kingdom","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+University of Zurich,University of Zurich,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.4968476,8.72981767380829
+University of Zurich,"University of Zurich, Zurich, Switzerland","ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.4968476,8.72981767380829
+University of telecommunications and post,University of telecommunications and post,"Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия",42.6560524,23.3476108351659
+University of telecommunications and post,"University of telecommunications and post, Sofia, Bulgaria","Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия",42.6560524,23.3476108351659
+University of the Basque Country,University of the Basque Country,"Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066784661227
+University of the Basque Country,"University of the Basque Country, San Sebastian, Spain","Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066784661227
+University of the Western Cape,University of the Western Cape,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa",-33.9327762,18.6291540714825
+University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205
+University of the Witwatersrand,"University of the Witwatersrand, Johannesburg, South Africa","University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205
+Università degli Studi di Milano,Università degli Studi di Milano,"Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.47567215,9.23336232066359
+Università degli Studi di Milano,"Università degli Studi di Milano, Italy","Università degli Studi di Milano, Via Camillo Golgi, Città Studi, Milano, MI, LOM, 20133, Italia",45.47567215,9.23336232066359
+Università di Salerno Italy,Università di Salerno Italy,"Università, Autostrada del Mediterraneo, Fisciano, SA, CAM, 84084, Italia",40.7646949,14.7889151
+Université du Québec à Chicoutimi (UQAC),Université du Québec à Chicoutimi (UQAC),"Université du Québec à Chicoutimi (UQAC), Chicoutimi, Ville de Saguenay, Saguenay - Lac-Saint-Jean, Québec, G7H 2B1, Canada",48.4200469,-71.0525344
+Ural Federal University (UrFU,Ural Federal University (UrFU,"УрФУ, улица Гагарина, Эврика, Втузгородок, Кировский район, Екатеринбург, городской округ Екатеринбург, Свердловская область, Уральский федеральный округ, 620062, РФ",56.8435083,60.6454805
+Urmia University,Urmia University,"دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ایران",37.52914535,45.0488607694682
+Urmia University,"Urmia University, Urmia, Iran","دانشگاه ارومیه, خیابان اداره گاز (منصور افشار), دانشکده, ارومیه, بخش مرکزی, شهرستان ارومیه, استان آذربایجان غربی, 444655677, ایران",37.52914535,45.0488607694682
+"Ursinus College, Collegeville, PA","Ursinus College, Collegeville, PA","Ursinus College, East Main Street, Collegeville, Montgomery County, Pennsylvania, 19426, USA",40.1917705,-75.4568484
+Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309
+Utah State University,"Utah State University, Logan UT","Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309
+Utah State University,"Utah State University, Logan, UT 84322-4205, USA","Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309
+Varendra University,Varendra University,"department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.3643231,88.6333105
+Varendra University,"Varendra University, Rajshahi, Bangladesh","department of english Vrendra University, Dhaka - Rajshahi Highway, Talaimari, রাজশাহী, রাজশাহী বিভাগ, 6204, বাংলাদেশ",24.3643231,88.6333105
+Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.768469187426
+Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.19853965,16.3698616762866
+Vignan University,Vignan University,"Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India",16.2329008,80.5475018
+Vignan University,"Vignan University, Andhra Pradesh, India","Vignan university, Sangam Dairy Entry, Sangam Dairy, Gowdapalem, Guntur District, Andhra Pradesh, 522213, India",16.2329008,80.5475018
+Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.0367774,-75.342023320028
+Virginia Commonwealth University,Virginia Commonwealth University,"Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA",37.548215,-77.4530642444471
+Virginia Commonwealth University,"Virginia Commonwealth University, Richmond, VA, USA","Virginia Commonwealth University, The Compass, Oregon Hill, Richmond, Richmond City, Virginia, 23284, USA",37.548215,-77.4530642444471
+Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Blacksburg","Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Blacksburg, Virginia","Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+Virginia Tech Carilion Research Institute,Virginia Tech Carilion Research Institute,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA",37.2579548,-79.9423329131356
+"Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany","Vogt-Koelln-Strasse 30, 22527 Hamburg - Germany","Informatikum, 30, Vogt-Kölln-Straße, Stellingen, Eimsbüttel, Hamburg, 22527, Deutschland",53.599482,9.93353435970931
+Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8411007,4.32377555279953
+Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 1050 Brussels, Belgium","Vrije Universiteit Brussel, 2, Boulevard de la Plaine - Pleinlaan, Ixelles - Elsene, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1050, België / Belgique / Belgien",50.8223021,4.3967361
+"Vulcan Inc, Seattle, WA 98104","Vulcan Inc, Seattle, WA 98104","Vulcan Inc., 505, Downtown Seattle Transit Tunnel, Seattle Downtown, International District/Chinatown, Seattle, King County, Washington, 98191, USA",47.5980546,-122.3284865
+"Walt Disney Imagineering, USA","Walt Disney Imagineering, USA","Walt Disney Imagineering, 1401, Flower Street, Grand Central Creative Campus, Glendale, Los Angeles County, California, 91201, USA",34.1619174,-118.28837020278
+Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511
+Warsaw University of Technology,"Warsaw University of Technology, Poland","Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511
+Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+Waseda University,"Waseda University, Kitakyushu, Japan 808-0135","早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+Washington University,Washington University,"Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6480445,-90.3099667
+Washington University,"Washington University, St. Louis, MO, USA","Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6480445,-90.3099667
+Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.357757,-83.0628671134125
+Wayne State University,"Wayne State University, Detroit, MI 48202, USA","Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA",42.3656423,-83.0711533990367
+Wayne State University,"Wayne State University, Detroit, MI, USA","Wayne State University, Burroughs Street, New Center, Detroit, Wayne County, Michigan, 48202, USA",42.3656423,-83.0711533990367
+Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+"Weizmann Institute of Science, Rehovot, 76100, Israel","Weizmann Institute of Science, Rehovot, 76100, Israel","מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+West Virginia University,"West Virginia University, Morgantown WV 26506, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+West Virginia University,"West Virginia University, Morgantown, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+West Virginia University,"West Virginia University, Morgantown, WV","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+West Virginia University,"West Virginia University, Morgantown, WV 26506, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+West Virginia University,"West Virginia University, Morgantown, WV, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+Western Kentucky University,Western Kentucky University,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA",36.9845317,-86.4576443016944
+Western Sydney University,Western Sydney University,"Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8160848,151.00560034186
+Western Sydney University,"Western Sydney University, Parramatta, NSW 2150, Australia","Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8160848,151.00560034186
+Wolfson College,Wolfson College,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK",51.7711076,-1.25361700492597
+Wuhan University of Technology,Wuhan University of Technology,"武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.351428398184
+Wuhan University of Technology,"Wuhan University of Technology, Wuhan, China","武汉理工大学-余家头校区, 交通二路, 杨园街道, 武昌区 (Wuchang), 武汉市, 湖北省, 430062, 中国",30.60903415,114.351428398184
+Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.5129109,-79.6664076152913
+Xi'an Jiaotong University,Xi'an Jiaotong University,"西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.2474949,108.978987508847
+Xi'an Jiaotong University,"Xi'an Jiaotong University, Xi'an, China","西安交通大学兴庆校区, 文治路, 乐居场, 碑林区 (Beilin), 西安市, 陕西省, 710048, 中国",34.2474949,108.978987508847
+Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+Xiamen University,"Xiamen University, Xiamen 361005, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+Xiamen University,"Xiamen University, Xiamen, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+Xiamen University,"Xiamen University, Xiamen, Fujian, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+Xiamen University,"Xiamen University, Xiamen, P. R. China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+Xiangtan University,Xiangtan University,"湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国",27.88707585,112.857109176016
+Xiangtan University,"Xiangtan University, Xiangtan, China","湘潭大学图书馆, 文化广场, 羊牯塘街道, 雨湖区, 湘潭市 / Xiangtan, 湖南省, 中国",27.88707585,112.857109176016
+Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+Xidian University,"Xidian University, Xi an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+Xidian University,"Xidian University, Xi'an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+Xidian University,"Xidian University, Xi’an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+Yale University,Yale University,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA",41.25713055,-72.9896696015223
+Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.6252103,39.8845656
+Yeungnam University,Yeungnam University,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국",35.8365403,128.7534309
+Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248
+Yonsei University,"Yonsei University, 50 Yonsei-ro, SEOUL, Republic of Korea","연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248
+Yonsei University,"Yonsei University, 50 Yonsei-ro, Seodaemun-gu, SEOUL, Republic of Korea","연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248
+York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+York University,"York University, Toronto","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+York University,"York University, Toronto, Canada","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+Yunnan University,Yunnan University,"云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.05703205,102.700275254918
+Yunnan University,"Yunnan University, Kunming, P. R. China","云南大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.05703205,102.700275254918
+Zaragoza University,Zaragoza University,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España",41.6406218,-0.900793992168927
+Zhejiang Normal University,Zhejiang Normal University,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.13646725,119.637686517179
+Zhejiang Normal University,"Zhejiang Normal University, Jinhua, China","浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.13646725,119.637686517179
+Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+Zhejiang University,"Zhejiang University, Hangzhou, China","浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.2931534,120.1620458
+Zhejiang University of Technology,"Zhejiang University of Technology, Hangzhou, China","浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.2931534,120.1620458
+Zhengzhou University,Zhengzhou University,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664
+Zhengzhou University,"Zhengzhou University, China","科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664
+Zhengzhou University,"Zhengzhou University, Zhengzhou, Henan 450052, China","科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664
+a The University of Nottingham Malaysia Campus,a The University of Nottingham Malaysia Campus,"The University of Nottingham Malaysia Campus, Jalan Broga, Bandar Rinching, Semenyih, Selangor, 43500, Malaysia",2.9438432,101.8736196
+any other University,any other University,"Northern Film School, Millennium Square, Steander, Woodhouse, Leeds, Yorkshire and the Humber, England, LS1 3DW, UK",53.8012316,-1.5476213
+college of Engineering,college of Engineering,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0110912,80.2354520862161
+of Cornell University,of Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+of bilkent university,of bilkent university,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+of the University of Notre Dame,of the University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+the Hong Kong Polytechnic University,"the Hong Kong Polytechnic University, Hong Kong","hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+the University of Queensland,"the University of Queensland, Brisbane, Qld, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+to Michigan State University,to Michigan State University,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA",42.7231021,-84.4449848597663
+university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+university,"university, Shiraz, Iran","دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+y National Institute of Advanced Industrial Science and Technology,y National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+"École Polytechnique Fédérale de Lausanne (EPFL), Switzerland","École Polytechnique Fédérale de Lausanne (EPFL), Switzerland","Bibliothèque de l'EPFL, Route des Noyerettes, Ecublens, District de l'Ouest lausannois, Vaud, 1024, Schweiz/Suisse/Svizzera/Svizra",46.5184121,6.5684654
diff --git a/reports/doi_institutions.csv b/reports/doi_institutions.csv index 01d9134c..61467c23 100644 --- a/reports/doi_institutions.csv +++ b/reports/doi_institutions.csv @@ -1,3 +1,4 @@ +,1637
"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore",37
"Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece",24
"Department of Electrical and Computer Engineering, National University of Singapore, Singapore",21
@@ -1699,7 +1700,7 @@ School of ComputingNational University of Singapore,1 "Istanbul Technical University, Faculty of Computer and Informatics, Istanbul, Turkey",1
"Signal and Information Processing section (SIP), Department of Electronic Systems, Aalborg University, Denmark",1
"Section of Image Analysis and Computer Graphics, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark",1
-"
+" University of Delaware, USA",1
"Department of Cognitive Science, School of Information Science and Engineering, Xiamen University, Xiamen, China",1
"Taylor's University Lakeside Campus, Selangor Darul Ehsan, Malaysia",1
diff --git a/reports/first_pages.html b/reports/first_pages.html index 9280eca9..1fa50094 100644 --- a/reports/first_pages.html +++ b/reports/first_pages.html @@ -38,19 +38,73 @@ <br/><b>University of California at Berkeley</b><br/>Technical Report No. UCB/EECS-2016-147 <br/>http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html <br/>August 14, 2016 -</td><td>('3173667', 'Mert Pilanci', 'mert pilanci')</td><td></td></tr><tr><td>612075999e82596f3b42a80e6996712cc52880a3</td><td>CNNs with Cross-Correlation Matching for Face Recognition in Video +</td><td>('3173667', 'Mert Pilanci', 'mert pilanci')</td><td></td></tr><tr><td>61f04606528ecf4a42b49e8ac2add2e9f92c0def</td><td>Deep Deformation Network for Object Landmark +<br/>Localization +<br/>NEC Laboratories America, Department of Media Analytics +</td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('46468682', 'Feng Zhou', 'feng zhou')</td><td>{xiangyu,manu}@nec-labs.com, zhfe99@gmail.com +</td></tr><tr><td>612075999e82596f3b42a80e6996712cc52880a3</td><td>CNNs with Cross-Correlation Matching for Face Recognition in Video <br/>Surveillance Using a Single Training Sample Per Person <br/><b>University of Texas at Arlington, TX, USA</b><br/>2École de technologie supérieure, Université du Québec, Montreal, Canada </td><td>('3046171', 'Mostafa Parchami', 'mostafa parchami')<br/>('2805645', 'Saman Bashbaghi', 'saman bashbaghi')<br/>('1697195', 'Eric Granger', 'eric granger')</td><td>mostafa.parchami@mavs.uta.edu, bashbaghi@livia.etsmtl.ca and eric.granger@etsmtl.ca +</td></tr><tr><td>61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa</td><td>Merging Datasets Through Deep learning +<br/>IBM Research +<br/><b>Yeshiva University</b><br/>IBM Research +</td><td>('35970154', 'Kavitha Srinivas', 'kavitha srinivas')<br/>('51428397', 'Abraham Gale', 'abraham gale')<br/>('2828094', 'Julian Dolby', 'julian dolby')</td><td></td></tr><tr><td>61e9e180d3d1d8b09f1cc59bdd9f98c497707eff</td><td>Semi-supervised learning of +<br/>facial attributes in video +<br/>1INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Sup´erieure, +<br/>ENS/INRIA/CNRS UMR 8548 +<br/><b>University of Oxford</b></td><td>('1877079', 'Neva Cherniavsky', 'neva cherniavsky')<br/>('1785596', 'Ivan Laptev', 'ivan laptev')<br/>('1782755', 'Josef Sivic', 'josef sivic')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td></td></tr><tr><td>6193c833ad25ac27abbde1a31c1cabe56ce1515b</td><td>Trojaning Attack on Neural Networks +<br/><b>Purdue University, 2Nanjing University</b></td><td>('3347155', 'Yingqi Liu', 'yingqi liu')<br/>('2026855', 'Shiqing Ma', 'shiqing ma')<br/>('3216258', 'Yousra Aafer', 'yousra aafer')<br/>('2547748', 'Wen-Chuan Lee', 'wen-chuan lee')<br/>('3293342', 'Juan Zhai', 'juan zhai')<br/>('3155328', 'Weihang Wang', 'weihang wang')<br/>('1771551', 'Xiangyu Zhang', 'xiangyu zhang')</td><td>liu1751@purdue.edu, ma229@purdue.edu, yaafer@purdue.edu, lee1938@purdue.edu, zhaijuan@nju.edu.cn, +<br/>wang1315@cs.purdue.edu, xyzhang@cs.purdue.edu </td></tr><tr><td>614a7c42aae8946c7ad4c36b53290860f6256441</td><td>1 <br/>Joint Face Detection and Alignment using <br/>Multi-task Cascaded Convolutional Networks -</td><td>('3393556', 'Kaipeng Zhang', 'kaipeng zhang')<br/>('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')<br/>('32787758', 'Zhifeng Li', 'zhifeng li')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>0d746111135c2e7f91443869003d05cde3044beb</td><td>PARTIAL FACE DETECTION FOR CONTINUOUS AUTHENTICATION +</td><td>('3393556', 'Kaipeng Zhang', 'kaipeng zhang')<br/>('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')<br/>('32787758', 'Zhifeng Li', 'zhifeng li')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>614079f1a0d0938f9c30a1585f617fa278816d53</td><td>Automatic Detection of ADHD and ASD from Expressive Behaviour in +<br/>RGBD Data +<br/><b>School of Computer Science, The University of Nottingham</b><br/>2Nottingham City Asperger Service & ADHD Clinic +<br/><b>Institute of Mental Health, The University of Nottingham</b></td><td>('2736086', 'Shashank Jaiswal', 'shashank jaiswal')<br/>('1795528', 'Michel F. Valstar', 'michel f. valstar')<br/>('38690723', 'Alinda Gillott', 'alinda gillott')<br/>('2491166', 'David Daley', 'david daley')</td><td></td></tr><tr><td>0d746111135c2e7f91443869003d05cde3044beb</td><td>PARTIAL FACE DETECTION FOR CONTINUOUS AUTHENTICATION <br/>(cid:63)Department of Electrical and Computer Engineering and the Center for Automation Research, <br/><b>Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ</b><br/><b>UMIACS, University of Maryland, College Park, MD</b><br/>§Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 </td><td>('3152615', 'Upal Mahbub', 'upal mahbub')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('2406413', 'Brandon Barbello', 'brandon barbello')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>umahbub@umiacs.umd.edu, vishal.m.patel@rutgers.edu, <br/>dchandra@google.com, bbarbello@google.com, rama@umiacs.umd.edu -</td></tr><tr><td>0d88ab0250748410a1bc990b67ab2efb370ade5d</td><td>Author(s) : +</td></tr><tr><td>0da75b0d341c8f945fae1da6c77b6ec345f47f2a</td><td>121 +<br/>The Effect of Computer-Generated Descriptions on Photo- +<br/>Sharing Experiences of People With Visual Impairments +<br/><b>YUHANG ZHAO, Information Science, Cornell Tech, Cornell University</b><br/>SHAOMEI WU, Facebook Inc. +<br/>LINDSAY REYNOLDS, Facebook Inc. +<br/><b>SHIRI AZENKOT, Information Science, Cornell Tech, Cornell University</b><br/>Like sighted people, visually impaired people want to share photographs on social networking services, but +<br/>find it difficult to identify and select photos from their albums. We aimed to address this problem by +<br/>incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature. We +<br/>interviewed 12 visually impaired participants to understand their photo-sharing experiences and designed +<br/>a photo description feature for the Facebook mobile application. We evaluated this feature with six +<br/>participants in a seven-day diary study. We found that participants used the descriptions to recall and +<br/>organize their photos, but they hesitated to upload photos without a sighted person’s input. In addition to +<br/>basic information about photo content, participants wanted to know more details about salient objects and +<br/>people, and whether the photos reflected their personal aesthetic. We discuss these findings from the lens +<br/>of self-disclosure and self-presentation theories and propose new computer vision research directions that +<br/>will better support visual content sharing by visually impaired people. +<br/>CCS Concepts: • Information interfaces and presentations → Multimedia and information systems; • +<br/>Computer and society → Social issues +<br/>impairments; computer-generated descriptions; SNSs; photo sharing; self-disclosure; self- +<br/>KEYWORDS +<br/>Visual +<br/>presentation +<br/>ACM Reference format: +<br/>2017. The Effect of Computer-Generated Descriptions On Photo-Sharing Experiences of People With Visual +<br/>Impairments. Proc. ACM Hum.-Comput. Interact. 1, 1. 121 (January 2017), 24 pages. +<br/>DOI: 10.1145/3134756 +<br/>1 INTRODUCTION +<br/>Sharing memories and experiences via photos is a common way to engage with others on social +<br/>networking services (SNSs) [39,46,51]. For instance, Facebook users uploaded more than 350 +<br/>million photos a day [24] and Twitter, which initially supported only text in tweets, now has +<br/>more than 28.4% of tweets containing images [39]. Visually impaired people (both blind and low +<br/>vision) have a strong presence on SNS and are interested in sharing photos [50]. They take +<br/>photos for the same reasons that sighted people do: sharing daily moments with their sighted +<br/> +<br/>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee +<br/>provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and +<br/>the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. +</td><td></td><td></td></tr><tr><td>0d88ab0250748410a1bc990b67ab2efb370ade5d</td><td>Author(s) : <br/>ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING <br/>RELIABILITY MEASURES (ThuPmOR6) <br/>(EPFL, Switzerland) @@ -200,7 +254,13 @@ <br/>jyoti.joshi@uwaterloo.ca <br/>jhoey@cs.uwaterloo.ca <br/>tom.gedeon@anu.edu.au -</td></tr><tr><td>0d735e7552af0d1dcd856a8740401916e54b7eee</td><td></td><td></td><td></td></tr><tr><td>0d06b3a4132d8a2effed115a89617e0a702c957a</td><td></td><td></td><td></td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td></td><td></td><td></td></tr><tr><td>0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2</td><td><b>University of Nebraska - Lincoln</b><br/>US Army Research +</td></tr><tr><td>0d735e7552af0d1dcd856a8740401916e54b7eee</td><td></td><td></td><td></td></tr><tr><td>0d06b3a4132d8a2effed115a89617e0a702c957a</td><td></td><td></td><td></td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td></td><td></td><td></td></tr><tr><td>0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a</td><td>Detection and Tracking of Faces in Videos: A Review +<br/>© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 +<br/>of Related Work +<br/>1Student, 2Assistant Professor +<br/>1, 2Dept. of Electronics & Comm., S S I E T, Punjab, India +<br/>________________________________________________________________________________________________________ +</td><td>('48816689', 'Seema Saini', 'seema saini')</td><td></td></tr><tr><td>0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2</td><td><b>University of Nebraska - Lincoln</b><br/>US Army Research <br/>2015 <br/>U.S. Department of Defense <br/>Effects of emotional expressions on persuasion @@ -212,6 +272,27 @@ <br/>University of Southern California, wangyuqiong@ymail.com <br/>This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has <br/>been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. +</td></tr><tr><td>0da4c3d898ca2fff9e549d18f513f4898e960aca</td><td>Wang, Y., Thomas, J., Weissgerber, S. C., Kazemini, S., Ul-Haq, I., & +<br/>Quadflieg, S. (2015). The Headscarf Effect Revisited: Further Evidence for a +<br/>336. 10.1068/p7940 +<br/>Peer reviewed version +<br/>Link to published version (if available): +<br/>10.1068/p7940 +<br/>Link to publication record in Explore Bristol Research +<br/>PDF-document +<br/><b>University of Bristol - Explore Bristol Research</b><br/>General rights +<br/>This document is made available in accordance with publisher policies. Please cite only the published +<br/>version using the reference above. Full terms of use are available: +<br/>http://www.bristol.ac.uk/pure/about/ebr-terms.html +<br/>Take down policy +<br/>Explore Bristol Research is a digital archive and the intention is that deposited content should not be +<br/>removed. However, if you believe that this version of the work breaches copyright law please contact +<br/>• Your contact details +<br/><b>Bibliographic details for the item, including a URL</b><br/>• An outline of the nature of the complaint +<br/>On receipt of your message the Open Access Team will immediately investigate your claim, make an +<br/>initial judgement of the validity of the claim and, where appropriate, withdraw the item in question +<br/>from public view. +<br/> </td><td></td><td>open-access@bristol.ac.uk and include the following information in your message: </td></tr><tr><td>951368a1a8b3c5cd286726050b8bdf75a80f7c37</td><td>A Family of Online Boosting Algorithms <br/><b>University of California, San Diego</b><br/><b>University of California, Merced</b><br/><b>University of California, San Diego</b></td><td>('2490700', 'Boris Babenko', 'boris babenko')<br/>('37144787', 'Ming-Hsuan Yang', 'ming-hsuan yang')<br/>('1769406', 'Serge Belongie', 'serge belongie')</td><td>bbabenko@cs.ucsd.edu <br/>mhyang@ucmerced.edu @@ -238,7 +319,13 @@ <br/>http://www.ieee.org/ <br/>Griffith Research Online <br/>https://research-repository.griffith.edu.au -</td><td></td><td></td></tr><tr><td>951f21a5671a4cd14b1ef1728dfe305bda72366f</td><td>International Journal of Science and Research (IJSR) +</td><td></td><td></td></tr><tr><td>959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c</td><td>Temporal Coherency based Criteria for Predicting +<br/>Video Frames using Deep Multi-stage Generative +<br/>Adversarial Networks +<br/>Visualization and Perception Laboratory +<br/>Department of Computer Science and Engineering +<br/><b>Indian Institute of Technology Madras, Chennai, India</b></td><td>('29901316', 'Prateep Bhattacharjee', 'prateep bhattacharjee')<br/>('1680398', 'Sukhendu Das', 'sukhendu das')</td><td>1prateepb@cse.iitm.ac.in, 2sdas@iitm.ac.in +</td></tr><tr><td>951f21a5671a4cd14b1ef1728dfe305bda72366f</td><td>International Journal of Science and Research (IJSR) <br/>ISSN (Online): 2319-7064 <br/>Impact Factor (2012): 3.358 <br/>Use of ℓ2/3-norm Sparse Representation for Facial @@ -278,19 +365,31 @@ <br/>873 <br/>A Novel Incremental Principal Component Analysis <br/>and Its Application for Face Recognition -</td><td>('1776124', 'Haitao Zhao', 'haitao zhao')<br/>('1768574', 'Pong Chi Yuen', 'pong chi yuen')</td><td></td></tr><tr><td>958c599a6f01678513849637bec5dc5dba592394</td><td>Noname manuscript No. +</td><td>('1776124', 'Haitao Zhao', 'haitao zhao')<br/>('1768574', 'Pong Chi Yuen', 'pong chi yuen')</td><td></td></tr><tr><td>95ea564bd983129ddb5535a6741e72bb1162c779</td><td>Multi-Task Learning by Deep Collaboration and +<br/>Application in Facial Landmark Detection +<br/><b>Laval University, Qu bec, Canada</b></td><td>('2758280', 'Ludovic Trottier', 'ludovic trottier')<br/>('2310695', 'Philippe Giguère', 'philippe giguère')<br/>('1700926', 'Brahim Chaib-draa', 'brahim chaib-draa')</td><td>ludovic.trottier.1@ulaval.ca +<br/>{philippe.giguere,brahim.chaib-draa}@ift.ulaval.ca +</td></tr><tr><td>958c599a6f01678513849637bec5dc5dba592394</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>Generalized Zero-Shot Learning for Action <br/>Recognition with Web-Scale Video Data <br/>Received: date / Accepted: date -</td><td>('2473509', 'Kun Liu', 'kun liu')<br/>('8984539', 'Wenbing Huang', 'wenbing huang')</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>A Deep-Learning Approach to Facial Expression Recognition +</td><td>('2473509', 'Kun Liu', 'kun liu')<br/>('8984539', 'Wenbing Huang', 'wenbing huang')</td><td></td></tr><tr><td>950171acb24bb24a871ba0d02d580c09829de372</td><td>Speeding up 2D-Warping for Pose-Invariant Face Recognition +<br/><b>Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany</b></td><td>('1804963', 'Harald Hanselmann', 'harald hanselmann')<br/>('1685956', 'Hermann Ney', 'hermann ney')</td><td>surname@cs.rwth-aachen.de +</td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>A Deep-Learning Approach to Facial Expression Recognition <br/>with Candid Images <br/><b>CUNY City College</b><br/>Alibaba. Inc <br/><b>IBM China Research Lab</b><br/><b>CUNY Graduate Center and City College</b></td><td>('40617554', 'Wei Li', 'wei li')<br/>('1713016', 'Min Li', 'min li')<br/>('1703625', 'Zhong Su', 'zhong su')<br/>('4697712', 'Zhigang Zhu', 'zhigang zhu')</td><td>lwei000@citymail.cuny.edu <br/>mushi.lm@alibaba.inc <br/>suzhong@cn.ibm.com <br/>zhu@cs.ccny.cuny.edu -</td></tr><tr><td>591a737c158be7b131121d87d9d81b471c400dba</td><td>Affect Valence Inference From Facial Action Unit Spectrograms +</td></tr><tr><td>59fc69b3bc4759eef1347161e1248e886702f8f7</td><td>Final Report of Final Year Project +<br/>HKU-Face: A Large Scale Dataset for +<br/>Deep Face Recognition +<br/>3035141841 +<br/>COMP4801 Final Year Project +<br/>Project Code: 17007 +</td><td>('40456402', 'Haoyu Li', 'haoyu li')</td><td></td></tr><tr><td>591a737c158be7b131121d87d9d81b471c400dba</td><td>Affect Valence Inference From Facial Action Unit Spectrograms <br/>MIT Media Lab <br/>MA 02139, USA <br/>MIT Media Lab @@ -305,7 +404,11 @@ <br/>picard@mit.edu </td></tr><tr><td>59bfeac0635d3f1f4891106ae0262b81841b06e4</td><td>Face Verification Using the LARK Face <br/>Representation -</td><td>('3326805', 'Hae Jong Seo', 'hae jong seo')<br/>('1718280', 'Peyman Milanfar', 'peyman milanfar')</td><td></td></tr><tr><td>590628a9584e500f3e7f349ba7e2046c8c273fcf</td><td></td><td></td><td></td></tr><tr><td>593234ba1d2e16a887207bf65d6b55bbc7ea2247</td><td>Combining Language Sources and Robust +</td><td>('3326805', 'Hae Jong Seo', 'hae jong seo')<br/>('1718280', 'Peyman Milanfar', 'peyman milanfar')</td><td></td></tr><tr><td>59efb1ac77c59abc8613830787d767100387c680</td><td>DIF : Dataset of Intoxicated Faces for Drunk Person +<br/>Identification +<br/><b>Indian Institute of Technology Ropar</b><br/><b>Indian Institute of Technology Ropar</b></td><td>('46241736', 'Devendra Pratap Yadav', 'devendra pratap yadav')<br/>('1735697', 'Abhinav Dhall', 'abhinav dhall')</td><td>2014csb1010@iitrpr.ac.in +<br/>abhinav@iitrpr.ac.in +</td></tr><tr><td>590628a9584e500f3e7f349ba7e2046c8c273fcf</td><td></td><td></td><td></td></tr><tr><td>593234ba1d2e16a887207bf65d6b55bbc7ea2247</td><td>Combining Language Sources and Robust <br/>Semantic Relatedness for Attribute-Based <br/>Knowledge Transfer <br/>1 Department of Computer Science, TU Darmstadt @@ -315,7 +418,29 @@ <br/>Cross-Pose Recognition </td><td>('24020847', 'Hung-Cheng Shie', 'hung-cheng shie')<br/>('9640380', 'Cheng-Hua Hsieh', 'cheng-hua hsieh')</td><td></td></tr><tr><td>59e2037f5079794cb9128c7f0900a568ced14c2a</td><td>Clothing and People - A Social Signal Processing Perspective <br/><b>Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain</b><br/>2 Computer Vision Center, Barcelona, Spain -<br/><b>University of Verona, Verona, Italy</b></td><td>('2084534', 'Maedeh Aghaei', 'maedeh aghaei')<br/>('10724083', 'Federico Parezzan', 'federico parezzan')<br/>('2837527', 'Mariella Dimiccoli', 'mariella dimiccoli')<br/>('1724155', 'Petia Radeva', 'petia radeva')<br/>('1723008', 'Marco Cristani', 'marco cristani')</td><td></td></tr><tr><td>59c9d416f7b3d33141cc94567925a447d0662d80</td><td>Universität des Saarlandes +<br/><b>University of Verona, Verona, Italy</b></td><td>('2084534', 'Maedeh Aghaei', 'maedeh aghaei')<br/>('10724083', 'Federico Parezzan', 'federico parezzan')<br/>('2837527', 'Mariella Dimiccoli', 'mariella dimiccoli')<br/>('1724155', 'Petia Radeva', 'petia radeva')<br/>('1723008', 'Marco Cristani', 'marco cristani')</td><td></td></tr><tr><td>59dac8b460a89e03fa616749a08e6149708dcc3a</td><td>A Convergent Solution to Matrix Bidirectional Projection Based Feature +<br/>Extraction with Application to Face Recognition ∗ +<br/><b>School of Computer, National University of Defense Technology</b><br/>No 137, Yanwachi Street, Kaifu District, +<br/>Changsha, Hunan Province, 410073, P.R. China +</td><td>('3144121', 'Yubin Zhan', 'yubin zhan')<br/>('1969736', 'Jianping Yin', 'jianping yin')<br/>('33793976', 'Xinwang Liu', 'xinwang liu')</td><td>E-mail: {YubinZhan,JPYin,XWLiu}@nudt.edu.cn +</td></tr><tr><td>59e9934720baf3c5df3a0e1e988202856e1f83ce</td><td>UA-DETRAC: A New Benchmark and Protocol for +<br/>Multi-Object Detection and Tracking +<br/><b>University at Albany, SUNY</b><br/>2 School of Computer and Control Engineering, UCAS +<br/>3 Department of Electrical and Computer Engineering, UCSD +<br/>4 National Laboratory of Pattern Recognition, CASIA +<br/><b>University at Albany, SUNY</b><br/><b>Division of Computer Science and Engineering, Hanyang University</b><br/>7 Electrical Engineering and Computer Science, UCM +</td><td>('39774417', 'Longyin Wen', 'longyin wen')<br/>('1910738', 'Dawei Du', 'dawei du')<br/>('1773408', 'Zhaowei Cai', 'zhaowei cai')<br/>('39643145', 'Ming-Ching Chang', 'ming-ching chang')<br/>('3245785', 'Honggang Qi', 'honggang qi')<br/>('33047058', 'Jongwoo Lim', 'jongwoo lim')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>59d225486161b43b7bf6919b4a4b4113eb50f039</td><td>Complex Event Recognition from Images with Few Training Examples +<br/>Irfan Essa∗ +<br/><b>Georgia Institute of Technology</b><br/><b>University of Southern California</b></td><td>('2308598', 'Unaiza Ahsan', 'unaiza ahsan')<br/>('1726241', 'Chen Sun', 'chen sun')<br/>('1945508', 'James Hays', 'james hays')</td><td>uahsan3@gatech.edu +<br/>chensun@google.com +<br/>hays@gatech.edu +<br/>irfan@cc.gatech.edu +</td></tr><tr><td>5945464d47549e8dcaec37ad41471aa70001907f</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Every Moment Counts: Dense Detailed Labeling of Actions in Complex +<br/>Videos +<br/>Received: date / Accepted: date +</td><td>('34149749', 'Serena Yeung', 'serena yeung')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>59c9d416f7b3d33141cc94567925a447d0662d80</td><td>Universität des Saarlandes <br/>Max-Planck-Institut für Informatik <br/>AG5 <br/>Matrix factorization over max-times @@ -339,7 +464,11 @@ <br/>FOR FACE RECOGNITION <br/>1. INTRODUCTION </td><td></td><td></td></tr><tr><td>59420fd595ae745ad62c26ae55a754b97170b01f</td><td>Objects as Attributes for Scene Classification -<br/><b>Stanford University</b></td><td>('33642044', 'Li-Jia Li', 'li-jia li')<br/>('2888806', 'Hao Su', 'hao su')<br/>('7892285', 'Yongwhan Lim', 'yongwhan lim')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>5922e26c9eaaee92d1d70eae36275bb226ecdb2e</td><td>Boosting Classification Based Similarity +<br/><b>Stanford University</b></td><td>('33642044', 'Li-Jia Li', 'li-jia li')<br/>('2888806', 'Hao Su', 'hao su')<br/>('7892285', 'Yongwhan Lim', 'yongwhan lim')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a</td><td>How Robust is 3D Human Pose Estimation to Occlusion? +<br/><b>Visual Computing Institute, RWTH Aachen University</b><br/>2Robert Bosch GmbH, Corporate Research +</td><td>('2699877', 'Timm Linder', 'timm linder')<br/>('1789756', 'Bastian Leibe', 'bastian leibe')</td><td>{sarandi,leibe}@vision.rwth-aachen.de +<br/>{timm.linder,kaioliver.arras}@de.bosch.com +</td></tr><tr><td>5922e26c9eaaee92d1d70eae36275bb226ecdb2e</td><td>Boosting Classification Based Similarity <br/>Learning by using Standard Distances <br/>Departament d’Informàtica, Universitat de València <br/>Av. de la Universitat s/n. 46100-Burjassot (Spain) @@ -362,6 +491,8 @@ <br/>Information and Communication Management School <br/><b>The University of the Humanities</b><br/>Ulaanbaatar, Mongolia </td><td></td><td>e-mail: basubaer@gmail.com +</td></tr><tr><td>59a6c9333c941faf2540979dcfcb5d503a49b91e</td><td>Sampling Clustering +<br/><b>School of Computer Science and Technology, Shandong University, China</b></td><td>('51016741', 'Ching Tarn', 'ching tarn')<br/>('2413471', 'Yinan Zhang', 'yinan zhang')<br/>('48260402', 'Ye Feng', 'ye feng')</td><td>∗i@ctarn.io </td></tr><tr><td>59031a35b0727925f8c47c3b2194224323489d68</td><td>Sparse Variation Dictionary Learning for Face Recognition with A Single <br/>Training Sample Per Person <br/>ETH Zurich @@ -373,15 +504,25 @@ </td><td>('38188040', 'Dong Xu', 'dong xu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('1686911', 'Stephen Lin', 'stephen lin')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td></td></tr><tr><td>923ede53b0842619831e94c7150e0fc4104e62f7</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>1293 <br/>ICASSP 2016 -</td><td></td><td></td></tr><tr><td>9264b390aa00521f9bd01095ba0ba4b42bf84d7e</td><td>Displacement Template with Divide-&-Conquer +</td><td></td><td></td></tr><tr><td>92b61b09d2eed4937058d0f9494d9efeddc39002</td><td>Under review in IJCV manuscript No. +<br/>(will be inserted by the editor) +<br/>BoxCars: Improving Vehicle Fine-Grained Recognition using +<br/>3D Bounding Boxes in Traffic Surveillance +<br/>Received: date / Accepted: date +</td><td>('34891870', 'Jakub Sochor', 'jakub sochor')</td><td></td></tr><tr><td>9264b390aa00521f9bd01095ba0ba4b42bf84d7e</td><td>Displacement Template with Divide-&-Conquer <br/>Algorithm for Significantly Improving <br/>Descriptor based Face Recognition Approaches -<br/><b>Wenzhou University, China</b><br/><b>University of Northern British Columbia, Canada</b><br/><b>Aberystwyth University, UK</b></td><td>('1692551', 'Liang Chen', 'liang chen')<br/>('33500699', 'Ling Yan', 'ling yan')<br/>('1990125', 'Yonghuai Liu', 'yonghuai liu')<br/>('39388942', 'Lixin Gao', 'lixin gao')<br/>('3779849', 'Xiaoqin Zhang', 'xiaoqin zhang')</td><td></td></tr><tr><td>920a92900fbff22fdaaef4b128ca3ca8e8d54c3e</td><td>LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM +<br/><b>Wenzhou University, China</b><br/><b>University of Northern British Columbia, Canada</b><br/><b>Aberystwyth University, UK</b></td><td>('1692551', 'Liang Chen', 'liang chen')<br/>('33500699', 'Ling Yan', 'ling yan')<br/>('1990125', 'Yonghuai Liu', 'yonghuai liu')<br/>('39388942', 'Lixin Gao', 'lixin gao')<br/>('3779849', 'Xiaoqin Zhang', 'xiaoqin zhang')</td><td></td></tr><tr><td>92be73dffd3320fe7734258961fe5a5f2a43390e</td><td>TRANSFERRING FACE VERIFICATION NETS TO PAIN AND EXPRESSION REGRESSION +<br/>Dept. of {Computer Science1, Electrical & Computer Engineering2, Radiation Oncology3, Cognitive Science4} +<br/><b>Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA</b><br/>5Dept. of EE, UESTC, 2006 Xiyuan Ave, Chengdu, Sichuan 611731, China +<br/><b>Tsinghua University, Beijing 100084, China</b></td><td>('39369840', 'Feng Wang', 'feng wang')<br/>('40031188', 'Xiang Xiang', 'xiang xiang')<br/>('1692867', 'Chang Liu', 'chang liu')<br/>('1709073', 'Trac D. Tran', 'trac d. tran')<br/>('3207112', 'Austin Reiter', 'austin reiter')<br/>('1678633', 'Gregory D. Hager', 'gregory d. hager')<br/>('2095823', 'Harry Quon', 'harry quon')<br/>('1709439', 'Jian Cheng', 'jian cheng')<br/>('1746141', 'Alan L. Yuille', 'alan l. yuille')</td><td></td></tr><tr><td>920a92900fbff22fdaaef4b128ca3ca8e8d54c3e</td><td>LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM <br/>SELECTION <br/>Ecole Polytechnique F´ed´erale de Lausanne (EPFL) <br/>Signal Processing Laboratory (LTS4) <br/>Switzerland-1015 Lausanne -</td><td>('12636684', 'Elif Vural', 'elif vural')<br/>('1703189', 'Pascal Frossard', 'pascal frossard')</td><td></td></tr><tr><td>924b14a9e36d0523a267293c6d149bca83e73f3b</td><td>Volume 5, Number 2, pp. 133 -164 +</td><td>('12636684', 'Elif Vural', 'elif vural')<br/>('1703189', 'Pascal Frossard', 'pascal frossard')</td><td></td></tr><tr><td>9207671d9e2b668c065e06d9f58f597601039e5e</td><td>Face Detection Using a 3D Model on +<br/>Face Keypoints +</td><td>('2455529', 'Adrian Barbu', 'adrian barbu')<br/>('3019469', 'Gary Gramajo', 'gary gramajo')</td><td></td></tr><tr><td>924b14a9e36d0523a267293c6d149bca83e73f3b</td><td>Volume 5, Number 2, pp. 133 -164 <br/>Development and Evaluation of a Method <br/>Employed to Identify Internal State <br/>Utilizing Eye Movement Data @@ -400,6 +541,14 @@ <br/>Department of Computer Science, <br/>Centre of Biological Signalling Studies (BIOSS), <br/><b>University of Freiburg, Germany</b></td><td>('2127987', 'Benjamin Drayer', 'benjamin drayer')<br/>('1710872', 'Thomas Brox', 'thomas brox')</td><td>{drayer,brox}@cs.uni-freiburg.de +</td></tr><tr><td>928b8eb47288a05611c140d02441660277a7ed54</td><td>Exploiting Images for Video Recognition with Hierarchical Generative +<br/>Adversarial Networks +<br/>1 Beijing Laboratory of Intelligent Information Technology, School of Computer Science, +<br/><b>Big Data Research Center, University of Electronic Science and Technology of China</b><br/><b>Beijing Institute of Technology</b></td><td>('3450614', 'Feiwu Yu', 'feiwu yu')<br/>('2125709', 'Xinxiao Wu', 'xinxiao wu')<br/>('9177510', 'Yuchao Sun', 'yuchao sun')<br/>('2055900', 'Lixin Duan', 'lixin duan')</td><td>{yufeiwu,wuxinxiao,sunyuchao}@bit.edu.cn, lxduan@uestc.edu.cn +</td></tr><tr><td>926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0</td><td>Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural +<br/>Networks +<br/>Department of Electrical and Computer Engineering +<br/><b>University of Denver, Denver, CO</b></td><td>('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')</td><td>behzad.hasani@du.edu and mmahoor@du.edu </td></tr><tr><td>92c2dd6b3ac9227fce0a960093ca30678bceb364</td><td>Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published <br/>version when available. <br/>Title @@ -424,7 +573,29 @@ <br/>http://hdl.handle.net/10379/1350 <br/>Some rights reserved. For more information, please see the item record link above. <br/>Downloaded 2018-11-06T00:40:53Z -</td><td></td><td></td></tr><tr><td>922838dd98d599d1d229cc73896d55e7a769aa7c</td><td>Learning Hierarchical Representations for Face Verification +</td><td></td><td></td></tr><tr><td>92e464a5a67582d5209fa75e3b29de05d82c7c86</td><td>Reconstruction for Feature Disentanglement in Pose-invariant Face Recognition +<br/><b>Rutgers University, NJ, USA</b><br/>2NEC Labs America, CA, USA +</td><td>('4340744', 'Xi Peng', 'xi peng')<br/>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1729571', 'Kihyuk Sohn', 'kihyuk sohn')</td><td>{xpeng.cs, dnm}@rutgers.edu, {xiangyu, ksohn, manu}@nec-labs.com +</td></tr><tr><td>927ba64123bd4a8a31163956b3d1765eb61e4426</td><td>Customer satisfaction measuring based on the most +<br/>significant facial emotion +<br/>To cite this version: +<br/>most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals +<br/>Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. <hal-01790317> +<br/>HAL Id: hal-01790317 +<br/>https://hal-upec-upem.archives-ouvertes.fr/hal-01790317 +<br/>Submitted on 11 May 2018 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('50101862', 'Rostom Kachouri', 'rostom kachouri')<br/>('50101862', 'Rostom Kachouri', 'rostom kachouri')</td><td></td></tr><tr><td>922838dd98d599d1d229cc73896d55e7a769aa7c</td><td>Learning Hierarchical Representations for Face Verification <br/>with Convolutional Deep Belief Networks <br/>Erik Learned-Miller <br/><b>University of Massachusetts</b><br/><b>University of Michigan</b><br/><b>University of Massachusetts</b><br/>Amherst, MA @@ -489,7 +660,9 @@ <br/>copy-editing and formatting may not be reflected in this document. For a <br/>definitive version of this work, please refer to the published source: <br/>http://dx.doi.org/10.1007/978-3-642-17534-3_72 -</td><td></td><td></td></tr><tr><td>0c741fa0966ba3ee4fc326e919bf2f9456d0cd74</td><td>Facial Age Estimation by Learning from Label Distributions +</td><td></td><td></td></tr><tr><td>923ec0da8327847910e8dd71e9d801abcbc93b08</td><td>Hide-and-Seek: Forcing a Network to be Meticulous for +<br/>Weakly-supervised Object and Action Localization +<br/><b>University of California, Davis</b></td><td>('19553871', 'Krishna Kumar Singh', 'krishna kumar singh')<br/>('1883898', 'Yong Jae Lee', 'yong jae lee')</td><td></td></tr><tr><td>0c741fa0966ba3ee4fc326e919bf2f9456d0cd74</td><td>Facial Age Estimation by Learning from Label Distributions <br/><b>School of Mathematical Sciences, Monash University, VIC 3800, Australia</b><br/><b>School of Computer Science and Engineering, Southeast University, Nanjing 210096, China</b><br/><b>National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China</b></td><td>('1735299', 'Xin Geng', 'xin geng')<br/>('2848275', 'Kate Smith-Miles', 'kate smith-miles')<br/>('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')</td><td></td></tr><tr><td>0c435e7f49f3e1534af0829b7461deb891cf540a</td><td>Capturing Global Semantic Relationships for Facial Action Unit Recognition <br/><b>Rensselaer Polytechnic Institute</b><br/><b>School of Electrical Engineering and Automation, Harbin Institute of Technology</b><br/><b>School of Computer Science and Technology, University of Science and Technology of China</b></td><td>('2860279', 'Ziheng Wang', 'ziheng wang')<br/>('1830523', 'Yongqiang Li', 'yongqiang li')<br/>('1791319', 'Shangfei Wang', 'shangfei wang')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>{wangz10,liy23,jiq}@rpi.edu <br/>sfwang@ustc.edu.cn @@ -521,7 +694,15 @@ </td><td></td><td></td></tr><tr><td>0c75c7c54eec85e962b1720755381cdca3f57dfb</td><td>2212 <br/>Face Landmark Fitting via Optimized Part <br/>Mixtures and Cascaded Deformable Model -</td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('1753384', 'Shaoting Zhang', 'shaoting zhang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>0c1d85a197a1f5b7376652a485523e616a406273</td><td>Joint Registration and Representation Learning for Unconstrained Face +</td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('1753384', 'Shaoting Zhang', 'shaoting zhang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>0cf2eecf20cfbcb7f153713479e3206670ea0e9c</td><td>Privacy-Protective-GAN for Face De-identification +<br/><b>Temple University</b></td><td>('50117915', 'Yifan Wu', 'yifan wu')<br/>('46319628', 'Fan Yang', 'fan yang')<br/>('1805398', 'Haibin Ling', 'haibin ling')</td><td>{yifan.wu, fyang, hbling} @temple.edu +</td></tr><tr><td>0ca36ecaf4015ca4095e07f0302d28a5d9424254</td><td>Improving Bag-of-Visual-Words Towards Effective Facial Expressive +<br/>Image Classification +<br/>1Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France +<br/>Keywords: +<br/>BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF. +</td><td>('10762131', 'Dawood Al Chanti', 'dawood al chanti')<br/>('1788869', 'Alice Caplier', 'alice caplier')</td><td>dawood.alchanti@gmail.com +</td></tr><tr><td>0c1d85a197a1f5b7376652a485523e616a406273</td><td>Joint Registration and Representation Learning for Unconstrained Face <br/>Identification <br/><b>University of Canberra, Australia, Data61 - CSIRO and ANU, Australia</b><br/><b>Khalifa University, Abu Dhabi, United Arab Emirates</b></td><td>('2008898', 'Munawar Hayat', 'munawar hayat')<br/>('1802072', 'Naoufel Werghi', 'naoufel werghi')</td><td>{munawar.hayat,roland.goecke}@canberra.edu.au, salman.khan@csiro.au, naoufel.werghi@kustar.ac.ae </td></tr><tr><td>0ca66283f4fb7dbc682f789fcf6d6732006befd5</td><td>Active Dictionary Learning for Image Representation @@ -533,7 +714,15 @@ <br/>of Doctor of Philosophy <br/>in the Graduate School of Arts and Sciences <br/><b>COLUMBIA UNIVERSITY</b><br/>2003 -</td><td>('1779052', 'Srinivasa G. Narasimhan', 'srinivasa g. narasimhan')</td><td></td></tr><tr><td>0c20fd90d867fe1be2459223a3cb1a69fa3d44bf</td><td>A Monte Carlo Strategy to Integrate Detection +</td><td>('1779052', 'Srinivasa G. Narasimhan', 'srinivasa g. narasimhan')</td><td></td></tr><tr><td>0cfca73806f443188632266513bac6aaf6923fa8</td><td>Predictive Uncertainty in Large Scale Classification +<br/>using Dropout - Stochastic Gradient Hamiltonian +<br/>Monte Carlo. +<br/>Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4. +<br/>∗Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile. +<br/>∗∗German Research Centre for Artificial Intelligence, Bremen, Germany. +</td><td></td><td>Email: 1diego.vergara@alu.ucm.cl, 2shernandez@ucm.cl,3matias.valdenegro@dfki.de, +<br/>4f.jorquera.uribe@gmail.com +</td></tr><tr><td>0c20fd90d867fe1be2459223a3cb1a69fa3d44bf</td><td>A Monte Carlo Strategy to Integrate Detection <br/>and Model-Based Face Analysis <br/>Department for Mathematics and Computer Science <br/><b>University of Basel, Switzerland</b></td><td>('2591294', 'Andreas Forster', 'andreas forster')<br/>('34460642', 'Bernhard Egger', 'bernhard egger')<br/>('1687079', 'Thomas Vetter', 'thomas vetter')</td><td>sandro.schoenborn,andreas.forster,bernhard.egger,thomas.vetter@unibas.ch @@ -663,7 +852,12 @@ <br/>Aggregating Local Patches for Scene Recognition </td><td>('40184588', 'Zhe Wang', 'zhe wang')<br/>('39709927', 'Limin Wang', 'limin wang')<br/>('40457196', 'Yali Wang', 'yali wang')<br/>('3047890', 'Bowen Zhang', 'bowen zhang')<br/>('40285012', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>0c60eebe10b56dbffe66bb3812793dd514865935</td><td></td><td></td><td></td></tr><tr><td>0c05f60998628884a9ac60116453f1a91bcd9dda</td><td>Optimizing Open-Ended Crowdsourcing: The Next Frontier in <br/>Crowdsourced Data Management -<br/><b>University of Illinois</b><br/><b>cid:63)Stanford University</b></td><td>('32953042', 'Akash Das Sarma', 'akash das sarma')<br/>('8336538', 'Vipul Venkataraman', 'vipul venkataraman')</td><td></td></tr><tr><td>660b73b0f39d4e644bf13a1745d6ee74424d4a16</td><td></td><td></td><td>3,250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at book.department@intechopen.com</td></tr><tr><td>66d512342355fb77a4450decc89977efe7e55fa2</td><td>Under review as a conference paper at ICLR 2018 +<br/><b>University of Illinois</b><br/><b>cid:63)Stanford University</b></td><td>('32953042', 'Akash Das Sarma', 'akash das sarma')<br/>('8336538', 'Vipul Venkataraman', 'vipul venkataraman')</td><td></td></tr><tr><td>6601a0906e503a6221d2e0f2ca8c3f544a4adab7</td><td>SRTM-2 2/9/06 3:27 PM Page 321 +<br/>Detection of Ancient Settlement Mounds: +<br/>Archaeological Survey Based on the +<br/>SRTM Terrain Model +<br/>B.H. Menze, J.A. Ur, and A.G. Sherratt +</td><td></td><td></td></tr><tr><td>660b73b0f39d4e644bf13a1745d6ee74424d4a16</td><td></td><td></td><td>3,250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at book.department@intechopen.com</td></tr><tr><td>66d512342355fb77a4450decc89977efe7e55fa2</td><td>Under review as a conference paper at ICLR 2018 <br/>LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- <br/>INATIVE AND MINIMUM INFORMATION LOSS PRIORS <br/>Anonymous authors @@ -686,7 +880,8 @@ <br/>jeffcohn@pitt.edu </td></tr><tr><td>6643a7feebd0479916d94fb9186e403a4e5f7cbf</td><td>Chapter 8 <br/>3D Face Recognition -</td><td>('1737428', 'Nick Pears', 'nick pears')</td><td></td></tr><tr><td>66dcd855a6772d2731b45cfdd75f084327b055c2</td><td>Quality Classified Image Analysis with Application +</td><td>('1737428', 'Nick Pears', 'nick pears')</td><td></td></tr><tr><td>661ca4bbb49bb496f56311e9d4263dfac8eb96e9</td><td>Datasheets for Datasets +</td><td>('2076288', 'Timnit Gebru', 'timnit gebru')<br/>('1722360', 'Hal Daumé', 'hal daumé')</td><td></td></tr><tr><td>66dcd855a6772d2731b45cfdd75f084327b055c2</td><td>Quality Classified Image Analysis with Application <br/>to Face Detection and Recognition <br/>International Doctoral Innovation Centre <br/><b>University of Nottingham Ningbo China</b><br/>School of Computer Science @@ -696,6 +891,12 @@ </td><td>('3247966', 'Jianlong Fu', 'jianlong fu')<br/>('1783122', 'Jinqiao Wang', 'jinqiao wang')<br/>('3349534', 'Xin-Jing Wang', 'xin-jing wang')<br/>('3663422', 'Yong Rui', 'yong rui')<br/>('1694235', 'Hanqing Lu', 'hanqing lu')</td><td>1fjlfu, jqwang, luhqg@nlpr.ia.ac.cn, 2fxjwang, yongruig@microsoft.com </td></tr><tr><td>66330846a03dcc10f36b6db9adf3b4d32e7a3127</td><td>Polylingual Multimodal Learning <br/><b>Institute AIFB, Karlsruhe Institute of Technology, Germany</b></td><td>('3219864', 'Aditya Mogadala', 'aditya mogadala')</td><td>{aditya.mogadala}@kit.edu +</td></tr><tr><td>66d087f3dd2e19ffe340c26ef17efe0062a59290</td><td>Dog Breed Identification +<br/>Brian Mittl +<br/>Vijay Singh +</td><td></td><td>wlarow@stanford.edu +<br/>bmittl@stanford.edu +<br/>vpsingh@stanford.edu </td></tr><tr><td>6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c</td><td>Ordinal Regression with Multiple Output CNN for Age Estimation <br/><b>Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia</b></td><td>('1786361', 'Zhenxing Niu', 'zhenxing niu')<br/>('1745420', 'Gang Hua', 'gang hua')<br/>('10699750', 'Xinbo Gao', 'xinbo gao')<br/>('36497527', 'Mo Zhou', 'mo zhou')<br/>('40367806', 'Le Wang', 'le wang')</td><td>{zhenxingniu,cdluminate}@gmail.com, lewang@mail.xjtu.edu.cn, xinbogao@mail.xidian.edu.cn <br/>ganghua@gmail.com @@ -720,7 +921,7 @@ <br/>for Exploring the Face Space <br/>Escuela Superior Politecnica del Litoral (ESPOL) <br/>Guayaquil-Ecuador -</td><td>('3123974', 'Andres G. Abad', 'andres g. abad')<br/>('3044670', 'Luis I. Reyes Castro', 'luis i. reyes castro')</td><td></td></tr><tr><td>66886997988358847615375ba7d6e9eb0f1bb27f</td><td></td><td></td><td></td></tr><tr><td>66a9935e958a779a3a2267c85ecb69fbbb75b8dc</td><td>FAST AND ROBUST FIXED-RANK MATRIX RECOVERY +</td><td>('3123974', 'Andres G. Abad', 'andres g. abad')<br/>('3044670', 'Luis I. Reyes Castro', 'luis i. reyes castro')</td><td></td></tr><tr><td>66886997988358847615375ba7d6e9eb0f1bb27f</td><td></td><td></td><td></td></tr><tr><td>66837add89caffd9c91430820f49adb5d3f40930</td><td></td><td></td><td></td></tr><tr><td>66a9935e958a779a3a2267c85ecb69fbbb75b8dc</td><td>FAST AND ROBUST FIXED-RANK MATRIX RECOVERY <br/>Fast and Robust Fixed-Rank Matrix <br/>Recovery <br/>Antonio Lopez @@ -911,6 +1112,11 @@ <br/>Recognition Systems by Segmenting Face Region <br/><b>St. Xavier s Catholic College of Engineering, Nagercoil, India</b><br/><b>Manonmaniam Sundaranar University, Tirunelveli, India</b></td><td>('9375880', 'R. Reena Rose', 'r. reena rose')<br/>('3311251', 'A. Suruliandi', 'a. suruliandi')</td><td>mailtoreenarose@yahoo.in <br/>suruliandi@yahoo.com +</td></tr><tr><td>3e0a1884448bfd7f416c6a45dfcdfc9f2e617268</td><td>Understanding and Controlling User Linkability in +<br/>Decentralized Learning +<br/><b>Max Planck Institute for Informatics</b><br/>Saarland Informatics Campus +<br/>Saarbrücken, Germany +</td><td>('9517443', 'Tribhuvanesh Orekondy', 'tribhuvanesh orekondy')<br/>('2390510', 'Seong Joon Oh', 'seong joon oh')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td>{orekondy,joon,schiele,mfritz}@mpi-inf.mpg.de </td></tr><tr><td>3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07</td><td>FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS <br/>AND LINEAR PROGRAMMING <br/>Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1 @@ -999,7 +1205,9 @@ </td></tr><tr><td>3ee7a8107a805370b296a53e355d111118e96b7c</td><td></td><td></td><td></td></tr><tr><td>3ebce6710135d1f9b652815e59323858a7c60025</td><td>Component-based Face Detection <br/>(cid:1)Center for Biological and Computational Learning, M.I.T., Cambridge, MA, USA <br/><b>cid:2)Honda RandD Americas, Inc., Boston, MA, USA</b><br/><b>University of Siena, Siena, Italy</b></td><td>('1684626', 'Bernd Heisele', 'bernd heisele')</td><td>(cid:1)heisele, serre, tp(cid:2) @ai.mit.edu pontil@dii.unisi.it -</td></tr><tr><td>3e3f305dac4fbb813e60ac778d6929012b4b745a</td><td>Feature sampling and partitioning for visual vocabulary +</td></tr><tr><td>3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b</td><td>Deep Value Networks Learn to +<br/>Evaluate and Iteratively Refine Structured Outputs +</td><td>('3037160', 'Michael Gygli', 'michael gygli')</td><td></td></tr><tr><td>3e3f305dac4fbb813e60ac778d6929012b4b745a</td><td>Feature sampling and partitioning for visual vocabulary <br/>generation on large action classification datasets. <br/><b>Oxford Brookes University</b><br/><b>University of Oxford</b></td><td>('3019396', 'Michael Sapienza', 'michael sapienza')<br/>('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')</td><td></td></tr><tr><td>3ea8a6dc79d79319f7ad90d663558c664cf298d4</td><td></td><td>('40253814', 'IRA COHEN', 'ira cohen')</td><td></td></tr><tr><td>3e4f84ce00027723bdfdb21156c9003168bc1c80</td><td>1979 <br/>© EURASIP, 2011 - ISSN 2076-1465 @@ -1046,7 +1254,12 @@ <br/>FOR FACE RECOGNITION BASED ON SPARSE REPRESENTATION <br/><b>Tokyo Metropolitan University</b><br/>6–6 Asahigaoka, Hino-shi, Tokyo 191–0065, Japan <br/>† NTT Network Innovation Laboratories, Japan -</td><td>('32403098', 'Yuichi Muraki', 'yuichi muraki')<br/>('11129971', 'Masakazu Furukawa', 'masakazu furukawa')<br/>('1728060', 'Masaaki Fujiyoshi', 'masaaki fujiyoshi')<br/>('34638424', 'Yoshihide Tonomura', 'yoshihide tonomura')<br/>('1737217', 'Hitoshi Kiya', 'hitoshi kiya')</td><td></td></tr><tr><td>3e687d5ace90c407186602de1a7727167461194a</td><td>Photo Tagging by Collection-Aware People Recognition +</td><td>('32403098', 'Yuichi Muraki', 'yuichi muraki')<br/>('11129971', 'Masakazu Furukawa', 'masakazu furukawa')<br/>('1728060', 'Masaaki Fujiyoshi', 'masaaki fujiyoshi')<br/>('34638424', 'Yoshihide Tonomura', 'yoshihide tonomura')<br/>('1737217', 'Hitoshi Kiya', 'hitoshi kiya')</td><td></td></tr><tr><td>3e40991ab1daa2a4906eb85a5d6a01a958b6e674</td><td>LIPNET: END-TO-END SENTENCE-LEVEL LIPREADING +<br/><b>University of Oxford, Oxford, UK</b><br/>Google DeepMind, London, UK 2 +<br/>CIFAR, Canada 3 +<br/>{yannis.assael,brendan.shillingford, +</td><td>('3365565', 'Yannis M. Assael', 'yannis m. assael')<br/>('3144580', 'Brendan Shillingford', 'brendan shillingford')<br/>('1766767', 'Shimon Whiteson', 'shimon whiteson')</td><td>shimon.whiteson,nando.de.freitas}@cs.ox.ac.uk +</td></tr><tr><td>3e687d5ace90c407186602de1a7727167461194a</td><td>Photo Tagging by Collection-Aware People Recognition <br/>UFF <br/>UFF <br/>Asla S´a @@ -1115,7 +1328,17 @@ <br/>Email: guyon@chalearn.org </td></tr><tr><td>501eda2d04b1db717b7834800d74dacb7df58f91</td><td></td><td>('3846862', 'Pedro Miguel Neves Marques', 'pedro miguel neves marques')</td><td></td></tr><tr><td>5083c6be0f8c85815ead5368882b584e4dfab4d1</td><td> Please do not quote. In press, Handbook of affective computing. New York, NY: Oxford <br/>Automated Face Analysis for Affective Computing -</td><td>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td></td></tr><tr><td>500b92578e4deff98ce20e6017124e6d2053b451</td><td></td><td></td><td></td></tr><tr><td>5058a7ec68c32984c33f357ebaee96c59e269425</td><td>A Comparative Evaluation of Regression Learning +</td><td>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td></td></tr><tr><td>506c2fbfa9d16037d50d650547ad3366bb1e1cde</td><td>Convolutional Channel Features: Tailoring CNN to Diverse Tasks +<br/>Junjie Yan +<br/>Zhen Lei +<br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +<br/><b>Institute of Automation, Chinese Academy of Sciences, China</b></td><td>('1716231', 'Bin Yang', 'bin yang')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{zlei, szli}@nlpr.ia.ac.cn +<br/>{yb.derek, yanjjie}@gmail.com +</td></tr><tr><td>500b92578e4deff98ce20e6017124e6d2053b451</td><td></td><td></td><td></td></tr><tr><td>504028218290d68859f45ec686f435f473aa326c</td><td>Multi-Fiber Networks for Video Recognition +<br/><b>National University of Singapore</b><br/>2 Facebook Research +<br/><b>Qihoo 360 AI Institute</b></td><td>('1713312', 'Yunpeng Chen', 'yunpeng chen')<br/>('1944225', 'Yannis Kalantidis', 'yannis kalantidis')<br/>('2757639', 'Jianshu Li', 'jianshu li')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')</td><td>{chenyunpeng, jianshu}@u.nus.edu, yannisk@fb.com, +<br/>{eleyans, elefjia}@nus.edu.sg +</td></tr><tr><td>5058a7ec68c32984c33f357ebaee96c59e269425</td><td>A Comparative Evaluation of Regression Learning <br/>Algorithms for Facial Age Estimation <br/>1 Herta Security <br/>Pau Claris 165 4-B, 08037 Barcelona, Spain @@ -1150,7 +1373,18 @@ </td></tr><tr><td>5050807e90a925120cbc3a9cd13431b98965f4b9</td><td>To appear in the ECCV Workshop on Parts and Attributes, Oct. 2012. <br/>Unsupervised Learning of Discriminative <br/>Relative Visual Attributes -<br/><b>Boston University</b><br/><b>Hacettepe University</b></td><td>('2863531', 'Shugao Ma', 'shugao ma')<br/>('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')</td><td></td></tr><tr><td>50eb2ee977f0f53ab4b39edc4be6b760a2b05f96</td><td>Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11 +<br/><b>Boston University</b><br/><b>Hacettepe University</b></td><td>('2863531', 'Shugao Ma', 'shugao ma')<br/>('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')</td><td></td></tr><tr><td>50a0930cb8cc353e15a5cb4d2f41b365675b5ebf</td><td></td><td></td><td></td></tr><tr><td>508702ed2bf7d1b0655ea7857dd8e52d6537e765</td><td>ZUO, ORGANISCIAK, SHUM, YANG: SST-VLAD AND SST-FV FOR VAR +<br/>Saliency-Informed Spatio-Temporal Vector +<br/>of Locally Aggregated Descriptors and +<br/>Fisher Vectors for Visual Action Recognition +<br/>Department of Computer and +<br/>Information Sciences +<br/><b>Northumbria University</b><br/>Newcastle upon Tyne, NE1 8ST, UK +</td><td>('40760781', 'Zheming Zuo', 'zheming zuo')<br/>('34975328', 'Daniel Organisciak', 'daniel organisciak')<br/>('2840036', 'Hubert P. H. Shum', 'hubert p. h. shum')<br/>('1706028', 'Longzhi Yang', 'longzhi yang')</td><td>zheming.zuo@northumbria.ac.uk +<br/>daniel.organisciak@northumbria.ac.uk +<br/>hubert.shum@northumbria.ac.uk +<br/>longzhi.yang@northumbria.ac.uk +</td></tr><tr><td>50eb2ee977f0f53ab4b39edc4be6b760a2b05f96</td><td>Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11 <br/>AUSTRALIAN JOURNAL OF BASIC AND <br/>APPLIED SCIENCES <br/>ISSN:1991-8178 EISSN: 2309-8414 @@ -1392,12 +1626,14 @@ </td><td>('34964075', 'Satyanarayana Murty', 'satyanarayana murty')</td><td>India, 1gsn_73@yahoo.co.in <br/>2drvvk144@gmail.com <br/>3obulesh.a@gmail.com -</td></tr><tr><td>68a3f12382003bc714c51c85fb6d0557dcb15467</td><td></td><td></td><td></td></tr><tr><td>6859b891a079a30ef16f01ba8b85dc45bd22c352</td><td>International Journal of Emerging Technology and Advanced Engineering +</td></tr><tr><td>68d2afd8c5c1c3a9bbda3dd209184e368e4376b9</td><td>Representation Learning by Rotating Your Faces +</td><td>('1849929', 'Luan Tran', 'luan tran')<br/>('2399004', 'Xi Yin', 'xi yin')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td></td></tr><tr><td>68a3f12382003bc714c51c85fb6d0557dcb15467</td><td></td><td></td><td></td></tr><tr><td>6859b891a079a30ef16f01ba8b85dc45bd22c352</td><td>International Journal of Emerging Technology and Advanced Engineering <br/>Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 10, October 2014) <br/>2D Face Recognition Based on PCA & Comparison of <br/>Manhattan Distance, Euclidean Distance & Chebychev <br/>Distance -<br/><b>RCC Institute of Information Technology, Kolkata, India</b></td><td>('2467416', 'Rajib Saha', 'rajib saha')<br/>('2144187', 'Sayan Barman', 'sayan barman')</td><td></td></tr><tr><td>68003e92a41d12647806d477dd7d20e4dcde1354</td><td>ISSN: 0976-9102 (ONLINE) +<br/><b>RCC Institute of Information Technology, Kolkata, India</b></td><td>('2467416', 'Rajib Saha', 'rajib saha')<br/>('2144187', 'Sayan Barman', 'sayan barman')</td><td></td></tr><tr><td>68d08ed9470d973a54ef7806318d8894d87ba610</td><td>Drive Video Analysis for the Detection of Traffic Near-Miss Incidents +</td><td>('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')<br/>('5014206', 'Teppei Suzuki', 'teppei suzuki')<br/>('6881850', 'Shoko Oikawa', 'shoko oikawa')<br/>('1720770', 'Yasuhiro Matsui', 'yasuhiro matsui')<br/>('1732705', 'Yutaka Satoh', 'yutaka satoh')</td><td></td></tr><tr><td>68caf5d8ef325d7ea669f3fb76eac58e0170fff0</td><td></td><td></td><td></td></tr><tr><td>68003e92a41d12647806d477dd7d20e4dcde1354</td><td>ISSN: 0976-9102 (ONLINE) <br/>DOI: 10.21917/ijivp.2013.0101 <br/> ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02 <br/>FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE @@ -1416,7 +1652,10 @@ <br/>3 ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico <br/>Veracruz, M´exico </td><td></td><td>mario.castelan@cinvestav.edu.mx -</td></tr><tr><td>68c5238994e3f654adea0ccd8bca29f2a24087fc</td><td>PLSA-BASED ZERO-SHOT LEARNING +</td></tr><tr><td>684f5166d8147b59d9e0938d627beff8c9d208dd</td><td>IEEE TRANS. NNLS, JUNE 2017 +<br/>Discriminative Block-Diagonal Representation +<br/>Learning for Image Recognition +</td><td>('38448016', 'Zheng Zhang', 'zheng zhang')<br/>('40065614', 'Yong Xu', 'yong xu')<br/>('40799321', 'Ling Shao', 'ling shao')<br/>('49500178', 'Jian Yang', 'jian yang')</td><td></td></tr><tr><td>68c5238994e3f654adea0ccd8bca29f2a24087fc</td><td>PLSA-BASED ZERO-SHOT LEARNING <br/>Centre of Image and Signal Processing <br/>Faculty of Computer Science & Information Technology <br/><b>University of Malaya, 50603 Kuala Lumpur, Malaysia</b></td><td>('2800072', 'Wai Lam Hoo', 'wai lam hoo')<br/>('2863960', 'Chee Seng Chan', 'chee seng chan')</td><td>{wailam88@siswa.um.edu.my; cs.chan@um.edu.my} @@ -1428,7 +1667,10 @@ <br/><b>Link ping University</b><br/>Face Recognition with <br/>Preprocessing and Neural <br/>Networks -</td><td></td><td></td></tr><tr><td>687e17db5043661f8921fb86f215e9ca2264d4d2</td><td>A Robust Elastic and Partial Matching Metric for Face Recognition +</td><td></td><td></td></tr><tr><td>68484ae8a042904a95a8d284a7f85a4e28e37513</td><td>Spoofing Deep Face Recognition with Custom Silicone Masks +<br/>S´ebastien Marcel +<br/><b>Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland</b></td><td>('1952348', 'Sushil Bhattacharjee', 'sushil bhattacharjee')</td><td>{sushil.bhattacharjee; amir.mohammadi; sebastien.marcel}@idiap.ch +</td></tr><tr><td>687e17db5043661f8921fb86f215e9ca2264d4d2</td><td>A Robust Elastic and Partial Matching Metric for Face Recognition <br/>Microsoft Corporate <br/>One Microsoft Way, Redmond, WA 98052 </td><td>('1745420', 'Gang Hua', 'gang hua')<br/>('33474090', 'Amir Akbarzadeh', 'amir akbarzadeh')</td><td>{ganghua, amir}@microsoft.com @@ -1553,7 +1795,38 @@ <br/><b>Florida International University</b><br/>Miami, FL 33199, USA </td><td>('1685202', 'Lin Lin', 'lin lin')<br/>('1693826', 'Mei-Ling Shyu', 'mei-ling shyu')<br/>('1705664', 'Shu-Ching Chen', 'shu-ching chen')</td><td>Email: l.lin2@umiami.edu, shyu@miami.edu <br/>Email: chens@cs.fiu.edu -</td></tr><tr><td>683ec608442617d11200cfbcd816e86ce9ec0899</td><td>Dual Linear Regression Based Classification for Face Cluster Recognition +</td></tr><tr><td>682760f2f767fb47e1e2ca35db3becbb6153756f</td><td>The Effect of Pets on Happiness: A Large-scale Multi-Factor +<br/>Analysis using Social Multimedia +<br/>From reducing stress and loneliness, to boosting productivity and overall well-being, pets are believed to play +<br/>a significant role in people’s daily lives. Many traditional studies have identified that frequent interactions +<br/>with pets could make individuals become healthier and more optimistic, and ultimately enjoy a happier life. +<br/>However, most of those studies are not only restricted in scale, but also may carry biases by using subjective +<br/>self-reports, interviews, and questionnaires as the major approaches. In this paper, we leverage large-scale +<br/>data collected from social media and the state-of-the-art deep learning technologies to study this phenomenon +<br/>in depth and breadth. Our study includes four major steps: 1) collecting timeline posts from around 20,000 +<br/>Instagram users; 2) using face detection and recognition on 2-million photos to infer users’ demographics, +<br/>relationship status, and whether having children, 3) analyzing a user’s degree of happiness based on images +<br/>and captions via smiling classification and textual sentiment analysis; 3) applying transfer learning techniques +<br/>to retrain the final layer of the Inception v3 model for pet classification; and 4) analyzing the effects of pets +<br/>on happiness in terms of multiple factors of user demographics. Our main results have demonstrated the +<br/>efficacy of our proposed method with many new insights. We believe this method is also applicable to other +<br/>domains as a scalable, efficient, and effective methodology for modeling and analyzing social behaviors and +<br/>psychological well-being. In addition, to facilitate the research involving human faces, we also release our +<br/>dataset of 700K analyzed faces. +<br/>CCS Concepts: • Human-centered computing → Social media; +<br/>Additional Key Words and Phrases: Happiness analysis, happiness, user demographics, pet and happiness, +<br/>social multimedia, social media. +<br/>ACM Reference format: +<br/>Analysis using Social Multimedia. ACM Trans. Intell. Syst. Technol. 9, 4, Article 39 (June 2017), 15 pages. +<br/>https://doi.org/0000001.0000001 +<br/>1 INTRODUCTION +<br/>Happiness has always been a subjective and multidimensional matter; its definition varies individu- +<br/>ally, and the factors impacting our feeling of happiness are diverse. A study in [21] has constructed +<br/><b>We thank the support of New York State through the Goergen Institute for Data Science, our corporate research sponsors</b><br/>Xerox and VisualDX, and NSF Award #1704309. +<br/><b>Author s addresses: X. Peng, University of Rochester; L. Chi</b><br/><b>University of Rochester and J. Luo, University of Rochester</b><br/>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee +<br/>provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the +<br/>full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. +</td><td>('1901094', 'Xuefeng Peng', 'xuefeng peng')<br/>('35678395', 'Li-Kai Chi', 'li-kai chi')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')<br/>('1901094', 'Xuefeng Peng', 'xuefeng peng')<br/>('35678395', 'Li-Kai Chi', 'li-kai chi')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')</td><td></td></tr><tr><td>683ec608442617d11200cfbcd816e86ce9ec0899</td><td>Dual Linear Regression Based Classification for Face Cluster Recognition <br/><b>University of Northern British Columbia</b><br/>Prince George, BC, Canada V2N 4Z9 </td><td>('1692551', 'Liang Chen', 'liang chen')</td><td>chen.liang.97@gmail.com </td></tr><tr><td>68c17aa1ecbff0787709be74d1d98d9efd78f410</td><td>International Journal of Optomechatronics, 6: 92–119, 2012 @@ -1595,6 +1868,74 @@ <br/>ing.uchile.cl <br/>92 </td><td>('32271973', 'Claudio Perez', 'claudio perez')<br/>('40333310', 'Juan Tapia', 'juan tapia')<br/>('32723983', 'Claudio Held', 'claudio held')<br/>('32271973', 'Claudio Perez', 'claudio perez')<br/>('32271973', 'Claudio Perez', 'claudio perez')</td><td>Engineering, Universidad de Chile Casilla 412-3, Av. Tupper 2007, Santiago, Chile. E-mail: clperez@ +</td></tr><tr><td>68f61154a0080c4aae9322110c8827978f01ac2e</td><td>Research Article +<br/>Journal of the Optical Society of America A +<br/>Recognizing blurred, non-frontal, illumination and +<br/>expression variant partially occluded faces +<br/><b>Indian Institute of Technology Madras, Chennai 600036, India</b><br/>Compiled June 26, 2016 +<br/>The focus of this paper is on the problem of recognizing faces across space-varying motion blur, changes +<br/>in pose, illumination, and expression, as well as partial occlusion, when only a single image per subject +<br/>is available in the gallery. We show how the blur incurred due to relative motion between the camera and +<br/>the subject during exposure can be estimated from the alpha matte of pixels that straddle the boundary +<br/>between the face and the background. We also devise a strategy to automatically generate the trimap re- +<br/>quired for matte estimation. Having computed the motion via the matte of the probe, we account for pose +<br/>variations by synthesizing from the intensity image of the frontal gallery, a face image that matches the +<br/>pose of the probe. To handle illumination and expression variations, and partial occlusion, we model the +<br/>probe as a linear combination of nine blurred illumination basis images in the synthesized non-frontal +<br/>pose, plus a sparse occlusion. We also advocate a recognition metric that capitalizes on the sparsity of the +<br/>occluded pixels. The performance of our method is extensively validated on synthetic as well as real face +<br/>data. © 2016 Optical Society of America +<br/>OCIS codes: +<br/>(150.0150) Machine vision. +<br/>http://dx.doi.org/10.1364/ao.XX.XXXXXX +<br/>(100.0100) Image processing; (100.5010) Pattern recognition; (100.3008) Image recognition, algorithms and filters; +<br/>1. INTRODUCTION +<br/>State-of-the-art face recognition (FR) systems can outperform +<br/>even humans when presented with images captured under con- +<br/>trolled environments. However, their performance drops quite +<br/>rapidly in unconstrained settings due to image degradations +<br/>arising from blur, variations in pose, illumination, and expres- +<br/>sion, partial occlusion etc. Motion blur is commonplace today +<br/>owing to the exponential rise in the use and popularity of light- +<br/>weight and cheap hand-held imaging devices, and the ubiquity +<br/>of mobile phones equipped with cameras. Photographs cap- +<br/>tured using a hand-held device usually contain blur when the +<br/>illumination is poor because larger exposure times are needed +<br/>to compensate for the lack of light, and this increases the possi- +<br/>bility of camera shake. On the other hand, reducing the shutter +<br/>speed results in noisy images while tripods inevitably restrict +<br/>mobility. Even for a well-lit scene, the face might be blurred if +<br/>the subject is in motion. The problem is further compounded +<br/>in the case of poorly-lit dynamic scenes since the blur observed +<br/>on the face is due to the combined effects of the blur induced +<br/>by the motion of the camera and the independent motion of +<br/>the subject. In addition to blur and illumination, practical face +<br/>recognition algorithms must also possess the ability to recognize +<br/>faces across reasonable variations in pose. Partial occlusion and +<br/>facial expression changes, common in real-world applications, +<br/>escalate the challenges further. Yet another factor that governs +<br/>the performance of face recognition algorithms is the number +<br/>of images per subject available for training. In many practical +<br/>application scenarios such as law enforcement, driver license or +<br/>passport identification, where there is usually only one training +<br/>sample per subject in the database, techniques that rely on the +<br/>size and representation of the training set suffer a serious perfor- +<br/>mance drop or even fail to work. Face recognition algorithms +<br/>can broadly be classified into either discriminative or genera- +<br/>tive approaches. While the availability of large labeled datasets +<br/>and greater computing power has boosted the performance of +<br/>discriminative methods [1, 2] recently, generative approaches +<br/>continue to remain very popular [3, 4], and there is concurrent +<br/>research in both directions. The model we present in this paper +<br/>falls into the latter category. In fact, generative models are even +<br/>useful for producing training samples for learning algorithms. +<br/>Literature on face recognition from blurred images can be +<br/>broadly classified into four categories. It is important to note +<br/>that all of them (except our own earlier work in [4]) are restricted +<br/>to the convolution model for uniform blur. In the first approach +<br/>[5, 6], the blurred probe image is first deblurred using standard +<br/>deconvolution algorithms before performing recognition. How- +</td><td></td><td>*Corresponding author: jithuthatswho@gmail.com </td></tr><tr><td>6821113166b030d2123c3cd793dd63d2c909a110</td><td>STUDIA INFORMATICA <br/>Volume 36 <br/>2015 @@ -2018,7 +2359,17 @@ <br/>[15 of 21] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? In IEEE CVPR, 2009. <br/>[18 of 21] T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination and Expression (PIE) Database. In Proceedings of the IEEE F&G, May 2002. </td><td>('31552290', 'Brian C. Parks', 'brian c. parks')<br/>('2613438', 'Walter J. Scheirer', 'walter j. scheirer')</td><td>{viyer,skirkbride,bparks,wscheirer,tboult}@vast.uccs.edu -</td></tr><tr><td>5721216f2163d026e90d7cd9942aeb4bebc92334</td><td></td><td></td><td></td></tr><tr><td>575141e42740564f64d9be8ab88d495192f5b3bc</td><td>Age Estimation based on Multi-Region +</td></tr><tr><td>574b62c845809fd54cc168492424c5fac145bc83</td><td>Learning Warped Guidance for Blind Face +<br/>Restoration +<br/><b>School of Computer Science and Technology, Harbin Institute of Technology, China</b><br/><b>School of Data and Computer Science, Sun Yat-sen University, China</b><br/><b>University of Kentucky, USA</b></td><td>('21515518', 'Xiaoming Li', 'xiaoming li')<br/>('40508248', 'Yuting Ye', 'yuting ye')<br/>('1724520', 'Wangmeng Zuo', 'wangmeng zuo')<br/>('1737218', 'Liang Lin', 'liang lin')<br/>('38958903', 'Ruigang Yang', 'ruigang yang')</td><td>csxmli@hit.edu.cn, csmliu@outlook.com, yeyuting.jlu@gmail.com, +<br/>wmzuo@hit.edu.cn +<br/>linliang@ieee.org +<br/>ryang@cs.uky.edu +</td></tr><tr><td>57246142814d7010d3592e3a39a1ed819dd01f3b</td><td><b>MITSUBISHI ELECTRIC RESEARCH LABORATORIES</b><br/>http://www.merl.com +<br/>Verification of Very Low-Resolution Faces Using An +<br/>Identity-Preserving Deep Face Super-resolution Network +<br/>TR2018-116 August 24, 2018 +</td><td></td><td></td></tr><tr><td>5721216f2163d026e90d7cd9942aeb4bebc92334</td><td></td><td></td><td></td></tr><tr><td>575141e42740564f64d9be8ab88d495192f5b3bc</td><td>Age Estimation based on Multi-Region <br/>Convolutional Neural Network <br/>1Center for Biometrics and Security Research & National Laboratory of Pattern <br/><b>Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China</b><br/><b>University of Chinese Academy of Sciences</b></td><td>('40282288', 'Ting Liu', 'ting liu')<br/>('1756538', 'Jun Wan', 'jun wan')<br/>('39974958', 'Tingzhao Yu', 'tingzhao yu')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{ting.liu,jun.wan,zlei,szli}@nlpr.ia.ac.cn,yutingzhao2013@ia.ac.cn @@ -2033,7 +2384,35 @@ <br/>A Novel Approach for Face Recognition <br/>Using PCA and Artificial Neural Network <br/><b>Dayananda Sagar College of Engg., India</b><br/><b>Dayananda Sagar College of Engg., India</b></td><td>('9856026', 'Karthik G', 'karthik g')<br/>('9856026', 'Karthik G', 'karthik g')</td><td>1 email : karthik.knocks@gmail.com; 2 email : hcsateesh@gmail.com -</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td></td><td></td><td></td></tr><tr><td>57b052cf826b24739cd7749b632f85f4b7bcf90b</td><td>Fast Fashion Guided Clothing Image Retrieval: +</td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td></td><td></td><td></td></tr><tr><td>571b83f7fc01163383e6ca6a9791aea79cafa7dd</td><td>SeqFace: Make full use of sequence information for face recognition +<br/><b>College of Information Science and Technology</b><br/><b>Beijing University of Chemical Technology, China</b><br/>YUNSHITU Corp., China +</td><td>('48594708', 'Wei Hu', 'wei hu')<br/>('7524887', 'Yangyu Huang', 'yangyu huang')<br/>('8451319', 'Guodong Yuan', 'guodong yuan')<br/>('47191084', 'Fan Zhang', 'fan zhang')<br/>('50391855', 'Ruirui Li', 'ruirui li')<br/>('47113208', 'Wei Li', 'wei li')</td><td></td></tr><tr><td>574ad7ef015995efb7338829a021776bf9daaa08</td><td>AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks +<br/>for Human Action Recognition in Videos +<br/>1IIT Kanpur‡ +<br/>2SRI International +<br/>3UCSD +</td><td>('24899770', 'Amlan Kar', 'amlan kar')<br/>('12692625', 'Nishant Rai', 'nishant rai')<br/>('39707211', 'Karan Sikka', 'karan sikka')<br/>('39396475', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>57a14a65e8ae15176c9afae874854e8b0f23dca7</td><td>UvA-DARE (Digital Academic Repository) +<br/>Seeing mixed emotions: The specificity of emotion perception from static and dynamic +<br/>facial expressions across cultures +<br/>Fang, X.; Sauter, D.A.; van Kleef, G.A. +<br/>Published in: +<br/>Journal of Cross-Cultural Psychology +<br/>DOI: +<br/>10.1177/0022022117736270 +<br/>Link to publication +<br/>Citation for published version (APA): +<br/>Fang, X., Sauter, D. A., & van Kleef, G. A. (2018). Seeing mixed emotions: The specificity of emotion perception +<br/>from static and dynamic facial expressions across cultures. Journal of Cross-Cultural Psychology, 49(1), 130- +<br/>148. DOI: 10.1177/0022022117736270 +<br/>General rights +<br/>It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +<br/>other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +<br/>Disclaimer/Complaints regulations +<br/>If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +<br/>your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +<br/><b>the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam</b><br/>The Netherlands. You will be contacted as soon as possible. +<br/>Download date: 08 Aug 2018 +<br/><b>UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl</b></td><td></td><td></td></tr><tr><td>57b052cf826b24739cd7749b632f85f4b7bcf90b</td><td>Fast Fashion Guided Clothing Image Retrieval: <br/>Delving Deeper into What Feature Makes <br/>Fashion <br/><b>School of Data and Computer Science, Sun Yat-sen University</b><br/>Guangzhou, P.R China @@ -2060,6 +2439,11 @@ <br/>Center for Automation Research, UMIACS* <br/>Department of Electrical and Computer Engineering† <br/><b>University of Maryland, College Park</b></td><td>('2747758', 'Maya Kabkab', 'maya kabkab')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>Email: {mayak, emhand, rama}@umiacs.umd.edu +</td></tr><tr><td>3b73f8a2b39751efb7d7b396bf825af2aaadee24</td><td>Connecting Pixels to Privacy and Utility: +<br/>Automatic Redaction of Private Information in Images +<br/><b>Max Planck Institute for Informatics</b><br/>Saarland Informatics Campus +<br/>Saabr¨ucken, Germany +</td><td>('9517443', 'Tribhuvanesh Orekondy', 'tribhuvanesh orekondy')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td>{orekondy,mfritz,schiele}@mpi-inf.mpg.de </td></tr><tr><td>3b2d5585af59480531616fe970cb265bbdf63f5b</td><td>Robust Face Recognition under Varying Light <br/>Based on 3D Recovery <br/>Center of Computer Vision, School of @@ -2293,7 +2677,9 @@ <br/><b>Queen Mary University of London</b></td><td>('1735328', 'Xun Xu', 'xun xu')<br/>('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')</td><td>{xun.xu,t.hospedales,s.gong}@qmul.ac.uk </td></tr><tr><td>3b9c08381282e65649cd87dfae6a01fe6abea79b</td><td>CUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016 <br/><b>Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong</b><br/>2Computer Vision Lab, ETH Zurich, Switzerland -<br/><b>Shenzhen Institutes of Advanced Technology, CAS, China</b></td><td>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('33345248', 'Limin Wang', 'limin wang')<br/>('1915826', 'Zhe Wang', 'zhe wang')<br/>('3047890', 'Bowen Zhang', 'bowen zhang')<br/>('2313919', 'Hang Song', 'hang song')<br/>('1688012', 'Wei Li', 'wei li')<br/>('1807606', 'Dahua Lin', 'dahua lin')<br/>('1681236', 'Luc Van Gool', 'luc van gool')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10</td><td>Glimpse: Continuous, Real-Time Object Recognition on +<br/><b>Shenzhen Institutes of Advanced Technology, CAS, China</b></td><td>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('33345248', 'Limin Wang', 'limin wang')<br/>('1915826', 'Zhe Wang', 'zhe wang')<br/>('3047890', 'Bowen Zhang', 'bowen zhang')<br/>('2313919', 'Hang Song', 'hang song')<br/>('1688012', 'Wei Li', 'wei li')<br/>('1807606', 'Dahua Lin', 'dahua lin')<br/>('1681236', 'Luc Van Gool', 'luc van gool')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>3b84d074b8622fac125f85ab55b63e876fed4628</td><td>End-to-End Localization and Ranking for +<br/>Relative Attributes +<br/><b>University of California, Davis</b></td><td>('19553871', 'Krishna Kumar Singh', 'krishna kumar singh')<br/>('1883898', 'Yong Jae Lee', 'yong jae lee')</td><td></td></tr><tr><td>3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10</td><td>Glimpse: Continuous, Real-Time Object Recognition on <br/>Mobile Devices <br/>MIT CSAIL <br/>Microsoft Research @@ -2305,7 +2691,11 @@ <br/>shuodeng@csail.mit.edu <br/>bahl@microsoft.com <br/>hari@csail.mit.edu -</td></tr><tr><td>3bc376f29bc169279105d33f59642568de36f17f</td><td>Active Shape Models with SIFT Descriptors and MARS +</td></tr><tr><td>3be8f1f7501978287af8d7ebfac5963216698249</td><td>Deep Cascaded Regression for Face Alignment +<br/><b>School of Data and Computer Science, Sun Yat-Sen University, China</b><br/><b>National University of Singapore, Singapore</b><br/>algorithm refines the shape by estimating a shape increment +<br/>∆S. In particular, a shape increment at stage k is calculated +<br/>as: +</td><td>('3124720', 'Shengtao Xiao', 'shengtao xiao')<br/>('10338111', 'Zhen Cui', 'zhen cui')<br/>('48815683', 'Yan Pan', 'yan pan')<br/>('48258938', 'Chunyan Xu', 'chunyan xu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>3bc376f29bc169279105d33f59642568de36f17f</td><td>Active Shape Models with SIFT Descriptors and MARS <br/><b>University of Cape Town, South Africa</b><br/>Keywords: <br/>Facial Landmark, Active Shape Model, Multivariate Adaptive Regression Splines </td><td>('2822258', 'Stephen Milborrow', 'stephen milborrow')<br/>('2537623', 'Fred Nicolls', 'fred nicolls')</td><td>milbo@sonic.net @@ -2332,7 +2722,10 @@ <br/>Date of Defense: 23rd of September, 2010 <br/>Darmstadt, 2010 <br/>D17 -</td><td>('37718254', 'Michael Stark', 'michael stark')</td><td></td></tr><tr><td>3b9b200e76a35178da940279d566bbb7dfebb787</td><td>Learning Channel Inter-dependencies at Multiple Scales on Dense +</td><td>('37718254', 'Michael Stark', 'michael stark')</td><td></td></tr><tr><td>3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f</td><td>Enhancing Convolutional Neural Networks for Face Recognition with +<br/>Occlusion Maps and Batch Triplet Loss +<br/><b>aSchool of Engineering and Technology, University of Hertfordshire, Hat eld AL10 9AB, UK</b><br/>bIDscan Biometrics (a GBG company), London E14 9QD, UK +</td><td>('2133352', 'Li Meng', 'li meng')<br/>('46301106', 'Margaret Hartnett', 'margaret hartnett')</td><td></td></tr><tr><td>3b9b200e76a35178da940279d566bbb7dfebb787</td><td>Learning Channel Inter-dependencies at Multiple Scales on Dense <br/>Networks for Face Recognition <br/>109 Research Way — PO Box 6109 Morgantown, West Virginia <br/><b>West Virginia University</b><br/>November 29, 2017 @@ -2408,7 +2801,10 @@ <br/>Face Recognition in Personal Photo Collections <br/>Anonymous CVPR submission <br/>Paper ID 2052 -</td><td></td><td></td></tr><tr><td>3b557c4fd6775afc80c2cf7c8b16edde125b270e</td><td>Face Recognition: Perspectives from the +</td><td></td><td></td></tr><tr><td>3bb6570d81685b769dc9e74b6e4958894087f3f1</td><td>Hu-Fu: Hardware and Software Collaborative +<br/>Attack Framework against Neural Networks +<br/><b>Beijing National Research Center for Information Science and Technology</b><br/><b>Tsinghua University</b></td><td>('3493074', 'Wenshuo Li', 'wenshuo li')<br/>('1909938', 'Jincheng Yu', 'jincheng yu')<br/>('6636914', 'Xuefei Ning', 'xuefei ning')<br/>('2892980', 'Pengjun Wang', 'pengjun wang')<br/>('49988678', 'Qi Wei', 'qi wei')<br/>('47904166', 'Yu Wang', 'yu wang')<br/>('39150998', 'Huazhong Yang', 'huazhong yang')</td><td>{lws17@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn} +</td></tr><tr><td>3b557c4fd6775afc80c2cf7c8b16edde125b270e</td><td>Face Recognition: Perspectives from the <br/>Real-World <br/><b>Institute for Infocomm Research, A*STAR</b><br/>1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632. <br/>Phone: +65 6408 2071; Fax: +65 6776 1378; @@ -2435,7 +2831,10 @@ </td></tr><tr><td>3b470b76045745c0ef5321e0f1e0e6a4b1821339</td><td>Consensus of Regression for Occlusion-Robust <br/>Facial Feature Localization <br/><b>Rutgers University, Piscataway, NJ 08854, USA</b><br/>2 Adobe Research, San Jose, CA 95110, USA -</td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>6f288a12033fa895fb0e9ec3219f3115904f24de</td><td>Learning Expressionlets via Universal Manifold +</td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb</td><td>Low Resolution Face Recognition Using a +<br/>Two-Branch Deep Convolutional Neural Network +<br/>Architecture +</td><td>('19189138', 'Erfan Zangeneh', 'erfan zangeneh')<br/>('1772623', 'Mohammad Rahmati', 'mohammad rahmati')<br/>('3071758', 'Yalda Mohsenzadeh', 'yalda mohsenzadeh')</td><td></td></tr><tr><td>6f288a12033fa895fb0e9ec3219f3115904f24de</td><td>Learning Expressionlets via Universal Manifold <br/>Model for Dynamic Facial Expression Recognition </td><td>('1730228', 'Mengyi Liu', 'mengyi liu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('3373117', 'Ruiping Wang', 'ruiping wang')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td></td></tr><tr><td>6fa0c206873dcc5812f7ea74a48bb4bf4b273494</td><td>Real-time Mobile Facial Expression Recognition System – A Case Study <br/>Department of Computer Engineering @@ -2471,7 +2870,14 @@ <br/>Blood Reveal Novel Biomarkers for Early Detection Of <br/>Clinical Alzheimer’s Disease <br/><b>Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de</b><br/>Produc¸a˜o, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil -</td><td>('8423987', 'Mateus Rocha de Paula', 'mateus rocha de paula')<br/>('34861417', 'Regina Berretta', 'regina berretta')<br/>('1738680', 'Pablo Moscato', 'pablo moscato')</td><td></td></tr><tr><td>6f75697a86d23d12a14be5466a41e5a7ffb79fad</td><td></td><td></td><td></td></tr><tr><td>6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81</td><td>Structured Output SVM Prediction of Apparent Age, +</td><td>('8423987', 'Mateus Rocha de Paula', 'mateus rocha de paula')<br/>('34861417', 'Regina Berretta', 'regina berretta')<br/>('1738680', 'Pablo Moscato', 'pablo moscato')</td><td></td></tr><tr><td>6f75697a86d23d12a14be5466a41e5a7ffb79fad</td><td></td><td></td><td></td></tr><tr><td>6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd</td><td>Pages 51.1-51.12 +<br/>DOI: https://dx.doi.org/10.5244/C.30.51 +</td><td></td><td></td></tr><tr><td>6f7a8b3e8f212d80f0fb18860b2495be4c363eac</td><td>Creating Capsule Wardrobes from Fashion Images +<br/>UT-Austin +<br/>UT-Austin +</td><td>('22211024', 'Wei-Lin Hsiao', 'wei-lin hsiao')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>kimhsiao@cs.utexas.edu +<br/>grauman@cs.utexas.edu +</td></tr><tr><td>6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81</td><td>Structured Output SVM Prediction of Apparent Age, <br/>Gender and Smile From Deep Features <br/>Michal Uˇriˇc´aˇr <br/>CMP, Dept. of Cybernetics @@ -2510,6 +2916,17 @@ <br/>*AICTE Emeritus Fellow </td><td>('1694317', 'Mrinal Kanti Bhowmik', 'mrinal kanti bhowmik')<br/>('1721942', 'Debotosh Bhattacharjee', 'debotosh bhattacharjee')<br/>('1729425', 'Mita Nasipuri', 'mita nasipuri')<br/>('1679476', 'Dipak Kumar Basu', 'dipak kumar basu')<br/>('1727663', 'Mahantapas Kundu', 'mahantapas kundu')</td><td>mkb_cse@yahoo.co.in <br/>debotosh@indiatimes.com, mitanasipuri@gmail.com, dipakkbasu@gmail.com, mkundu@cse.jdvu.ac.in +</td></tr><tr><td>6fea198a41d2f6f73e47f056692f365c8e6b04ce</td><td>Video Captioning with Boundary-aware Hierarchical Language +<br/>Decoding and Joint Video Prediction +<br/><b>Nanyang Technological University</b><br/><b>Nanyang Technological University</b><br/>Singapore, Singapore +<br/>Singapore, Singapore +<br/><b>Nanyang Technological University</b><br/>Singapore, Singapore +<br/>Shafiq Joty +<br/><b>Nanyang Technological University</b><br/>Singapore, Singapore +</td><td>('8668622', 'Xiangxi Shi', 'xiangxi shi')<br/>('1688642', 'Jianfei Cai', 'jianfei cai')<br/>('2174964', 'Jiuxiang Gu', 'jiuxiang gu')</td><td>xxshi@ntu.edu.sg +<br/>JGU004@e.ntu.edu.sg +<br/>asjfcai@ntu.edu.sg +<br/>srjoty@ntu.edu.sg </td></tr><tr><td>6fbb179a4ad39790f4558dd32316b9f2818cd106</td><td>Input Aggregated Network for Face Video Representation <br/><b>Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China</b><br/><b>Stony Brook University, Stony Brook, USA</b></td><td>('40061483', 'Zhen Dong', 'zhen dong')<br/>('3306427', 'Su Jia', 'su jia')<br/>('1690083', 'Chi Zhang', 'chi zhang')<br/>('35371203', 'Mingtao Pei', 'mingtao pei')</td><td></td></tr><tr><td>6f84e61f33564e5188136474f9570b1652a0606f</td><td>Dual Motion GAN for Future-Flow Embedded Video Prediction <br/><b>Carnegie Mellon University</b></td><td>('40250403', 'Xiaodan Liang', 'xiaodan liang')<br/>('3682478', 'Lisa Lee', 'lisa lee')</td><td>{xiaodan1,lslee}@cs.cmu.edu @@ -2521,7 +2938,14 @@ <br/>c(cid:1) Springer-Verlag 2005 <br/>intelligent <br/>interaction, -</td><td>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')</td><td></td></tr><tr><td>6fa3857faba887ed048a9e355b3b8642c6aab1d8</td><td>Face Recognition in Challenging Environments: +</td><td>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')</td><td></td></tr><tr><td>6f3054f182c34ace890a32fdf1656b583fbc7445</td><td>Article +<br/>Age Estimation Robust to Optical and Motion +<br/>Blurring by Deep Residual CNN +<br/><b>Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu</b><br/>Received: 9 March 2018; Accepted: 10 April 2018; Published: 13 April 2018 +</td><td>('31515471', 'Jeon Seong Kang', 'jeon seong kang')<br/>('31864414', 'Chan Sik Kim', 'chan sik kim')<br/>('29944844', 'Se Woon Cho', 'se woon cho')<br/>('4634733', 'Kang Ryoung Park', 'kang ryoung park')</td><td>Seoul 100-715, Korea; kjs2605@dgu.edu (J.S.K.); kimchsi9004@naver.com (C.S.K.); +<br/>lyw941021@dongguk.edu (Y.W.L.); jsu319@naver.com (S.W.C.) +<br/>* Correspondence: parkgr@dongguk.edu; Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +</td></tr><tr><td>6fa3857faba887ed048a9e355b3b8642c6aab1d8</td><td>Face Recognition in Challenging Environments: <br/>An Experimental and Reproducible Research <br/>Survey </td><td>('2121764', 'Laurent El Shafey', 'laurent el shafey')</td><td></td></tr><tr><td>6fda12c43b53c679629473806c2510d84358478f</td><td>Journal of Academic and Applied Studies @@ -2532,13 +2956,23 @@ <br/><b>Islamic Azad University</b><br/>Iran </td><td></td><td>Available online @ www.academians.org <br/>Email:a.jamshidnejad@yahoo.com +</td></tr><tr><td>6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d</td><td>Deep Discriminative Model for Video +<br/>Classification +<br/>Center for Machine Vision and Signal Analysis (CMVS) +<br/><b>University of Oulu, Finland</b></td><td>('2014145', 'Mohammad Tavakolian', 'mohammad tavakolian')<br/>('1751372', 'Abdenour Hadid', 'abdenour hadid')</td><td>firstname.lastname@oulu.fi </td></tr><tr><td>6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe</td><td>978-1-4673-0046-9/12/$26.00 ©2012 IEEE <br/>937 <br/>ICASSP 2012 </td><td></td><td></td></tr><tr><td>6fe2efbcb860767f6bb271edbb48640adbd806c3</td><td>SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS <br/>Soft Biometrics; Human Identification using <br/>Comparative Descriptions -</td><td>('34386180', 'Daniel A. Reid', 'daniel a. reid')<br/>('1727698', 'Mark S. Nixon', 'mark s. nixon')<br/>('2093843', 'Sarah V. Stevenage', 'sarah v. stevenage')</td><td></td></tr><tr><td>6f5151c7446552fd6a611bf6263f14e729805ec7</td><td>5KHHAO /7 %:0 7 +</td><td>('34386180', 'Daniel A. Reid', 'daniel a. reid')<br/>('1727698', 'Mark S. Nixon', 'mark s. nixon')<br/>('2093843', 'Sarah V. Stevenage', 'sarah v. stevenage')</td><td></td></tr><tr><td>6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae</td><td>DAISEE: Dataset for Affective States in +<br/>E-Learning Environments +<br/>1 Microsoft India R&D Pvt. Ltd. +<br/>2 Department of Computer Science, IIT Hyderabad +</td><td>('50178849', 'Abhay Gupta', 'abhay gupta')<br/>('3468123', 'Richik Jaiswal', 'richik jaiswal')<br/>('3468212', 'Sagar Adhikari', 'sagar adhikari')<br/>('1973980', 'Vineeth Balasubramanian', 'vineeth balasubramanian')</td><td>abhgup@microsoft.com +<br/>{cs12b1032, cs12b1034, vineethnb}@iith.ac.in +</td></tr><tr><td>6f5151c7446552fd6a611bf6263f14e729805ec7</td><td>5KHHAO /7 %:0 7 <br/>)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA <br/>FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI <br/>?=IIIAF=H=>EEJO MAECDJEC @@ -2575,7 +3009,11 @@ <br/>D=I >AA BK@ DMALAH JD=J ?F=H=>A H >AJJAH HAIKJI ?= >A >J=EA@ >O <br/>J=EC = HA DEIJE? =FFH=?D J BA=JKHA ANJH=?JE KIEC AJD@I IK?D =I <br/>?F=HA JM IK?D AJD@I =AO 2+) " =@ ?= >E=HO F=JJAH *2 -</td></tr><tr><td>03d9ccce3e1b4d42d234dba1856a9e1b28977640</td><td></td><td></td><td></td></tr><tr><td>036c41d67b49e5b0a578a401eb31e5f46b3624e0</td><td>The Tower Game Dataset: A Multimodal Dataset +</td></tr><tr><td>03c56c176ec6377dddb6a96c7b2e95408db65a7a</td><td>A Novel Geometric Framework on Gram Matrix +<br/>Trajectories for Human Behavior Understanding +</td><td>('46243486', 'Anis Kacem', 'anis kacem')<br/>('2909056', 'Mohamed Daoudi', 'mohamed daoudi')<br/>('2125606', 'Boulbaba Ben Amor', 'boulbaba ben amor')<br/>('2507859', 'Stefano Berretti', 'stefano berretti')</td><td></td></tr><tr><td>03d9ccce3e1b4d42d234dba1856a9e1b28977640</td><td></td><td></td><td></td></tr><tr><td>0322e69172f54b95ae6a90eb3af91d3daa5e36ea</td><td>Face Classification using Adjusted Histogram in +<br/>Grayscale +</td><td></td><td></td></tr><tr><td>036c41d67b49e5b0a578a401eb31e5f46b3624e0</td><td>The Tower Game Dataset: A Multimodal Dataset <br/>for Analyzing Social Interaction Predicates <br/>∗ SRI International <br/><b>University of California, Santa Cruz</b><br/><b>University of California, Berkeley</b></td><td>('1955011', 'David A. Salter', 'david a. salter')<br/>('1860011', 'Amir Tamrakar', 'amir tamrakar')<br/>('1832513', 'Behjat Siddiquie', 'behjat siddiquie')<br/>('4599641', 'Mohamed R. Amer', 'mohamed r. amer')<br/>('1696401', 'Ajay Divakaran', 'ajay divakaran')<br/>('40530418', 'Brian Lande', 'brian lande')<br/>('2108704', 'Darius Mehri', 'darius mehri')</td><td>Email: {david.salter, amir.tamrakar, behjat.siddiquie, mohamed.amer, ajay.divakaran}@sri.com @@ -2586,7 +3024,9 @@ <br/>Cortexica Vision Systems Limited </td><td>('39599054', 'Biswa Sengupta', 'biswa sengupta')<br/>('29742002', 'Yu Qian', 'yu qian')</td><td>b.sengupta@imperial.ac.uk </td></tr><tr><td>03f7041515d8a6dcb9170763d4f6debd50202c2b</td><td>Clustering Millions of Faces by Identity -</td><td>('40653304', 'Charles Otto', 'charles otto')<br/>('7496032', 'Dayong Wang', 'dayong wang')<br/>('40217643', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>03b99f5abe0e977ff4c902412c5cb832977cf18e</td><td>CROWLEY AND ZISSERMAN: OF GODS AND GOATS +</td><td>('40653304', 'Charles Otto', 'charles otto')<br/>('7496032', 'Dayong Wang', 'dayong wang')<br/>('40217643', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>03ce2ff688f9b588b6f264ca79c6857f0d80ceae</td><td>Attention Clusters: Purely Attention Based +<br/>Local Feature Integration for Video Classification +<br/><b>Tsinghua University, 2Rutgers University, 3Massachusetts Institute of Technology, 4Baidu IDL</b></td><td>('1716690', 'Xiang Long', 'xiang long')<br/>('2551285', 'Chuang Gan', 'chuang gan')<br/>('1732213', 'Gerard de Melo', 'gerard de melo')<br/>('3045089', 'Jiajun Wu', 'jiajun wu')<br/>('48033101', 'Xiao Liu', 'xiao liu')<br/>('35247507', 'Shilei Wen', 'shilei wen')</td><td></td></tr><tr><td>03b99f5abe0e977ff4c902412c5cb832977cf18e</td><td>CROWLEY AND ZISSERMAN: OF GODS AND GOATS <br/>Of Gods and Goats: Weakly Supervised <br/>Learning of Figurative Art <br/>Elliot J. Crowley @@ -2697,7 +3137,17 @@ </td></tr><tr><td>03f98c175b4230960ac347b1100fbfc10c100d0c</td><td>Supervised Descent Method and its Applications to Face Alignment <br/><b>The Robotics Institute, Carnegie Mellon University, Pittsburgh PA</b></td><td>('3182065', 'Xuehan Xiong', 'xuehan xiong')<br/>('1707876', 'Fernando De la Torre', 'fernando de la torre')</td><td>xxiong@andrew.cmu.edu <br/>ftorre@cs.cmu.edu -</td></tr><tr><td>03264e2e2709d06059dd79582a5cc791cbef94b1</td><td>Convolutional Neural Networks for Facial Attribute-based Active Authentication +</td></tr><tr><td>032825000c03b8ab4c207e1af4daeb1f225eb025</td><td>J. Appl. Environ. Biol. Sci., 7(10)159-164, 2017 +<br/>ISSN: 2090-4274 +<br/>© 2017, TextRoad Publication +<br/>Journal of Applied Environmental +<br/>and Biological Sciences +<br/>www.textroad.com +<br/>A Novel Approach for Human Face Detection in Color Images Using Skin +<br/>Color and Golden Ratio +<br/><b>Bacha Khan University, Charsadda, KPK, Pakistan</b><br/><b>Abdul WaliKhan University, Mardan, KPK, Pakistan</b><br/>Received: May 9, 2017 +<br/>Accepted: August 2, 2017 +</td><td>('12144785', 'Faizan Ullah', 'faizan ullah')<br/>('49669073', 'Dilawar Shah', 'dilawar shah')<br/>('46463663', 'Sabir Shah', 'sabir shah')<br/>('47160013', 'Abdus Salam', 'abdus salam')<br/>('12579194', 'Shujaat Ali', 'shujaat ali')</td><td></td></tr><tr><td>03264e2e2709d06059dd79582a5cc791cbef94b1</td><td>Convolutional Neural Networks for Facial Attribute-based Active Authentication <br/>On Mobile Devices <br/><b>University of Maryland, College Park</b><br/><b>University of Maryland, College Park</b><br/>MD, USA <br/>MD, USA @@ -2837,7 +3287,38 @@ <br/>Ben Amar1 <br/><b>Research Groups on Intelligent Machines, University of Sfax, Sfax 3038, Tunisia</b><br/><b>University of Houston, Houston, TX 77204, USA</b></td><td>('2791150', 'Mohamed Anouar Borgi', 'mohamed anouar borgi')<br/>('8847309', 'Demetrio Labate', 'demetrio labate')</td><td>{anoir.borgi@ieee.org ; dlabate@math.uh.edu ; <br/>maher.elarbi@gmail.com; chokri.benamar@ieee.org} -</td></tr><tr><td>03baf00a3d00887dd7c828c333d4a29f3aacd5f5</td><td>Entropy Based Feature Selection for 3D Facial +</td></tr><tr><td>03ac1c694bc84a27621da6bfe73ea9f7210c6d45</td><td>Chapter 1 +<br/>Introduction to information security +<br/>foundations and applications +<br/>1.1 Background +<br/>Information security has extended to include several research directions like user +<br/>authentication and authorization, network security, hardware security, software secu- +<br/>rity, and data cryptography. Information security has become a crucial need for +<br/>protecting almost all information transaction applications. Security is considered as +<br/>an important science discipline whose many multifaceted complexities deserve the +<br/>synergy of the computer science and engineering communities. +<br/>Recently, due to the proliferation of Information and Communication Tech- +<br/>nologies, information security has started to cover emerging topics such as cloud +<br/>computing security, smart cities’ security and privacy, healthcare and telemedicine, +<br/>the Internet-of-Things (IoT) security [1], the Internet-of-Vehicles security, and sev- +<br/>eral types of wireless sensor networks security [2,3]. In addition, information security +<br/>has extended further to cover not only technical security problems but also social and +<br/>organizational security challenges [4,5]. +<br/>Traditional systems’ development approaches were focusing on the system’s +<br/>usability where security was left to the last stage with less priority. However, the +<br/>new design approaches consider security-in-design process where security is consid- +<br/>ered at the early phase of the design process. The new designed systems should be +<br/>well protected against the available security attacks. Having new systems such as IoT +<br/>or healthcare without enough security may lead to a leakage of sensitive data and, in +<br/>some cases, life threatening situations. +<br/>Taking the social aspect into account, security education is a vital need for both +<br/>practitioners and system users [6]. Users’ misbehaviour due to a lack of security +<br/>knowledge is the weakest point in the system security chain. The users’ misbehaviour +<br/>is considered as a security vulnerability that may be exploited for launching security +<br/>attacks. A successful security attack such as distributed denial-of-service attack will +<br/>impose incident recovery cost in addition to the downtime cost. +<br/><b>Electrical and Space Engineering, Lule University of Technology</b><br/>Sweden +<br/><b>Faculty of Engineering, Al Azhar University, Qena, Egypt</b></td><td>('4073409', 'Ali Ismail Awad', 'ali ismail awad')</td><td></td></tr><tr><td>03baf00a3d00887dd7c828c333d4a29f3aacd5f5</td><td>Entropy Based Feature Selection for 3D Facial <br/>Expression Recognition <br/>Submitted to the <br/><b>Institute of Graduate Studies and Research</b><br/>in partial fulfillment of the requirements for the Degree of @@ -3020,7 +3501,128 @@ </td></tr><tr><td>03701e66eda54d5ab1dc36a3a6d165389be0ce79</td><td>179 <br/>Improved Principal Component Regression for Face <br/>Recognition Under Illumination Variations -</td><td>('1776127', 'Shih-Ming Huang', 'shih-ming huang')<br/>('1749263', 'Jar-Ferr Yang', 'jar-ferr yang')</td><td></td></tr><tr><td>9b318098f3660b453fbdb7a579778ab5e9118c4c</td><td>3931 +</td><td>('1776127', 'Shih-Ming Huang', 'shih-ming huang')<br/>('1749263', 'Jar-Ferr Yang', 'jar-ferr yang')</td><td></td></tr><tr><td>03fe3d031afdcddf38e5cc0d908b734884542eeb</td><td>DOI: http://dx.doi.org/10.14236/ewic/EVA2017.60 +<br/>Engagement with Artificial Intelligence +<br/>through Natural Interaction Models +<br/>Sara (Salevati) Feldman +<br/><b>Simon Fraser University</b><br/>Vancouver, Canada +<br/><b>Simon Fraser University</b><br/>Vancouver, Canada +<br/><b>Simon Fraser University</b><br/>Vancouver, Canada +<br/>As Artificial Intelligence (AI) systems become more ubiquitous, what user experience design +<br/>paradigms will be used by humans to impart their needs and intents to an AI system, in order to +<br/>engage in a more social interaction? In our work, we look mainly at expression and creativity +<br/>based systems, where the AI both attempts to model or understand/assist in processes of human +<br/>expression and creativity. We therefore have designed and implemented a prototype system with +<br/>more natural interaction modes for engagement with AI as well as other human computer +<br/>interaction (HCI) where a more open natural communication stream is beneficial. Our proposed +<br/>conversational agent system makes use of the affective signals from the gestural behaviour of the +<br/>user and the semantic information from the speech input in order to generate a personalised, +<br/>human-like conversation that is expressed in the visual and conversational output of the 3D virtual +<br/>avatar system. We describe our system and two application spaces we are using it in – a care +<br/>advisor / assistant for the elderly and an interactive creative assistant for uses to produce art +<br/>forms. +<br/>Artificial Intelligence. Natural user interfaces. Voice systems. Expression systems. ChatBots. +<br/>1. INTRODUCTION +<br/>is +<br/>for +<br/>way +<br/>there +<br/>sensor +<br/>natural +<br/>devices, +<br/>understand +<br/>requirement +<br/>to +<br/>the human +<br/>Due to the increase of natural user interfaces and +<br/>untethered +<br/>a +<br/>corresponding +<br/>for computational +<br/>models that can utilise interactive and affective +<br/>user data in order to understand and emulate a +<br/>more +<br/>conversational +<br/>communication. From an emulation standpoint, it is +<br/>the mechanisms +<br/>important +<br/>underlying +<br/>to human multilayered +<br/>semantic communication to achieve a more natural +<br/>user experience. Humans tend to make use of +<br/>gestures and expressions +<br/>in a conversational +<br/>setting in addition to the linguistic components that +<br/>allow them to express more than the semantics of +<br/>is usually +<br/>the utterances. This phenomenon +<br/>automated +<br/>current +<br/>disregarded +<br/>to +<br/>conversational +<br/>due +<br/>being +<br/>computationally demanding and +<br/>requiring a +<br/>cognitive component to be able to model the +<br/>complexity of the additional signals. With the +<br/>advances in the current technology we are now +<br/>closer to achieve more natural-like conversational +<br/>systems. Gesture capture and recognition systems +<br/>for video and sound input can be combined with +<br/>output systems such as Artificial Intelligence (AI) +<br/>based conversational +<br/>tools and 3D modelling +<br/>systems +<br/>the +<br/>in +<br/>© Feldman et al. Published by +<br/>BCS Learning and Development Ltd. +<br/>Proceedings of Proceedings of EVA London 2017, UK +<br/>296 +<br/>to +<br/>include +<br/>in order +<br/>systems +<br/>to achieve human-level +<br/>meaningful communication. This may allow the +<br/>interaction to be more intuitive, open and fluent that +<br/>can be more helpful in certain situations. In this +<br/>work, we attempt +<br/>the affective +<br/>components from these input signals in order to +<br/>generate a compatible and personalised character +<br/>that can reflect some human-like qualities. +<br/>Given +<br/>these goals, we overview our 3D +<br/>conversational avatar system and describe its use +<br/>in our two application spaces, stressing its use +<br/>where AI systems are involved. Our first application +<br/>space is CareAdvisor, for maintaining active and +<br/>healthy aging in older adults through a multi- +<br/>modular Personalised Virtual Coaching system. +<br/>Here the natural communication system is better +<br/>suited for the elderly, who are technologically less +<br/>experienced, +<br/>non- +<br/>confrontationally and as an assistant conduit to +<br/>health data from other less conversational devices. +<br/>Our second application space is in the interactive +<br/>art exhibition area, where our avatar system is able +<br/>to converse with users in a more open way, +<br/>compared to say forms and input systems, on +<br/>issues of art and creativity. This allows for more +<br/>open, +<br/>to an +<br/>intuitive conversation +<br/>especially when +<br/>leading +<br/>used +</td><td>('22588208', 'Ozge Nilay Yalcin', 'ozge nilay yalcin')<br/>('1700040', 'Steve DiPaola', 'steve dipaola')</td><td>sara_salevati@sfu.ca +<br/>oyalcin@sfu.ca +<br/>sdipaola@sfu.ca +</td></tr><tr><td>9b318098f3660b453fbdb7a579778ab5e9118c4c</td><td>3931 <br/>Joint Patch and Multi-label Learning for Facial <br/>Action Unit and Holistic Expression Recognition <br/>classifiers without @@ -3034,6 +3636,13 @@ <br/>doi: 10.1049/iet-bmt.2015.0008 <br/>www.ietdl.org <br/><b>North Dakota State University, Fargo, ND 58108-6050, USA</b><br/><b>Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands</b></td><td>('3001880', 'Zahid Mahmood', 'zahid mahmood')<br/>('1798087', 'Tauseef Ali', 'tauseef ali')</td><td>✉ E-mail: zahid.mahmood@ndsu.edu +</td></tr><tr><td>9bd35145c48ce172b80da80130ba310811a44051</td><td>Face Detection with End-to-End Integration of a +<br/>ConvNet and a 3D Model +<br/>1Nat’l Engineering Laboratory for Video Technology, +<br/>Key Laboratory of Machine Perception (MoE), +<br/>Cooperative Medianet Innovation Center, Shanghai +<br/><b>Sch l of EECS, Peking University, Beijing, 100871, China</b><br/>2Department of ECE and the Visual Narrative Cluster, +<br/><b>North Carolina State University, Raleigh, USA</b></td><td>('3422021', 'Yunzhu Li', 'yunzhu li')<br/>('3423002', 'Benyuan Sun', 'benyuan sun')<br/>('47353858', 'Tianfu Wu', 'tianfu wu')<br/>('1717863', 'Yizhou Wang', 'yizhou wang')</td><td>{leo.liyunzhu, sunbenyuan, Yizhou.Wang}@pku.edu.cn, tianfu wu@ncsu.edu </td></tr><tr><td>9b000ccc04a2605f6aab867097ebf7001a52b459</td><td></td><td></td><td></td></tr><tr><td>9b0489f2d5739213ef8c3e2e18739c4353c3a3b7</td><td>Visual Data Augmentation through Learning <br/><b>Imperial College London, UK</b><br/><b>Middlesex University London, UK</b></td><td>('34586458', 'Grigorios G. Chrysos', 'grigorios g. chrysos')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td>{g.chrysos, i.panagakis, s.zafeiriou}@imperial.ac.uk </td></tr><tr><td>9b474d6e81e3b94e0c7881210e249689139b3e04</td><td>VG-RAM Weightless Neural Networks for @@ -3076,9 +3685,22 @@ </td><td>('1699216', 'Alberto F. De Souza', 'alberto f. de souza')<br/>('3015563', 'Claudine Badue', 'claudine badue')<br/>('3158075', 'Felipe Pedroni', 'felipe pedroni')<br/>('3169286', 'Hallysson Oliveira', 'hallysson oliveira')</td><td></td></tr><tr><td>9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493</td><td>Close the Loop: Joint Blind Image Restoration and Recognition <br/>with Sparse Representation Prior <br/><b>School of Computer Science, Northwestern Polytechnical University, Xi an China</b><br/><b>Beckman Institute, University of Illinois at Urbana-Champaign, IL USA</b><br/><b>U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA</b></td><td>('40479011', 'Haichao Zhang', 'haichao zhang')<br/>('1706007', 'Jianchao Yang', 'jianchao yang')<br/>('1801395', 'Yanning Zhang', 'yanning zhang')<br/>('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td>‡{hczhang,jyang29,huang}@ifp.uiuc.edu †ynzhang@nwpu.edu.cn §nasser.m.nasrabadi.civ@mail.mil +</td></tr><tr><td>9bc01fa9400c231e41e6a72ec509d76ca797207c</td><td></td><td></td><td></td></tr><tr><td>9b2c359c36c38c289c5bacaeb5b1dd06b464f301</td><td>Dense Face Alignment +<br/><b>Michigan State University, MI</b><br/>2Monta Vista High School, Cupertino, CA +</td><td>('6797891', 'Yaojie Liu', 'yaojie liu')<br/>('2357264', 'Amin Jourabloo', 'amin jourabloo')<br/>('26365310', 'William Ren', 'william ren')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td>1{liuyaoj1,jourablo,liuxm}@msu.edu, 2williamyren@gmail.com </td></tr><tr><td>9bcfadd22b2c84a717c56a2725971b6d49d3a804</td><td>How to Detect a Loss of Attention in a Tutoring System <br/>using Facial Expressions and Gaze Direction -</td><td>('2975858', 'Mark ter Maat', 'mark ter maat')</td><td></td></tr><tr><td>9b07084c074ba3710fee59ed749c001ae70aa408</td><td>698535 CDPXXX10.1177/0963721417698535MartinezComputational Models of Face Perception +</td><td>('2975858', 'Mark ter Maat', 'mark ter maat')</td><td></td></tr><tr><td>9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca</td><td>Position-Squeeze and Excitation Module +<br/>for Facial Attribute Analysis +<br/>Shanghai Key Laboratory of +<br/>Multidimensional Information +<br/>Processing, +<br/><b>East China Normal University</b><br/>200241 Shanghai, China +</td><td>('36124320', 'Yan Zhang', 'yan zhang')<br/>('7962836', 'Wanxia Shen', 'wanxia shen')<br/>('49755228', 'Li Sun', 'li sun')<br/>('12493943', 'Qingli Li', 'qingli li')<br/>('36124320', 'Yan Zhang', 'yan zhang')<br/>('7962836', 'Wanxia Shen', 'wanxia shen')<br/>('49755228', 'Li Sun', 'li sun')<br/>('12493943', 'Qingli Li', 'qingli li')</td><td>452642781@qq.com +<br/>51151214005@ecnu.cn +<br/>sunli@ee.ecnu.edu.cn +<br/>qlli@cs.ecnu.edu.cn +</td></tr><tr><td>9b07084c074ba3710fee59ed749c001ae70aa408</td><td>698535 CDPXXX10.1177/0963721417698535MartinezComputational Models of Face Perception <br/>research-article2017 <br/>Computational Models of Face Perception <br/>Aleix M. Martinez @@ -3092,7 +3714,10 @@ <br/>DOI: 10.1177/0963721417698535 <br/>https://doi.org/10.1177/0963721417698535 <br/>www.psychologicalscience.org/CDPS -</td><td></td><td></td></tr><tr><td>9b246c88a0435fd9f6d10dc88f47a1944dd8f89e</td><td>PICODES: Learning a Compact Code for +</td><td></td><td></td></tr><tr><td>9be653e1bc15ef487d7f93aad02f3c9552f3ee4a</td><td>Computer Vision for Head Pose Estimation: +<br/>Review of a Competition +<br/><b>Tampere University of Technology, Finland</b><br/><b>University of Paderborn, Germany</b><br/>3 Zorgon, The Netherlands +</td><td>('1847889', 'Heikki Huttunen', 'heikki huttunen')<br/>('40394658', 'Ke Chen', 'ke chen')<br/>('2364638', 'Abhishek Thakur', 'abhishek thakur')<br/>('2558923', 'Artus Krohn-Grimberghe', 'artus krohn-grimberghe')<br/>('2300445', 'Oguzhan Gencoglu', 'oguzhan gencoglu')<br/>('3328835', 'Xingyang Ni', 'xingyang ni')<br/>('2067035', 'Mohammed Al-Musawi', 'mohammed al-musawi')<br/>('40448210', 'Lei Xu', 'lei xu')<br/>('3152947', 'Hendrik Jacob van Veen', 'hendrik jacob van veen')</td><td></td></tr><tr><td>9b246c88a0435fd9f6d10dc88f47a1944dd8f89e</td><td>PICODES: Learning a Compact Code for <br/>Novel-Category Recognition <br/><b>Dartmouth College</b><br/>Hanover, NH, U.S.A. <br/>Andrew Fitzgibbon @@ -3107,7 +3732,9 @@ <br/>Contour Detection <br/><b>School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN</b><br/>Received 26th September 2012, revised 27th October 2012, accepted 6th November 2012 <br/>Available online at: www.isca.in -</td><td></td><td></td></tr><tr><td>9b93406f3678cf0f16451140ea18be04784faeee</td><td>A Bayesian Approach to Alignment-Based +</td><td></td><td></td></tr><tr><td>9bac481dc4171aa2d847feac546c9f7299cc5aa0</td><td>Matrix Product State for Higher-Order Tensor +<br/>Compression and Classification +</td><td>('2852180', 'Johann A. Bengua', 'johann a. bengua')<br/>('2839912', 'Ho N. Phien', 'ho n. phien')<br/>('1834451', 'Minh N. Do', 'minh n. do')</td><td></td></tr><tr><td>9b93406f3678cf0f16451140ea18be04784faeee</td><td>A Bayesian Approach to Alignment-Based <br/>Image Hallucination <br/><b>University of Central Florida</b><br/>2 Microsoft Research New England </td><td>('1802944', 'Marshall F. Tappen', 'marshall f. tappen')<br/>('1681442', 'Ce Liu', 'ce liu')</td><td>mtappen@eecs.ucf.edu @@ -3117,6 +3744,17 @@ </td><td>('3057167', 'Renjie Liu', 'renjie liu')<br/>('36485086', 'Ruofei Du', 'ruofei du')<br/>('40371477', 'Bao-Liang Lu', 'bao-liang lu')</td><td></td></tr><tr><td>9b6d0b3fbf7d07a7bb0d86290f97058aa6153179</td><td>NII, Japan at the first THUMOS Workshop 2013 <br/><b>National Institute of Informatics</b><br/>2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430 </td><td>('39814149', 'Sang Phan', 'sang phan')<br/>('1802416', 'Duy-Dinh Le', 'duy-dinh le')<br/>('40693818', 'Shin’ichi Satoh', 'shin’ichi satoh')</td><td>{plsang,ledduy,satoh}@nii.ac.jp +</td></tr><tr><td>9b684e2e2bb43862f69b12c6be94db0e7a756187</td><td>Differentiating Objects by Motion: +<br/>Joint Detection and Tracking of Small Flying Objects +<br/><b>The University of Tokyo</b><br/>CSIRO-Data61 +<br/><b>Australian National University</b><br/><b>The University of Tokyo</b><br/>Figure 1: Importance of multi-frame information for recognizing apparently small flying objects (birds in these examples). +<br/><b>While visual features in single frames are vague and limited, multi-frame information, including deformation and pose</b><br/>changes, provides better clues with which to recognize birds. To extract such useful motion patterns, tracking is necessary for +<br/>compensating translation of objects, but the tracking itself is a challenge due to the limited visual information. The blue boxes +<br/>are birds tracked by our method that utilizes multi-frame representation for detection, while the red boxes are the results of a +<br/>single-frame handcrafted-feature-based tracker [11] , which tends to fail when tracking small objects. +</td><td>('1890560', 'Ryota Yoshihashi', 'ryota yoshihashi')<br/>('38621343', 'Tu Tuan Trinh', 'tu tuan trinh')<br/>('48727803', 'Rei Kawakami', 'rei kawakami')<br/>('2941564', 'Shaodi You', 'shaodi you')<br/>('33313329', 'Makoto Iida', 'makoto iida')<br/>('48795689', 'Takeshi Naemura', 'takeshi naemura')</td><td>{yoshi, tu, rei, naemura}@hc.ic.i.u-tokyo.ac.jp +<br/>iida@ilab.eco.rcast.u-tokyo.ac.jp +<br/>shaodi.you@data61.csiro.au </td></tr><tr><td>9e8637a5419fec97f162153569ec4fc53579c21e</td><td>Segmentation and Normalization of Human Ears <br/>using Cascaded Pose Regression <br/><b>University of Applied Sciences Darmstadt - CASED</b><br/>Haardtring 100, @@ -3124,6 +3762,11 @@ <br/>http://www.h-da.de </td><td>('1742085', 'Christoph Busch', 'christoph busch')</td><td>anika.pflug@cased.de <br/>christoph.busch@hig.no +</td></tr><tr><td>9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32</td><td>Exploring Temporal Preservation Networks for Precise Temporal Action +<br/>Localization +<br/>National Laboratory for Parallel and Distributed Processing, +<br/><b>National University of Defense Technology</b><br/>Changsha, China +</td><td>('2352864', 'Ke Yang', 'ke yang')<br/>('2292038', 'Peng Qiao', 'peng qiao')<br/>('1718853', 'Dongsheng Li', 'dongsheng li')<br/>('1893776', 'Shaohe Lv', 'shaohe lv')<br/>('1791001', 'Yong Dou', 'yong dou')</td><td>{yangke13,pengqiao,dongshengli,yongdou,shaohelv}@nudt.edu.cn </td></tr><tr><td>9e4b052844d154c3431120ec27e78813b637b4fc</td><td>Journal of AI and Data Mining <br/>Vol. 2, No .1, 2014, 33-38. <br/>Local gradient pattern - A novel feature representation for facial @@ -3184,7 +3827,9 @@ </td><td>('4241648', 'M. Saquib Sarfraz', 'm. saquib sarfraz')<br/>('6262445', 'Muhammad Adnan Siddique', 'muhammad adnan siddique')<br/>('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')</td><td>saquib.sarfraz@kit.edu <br/>siddique@ifu.baug.ethz.ch <br/>rainer.stiefelhagen@kit.edu -</td></tr><tr><td>9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c</td><td>What Makes an Image Popular? +</td></tr><tr><td>9e182e0cd9d70f876f1be7652c69373bcdf37fb4</td><td>Talking Face Generation by Adversarially +<br/>Disentangled Audio-Visual Representation +<br/><b>The Chinese University of Hong Kong</b></td><td>('40576774', 'Hang Zhou', 'hang zhou')<br/>('1715752', 'Yu Liu', 'yu liu')<br/>('3243969', 'Ziwei Liu', 'ziwei liu')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')</td><td></td></tr><tr><td>9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c</td><td>What Makes an Image Popular? <br/><b>Massachusetts Institute</b><br/>of Technology <br/><b>eBay Research Labs</b><br/>DigitalGlobe </td><td>('2556428', 'Aditya Khosla', 'aditya khosla')<br/>('2541992', 'Atish Das Sarma', 'atish das sarma')<br/>('37164887', 'Raffay Hamid', 'raffay hamid')</td><td>khosla@csail.mit.edu @@ -3193,7 +3838,11 @@ </td></tr><tr><td>9e5c2d85a1caed701b68ddf6f239f3ff941bb707</td><td></td><td></td><td></td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>300 Faces in-the-Wild Challenge: The first facial landmark localization <br/>Challenge <br/><b>Imperial College London, UK</b><br/><b>School of Computer Science, University of Lincoln, U.K</b><br/><b>EEMCS, University of Twente, The Netherlands</b></td><td>('3320415', 'Christos Sagonas', 'christos sagonas')<br/>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td>{c.sagonas, gt204, s.zafeiriou, m.pantic}@imperial.ac.uk -</td></tr><tr><td>04bb3fa0824d255b01e9db4946ead9f856cc0b59</td><td></td><td></td><td></td></tr><tr><td>04f0292d9a062634623516edd01d92595f03bd3f</td><td>Distribution-based Iterative Pairwise Classification of +</td></tr><tr><td>04bb3fa0824d255b01e9db4946ead9f856cc0b59</td><td></td><td></td><td></td></tr><tr><td>040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Large-scale Bisample Learning on ID vs. Spot Face Recognition +<br/>Received: date / Accepted: date +</td><td>('8362374', 'Xiangyu Zhu', 'xiangyu zhu')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td></td></tr><tr><td>04f0292d9a062634623516edd01d92595f03bd3f</td><td>Distribution-based Iterative Pairwise Classification of <br/>Emotions in the Wild Using LGBP-TOP <br/><b>The University of Nottingham</b><br/>Mised Reality Lab <br/>Anıl Yüce @@ -3211,6 +3860,11 @@ <br/>Using DCT for Face Detection <br/><b>Technical University of Ostrava, FEECS</b><br/>17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic </td><td>('2467747', 'Radovan Fusek', 'radovan fusek')<br/>('2557877', 'Eduard Sojka', 'eduard sojka')</td><td>{radovan.fusek,eduard.sojka,karel.mozdren,milan.surkala}@vsb.cz +</td></tr><tr><td>04b851f25d6d49e61a528606953e11cfac7df2b2</td><td>Optical Flow Guided Feature: A Fast and Robust Motion Representation for +<br/>Video Action Recognition +<br/><b>The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong</b></td><td>('1837024', 'Shuyang Sun', 'shuyang sun')<br/>('1874900', 'Zhanghui Kuang', 'zhanghui kuang')<br/>('37145669', 'Lu Sheng', 'lu sheng')<br/>('3001348', 'Wanli Ouyang', 'wanli ouyang')<br/>('1726357', 'Wei Zhang', 'wei zhang')</td><td>{shuyang.sun wanli.ouyang}@sydney.edu.au +<br/>{wayne.zhang kuangzhanghui}@sensetime.com +<br/>lsheng@ee.cuhk.edu.hk </td></tr><tr><td>04522dc16114c88dfb0ebd3b95050fdbd4193b90</td><td>Appears in 2nd Canadian Conference on Computer and Robot Vision, Victoria, Canada, 2005. <br/>Minimum Bayes Error Features for Visual Recognition by Sequential Feature <br/>Selection and Extraction @@ -3268,6 +3922,19 @@ <br/>cropped face, we pass the cropped face on the Deep Multi- <br/>for </td><td>('27343041', 'Ayesha Gurnani', 'ayesha gurnani')<br/>('23922616', 'Vandit Gajjar', 'vandit gajjar')<br/>('22239413', 'Viraj Mavani', 'viraj mavani')<br/>('26425477', 'Yash Khandhediya', 'yash khandhediya')</td><td>{gurnani.ayesha.52, gajjar.vandit.381, mavani.viraj.604, khandhediya.yash.364}@ldce.ac.in +</td></tr><tr><td>043efe5f465704ced8d71a067d2b9d5aa5b59c29</td><td>EGGER ET AL.: OCCLUSION-AWARE 3D MORPHABLE FACE MODELS +<br/>Occlusion-aware 3D Morphable Face Models +<br/>Department of Mathematics and +<br/>Computer Science +<br/><b>University of Basel</b><br/>Basel Switzerland +<br/>http://gravis.cs.unibas.ch +<br/>Andreas Morel-Forster +</td><td>('34460642', 'Bernhard Egger', 'bernhard egger')<br/>('49462138', 'Andreas Schneider', 'andreas schneider')<br/>('39550224', 'Clemens Blumer', 'clemens blumer')<br/>('1987368', 'Sandro Schönborn', 'sandro schönborn')<br/>('1687079', 'Thomas Vetter', 'thomas vetter')</td><td>bernhard.egger@unibas.ch +<br/>andreas.schneider@unibas.ch +<br/>clemens.blumer@unibas.ch +<br/>andreas.forster@unibas.ch +<br/>sandro.schoenborn@unibas.ch +<br/>thomas.vetter@unibas.ch </td></tr><tr><td>044ba70e6744e80c6a09fa63ed6822ae241386f2</td><td>TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION <br/>Early Prediction for Physical Human Robot <br/>Collaboration in the Operating Room @@ -3292,7 +3959,17 @@ </td><td>('1707922', 'Hongli Liu', 'hongli liu')</td><td></td></tr><tr><td>04250e037dce3a438d8f49a4400566457190f4e2</td><td></td><td></td><td></td></tr><tr><td>0431e8a01bae556c0d8b2b431e334f7395dd803a</td><td>Learning Localized Perceptual Similarity Metrics for Interactive Categorization <br/>Google Inc. <br/>google.com -</td><td>('2367820', 'Catherine Wah', 'catherine wah')</td><td></td></tr><tr><td>04616814f1aabe3799f8ab67101fbaf9fd115ae4</td><td><b>UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese</b></td><td></td><td></td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>Hipster Wars: Discovering Elements +</td><td>('2367820', 'Catherine Wah', 'catherine wah')</td><td></td></tr><tr><td>04b4c779b43b830220bf938223f685d1057368e9</td><td>Video retrieval based on deep convolutional +<br/>neural network +<br/>Yajiao Dong +<br/>School of Information and Electronics, +<br/>Beijing Institution of Technology, Beijing, China +<br/>Jianguo Li +<br/>School of Information and Electronics, +<br/>Beijing Institution of Technology, Beijing, China +</td><td></td><td>yajiaodong@bit.edu.cn +<br/>jianguoli@bit.edu.cn +</td></tr><tr><td>04616814f1aabe3799f8ab67101fbaf9fd115ae4</td><td><b>UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese</b></td><td></td><td></td></tr><tr><td>04c2cda00e5536f4b1508cbd80041e9552880e67</td><td>Hipster Wars: Discovering Elements <br/>of Fashion Styles <br/><b>University of North Carolina at Chapel Hill, NC, USA</b><br/><b>Tohoku University, Japan</b></td><td>('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')<br/>('1721910', 'Kota Yamaguchi', 'kota yamaguchi')<br/>('39668247', 'Alexander C. Berg', 'alexander c. berg')<br/>('1685538', 'Tamara L. Berg', 'tamara l. berg')</td><td>{hadi,aberg,tlberg}@cs.unc.edu <br/>kyamagu@vision.is.tohoku.ac.jp @@ -3325,11 +4002,34 @@ <br/>´emanant des ´etablissements d’enseignement et de <br/>recherche fran¸cais ou ´etrangers, des laboratoires <br/>publics ou priv´es. -</td><td>('3307172', 'Antoine Deleforge', 'antoine deleforge')<br/>('1794229', 'Radu Horaud', 'radu horaud')<br/>('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')<br/>('1780746', 'Laurent Girin', 'laurent girin')<br/>('3307172', 'Antoine Deleforge', 'antoine deleforge')<br/>('1794229', 'Radu Horaud', 'radu horaud')<br/>('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')<br/>('1780746', 'Laurent Girin', 'laurent girin')</td><td></td></tr><tr><td>046865a5f822346c77e2865668ec014ec3282033</td><td>Discovering Informative Social Subgraphs and Predicting +</td><td>('3307172', 'Antoine Deleforge', 'antoine deleforge')<br/>('1794229', 'Radu Horaud', 'radu horaud')<br/>('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')<br/>('1780746', 'Laurent Girin', 'laurent girin')<br/>('3307172', 'Antoine Deleforge', 'antoine deleforge')<br/>('1794229', 'Radu Horaud', 'radu horaud')<br/>('2159538', 'Yoav Y. Schechner', 'yoav y. schechner')<br/>('1780746', 'Laurent Girin', 'laurent girin')</td><td></td></tr><tr><td>04317e63c08e7888cef480fe79f12d3c255c5b00</td><td>Face Recognition Using a Unified 3D Morphable Model +<br/>Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition +<br/>Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference, +<br/>Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in +<br/>Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5 +<br/>Published in: +<br/>Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, +<br/>2016, Proceedings, Part VIII +<br/>Document Version: +<br/>Peer reviewed version +<br/><b>Queen's University Belfast - Research Portal</b><br/><b>Link to publication record in Queen's University Belfast Research Portal</b><br/>Publisher rights +<br/>The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5 +<br/>General rights +<br/><b>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</b><br/>copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +<br/>with these rights. +<br/>Take down policy +<br/>The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +<br/>ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +<br/>Download date:12. Sep. 2018 +</td><td></td><td>Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk. +</td></tr><tr><td>046865a5f822346c77e2865668ec014ec3282033</td><td>Discovering Informative Social Subgraphs and Predicting <br/>Pairwise Relationships from Group Photos <br/><b>National Taiwan University, Taipei, Taiwan</b><br/>†Academia Sinica, Taipei, Taiwan </td><td>('35081710', 'Yan-Ying Chen', 'yan-ying chen')<br/>('1716836', 'Winston H. Hsu', 'winston h. hsu')<br/>('1704678', 'Hong-Yuan Mark Liao', 'hong-yuan mark liao')</td><td>yanying@cmlab.csie.ntu.edu.tw, winston@csie.ntu.edu.tw, liao@iis.sinica.edu.tw -</td></tr><tr><td>0470b0ab569fac5bbe385fa5565036739d4c37f8</td><td>Automatic Face Naming with Caption-based Supervision +</td></tr><tr><td>047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff</td><td>Unsupervised Training for 3D Morphable Model Regression +<br/><b>Princeton University</b><br/>2Google Research +<br/>3MIT CSAIL +</td><td>('32627314', 'Kyle Genova', 'kyle genova')<br/>('39578349', 'Forrester Cole', 'forrester cole')</td><td></td></tr><tr><td>0470b0ab569fac5bbe385fa5565036739d4c37f8</td><td>Automatic Face Naming with Caption-based Supervision <br/>To cite this version: <br/>with Caption-based Supervision. CVPR 2008 - IEEE Conference on Computer Vision <br/>Pattern Recognition, @@ -3370,7 +4070,7 @@ <br/><b>Max Planck Institute f ur biologische Kybernetik</b><br/>Spemannstr. 38, D-72076 T¨ubingen, Germany <br/>http://www.kyb.tuebingen.mpg.de/ </td><td>('1808255', 'Kwang In Kim', 'kwang in kim')<br/>('30541601', 'Matthias O. Franz', 'matthias o. franz')</td><td>{kimki, mof, bs}@tuebingen.mpg.de -</td></tr><tr><td>6a184f111d26787703f05ce1507eef5705fdda83</td><td></td><td></td><td></td></tr><tr><td>6a16b91b2db0a3164f62bfd956530a4206b23fea</td><td>A Method for Real-Time Eye Blink Detection and Its Application +</td></tr><tr><td>6ad107c08ac018bfc6ab31ec92c8a4b234f67d49</td><td></td><td></td><td></td></tr><tr><td>6a184f111d26787703f05ce1507eef5705fdda83</td><td></td><td></td><td></td></tr><tr><td>6a16b91b2db0a3164f62bfd956530a4206b23fea</td><td>A Method for Real-Time Eye Blink Detection and Its Application <br/>Mahidol Wittayanusorn School <br/>Puttamonton, Nakornpatom 73170, Thailand </td><td></td><td>Chinnawat.Deva@gmail.com @@ -3399,6 +4099,10 @@ <br/>rrji@xmu.edu.cn <br/>dmeyer@math.ucsd.edu <br/>jsmith@us.ibm.com +</td></tr><tr><td>6a52e6fce541126ff429f3c6d573bc774f5b8d89</td><td>Role of Facial Emotion in Social Correlation +<br/>Department of Computer Science and Engineering +<br/><b>Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan</b></td><td>('2159044', 'Pankaj Mishra', 'pankaj mishra')<br/>('47865262', 'Takayuki Ito', 'takayuki ito')</td><td>{pankaj.mishra, rafik}@itolab.nitech.ac.jp, +<br/>ito.takayuki@nitech.ac.jp </td></tr><tr><td>6a5fe819d2b72b6ca6565a0de117c2b3be448b02</td><td>Supervised and Projected Sparse Coding for Image Classification <br/>Computer Science and Engineering Department <br/><b>University of Texas at Arlington</b><br/>Arlington,TX,76019 @@ -3429,6 +4133,9 @@ <br/>This Thesis is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase @ CMU. It has <br/>been accepted for inclusion in Dietrich College Honors Theses by an authorized administrator of Research Showcase @ CMU. For more information, <br/>please contact research-showcase@andrew.cmu.edu. +</td></tr><tr><td>6a4419ce2338ea30a570cf45624741b754fa52cb</td><td>Statistical transformer networks: learning shape +<br/>and appearance models via self supervision +<br/><b>University of York</b></td><td>('39180407', 'Anil Bas', 'anil bas')<br/>('1687021', 'William A. P. Smith', 'william a. p. smith')</td><td>{ab1792,william.smith}@york.ac.uk </td></tr><tr><td>6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8</td><td>A New Weighted Sparse Representation Based <br/>on MSLBP and Its Application to Face Recognition <br/><b>School of IoT Engineering, Jiangnan University, Wuxi 214122, China</b></td><td>('1823451', 'He-Feng Yin', 'he-feng yin')<br/>('37020604', 'Xiao-Jun Wu', 'xiao-jun wu')</td><td>yinhefeng@126.com, wu_xiaojun@yahoo.com.cn @@ -3477,7 +4184,13 @@ <br/>Deep Belief Networks ∗ <br/>Instituto de Sistemas e Rob´otica <br/>Instituto Superior T´ecnico, Portugal -</td><td>('3259175', 'Jacinto C. Nascimento', 'jacinto c. nascimento')</td><td></td></tr><tr><td>6a4ebd91c4d380e21da0efb2dee276897f56467a</td><td>HOG ACTIVE APPEARANCE MODELS +</td><td>('3259175', 'Jacinto C. Nascimento', 'jacinto c. nascimento')</td><td></td></tr><tr><td>6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a</td><td>Excitation Dropout: +<br/>Encouraging Plasticity in Deep Neural Networks +<br/>1Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia +<br/><b>Boston University</b><br/>3Adobe Research +<br/><b>University of Verona</b></td><td>('40063519', 'Andrea Zunino', 'andrea zunino')<br/>('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')<br/>('2322579', 'Pietro Morerio', 'pietro morerio')<br/>('1701293', 'Jianming Zhang', 'jianming zhang')<br/>('1749590', 'Stan Sclaroff', 'stan sclaroff')<br/>('1727204', 'Vittorio Murino', 'vittorio murino')</td><td>{andrea.zunino,vittorio.murino}@iit.it, +<br/>{sbargal,sclaroff}@bu.edu, jianmzha@adobe.com +</td></tr><tr><td>6a4ebd91c4d380e21da0efb2dee276897f56467a</td><td>HOG ACTIVE APPEARANCE MODELS <br/><b>cid:2)Imperial College London, U.K</b><br/><b>University of Lincoln, School of Computer Science, U.K</b></td><td>('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')<br/>('2575567', 'Joan Alabort-i-Medina', 'joan alabort-i-medina')<br/>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td></td></tr><tr><td>6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2</td><td></td><td></td><td></td></tr><tr><td>6a7e464464f70afea78552c8386f4d2763ea1d9c</td><td>Review Article <br/>International Journal of Current Engineering and Technology <br/>E-ISSN 2277 – 4106, P-ISSN 2347 - 5161 @@ -3568,7 +4281,9 @@ </td><td>('3469125', 'Congzheng Song', 'congzheng song')<br/>('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')<br/>('1707461', 'Thomas Ristenpart', 'thomas ristenpart')</td><td>cs2296@cornell.edu <br/>ristenpart@cornell.edu <br/>shmat@cs.cornell.edu -</td></tr><tr><td>324f39fb5673ec2296d90142cf9a909e595d82cf</td><td>Hindawi Publishing Corporation +</td></tr><tr><td>3294e27356c3b1063595885a6d731d625b15505a</td><td>Illumination Face Spaces are Idiosyncratic +<br/>2, H. Kley1, C. Peterson1 ∗ +<br/><b>Colorado State University, Fort Collins, CO 80523, USA</b></td><td>('2640182', 'Jen-Mei Chang', 'jen-mei chang')</td><td></td></tr><tr><td>324f39fb5673ec2296d90142cf9a909e595d82cf</td><td>Hindawi Publishing Corporation <br/>Mathematical Problems in Engineering <br/>Volume 2011, Article ID 864540, 15 pages <br/>doi:10.1155/2011/864540 @@ -3612,7 +4327,10 @@ <br/>Entropy-weighted feature-fusion method <br/>for head-pose estimation <br/>Open Access -</td><td>('40579241', 'Kang Liu', 'kang liu')<br/>('2076553', 'Xu Qian', 'xu qian')</td><td></td></tr><tr><td>32b8c9fd4e3f44c371960eb0074b42515f318ee7</td><td></td><td></td><td></td></tr><tr><td>32575ffa69d85bbc6aef5b21d73e809b37bf376d</td><td>-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61 +</td><td>('40579241', 'Kang Liu', 'kang liu')<br/>('2076553', 'Xu Qian', 'xu qian')</td><td></td></tr><tr><td>3240c9359061edf7a06bfeb7cc20c103a65904c2</td><td>PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise +<br/>R-FCN +<br/><b>Columbia University, National University of Singapore</b></td><td>('5462268', 'Hanwang Zhang', 'hanwang zhang')<br/>('26538630', 'Zawlin Kyaw', 'zawlin kyaw')<br/>('46380822', 'Jinyang Yu', 'jinyang yu')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td>{hanwangzhang, kzl.zawlin, yjy941124}@gmail.com; shih.fu.chang@columbia.edu +</td></tr><tr><td>32b8c9fd4e3f44c371960eb0074b42515f318ee7</td><td></td><td></td><td></td></tr><tr><td>32575ffa69d85bbc6aef5b21d73e809b37bf376d</td><td>-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61 <br/>7ELAHIEJO B JJ=M= <br/>)*564)+6 <br/>IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD @@ -3766,7 +4484,9 @@ <br/>Representation for Face Recognition with <br/>Margin Distribution Optimization <br/><b>Biometric Research Center</b><br/><b>The Hong Kong Polytechnic University</b><br/><b>School of Computer Science and Technology, Tianjin University</b></td><td>('2873638', 'Pengfei Zhu', 'pengfei zhu')<br/>('36685537', 'Lei Zhang', 'lei zhang')<br/>('1688792', 'Qinghua Hu', 'qinghua hu')</td><td>{cspzhu,cslzhang}@comp.polyu.edu.hk -</td></tr><tr><td>350da18d8f7455b0e2920bc4ac228764f8fac292</td><td>From: AAAI Technical Report SS-03-08. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved. +</td></tr><tr><td>352d61eb66b053ae5689bd194840fd5d33f0e9c0</td><td>Analysis Dictionary Learning based +<br/>Classification: Structure for Robustness +</td><td>('49501811', 'Wen Tang', 'wen tang')<br/>('1733181', 'Ashkan Panahi', 'ashkan panahi')<br/>('1769928', 'Hamid Krim', 'hamid krim')<br/>('2622498', 'Liyi Dai', 'liyi dai')</td><td></td></tr><tr><td>350da18d8f7455b0e2920bc4ac228764f8fac292</td><td>From: AAAI Technical Report SS-03-08. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved. <br/>Automatic Detecting Neutral Face for Face Authentication and <br/>Facial Expression Analysis <br/>Exploratory Computer Vision Group @@ -3791,7 +4511,12 @@ <br/>Unconstrained Still/Video-Based Face Verification with Deep <br/>Convolutional Neural Networks <br/>Received: date / Accepted: date -</td><td>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('2682056', 'Ching-Hui Chen', 'ching-hui chen')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')<br/>('26988560', 'Rajeev Ranjan', 'rajeev ranjan')</td><td></td></tr><tr><td>35f03f5cbcc21a9c36c84e858eeb15c5d6722309</td><td>Placing Broadcast News Videos in their Social Media +</td><td>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('2682056', 'Ching-Hui Chen', 'ching-hui chen')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')<br/>('26988560', 'Rajeev Ranjan', 'rajeev ranjan')</td><td></td></tr><tr><td>35b1c1f2851e9ac4381ef41b4d980f398f1aad68</td><td>Geometry Guided Convolutional Neural Networks for +<br/>Self-Supervised Video Representation Learning +</td><td>('2551285', 'Chuang Gan', 'chuang gan')<br/>('40206014', 'Boqing Gong', 'boqing gong')<br/>('2473509', 'Kun Liu', 'kun liu')<br/>('49466491', 'Hao Su', 'hao su')<br/>('1744254', 'Leonidas J. Guibas', 'leonidas j. guibas')</td><td></td></tr><tr><td>351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd</td><td>ActionSnapping: Motion-based Video +<br/>Synchronization +<br/>Disney Research +</td><td>('2893744', 'Alexander Sorkine-Hornung', 'alexander sorkine-hornung')</td><td></td></tr><tr><td>35f03f5cbcc21a9c36c84e858eeb15c5d6722309</td><td>Placing Broadcast News Videos in their Social Media <br/>Context using Hashtags <br/><b>Columbia University</b></td><td>('2136860', 'Joseph G. Ellis', 'joseph g. ellis')<br/>('2602265', 'Svebor Karaman', 'svebor karaman')<br/>('1786871', 'Hongzhi Li', 'hongzhi li')<br/>('36009509', 'Hong Bin Shim', 'hong bin shim')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td>{jge2105, svebor.karaman, hongzhi.li, h.shim, sc250}@columbia.edu </td></tr><tr><td>35e4b6c20756cd6388a3c0012b58acee14ffa604</td><td>Gender Classification in Large Databases @@ -3846,7 +4571,20 @@ <br/><b>University of Perugia</b><br/>Trento, Italy <br/>Perugia, Italy <br/><b>University of Trento</b><br/>Trento, Italy -</td><td>('2933565', 'Gloria Zen', 'gloria zen')<br/>('1716310', 'Enver Sangineto', 'enver sangineto')<br/>('40811261', 'Elisa Ricci', 'elisa ricci')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')</td><td></td></tr><tr><td>353a89c277cca3e3e4e8c6a199ae3442cdad59b5</td><td></td><td></td><td></td></tr><tr><td>35e87e06cf19908855a16ede8c79a0d3d7687b5c</td><td>Strategies for Multi-View Face Recognition for +</td><td>('2933565', 'Gloria Zen', 'gloria zen')<br/>('1716310', 'Enver Sangineto', 'enver sangineto')<br/>('40811261', 'Elisa Ricci', 'elisa ricci')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')</td><td></td></tr><tr><td>353a89c277cca3e3e4e8c6a199ae3442cdad59b5</td><td></td><td></td><td></td></tr><tr><td>35e0256b33212ddad2db548484c595334f15b4da</td><td>Attentive Fashion Grammar Network for +<br/>Fashion Landmark Detection and Clothing Category Classification +<br/><b>Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China</b><br/><b>University of California, Los Angeles, USA</b></td><td>('2693875', 'Wenguan Wang', 'wenguan wang')<br/>('2762640', 'Yuanlu Xu', 'yuanlu xu')<br/>('34926055', 'Jianbing Shen', 'jianbing shen')<br/>('3133970', 'Song-Chun Zhu', 'song-chun zhu')</td><td></td></tr><tr><td>35e6f6e5f4f780508e5f58e87f9efe2b07d8a864</td><td>This paper is a preprint (IEEE accepted status). IEEE copyright notice. 2018 IEEE. +<br/>Personal use of this material is permitted. Permission from IEEE must be obtained for all +<br/><b>other uses, in any current or future media, including reprinting/republishing this material for</b><br/>advertising or promotional purposes, creating new collective works, for resale or redistribu- +<br/>tion to servers or lists, or reuse of any copyrighted. +<br/>A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, ”Sum- +<br/>marization of User-Generated Sports Video by Using Deep Action Recognition Features,” in +<br/>doi: 10.1109/TMM.2018.2794265 +<br/>keywords: Cameras; Feature extraction; Games; Hidden Markov models; Semantics; +<br/>Three-dimensional displays; 3D convolutional neural networks; Sports video summarization; +<br/>action recognition; deep learning; long short-term memory; user-generated video, +<br/>URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8259321&isnumber=4456689 +</td><td></td><td></td></tr><tr><td>35e87e06cf19908855a16ede8c79a0d3d7687b5c</td><td>Strategies for Multi-View Face Recognition for <br/>Identification of Human Faces: A Review <br/>Department of Computer Science <br/>Mahatma Gandhi Shikshan Mandal’s, @@ -3859,7 +4597,10 @@ </td></tr><tr><td>352110778d2cc2e7110f0bf773398812fd905eb1</td><td>TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014 <br/>Matrix Completion for Weakly-supervised <br/>Multi-label Image Classification -</td><td>('31671904', 'Ricardo Cabral', 'ricardo cabral')<br/>('1683568', 'Fernando De la Torre', 'fernando de la torre')<br/>('2884203', 'Alexandre Bernardino', 'alexandre bernardino')</td><td></td></tr><tr><td>697b0b9630213ca08a1ae1d459fabc13325bdcbb</td><td></td><td></td><td></td></tr><tr><td>69ff40fd5ce7c3e6db95a2b63d763edd8db3a102</td><td>HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL +</td><td>('31671904', 'Ricardo Cabral', 'ricardo cabral')<br/>('1683568', 'Fernando De la Torre', 'fernando de la torre')<br/>('2884203', 'Alexandre Bernardino', 'alexandre bernardino')</td><td></td></tr><tr><td>6964af90cf8ac336a2a55800d9c510eccc7ba8e1</td><td>Temporal Relational Reasoning in Videos +<br/>MIT CSAIL +</td><td>('1804424', 'Bolei Zhou', 'bolei zhou')<br/>('50112310', 'Alex Andonian', 'alex andonian')<br/>('1690178', 'Antonio Torralba', 'antonio torralba')</td><td>{bzhou,aandonia,oliva,torralba}@csail.mit.edu +</td></tr><tr><td>697b0b9630213ca08a1ae1d459fabc13325bdcbb</td><td></td><td></td><td></td></tr><tr><td>69ff40fd5ce7c3e6db95a2b63d763edd8db3a102</td><td>HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL <br/>FEATURES <br/>Merve KILINC1 and Yusuf Sinan AKGUL2 <br/>1TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey @@ -3867,13 +4608,22 @@ <br/>Keywords: <br/>Age estimation:age classification:geometric features:LBP:Gabor:LGBP:cross ratio:FGNET:MORPH </td><td></td><td>mkilinc@uekae.tubitak.gov.tr1, mkilinc@gyte.edu.tr2, akgul@bilmuh.gyte.edu.tr2 -</td></tr><tr><td>69d29012d17cdf0a2e59546ccbbe46fa49afcd68</td><td>Subspace clustering of dimensionality-reduced data +</td></tr><tr><td>69adbfa7b0b886caac15ebe53b89adce390598a3</td><td>Face hallucination using cascaded +<br/>super-resolution and identity priors +<br/><b>University of Ljubljana, Faculty of Electrical Engineering</b><br/><b>University of Notre Dame</b><br/>Fig. 1. Sample face hallucination results generated with the proposed method. +</td><td>('3387470', 'Klemen Grm', 'klemen grm')<br/>('2613438', 'Walter J. Scheirer', 'walter j. scheirer')</td><td></td></tr><tr><td>69d29012d17cdf0a2e59546ccbbe46fa49afcd68</td><td>Subspace clustering of dimensionality-reduced data <br/>ETH Zurich, Switzerland </td><td>('1730683', 'Reinhard Heckel', 'reinhard heckel')<br/>('2208878', 'Michael Tschannen', 'michael tschannen')</td><td>Email: {heckel,boelcskei}@nari.ee.ethz.ch, michaelt@student.ethz.ch </td></tr><tr><td>69a68f9cf874c69e2232f47808016c2736b90c35</td><td>Learning Deep Representation for Imbalanced Classification <br/><b>The Chinese University of Hong Kong</b><br/>2SenseTime Group Limited <br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b></td><td>('2000034', 'Chen Huang', 'chen huang')<br/>('9263285', 'Yining Li', 'yining li')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>{chuang,ly015,ccloy,xtang}@ie.cuhk.edu.hk -</td></tr><tr><td>69de532d93ad8099f4d4902c4cad28db958adfea</td><td></td><td></td><td></td></tr><tr><td>69b18d62330711bfd7f01a45f97aaec71e9ea6a5</td><td>RESEARCH ARTICLE +</td></tr><tr><td>69de532d93ad8099f4d4902c4cad28db958adfea</td><td></td><td></td><td></td></tr><tr><td>69a55c30c085ad1b72dd2789b3f699b2f4d3169f</td><td>International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016 +<br/>Automatic Happiness Strength Analysis of a +<br/>Group of People using Facial Expressions +<br/>Sagiri Prasanthi#1, Maddali M.V.M. Kumar*2, +<br/>#1PG Student, #2Assistant Professor +<br/><b>St. Ann s College of Engineering and Technology, Andhra Pradesh, India</b><br/>is a collective concern +</td><td></td><td></td></tr><tr><td>69b18d62330711bfd7f01a45f97aaec71e9ea6a5</td><td>RESEARCH ARTICLE <br/>M-Track: A New Software for Automated <br/>Detection of Grooming Trajectories in Mice <br/><b>State University of New York Polytechnic Institute, Utica, New York</b><br/><b>United States of America, State University of New York Albany, Albany, New York</b><br/><b>United States of America, State University of New York Albany, Albany</b><br/>New York, United States of America @@ -3909,11 +4659,17 @@ <br/>201 Broadway, Cambridge MA <br/>MIT Media Lab <br/>75 Amherst St, Cambridge, MA -</td><td>('1912905', 'Rohit Pandharkar', 'rohit pandharkar')<br/>('1785066', 'Ashok Veeraraghavan', 'ashok veeraraghavan')<br/>('1717566', 'Ramesh Raskar', 'ramesh raskar')</td><td></td></tr><tr><td>69eb6c91788e7c359ddd3500d01fb73433ce2e65</td><td>CAMGRAPH: Distributed Graph Processing for +</td><td>('1912905', 'Rohit Pandharkar', 'rohit pandharkar')<br/>('1785066', 'Ashok Veeraraghavan', 'ashok veeraraghavan')<br/>('1717566', 'Ramesh Raskar', 'ramesh raskar')</td><td></td></tr><tr><td>6993bca2b3471f26f2c8a47adfe444bfc7852484</td><td>The Do’s and Don’ts for CNN-based Face Verification +<br/>Carlos Castillo +<br/><b>University of Maryland, College Park</b><br/>UMIACS +</td><td>('2068427', 'Ankan Bansal', 'ankan bansal')<br/>('48467498', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{ankan,carlos,rranjan1,rama}@umiacs.umd.edu +</td></tr><tr><td>69eb6c91788e7c359ddd3500d01fb73433ce2e65</td><td>CAMGRAPH: Distributed Graph Processing for <br/>Camera Networks <br/><b>College of Computing</b><br/><b>Georgia Institute of Technology</b><br/>Atlanta, GA, USA </td><td>('3427189', 'Steffen Maass', 'steffen maass')<br/>('5540701', 'Kirak Hong', 'kirak hong')<br/>('1751741', 'Umakishore Ramachandran', 'umakishore ramachandran')</td><td>steffen.maass@gatech.edu,khong9@cc.gatech.edu,rama@cc.gatech.edu -</td></tr><tr><td>69063f7e0a60ad6ce16a877bc8f11b59e5f7348e</td><td>Class-Specific Image Deblurring +</td></tr><tr><td>691964c43bfd282f6f4d00b8b0310c554b613e3b</td><td>Temporal Hallucinating for Action Recognition with Few Still Images +<br/>2† +<br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China</b><br/><b>The Chinese University of Hong Kong 3 SenseTime Group Limited</b></td><td>('46696518', 'Lei Zhou', 'lei zhou')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>69063f7e0a60ad6ce16a877bc8f11b59e5f7348e</td><td>Class-Specific Image Deblurring <br/>2, Fatih Porikli1 <br/><b>The Australian National University Canberra ACT 2601, Australia</b><br/>2NICTA, Locked Bag 8001, Canberra ACT 2601, Australia </td><td>('33672969', 'Saeed Anwar', 'saeed anwar')<br/>('1774721', 'Cong Phuoc Huynh', 'cong phuoc huynh')</td><td></td></tr><tr><td>69a9da55bd20ce4b83e1680fbc6be2c976067631</td><td></td><td></td><td></td></tr><tr><td>69c2ac04693d53251500557316c854a625af84ee</td><td>JID: PATREC @@ -4003,7 +4759,33 @@ <br/>enhancing Human Action Recognition <br/>O.V. Ramana Murthy1 and Roland Goecke1,2 <br/><b>Vision and Sensing, HCC Lab, ESTeM, University of Canberra</b><br/><b>IHCC, RSCS, CECS, Australian National University</b></td><td></td><td>Email: O.V.RamanaMurthy@ieee.org, roland.goecke@ieee.org -</td></tr><tr><td>3c78b642289d6a15b0fb8a7010a1fb829beceee2</td><td>Analysis of Facial Dynamics +</td></tr><tr><td>3cb2841302af1fb9656f144abc79d4f3d0b27380</td><td>See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319928941 +<br/>When 3D-Aided 2D Face Recognition Meets Deep +<br/>Learning: An extended UR2D for Pose-Invariant +<br/>Face Recognition +<br/>Article · September 2017 +<br/>CITATIONS +<br/>4 authors: +<br/>READS +<br/>33 +<br/>Xiang Xu +<br/><b>University of Houston</b><br/>Pengfei Dou +<br/><b>University of Houston</b><br/>8 PUBLICATIONS 10 CITATIONS +<br/>9 PUBLICATIONS 29 CITATIONS +<br/>SEE PROFILE +<br/>SEE PROFILE +<br/>Ha Le +<br/><b>University of Houston</b><br/>7 PUBLICATIONS 2 CITATIONS +<br/>Ioannis A Kakadiaris +<br/><b>University of Houston</b><br/>468 PUBLICATIONS 5,233 CITATIONS +<br/>SEE PROFILE +<br/>SEE PROFILE +<br/>Some of the authors of this publication are also working on these related projects: +<br/>3D-Aided 2D Face Recognition View project +<br/>iRay: mobile medical AR View project +<br/>All content following this page was uploaded by Xiang Xu on 27 September 2017. +<br/>The user has requested enhancement of the downloaded file. +</td><td></td><td></td></tr><tr><td>3c78b642289d6a15b0fb8a7010a1fb829beceee2</td><td>Analysis of Facial Dynamics <br/>Using a Tensor Framework <br/><b>University of Bristol</b><br/>Department of Computer Science <br/>Bristol, United Kingdom @@ -4043,7 +4825,18 @@ <br/>M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae <br/>Department of Electrical Engineering, Universidad de Chile <br/>Advanced Mining Technology Center, Universidad de Chile -</td><td></td><td></td></tr><tr><td>3c03d95084ccbe7bf44b6d54151625c68f6e74d0</td><td></td><td></td><td></td></tr><tr><td>3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0</td><td>Defeating Image Obfuscation with Deep Learning +</td><td></td><td></td></tr><tr><td>3c563542db664321aa77a9567c1601f425500f94</td><td>TV-GAN: Generative Adversarial Network Based Thermal to Visible Face +<br/>Recognition +<br/><b>The University of Queensland, School of ITEE, QLD 4072, Australia</b></td><td>('50615828', 'Teng Zhang', 'teng zhang')<br/>('2331880', 'Arnold Wiliem', 'arnold wiliem')<br/>('1973322', 'Siqi Yang', 'siqi yang')<br/>('2270092', 'Brian C. Lovell', 'brian c. lovell')</td><td>[patrick.zhang, a.williem, siqi.yang]@uq.edu.au, lovell@itee.uq.edu.au +</td></tr><tr><td>3c03d95084ccbe7bf44b6d54151625c68f6e74d0</td><td></td><td></td><td></td></tr><tr><td>3cd7b15f5647e650db66fbe2ce1852e00c05b2e4</td><td></td><td></td><td></td></tr><tr><td>3c6cac7ecf546556d7c6050f7b693a99cc8a57b3</td><td>Robust Facial Landmark Detection in the Wild +<br/>Submitted for the Degree of +<br/>Doctor of Philosophy +<br/>from the +<br/><b>University of Surrey</b><br/>Centre for Vision, Speech and Signal Processing +<br/>Faculty of Engineering and Physical Sciences +<br/><b>University of Surrey</b><br/>Guildford, Surrey GU2 7XH, U.K. +<br/>January 2016 +</td><td>('37705062', 'Zhenhua Feng', 'zhenhua feng')<br/>('37705062', 'Zhenhua Feng', 'zhenhua feng')</td><td></td></tr><tr><td>3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0</td><td>Defeating Image Obfuscation with Deep Learning <br/><b>The University of Texas at</b><br/>Austin <br/>Cornell Tech <br/>Cornell Tech @@ -4066,7 +4859,16 @@ <br/>Amherst MA 01003 </td><td>('40175280', 'Huaizu Jiang', 'huaizu jiang')</td><td>hzjiang@cs.umass.edu <br/>elm@cs.umass.edu -</td></tr><tr><td>3ce2ecf3d6ace8d80303daf67345be6ec33b3a93</td><td></td><td></td><td></td></tr><tr><td>3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8</td><td>Measuring Gaze Orientation for Human-Robot +</td></tr><tr><td>3ce2ecf3d6ace8d80303daf67345be6ec33b3a93</td><td></td><td></td><td></td></tr><tr><td>3c1aef7c2d32a219bdbc89a44d158bc2695e360a</td><td>Adversarial Attack Type I: Generating False Positives +<br/><b>Shanghai Jiao Tong University</b><br/>Shanghai, P.R. China 200240 +<br/><b>Shanghai Jiao Tong University</b><br/>Shanghai, P.R. China 200240 +<br/><b>Shanghai Jiao Tong University</b><br/>Shanghai, P.R. China 200240 +<br/><b>Shanghai Jiao Tong University</b><br/>Shanghai, P.R. China 200240 +</td><td>('51428687', 'Sanli Tang', 'sanli tang')<br/>('13858459', 'Mingjian Chen', 'mingjian chen')<br/>('2182657', 'Xiaolin Huang', 'xiaolin huang')<br/>('1688428', 'Jie Yang', 'jie yang')</td><td>tangsanli@sjtu.edu.cn +<br/>w179261466@sjtu.edu.cn +<br/>xiaolinhuang@sjtu.edu.cn +<br/>jieyang@sjtu.edu.cn +</td></tr><tr><td>3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8</td><td>Measuring Gaze Orientation for Human-Robot <br/>Interaction <br/>∗ CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France <br/>† Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France @@ -4135,7 +4937,9 @@ <br/>TR4 8UN, UK. <br/><b>Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia</b></td><td>('3888942', 'Konstantin Chekanov', 'konstantin chekanov')<br/>('4017984', 'Polina Mamoshina', 'polina mamoshina')<br/>('1976753', 'Roman V. Yampolskiy', 'roman v. yampolskiy')<br/>('1732855', 'Radu Timofte', 'radu timofte')<br/>('40336662', 'Alex Zhavoronkov', 'alex zhavoronkov')</td><td>Morten Scheibye-Knudsen: mscheibye@sund.ku.dk <br/>Alex Zhavoronkov: alex@biogerontology.org -</td></tr><tr><td>3cc46bf79fb9225cf308815c7d41c8dd5625cc29</td><td>AGE INTERVAL AND GENDER PREDICTION USING PARAFAC2 APPLIED TO SPEECH +</td></tr><tr><td>3c56acaa819f4e2263638b67cea1ec37a226691d</td><td>Body Joint guided 3D Deep Convolutional +<br/>Descriptors for Action Recognition +</td><td>('3201156', 'Congqi Cao', 'congqi cao')<br/>('46867228', 'Yifan Zhang', 'yifan zhang')<br/>('1713887', 'Chunjie Zhang', 'chunjie zhang')<br/>('1694235', 'Hanqing Lu', 'hanqing lu')</td><td></td></tr><tr><td>3cc46bf79fb9225cf308815c7d41c8dd5625cc29</td><td>AGE INTERVAL AND GENDER PREDICTION USING PARAFAC2 APPLIED TO SPEECH <br/>UTTERANCES <br/><b>Aristotle University of Thessaloniki</b><br/>Thessaloniki 54124, GREECE <br/><b>Cyprus University of Technology</b><br/>3040 Limassol, Cyprus @@ -4184,7 +4988,12 @@ </td></tr><tr><td>56359d2b4508cc267d185c1d6d310a1c4c2cc8c2</td><td>Shape Driven Kernel Adaptation in <br/>Convolutional Neural Network for Robust Facial Trait Recognition <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), -<br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China</b><br/><b>National University of Singapore, Singapore</b></td><td>('1688086', 'Shaoxin Li', 'shaoxin li')<br/>('1757173', 'Junliang Xing', 'junliang xing')<br/>('1773437', 'Zhiheng Niu', 'zhiheng niu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>56e6f472090030a6f172a3e2f46ef9daf6cad757</td><td>Asian Face Image Database PF01 +<br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, 100190, China</b><br/><b>National University of Singapore, Singapore</b></td><td>('1688086', 'Shaoxin Li', 'shaoxin li')<br/>('1757173', 'Junliang Xing', 'junliang xing')<br/>('1773437', 'Zhiheng Niu', 'zhiheng niu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>56e079f4eb40744728fd1d7665938b06426338e5</td><td>Bayesian Approaches to Distribution Regression +<br/><b>University of Oxford</b><br/><b>University College London</b><br/><b>University of Oxford</b><br/><b>Imperial College London</b></td><td>('35142231', 'Ho Chung Leon Law', 'ho chung leon law')<br/>('36326783', 'Dougal J. Sutherland', 'dougal j. sutherland')<br/>('1698032', 'Dino Sejdinovic', 'dino sejdinovic')<br/>('2127497', 'Seth Flaxman', 'seth flaxman')</td><td>ho.law@spc.ox.ac.uk +<br/>dougal@gmail.com +<br/>dino.sejdinovic@stats.ox.ac.uk +<br/>s.flaxman@imperial.ac.uk +</td></tr><tr><td>56e6f472090030a6f172a3e2f46ef9daf6cad757</td><td>Asian Face Image Database PF01 <br/>Intelligent Multimedia Lab. <br/>†Department of Computer Science and Engineering <br/><b>Pohang University of Science and Technology</b><br/>San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea @@ -4239,10 +5048,16 @@ <br/>Concepts Not Alone: Exploring Pairwise Relationships <br/>for Zero-Shot Video Activity Recognition <br/><b>IIIS, Tsinghua University, Beijing, China</b><br/><b>QCIS, University of Technology Sydney, Sydney, Australia</b><br/><b>DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA</b></td><td>('2551285', 'Chuang Gan', 'chuang gan')<br/>('2735055', 'Ming Lin', 'ming lin')<br/>('39033919', 'Yi Yang', 'yi yang')<br/>('1732213', 'Gerard de Melo', 'gerard de melo')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')</td><td></td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>Face Recognition in Unconstrained Videos with Matched Background Similarity -<br/><b>The Blavatnik School of Computer Science, Tel-Aviv University, Israel</b><br/><b>Computer Science Division, The Open University of Israel</b></td><td>('1776343', 'Lior Wolf', 'lior wolf')<br/>('3352629', 'Itay Maoz', 'itay maoz')</td><td></td></tr><tr><td>566038a3c2867894a08125efe41ef0a40824a090</td><td>978-1-4244-2354-5/09/$25.00 ©2009 IEEE +<br/><b>The Blavatnik School of Computer Science, Tel-Aviv University, Israel</b><br/><b>Computer Science Division, The Open University of Israel</b></td><td>('1776343', 'Lior Wolf', 'lior wolf')<br/>('3352629', 'Itay Maoz', 'itay maoz')</td><td></td></tr><tr><td>56a677c889e0e2c9f68ab8ca42a7e63acf986229</td><td>Mining Spatial and Spatio-Temporal ROIs for Action Recognition +<br/>Jiang Wang2 Alan Yuille1,3 +<br/><b>University of California, Los Angeles</b><br/><b>Baidu Research, USA 3John Hopkins University</b></td><td>('5964529', 'Xiaochen Lian', 'xiaochen lian')</td><td>{lianxiaochen@,yuille@stat.}ucla.edu +<br/>{chenzhuoyuan,yangyi05,wangjiang03}@baidu.com +</td></tr><tr><td>566038a3c2867894a08125efe41ef0a40824a090</td><td>978-1-4244-2354-5/09/$25.00 ©2009 IEEE <br/>1945 <br/>ICASSP 2009 -</td><td></td><td></td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>Distance Estimation of an Unknown Person +</td><td></td><td></td></tr><tr><td>56dca23481de9119aa21f9044efd7db09f618704</td><td>Riemannian Dictionary Learning and Sparse +<br/>Coding for Positive Definite Matrices +</td><td>('2691929', 'Anoop Cherian', 'anoop cherian')<br/>('3072326', 'Suvrit Sra', 'suvrit sra')</td><td></td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>Distance Estimation of an Unknown Person <br/>from a Portrait <br/>1 Technicolor - Cesson S´evign´e, France <br/><b>California Institute of Technology, Pasadena, CA, USA</b></td><td>('2232848', 'Xavier P. Burgos-Artizzu', 'xavier p. burgos-artizzu')<br/>('3339867', 'Matteo Ruggero Ronchi', 'matteo ruggero ronchi')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td>xavier.burgos@technicolor.com, {mronchi,perona}@caltech.edu @@ -4257,7 +5072,12 @@ </td><td>('1708679', 'Yun Fu', 'yun fu')<br/>('37575012', 'Liangliang Cao', 'liangliang cao')<br/>('1822413', 'Guodong Guo', 'guodong guo')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td>{yunfu2,cao4}@uiuc.edu <br/>gdguo@nccu.edu <br/>huang@ifp.uiuc.edu -</td></tr><tr><td>512befa10b9b704c9368c2fbffe0dc3efb1ba1bf</td><td>Evidence and a Computational Explanation of Cultural Differences in +</td></tr><tr><td>516a27d5dd06622f872f5ef334313350745eadc3</td><td>> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +<br/>1 +<br/>Fine-Grained Facial Expression Analysis Us- +<br/>ing Dimensional Emotion Model +<br/> +</td><td>('41179750', 'Feng Zhou', 'feng zhou')<br/>('34362536', 'Shu Kong', 'shu kong')<br/>('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')<br/>('29889388', 'Tao Chen', 'tao chen')<br/>('40216538', 'Baiying Lei', 'baiying lei')</td><td></td></tr><tr><td>512befa10b9b704c9368c2fbffe0dc3efb1ba1bf</td><td>Evidence and a Computational Explanation of Cultural Differences in <br/>Facial Expression Recognition <br/>Matthew N. Dailey <br/>Computer Science and Information Management @@ -4330,7 +5150,9 @@ </td><td>('2635321', 'Josiah Wang', 'josiah wang')<br/>('1686341', 'Katja Markert', 'katja markert')<br/>('3056091', 'Mark Everingham', 'mark everingham')</td><td>scs6jwks@comp.leeds.ac.uk <br/>markert@comp.leeds.ac.uk <br/>me@comp.leeds.ac.uk -</td></tr><tr><td>51c7c5dfda47647aef2797ac3103cf0e108fdfb4</td><td>CS 395T: Celebrity Look-Alikes ∗ +</td></tr><tr><td>5180df9d5eb26283fb737f491623395304d57497</td><td>Scalable Angular Discriminative Deep Metric Learning +<br/>for Face Recognition +<br/><b>aCenter for Combinatorics, Nankai University, Tianjin 300071, China</b><br/><b>bCenter for Applied Mathematics, Tianjin University, Tianjin 300072, China</b></td><td>('2143751', 'Bowen Wu', 'bowen wu')</td><td></td></tr><tr><td>51c7c5dfda47647aef2797ac3103cf0e108fdfb4</td><td>CS 395T: Celebrity Look-Alikes ∗ </td><td>('2362854', 'Adrian Quark', 'adrian quark')</td><td>quark@mail.utexas.edu </td></tr><tr><td>519f4eb5fe15a25a46f1a49e2632b12a3b18c94d</td><td>Non-Lambertian Reflectance Modeling and <br/>Shape Recovery of Faces using Tensor Splines @@ -4362,14 +5184,27 @@ <br/>Fernando De la Torre, Co-chair <br/>Submitted in partial fulfillment of the requirements <br/>for the degree of Doctor of Philosophy in Robotics. -</td><td>('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')<br/>('1820249', 'Simon Lucey', 'simon lucey')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')<br/>('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')<br/>('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')</td><td></td></tr><tr><td>51cc78bc719d7ff2956b645e2fb61bab59843d2b</td><td>Face and Facial Expression Recognition with an +</td><td>('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')<br/>('1820249', 'Simon Lucey', 'simon lucey')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')<br/>('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')<br/>('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')</td><td></td></tr><tr><td>51faacfa4fb1e6aa252c6970e85ff35c5719f4ff</td><td>Zoom-Net: Mining Deep Feature Interactions for +<br/>Visual Relationship Recognition +<br/><b>University of Science and Technology of China, Key Laboratory of Electromagnetic</b><br/>Space Information, the Chinese Academy of Sciences, 2SenseTime Group Limited, +<br/><b>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</b><br/><b>SenseTime-NTU Joint AI Research Centre, Nanyang Technological University</b></td><td>('4332039', 'Guojun Yin', 'guojun yin')<br/>('37145669', 'Lu Sheng', 'lu sheng')<br/>('50677886', 'Bin Liu', 'bin liu')<br/>('1708598', 'Nenghai Yu', 'nenghai yu')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('49895575', 'Jing Shao', 'jing shao')<br/>('1717179', 'Chen Change Loy', 'chen change loy')</td><td>gjyin@mail.ustc.edu.cn, {flowice,ynh}@ustc.edu.cn, ccloy@ieee.org, +<br/>{lsheng,xgwang}@ee.cuhk.edu.hk, shaojing@sensetime.com +</td></tr><tr><td>51cc78bc719d7ff2956b645e2fb61bab59843d2b</td><td>Face and Facial Expression Recognition with an <br/>Embedded System for Human-Robot Interaction <br/><b>School of Computer Engineering, Sejong University, Seoul, Korea</b></td><td>('2241562', 'Yang-Bok Lee', 'yang-bok lee')<br/>('2706430', 'Yong-Guk Kim', 'yong-guk kim')</td><td>*ykim@sejong.ac.kr </td></tr><tr><td>511b06c26b0628175c66ab70dd4c1a4c0c19aee9</td><td>International Journal of Engineering Research and General ScienceVolume 2, Issue 5, August – September 2014 <br/>ISSN 2091-2730 <br/>Face Recognition using Laplace Beltrami Operator by Optimal Linear <br/>Approximations -<br/><b>Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj</b><br/><b>Research Scholar (M.Tech, IT), Institute of Engineering and Technology</b></td><td></td><td></td></tr><tr><td>51528cdce7a92835657c0a616c0806594de7513b</td><td></td><td></td><td></td></tr><tr><td>514a74aefb0b6a71933013155bcde7308cad2b46</td><td><b>CARNEGIE MELLON UNIVERSITY</b><br/>OPTIMAL CLASSIFIER ENSEMBLES +<br/><b>Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj</b><br/><b>Research Scholar (M.Tech, IT), Institute of Engineering and Technology</b></td><td></td><td></td></tr><tr><td>51528cdce7a92835657c0a616c0806594de7513b</td><td></td><td></td><td></td></tr><tr><td>51cb09ee04831b95ae02e1bee9b451f8ac4526e3</td><td>Beyond Short Snippets: Deep Networks for Video Classification +<br/>Matthew Hausknecht2 +<br/><b>University of Maryland, College Park</b><br/><b>University of Texas at Austin</b><br/><b>Google, Inc</b></td><td>('2340579', 'Joe Yue-Hei Ng', 'joe yue-hei ng')<br/>('1689108', 'Oriol Vinyals', 'oriol vinyals')<br/>('3089272', 'Rajat Monga', 'rajat monga')<br/>('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')<br/>('1805076', 'George Toderici', 'george toderici')</td><td>yhng@umiacs.umd.edu +<br/>mhauskn@cs.utexas.edu +<br/>svnaras@google.com +<br/>vinyals@google.com +<br/>rajatmonga@google.com +<br/>gtoderici@google.com +</td></tr><tr><td>514a74aefb0b6a71933013155bcde7308cad2b46</td><td><b>CARNEGIE MELLON UNIVERSITY</b><br/>OPTIMAL CLASSIFIER ENSEMBLES <br/>FOR IMPROVED BIOMETRIC VERIFICATION <br/>A Dissertation <br/>Submitted to the Faculty of Graduate School @@ -4466,9 +5301,17 @@ <br/>Manuscript received 23 June 2002; revised 27 January 2003 <br/>Communicated by Ladislav Hluch´y </td><td>('2366162', 'Yongzhong Lu', 'yongzhong lu')<br/>('1711876', 'Jingli Zhou', 'jingli zhou')<br/>('1714618', 'Shengsheng Yu', 'shengsheng yu')</td><td>e-mail: luyongz0@sohu.com -</td></tr><tr><td>5121f42de7cb9e41f93646e087df82b573b23311</td><td>CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL +</td></tr><tr><td>5161e38e4ea716dcfb554ccb88901b3d97778f64</td><td>SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR +<br/>FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON +<br/>School of Computing, KAIST, Republic of Korea +</td><td>('2487892', 'Sungeun Hong', 'sungeun hong')<br/>('40506942', 'Woobin Im', 'woobin im')</td><td></td></tr><tr><td>5121f42de7cb9e41f93646e087df82b573b23311</td><td>CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL <br/>EMBEDDINGS <br/><b>FL</b></td><td></td><td>Charles F. Jekel (cjekel@ufl.edu; cj@jekel.me) and Raphael T. Haftka +</td></tr><tr><td>51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>A Fast and Accurate System for Face Detection, +<br/>Identification, and Verification +</td><td>('48467498', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('2068427', 'Ankan Bansal', 'ankan bansal')<br/>('7674316', 'Jingxiao Zheng', 'jingxiao zheng')<br/>('2680836', 'Hongyu Xu', 'hongyu xu')<br/>('35199438', 'Joshua Gleason', 'joshua gleason')<br/>('2927406', 'Boyu Lu', 'boyu lu')<br/>('8435884', 'Anirudh Nanduri', 'anirudh nanduri')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>5141cf2e59fb2ec9bb489b9c1832447d3cd93110</td><td>Learning Person Trajectory Representations for Team Activity Analysis +<br/><b>Simon Fraser University</b></td><td>('10386960', 'Nazanin Mehrasa', 'nazanin mehrasa')<br/>('19198359', 'Yatao Zhong', 'yatao zhong')<br/>('2123865', 'Frederick Tung', 'frederick tung')<br/>('3004771', 'Luke Bornn', 'luke bornn')<br/>('10771328', 'Greg Mori', 'greg mori')</td><td>{nmehrasa, yataoz, ftung, lbornn}@sfu.ca, mori@cs.sfu.ca </td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>A Multimodality Framework for Creating Speaker/Non-Speaker Profile <br/>Databases for Real-World Video <br/><b>Beckman Institute</b><br/><b>University of Illinois</b><br/>Urbana, IL 61801 @@ -4477,18 +5320,101 @@ </td><td>('3082579', 'Jehanzeb Abbas', 'jehanzeb abbas')<br/>('1804874', 'Charlie K. Dagli', 'charlie k. dagli')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td>jabbas2@ifp.uiuc.edu <br/>dagli@ifp.uiuc.edu <br/>huang@ifp.uiuc.edu -</td></tr><tr><td>5160569ca88171d5fa257582d161e9063c8f898d</td><td>Local Binary Patterns as an Image Preprocessing for Face Authentication +</td></tr><tr><td>511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7</td><td>Hindawi +<br/>Computational Intelligence and Neuroscience +<br/>Volume 2018, Article ID 4512473, 10 pages +<br/>https://doi.org/10.1155/2018/4512473 +<br/>Research Article +<br/>A Community Detection Approach to Cleaning Extremely +<br/>Large Face Database +<br/><b>Computer School, University of South China, Hengyang, China</b><br/><b>National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha, China</b><br/>Received 11 December 2017; Accepted 12 March 2018; Published 22 April 2018 +<br/>Academic Editor: Amparo Alonso-Betanzos +<br/>permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +<br/>Though it has been easier to build large face datasets by collecting images from the Internet in this Big Data era, the time-consuming +<br/>manual annotation process prevents researchers from constructing larger ones, which makes the automatic cleaning of noisy labels +<br/>highly desirable. However, identifying mislabeled faces by machine is quite challenging because the diversity of a person’s face +<br/>images that are captured wildly at all ages is extraordinarily rich. In view of this, we propose a graph-based cleaning method that +<br/>mainly employs the community detection algorithm and deep CNN models to delete mislabeled images. As the diversity of faces is +<br/>preserved in multiple large communities, our cleaning results have both high cleanness and rich data diversity. With our method, we +<br/>clean the extremely large MS-Celeb-1M face dataset (approximately 10 million images with noisy labels) and obtain a clean version +<br/>of it called C-MS-Celeb (6,464,018 images of 94,682 celebrities). By training a single-net model using our C-MS-Celeb dataset, +<br/>without fine-tuning, we achieve 99.67% at Equal Error Rate on the LFW face recognition benchmark, which is comparable to other +<br/>state-of-the-art results. This demonstrates the data cleaning positive effects on the model training. To the best of our knowledge, +<br/>our C-MS-Celeb is the largest clean face dataset that is publicly available so far, which will benefit face recognition researchers. +<br/>1. Introduction +<br/>In the last few years, researchers have witnessed the remark- +<br/>able progress in face recognition due to the significant success +<br/>of deep convolutional neural networks [1] and the emergence +<br/>of large scale face datasets [2]. Although the data explosion +<br/>has made it easier to build datasets by collecting real world +<br/>images from the Internet [3], constructing a large scale face +<br/>dataset remains a highly time-consuming and costly task +<br/>because the mislabeled images returned by search engines +<br/>need to be manually removed [4]. Thus, automatic cleaning +<br/>of noisy labels in the raw dataset is strongly desirable. +<br/>However, identifying mislabeled faces automatically by +<br/>machine is by no means easy. The main reason for this is that, +<br/>for faces that are captured wildly, the variation of a man’s faces +<br/>can be so large that some of his images may easily be identified +<br/>as someone else’s [5]. Thus, a machine may be misled by this +<br/>rich data diversity within one person and delete correctly +<br/>labeled images. For example, if old faces of a man are the +<br/>majority in the dataset, a young face of him may be regarded +<br/>as someone else and removed. Another challenge is that, due +<br/>to the ambiguity of people’s names, searching for someone’s +<br/>pictures online usually returns images from multiple people +<br/>[2], which requires the cleaning method to be tolerant to the +<br/>high proportion of noisy labels in the raw dataset constructed +<br/>by online searching. +<br/>In order to clean noisy labels and meanwhile preserve +<br/>the rich data diversity of various faces, we propose a three- +<br/>stage graph-based method to clean large face datasets using +<br/>the community detection algorithm. For each image in the +<br/>raw dataset, we firstly use pretrained deep CNN models to +<br/>align the face and extract a feature vector to represent each +<br/>face. Secondly, for features of the same identity, based on the +<br/>cosine similarity between different features, we construct an +<br/>undirected graph, named “face similarity graph,” to quantify +<br/>the similarity between different images. After deleting weak +<br/>edges and applying the community detection algorithm, we +<br/>delete mislabeled images by removing minor communities. In +<br/>the last stage, we try to relabel each previously deleted image +</td><td>('3335298', 'Chi Jin', 'chi jin')<br/>('9856301', 'Ruochun Jin', 'ruochun jin')<br/>('38536592', 'Kai Chen', 'kai chen')<br/>('1791001', 'Yong Dou', 'yong dou')<br/>('3335298', 'Chi Jin', 'chi jin')</td><td>Correspondence should be addressed to Ruochun Jin; sczjrc@163.com +</td></tr><tr><td>51d048b92f6680aca4a8adf07deb380c0916c808</td><td>This is the accepted version of the following article: "State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications", +<br/>which has been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-commercial purposes in accordance +<br/>with the Wiley Self-Archiving Policy [http://olabout.wiley.com/WileyCDA/Section/id-820227.html]. +<br/>EUROGRAPHICS 2018 +<br/>K. Hildebrandt and C. Theobalt +<br/>(Guest Editors) +<br/>Volume 37 (2018), Number 2 +<br/>STAR – State of The Art Report +<br/>State of the Art on Monocular 3D Face +<br/>Reconstruction, Tracking, and Applications +<br/>M. Zollhöfer1,2 +<br/>J. Thies3 P. Garrido1,5 D. Bradley4 T. Beeler4 P. Pérez5 M. Stamminger6 M. Nießner3 C. Theobalt1 +<br/><b>Max Planck Institute for Informatics</b><br/><b>Stanford University</b><br/><b>Technical University of Munich</b><br/>4Disney Research +<br/>5Technicolor +<br/><b>University of Erlangen-Nuremberg</b><br/>Figure 1: This state-of-the-art report provides an overview of monocular 3D face reconstruction and tracking, and highlights applications. +</td><td></td><td></td></tr><tr><td>5134353bd01c4ea36bd007c460e8972b1541d0ad</td><td>Face Recognition with Multi-Resolution Spectral Feature +<br/>Images +<br/><b>School of Electrical Engineering and Automation, Anhui University, Hefei, China, Hong Kong Polytechnic</b><br/><b>University, Hong Kong, China, 3 Center for Intelligent Electricity Networks, University of Newcastle, Newcastle, Australia, 4 School of Electrical and Electronic Engineering</b><br/><b>Nanyang Technological University, Singapore, Singapore</b></td><td>('31443079', 'Zhan-Li Sun', 'zhan-li sun')<br/>('1703078', 'Kin-Man Lam', 'kin-man lam')<br/>('50067626', 'Zhao-yang Dong', 'zhao-yang dong')<br/>('40465036', 'Han Wang', 'han wang')<br/>('29927490', 'Qing-wei Gao', 'qing-wei gao')</td><td></td></tr><tr><td>5160569ca88171d5fa257582d161e9063c8f898d</td><td>Local Binary Patterns as an Image Preprocessing for Face Authentication <br/><b>IDIAP Research Institute, Martigny, Switzerland</b><br/>Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Switzerland </td><td>('16602458', 'Guillaume Heusch', 'guillaume heusch')<br/>('2820403', 'Yann Rodriguez', 'yann rodriguez')</td><td>fheusch, rodrig, marcelg@idiap.ch </td></tr><tr><td>5157dde17a69f12c51186ffc20a0a6c6847f1a29</td><td>Evolutionary Cost-sensitive Extreme Learning <br/>Machine <br/>1 -</td><td>('40613723', 'Lei Zhang', 'lei zhang')<br/>('1698371', 'David Zhang', 'david zhang')</td><td></td></tr><tr><td>51dc127f29d1bb076d97f515dca4cc42dda3d25b</td><td></td><td></td><td></td></tr><tr><td>3d143cfab13ecd9c485f19d988242e7240660c86</td><td>Discriminative Collaborative Representation for +</td><td>('40613723', 'Lei Zhang', 'lei zhang')<br/>('1698371', 'David Zhang', 'david zhang')</td><td></td></tr><tr><td>51dc127f29d1bb076d97f515dca4cc42dda3d25b</td><td></td><td></td><td></td></tr><tr><td>3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f</td><td>Face Alignment Across Large Poses: A 3D Solution +<br/>Hailin Shi1 +<br/><b>Institute of Automation, Chinese Academy of Sciences</b><br/><b>Michigan State University</b></td><td>('8362374', 'Xiangyu Zhu', 'xiangyu zhu')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{xiangyu.zhu,zlei,hailin.shi,szli}@nlpr.ia.ac.cn +<br/>liuxm@msu.edu +</td></tr><tr><td>3d143cfab13ecd9c485f19d988242e7240660c86</td><td>Discriminative Collaborative Representation for <br/>Classification <br/><b>Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan</b><br/><b>Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan</b><br/>3 OMRON Social Solutions Co., LTD, Kyoto 619-0283, Japan </td><td>('2549020', 'Yang Wu', 'yang wu')<br/>('40400215', 'Wei Li', 'wei li')<br/>('1707934', 'Masayuki Mukunoki', 'masayuki mukunoki')<br/>('1681266', 'Michihiko Minoh', 'michihiko minoh')<br/>('1710195', 'Shihong Lao', 'shihong lao')</td><td>yangwu@mm.media.kyoto-u.ac.jp,seuliwei@126.com, <br/>{minoh,mukunoki}@media.kyoto-u.ac.jp,lao_shihong@oss.omron.co.jp -</td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>In A. Esposito, N. Bourbakis, N. Avouris, and I. Hatzilygeroudis. (Eds.) Lecture Notes in +</td></tr><tr><td>3daafe6389d877fe15d8823cdf5ac15fd919676f</td><td>Human Action Localization +<br/>with Sparse Spatial Supervision +</td><td>('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')<br/>('49142153', 'Xavier Martin', 'xavier martin')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>In A. Esposito, N. Bourbakis, N. Avouris, and I. Hatzilygeroudis. (Eds.) Lecture Notes in <br/>Computer Science, Vol 5042: Verbal and Nonverbal Features of Human-human and Human- <br/>machine Interaction, Springer Verlag, p. 1-21. <br/>Data mining spontaneous facial behavior with @@ -4560,7 +5486,7 @@ <br/><b>Center for Arti cial Vision Research, Korea University</b><br/>Anam-dong, Seongbuk-ku, Seoul 136-713, Korea </td><td>('2348968', 'Sang-Woong Lee', 'sang-woong lee')<br/>('1703007', 'Seong-Whan Lee', 'seong-whan lee')</td><td>rhiephil@cs.cmu.edu <br/>swlee@image.korea.ac.kr -</td></tr><tr><td>3d0c21d4780489bd624a74b07e28c16175df6355</td><td>Deep or Shallow Facial Descriptors? A Case for +</td></tr><tr><td>3d6ee995bc2f3e0f217c053368df659a5d14d5b5</td><td></td><td></td><td></td></tr><tr><td>3d0c21d4780489bd624a74b07e28c16175df6355</td><td>Deep or Shallow Facial Descriptors? A Case for <br/>Facial Attribute Classification and Face Retrieval <br/>1 Faculty of Engineering, <br/><b>Multimedia University, Cyberjaya, Malaysia</b><br/>2 Faculty of Computing & Informatics, @@ -4600,7 +5526,11 @@ <br/>Revised: February 2010 <br/><b>A Thesis submitted to McGill University in partial fulfillment of the requirements for the</b><br/>degree of Master of Engineering <br/>i -</td><td>('2376514', 'Malika Meghjani', 'malika meghjani')<br/>('2376514', 'Malika Meghjani', 'malika meghjani')</td><td></td></tr><tr><td>3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a</td><td>1892 +</td><td>('2376514', 'Malika Meghjani', 'malika meghjani')<br/>('2376514', 'Malika Meghjani', 'malika meghjani')</td><td></td></tr><tr><td>3dfb822e16328e0f98a47209d7ecd242e4211f82</td><td>Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in +<br/>Unconstrained Environments +<br/><b>Beijing University of Posts and Telecommunications</b><br/>Beijing 100876,China +</td><td>('15523767', 'Tianyue Zheng', 'tianyue zheng')<br/>('1774956', 'Weihong Deng', 'weihong deng')<br/>('23224233', 'Jiani Hu', 'jiani hu')</td><td>2231135739@qq.com, whdeng@bupt.edu.cn, 40902063@qq.com +</td></tr><tr><td>3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a</td><td>1892 <br/>Random Multispace Quantization as <br/>an Analytic Mechanism for BioHashing <br/>of Biometric and Random Identity Inputs @@ -4675,6 +5605,14 @@ <br/>Frontiers in ICT | www.frontiersin.org <br/>June 2016 | Volume 3 | Article 11 </td><td>('30772945', 'Chunfeng Liu', 'chunfeng liu')<br/>('1742162', 'Rafael A. Calvo', 'rafael a. calvo')<br/>('36807976', 'Renee Lim', 'renee lim')<br/>('1742162', 'Rafael A. Calvo', 'rafael a. calvo')</td><td>rafael.calvo@sydney.edu.au +</td></tr><tr><td>580f86f1ace1feed16b592d05c2b07f26c429b4b</td><td>Dense-Captioning Events in Videos +<br/><b>Stanford University</b></td><td>('2580593', 'Ranjay Krishna', 'ranjay krishna')<br/>('35163655', 'Kenji Hata', 'kenji hata')<br/>('3260219', 'Frederic Ren', 'frederic ren')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')<br/>('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')</td><td>{ranjaykrishna, kenjihata, fren, feifeili, jniebles}@cs.stanford.edu +</td></tr><tr><td>58d47c187b38b8a2bad319c789a09781073d052d</td><td>Factorizable Net: An Efficient Subgraph-based +<br/>Framework for Scene Graph Generation +<br/><b>The Chinese University of Hong Kong, Hong Kong SAR, China</b><br/><b>The University of Sydney, SenseTime Computer Vision Research Group</b><br/>3 MIT CSAIL, USA +<br/>4 Sensetime Ltd, Beijing, China +<br/><b>Samsung Telecommunication Research Institute, Beijing, China</b></td><td>('2180892', 'Yikang Li', 'yikang li')<br/>('3001348', 'Wanli Ouyang', 'wanli ouyang')<br/>('1804424', 'Bolei Zhou', 'bolei zhou')<br/>('1788070', 'Jianping Shi', 'jianping shi')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')</td><td>{ykli, xgwang}@ee.cuhk.edu.hk, wanli.ouyang@sydney.edu.au, +<br/>bzhou@csail.mit.edu, shijianping@sensetime.com, c0502.zhang@samsung.com </td></tr><tr><td>582edc19f2b1ab2ac6883426f147196c8306685a</td><td>Do We Really Need to Collect Millions of Faces <br/>for Effective Face Recognition? <br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b><br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b></td><td>('11269472', 'Iacopo Masi', 'iacopo masi')<br/>('2955822', 'Jatuporn Toy Leksut', 'jatuporn toy leksut')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>5859774103306113707db02fe2dd3ac9f91f1b9e</td><td></td><td></td><td></td></tr><tr><td>5892f8367639e9c1e3cf27fdf6c09bb3247651ed</td><td>Estimating Missing Features to Improve Multimedia Information Retrieval @@ -4784,7 +5722,17 @@ </td><td>('1756099', 'Tal Hassner', 'tal hassner')<br/>('1776343', 'Lior Wolf', 'lior wolf')<br/>('1759551', 'Nachum Dershowitz', 'nachum dershowitz')</td><td>Email: hassner@openu.ac.il <br/>Email: wolf@cs.tau.ac.il <br/>Email: nachumd@tau.ac.il -</td></tr><tr><td>58823377757e7dc92f3b70a973be697651089756</td><td>Technical Report +</td></tr><tr><td>58bf72750a8f5100e0c01e55fd1b959b31e7dbce</td><td>PyramidBox: A Context-assisted Single Shot +<br/>Face Detector. +<br/>Baidu Inc. +</td><td>('48785141', 'Xu Tang', 'xu tang')<br/>('14931829', 'Daniel K. Du', 'daniel k. du')<br/>('31239588', 'Zeqiang He', 'zeqiang he')<br/>('2272123', 'Jingtuo Liu', 'jingtuo liu')</td><td>tangxu02@baidu.com,daniel.kang.du@gmail.com,{hezeqiang,liujingtuo}@baidu.com +</td></tr><tr><td>58542eeef9317ffab9b155579256d11efb4610f2</td><td>International Journal of Science and Research (IJSR) +<br/>ISSN (Online): 2319-7064 +<br/>Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +<br/>Face Recognition Revisited on Pose, Alignment, +<br/>Color, Illumination and Expression-PyTen +<br/>Computer Science, BIT Noida, India +</td><td></td><td></td></tr><tr><td>58823377757e7dc92f3b70a973be697651089756</td><td>Technical Report <br/>UCAM-CL-TR-861 <br/>ISSN 1476-2986 <br/>Number 861 @@ -4950,7 +5898,9 @@ <br/>i∈Y <br/>yi, j . <br/>(2) -</td><td>('2682056', 'Ching-Hui Chen', 'ching-hui chen')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>676f9eabf4cfc1fd625228c83ff72f6499c67926</td><td>FACE IDENTIFICATION AND CLUSTERING +</td><td>('2682056', 'Ching-Hui Chen', 'ching-hui chen')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>677585ccf8619ec2330b7f2d2b589a37146ffad7</td><td>A flexible model for training action localization +<br/>with varying levels of supervision +</td><td>('1902524', 'Guilhem Chéron', 'guilhem chéron')<br/>('2285263', 'Jean-Baptiste Alayrac', 'jean-baptiste alayrac')<br/>('1785596', 'Ivan Laptev', 'ivan laptev')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>676f9eabf4cfc1fd625228c83ff72f6499c67926</td><td>FACE IDENTIFICATION AND CLUSTERING <br/>A thesis submitted to the <br/>Graduate School—New Brunswick <br/><b>Rutgers, The State University of New Jersey</b><br/>in partial fulfillment of the requirements @@ -4962,10 +5912,15 @@ <br/>and approved by <br/>New Brunswick, New Jersey <br/>May, 2017 -</td><td>('34805991', 'Atul Dhingra', 'atul dhingra')</td><td></td></tr><tr><td>677477e6d2ba5b99633aee3d60e77026fb0b9306</td><td></td><td></td><td></td></tr><tr><td>679b7fa9e74b2aa7892eaea580def6ed4332a228</td><td>Communication and automatic +</td><td>('34805991', 'Atul Dhingra', 'atul dhingra')</td><td></td></tr><tr><td>677477e6d2ba5b99633aee3d60e77026fb0b9306</td><td></td><td></td><td></td></tr><tr><td>6789bddbabf234f31df992a3356b36a47451efc7</td><td>Unsupervised Generation of Free-Form and +<br/>Parameterized Avatars +</td><td>('33964593', 'Adam Polyak', 'adam polyak')<br/>('2188620', 'Yaniv Taigman', 'yaniv taigman')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td></td></tr><tr><td>679b7fa9e74b2aa7892eaea580def6ed4332a228</td><td>Communication and automatic <br/>interpretation of affect from facial <br/>expressions1 -<br/><b>University of Amsterdam, the Netherlands</b><br/><b>University of Trento, Italy</b><br/><b>University of Amsterdam, the Netherlands</b></td><td>('1764521', 'Albert Ali Salah', 'albert ali salah')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')</td><td></td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>Face Swapping: Automatically Replacing Faces in Photographs +<br/><b>University of Amsterdam, the Netherlands</b><br/><b>University of Trento, Italy</b><br/><b>University of Amsterdam, the Netherlands</b></td><td>('1764521', 'Albert Ali Salah', 'albert ali salah')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')</td><td></td></tr><tr><td>675b2caee111cb6aa7404b4d6aa371314bf0e647</td><td>AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions +<br/>Carl Vondrick∗ +</td><td>('39599498', 'Chunhui Gu', 'chunhui gu')<br/>('1758054', 'Yeqing Li', 'yeqing li')<br/>('1726241', 'Chen Sun', 'chen sun')<br/>('48536531', 'David A. Ross', 'david a. ross')<br/>('2259154', 'Sudheendra Vijayanarasimhan', 'sudheendra vijayanarasimhan')<br/>('1805076', 'George Toderici', 'george toderici')<br/>('2997956', 'Caroline Pantofaru', 'caroline pantofaru')<br/>('2262946', 'Susanna Ricco', 'susanna ricco')<br/>('1694199', 'Rahul Sukthankar', 'rahul sukthankar')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')<br/>('1689212', 'Jitendra Malik', 'jitendra malik')</td><td></td></tr><tr><td>679b72d23a9cfca8a7fe14f1d488363f2139265f</td><td></td><td></td><td></td></tr><tr><td>67484723e0c2cbeb936b2e863710385bdc7d5368</td><td>Anchor Cascade for Efficient Face Detection +</td><td>('2425630', 'Baosheng Yu', 'baosheng yu')<br/>('1692693', 'Dacheng Tao', 'dacheng tao')</td><td></td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>Face Swapping: Automatically Replacing Faces in Photographs <br/><b>Columbia University</b><br/>Peter Belhumeur <br/>Figure 1: We have developed a system that automatically replaces faces in an input image with ones selected from a large collection of <br/>face images, obtained by applying face detection to publicly available photographs on the internet. In this example, the faces of (a) two @@ -5015,12 +5970,27 @@ <br/>Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <br/>Arthur C. Smith <br/>Chairman, Department Committee on Graduate Students -</td><td></td><td></td></tr><tr><td>67c703a864aab47eba80b94d1935e6d244e00bcb</td><td> (IJACSA) International Journal of Advanced Computer Science and Applications +</td><td></td><td></td></tr><tr><td>673d4885370b27c863e11a4ece9189a6a45931cc</td><td>Recurrent Residual Module for Fast Inference in Videos +<br/><b>Shanghai Jiao Tong University, 2Zhejiang University, 3Massachusetts Institute of Technology</b><br/>networks for video recognition are more challenging. For +<br/>example, for Youtube-8M dataset [1] with over 8 million +<br/>video clips, it will take 50 years for a CPU to extract the +<br/>deep features using a standard CNN model. +</td><td>('35654996', 'Bowen Pan', 'bowen pan')<br/>('35992009', 'Wuwei Lin', 'wuwei lin')<br/>('2126444', 'Xiaolin Fang', 'xiaolin fang')<br/>('35933894', 'Chaoqin Huang', 'chaoqin huang')<br/>('1804424', 'Bolei Zhou', 'bolei zhou')<br/>('1830034', 'Cewu Lu', 'cewu lu')</td><td>†{googletornado,linwuwei13, huangchaoqin}@sjtu.edu.cn, ¶fxlfang@gmail.com +<br/>§bzhou@csail.mit.edu; ‡lu-cw@cs.sjtu.edu.cn +</td></tr><tr><td>67c703a864aab47eba80b94d1935e6d244e00bcb</td><td> (IJACSA) International Journal of Advanced Computer Science and Applications <br/>Vol. 7, No. 6, 2016 <br/>Face Retrieval Based On Local Binary Pattern and Its <br/>Variants: A Comprehensive Study <br/><b>University of Science, VNU-HCM, Viet Nam</b><br/>face searching, -</td><td>('3911040', 'Phan Khoi', 'phan khoi')</td><td></td></tr><tr><td>677ebde61ba3936b805357e27fce06c44513a455</td><td>Facial Expression Recognition Based on Facial +</td><td>('3911040', 'Phan Khoi', 'phan khoi')</td><td></td></tr><tr><td>6754c98ba73651f69525c770fb0705a1fae78eb5</td><td>Joint Cascade Face Detection and Alignment +<br/><b>University of Science and Technology of China</b><br/>2 Microsoft Research +</td><td>('39447786', 'Dong Chen', 'dong chen')<br/>('3080683', 'Shaoqing Ren', 'shaoqing ren')<br/>('1732264', 'Yichen Wei', 'yichen wei')<br/>('47300766', 'Xudong Cao', 'xudong cao')<br/>('40055995', 'Jian Sun', 'jian sun')</td><td>{chendong,sqren}@mail.ustc.edu.cn +<br/>{yichenw,xudongca,jiansun}@microsoft.com +</td></tr><tr><td>672fae3da801b2a0d2bad65afdbbbf1b2320623e</td><td>Pose-Selective Max Pooling for Measuring Similarity +<br/>1Dept. of Computer Science +<br/>2Dept. of Electrical & Computer Engineering +<br/><b>Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA</b></td><td>('40031188', 'Xiang Xiang', 'xiang xiang')<br/>('1709073', 'Trac D. Tran', 'trac d. tran')</td><td>xxiang@cs.jhu.edu +</td></tr><tr><td>677ebde61ba3936b805357e27fce06c44513a455</td><td>Facial Expression Recognition Based on Facial <br/>Components Detection and HOG Features <br/><b>The Hong Kong Polytechnic University, Hong Kong</b><br/><b>Chu Hai College of Higher Education, Hong Kong</b></td><td>('2366262', 'Junkai Chen', 'junkai chen')<br/>('1715231', 'Zenghai Chen', 'zenghai chen')<br/>('8590720', 'Zheru Chi', 'zheru chi')<br/>('1965426', 'Hong Fu', 'hong fu')</td><td>Email: Junkai.Chen@connect.polyu.hk </td></tr><tr><td>67ba3524e135c1375c74fe53ebb03684754aae56</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE @@ -5028,6 +5998,20 @@ <br/>ICASSP 2017 </td><td></td><td></td></tr><tr><td>6769cfbd85329e4815bb1332b118b01119975a95</td><td>Tied factor analysis for face recognition across <br/>large pose changes +</td><td></td><td></td></tr><tr><td>0be43cf4299ce2067a0435798ef4ca2fbd255901</td><td>Title +<br/>A temporal latent topic model for facial expression recognition +<br/>Author(s) +<br/>Shang, L; Chan, KP +<br/>Citation +<br/>The 10th Asian Conference on Computer Vision (ACCV 2010), +<br/>Queenstown, New Zealand, 8-12 November 2010. In Lecture +<br/>Notes in Computer Science, 2010, v. 6495, p. 51-63 +<br/>Issued Date +<br/>2011 +<br/>URL +<br/>http://hdl.handle.net/10722/142604 +<br/>Rights +<br/>Creative Commons: Attribution 3.0 Hong Kong License </td><td></td><td></td></tr><tr><td>0bc53b338c52fc635687b7a6c1e7c2b7191f42e5</td><td>ZHANG, BHALERAO: LOGLET SIFT FOR PART DESCRIPTION <br/>Loglet SIFT for Part Description in <br/>Deformable Part Models: Application to Face @@ -5097,7 +6081,9 @@ <br/><b>Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore</b><br/><b>College of Computer Science, Sichuan University, Chengdu 610065, P.R. China</b></td><td>('8249791', 'Xi Peng', 'xi peng')<br/>('9276020', 'Zhang Yi', 'zhang yi')<br/>('3134548', 'Huajin Tang', 'huajin tang')</td><td>pangsaai@gmail.com, zhangyi@scu.edu.cn, htang@i2r.a-star.edu.sg. </td></tr><tr><td>0b20f75dbb0823766d8c7b04030670ef7147ccdd</td><td>1 <br/>Feature selection using nearest attributes -</td><td>('1744784', 'Alex Pappachen James', 'alex pappachen james')<br/>('1697594', 'Sima Dimitrijev', 'sima dimitrijev')</td><td></td></tr><tr><td>0b174d4a67805b8796bfe86cd69a967d357ba9b6</td><td> Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +</td><td>('1744784', 'Alex Pappachen James', 'alex pappachen james')<br/>('1697594', 'Sima Dimitrijev', 'sima dimitrijev')</td><td></td></tr><tr><td>0b5a82f8c0ee3640503ba24ef73e672d93aeebbf</td><td>On Learning 3D Face Morphable Model +<br/>from In-the-wild Images +</td><td>('1849929', 'Luan Tran', 'luan tran')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td></td></tr><tr><td>0b174d4a67805b8796bfe86cd69a967d357ba9b6</td><td> Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 <br/> Vol. 3(4), 56-62, April (2014) <br/>Res.J.Recent Sci. </td><td></td><td></td></tr><tr><td>0ba449e312894bca0d16348f3aef41ca01872383</td><td></td><td></td><td></td></tr><tr><td>0b87d91fbda61cdea79a4b4dcdcb6d579f063884</td><td>The Open Automation and Control Systems Journal, 2015, 7, 569-579 @@ -5119,7 +6105,9 @@ <br/>Cambridge, MA </td><td>('1780935', 'Baback Moghaddam', 'baback moghaddam')<br/>('1768120', 'Tony Jebara', 'tony jebara')<br/>('1682773', 'Alex Pentland', 'alex pentland')</td><td>baback@merl.com <br/>fjebara,sandyg@media.mit.edu -</td></tr><tr><td>0b85b50b6ff03a7886c702ceabad9ab8c8748fdc</td><td>http://www.journalofvision.org/content/11/3/17 +</td></tr><tr><td>0b572a2b7052b15c8599dbb17d59ff4f02838ff7</td><td>Automatic Subspace Learning via Principal +<br/>Coefficients Embedding +</td><td>('8249791', 'Xi Peng', 'xi peng')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('1709367', 'Zhang Yi', 'zhang yi')<br/>('1680126', 'Rui Yan', 'rui yan')</td><td></td></tr><tr><td>0b85b50b6ff03a7886c702ceabad9ab8c8748fdc</td><td>http://www.journalofvision.org/content/11/3/17 <br/>Is there a dynamic advantage for facial expressions? <br/><b>Institute of Child Health, University College London, UK</b><br/>Laboratory of Neuromotor Physiology, Santa Lucia <br/>Foundation, Rome, Italy @@ -5209,7 +6197,9 @@ <br/>How Important is Weight Symmetry in <br/>Backpropagation? <br/>by -<br/><b>Center for Brains, Minds and Machines, McGovern Institute, MIT</b></td><td>('1694846', 'Qianli Liao', 'qianli liao')<br/>('1700356', 'Joel Z. Leibo', 'joel z. leibo')</td><td></td></tr><tr><td>0b50e223ad4d9465bb92dbf17a7b79eccdb997fb</td><td>Implicit Elastic Matching with Random Projections for Pose-Variant Face +<br/><b>Center for Brains, Minds and Machines, McGovern Institute, MIT</b></td><td>('1694846', 'Qianli Liao', 'qianli liao')<br/>('1700356', 'Joel Z. Leibo', 'joel z. leibo')</td><td></td></tr><tr><td>0ba1d855cd38b6a2c52860ae4d1a85198b304be4</td><td>Variable-state Latent Conditional Random Fields +<br/>for Facial Expression Recognition and Action Unit Detection +<br/><b>Imperial College London, UK</b><br/><b>Rutgers University, USA</b></td><td>('2616466', 'Robert Walecki', 'robert walecki')<br/>('1729713', 'Ognjen Rudovic', 'ognjen rudovic')<br/>('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>0b50e223ad4d9465bb92dbf17a7b79eccdb997fb</td><td>Implicit Elastic Matching with Random Projections for Pose-Variant Face <br/>Recognition <br/>Electrical and Computer Engineering <br/><b>University of Illinois at Urbana-Champaign</b><br/>Microsoft Live Labs Research @@ -5222,6 +6212,12 @@ <br/>under Pose Variations <br/><b>Computer vision and Remote Sensing, Berlin university of Technology</b><br/>Sekr. FR-3-1, Franklinstr. 28/29, Berlin, Germany </td><td>('2326207', 'M. Saquib', 'm. saquib')<br/>('2962236', 'Olaf Hellwich', 'olaf hellwich')</td><td>{saquib;hellwich}@fpk.tu-berlin.de +</td></tr><tr><td>0bce54bfbd8119c73eb431559fc6ffbba741e6aa</td><td>Published as a conference paper at ICLR 2018 +<br/>SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +<br/>RECURRENT NEURAL NETWORKS +<br/>†Barcelona Supercomputing Center, ‡Google Inc, +<br/><b>Universitat Polit`ecnica de Catalunya, Columbia University</b></td><td>('2447185', 'Brendan Jou', 'brendan jou')<br/>('1711068', 'Jordi Torres', 'jordi torres')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td>{victor.campos, jordi.torres}@bsc.es, bjou@google.com, +<br/>xavier.giro@upc.edu, shih.fu.chang@columbia.edu </td></tr><tr><td>0b2966101fa617b90510e145ed52226e79351072</td><td>Beyond Verbs: Understanding Actions in Videos <br/>with Text <br/>Department of Computer Science @@ -5354,6 +6350,12 @@ <br/><b>Harvard University</b><br/><b>Stony Brook University</b></td><td>('2321406', 'Le Hou', 'le hou')<br/>('2576295', 'Chen-Ping Yu', 'chen-ping yu')<br/>('1686020', 'Dimitris Samaras', 'dimitris samaras')</td><td>lehhou@cs.stonybrook.edu <br/>chenpingyu@fas.harvard.edu <br/>samaras@cs.stonybrook.edu +</td></tr><tr><td>0bf0029c9bdb0ac61fda35c075deb1086c116956</td><td>Article +<br/>Modelling of Orthogonal Craniofacial Profiles +<br/><b>University of York, Heslington, York YO10 5GH, UK</b><br/>Received: 20 October 2017; Accepted: 23 November 2017; Published: 30 November 2017 +</td><td>('1694260', 'Hang Dai', 'hang dai')<br/>('1737428', 'Nick Pears', 'nick pears')<br/>('1678859', 'Christian Duncan', 'christian duncan')</td><td>nick.pears@york.ac.uk +<br/>2 Alder Hey Children’s Hospital, Liverpool L12 2AP, UK; Christian.Duncan@alderhey.nhs.uk +<br/>* Correspondence: hd816@york.ac.uk; Tel.: +44-1904-325-643 </td></tr><tr><td>0b3f354e6796ef7416bf6dde9e0779b2fcfabed2</td><td></td><td></td><td></td></tr><tr><td>9391618c09a51f72a1c30b2e890f4fac1f595ebd</td><td>Globally Tuned Cascade Pose Regression via <br/>Back Propagation with Application in 2D Face <br/>Pose Estimation and Heart Segmentation in 3D @@ -5433,6 +6435,19 @@ <br/>1920 Martigny </td><td>('2121764', 'Laurent El Shafey', 'laurent el shafey')</td><td>laurent.el-shafey@idiap.ch <br/>sebastien.marcel@idiap.ch +</td></tr><tr><td>93420d9212dd15b3ef37f566e4d57e76bb2fab2f</td><td>An All-In-One Convolutional Neural Network for Face Analysis +<br/><b>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</b></td><td>('48467498', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')<br/>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{rranjan1,swamiviv,carlos,rama}@umiacs.umd.edu +</td></tr><tr><td>93af36da08bf99e68c9b0d36e141ed8154455ac2</td><td>Workshop track - ICLR 2018 +<br/>ADDITIVE MARGIN SOFTMAX +<br/>FOR FACE VERIFICATION +<br/>Department of Information and Communication Engineering +<br/><b>University of Electronic Science and Technology of China</b><br/>Chengdu, Sichuan 611731 China +<br/><b>College of Computing</b><br/><b>Georgia Institute of Technology</b><br/>Atlanta, United States. +<br/>Department of Information and Communication Engineering +<br/><b>University of Electronic Science and Technology of China</b><br/>Chengdu, Sichuan 611731 China +</td><td>('47939378', 'Feng Wang', 'feng wang')<br/>('51094998', 'Weiyang Liu', 'weiyang liu')<br/>('8424682', 'Haijun Liu', 'haijun liu')</td><td>feng.wff@gmail.com +<br/>{wyliu, hanjundai}@gatech.edu +<br/>haijun liu@126.com chengjian@uestc.edu.cn </td></tr><tr><td>93cbb3b3e40321c4990c36f89a63534b506b6daf</td><td>IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 <br/>477 <br/>Learning From Examples in the Small Sample Case: @@ -5440,6 +6455,14 @@ </td><td>('1822413', 'Guodong Guo', 'guodong guo')<br/>('1724754', 'Charles R. Dyer', 'charles r. dyer')</td><td></td></tr><tr><td>937ffb1c303e0595317873eda5ce85b1a17f9943</td><td>Eyes Do Not Lie: Spontaneous versus Posed Smiles <br/><b>Intelligent Systems Lab Amsterdam, University of Amsterdam</b><br/>Science Park 107, Amsterdam, The Netherlands </td><td>('9301018', 'Roberto Valenti', 'roberto valenti')<br/>('1764521', 'Albert Ali Salah', 'albert ali salah')<br/>('1695527', 'Theo Gevers', 'theo gevers')</td><td>h.dibeklioglu@uva.nl, r.valenti@uva.nl, a.a.salah@uva.nl, th.gevers@uva.nl +</td></tr><tr><td>93f37c69dd92c4e038710cdeef302c261d3a4f92</td><td>Compressed Video Action Recognition +<br/>Philipp Kr¨ahenb¨uhl1 +<br/><b>The University of Texas at Austin, 2Carnegie Mellon University</b><br/><b>University of Southern California, 4A9, 5Amazon</b></td><td>('2978413', 'Chao-Yuan Wu', 'chao-yuan wu')<br/>('1771307', 'Manzil Zaheer', 'manzil zaheer')<br/>('2804000', 'Hexiang Hu', 'hexiang hu')<br/>('1691629', 'Alexander J. Smola', 'alexander j. smola')<br/>('1758550', 'R. Manmatha', 'r. manmatha')</td><td>cywu@cs.utexas.edu +<br/>manzil@cmu.edu +<br/>smola@amazon.com +<br/>hexiangh@usc.edu +<br/>philkr@cs.utexas.edu +<br/>manmatha@a9.com </td></tr><tr><td>936227f7483938097cc1cdd3032016df54dbd5b6</td><td>Learning to generalize to new compositions in image understanding <br/><b>Gonda Brain Research Center, Bar Ilan University, Israel</b><br/>3Google Research, Mountain View CA, USA <br/><b>Tel Aviv University, Israel</b></td><td>('34815079', 'Yuval Atzmon', 'yuval atzmon')<br/>('1750652', 'Jonathan Berant', 'jonathan berant')<br/>('3451674', 'Vahid Kezami', 'vahid kezami')<br/>('1786843', 'Amir Globerson', 'amir globerson')<br/>('1732280', 'Gal Chechik', 'gal chechik')</td><td>yuval.atzmon@biu.ac.il @@ -5447,12 +6470,31 @@ <br/>Classification via BeFIT Protocols <br/><b>Idiap Research Institute</b><br/>Centre du Parc, Rue Marconi 19, CH-1920, Martigny, Switzerland </td><td>('2128163', 'Nesli Erdogmus', 'nesli erdogmus')<br/>('2059725', 'Matthias Vanoni', 'matthias vanoni')</td><td>Email: nesli.erdogmus, matthias.vanoni, marcel@idiap.ch +</td></tr><tr><td>938ae9597f71a21f2e47287cca318d4a2113feb2</td><td>Classifier Learning with Prior Probabilities +<br/>for Facial Action Unit Recognition +<br/>1National Laboratory of Pattern Recognition, CASIA +<br/><b>University of Chinese Academy of Sciences</b><br/><b>Rensselaer Polytechnic Institute</b></td><td>('49889545', 'Yong Zhang', 'yong zhang')<br/>('38690089', 'Weiming Dong', 'weiming dong')<br/>('39495638', 'Bao-Gang Hu', 'bao-gang hu')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>zhangyong201303@gmail.com, weiming.dong@ia.ac.cn, hubg@nlpr.ia.ac.cn, qji@ecse.rpi.edu </td></tr><tr><td>94b9c0a6515913bad345f0940ee233cdf82fffe1</td><td>International Journal of Science and Research (IJSR) <br/>ISSN (Online): 2319-7064 <br/>Impact Factor (2012): 3.358 <br/>Face Recognition using Local Ternary Pattern for <br/>Low Resolution Image -<br/><b>Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India</b><br/><b>Chandigarh University, Gharuan, Punjab, India</b></td><td>('40440964', 'Amanpreet Kaur', 'amanpreet kaur')</td><td></td></tr><tr><td>9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73</td><td>5967 +<br/><b>Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India</b><br/><b>Chandigarh University, Gharuan, Punjab, India</b></td><td>('40440964', 'Amanpreet Kaur', 'amanpreet kaur')</td><td></td></tr><tr><td>946017d5f11aa582854ac4c0e0f1b18b06127ef1</td><td>Tracking Persons-of-Interest +<br/>via Adaptive Discriminative Features +<br/><b>Xi an Jiaotong University</b><br/><b>Hanyang University</b><br/><b>University of Illinois, Urbana-Champaign</b><br/><b>University of California, Merced</b><br/>http://shunzhang.me.pn/papers/eccv2016/ +</td><td>('2481388', 'Shun Zhang', 'shun zhang')<br/>('1698965', 'Yihong Gong', 'yihong gong')<br/>('3068086', 'Jia-Bin Huang', 'jia-bin huang')<br/>('33047058', 'Jongwoo Lim', 'jongwoo lim')<br/>('32014778', 'Jinjun Wang', 'jinjun wang')<br/>('1752333', 'Narendra Ahuja', 'narendra ahuja')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>94eeae23786e128c0635f305ba7eebbb89af0023</td><td>Journal of Machine Learning Research 18 (2018) 1-34 +<br/>Submitted 01/17; Revised 4/18; Published 6/18 +<br/>Emergence of Invariance and Disentanglement +<br/>in Deep Representations∗ +<br/>Department of Computer Science +<br/><b>University of California</b><br/>Los Angeles, CA 90095, USA +<br/>Department of Computer Science +<br/><b>University of California</b><br/>Los Angeles, CA 90095, USA +<br/>Editor: Yoshua Bengio +</td><td>('16163297', 'Alessandro Achille', 'alessandro achille')<br/>('1715959', 'Stefano Soatto', 'stefano soatto')</td><td>achille@cs.ucla.edu +<br/>soatto@cs.ucla.edu +</td></tr><tr><td>944faf7f14f1bead911aeec30cc80c861442b610</td><td>Action Tubelet Detector for Spatio-Temporal Action Localization +</td><td>('1881509', 'Vicky Kalogeiton', 'vicky kalogeiton')<br/>('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')<br/>('1749692', 'Vittorio Ferrari', 'vittorio ferrari')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73</td><td>5967 <br/>A Benchmark and Comparative Study of <br/>Video-Based Face Recognition <br/>on COX Face Database @@ -5461,7 +6503,8 @@ <br/>International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) <br/>Face Recognition From Single Sample Per Person by Learning of <br/>Generic Discriminant Vectors -<br/><b>aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia</b><br/><b>bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia</b></td><td>('7453141', 'Fadhlan Hafiz', 'fadhlan hafiz')<br/>('2412523', 'Amir A. Shafie', 'amir a. shafie')<br/>('9146253', 'Yasir Mohd Mustafah', 'yasir mohd mustafah')</td><td></td></tr><tr><td>94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81</td><td></td><td></td><td></td></tr><tr><td>9441253b638373a0027a5b4324b4ee5f0dffd670</td><td>A Novel Scheme for Generating Secure Face +<br/><b>aFaculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia</b><br/><b>bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia</b></td><td>('7453141', 'Fadhlan Hafiz', 'fadhlan hafiz')<br/>('2412523', 'Amir A. Shafie', 'amir a. shafie')<br/>('9146253', 'Yasir Mohd Mustafah', 'yasir mohd mustafah')</td><td></td></tr><tr><td>94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81</td><td></td><td></td><td></td></tr><tr><td>94325522c9be8224970f810554611d6a73877c13</td><td></td><td></td><td></td></tr><tr><td>9487cea80f23afe9bccc94deebaa3eefa6affa99</td><td>Fast, Dense Feature SDM on an iPhone +<br/><b>Queensland University of Technology, Brisbane, Queensland, Australia</b><br/><b>Carnegie Mellon University, Pittsburgh, PA, USA</b></td><td>('3231493', 'Ashton Fagg', 'ashton fagg')<br/>('1820249', 'Simon Lucey', 'simon lucey')<br/>('1729760', 'Sridha Sridharan', 'sridha sridharan')</td><td></td></tr><tr><td>9441253b638373a0027a5b4324b4ee5f0dffd670</td><td>A Novel Scheme for Generating Secure Face <br/>Templates Using BDA <br/>P.G. Student, Department of Computer Engineering, <br/>Associate Professor, Department of Computer @@ -5481,7 +6524,7 @@ <br/>2 Matsushita Electric Industrial Co., Ltd. <br/><b>Okayama University</b><br/>Okayama-shi, Okayama 700-8530, JAPAN </td><td>('3155610', 'Yasuhiro Mukaigawa', 'yasuhiro mukaigawa')<br/>('2740479', 'Yasunori Ishii', 'yasunori ishii')<br/>('1695509', 'Takeshi Shakunaga', 'takeshi shakunaga')</td><td>mukaigaw@am.sanken.osaka-u.ac.jp -</td></tr><tr><td>0efdd82a4753a8309ff0a3c22106c570d8a84c20</td><td>LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL +</td></tr><tr><td>94a11b601af77f0ad46338afd0fa4ccbab909e82</td><td></td><td></td><td></td></tr><tr><td>0efdd82a4753a8309ff0a3c22106c570d8a84c20</td><td>LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL <br/><b>Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea</b></td><td>('34600044', 'Wonjun Hwang', 'wonjun hwang')<br/>('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')<br/>('37980373', 'Seokcheol Kee', 'seokcheol kee')</td><td>wjhwang@sait.samsung.co.kr </td></tr><tr><td>0e5dcc6ae52625fd0637c6bba46a973e46d58b9c</td><td>Pareto Models for Multiclass Discriminative Linear <br/>Dimensionality Reduction @@ -5758,7 +6801,9 @@ <br/><b>School of Computing, National University of Singapore, Singapore</b><br/><b>Electrical and Computer Engineering, National University of Singapore, Singapore</b><br/><b>Beijing Institute of Technology University, P. R. China</b><br/>4 SAP Innovation Center Network Singapore, Singapore </td><td>('2757639', 'Jianshu Li', 'jianshu li')<br/>('2052311', 'Jian Zhao', 'jian zhao')<br/>('1715286', 'Terence Sim', 'terence sim')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('3124720', 'Shengtao Xiao', 'shengtao xiao')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('40345914', 'Fang Zhao', 'fang zhao')<br/>('1943724', 'Jianan Li', 'jianan li')</td><td>{jianshu,xiao_shengtao,zhaojian90}@u.nus.edu,lijianan15@gmail.com <br/>{elezhf,elefjia,eleyans}@nus.edu.sg,tsim@comp.nus.edu.sg -</td></tr><tr><td>0ee661a1b6bbfadb5a482ec643573de53a9adf5e</td><td>JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR +</td></tr><tr><td>0ee737085af468f264f57f052ea9b9b1f58d7222</td><td>SiGAN: Siamese Generative Adversarial Network +<br/>for Identity-Preserving Face Hallucination +</td><td>('3192517', 'Chih-Chung Hsu', 'chih-chung hsu')<br/>('1685088', 'Chia-Wen Lin', 'chia-wen lin')<br/>('3404171', 'Weng-Tai Su', 'weng-tai su')<br/>('1705205', 'Gene Cheung', 'gene cheung')</td><td></td></tr><tr><td>0ee661a1b6bbfadb5a482ec643573de53a9adf5e</td><td>JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR <br/>On the Use of Discriminative Cohort Score <br/>Normalization for Unconstrained Face Recognition </td><td>('1725688', 'Massimo Tistarelli', 'massimo tistarelli')<br/>('2384894', 'Yunlian Sun', 'yunlian sun')<br/>('2404207', 'Norman Poh', 'norman poh')</td><td></td></tr><tr><td>0e36ada8cb9c91f07c9dcaf196d036564e117536</td><td>Much Ado About Time: Exhaustive Annotation of Temporal Data @@ -5791,7 +6836,11 @@ <br/><b>Multimedia University (MMU), Cyberjaya, Malaysia</b><br/>2 Faculty of Computing & Informatics, <br/><b>Multimedia University (MMU), Cyberjaya, Malaysia</b></td><td>('2339975', 'John See', 'john see')</td><td>lengoanhcat@gmail.com, raphael@mmu.edu.my <br/>johnsee@mmu.edu.my -</td></tr><tr><td>0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5</td><td>Max-Margin Early Event Detectors +</td></tr><tr><td>0e93a5a7f6dbdb3802173dca05717d27d72bfec0</td><td>Attribute Recognition by Joint Recurrent Learning of Context and Correlation +<br/><b>Queen Mary University of London</b><br/>Vision Semantics Ltd.2 +</td><td>('48093957', 'Jingya Wang', 'jingya wang')<br/>('2171228', 'Xiatian Zhu', 'xiatian zhu')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('47113208', 'Wei Li', 'wei li')</td><td>{jingya.wang, s.gong, wei.li}@qmul.ac.uk +<br/>eddy@visionsemantics.com +</td></tr><tr><td>0e2ea7af369dbcaeb5e334b02dd9ba5271b10265</td><td></td><td></td><td></td></tr><tr><td>0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5</td><td>Max-Margin Early Event Detectors <br/>Minh Hoai <br/><b>Robotics Institute, Carnegie Mellon University</b></td><td>('1707876', 'Fernando De la Torre', 'fernando de la torre')</td><td></td></tr><tr><td>0e7c70321462694757511a1776f53d629a1b38f3</td><td>NIST Special Publication 1136 <br/>2012 Proceedings of the @@ -5895,6 +6944,10 @@ <br/>light source direction makes with the camera's axis. <br/>1039</td><td>('13801076', 'Feng Xie', 'feng xie')<br/>('3265275', 'Linmi Tao', 'linmi tao')</td><td>xiefeng97@mails.tsinghua.edu.cn <br/>{linmi, xgy-dcs}@tsinghua.edu.cn +</td></tr><tr><td>0ee5c4112208995bf2bb0fb8a87efba933a94579</td><td>Understanding Clothing Preference Based on Body Shape From Online Sources +<br/>Fashion is Taking Shape: +<br/>1Scalable Learning and Perception Group, 2Real Virtual Humans +<br/><b>Max Planck Institute for Informatics, Saarbr ucken, Germany</b></td><td>('26879574', 'Hosnieh Sattar', 'hosnieh sattar')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('2635816', 'Gerard Pons-Moll', 'gerard pons-moll')</td><td>{sattar,mfritz,gpons}@mpi-inf.mpg.de </td></tr><tr><td>0e1a18576a7d3b40fe961ef42885101f4e2630f8</td><td>Automated Detection and Identification of <br/>Persons in Video <br/>Visual Geometry Group @@ -5918,7 +6971,20 @@ <br/>Department of Computer Science and Engineering <br/><b>Ultra College of Engineering and Technology for Women, India</b><br/>2Assistant Professor <br/>Department of Computer Science and Engineering -<br/><b>Vickram College of Engineering, Enathi, Tamil Nadu, India</b></td><td></td><td></td></tr><tr><td>60d765f2c0a1a674b68bee845f6c02741a49b44e</td><td></td><td></td><td></td></tr><tr><td>60d4cef56efd2f5452362d4d9ac1ae05afa970d1</td><td>Learning End-to-end Video Classification with Rank-Pooling +<br/><b>Vickram College of Engineering, Enathi, Tamil Nadu, India</b></td><td></td><td></td></tr><tr><td>60d765f2c0a1a674b68bee845f6c02741a49b44e</td><td></td><td></td><td></td></tr><tr><td>60c24e44fce158c217d25c1bae9f880a8bd19fc3</td><td>Controllable Image-to-Video Translation: +<br/>A Case Study on Facial Expression Generation +<br/>MIT CSAIL +<br/>Wenbing Huang +<br/>Tencent AI Lab +<br/>MIT-Waston Lab +<br/>Tencent AI Lab +<br/>Tencent AI Lab +</td><td>('2548303', 'Lijie Fan', 'lijie fan')<br/>('2551285', 'Chuang Gan', 'chuang gan')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('40206014', 'Boqing Gong', 'boqing gong')</td><td></td></tr><tr><td>60e2b9b2e0db3089237d0208f57b22a3aac932c1</td><td>Frankenstein: Learning Deep Face Representations +<br/>using Small Data +</td><td>('38819702', 'Guosheng Hu', 'guosheng hu')<br/>('1766837', 'Xiaojiang Peng', 'xiaojiang peng')<br/>('2653152', 'Yongxin Yang', 'yongxin yang')<br/>('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')<br/>('34602236', 'Jakob Verbeek', 'jakob verbeek')</td><td></td></tr><tr><td>60542b1a857024c79db8b5b03db6e79f74ec8f9f</td><td>Learning to Detect Human-Object Interactions +<br/><b>University of Michigan, Ann Arbor</b><br/><b>Washington University in St. Louis</b></td><td>('2820136', 'Yu-Wei Chao', 'yu-wei chao')<br/>('1860829', 'Yunfan Liu', 'yunfan liu')<br/>('9539636', 'Xieyang Liu', 'xieyang liu')<br/>('9344937', 'Huayi Zeng', 'huayi zeng')<br/>('8342699', 'Jia Deng', 'jia deng')</td><td>{ywchao,yunfan,lxieyang,jiadeng}@umich.edu +<br/>{zengh}@wustl.edu +</td></tr><tr><td>60d4cef56efd2f5452362d4d9ac1ae05afa970d1</td><td>Learning End-to-end Video Classification with Rank-Pooling <br/><b>Research School of Engineering, The Australian National University, ACT 2601, Australia</b><br/><b>Research School of Computer Science, The Australian National University, ACT 2601, Australia</b></td><td>('1688071', 'Basura Fernando', 'basura fernando')<br/>('2377076', 'Stephen Gould', 'stephen gould')</td><td>BASURA.FERNANDO@ANU.EDU.AU <br/>STEPHEN.GOULD@ANU.EDU.AU </td></tr><tr><td>60ce4a9602c27ad17a1366165033fe5e0cf68078</td><td>TECHNICAL NOTE @@ -6164,7 +7230,10 @@ <br/><b>National University of Singapore</b><br/>4 State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science <br/><b>and Engineering, Beihang University, Beijing, China</b></td><td>('1719250', 'Xiaochun Cao', 'xiaochun cao')<br/>('38188331', 'Hua Zhang', 'hua zhang')<br/>('33465926', 'Xiaojie Guo', 'xiaojie guo')<br/>('2705801', 'Si Liu', 'si liu')<br/>('33610144', 'Xiaowu Chen', 'xiaowu chen')</td><td>caoxiaochun@iie.ac.cn, huazhang@tju.edu.cn, xj.max.guo@gmail.com, <br/>dcslius@nus.edu.sg, chen@buaa.edu.cn -</td></tr><tr><td>34d484b47af705e303fc6987413dc0180f5f04a9</td><td>RI:Medium: Unsupervised and Weakly-Supervised +</td></tr><tr><td>345cc31c85e19cea9f8b8521be6a37937efd41c2</td><td>Deep Manifold Traversal: Changing Labels with +<br/>Convolutional Features +<br/><b>Cornell University, Washington University in St. Louis</b><br/>*Authors contributing equally +</td><td>('31693738', 'Jacob R. Gardner', 'jacob r. gardner')<br/>('3222840', 'Paul Upchurch', 'paul upchurch')<br/>('1940272', 'Matt J. Kusner', 'matt j. kusner')<br/>('7769997', 'Yixuan Li', 'yixuan li')<br/>('1706504', 'John E. Hopcroft', 'john e. hopcroft')</td><td></td></tr><tr><td>34d484b47af705e303fc6987413dc0180f5f04a9</td><td>RI:Medium: Unsupervised and Weakly-Supervised <br/>Discovery of Facial Events <br/>1 Introduction <br/>The face is one of the most powerful channels of nonverbal communication. Facial expression has been a @@ -6204,11 +7273,18 @@ <br/>possible facial movement combinations, and characterization of subtle facial behavior. <br/>• We propose two novel non-parametric algorithms for unsupervised and weakly-supervised time-series <br/>analysis. In preliminary experiments these algorithms were able to discover meaningful facial events -</td><td></td><td></td></tr><tr><td>345bea5f7d42926f857f395c371118a00382447f</td><td>Transfiguring Portraits +</td><td></td><td></td></tr><tr><td>341002fac5ae6c193b78018a164d3c7295a495e4</td><td>von Mises-Fisher Mixture Model-based Deep +<br/>learning: Application to Face Verification +</td><td>('1773090', 'Md. Abul Hasnat', 'md. abul hasnat')<br/>('34767162', 'Jonathan Milgram', 'jonathan milgram')<br/>('34086868', 'Liming Chen', 'liming chen')</td><td></td></tr><tr><td>34ce703b7e79e3072eed7f92239a4c08517b0c55</td><td>What impacts skin color in digital photos? +<br/><b>Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore</b></td><td>('3213946', 'Albrecht Lindner', 'albrecht lindner')<br/>('1702224', 'Stefan Winkler', 'stefan winkler')</td><td></td></tr><tr><td>345bea5f7d42926f857f395c371118a00382447f</td><td>Transfiguring Portraits <br/><b>Computer Science and Engineering, University of Washington</b><br/>Figure 1: Our system’s goal is to let people imagine and explore how they may look like in a different country, era, hair style, hair color, age, <br/>and anything else that can be queried in an image search engine. The examples above show a single input photo (left) and automatically <br/>synthesized appearances of the input person with ”curly hair” (top row), in ”india” (2nd row), and at ”1930” (3rd row). -</td><td>('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')</td><td></td></tr><tr><td>3463f12ad434d256cd5f94c1c1bfd2dd6df36947</td><td>Article +</td><td>('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')</td><td></td></tr><tr><td>34ec83c8ff214128e7a4a4763059eebac59268a6</td><td>Action Anticipation By Predicting Future +<br/>Dynamic Images +<br/>Australian Centre for Robotic Vision, ANU, Canberra, Australia +</td><td>('46771280', 'Cristian Rodriguez', 'cristian rodriguez')<br/>('1688071', 'Basura Fernando', 'basura fernando')<br/>('40124570', 'Hongdong Li', 'hongdong li')</td><td>{cristian.rodriguez, basura.fernando, hongdong.li}@.anu.edu.au +</td></tr><tr><td>3463f12ad434d256cd5f94c1c1bfd2dd6df36947</td><td>Article <br/>Facial Expression Recognition with Fusion Features <br/>Extracted from Salient Facial Areas <br/><b>School of Control Science and Engineering, Shandong University, Jinan 250061, China</b><br/>Academic Editors: Xue-Bo Jin; Shuli Sun; Hong Wei and Feng-Bao Yang @@ -6327,7 +7403,9 @@ <br/>Dimensional Data on Large Scale Dictionaries <br/><b>Princeton University</b><br/>Princeton, NJ 08544, USA </td><td>('1730249', 'Zhen James Xiang', 'zhen james xiang')<br/>('1693135', 'Peter J. Ramadge', 'peter j. ramadge')</td><td>{zxiang,haoxu,ramadge}@princeton.edu -</td></tr><tr><td>5a93f9084e59cb9730a498ff602a8c8703e5d8a5</td><td>HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS +</td></tr><tr><td>5a3da29970d0c3c75ef4cb372b336fc8b10381d7</td><td>CNN-based Real-time Dense Face Reconstruction +<br/>with Inverse-rendered Photo-realistic Face Images +</td><td>('8280113', 'Yudong Guo', 'yudong guo')<br/>('2938279', 'Juyong Zhang', 'juyong zhang')<br/>('1688642', 'Jianfei Cai', 'jianfei cai')<br/>('15679675', 'Boyi Jiang', 'boyi jiang')<br/>('48510441', 'Jianmin Zheng', 'jianmin zheng')</td><td></td></tr><tr><td>5a93f9084e59cb9730a498ff602a8c8703e5d8a5</td><td>HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS <br/>Face Recognition using Local Quantized <br/>Patterns <br/>Fréderic Jurie @@ -6372,7 +7450,17 @@ <br/>gassassa@coeia.edu.sa <br/>monmursi@coeia.edu.sa </td></tr><tr><td>5a34a9bb264a2594c02b5f46b038aa1ec3389072</td><td>Label-Embedding for Image Classification -</td><td>('2893664', 'Zeynep Akata', 'zeynep akata')<br/>('1723883', 'Florent Perronnin', 'florent perronnin')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>5a4c6246758c522f68e75491eb65eafda375b701</td><td>978-1-4244-4296-6/10/$25.00 ©2010 IEEE +</td><td>('2893664', 'Zeynep Akata', 'zeynep akata')<br/>('1723883', 'Florent Perronnin', 'florent perronnin')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>5a5f9e0ed220ce51b80cd7b7ede22e473a62062c</td><td>Videos as Space-Time Region Graphs +<br/><b>Robotics Institute, Carnegie Mellon University</b><br/>Figure 1. How do you recognize simple actions such as opening book? We argue action +<br/>understanding requires appearance modeling but also capturing temporal dynamics +<br/>(how shape of book changes) and functional relationships. We propose to represent +<br/>videos as space-time region graphs followed by graph convolutions for inference. +</td><td>('39849136', 'Xiaolong Wang', 'xiaolong wang')<br/>('1737809', 'Abhinav Gupta', 'abhinav gupta')</td><td></td></tr><tr><td>5ac946fc6543a445dd1ee6d5d35afd3783a31353</td><td>FEATURELESS: BYPASSING FEATURE EXTRACTION IN ACTION CATEGORIZATION +<br/>S. L. Pinteaa, P. S. Mettesa +<br/>J. C. van Gemerta,b, A. W. M. Smeuldersa +<br/>aIntelligent Sensory Information Systems, +<br/><b>University of Amsterdam</b><br/>Amsterdam, Netherlands +</td><td></td><td></td></tr><tr><td>5a4c6246758c522f68e75491eb65eafda375b701</td><td>978-1-4244-4296-6/10/$25.00 ©2010 IEEE <br/>1118 <br/>ICASSP 2010 </td><td></td><td></td></tr><tr><td>5aad5e7390211267f3511ffa75c69febe3b84cc7</td><td>Driver Gaze Estimation @@ -6390,7 +7478,8 @@ <br/>Facial Emotion Recognition and Classification Using Hybridization <br/>Method <br/><b>Chandigarh Engg. College, Mohali, Punjab, India</b></td><td>('6010530', 'Anchal Garg', 'anchal garg')<br/>('9744572', 'Rohit Bajaj', 'rohit bajaj')</td><td>anchalgarg949@gmail.com, 07696449500 -</td></tr><tr><td>5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0</td><td>The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014 +</td></tr><tr><td>5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605.</td><td></td><td></td></tr><tr><td>5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0</td><td>The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014 <br/> <br/>149 <br/> @@ -6398,9 +7487,43 @@ <br/>Criterion and Linear Discriminant Analysis <br/> <br/>(AMFC-LDA) -<br/><b>COMSATS Institute of Information Technology, Pakistan</b></td><td>('2151799', 'Marryam Murtaza', 'marryam murtaza')<br/>('33088042', 'Muhammad Sharif', 'muhammad sharif')<br/>('36739230', 'Mudassar Raza', 'mudassar raza')<br/>('1814986', 'Jamal Hussain Shah', 'jamal hussain shah')</td><td></td></tr><tr><td>5a7520380d9960ff3b4f5f0fe526a00f63791e99</td><td>The Indian Spontaneous Expression +<br/><b>COMSATS Institute of Information Technology, Pakistan</b></td><td>('2151799', 'Marryam Murtaza', 'marryam murtaza')<br/>('33088042', 'Muhammad Sharif', 'muhammad sharif')<br/>('36739230', 'Mudassar Raza', 'mudassar raza')<br/>('1814986', 'Jamal Hussain Shah', 'jamal hussain shah')</td><td></td></tr><tr><td>5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6</td><td>International Journal of Computer Applications® (IJCA) (0975 – 8887) +<br/>International Conference on Knowledge Collaboration in Engineering, ICKCE-2014 +<br/>Human Expression Recognition using Facial Features +<br/>G.Saranya +<br/>Post graduate student, Dept. of ECE +<br/><b>Parisutham Institute of Technology and Science</b><br/>Thanjavur. +<br/><b>Affiliated to Anna university, Chennai</b><br/>recognition can be used +</td><td></td><td></td></tr><tr><td>5a7520380d9960ff3b4f5f0fe526a00f63791e99</td><td>The Indian Spontaneous Expression <br/>Database for Emotion Recognition -</td><td>('38657440', 'Priyadarshi Patnaik', 'priyadarshi patnaik')<br/>('2680543', 'Aurobinda Routray', 'aurobinda routray')<br/>('2730256', 'Rajlakshmi Guha', 'rajlakshmi guha')</td><td></td></tr><tr><td>5f871838710a6b408cf647aacb3b198983719c31</td><td>1716 +</td><td>('38657440', 'Priyadarshi Patnaik', 'priyadarshi patnaik')<br/>('2680543', 'Aurobinda Routray', 'aurobinda routray')<br/>('2730256', 'Rajlakshmi Guha', 'rajlakshmi guha')</td><td></td></tr><tr><td>5a07945293c6b032e465d64f2ec076b82e113fa6</td><td>Pulling Actions out of Context: Explicit Separation for Effective Combination +<br/><b>Stony Brook University, Stony Brook, NY 11794, USA</b></td><td>('50874742', 'Yang Wang', 'yang wang')</td><td>{wang33, minhhoai}@cs.stonybrook.edu +</td></tr><tr><td>5fff61302adc65d554d5db3722b8a604e62a8377</td><td>Additive Margin Softmax for Face Verification +<br/>UESTC +<br/>Georgia Tech +<br/>UESTC +<br/>UESTC +</td><td>('47939378', 'Feng Wang', 'feng wang')<br/>('51094998', 'Weiyang Liu', 'weiyang liu')<br/>('8424682', 'Haijun Liu', 'haijun liu')<br/>('1709439', 'Jian Cheng', 'jian cheng')</td><td>feng.wff@gmail.com +<br/>wyliu@gatech.edu +<br/>haijun liu@126.com +<br/>chengjian@uestc.edu.cn +</td></tr><tr><td>5f771fed91c8e4b666489ba2384d0705bcf75030</td><td>Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning +<br/>and A New Benchmark for Multi-Human Parsing +<br/><b>National University of Singapore</b><br/><b>National University of Defense Technology</b><br/><b>Qihoo 360 AI Institute</b></td><td>('46509484', 'Jian Zhao', 'jian zhao')<br/>('2757639', 'Jianshu Li', 'jianshu li')<br/>('48207454', 'Li Zhou', 'li zhou')<br/>('1715286', 'Terence Sim', 'terence sim')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')</td><td>chengyu996@gmail.com zhouli2025@gmail.com +<br/>{eleyans, elefjia}@nus.edu.sg +<br/>{zhaojian90, jianshu}@u.nus.edu +<br/>tsim@comp.nus.edu.sg +</td></tr><tr><td>5fa04523ff13a82b8b6612250a39e1edb5066521</td><td>Dockerface: an Easy to Install and Use Faster R-CNN Face Detector in a Docker +<br/>Container +<br/>Center for Behavioral Imaging +<br/><b>College of Computing</b><br/><b>Georgia Institute of Technology</b></td><td>('31601235', 'Nataniel Ruiz', 'nataniel ruiz')<br/>('1692956', 'James M. Rehg', 'james m. rehg')</td><td>nataniel.ruiz@gatech.edu +<br/>rehg@gatech.edu +</td></tr><tr><td>5fa6e4a23da0b39e4b35ac73a15d55cee8608736</td><td>IJCV special issue (Best papers of ECCV 2016) manuscript No. +<br/>(will be inserted by the editor) +<br/>RED-Net: +<br/>A Recurrent Encoder-Decoder Network for Video-based Face Alignment +<br/>Submitted: April 19 2017 / Revised: December 12 2017 +</td><td>('4340744', 'Xi Peng', 'xi peng')</td><td></td></tr><tr><td>5f871838710a6b408cf647aacb3b198983719c31</td><td>1716 <br/>Locally Linear Regression for Pose-Invariant <br/>Face Recognition </td><td>('1695600', 'Xiujuan Chai', 'xiujuan chai')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')<br/>('1698902', 'Wen Gao', 'wen gao')</td><td></td></tr><tr><td>5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9</td><td></td><td></td><td></td></tr><tr><td>5f344a4ef7edfd87c5c4bc531833774c3ed23542</td><td>c @@ -6415,12 +7538,128 @@ </td><td>('8060096', 'Sheng-hung Hu', 'sheng-hung hu')<br/>('2180892', 'Yikang Li', 'yikang li')<br/>('2913552', 'Baoxin Li', 'baoxin li')</td><td>Email:shenghun@asu.edu <br/>Email:yikangli@asu.edu <br/>Email:Baoxin.Li@asu.edu -</td></tr><tr><td>5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a</td><td></td><td></td><td></td></tr><tr><td>5feb1341a49dd7a597f4195004fe9b59f67e6707</td><td>A Deep Ranking Model for Spatio-Temporal Highlight Detection +</td></tr><tr><td>5f7c4c20ae2731bfb650a96b69fd065bf0bb950e</td><td>Turk J Elec Eng & Comp Sci +<br/>(2016) 24: 1797 { 1814 +<br/>c⃝ T (cid:127)UB_ITAK +<br/>doi:10.3906/elk-1310-253 +<br/>A new fuzzy membership assignment and model selection approach based on +<br/>dynamic class centers for fuzzy SVM family using the (cid:12)re(cid:13)y algorithm +<br/><b>Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran</b><br/><b>Faculty of Engineering, Ferdowsi University, Mashhad, Iran</b><br/>Received: 01.11.2013 +<br/>(cid:15) +<br/>Accepted/Published Online: 30.06.2014 +<br/>(cid:15) +<br/>Final Version: 23.03.2016 +</td><td>('9437627', 'Omid Naghash Almasi', 'omid naghash almasi')<br/>('4945660', 'Modjtaba Rouhani', 'modjtaba rouhani')</td><td></td></tr><tr><td>5f94969b9491db552ffebc5911a45def99026afe</td><td>Multimodal Learning and Reasoning for Visual +<br/>Question Answering +<br/>Integrative Sciences and Engineering +<br/><b>National University of Singapore</b><br/>Electrical and Computer Engineering +<br/><b>National University of Singapore</b></td><td>('3393294', 'Ilija Ilievski', 'ilija ilievski')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')</td><td>ilija.ilievski@u.nus.edu +<br/>elefjia@nus.edu.sg +</td></tr><tr><td>5f758a29dae102511576c0a5c6beda264060a401</td><td>Fine-grained Video Attractiveness Prediction Using Multimodal +<br/>Deep Learning on a Large Real-world Dataset +<br/><b>Wuhan University, Tencent AI Lab, National University of Singapore, University of Rochester</b></td><td>('3179887', 'Xinpeng Chen', 'xinpeng chen')<br/>('47740660', 'Jingyuan Chen', 'jingyuan chen')<br/>('34264361', 'Lin Ma', 'lin ma')<br/>('1849993', 'Jian Yao', 'jian yao')<br/>('46641573', 'Wei Liu', 'wei liu')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')<br/>('38144094', 'Tong Zhang', 'tong zhang')</td><td></td></tr><tr><td>5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a</td><td></td><td></td><td></td></tr><tr><td>5feb1341a49dd7a597f4195004fe9b59f67e6707</td><td>A Deep Ranking Model for Spatio-Temporal Highlight Detection <br/>from a 360◦ Video <br/><b>Seoul National University</b></td><td>('7877122', 'Youngjae Yu', 'youngjae yu')<br/>('1693291', 'Sangho Lee', 'sangho lee')<br/>('35272603', 'Joonil Na', 'joonil na')<br/>('35365676', 'Jaeyun Kang', 'jaeyun kang')<br/>('1743920', 'Gunhee Kim', 'gunhee kim')</td><td>{yj.yu, sangho.lee, joonil}@vision.snu.ac.kr, {kjy13411}@gmail.com, gunhee@snu.ac.kr -</td></tr><tr><td>5f57a1a3a1e5364792b35e8f5f259f92ad561c1f</td><td>Implicit Sparse Code Hashing +</td></tr><tr><td>5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b</td><td>CBMM Memo No. 85 +<br/>06/2018 +<br/>Deep Regression Forests for Age Estimation +<br/><b>Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University</b><br/><b>Johns Hopkins University</b><br/><b>College of Computer and Control Engineering, Nankai University 4: Hikvision Research</b></td><td>('41187410', 'Wei Shen', 'wei shen')<br/>('9544564', 'Yilu Guo', 'yilu guo')<br/>('46394340', 'Yan Wang', 'yan wang')<br/>('1681247', 'Kai Zhao', 'kai zhao')<br/>('46172451', 'Bo Wang', 'bo wang')<br/>('35922327', 'Alan Yuille', 'alan yuille')</td><td></td></tr><tr><td>5f57a1a3a1e5364792b35e8f5f259f92ad561c1f</td><td>Implicit Sparse Code Hashing <br/><b>Institute of Information Science</b><br/>Academia Sinica, Taiwan -</td><td>('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')<br/>('2301765', 'Tsung-Wei Ke', 'tsung-wei ke')<br/>('1805102', 'Tyng-Luh Liu', 'tyng-luh liu')</td><td></td></tr><tr><td>5fa932be4d30cad13ea3f3e863572372b915bec8</td><td></td><td></td><td></td></tr><tr><td>5f5906168235613c81ad2129e2431a0e5ef2b6e4</td><td>Noname manuscript No. +</td><td>('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')<br/>('2301765', 'Tsung-Wei Ke', 'tsung-wei ke')<br/>('1805102', 'Tyng-Luh Liu', 'tyng-luh liu')</td><td></td></tr><tr><td>5f27ed82c52339124aa368507d66b71d96862cb7</td><td>Semi-supervised Learning of Classifiers: Theory, Algorithms +<br/>and Their Application to Human-Computer Interaction +<br/>This work has been partially funded by NSF Grant IIS 00-85980. +<br/>DRAFT +</td><td>('1774778', 'Ira Cohen', 'ira cohen')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td>Ira Cohen: Hewlett-Packard Labs, Palo Alto, CA, USA, ira.cohen@hp.com +<br/>Fabio G. Cozman and Marcelo C. Cirelo: Escola Polit´ecnica, Universidade de S˜ao Paulo, S˜ao Paulo,Brazil. fgcozman@usp.br, +<br/>marcelo.cirelo@poli.usp.br +<br/>Nicu Sebe: Faculty of Science, University of Amsterdam, The Netherlands. nicu@science.uva.nl +<br/>Thomas S. Huang: Beckman Institute, University of Illinois at Urbana-Champaign, USA. huang@ifp.uiuc.edu +</td></tr><tr><td>5fa932be4d30cad13ea3f3e863572372b915bec8</td><td></td><td></td><td></td></tr><tr><td>5fea26746f3140b12317fcf3bc1680f2746e172e</td><td>Dense Supervision for Visual Comparisons via Synthetic Images +<br/>Semantic Jitter: +<br/><b>University of Texas at Austin</b><br/><b>University of Texas at Austin</b><br/>Distinguishing subtle differences in attributes is valuable, yet +<br/>learning to make visual comparisons remains non-trivial. Not +<br/>only is the number of possible comparisons quadratic in the +<br/>number of training images, but also access to images adequately +<br/>spanning the space of fine-grained visual differences is limited. +<br/>We propose to overcome the sparsity of supervision problem +<br/>via synthetically generated images. Building on a state-of-the- +<br/>art image generation engine, we sample pairs of training images +<br/>exhibiting slight modifications of individual attributes. Augment- +<br/>ing real training image pairs with these examples, we then train +<br/>attribute ranking models to predict the relative strength of an +<br/>attribute in novel pairs of real images. Our results on datasets of +<br/>faces and fashion images show the great promise of bootstrapping +<br/>imperfect image generators to counteract sample sparsity for +<br/>learning to rank. +<br/>INTRODUCTION +<br/>Fine-grained analysis of images often entails making visual +<br/>comparisons. For example, given two products in a fashion +<br/>catalog, a shopper may judge which shoe appears more pointy +<br/>at the toe. Given two selfies, a teen may gauge in which one he +<br/>is smiling more. Given two photos of houses for sale on a real +<br/>estate website, a home buyer may analyze which facade looks +<br/>better maintained. Given a series of MRI scans, a radiologist +<br/>may judge which pair exhibits the most shape changes. +<br/>In these and many other such cases, we are interested in +<br/>inferring how a pair of images compares in terms of a par- +<br/>ticular property, or “attribute”. That is, which is more pointy, +<br/>smiling, well-maintained, etc. Importantly, the distinctions of +<br/>interest are often quite subtle. Subtle comparisons arise both +<br/>in image pairs that are very similar in almost every regard +<br/>(e.g., two photos of the same individual wearing the same +<br/>clothing, yet smiling more in one photo than the other), as +<br/>well as image pairs that are holistically different yet exhibit +<br/>only slight differences in the attribute in question (e.g., two +<br/>individuals different in appearance, and one is smiling slightly +<br/>more than the other). +<br/>A growing body of work explores computational models +<br/>for visual comparisons [1], [2], [3], [4], [5], [6], [7], [8], [9], +<br/>[10], [11], [12]. In particular, ranking models for “relative +<br/>attributes” [2], [3], [4], [5], [9], [11] use human-ordered pairs +<br/>of images to train a system to predict the relative ordering in +<br/>novel image pairs. +<br/>A major challenge in training a ranking model is the sparsity +<br/>of supervision. That sparsity stems from two factors: label +<br/>availability and image availability. Because training instances +<br/>consist of pairs of images—together with the ground truth +<br/>human judgment about which exhibits the property more +<br/>Fig. 1: Our method “densifies” supervision for training ranking functions to +<br/>make visual comparisons, by generating ordered pairs of synthetic images. +<br/>Here, when learning the attribute smiling, real training images need not be +<br/>representative of the entire attribute space (e.g., Web photos may cluster +<br/>around commonly photographed expressions, like toothy smiles). Our idea +<br/>“fills in” the sparsely sampled regions to enable fine-grained supervision. +<br/>Given a novel pair (top), the nearest synthetic pairs (right) may present better +<br/>training data than the nearest real pairs (left). +<br/>or less—the space of all possible comparisons is quadratic +<br/>in the number of potential +<br/>training images. This quickly +<br/>makes it intractable to label an image collection exhaustively +<br/>for its comparative properties. At the same time, attribute +<br/>comparisons entail a greater cognitive load than, for example, +<br/>object category labeling. Indeed, the largest existing relative +<br/>attribute datasets sample only less than 0.1% of all image pairs +<br/>for ground truth labels [11], and there is a major size gap +<br/>between standard datasets labeled for classification (now in +<br/>the millions [13]) and those for comparisons (at best in the +<br/>thousands [11]). A popular shortcut is to propagate category- +<br/>level comparisons down to image instances [4], [14]—e.g., +<br/>deem all ocean scenes as “more open” than all forest scenes— +<br/>but +<br/>label noise and in practice +<br/>underperforms training with instance-level comparisons [2]. +<br/>this introduces substantial +<br/>Perhaps more insidious than the annotation cost, however, +<br/>is the problem of even curating training images that suf- +<br/>ficiently illustrate fine-grained differences. Critically, sparse +<br/>supervision arises not simply because 1) we lack resources +<br/>to get enough image pairs labeled, but also because 2) we +<br/>lack a direct way to curate photos demonstrating all sorts +<br/>of subtle attribute changes. For example, how might we +<br/>gather unlabeled image pairs depicting all subtle differences +<br/>Novel PairReal PairsSynthetic Pairsvs.</td><td>('2206630', 'Aron Yu', 'aron yu')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>aron.yu@utexas.edu +<br/>grauman@cs.utexas.edu +</td></tr><tr><td>5f5906168235613c81ad2129e2431a0e5ef2b6e4</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>A Unified Framework for Compositional Fitting of <br/>Active Appearance Models @@ -6437,6 +7676,19 @@ <br/>of Online Advertising (SARA) for Audience Behavior Analysis <br/><b>College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China</b><br/><b>BRIC, University of North Carolina at Chapel Hill, NC 27599, USA</b><br/>3 HP Labs, Palo Alto, CA 94304, USA <br/><b>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</b></td><td>('1803478', 'Songfan Yang', 'songfan yang')<br/>('39776603', 'Le An', 'le an')<br/>('1784929', 'Mehran Kafai', 'mehran kafai')<br/>('1707159', 'Bir Bhanu', 'bir bhanu')</td><td>syang@scu.edu.cn, lan004@unc.edu, mehran.kafai@hp.com, bhanu@cris.ucr.edu +</td></tr><tr><td>5f453a35d312debfc993d687fd0b7c36c1704b16</td><td><b>Clemson University</b><br/>TigerPrints +<br/>All Theses +<br/>12-2015 +<br/>Theses +<br/>A Training Assistant Tool for the Automated Visual +<br/>Inspection System +<br/>Follow this and additional works at: http://tigerprints.clemson.edu/all_theses +<br/>Part of the Electrical and Computer Engineering Commons +<br/>Recommended Citation +<br/>Ramaraj, Mohan Karthik, "A Training Assistant Tool for the Automated Visual Inspection System" (2015). All Theses. Paper 2285. +<br/>This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized +</td><td>('4154752', 'Mohan Karthik Ramaraj', 'mohan karthik ramaraj')</td><td>Clemson University, rmohankarthik91@gmail.com +<br/>administrator of TigerPrints. For more information, please contact awesole@clemson.edu. </td></tr><tr><td>5fc664202208aaf01c9b62da5dfdcd71fdadab29</td><td>arXiv:1504.05308v1 [cs.CV] 21 Apr 2015 </td><td></td><td></td></tr><tr><td>5fac62a3de11125fc363877ba347122529b5aa50</td><td>AMTnet: Action-Micro-Tube Regression by <br/>End-to-end Trainable Deep Architecture @@ -6451,7 +7703,20 @@ <br/>in the Continuous Pose Space <br/><b>Boston University, USA</b><br/>2 Disney Research Pittsburgh, USA </td><td>('1702188', 'Kun He', 'kun he')<br/>('14517812', 'Leonid Sigal', 'leonid sigal')</td><td>{hekun,sclaroff}@cs.bu.edu, lsigal@disneyresearch.com -</td></tr><tr><td>33ac7fd3a622da23308f21b0c4986ae8a86ecd2b</td><td>Building an On-Demand Avatar-Based Health Intervention for Behavior Change +</td></tr><tr><td>33548531f9ed2ce6f87b3a1caad122c97f1fd2e9</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 104 – No.2, October 2014 +<br/>Facial Expression Recognition in Video using +<br/>Adaboost and SVM +<br/>Surabhi Prabhakar +<br/>Department of CSE +<br/><b>Amity University</b><br/>Noida, India +<br/>Jaya Sharma +<br/>Shilpi Gupta +<br/>Department of CSE +<br/>Department of CSE +<br/><b>Amity University</b><br/>Noida, India +<br/><b>Amity University</b><br/>Noida, India +</td><td></td><td></td></tr><tr><td>33ac7fd3a622da23308f21b0c4986ae8a86ecd2b</td><td>Building an On-Demand Avatar-Based Health Intervention for Behavior Change <br/>School of Computing and Information Sciences <br/><b>Florida International University</b><br/>Miami, FL, 33199, USA <br/>Department of Computer Science @@ -6507,6 +7772,12 @@ <br/>Phone: 650-428-1805,650-723-5499 <br/>Fax: 650-725-2472 </td><td></td><td>brave,nass@stanford.edu +</td></tr><tr><td>3328413ee9944de1cc7c9c1d1bf2fece79718ba1</td><td>Co-Training of Audio and Video Representations +<br/>from Self-Supervised Temporal Synchronization +<br/><b>Dartmouth College</b><br/>Facebook Research +<br/><b>Dartmouth College</b></td><td>('3443095', 'Bruno Korbar', 'bruno korbar')<br/>('1687325', 'Du Tran', 'du tran')<br/>('1732879', 'Lorenzo Torresani', 'lorenzo torresani')</td><td>bruno.18@dartmouth.edu +<br/>trandu@fb.com +<br/>LT@dartmouth.edu </td></tr><tr><td>3399f8f0dff8fcf001b711174d29c9d4fde89379</td><td>Face R-CNN <br/>Tencent AI Lab, China </td><td>('39049654', 'Hao Wang', 'hao wang')</td><td>{hawelwang,michaelzfli,denisji,yitongwang}@tencent.com @@ -6533,10 +7804,12 @@ <br/>gshine@stanford.edu <br/>chriseng@stanford.edu </td></tr><tr><td>33402ee078a61c7d019b1543bb11cc127c2462d2</td><td>Self-Supervised Video Representation Learning With Odd-One-Out Networks -<br/><b>ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam</b></td><td>('1688071', 'Basura Fernando', 'basura fernando')</td><td></td></tr><tr><td>33ae696546eed070717192d393f75a1583cd8e2c</td><td></td><td></td><td></td></tr><tr><td>33f2b44742cc828347ccc5ec488200c25838b664</td><td>Pooling the Convolutional Layers in Deep ConvNets for Action Recognition +<br/><b>ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam</b></td><td>('1688071', 'Basura Fernando', 'basura fernando')</td><td></td></tr><tr><td>33aa980544a9d627f305540059828597354b076c</td><td></td><td></td><td></td></tr><tr><td>33ae696546eed070717192d393f75a1583cd8e2c</td><td></td><td></td><td></td></tr><tr><td>33f2b44742cc828347ccc5ec488200c25838b664</td><td>Pooling the Convolutional Layers in Deep ConvNets for Action Recognition <br/><b>School of Computer Science and Technology, Tianjin University, China</b><br/><b>School of Computer and Information, Hefei University of Technology, China</b></td><td>('2905510', 'Shichao Zhao', 'shichao zhao')<br/>('1732242', 'Yanbin Liu', 'yanbin liu')<br/>('2302512', 'Yahong Han', 'yahong han')<br/>('2248826', 'Richang Hong', 'richang hong')</td><td>{zhaoshichao, csyanbin, yahong}@tju.edu.cn, hongrc.hfut@gmail.com </td></tr><tr><td>3393459600368be2c4c9878a3f65a57dcc0c2cfa</td><td>Eigen-PEP for Video Face Recognition -<br/><b>Stevens Institute of Technology Adobe Systems Inc</b></td><td>('3131569', 'Haoxiang Li', 'haoxiang li')<br/>('1745420', 'Gang Hua', 'gang hua')<br/>('1720987', 'Xiaohui Shen', 'xiaohui shen')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')</td><td></td></tr><tr><td>334d6c71b6bce8dfbd376c4203004bd4464c2099</td><td>BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN +<br/><b>Stevens Institute of Technology Adobe Systems Inc</b></td><td>('3131569', 'Haoxiang Li', 'haoxiang li')<br/>('1745420', 'Gang Hua', 'gang hua')<br/>('1720987', 'Xiaohui Shen', 'xiaohui shen')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')</td><td></td></tr><tr><td>3352426a67eabe3516812cb66a77aeb8b4df4d1b</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015 +<br/>Joint Multi-view Face Alignment in the Wild +</td><td>('3234063', 'Jiankang Deng', 'jiankang deng')<br/>('2814229', 'George Trigeorgis', 'george trigeorgis')<br/>('47943220', 'Yuxiang Zhou', 'yuxiang zhou')</td><td></td></tr><tr><td>334d6c71b6bce8dfbd376c4203004bd4464c2099</td><td>BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN <br/>COMPUTER VISION </td><td>('36861219', 'Sohil Shah', 'sohil shah')<br/>('1746575', 'Christoph Studer', 'christoph studer')<br/>('1962083', 'Tom Goldstein', 'tom goldstein')</td><td></td></tr><tr><td>33695e0779e67c7722449e9a3e2e55fde64cfd99</td><td>Riemannian Coding and Dictionary Learning: Kernels to the Rescue <br/><b>Australian National University and NICTA</b><br/>While sparse coding on non-flat Riemannian manifolds has recently become @@ -6623,7 +7896,9 @@ <br/>Facial Expression Analysis using Deep Learning <br/><b>M.Tech Student, SSG Engineering College, Odisha, India</b><br/>---------------------------------------------------------------------***--------------------------------------------------------------------- <br/>examination structures need to analyse the facial exercises -</td><td>('13518951', 'Raman Patel', 'raman patel')</td><td></td></tr><tr><td>33403e9b4bbd913ae9adafc6751b52debbd45b0e</td><td></td><td></td><td></td></tr><tr><td>33ad23377eaead8955ed1c2b087a5e536fecf44e</td><td>Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling +</td><td>('13518951', 'Raman Patel', 'raman patel')</td><td></td></tr><tr><td>33403e9b4bbd913ae9adafc6751b52debbd45b0e</td><td></td><td></td><td></td></tr><tr><td>33ef419dffef85443ec9fe89a93f928bafdc922e</td><td>SelfKin: Self Adjusted Deep Model For +<br/>Kinship Verification +<br/><b>Faculty of Engineering, Bar-Ilan University, Israel</b></td><td>('32450996', 'Eran Dahan', 'eran dahan')<br/>('1926432', 'Yosi Keller', 'yosi keller')</td><td></td></tr><tr><td>33ad23377eaead8955ed1c2b087a5e536fecf44e</td><td>Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling <br/>∗ indicates equal contribution </td><td>('2177037', 'Andrew Kae', 'andrew kae')<br/>('1729571', 'Kihyuk Sohn', 'kihyuk sohn')<br/>('1697141', 'Honglak Lee', 'honglak lee')</td><td>1 University of Massachusetts, Amherst, MA, USA, {akae,elm}@cs.umass.edu <br/>2 University of Michigan, Ann Arbor, MI, USA, {kihyuks,honglak}@umich.edu @@ -6722,7 +7997,12 @@ <br/>© Impact Journals <br/>PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES <br/>FOR FACE RECOGNITION -<br/><b>PSG College of Technology, Coimbatore, Tamil Nadu, India</b></td><td></td><td></td></tr><tr><td>0568fc777081cbe6de95b653644fec7b766537b2</td><td>Learning Expressionlets on Spatio-Temporal Manifold for Dynamic Facial +<br/><b>PSG College of Technology, Coimbatore, Tamil Nadu, India</b></td><td></td><td></td></tr><tr><td>05891725f5b27332836cf058f04f18d74053803f</td><td>One-shot Action Localization by Learning Sequence Matching Network +<br/><b>The Australian National University</b><br/><b>ShanghaiTech University</b><br/>Fatih Porikli +<br/><b>The Australian National University</b></td><td>('51050729', 'Hongtao Yang', 'hongtao yang')<br/>('33913193', 'Xuming He', 'xuming he')</td><td>u5226028@anu.edu.au +<br/>hexm@shanghaitech.edu.cn +<br/>fatih.porikli@anu.edu.au +</td></tr><tr><td>0568fc777081cbe6de95b653644fec7b766537b2</td><td>Learning Expressionlets on Spatio-Temporal Manifold for Dynamic Facial <br/>Expression Recognition <br/>1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), <br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China</b><br/><b>University of Oulu, Finland</b></td><td>('1730228', 'Mengyi Liu', 'mengyi liu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('3373117', 'Ruiping Wang', 'ruiping wang')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td>mengyi.liu@vipl.ict.ac.cn, {sgshan, wangruiping, xlchen}@ict.ac.cn @@ -7061,11 +8341,15 @@ <br/>lips, eyelids, and eyebrows as well as facial skin texture patterns (Pantic & Rothkrantz, <br/>2000). Typical facial expressions last for a few seconds, normally between 250 milliseconds <br/>and five seconds (Fasel & Luettin, 2003). According to psychologists Ekman and Friesen -</td><td>('2647218', 'Bogdan J. Matuszewski', 'bogdan j. matuszewski')<br/>('2343120', 'Wei Quan', 'wei quan')</td><td></td></tr><tr><td>05a7be10fa9af8fb33ae2b5b72d108415519a698</td><td>Multilayer and Multimodal Fusion of Deep Neural Networks +</td><td>('2647218', 'Bogdan J. Matuszewski', 'bogdan j. matuszewski')<br/>('2343120', 'Wei Quan', 'wei quan')</td><td></td></tr><tr><td>052f994898c79529955917f3dfc5181586282cf8</td><td>Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos +<br/>1NEC Labs America +<br/>2UC Merced +<br/><b>Dalian University of Technology</b><br/>4UC San Diego +</td><td>('1729571', 'Kihyuk Sohn', 'kihyuk sohn')</td><td></td></tr><tr><td>05a7be10fa9af8fb33ae2b5b72d108415519a698</td><td>Multilayer and Multimodal Fusion of Deep Neural Networks <br/>for Video Classification <br/>NVIDIA </td><td>('2214162', 'Xiaodong Yang', 'xiaodong yang')</td><td>{xiaodongy, pmolchanov, jkautz}@nvidia.com -</td></tr><tr><td>05318a267226f6d855d83e9338eaa9e718b2a8dd</td><td>_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION +</td></tr><tr><td>050a149051a5d268fcc5539e8b654c2240070c82</td><td>MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE</td><td></td><td></td></tr><tr><td>05318a267226f6d855d83e9338eaa9e718b2a8dd</td><td>_______________________________________________________PROCEEDING OF THE 16TH CONFERENCE OF FRUCT ASSOCIATION <br/>Age Estimation from Face Images: Challenging <br/>Problem for Audience Measurement Systems <br/><b>Yaroslavl State University</b><br/>Russia @@ -7086,6 +8370,10 @@ <br/>1 Tel.: 023-65112784, fax: 023-65112784 <br/>Received: 26 April 2013 /Accepted: 14 June 2013 /Published: 25 June 2013 </td><td>('2623870', 'Lifang Zhou', 'lifang zhou')<br/>('1713814', 'Bin Fang', 'bin fang')<br/>('1964987', 'Weisheng Li', 'weisheng li')<br/>('2103166', 'Lidou Wang', 'lidou wang')</td><td>1 E-mail: zhoulf@cqupt.edu.cn +</td></tr><tr><td>053931267af79a89791479b18d1b9cde3edcb415</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Attributes for Improved Attributes: A Multi-Task Network +<br/>Utilizing Implicit and Explicit Relationships for Facial Attribute Classification +<br/><b>University of Maryland, College Park</b><br/><b>College Park, MD</b></td><td>('3351637', 'Emily M. Hand', 'emily m. hand')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{emhand, rama}@umiacs.umd.edu </td></tr><tr><td>05f3d1e9fb254b275354ca69018e9ed321dd8755</td><td>Face Recognition using Optimal Representation <br/>Ensemble <br/><b>NICTA , Queensland Research Laboratory, QLD, Australia</b><br/><b>Grif th University, QLD, Australia</b><br/><b>University of Adelaide, SA, Australia</b><br/>29·4·2013 @@ -7093,6 +8381,11 @@ <br/>Partial Face Recognition: An Alignment Free Approach <br/>Department of Computer Science and Engineering <br/><b>Michigan State University, East Lansing, MI 48824, U.S.A</b></td><td>('40397682', 'Shengcai Liao', 'shengcai liao')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td>{scliao,jain}@cse.msu.edu +</td></tr><tr><td>9d58e8ab656772d2c8a99a9fb876d5611fe2fe20</td><td>Beyond Temporal Pooling: Recurrence and Temporal +<br/>Convolutions for Gesture Recognition in Video +<br/>{lionel.pigou,aaron.vandenoord,sander.dieleman, +<br/><b>Ghent University</b><br/>February 11, 2016 +</td><td>('2660640', 'Lionel Pigou', 'lionel pigou')<br/>('48373216', 'Sander Dieleman', 'sander dieleman')<br/>('10182287', 'Mieke Van Herreweghe', 'mieke van herreweghe')</td><td>mieke.vanherreweghe, joni.dambre}@ugent.be </td></tr><tr><td>9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6</td><td>International Journal of Pattern Recognition <br/>and Arti¯cial Intelligence <br/>Vol. 26, No. 1 (2012) 1250002 (9 pages) @@ -7176,7 +8469,9 @@ <br/><b>Savitribai Phule Pune University</b><br/><b>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</b><br/>Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India <br/><b>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</b><br/>Computer Department, D.Y.PIET, Pimpri, Pune-18, MH, India <br/>presents -</td><td>('15731441', 'Shital Shinde', 'shital shinde')<br/>('3392505', 'Archana Chaugule', 'archana chaugule')</td><td></td></tr><tr><td>9d941a99e6578b41e4e32d57ece580c10d578b22</td><td>Sensors 2015, 15, 4326-4352; doi:10.3390/s150204326 +</td><td>('15731441', 'Shital Shinde', 'shital shinde')<br/>('3392505', 'Archana Chaugule', 'archana chaugule')</td><td></td></tr><tr><td>9d57c4036a0e5f1349cd11bc342ac515307b6720</td><td>Landmark Weighting for 3DMM Shape Fitting +<br/><b>aSchool of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China</b><br/><b>bCVSSP, University of Surrey, Guildford, GU2 7XH, UK</b><br/>A B S T R A C T +</td><td>('51232704', 'Yu Yanga', 'yu yanga')<br/>('37020604', 'Xiao-Jun Wu', 'xiao-jun wu')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td></td></tr><tr><td>9d941a99e6578b41e4e32d57ece580c10d578b22</td><td>Sensors 2015, 15, 4326-4352; doi:10.3390/s150204326 <br/>OPEN ACCESS <br/>sensors <br/>ISSN 1424-8220 @@ -7215,6 +8510,9 @@ <br/>Intelligence <br/><b>Cyprus University of Technology</b><br/>P.O Box 50329, Lemesos, 3066, Cyprus </td><td>('1830709', 'Andreas Lanitis', 'andreas lanitis')</td><td>andreas.lanitis@cut.ac.cy +</td></tr><tr><td>9db4b25df549555f9ffd05962b5adf2fd9c86543</td><td>Nonlinear 3D Face Morphable Model +<br/>Department of Computer Science and Engineering +<br/><b>Michigan State University, East Lansing MI</b></td><td>('1849929', 'Luan Tran', 'luan tran')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td>{tranluan, liuxm}@msu.edu </td></tr><tr><td>9d06d43e883930ddb3aa6fe57c6a865425f28d44</td><td>Clustering Appearances of Objects Under Varying Illumination Conditions <br/>Computer Science & Engineering <br/><b>University of California at San Diego</b><br/><b>cid:1) Honda Research Institute</b><br/>David Kriegman @@ -7244,7 +8542,35 @@ <br/>Regression for Object Part Localization <br/>Center for Biometrics and Security Research & National Laboratory <br/><b>of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China</b></td><td>('1721677', 'Junjie Yan', 'junjie yan')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('1708973', 'Yang Yang', 'yang yang')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{jjyan,zlei,yang.yang,szli}@nlpr.ia.ac.cn -</td></tr><tr><td>9c25e89c80b10919865b9c8c80aed98d223ca0c6</td><td>GENDER PREDICTION BY GAIT ANALYSIS BASED ON TIME SERIES VARIATION OF +</td></tr><tr><td>9ca7899338129f4ba6744f801e722d53a44e4622</td><td>Deep Neural Networks Regularization for Structured +<br/>Output Prediction +<br/>Soufiane Belharbi∗ +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +</td><td>('1712446', 'Clément Chatelain', 'clément chatelain')<br/>('1782268', 'Romain Hérault', 'romain hérault')<br/>('37078795', 'Sébastien Adam', 'sébastien adam')</td><td>soufiane.belharbi@insa-rouen.fr +<br/>romain.herault@insa-rouen.fr +<br/>clement.chatelain@insa-rouen.fr +<br/>sebastien.adam@univ-rouen.fr +</td></tr><tr><td>9c1664f69d0d832e05759e8f2f001774fad354d6</td><td>Action representations in robotics: A +<br/>taxonomy and systematic classification +<br/>Journal Title +<br/>XX(X):1–32 +<br/>c(cid:13)The Author(s) 2016 +<br/>Reprints and permission: +<br/>sagepub.co.uk/journalsPermissions.nav +<br/>DOI: 10.1177/ToBeAssigned +<br/>www.sagepub.com/ +</td><td>('33237072', 'Philipp Zech', 'philipp zech')<br/>('2898615', 'Erwan Renaudo', 'erwan renaudo')<br/>('36081156', 'Simon Haller', 'simon haller')<br/>('46447747', 'Xiang Zhang', 'xiang zhang')</td><td></td></tr><tr><td>9c25e89c80b10919865b9c8c80aed98d223ca0c6</td><td>GENDER PREDICTION BY GAIT ANALYSIS BASED ON TIME SERIES VARIATION OF <br/>JOINT POSITIONS <br/>Dept. of Computer Science <br/>School of Science and Technology @@ -7261,7 +8587,11 @@ <br/>© 2009 Science Publications <br/>Boosting Kernel Discriminative Common Vectors for Face Recognition <br/>1Department of Computer Science and Engineering, -<br/><b>SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India</b><br/><b>Bharathidasan University, Trichy, India</b></td><td>('34608395', 'C. Lakshmi', 'c. lakshmi')<br/>('2594379', 'M. Ponnavaikko', 'm. ponnavaikko')</td><td></td></tr><tr><td>9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6</td><td> International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +<br/><b>SRM University, Kattankulathur, Chennai-603 203, Tamilnadu, India</b><br/><b>Bharathidasan University, Trichy, India</b></td><td>('34608395', 'C. Lakshmi', 'c. lakshmi')<br/>('2594379', 'M. Ponnavaikko', 'm. ponnavaikko')</td><td></td></tr><tr><td>9c065dfb26ce280610a492c887b7f6beccf27319</td><td>Learning from Video and Text via Large-Scale Discriminative Clustering +<br/>1 ´Ecole Normale Sup´erieure +<br/>2Inria +<br/>3CIIRC +</td><td>('19200186', 'Antoine Miech', 'antoine miech')<br/>('2285263', 'Jean-Baptiste Alayrac', 'jean-baptiste alayrac')<br/>('2329288', 'Piotr Bojanowski', 'piotr bojanowski')<br/>('1785596', 'Ivan Laptev', 'ivan laptev')<br/>('1782755', 'Josef Sivic', 'josef sivic')</td><td></td></tr><tr><td>9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6</td><td> International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 <br/> Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072 <br/>Attribute Based Face Classification Using Support Vector Machine <br/><b>Research Scholar, PSGR Krishnammal College for Women, Coimbatore</b><br/><b>PSGR Krishnammal College for Women, Coimbatore</b></td><td></td><td></td></tr><tr><td>9c373438285101d47ab9332cdb0df6534e3b93d1</td><td>Occupancy Detection in Vehicles Using Fisher Vector @@ -7271,7 +8601,26 @@ </td><td>('1762503', 'Yusuf Artan', 'yusuf artan')<br/>('5942563', 'Peter Paul', 'peter paul')</td><td>Yusuf.Artan@xerox.com <br/>Peter.Paul@xerox.com </td></tr><tr><td>9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d</td><td>Expression Recognition with Ri-HOG Cascade -<br/><b>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</b><br/><b>RIEB, Kobe University, Kobe, 657-8501, Japan</b></td><td>('2866465', 'Jinhui Chen', 'jinhui chen')<br/>('2834542', 'Zhaojie Luo', 'zhaojie luo')<br/>('1744026', 'Tetsuya Takiguchi', 'tetsuya takiguchi')<br/>('1678564', 'Yasuo Ariki', 'yasuo ariki')</td><td></td></tr><tr><td>9c4cc11d0df2de42d6593f5284cfdf3f05da402a</td><td>Appears in the 14th International Conference on Pattern Recognition, ICPR’98, Queensland, Australia, August 17-20, 1998. +<br/><b>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</b><br/><b>RIEB, Kobe University, Kobe, 657-8501, Japan</b></td><td>('2866465', 'Jinhui Chen', 'jinhui chen')<br/>('2834542', 'Zhaojie Luo', 'zhaojie luo')<br/>('1744026', 'Tetsuya Takiguchi', 'tetsuya takiguchi')<br/>('1678564', 'Yasuo Ariki', 'yasuo ariki')</td><td></td></tr><tr><td>9ce0d64125fbaf625c466d86221505ad2aced7b1</td><td>Saliency Based Framework for Facial Expression +<br/>Recognition +<br/>To cite this version: +<br/>Facial Expression Recognition. Frontiers of Computer Science, 2017, <10.1007/s11704-017-6114-9>. +<br/><hal-01546192> +<br/>HAL Id: hal-01546192 +<br/>https://hal.archives-ouvertes.fr/hal-01546192 +<br/>Submitted on 23 Jun 2017 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')<br/>('39469581', 'Alexandre Meyer', 'alexandre meyer')<br/>('1971616', 'Hubert Konik', 'hubert konik')<br/>('1768560', 'Saïda Bouakaz', 'saïda bouakaz')<br/>('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')<br/>('39469581', 'Alexandre Meyer', 'alexandre meyer')<br/>('1971616', 'Hubert Konik', 'hubert konik')<br/>('1768560', 'Saïda Bouakaz', 'saïda bouakaz')</td><td></td></tr><tr><td>9c4cc11d0df2de42d6593f5284cfdf3f05da402a</td><td>Appears in the 14th International Conference on Pattern Recognition, ICPR’98, Queensland, Australia, August 17-20, 1998. <br/>Enhanced Fisher Linear Discriminant Models for Face Recognition <br/><b>George Mason University</b><br/><b>University Drive, Fairfax, VA 22030-4444, USA</b><br/> </td><td>('39664966', 'Chengjun Liu', 'chengjun liu')<br/>('1781577', 'Harry Wechsler', 'harry wechsler')</td><td>@cs.gmu.edu @@ -7385,7 +8734,9 @@ </td><td>('40845190', 'L. Jason Anastasopoulos', 'l. jason anastasopoulos')<br/>('2007721', 'Dhruvil Badani', 'dhruvil badani')<br/>('2647307', 'Crystal Lee', 'crystal lee')<br/>('2361255', 'Shiry Ginosar', 'shiry ginosar')<br/>('40411568', 'Jake Williams', 'jake williams')</td><td></td></tr><tr><td>02e133aacde6d0977bca01ffe971c79097097b7f</td><td></td><td></td><td></td></tr><tr><td>02567fd428a675ca91a0c6786f47f3e35881bcbd</td><td>ACCEPTED BY IEEE TIP <br/>Deep Label Distribution Learning <br/>With Label Ambiguity -</td><td>('2226422', 'Bin-Bin Gao', 'bin-bin gao')<br/>('1694501', 'Chao Xing', 'chao xing')<br/>('3407628', 'Chen-Wei Xie', 'chen-wei xie')<br/>('1808816', 'Jianxin Wu', 'jianxin wu')<br/>('1735299', 'Xin Geng', 'xin geng')</td><td></td></tr><tr><td>029b53f32079063047097fa59cfc788b2b550c4b</td><td></td><td></td><td></td></tr><tr><td>02bd665196bd50c4ecf05d6852a4b9ba027cd9d0</td><td></td><td></td><td></td></tr><tr><td>026b5b8062e5a8d86c541cfa976f8eee97b30ab8</td><td>MDLFace: Memorability Augmented Deep Learning for Video Face Recognition +</td><td>('2226422', 'Bin-Bin Gao', 'bin-bin gao')<br/>('1694501', 'Chao Xing', 'chao xing')<br/>('3407628', 'Chen-Wei Xie', 'chen-wei xie')<br/>('1808816', 'Jianxin Wu', 'jianxin wu')<br/>('1735299', 'Xin Geng', 'xin geng')</td><td></td></tr><tr><td>02f4b900deabbe7efa474f2815dc122a4ddb5b76</td><td>Local and Global Optimization Techniques in Graph-based Clustering +<br/><b>The University of Tokyo, Japan</b></td><td>('11682769', 'Daiki Ikami', 'daiki ikami')<br/>('2759239', 'Toshihiko Yamasaki', 'toshihiko yamasaki')<br/>('1712839', 'Kiyoharu Aizawa', 'kiyoharu aizawa')</td><td>{ikami, yamasaki, aizawa}@hal.t.u-tokyo.ac.jp +</td></tr><tr><td>029b53f32079063047097fa59cfc788b2b550c4b</td><td></td><td></td><td></td></tr><tr><td>02bd665196bd50c4ecf05d6852a4b9ba027cd9d0</td><td></td><td></td><td></td></tr><tr><td>026b5b8062e5a8d86c541cfa976f8eee97b30ab8</td><td>MDLFace: Memorability Augmented Deep Learning for Video Face Recognition <br/>IIIT-Delhi, India </td><td>('1931069', 'Gaurav Goswami', 'gaurav goswami')<br/>('1875774', 'Romil Bhardwaj', 'romil bhardwaj')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td>{gauravgs,romil11092,rsingh,mayank}@iiitd.ac.in </td></tr><tr><td>0235b2d2ae306b7755483ac4f564044f46387648</td><td>Recognition of Facial Attributes @@ -7448,6 +8799,11 @@ <br/>1Department of Electrical and Computer Engineering and the Center for Automation Research, <br/><b>UMIACS, University of Maryland, College Park, MD</b><br/><b>Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ</b></td><td>('3152615', 'Upal Mahbub', 'upal mahbub')<br/>('40599829', 'Sayantan Sarkar', 'sayantan sarkar')</td><td>{umahbub, ssarkar2, rama}@umiacs.umd.edu <br/>vishal.m.patel@rutgers.edu∗ +</td></tr><tr><td>a40edf6eb979d1ddfe5894fac7f2cf199519669f</td><td>Improving Facial Attribute Prediction using Semantic Segmentation +<br/>Center for Research in Computer Vision +<br/><b>University of Central Florida</b></td><td>('3222250', 'Mahdi M. Kalayeh', 'mahdi m. kalayeh')<br/>('40206014', 'Boqing Gong', 'boqing gong')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td>Mahdi@eecs.ucf.edu +<br/>bgong@crcv.ucf.edu +<br/>shah@crcv.ucf.edu </td></tr><tr><td>a46283e90bcdc0ee35c680411942c90df130f448</td><td></td><td></td><td></td></tr><tr><td>a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2</td><td>Yudistira and Kurita EURASIP Journal on Image and Video <br/>Processing (2017) 2017:85 <br/>DOI 10.1186/s13640-017-0235-9 @@ -7582,7 +8938,13 @@ <br/>ASL4GUP 2017 <br/>Held in conjunction with IEEE FG 2017, in May 30, 2017, <br/>Washington DC, USA -</td><td></td><td></td></tr><tr><td>a3017bb14a507abcf8446b56243cfddd6cdb542b</td><td>Face Localization and Recognition in Varied +</td><td></td><td></td></tr><tr><td>a3d8b5622c4b9af1f753aade57e4774730787a00</td><td>Pose-Aware Person Recognition +<br/>Anoop Namboodiri (cid:63) +<br/>(cid:63) CVIT, IIIT Hyderabad, India +<br/>† Facebook AI Research +</td><td>('37956314', 'Vijay Kumar', 'vijay kumar')<br/>('2210374', 'Manohar Paluri', 'manohar paluri')<br/>('1694502', 'C. V. Jawahar', 'c. v. jawahar')</td><td></td></tr><tr><td>a322479a6851f57a3d74d017a9cb6d71395ed806</td><td>Towards Pose Invariant Face Recognition in the Wild +<br/><b>National University of Singapore</b><br/><b>National University of Defense Technology</b><br/><b>Nanyang Technological University</b><br/>4Panasonic R&D Center Singapore +<br/><b>National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences</b><br/><b>Qihoo 360 AI Institute</b></td><td>('2668358', 'Sugiri Pranata', 'sugiri pranata')<br/>('3493398', 'Shengmei Shen', 'shengmei shen')<br/>('1757173', 'Junliang Xing', 'junliang xing')<br/>('46509407', 'Jian Zhao', 'jian zhao')<br/>('5524736', 'Yu Cheng', 'yu cheng')<br/>('33419682', 'Lin Xiong', 'lin xiong')<br/>('2757639', 'Jianshu Li', 'jianshu li')<br/>('40345914', 'Fang Zhao', 'fang zhao')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')</td><td></td></tr><tr><td>a3017bb14a507abcf8446b56243cfddd6cdb542b</td><td>Face Localization and Recognition in Varied <br/>Expressions and Illumination <br/>Hui-Yu Huang, Shih-Hang Hsu <br/> @@ -7603,7 +8965,11 @@ </td><td>('1848243', 'Erjin Zhou', 'erjin zhou')<br/>('2695115', 'Zhimin Cao', 'zhimin cao')<br/>('2274228', 'Qi Yin', 'qi yin')</td><td>zej@megvii.com <br/>czm@megvii.com <br/>yq@megvii.com -</td></tr><tr><td>a3dc109b1dff3846f5a2cc1fe2448230a76ad83f</td><td>J.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731 +</td></tr><tr><td>a301ddc419cbd900b301a95b1d9e4bb770afc6a3</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>DECK: Discovering Event Composition Knowledge from +<br/>Web Images for Zero-Shot Event Detection and Recounting in Videos +<br/><b>University of Southern California</b><br/><b>IIIS, Tsinghua University</b><br/>‡ Google Research +</td><td>('2551285', 'Chuang Gan', 'chuang gan')<br/>('1726241', 'Chen Sun', 'chen sun')</td><td></td></tr><tr><td>a3dc109b1dff3846f5a2cc1fe2448230a76ad83f</td><td>J.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731 <br/>Available Online at www.ijcsmc.com <br/>International Journal of Computer Science and Mobile Computing <br/>A Monthly Journal of Computer Science and Information Technology @@ -7616,6 +8982,23 @@ <br/><b>Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India</b><br/>Dr. A.V.Senthil Kumar <br/><b>Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India</b></td><td></td><td>Email: savitha.sanjay1@gmail.com <br/>Email: avsenthilkumar@gmail.com +</td></tr><tr><td>a3f69a073dcfb6da8038607a9f14eb28b5dab2db</td><td>Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +<br/>1184 +</td><td></td><td></td></tr><tr><td>a38045ed82d6800cbc7a4feb498e694740568258</td><td>UNLV Theses, Dissertations, Professional Papers, and Capstones +<br/>5-2010 +<br/>African American and Caucasian males' evaluation +<br/>of racialized female facial averages +<br/>Rhea M. Watson +<br/><b>University of Nevada Las Vegas</b><br/>Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations +<br/>Part of the Cognition and Perception Commons, Race and Ethnicity Commons, and the Social +<br/>Psychology Commons +<br/>Repository Citation +<br/>Watson, Rhea M., "African American and Caucasian males' evaluation of racialized female facial averages" (2010). UNLV Theses, +<br/>Dissertations, Professional Papers, and Capstones. 366. +<br/>http://digitalscholarship.unlv.edu/thesesdissertations/366 +</td><td></td><td>This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, +<br/>Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact +<br/>digitalscholarship@unlv.edu. </td></tr><tr><td>a3f684930c5c45fcb56a2b407d26b63879120cbf</td><td>LPM for Fast Action Recognition with Large Number of Classes <br/>School of Electrical Engineering and Computer Scinece <br/><b>University of Ottawa, Ottawa, On, Canada</b><br/>Department of Electronics and Information Engineering @@ -7689,12 +9072,15 @@ <br/>3https://github.com/fshi/actionMBH </td><td>('36925389', 'Feng Shi', 'feng shi')<br/>('1745632', 'Emil Petriu', 'emil petriu')</td><td>fshi98@gmail.com, {laganier, petriu}@site.uottawa.ca <br/>zhenhaiyu@mail.hust.edu.cn -</td></tr><tr><td>a33f20773b46283ea72412f9b4473a8f8ad751ae</td><td></td><td></td><td></td></tr><tr><td>a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7</td><td>Multiple Local Curvature Gabor Binary +</td></tr><tr><td>a3f78cc944ac189632f25925ba807a0e0678c4d5</td><td>Action Recognition in Realistic Sports Videos +</td><td>('1799979', 'Khurram Soomro', 'khurram soomro')<br/>('40029556', 'Amir Roshan Zamir', 'amir roshan zamir')</td><td></td></tr><tr><td>a33f20773b46283ea72412f9b4473a8f8ad751ae</td><td></td><td></td><td></td></tr><tr><td>a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7</td><td>Multiple Local Curvature Gabor Binary <br/>Patterns for Facial Action Recognition <br/>Signal Processing Laboratory (LTS5), <br/>´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland </td><td>('2383305', 'Nuri Murat Arar', 'nuri murat arar')<br/>('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')</td><td>{anil.yuce,murat.arar,jean-philippe.thiran}@epfl.ch -</td></tr><tr><td>a32d4195f7752a715469ad99cb1e6ebc1a099de6</td><td>Hindawi Publishing Corporation +</td></tr><tr><td>a32c5138c6a0b3d3aff69bcab1015d8b043c91fb</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018 +<br/>Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406.</td><td></td><td></td></tr><tr><td>a32d4195f7752a715469ad99cb1e6ebc1a099de6</td><td>Hindawi Publishing Corporation <br/>e Scientific World Journal <br/>Volume 2014, Article ID 749096, 10 pages <br/>http://dx.doi.org/10.1155/2014/749096 @@ -7856,7 +9242,15 @@ <br/><b>University of California at Berkeley</b><br/>Technical Report No. UCB/EECS-2012-52 <br/>http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.html <br/>May 1, 2012 -</td><td></td><td></td></tr><tr><td>a3a97bb5131e7e67316b649bbc2432aaa1a6556e</td><td>Cogn Affect Behav Neurosci +</td><td></td><td></td></tr><tr><td>a36c8a4213251d3fd634e8893ad1b932205ad1ca</td><td>Videos from the 2013 Boston Marathon: +<br/>An Event Reconstruction Dataset for +<br/>Synchronization and Localization +<br/>CMU-LTI-018 +<br/><b>Language Technologies Institute</b><br/>School of Computer Science +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Ave., Pittsburgh, PA 15213 +<br/>www.lti.cs.cmu.edu +<br/>© October 1, 2016 +</td><td>('1915796', 'Junwei Liang', 'junwei liang')<br/>('47896638', 'Han Lu', 'han lu')<br/>('2927024', 'Shoou-I Yu', 'shoou-i yu')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')</td><td></td></tr><tr><td>a3a97bb5131e7e67316b649bbc2432aaa1a6556e</td><td>Cogn Affect Behav Neurosci <br/>DOI 10.3758/s13415-013-0170-x <br/>Role of the hippocampus and orbitofrontal cortex <br/>during the disambiguation of social cues in working memory @@ -7918,12 +9312,19 @@ <br/>Yining Wang (ynwang.yining@gmail.com) <br/>Zhulin Li (li-zl12@mails.tsinghua.edu.cn) <br/>Zhuowen Tu (ztu@ucsd.edu) -</td></tr><tr><td>b5cd9e5d81d14868f1a86ca4f3fab079f63a366d</td><td>Tag-based Video Retrieval by Embedding Semantic Content in a Continuous +</td></tr><tr><td>b5968e7bb23f5f03213178c22fd2e47af3afa04c</td><td>Multi-Human Parsing in the Wild +<br/><b>National University of Singapore</b><br/><b>Beijing Jiaotong University</b><br/>March 16, 2018 +</td><td>('2757639', 'Jianshu Li', 'jianshu li')<br/>('2263674', 'Yidong Li', 'yidong li')<br/>('46509407', 'Jian Zhao', 'jian zhao')<br/>('1715286', 'Terence Sim', 'terence sim')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>b5cd9e5d81d14868f1a86ca4f3fab079f63a366d</td><td>Tag-based Video Retrieval by Embedding Semantic Content in a Continuous <br/>Word Space <br/><b>University of Southern California</b><br/>Ram Nevatia <br/>Cees G.M. Snoek <br/><b>University of Amsterdam</b></td><td>('3407713', 'Arnav Agharwal', 'arnav agharwal')<br/>('3407447', 'Rama Kovvuri', 'rama kovvuri')</td><td>{agharwal,nkovvuri,nevatia}@usc.edu <br/>cgmsnoek@uva.nl +</td></tr><tr><td>b558be7e182809f5404ea0fcf8a1d1d9498dc01a</td><td>Bottom-up and top-down reasoning with convolutional latent-variable models +<br/>UC Irvine +<br/>UC Irvine +</td><td>('2894848', 'Peiyun Hu', 'peiyun hu')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td>peiyunh@ics.uci.edu +<br/>dramanan@ics.uci.edu </td></tr><tr><td>b5cd8151f9354ee38b73be1d1457d28e39d3c2c6</td><td>Finding Celebrities in Video <br/>Electrical Engineering and Computer Sciences <br/><b>University of California at Berkeley</b><br/>Technical Report No. UCB/EECS-2006-77 @@ -7935,7 +9336,7 @@ <br/>Significance of image representation for face verification <br/>Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007 <br/>© Springer-Verlag London Limited 2007 -</td><td>('2627097', 'Anil Kumar Sao', 'anil kumar sao')<br/>('1783087', 'B. V. K. Vijaya Kumar', 'b. v. k. vijaya kumar')</td><td></td></tr><tr><td>b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57</td><td><b>UNIVERSITY OF CALIFORNIA</b><br/>RIVERSIDE +</td><td>('2627097', 'Anil Kumar Sao', 'anil kumar sao')<br/>('1783087', 'B. V. K. Vijaya Kumar', 'b. v. k. vijaya kumar')</td><td></td></tr><tr><td>b562def2624f59f7d3824e43ecffc990ad780898</td><td></td><td></td><td></td></tr><tr><td>b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57</td><td><b>UNIVERSITY OF CALIFORNIA</b><br/>RIVERSIDE <br/>Modeling Social and Temporal Context for Video Analysis <br/>A Dissertation submitted in partial satisfaction <br/>of the requirements for the degree of @@ -7960,7 +9361,15 @@ <br/>Spring Term <br/>2015 <br/>Major Professor: Gita R. Sukthankar -</td><td></td><td></td></tr><tr><td>b5da4943c348a6b4c934c2ea7330afaf1d655e79</td><td>Facial Landmarks Detection by Self-Iterative Regression based +</td><td></td><td></td></tr><tr><td>b5f2846a506fc417e7da43f6a7679146d99c5e96</td><td>UCF101: A Dataset of 101 Human Actions +<br/>Classes From Videos in The Wild +<br/>CRCV-TR-12-01 +<br/>November 2012 +<br/>Keywords: Action Dataset, UCF101, UCF50, Action Recognition +<br/>Center for Research in Computer Vision +<br/><b>University of Central Florida</b><br/>4000 Central Florida Blvd. +<br/>Orlando, FL 32816-2365 USA +</td><td>('1799979', 'Khurram Soomro', 'khurram soomro')<br/>('40029556', 'Amir Roshan Zamir', 'amir roshan zamir')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td></td></tr><tr><td>b5da4943c348a6b4c934c2ea7330afaf1d655e79</td><td>Facial Landmarks Detection by Self-Iterative Regression based <br/>Landmarks-Attention Network <br/><b>University of Chinese Academy of Sciences, Beijing, China</b><br/>2 Microsoft Research Asia, Beijing, China </td><td>('33325349', 'Tao Hu', 'tao hu')<br/>('3245785', 'Honggang Qi', 'honggang qi')<br/>('1697982', 'Jizheng Xu', 'jizheng xu')<br/>('1689702', 'Qingming Huang', 'qingming huang')</td><td>hutao16@mails.ucas.ac.cn, hgqi@ucas.ac.cn @@ -8076,7 +9485,7 @@ <br/>1Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil <br/>2IRISA & Inria Rennes , CNRS, Rennes, France </td><td>('2823797', 'Cassio E. dos Santos', 'cassio e. dos santos')<br/>('1708671', 'Guillaume Gravier', 'guillaume gravier')<br/>('1679142', 'William Robson Schwartz', 'william robson schwartz')</td><td>cass@dcc.ufmg.br, guig@irisa.fr, william@dcc.ufmg.br -</td></tr><tr><td>b51e3d59d1bcbc023f39cec233f38510819a2cf9</td><td>CBMM Memo No. 003 +</td></tr><tr><td>b59f441234d2d8f1765a20715e227376c7251cd7</td><td></td><td></td><td></td></tr><tr><td>b51e3d59d1bcbc023f39cec233f38510819a2cf9</td><td>CBMM Memo No. 003 <br/>March 27, 2014 <br/>Can a biologically-plausible hierarchy effectively <br/>replace face detection, alignment, and @@ -8204,6 +9613,15 @@ <br/>for <br/>techniques </td><td>('29695322', 'Ben Fielding', 'ben fielding')<br/>('1921534', 'Philip Kinghorn', 'philip kinghorn')<br/>('2801063', 'Kamlesh Mistry', 'kamlesh mistry')<br/>('1712838', 'Li Zhang', 'li zhang')</td><td>{ben.fielding, philip.kinghorn, kamlesh.mistry, li.zhang (corr. author)}@northumbria.ac.uk +</td></tr><tr><td>b59cee1f647737ec3296ccb3daa25c890359c307</td><td>Continuously Reproducing Toolchains in Pattern +<br/>Recognition and Machine Learning Experiments +<br/>A. Anjos +<br/><b>Idiap Research Institute</b><br/>Martigny, Switzerland +<br/>M. G¨unther +<br/>Vision and Security Technology +<br/><b>University of Colorado</b><br/>Colorado Springs, USA +</td><td></td><td>andre.anjos@idiap.ch +<br/>mgunther@vast.uccs.edu </td></tr><tr><td>b249f10a30907a80f2a73582f696bc35ba4db9e2</td><td>Improved graph-based SFA: Information preservation <br/>complements the slowness principle <br/>Institut f¨ur Neuroinformatik @@ -8318,7 +9736,14 @@ <br/>For Rapid Annotation <br/>1 CSIRO, Brisbane, QLD, Australia <br/><b>Queensland University of Technology, Brisbane, QLD, Australia</b><br/><b>Carnegie Mellon University, Pittsburgh, PA, USA</b></td><td>('3231493', 'Ashton Fagg', 'ashton fagg')<br/>('1729760', 'Sridha Sridharan', 'sridha sridharan')<br/>('1820249', 'Simon Lucey', 'simon lucey')</td><td>ashton@fagg.id.au, s.sridharan@qut.edu.au, slucey@cs.cmu.edu -</td></tr><tr><td>b235b4ccd01a204b95f7408bed7a10e080623d2e</td><td>Regularizing Flat Latent Variables with Hierarchical Structures +</td></tr><tr><td>b2c60061ad32e28eb1e20aff42e062c9160786be</td><td>Diverse and Controllable Image Captioning with +<br/>Part-of-Speech Guidance +<br/><b>University of Illinois at Urbana-Champaign</b></td><td>('2118997', 'Aditya Deshpande', 'aditya deshpande')<br/>('29956361', 'Jyoti Aneja', 'jyoti aneja')<br/>('46659761', 'Liwei Wang', 'liwei wang')</td><td>{ardeshp2, janeja2, lwang97, aschwing, daf}@illinois.edu +</td></tr><tr><td>b2b535118c5c4dfcc96f547274cdc05dde629976</td><td>JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +<br/>Automatic Recognition of Facial Displays of +<br/>Unfelt Emotions +<br/>Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +</td><td>('38370357', 'Kaustubh Kulkarni', 'kaustubh kulkarni')<br/>('22197083', 'Ciprian Adrian Corneanu', 'ciprian adrian corneanu')<br/>('22211769', 'Ikechukwu Ofodile', 'ikechukwu ofodile')<br/>('47608164', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')</td><td></td></tr><tr><td>b235b4ccd01a204b95f7408bed7a10e080623d2e</td><td>Regularizing Flat Latent Variables with Hierarchical Structures </td><td>('7246002', 'Rongcheng Lin', 'rongcheng lin')<br/>('2703486', 'Huayu Li', 'huayu li')<br/>('38472218', 'Xiaojun Quan', 'xiaojun quan')<br/>('2248826', 'Richang Hong', 'richang hong')<br/>('2737890', 'Zhiang Wu', 'zhiang wu')<br/>('1874059', 'Yong Ge', 'yong ge')</td><td>(cid:117)UNC Charlotte. Email: {rlin4, hli38, yong.ge}@uncc.edu, <br/>(cid:63) Hefei University of Technology. Email: hongrc@hfut.edu.cn <br/>† Institute for Infocomm Research. Email: quanx@i2r.a-star.edu.sg @@ -8346,6 +9771,28 @@ <br/>Department of Signal Processing <br/><b>Tampere University of Technology</b><br/>Tampere 33720, Finland </td><td>('40394658', 'Ke Chen', 'ke chen')</td><td>firstname.lastname@tut.fi +</td></tr><tr><td>d904f945c1506e7b51b19c99c632ef13f340ef4c</td><td>A scalable 3D HOG model for fast object detection and viewpoint estimation +<br/>KU Leuven, ESAT/PSI - iMinds +<br/>Kasteelpark Arenberg 10 B-3001 Leuven, Belgium +</td><td>('3048367', 'Marco Pedersoli', 'marco pedersoli')<br/>('1704728', 'Tinne Tuytelaars', 'tinne tuytelaars')</td><td>firstname.lastname@esat.kuleuven.be +</td></tr><tr><td>d949fadc9b6c5c8b067fa42265ad30945f9caa99</td><td>Rethinking Feature Discrimination and +<br/>Polymerization for Large-scale Recognition +<br/><b>The Chinese University of Hong Kong</b></td><td>('1715752', 'Yu Liu', 'yu liu')<br/>('46382329', 'Hongyang Li', 'hongyang li')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')</td><td>{yuliu, yangli, xgwang}@ee.cuhk.edu.hk +</td></tr><tr><td>d93baa5ecf3e1196b34494a79df0a1933fd2b4ec</td><td>Precise Temporal Action Localization by +<br/>Evolving Temporal Proposals +<br/><b>East China Normal University</b><br/>Shanghai, China +<br/><b>University of Washington</b><br/>Seattle, WA, USA +<br/>Shanghai Advanced Research +<br/><b>Institute, CAS, China</b><br/><b>East China Normal University</b><br/>Shanghai, China +<br/>Shanghai Advanced Research +<br/><b>Institute, CAS, China</b><br/>Liang He +<br/><b>East China Normal University</b><br/>Shanghai, China +</td><td>('31567595', 'Haonan Qiu', 'haonan qiu')<br/>('1803391', 'Yao Lu', 'yao lu')<br/>('3015119', 'Yingbin Zheng', 'yingbin zheng')<br/>('47939010', 'Feng Wang', 'feng wang')<br/>('1743864', 'Hao Ye', 'hao ye')</td><td>hnqiu@ica.stc.sh.cn +<br/>luyao@cs.washington.edu +<br/>zhengyb@sari.ac.cn +<br/>fwang@cs.ecnu.edu.cn +<br/>yeh@sari.ac.cn +<br/>lhe@cs.ecnu.edu.cn </td></tr><tr><td>d961617db4e95382ba869a7603006edc4d66ac3b</td><td>Experimenting Motion Relativity for Action Recognition <br/>with a Large Number of Classes <br/><b>East China Normal University</b><br/>500 Dongchuan Rd., Shanghai, China @@ -8402,7 +9849,21 @@ <br/> Available online at: www.ijarcsse.com <br/>A Research - Face Recognition by Using Near Set Theory <br/>Department of Computer Science and Engineering -<br/><b>Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India</b></td><td>('9231464', 'Bhakti Kurhade', 'bhakti kurhade')</td><td></td></tr><tr><td>d9327b9621a97244d351b5b93e057f159f24a21e</td><td>SCIENCE CHINA +<br/><b>Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India</b></td><td>('9231464', 'Bhakti Kurhade', 'bhakti kurhade')</td><td></td></tr><tr><td>d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c</td><td>Learning Inference Models for Computer Vision +</td><td></td><td></td></tr><tr><td>d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f</td><td>It All Matters: +<br/>Reporting Accuracy, Inference Time and Power Consumption +<br/>for Face Emotion Recognition on Embedded Systems +<br/><b>Institute of Telecommunications, TU Wien</b><br/>Movidius an Intel Company +<br/>Dexmont Pe˜na +<br/>Movidius an Intel Company +<br/>Movidius an Intel Company +<br/>ALaRI, Faculty of Informatics, USI +</td><td>('48802034', 'Jelena Milosevic', 'jelena milosevic')<br/>('51129064', 'Andrew Forembsky', 'andrew forembsky')<br/>('9151916', 'David Moloney', 'david moloney')<br/>('1697550', 'Miroslaw Malek', 'miroslaw malek')</td><td>jelena.milosevic@tuwien.ac.at +<br/>andrew.forembsky2@mail.dcu.ie +<br/>dexmont.pena@intel.com +<br/>david.moloney@intel.com +<br/>miroslaw.malek@usi.ch +</td></tr><tr><td>d9327b9621a97244d351b5b93e057f159f24a21e</td><td>SCIENCE CHINA <br/>Information Sciences <br/>. RESEARCH PAPERS . <br/>December 2010 Vol. 53 No. 12: 2415–2428 @@ -8415,7 +9876,12 @@ </td><td></td><td></td></tr><tr><td>d915e634aec40d7ee00cbea96d735d3e69602f1a</td><td>Two-Stream convolutional nets for action recognition in untrimmed video <br/><b>Stanford University</b><br/><b>Stanford University</b></td><td>('3308619', 'Kenneth Jung', 'kenneth jung')<br/>('5590869', 'Song Han', 'song han')</td><td>kjung@stanford.edu <br/>songhan@stanford.edu -</td></tr><tr><td>ac1d97a465b7cc56204af5f2df0d54f819eef8a6</td><td>A Look at Eye Detection for Unconstrained +</td></tr><tr><td>aca232de87c4c61537c730ee59a8f7ebf5ecb14f</td><td>EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION +<br/>19.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece +<br/>Athens Information Technology +<br/>Keywords: +<br/>Human-Machine Interfaces, Computer Vision, Face Recognition. +</td><td>('40089976', 'Andreas Stergiou', 'andreas stergiou')<br/>('1702943', 'Aristodemos Pnevmatikakis', 'aristodemos pnevmatikakis')<br/>('1725498', 'Lazaros Polymenakos', 'lazaros polymenakos')</td><td></td></tr><tr><td>ac1d97a465b7cc56204af5f2df0d54f819eef8a6</td><td>A Look at Eye Detection for Unconstrained <br/>Environments <br/>Key words: Unconstrained Face Recognition, Eye Detection, Machine Learning, <br/>Correlation Filters, Photo-head Testing Protocol @@ -8444,7 +9910,9 @@ <br/><b>Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland</b></td><td>('1848903', 'James Booth', 'james booth')<br/>('2931390', 'Anastasios Roussos', 'anastasios roussos')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('5137183', 'Allan Ponniah', 'allan ponniah')<br/>('2421231', 'David Dunaway', 'david dunaway')</td><td>⋆{james.booth,troussos,s.zafeiriou}@imperial.ac.uk, †{allan.ponniah,david.dunaway}@gosh.nhs.uk </td></tr><tr><td>ac6c3b3e92ff5fbcd8f7967696c7aae134bea209</td><td>Deep Cascaded Bi-Network for <br/>Face Hallucination(cid:63) -<br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b><br/><b>University of California, Merced</b></td><td>('2226254', 'Shizhan Zhu', 'shizhan zhu')<br/>('2391885', 'Sifei Liu', 'sifei liu')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>ac21c8aceea6b9495574f8f9d916e571e2fc497f</td><td>Pose-Independent Identity-based Facial Image +<br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b><br/><b>University of California, Merced</b></td><td>('2226254', 'Shizhan Zhu', 'shizhan zhu')<br/>('2391885', 'Sifei Liu', 'sifei liu')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>ac855f0de9086e9e170072cb37400637f0c9b735</td><td>Fast Geometrically-Perturbed Adversarial Faces +<br/><b>West Virginia University</b></td><td>('35477977', 'Ali Dabouei', 'ali dabouei')<br/>('30319988', 'Sobhan Soleymani', 'sobhan soleymani')<br/>('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')</td><td>{ad0046, ssoleyma}@mix.wvu.edu, {jeremy.dawson, nasser.nasrabadi}@mail.wvu.edu +</td></tr><tr><td>ac21c8aceea6b9495574f8f9d916e571e2fc497f</td><td>Pose-Independent Identity-based Facial Image <br/>Retrieval using Contextual Similarity <br/><b>King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia</b></td><td>('3036634', 'Islam Almasri', 'islam almasri')</td><td></td></tr><tr><td>ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6</td><td>779 <br/>Privacy-Protected Facial Biometric Verification @@ -8452,6 +9920,89 @@ </td><td>('1690116', 'Ahmed Bouridane', 'ahmed bouridane')<br/>('1691478', 'Danny Crookes', 'danny crookes')<br/>('1739563', 'M. Emre Celebi', 'm. emre celebi')<br/>('39486168', 'Hua-Liang Wei', 'hua-liang wei')</td><td></td></tr><tr><td>aca273a9350b10b6e2ef84f0e3a327255207d0f5</td><td></td><td></td><td></td></tr><tr><td>aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9</td><td>Co-Regularized Ensemble for Feature Selection <br/><b>School of Computer Science and Technology, Tianjin University, China</b><br/><b>School of Information Technology and Electrical Engineering, The University of Queensland</b><br/>3Tianjin Key Laboratory of Cognitive Computing and Application </td><td>('2302512', 'Yahong Han', 'yahong han')<br/>('1698559', 'Yi Yang', 'yi yang')<br/>('1720932', 'Xiaofang Zhou', 'xiaofang zhou')</td><td>yahong@tju.edu.cn, yee.i.yang@gmail.com, zxf@itee.uq.edu.au +</td></tr><tr><td>accbd6cd5dd649137a7c57ad6ef99232759f7544</td><td>FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +<br/>AND LINEAR PROGRAMMING +<br/>1 Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +<br/><b>P. O. Box 4500 Fin-90014 University of Oulu, Finland</b><br/><b>College of Electronics and Information, Northwestern Polytechnic University</b><br/>710072 Xi’an, China +<br/>In this work, we propose a novel approach to recognize facial expressions from static +<br/>images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +<br/>images and then the Linear Programming (LP) technique is adopted to classify the seven +<br/>facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +<br/>Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +<br/>database, which outperforms the rates of all other reported methods on the same database. +<br/>Introduction +<br/>Facial expression recognition from static +<br/>images is a more challenging problem +<br/>than from image sequences because less +<br/>information for expression actions +<br/>is +<br/>available. However, information in a +<br/>single image is sometimes enough for +<br/>expression recognition, and +<br/>in many +<br/>applications it is also useful to recognize +<br/>single image’s facial expression. +<br/>In the recent years, numerous approaches +<br/>to facial expression analysis from static +<br/>images have been proposed [1] [2]. These +<br/>methods +<br/>face +<br/>representation and similarity measure. +<br/>For instance, Zhang [3] used two types of +<br/>features: the geometric position of 34 +<br/>manually selected fiducial points and a +<br/>set of Gabor wavelet coefficients at these +<br/>points. These two types of features were +<br/>used both independently and jointly with +<br/>a multi-layer perceptron for classification. +<br/>Guo and Dyer [4] also adopted a similar +<br/>face representation, combined with linear +<br/>to carry out +<br/>programming +<br/>selection +<br/>simultaneous +<br/>and +<br/>classifier +<br/>they reported +<br/>technique +<br/>feature +<br/>training, and +<br/>differ +<br/>generally +<br/>in +<br/>a +<br/>simple +<br/>imperative question +<br/>better result. Lyons et al. used a similar face +<br/>representation with +<br/>LDA-based +<br/>classification scheme [5]. All the above methods +<br/>required the manual selection of fiducial points. +<br/>Buciu et al. used ICA and Gabor representation for +<br/>facial expression recognition and reported good result +<br/>on the same database [6]. However, a suitable +<br/>combination of feature extraction and classification is +<br/>still one +<br/>for expression +<br/>recognition. +<br/>In this paper, we propose a novel method for facial +<br/>expression recognition. In the feature extraction step, +<br/>the Local Binary Pattern (LBP) operator is used to +<br/>describe facial expressions. In the classification step, +<br/>seven expressions (anger, disgust, fear, happiness, +<br/>sadness, surprise and neutral) are decomposed into 21 +<br/>expression pairs such as anger-fear, happiness- +<br/>sadness etc. 21 classifiers are produced by the Linear +<br/>Programming (LP) technique, each corresponding to +<br/>one of the 21 expression pairs. A simple binary tree +<br/>tournament scheme with pairwise comparisons is +<br/>Face Representation with Local Binary Patterns +<br/> +<br/>Fig.1 shows the basic LBP operator [7], in which the +<br/>original 3×3 neighbourhood at the left is thresholded +<br/>by the value of the centre pixel, and a binary pattern +</td><td>('4729239', 'Xiaoyi Feng', 'xiaoyi feng')<br/>('1714724', 'Matti Pietikäinen', 'matti pietikäinen')<br/>('1751372', 'Abdenour Hadid', 'abdenour hadid')</td><td>{xiaoyi,mkp,hadid}@ee.oulu.fi +<br/>fengxiao@nwpu.edu.cn </td></tr><tr><td>ac51d9ddbd462d023ec60818bac6cdae83b66992</td><td>Hindawi Publishing Corporation <br/>Computational Intelligence and Neuroscience <br/>Volume 2015, Article ID 709072, 10 pages @@ -8566,11 +10117,26 @@ <br/>anger, disgust, and surprise). In their approach, the amount of <br/>facial movements change and timing have been quantified by </td><td>('40432410', 'Peng Wu', 'peng wu')<br/>('34068333', 'Isabel Gonzalez', 'isabel gonzalez')<br/>('3348420', 'Dongmei Jiang', 'dongmei jiang')<br/>('1970907', 'Hichem Sahli', 'hichem sahli')<br/>('3041213', 'Eric Kerckhofs', 'eric kerckhofs')<br/>('2540163', 'Marie Vandekerckhove', 'marie vandekerckhove')<br/>('40432410', 'Peng Wu', 'peng wu')</td><td>Correspondence should be addressed to Peng Wu; pwu@etro.vub.ac.be -</td></tr><tr><td>ac820d67b313c38b9add05abef8891426edd5afb</td><td></td><td></td><td></td></tr><tr><td>ac9a331327cceda4e23f9873f387c9fd161fad76</td><td>Deep Convolutional Neural Network for Age Estimation based on +</td></tr><tr><td>acee2201f8a15990551804dd382b86973eb7c0a8</td><td>To Boost or Not to Boost? On the Limits of +<br/>Boosted Trees for Object Detection +<br/><b>Computer Vision and Robotics Research Laboratory</b><br/><b>University of California San Diego</b></td><td>('1802326', 'Eshed Ohn-Bar', 'eshed ohn-bar')</td><td>{eohnbar, mtrivedi}@ucsd.edu +</td></tr><tr><td>ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e</td><td></td><td></td><td></td></tr><tr><td>ac820d67b313c38b9add05abef8891426edd5afb</td><td></td><td></td><td></td></tr><tr><td>ac9a331327cceda4e23f9873f387c9fd161fad76</td><td>Deep Convolutional Neural Network for Age Estimation based on <br/>VGG-Face Model <br/><b>University of Bridgeport</b><br/><b>University of Bridgeport</b><br/>Technology Building, Bridgeport CT 06604 USA </td><td>('7404315', 'Zakariya Qawaqneh', 'zakariya qawaqneh')<br/>('34792425', 'Arafat Abu Mallouh', 'arafat abu mallouh')<br/>('2791535', 'Buket D. Barkana', 'buket d. barkana')</td><td>Emails: {zqawaqneh; aabumall@my.bridgeport.edu}, bbarkana@bridgeport.edu -</td></tr><tr><td>ac12ba5bf81de83991210b4cd95b4ad048317681</td><td>Combining Deep Facial and Ambient Features +</td></tr><tr><td>ac26166857e55fd5c64ae7194a169ff4e473eb8b</td><td>Personalized Age Progression with Bi-level +<br/>Aging Dictionary Learning +</td><td>('2287686', 'Xiangbo Shu', 'xiangbo shu')<br/>('8053308', 'Jinhui Tang', 'jinhui tang')<br/>('3233021', 'Zechao Li', 'zechao li')<br/>('2356867', 'Hanjiang Lai', 'hanjiang lai')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>ac559873b288f3ac28ee8a38c0f3710ea3f986d9</td><td>Team DEEP-HRI Moments in Time Challenge 2018 Technical Report +<br/><b>Hikvision Research Institute</b></td><td>('39816387', 'Chao Li', 'chao li')<br/>('48375401', 'Zhi Hou', 'zhi hou')<br/>('35843399', 'Jiaxu Chen', 'jiaxu chen')<br/>('9162532', 'Jiqiang Zhou', 'jiqiang zhou')<br/>('50322310', 'Di Xie', 'di xie')<br/>('3290437', 'Shiliang Pu', 'shiliang pu')</td><td></td></tr><tr><td>ac8e09128e1e48a2eae5fa90f252ada689f6eae7</td><td>Leolani: a reference machine with a theory of +<br/>mind for social communication +<br/><b>VU University Amsterdam, Computational Lexicology and Terminology Lab, De</b><br/>Boelelaan 1105, 1081HV Amsterdam, The Netherlands +<br/>www.cltl.nl +</td><td>('50998926', 'Bram Kraaijeveld', 'bram kraaijeveld')</td><td>{p.t.j.m.vossen,s.baezsantamaria,l.bajcetic,b.kraaijeveld}@vu.nl +</td></tr><tr><td>ac8441e30833a8e2a96a57c5e6fede5df81794af</td><td>IEEE TRANSACTIONS ON IMAGE PROCESSING +<br/>Hierarchical Representation Learning for Kinship +<br/>Verification +</td><td>('1952698', 'Naman Kohli', 'naman kohli')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2487227', 'Afzel Noore', 'afzel noore')<br/>('2641605', 'Angshul Majumdar', 'angshul majumdar')</td><td></td></tr><tr><td>ac86ccc16d555484a91741e4cb578b75599147b2</td><td>Morphable Face Models - An Open Framework +<br/><b>Gravis Research Group, University of Basel</b></td><td>('3277377', 'Thomas Gerig', 'thomas gerig')<br/>('39550224', 'Clemens Blumer', 'clemens blumer')<br/>('34460642', 'Bernhard Egger', 'bernhard egger')<br/>('1687079', 'Thomas Vetter', 'thomas vetter')</td><td></td></tr><tr><td>ac12ba5bf81de83991210b4cd95b4ad048317681</td><td>Combining Deep Facial and Ambient Features <br/>for First Impression Estimation <br/><b>Program of Computational Science and Engineering, Bo gazi ci University</b><br/>Bebek, Istanbul, Turkey <br/><b>Nam k Kemal University</b><br/>C¸ orlu, Tekirda˘g, Turkey @@ -8728,7 +10294,15 @@ <br/>Dr. Antonio Criminisi <br/>Florian Schroff <br/><b>St. Anne s College</b><br/>Trinity, 2009 -</td><td></td><td></td></tr><tr><td>adfaf01773c8af859faa5a9f40fb3aa9770a8aa7</td><td>LARGE SCALE VISUAL RECOGNITION +</td><td></td><td></td></tr><tr><td>ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff</td><td>Weakly Supervised Action Localization by Sparse Temporal Pooling Network +<br/><b>University of California</b><br/>Irvine, CA, USA +<br/>Google +<br/>Venice, CA, USA +<br/><b>Seoul National University</b><br/>Seoul, Korea +</td><td>('1998374', 'Phuc Nguyen', 'phuc nguyen')<br/>('40282288', 'Ting Liu', 'ting liu')<br/>('2775959', 'Gautam Prasad', 'gautam prasad')<br/>('40030651', 'Bohyung Han', 'bohyung han')</td><td>nguyenpx@uci.edu +<br/>{liuti, gautamprasad}@google.com +<br/>bhhan@snu.ac.kr +</td></tr><tr><td>adfaf01773c8af859faa5a9f40fb3aa9770a8aa7</td><td>LARGE SCALE VISUAL RECOGNITION <br/>A DISSERTATION <br/>PRESENTED TO THE FACULTY <br/><b>OF PRINCETON UNIVERSITY</b><br/>IN CANDIDACY FOR THE DEGREE @@ -8842,6 +10416,8 @@ <br/>l.ball@abertay.ac.uk <br/>j.archibald @abertay.ac.uk <br/>l.carson@abertay.ac.uk +</td></tr><tr><td>ad2339c48ad4ffdd6100310dcbb1fb78e72fac98</td><td>Video Fill In the Blank using LR/RL LSTMs with Spatial-Temporal Attentions +<br/><b>Center for Research in Computer Vision, University of Central Florida, Orlando, FL</b></td><td>('33209161', 'Amir Mazaheri', 'amir mazaheri')<br/>('46335319', 'Dong Zhang', 'dong zhang')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td>amirmazaheri@cs.ucf.edu, dzhang@cs.ucf.edu, shah@crcv.ucf.edu </td></tr><tr><td>ad247138e751cefa3bb891c2fe69805da9c293d7</td><td>American Journal of Networks and Communications <br/>2015; 4(4): 90-94 <br/>Published online July 7, 2015 (http://www.sciencepublishinggroup.com/j/ajnc) @@ -8853,6 +10429,74 @@ <br/>To cite this article: <br/>Decomposition. American Journal of Networks and Communications. Vol. 4, No. 4, 2015, pp. 90-94. doi: 10.11648/j.ajnc.20150404.12 </td><td>('2653670', 'Vahid Haji Hashemi', 'vahid haji hashemi')<br/>('2153844', 'Abdorreza Alavi Gharahbagh', 'abdorreza alavi gharahbagh')<br/>('2653670', 'Vahid Haji Hashemi', 'vahid haji hashemi')<br/>('2153844', 'Abdorreza Alavi Gharahbagh', 'abdorreza alavi gharahbagh')</td><td>hajihashemi.vahid@yahoo.com (V. H. Hashemi), R_alavi@iau-shahrood.ac.ir (A. A. Gharahbagh) +</td></tr><tr><td>adf62dfa00748381ac21634ae97710bb80fc2922</td><td>ViFaI: A trained video face indexing scheme +<br/>1. Introduction +<br/>With the increasing prominence of inexpensive +<br/>video recording devices (e.g., digital camcorders and +<br/>video recording smartphones), +<br/>the average user’s +<br/>video collection today is increasing rapidly. With this +<br/>development, there arises a natural desire to rapidly +<br/>access a subset of one’s collection of videos. The solu- +<br/>tion to this problem requires an effective video index- +<br/>ing scheme. In particular, we must be able to easily +<br/>process a video to extract such indexes. +<br/>Today, there also exist large sets of labeled (tagged) +<br/>face images. One important example is an individual’s +<br/>Facebook profile. Such a set of of tagged images of +<br/>one’s self, family, friends, and colleagues represents +<br/>an extremely valuable potential training set. +<br/>In this work, we explore how to leverage the afore- +<br/>mentioned training set to solve the video indexing +<br/>problem. +<br/>2. Problem Statement +<br/>Use a labeled (tagged) training set of face images +<br/>to extract relevant indexes from a collection of videos, +<br/>and use these indexes to answer boolean queries of the +<br/>form: “videos with ‘Person 1’ OP1 ‘Person 2’ OP2 ... +<br/>OP(N-1) ‘Person N’ ”, where ‘Person N’ corresponds +<br/>to a training label (tag) and OPN is a boolean operand +<br/>such as AND, OR, NOT, XOR, and so on. +<br/>3. Proposed Scheme +<br/>In this section, we outline our proposed scheme to +<br/>address the problem we postulate in the previous sec- +<br/>tion. We provide further details about the system im- +<br/>plementation in Section 4. +<br/>At a high level, we subdivide the problem into two +<br/>key phases: the first ”off-line” executed once, and the +<br/>second ”on-line” phase instantiated upon each query. +<br/>For the purposes of this work, we define an index as +<br/>follows: <video id, tag, frame #>. +<br/>3.1. The training phase +<br/>We first outline Phase 1 (the training or “off-line” +<br/>phase): +<br/>1. Use the labeled training set plus an additional set +<br/>of ‘other’ faces to compute the Fisher Linear Dis- +<br/>criminant (FLD) [1]. +<br/>2. Project the training data onto the space defined by +<br/>the eigenvectors returned by the FLD, and train +<br/>a classifier (first nearest neighbour, then SVM if +<br/>required) using the training features. +<br/>3. Iterate through each frame of each video, detect- +<br/>ing faces [2], classifying detected results, and add +<br/>an index if the detected face corresponds to one of +<br/>the labeled classes from the previous step. +<br/>3.2. The query phase +<br/>Now, we outline Phase 2 (the query or “on-line” +<br/>phase): +<br/>1. Key the indexes on their video id. +<br/>2. For each video, evaluate the boolean query for the +<br/>set of corresponding indexes. +<br/>3. Keep videos for which the boolean query evalu- +<br/>ates true, and discard those for which it evaluates +<br/>false. +<br/>4. Implementation Details +<br/>We are implementing the project in C++, leverag- +<br/>ing the OpenCV v2.2 framework [4]. In this section, +<br/>we will highlight some of the critical implementation +<br/>details of our proposed system. +</td><td>('30006340', 'Nayyar', 'nayyar')<br/>('47384529', 'Audrey Wei', 'audrey wei')</td><td>hnayyar@stanford.edu +<br/>awei1001@stanford.edu </td></tr><tr><td>bbc4b376ebd296fb9848b857527a72c82828fc52</td><td>Attributes for Improved Attributes <br/><b>University of Maryland</b><br/><b>College Park, MD</b></td><td>('3351637', 'Emily Hand', 'emily hand')</td><td>emhand@cs.umd.edu </td></tr><tr><td>bb489e4de6f9b835d70ab46217f11e32887931a2</td><td>Everything you wanted to know about Deep Learning for Computer Vision but were @@ -8919,6 +10563,9 @@ <br/>1 =@@EJE J BA=JKHA HAFHAIAJ=JE MA =I EJH@K?A = AJD@ BH ?=IIE?=JE <br/>AJMHI @EC = IJHC ?=IIEAH EI JDA ?HA E JDA ANEIJEC B=?E= ANFHAIIE ==O <br/>IEI IJK@EAI 1 JDA =FFH=?DAI JD=J =@FJ ?= B=?E= EBH=JE MAECDJEC JDAIA ?= +</td></tr><tr><td>bbf28f39e5038813afd74cf1bc78d55fcbe630f1</td><td>Style Aggregated Network for Facial Landmark Detection +<br/><b>University of Technology Sydney, 2 The University of Sydney</b></td><td>('9929684', 'Xuanyi Dong', 'xuanyi dong')<br/>('1685212', 'Yan Yan', 'yan yan')<br/>('3001348', 'Wanli Ouyang', 'wanli ouyang')<br/>('1698559', 'Yi Yang', 'yi yang')</td><td>{xuanyi.dong,yan.yan-3}@student.uts.edu.au; +<br/>wanli.ouyang@sydney.edu.au; yi.yang@uts.edu.au </td></tr><tr><td>bbe1332b4d83986542f5db359aee1fd9b9ba9967</td><td></td><td></td><td></td></tr><tr><td>bbe949c06dc4872c7976950b655788555fe513b8</td><td>Automatic Frequency Band Selection for <br/>Illumination Robust Face Recognition <br/><b>Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany</b></td><td>('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')</td><td>{ekenel,rainer.stiefelhagen}@kit.edu @@ -8945,7 +10592,13 @@ <br/>Figure 1. Verb prediction accuracy on the development set. Some verbs such as taxiing typically have a similar image (a plane on the <br/>tarmac), while verbs such as rubbing or twisting can have very different corresponding images. <br/>taxiinglappingretrievingflickingminingwaxingjugglingcurtsyingcommutingdancingcrushingreadingexaminingdousingdecomposingchoppingdrawingcryingcalmingsniffingmourningsubmergingtwistingcarvingrubbingaskingVerbs0102030405060708090100Accuracy (%)</td><td>('8139953', 'Ruiyu Li', 'ruiyu li')<br/>('2103464', 'Makarand Tapaswi', 'makarand tapaswi')<br/>('2246396', 'Renjie Liao', 'renjie liao')<br/>('1729056', 'Jiaya Jia', 'jiaya jia')<br/>('2422559', 'Raquel Urtasun', 'raquel urtasun')<br/>('37895334', 'Sanja Fidler', 'sanja fidler')<br/>('2043324', 'Hong Kong', 'hong kong')</td><td>ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com -</td></tr><tr><td>bbf01aa347982592b3e4c9e4f433e05d30e71305</td><td></td><td></td><td></td></tr><tr><td>bbfe0527e277e0213aafe068113d719b2e62b09c</td><td>Dog Breed Classification Using Part Localization +</td></tr><tr><td>bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197</td><td>TO APPEAR IN TPAMI +<br/>From Images to 3D Shape Attributes +</td><td>('1786435', 'David F. Fouhey', 'david f. fouhey')<br/>('1737809', 'Abhinav Gupta', 'abhinav gupta')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td></td></tr><tr><td>bbf01aa347982592b3e4c9e4f433e05d30e71305</td><td></td><td></td><td></td></tr><tr><td>bbc5f4052674278c96abe7ff9dc2d75071b6e3f3</td><td>Nonlinear Hierarchical Part-based Regression for Unconstrained Face Alignment +<br/>†NEC Laboratories America, Media Analytics +<br/>‡Adobe Research +<br/><b>cid:93)University of North Carolina at Charlotte</b><br/><b>Rutgers, The State University of New Jersey</b></td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1753384', 'Shaoting Zhang', 'shaoting zhang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>xiangyu@nec-labs.com, zlin@adobe.com, szhang16@uncc.edu, dnm@cs.rutgers.edu +</td></tr><tr><td>bbfe0527e277e0213aafe068113d719b2e62b09c</td><td>Dog Breed Classification Using Part Localization <br/><b>Columbia University</b><br/><b>University of Maryland</b></td><td>('2454675', 'Jiongxin Liu', 'jiongxin liu')<br/>('20615377', 'Angjoo Kanazawa', 'angjoo kanazawa')</td><td></td></tr><tr><td>bbf1396eb826b3826c5a800975047beabde2f0de</td><td></td><td></td><td></td></tr><tr><td>bb451dc2420e1a090c4796c19716f93a9ef867c9</td><td>International Journal of Computer Applications (0975 – 8887) <br/>Volume 104 – No.5, October 2014 <br/>A Review on: Automatic Movie Character Annotation @@ -8962,7 +10615,7 @@ <br/>HOD, Department of <br/>Information Technology, <br/><b>College of Engineering (Poly</b><br/>Pandharpur, Solapur, INDIA -</td><td></td><td></td></tr><tr><td>d73d2c9a6cef79052f9236e825058d5d9cdc1321</td><td>2014-ENST-0040 +</td><td></td><td></td></tr><tr><td>bbd1eb87c0686fddb838421050007e934b2d74ab</td><td></td><td></td><td></td></tr><tr><td>d73d2c9a6cef79052f9236e825058d5d9cdc1321</td><td>2014-ENST-0040 <br/>EDITE - ED 130 <br/>Doctorat ParisTech <br/>T H È S E @@ -8992,7 +10645,24 @@ </td><td>('2135932', 'Usman Farrokh Niaz', 'usman farrokh niaz')</td><td></td></tr><tr><td>d794ffece3533567d838f1bd7f442afee13148fd</td><td>Hand Detection and Tracking in Videos <br/>for Fine-grained Action Recognition <br/><b>The University of Electro-Communications, Tokyo</b><br/>1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan -</td><td>('1681659', 'Keiji Yanai', 'keiji yanai')</td><td></td></tr><tr><td>d78077a7aa8a302d4a6a09fb9737ab489ae169a6</td><td></td><td></td><td></td></tr><tr><td>d7312149a6b773d1d97c0c2b847609c07b5255ec</td><td></td><td></td><td></td></tr><tr><td>d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f</td><td>Automating Image Analysis by Annotating Landmarks with Deep +</td><td>('1681659', 'Keiji Yanai', 'keiji yanai')</td><td></td></tr><tr><td>d78077a7aa8a302d4a6a09fb9737ab489ae169a6</td><td></td><td></td><td></td></tr><tr><td>d7593148e4319df7a288180d920f2822eeecea0b</td><td>LIU, YU, FUNES-MORA, ODOBEZ: DIFFERENTIAL APPROACH FOR GAZE ESTIMATION 1 +<br/>A Differential Approach for Gaze +<br/>Estimation with Calibration +<br/><b>Idiap Research Institute</b><br/>2 Eyeware Tech SA +<br/>Kenneth A. Funes-Mora 2 +</td><td>('1697913', 'Gang Liu', 'gang liu')<br/>('50133842', 'Yu Yu', 'yu yu')<br/>('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')</td><td>gang.liu@idiap.ch +<br/>yu.yu@idiap.ch +<br/>kenneth@eyeware.tech +<br/>odobez@idiap.ch +</td></tr><tr><td>d7312149a6b773d1d97c0c2b847609c07b5255ec</td><td></td><td></td><td></td></tr><tr><td>d7fe2a52d0ad915b78330340a8111e0b5a66513a</td><td>Unpaired Photo-to-Caricature Translation on Faces in +<br/>the Wild +<br/><b>aNo. 238 Songling Road, Ocean University of</b><br/>China, Qingdao, China +</td><td>('4670300', 'Ziqiang Zheng', 'ziqiang zheng')<br/>('50077564', 'Zhibin Yu', 'zhibin yu')<br/>('2336297', 'Haiyong Zheng', 'haiyong zheng')<br/>('49297407', 'Bing Zheng', 'bing zheng')</td><td></td></tr><tr><td>d7cbedbee06293e78661335c7dd9059c70143a28</td><td>MobileFaceNets: Efficient CNNs for Accurate Real- +<br/>Time Face Verification on Mobile Devices +<br/><b>School of Computer and Information Technology, Beijing Jiaotong University, Beijing</b><br/><b>Research Institute, Watchdata Inc., Beijing, China</b><br/>China +</td><td>('39326372', 'Sheng Chen', 'sheng chen')<br/>('1681842', 'Yang Liu', 'yang liu')<br/>('46757550', 'Xiang Gao', 'xiang gao')<br/>('2765914', 'Zhen Han', 'zhen han')</td><td>{sheng.chen, yang.liu.yj, xiang.gao}@watchdata.com, +<br/>zhan@bjtu.edu.cn +</td></tr><tr><td>d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f</td><td>Automating Image Analysis by Annotating Landmarks with Deep <br/>Neural Networks <br/>February 3, 2017 <br/>Running head: Automatic Annotation of Landmarks @@ -9088,9 +10758,34 @@ <br/>Hollywood Human Action: The Hollywood <br/>dataset [3] contains 8 action classes collected from <br/>32 Hollywood movies with a total of 430 videos. -</td><td>('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')<br/>('3099139', 'Zuxuan Wu', 'zuxuan wu')<br/>('39811558', 'Jun Wang', 'jun wang')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td></td></tr><tr><td>d785fcf71cb22f9c33473cba35f075c1f0f06ffc</td><td>Learning Active Facial Patches for Expression Analysis +</td><td>('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')<br/>('3099139', 'Zuxuan Wu', 'zuxuan wu')<br/>('39811558', 'Jun Wang', 'jun wang')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td></td></tr><tr><td>d78734c54f29e4474b4d47334278cfde6efe963a</td><td>Exploring Disentangled Feature Representation Beyond Face Identification +<br/><b>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</b><br/><b>SenseTime Group Limited, 3Peking University</b></td><td>('1715752', 'Yu Liu', 'yu liu')<br/>('22181490', 'Fangyin Wei', 'fangyin wei')<br/>('49895575', 'Jing Shao', 'jing shao')<br/>('37145669', 'Lu Sheng', 'lu sheng')<br/>('1721677', 'Junjie Yan', 'junjie yan')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')</td><td>{yuliu,lsheng,xgwang}@ee.cuhk.edu.hk, weifangyin@pku.edu.cn, +<br/>{shaojing,yanjunjie}@sensetime.com +</td></tr><tr><td>d785fcf71cb22f9c33473cba35f075c1f0f06ffc</td><td>Learning Active Facial Patches for Expression Analysis <br/><b>Rutgers University, Piscataway, NJ</b><br/><b>Nanjing University of Information Science and Technology, Nanjing, 210044, China</b><br/><b>University of Texas at Arlington, Arlington, TX</b></td><td>('29803023', 'Lin Zhong', 'lin zhong')<br/>('1734954', 'Qingshan Liu', 'qingshan liu')<br/>('39606160', 'Peng Yang', 'peng yang')<br/>('40107085', 'Bo Liu', 'bo liu')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>{linzhong,qsliu,peyang,lb507,dnm}@cs.rutgers.edu, Jzhuang@uta.edu -</td></tr><tr><td>d78373de773c2271a10b89466fe1858c3cab677f</td><td></td><td></td><td></td></tr><tr><td>d78fbd11f12cbc194e8ede761d292dc2c02d38a2</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, +</td></tr><tr><td>d79365336115661b0e8dbbcd4b2aa1f504b91af6</td><td>Variational methods for Conditional Multimodal +<br/>Deep Learning +<br/>Department of Computer Science and Automation +<br/><b>Indian Institute of Science</b></td><td>('2686270', 'Gaurav Pandey', 'gaurav pandey')<br/>('2440174', 'Ambedkar Dukkipati', 'ambedkar dukkipati')</td><td>Email{gp88, ad@csa.iisc.ernet.in +</td></tr><tr><td>d7b6bbb94ac20f5e75893f140ef7e207db7cd483</td><td>Griffith Research Online +<br/>https://research-repository.griffith.edu.au +<br/>Face Recognition across Pose: A +<br/>Review +<br/>Author +<br/>Zhang, Paul, Gao, Yongsheng +<br/>Published +<br/>2009 +<br/>Journal Title +<br/>Pattern Recognition +<br/>DOI +<br/>https://doi.org/10.1016/j.patcog.2009.04.017 +<br/>Copyright Statement +<br/>Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance +<br/>with the copyright policy of the publisher. Please refer to the journal's website for access to the +<br/>definitive, published version. +<br/>Downloaded from +<br/>http://hdl.handle.net/10072/30193 +</td><td></td><td></td></tr><tr><td>d78373de773c2271a10b89466fe1858c3cab677f</td><td></td><td></td><td></td></tr><tr><td>d78fbd11f12cbc194e8ede761d292dc2c02d38a2</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, <br/>Vol. 8, No. 10, 2017 <br/>Enhancing Gray Scale Images for Face Detection <br/>under Unstable Lighting Condition @@ -9108,7 +10803,10 @@ <br/><b>South China University of Technology</b><br/>Guangzhou, Guangdong, China </td><td>('2588058', 'DI ZHANG', 'di zhang')<br/>('20374749', 'YUN ZHAO', 'yun zhao')<br/>('31866339', 'MINGHUI DU', 'minghui du')</td><td> haihaiwenqi@163.com, zyun@gdmc.edu.cn <br/>ecmhdu@scut.edu.cn -</td></tr><tr><td>d7d166aee5369b79ea2d71a6edd73b7599597aaa</td><td>Fast Subspace Clustering Based on the +</td></tr><tr><td>d700aedcb22a4be374c40d8bee50aef9f85d98ef</td><td>Rethinking Spatiotemporal Feature Learning: +<br/>Speed-Accuracy Trade-offs in Video Classification +<br/>1 Google Research +<br/><b>University of California San Diego</b></td><td>('1817030', 'Saining Xie', 'saining xie')<br/>('40559421', 'Chen Sun', 'chen sun')<br/>('1808244', 'Jonathan Huang', 'jonathan huang')<br/>('1736745', 'Zhuowen Tu', 'zhuowen tu')<br/>('1702318', 'Kevin Murphy', 'kevin murphy')</td><td></td></tr><tr><td>d7d166aee5369b79ea2d71a6edd73b7599597aaa</td><td>Fast Subspace Clustering Based on the <br/>Kronecker Product <br/><b>Beihang University 2Gri th University 3University of York, UK</b></td><td>('38840844', 'Lei Zhou', 'lei zhou')<br/>('3042223', 'Xiao Bai', 'xiao bai')<br/>('6820648', 'Xianglong Liu', 'xianglong liu')<br/>('40582215', 'Jun Zhou', 'jun zhou')<br/>('38987678', 'Hancock Edwin', 'hancock edwin')</td><td></td></tr><tr><td>d79f9ada35e4410cd255db39d7cc557017f8111a</td><td>Journal of Eye Movement Research <br/>7(3):3, 1-8 @@ -9215,6 +10913,12 @@ <br/>Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms</td><td>('7671296', 'Shaohua Zhang', 'shaohua zhang')<br/>('39584289', 'Hua Yang', 'hua yang')</td><td></td></tr><tr><td>d0ac9913a3b1784f94446db2f1fb4cf3afda151f</td><td>Exploiting Multi-modal Curriculum in Noisy Web Data for <br/>Large-scale Concept Learning <br/><b>School of Computer Science, Carnegie Mellon University, PA, USA</b><br/><b>School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China</b></td><td>('1915796', 'Junwei Liang', 'junwei liang')<br/>('38782499', 'Lu Jiang', 'lu jiang')<br/>('1803714', 'Deyu Meng', 'deyu meng')</td><td>{junweil, lujiang, alex}@cs.cmu.edu, dymeng@mail.xjtu.edu.cn. +</td></tr><tr><td>d0471d5907d6557cf081edf4c7c2296c3c221a38</td><td>A Constrained Deep Neural Network for Ordinal Regression +<br/><b>Nanyang Technological University</b><br/>Rolls-Royce Advanced Technology Centre +<br/>50 Nanyang Avenue, Singapore, 639798 +<br/>6 Seletar Aerospace Rise, Singapore, 797575 +</td><td>('47908585', 'Yanzhu Liu', 'yanzhu liu')<br/>('1799918', 'Chi Keong Goh', 'chi keong goh')</td><td>liuy0109@e.ntu.edu.sg, adamskong@ntu.edu.sg +<br/>ChiKeong.Goh@Rolls-Royce.com </td></tr><tr><td>d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0</td><td></td><td></td><td></td></tr><tr><td>d00c335fbb542bc628642c1db36791eae24e02b7</td><td>Article <br/>Deep Learning-Based Gaze Detection System for <br/>Automobile Drivers Using a NIR Camera Sensor @@ -9349,7 +11053,32 @@ <br/>Object Bank <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences <br/><b>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>School of Computer Science, Carnegie Mellon University, PA 15213, USA</b><br/><b>University of Chinese Academy of Sciences, Beijing 100049, China</b></td><td>('1731144', 'Xin Liu', 'xin liu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1688086', 'Shaoxin Li', 'shaoxin li')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')</td><td>{xin.liu, shiguang.shan, shaoxin.li}@vipl.ict.ac.cn, alex@cs.cmu.edu; -</td></tr><tr><td>d03baf17dff5177d07d94f05f5791779adf3cd5f</td><td></td><td></td><td></td></tr><tr><td>d0a21f94de312a0ff31657fd103d6b29db823caa</td><td>Facial Expression Analysis +</td></tr><tr><td>d0509afe9c2c26fe021889f8efae1d85b519452a</td><td>Visual Psychophysics for Making Face +<br/>Recognition Algorithms More Explainable +<br/><b>University of Notre Dame, Notre Dame, IN, 46556, USA</b><br/><b>Perceptive Automata, Inc</b><br/><b>Harvard University, Cambridge, MA 02138, USA</b></td><td>('3849184', 'Brandon RichardWebster', 'brandon richardwebster')<br/>('40901458', 'So Yon Kwon', 'so yon kwon')<br/>('40896426', 'Christopher Clarizio', 'christopher clarizio')<br/>('2503235', 'Samuel E. Anthony', 'samuel e. anthony')<br/>('2613438', 'Walter J. Scheirer', 'walter j. scheirer')</td><td></td></tr><tr><td>d03baf17dff5177d07d94f05f5791779adf3cd5f</td><td></td><td></td><td></td></tr><tr><td>d0144d76b8b926d22411d388e7a26506519372eb</td><td>Improving Regression Performance with Distributional Losses +</td><td>('29905816', 'Ehsan Imani', 'ehsan imani')</td><td></td></tr><tr><td>d02e27e724f9b9592901ac1f45830341d37140fe</td><td>DA-GAN: Instance-level Image Translation by Deep Attention Generative +<br/>Adversarial Networks +<br/>The State Universtiy of New York at Buffalo +<br/>The State Universtiy of New York at Buffalo +<br/>Microsoft Research +<br/>Microsoft Research +</td><td>('2327045', 'Shuang Ma', 'shuang ma')<br/>('1735257', 'Chang Wen Chen', 'chang wen chen')<br/>('3247966', 'Jianlong Fu', 'jianlong fu')<br/>('1724211', 'Tao Mei', 'tao mei')</td><td>shuangma@buffalo.edu +<br/>chencw@buffalo.edu +<br/>jianf@microsoft.com +<br/>tmei@microsoft.com +</td></tr><tr><td>d02b32b012ffba2baeb80dca78e7857aaeececb0</td><td>Human Pose Estimation: Extension and Application +<br/>Thesis submitted in partial fulfillment +<br/>of the requirements for the degree of +<br/>Master of Science (By Research) +<br/>in +<br/>Computer Science and Engineering +<br/>by +<br/>201002052 +<br/>Center for Visual Information Technology +<br/><b>International Institute of Information Technology</b><br/>Hyderabad - 500 032, INDIA +<br/>September 2016 +</td><td>('50226534', 'Digvijay Singh', 'digvijay singh')</td><td>digvijay.singh@research.iiit.ac.in +</td></tr><tr><td>d0a21f94de312a0ff31657fd103d6b29db823caa</td><td>Facial Expression Analysis </td><td>('1707876', 'Fernando De la Torre', 'fernando de la torre')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td></td></tr><tr><td>d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea</td><td>Face Recognition with Patterns of Oriented <br/>Edge Magnitudes <br/>1 Vesalis Sarl, Clermont Ferrand, France @@ -9358,10 +11087,17 @@ <br/>for Zero-Shot Action Recognition <br/><b>Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China</b><br/><b>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia</b><br/><b>School of Computer Science, Carnegie Mellon University, Pittsburgh, USA</b><br/><b>College of Computer Science, Zhejiang University, Zhejiang, China</b></td><td>('2551285', 'Chuang Gan', 'chuang gan')<br/>('2735055', 'Ming Lin', 'ming lin')<br/>('39033919', 'Yi Yang', 'yi yang')<br/>('1755711', 'Yueting Zhuang', 'yueting zhuang')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')</td><td>ganchuang1990@gmail.com, linming04@gmail.com, <br/>yiyang@cs.cmu.edu, yzhuang@zju.edu.cn, alex@cs.cmu.edu +</td></tr><tr><td>d01303062b21cd9ff46d5e3ff78897b8499480de</td><td>Multi-task Learning by Maximizing Statistical Dependence +<br/><b>University of Bath</b><br/><b>University of Bath</b><br/><b>University of Bath</b></td><td>('51013428', 'Youssef A. Mejjati', 'youssef a. mejjati')<br/>('1792288', 'Darren Cosker', 'darren cosker')<br/>('1808255', 'Kwang In Kim', 'kwang in kim')</td><td></td></tr><tr><td>d02c54192dbd0798b43231efe1159d6b4375ad36</td><td>3D Reconstruction and Face Recognition Using Kernel-Based +<br/> ICA and Neural Networks +<br/>Dept. of Electrical Dept. of CSIE Dept. of CSIE +<br/><b>Engineering Chaoyang University Nankai Institute of</b><br/><b>National University of Technology Technology</b></td><td>('1734467', 'Cheng-Jian Lin', 'cheng-jian lin')<br/>('1759040', 'Chi-Yung Lee', 'chi-yung lee')</td><td> of Kaohsiung s9527618@cyut.edu.tw cylee@nkc.edu.tw +<br/>cjlin@nuk.edu.tw </td></tr><tr><td>d00787e215bd74d32d80a6c115c4789214da5edb</td><td>Faster and Lighter Online <br/>Sparse Dictionary Learning <br/>Project report -</td><td>('2714145', 'Jeremias Sulam', 'jeremias sulam')</td><td></td></tr><tr><td>be8c517406528edc47c4ec0222e2a603950c2762</td><td>Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7 +</td><td>('2714145', 'Jeremias Sulam', 'jeremias sulam')</td><td></td></tr><tr><td>d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5</td><td>Towards Universal Representation for Unseen Action Recognition +<br/><b>University of California, Merced</b><br/><b>Open Lab, School of Computing, Newcastle University, UK</b><br/><b>Inception Institute of Arti cial Intelligence (IIAI), Abu Dhabi, UAE</b></td><td>('1749901', 'Yi Zhu', 'yi zhu')<br/>('50363618', 'Yang Long', 'yang long')<br/>('1735787', 'Yu Guan', 'yu guan')<br/>('40799321', 'Ling Shao', 'ling shao')</td><td></td></tr><tr><td>be8c517406528edc47c4ec0222e2a603950c2762</td><td>Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7 <br/>17.6.2005 <br/>5:45pm <br/>B A S I C R E S E A RC H @@ -9382,7 +11118,10 @@ <br/><b>Stony Brook University, Stony Brook NY 11794, USA</b><br/><b>Columbia University, New York NY 10027, USA</b><br/><b>University of California, Berkeley, Berkeley CA 94720, USA</b></td><td>('1685538', 'Tamara L. Berg', 'tamara l. berg')<br/>('39668247', 'Alexander C. Berg', 'alexander c. berg')<br/>('9676096', 'Jonathan Shih', 'jonathan shih')</td><td>tlberg@cs.sunysb.edu, <br/>aberg@cs.columbia.edu, <br/>jmshih@berkeley.edu. -</td></tr><tr><td>beb49072f5ba79ed24750108c593e8982715498e</td><td>STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES +</td></tr><tr><td>be48b5dcd10ab834cd68d5b2a24187180e2b408f</td><td>FOR PERSONAL USE ONLY +<br/>Constrained Low-rank Learning Using Least +<br/>Squares Based Regularization +</td><td>('2420746', 'Ping Li', 'ping li')<br/>('1720236', 'Jun Yu', 'jun yu')<br/>('48958393', 'Meng Wang', 'meng wang')<br/>('1763785', 'Luming Zhang', 'luming zhang')<br/>('1724421', 'Deng Cai', 'deng cai')<br/>('50080046', 'Xuelong Li', 'xuelong li')</td><td></td></tr><tr><td>beb49072f5ba79ed24750108c593e8982715498e</td><td>STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES <br/>GeneGAN: Learning Object Transfiguration <br/>and Attribute Subspace from Unpaired Data <br/>1 Megvii Inc. @@ -9396,11 +11135,87 @@ <br/>fdq@megvii.com <br/>hqy@megvii.com <br/>hwr@megvii.com +</td></tr><tr><td>be4a20113bc204019ea79c6557a0bece23da1121</td><td>DeepCache: Principled Cache for Mobile Deep Vision +<br/>We present DeepCache, a principled cache design for deep learning +<br/>inference in continuous mobile vision. DeepCache benefits model +<br/>execution efficiency by exploiting temporal locality in input video +<br/>streams. It addresses a key challenge raised by mobile vision: the +<br/>cache must operate under video scene variation, while trading off +<br/>among cacheability, overhead, and loss in model accuracy. At the +<br/>input of a model, DeepCache discovers video temporal locality by ex- +<br/>ploiting the video’s internal structure, for which it borrows proven +<br/>heuristics from video compression; into the model, DeepCache prop- +<br/>agates regions of reusable results by exploiting the model’s internal +<br/>structure. Notably, DeepCache eschews applying video heuristics to +<br/>model internals which are not pixels but high-dimensional, difficult- +<br/>to-interpret data. +<br/>Our implementation of DeepCache works with unmodified deep +<br/>learning models, requires zero developer’s manual effort, and is +<br/>therefore immediately deployable on off-the-shelf mobile devices. +<br/>Our experiments show that DeepCache saves inference execution +<br/>time by 18% on average and up to 47%. DeepCache reduces system +<br/>energy consumption by 20% on average. +<br/>CCS Concepts: • Human-centered computing → Ubiquitous +<br/>and mobile computing; • Computing methodologies → Com- +<br/>puter vision tasks; +<br/>Additional Key Words and Phrases: Deep Learning; Mobile Vision; +<br/>Cache +<br/>INTRODUCTION +<br/>With ubiquitous cameras on mobile and wearable devices, +<br/>continuous mobile vision emerges to enable a variety of com- +<br/><b>pelling applications, including cognitive assistance [29], life</b><br/>style monitoring [61], and street navigation [27]. To support +<br/>continuous mobile vision, Convolutional Neural Network +<br/>2018. XXXX-XXXX/2018/9-ART $15.00 +<br/>https://doi.org/10.1145/3241539.3241563 +<br/>Fig. 1. The overview of DeepCache. +<br/>(CNN) is recognized as the state-of-the-art algorithm: a soft- +<br/>ware runtime, called deep learning engine, ingests a continu- +<br/>ous stream of video images1; for each input frame the engine +<br/>executes a CNN model as a cascade of layers, produces in- +<br/>termediate results called feature maps, and outputs inference +<br/>results. Such CNN executions are known for their high time +<br/>and space complexity, stressing resource-constrained mobile +<br/>devices. Although CNN execution can be offloaded to the +<br/>cloud [2, 34], it becomes increasingly compelling to execute +<br/>CNNs on device [27, 44, 52], which ensures fast inference, pre- +<br/>serves user privacy, and remains unaffected by poor Internet +<br/>connectivity. +<br/>To afford costly CNN on resource-constrained mobile/wear- +<br/>able devices, we set to exploit a mobile video stream’s tempo- +<br/>ral locality, i.e., rich information redundancy among consec- +<br/>utive video frames [27, 51, 52]. Accordingly, a deep learning +<br/>engine can cache results when it executes CNN over a mo- +<br/>bile video, by using input frame contents as cache keys and +<br/>inference results as cache values. Such caching is expected +<br/>to reduce the engine’s resource demand significantly. +<br/>Towards effective caching and result reusing, we face two +<br/>major challenges. 1) Reusable results lookup: Classic caches, +<br/>e.g., the web browser cache, look up cached values (e.g., web +<br/>pages) based on key equivalence (e.g., identical URLs). This +<br/>does not apply to a CNN cache: its keys, i.e., mobile video +<br/>contents, often undergo moderate scene variation over time. +<br/>The variation is caused by environmental changes such as +<br/>1We refer to them as a mobile video stream in the remainder of the paper. +<br/>, Vol. 1, No. 1, Article . Publication date: September 2018. +</td><td>('2529558', 'Mengwei Xu', 'mengwei xu')<br/>('46694806', 'Mengze Zhu', 'mengze zhu')<br/>('3180228', 'Yunxin Liu', 'yunxin liu')<br/>('1774176', 'Felix Xiaozhu Lin', 'felix xiaozhu lin')<br/>('8016688', 'Xuanzhe Liu', 'xuanzhe liu')<br/>('8016688', 'Xuanzhe Liu', 'xuanzhe liu')<br/>('2529558', 'Mengwei Xu', 'mengwei xu')</td><td>xumengwei@pku.edu.cn; Mengze Zhu, Peking University, MoE, Beijing, +<br/>China, zhumz@pku.edu.cn; Yunxin Liu, Microsoft Research, Beijing, China, +<br/>yunxin.liu@microsoft.com; Felix Xiaozhu Lin, Purdue ECE, West Lafayette, +<br/>Indiana, USA, xzl@purdue.edu; Xuanzhe Liu, Peking University, MoE, Bei- +<br/>jing, China, xzl@pku.edu.cn. </td></tr><tr><td>becd5fd62f6301226b8e150e1a5ec3180f748ff8</td><td>Robust and Practical Face Recognition via <br/>Structured Sparsity <br/>1Advanced Digital Sciences Center, Singapore <br/>2 Microsoft Research Asia, Beijing, China -<br/><b>University of Illinois at Urbana-Champaign</b></td><td>('2370507', 'Kui Jia', 'kui jia')<br/>('1926757', 'Tsung-Han Chan', 'tsung-han chan')<br/>('1700297', 'Yi Ma', 'yi ma')</td><td></td></tr><tr><td>bebb8a97b2940a4e5f6e9d3caf6d71af21585eda</td><td>Mapping Emotional Status to Facial Expressions +<br/><b>University of Illinois at Urbana-Champaign</b></td><td>('2370507', 'Kui Jia', 'kui jia')<br/>('1926757', 'Tsung-Han Chan', 'tsung-han chan')<br/>('1700297', 'Yi Ma', 'yi ma')</td><td></td></tr><tr><td>be437b53a376085b01ebd0f4c7c6c9e40a4b1a75</td><td>ISSN (Online) 2321 – 2004 +<br/>ISSN (Print) 2321 – 5526 +<br/> INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +<br/> Vol. 4, Issue 5, May 2016 +<br/>IJIREEICE +<br/>Face Recognition and Retrieval Using Cross +<br/>Age Reference Coding +<br/> BE, DSCE, Bangalore1 +<br/>Assistant Professor, DSCE, Bangalore2 +</td><td>('4427719', 'Chandrakala', 'chandrakala')</td><td></td></tr><tr><td>bebb8a97b2940a4e5f6e9d3caf6d71af21585eda</td><td>Mapping Emotional Status to Facial Expressions <br/><b>Tsinghua University</b><br/>Beijing 100084, P. R. China </td><td>('3165307', 'Yangzhou Du', 'yangzhou du')<br/>('2693354', 'Xueyin Lin', 'xueyin lin')</td><td>dyz99@mails.tsinghua.edu.cn; lxy-dcs@tsinghua.edu.cn </td></tr><tr><td>be07f2950771d318a78d2b64de340394f7d6b717</td><td>See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290192867 @@ -9421,13 +11236,39 @@ <br/>letting you access and read them immediately. <br/>Available from: Djamel Bouchaffra <br/>Retrieved on: 11 February 2016 -</td><td></td><td></td></tr><tr><td>beb4546ae95f79235c5f3c0e9cc301b5d6fc9374</td><td>A Modular Approach to Facial Expression Recognition +</td><td></td><td></td></tr><tr><td>be4f7679797777f2bc1fd6aad8af67cce5e5ce87</td><td>Interestingness Prediction +<br/>by Robust Learning to Rank(cid:2) +<br/><b>School of EECS, Queen Mary University of London, UK</b><br/><b>School of Mathematical Sciences, Peking University, China</b></td><td>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('1746280', 'Yuan Yao', 'yuan yao')</td><td>{y.fu,t.hospedales,t.xiang,s.gong}@qmul.ac.uk, yuany@math.pku.edu.cn +</td></tr><tr><td>beb4546ae95f79235c5f3c0e9cc301b5d6fc9374</td><td>A Modular Approach to Facial Expression Recognition <br/><b>Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht</b><br/><b>Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht</b></td><td>('31822812', 'Michal Sindlar', 'michal sindlar')<br/>('1727399', 'Marco Wiering', 'marco wiering')</td><td>sindlar@phil.uu.nl <br/>marco@cs.uu.nl -</td></tr><tr><td>bec31269632c17206deb90cd74367d1e6586f75f</td><td>Large-scale Datasets: Faces with Partial +</td></tr><tr><td>be28ed1be084385f5d389db25fd7f56cd2d7f7bf</td><td>Exploring Computation-Communication Tradeoffs +<br/>in Camera Systems +<br/><b>Paul G. Allen School of Computer Science and Engineering, University of Washington</b><br/><b>University of Washington</b></td><td>('19170117', 'Amrita Mazumdar', 'amrita mazumdar')<br/>('47108160', 'Thierry Moreau', 'thierry moreau')<br/>('37270394', 'Meghan Cowan', 'meghan cowan')<br/>('1698528', 'Armin Alaghi', 'armin alaghi')<br/>('1717411', 'Luis Ceze', 'luis ceze')<br/>('1723213', 'Mark Oskin', 'mark oskin')<br/>('46829693', 'Visvesh Sathe', 'visvesh sathe')</td><td>{amrita,moreau,cowanmeg}@cs.washington.edu, sungk9@uw.edu, {armin,luisceze,oskin}@cs.washington.edu, sathe@uw.edu +</td></tr><tr><td>bebea83479a8e1988a7da32584e37bfc463d32d4</td><td>Discovery of Latent 3D Keypoints via +<br/>End-to-end Geometric Reasoning +<br/>Google AI +</td><td>('37016781', 'Supasorn Suwajanakorn', 'supasorn suwajanakorn')<br/>('2704494', 'Jonathan Tompson', 'jonathan tompson')</td><td>{supasorn, snavely, tompson, mnorouzi}@google.com +</td></tr><tr><td>bed06e7ff0b510b4a1762283640b4233de4c18e0</td><td>Bachelor Project +<br/>Czech +<br/>Technical +<br/><b>University</b><br/>in Prague +<br/>F3 +<br/>Faculty of Electrical Engineering +<br/>Department of Cybernetics +<br/>Face Interpretation Problems on Low +<br/>Quality Images +<br/>Supervisor: Ing. Jan Čech, Ph.D +<br/>May 2018 +</td><td></td><td></td></tr><tr><td>bec31269632c17206deb90cd74367d1e6586f75f</td><td>Large-scale Datasets: Faces with Partial <br/>Occlusions and Pose Variations in the Wild <br/><b>Wayne State University</b><br/>Detroit, MI, USA 48120 </td><td>('2489629', 'Zeyad Hailat', 'zeyad hailat')<br/>('35265528', 'Xuewen Chen', 'xuewen chen')</td><td>Email: ∗tarik alafif@wayne.edu, †zmhailat@wayne.edu, ‡melih.aslan@wayne.edu, §xuewen.chen@wayne.edu +</td></tr><tr><td>be5276e9744c4445fe5b12b785650e8f173f56ff</td><td>Spatio-temporal VLAD Encoding for +<br/>Human Action Recognition in Videos +<br/><b>University of Trento, Italy</b><br/><b>University Politehnica of Bucharest, Romania</b><br/><b>University of Tokyo, Japan</b></td><td>('3429470', 'Ionut C. Duta', 'ionut c. duta')<br/>('1796198', 'Bogdan Ionescu', 'bogdan ionescu')<br/>('1712839', 'Kiyoharu Aizawa', 'kiyoharu aizawa')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')</td><td>{ionutcosmin.duta, niculae.sebe}@unitn.it +<br/>bionescu@imag.pub.ro +<br/>aizawa@hal.t.u-tokyo.ac.jp </td></tr><tr><td>be57d2aaab615ec8bc1dd2dba8bee41a4d038b85</td><td>Automatic Analysis of Naturalistic Hand-Over-Face Gestures <br/><b>University of Cambridge</b><br/>One of the main factors that limit the accuracy of facial analysis systems is hand occlusion. As the face <br/>becomes occluded, facial features are lost, corrupted, or erroneously detected. Hand-over-face occlusions are @@ -9466,10 +11307,26 @@ <br/>without fee provided that copies are not made or distributed for profit or commercial advantage and that <br/>copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for </td><td>('2022940', 'Marwa Mahmoud', 'marwa mahmoud')<br/>('39626495', 'Peter Robinson', 'peter robinson')<br/>('2022940', 'Marwa Mahmoud', 'marwa mahmoud')<br/>('39626495', 'Peter Robinson', 'peter robinson')</td><td>emails: {Marwa.Mahmoud, Tadas.Baltrusaitis, Peter.Robinson}@cl.cam.ac.uk. +</td></tr><tr><td>be4f18e25b06f430e2de0cc8fddcac8585b00beb</td><td>STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES +<br/>A New Face Recognition Algorithm based on +<br/>Dictionary Learning for a Single Training +<br/>Sample per Person +<br/>Ian Wassell +<br/>Computer Laboratory, +<br/><b>University of Cambridge</b></td><td>('1681842', 'Yang Liu', 'yang liu')</td><td>yl504@cam.ac.uk +<br/>ijw24@cam.ac.uk </td></tr><tr><td>bef503cdfe38e7940141f70524ee8df4afd4f954</td><td></td><td></td><td></td></tr><tr><td>beab10d1bdb0c95b2f880a81a747f6dd17caa9c2</td><td>DeepDeblur: Fast one-step blurry face images restoration <br/>Tsinghua Unversity </td><td>('2766905', 'Lingxiao Wang', 'lingxiao wang')<br/>('2112160', 'Yali Li', 'yali li')<br/>('1678689', 'Shengjin Wang', 'shengjin wang')</td><td>wlx16@mails.tsinghua.edu.cn, liyali@ocrserv.ee.tsinghua.edu.cn, wgsgj@tsinghua.edu.cn -</td></tr><tr><td>b3b532e8ea6304446b1623e83b0b9a96968f926c</td><td>Joint Network based Attention for Action Recognition +</td></tr><tr><td>b331ca23aed90394c05f06701f90afd550131fe3</td><td>Zhou et al. EURASIP Journal on Image and Video Processing (2018) 2018:49 +<br/>https://doi.org/10.1186/s13640-018-0287-5 +<br/>EURASIP Journal on Image +<br/>and Video Processing +<br/>R ES EAR CH +<br/>Double regularized matrix factorization for +<br/>image classification and clustering +<br/>Open Access +</td><td>('39147685', 'Wei Zhou', 'wei zhou')<br/>('7513726', 'Chengdong Wu', 'chengdong wu')<br/>('46583983', 'Jianzhong Wang', 'jianzhong wang')<br/>('9305845', 'Xiaosheng Yu', 'xiaosheng yu')<br/>('50130800', 'Yugen Yi', 'yugen yi')</td><td></td></tr><tr><td>b3b532e8ea6304446b1623e83b0b9a96968f926c</td><td>Joint Network based Attention for Action Recognition <br/>1 National Engineering Laboratory for Video Technology, School of EE&CS, <br/><b>Peking University, Beijing, China</b><br/>2 Cooperative Medianet Innovation Center, China <br/>3 School of Information and Electronics, @@ -9550,7 +11407,11 @@ <br/><b>School of Electrical and Computer Engineering, Cornell University</b><br/>116 Ward Hall, Ithaca, NY 14853, USA <br/>3 JSPS Postdoctoral Fellow for Research Abroad </td><td>('2759239', 'Toshihiko Yamasaki', 'toshihiko yamasaki')<br/>('21152852', 'Tomoaki Matsunami', 'tomoaki matsunami')</td><td>{yamasaki,matsunami}@hal.t.u-tokyo.ac.jp -</td></tr><tr><td>b340f275518aa5dd2c3663eed951045a5b8b0ab1</td><td>Visual Inference of Human Emotion and Behaviour +</td></tr><tr><td>b3cb91a08be4117d6efe57251061b62417867de9</td><td>T. Swearingen and A. Ross. "A label propagation approach for predicting missing biographic labels in +<br/>A Label Propagation Approach for +<br/>Predicting Missing Biographic Labels +<br/>in Face-Based Biometric Records +</td><td>('3153117', 'Thomas Swearingen', 'thomas swearingen')<br/>('1698707', 'Arun Ross', 'arun ross')</td><td></td></tr><tr><td>b340f275518aa5dd2c3663eed951045a5b8b0ab1</td><td>Visual Inference of Human Emotion and Behaviour <br/>Dept of Computer Science <br/><b>Queen Mary College, London</b><br/>Dept of Computer Science <br/><b>Queen Mary College, London</b><br/>Dept of Computer Science @@ -9560,6 +11421,18 @@ </td><td>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('10795229', 'Caifeng Shan', 'caifeng shan')<br/>('1700927', 'Tao Xiang', 'tao xiang')</td><td>sgg@dcs.qmul.ac.uk <br/>cfshan@dcs.qmul.ac.uk <br/>txiang@dcs.qmul.ac.uk +</td></tr><tr><td>b3200539538eca54a85223bf0ec4f3ed132d0493</td><td>Action Anticipation with RBF Kernelized +<br/>Feature Mapping RNN +<br/>Hartley[0000−0002−5005−0191] +<br/><b>The Australian National University, Australia</b></td><td>('11519650', 'Yuge Shi', 'yuge shi')</td><td></td></tr><tr><td>b3b467961ba66264bb73ffe00b1830d7874ae8ce</td><td>Finding Tiny Faces +<br/><b>Robotics Institute</b><br/><b>Carnegie Mellon University</b><br/>Figure 1: We describe a detector that can find around 800 faces out of the reportedly 1000 present, by making use of novel +<br/>characterizations of scale, resolution, and context to find small objects. Detector confidence is given by the colorbar on the +<br/>right: can you confidently identify errors? +</td><td>('2894848', 'Peiyun Hu', 'peiyun hu')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td>{peiyunh,deva}@cs.cmu.edu +</td></tr><tr><td>b3ba7ab6de023a0d58c741d6abfa3eae67227caf</td><td>Zero-Shot Activity Recognition with Verb Attribute Induction +<br/>Paul G. Allen School of Computer Science & Engineering +<br/><b>University of Washington</b><br/>Seattle, WA 98195, USA +</td><td>('2545335', 'Rowan Zellers', 'rowan zellers')<br/>('1699545', 'Yejin Choi', 'yejin choi')</td><td>{rowanz,yejin}@cs.washington.edu </td></tr><tr><td>b375db63742f8a67c2a7d663f23774aedccc84e5</td><td>Brain-inspired Classroom Occupancy <br/>Monitoring on a Low-Power Mobile Platform <br/><b>Electronic and Information Engineering, University of Bologna, Italy</b><br/>†Integrated Systems Laboratory, ETH Zurich, Switzerland @@ -9586,7 +11459,27 @@ <br/>Image <br/><b>Institute of Automation, Chinese Academy of</b><br/>Sciences, Beijing, 100080, China, </td><td>('29948255', 'Haitao Wang', 'haitao wang')<br/>('1744302', 'Yangsheng Wang', 'yangsheng wang')</td><td>Email: {htwang,wys}@nlpr.ia.ac.cn -</td></tr><tr><td>b3658514a0729694d86a8b89c875a66cde20480c</td><td>Improving the Robustness of Subspace Learning +</td></tr><tr><td>b32cf547a764a4efa475e9c99a72a5db36eeced6</td><td>UvA-DARE (Digital Academic Repository) +<br/>Mimicry of ingroup and outgroup emotional expressions +<br/>Sachisthal, M.S.M.; Sauter, D.A.; Fischer, A.H. +<br/>Published in: +<br/>Comprehensive Results in Social Psychology +<br/>DOI: +<br/>10.1080/23743603.2017.1298355 +<br/>Link to publication +<br/>Citation for published version (APA): +<br/>Sachisthal, M. S. M., Sauter, D. A., & Fischer, A. H. (2016). Mimicry of ingroup and outgroup emotional +<br/>expressions. Comprehensive Results in Social Psychology, 1(1-3), 86-105. DOI: +<br/>10.1080/23743603.2017.1298355 +<br/>General rights +<br/>It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +<br/>other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +<br/>Disclaimer/Complaints regulations +<br/>If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +<br/>your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +<br/><b>the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam</b><br/>The Netherlands. You will be contacted as soon as possible. +<br/>Download date: 08 Aug 2018 +<br/><b>UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl</b></td><td></td><td></td></tr><tr><td>b3658514a0729694d86a8b89c875a66cde20480c</td><td>Improving the Robustness of Subspace Learning <br/>Techniques for Facial Expression Recognition <br/><b>Aristotle University of Thessaloniki</b><br/>Box 451, 54124 Thessaloniki, Greece </td><td>('2342345', 'Dimitris Bolis', 'dimitris bolis')<br/>('2447585', 'Anastasios Maronidis', 'anastasios maronidis')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td>email: {mpolis, amaronidis, tefas, pitas}@aiia.csd.auth.gr (cid:63) @@ -9600,7 +11493,16 @@ <br/>1 <br/>The State of the Art <br/><b>College of Computing, Georgia Institute of Technology</b></td><td>('3115428', 'Vinay Bettadapura', 'vinay bettadapura')</td><td>vinay@gatech.edu -</td></tr><tr><td>df8da144a695269e159fb0120bf5355a558f4b02</td><td>International Journal of Computer Applications (0975 – 8887) +</td></tr><tr><td>b3afa234996f44852317af382b98f5f557cab25a</td><td></td><td></td><td></td></tr><tr><td>df90850f1c153bfab691b985bfe536a5544e438b</td><td>FACE TRACKING ALGORITHM ROBUST TO POSE, +<br/>ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D +<br/>PARAMETRIC MODEL APPROACH +<br/><b></b><br/>via Bramante 65 - 26013, Crema (CR), Italy +<br/>Luigi Arnone, Fabrizio Beverina +<br/>STMicroelectronics - Advanced System Technology Group +<br/>via Olivetti 5 - 20041, Agrate Brianza, Italy +<br/>Keywords: +<br/>Face tracking, expression changes, FACS, illumination changes. +</td><td>('3330245', 'Marco Anisetti', 'marco anisetti')<br/>('2061298', 'Valerio Bellandi', 'valerio bellandi')</td><td></td></tr><tr><td>df8da144a695269e159fb0120bf5355a558f4b02</td><td>International Journal of Computer Applications (0975 – 8887) <br/>International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013) <br/>Face Recognition using PCA and Eigen Face <br/>Approach @@ -9623,6 +11525,9 @@ <br/>Tel: +44 (0)1752 584890 <br/>Fax: +44 (0)1752 584808 </td><td>('39557512', 'Chang Hong Liu', 'chang hong liu')</td><td>Email: chris.longmore@plymouth.ac.uk +</td></tr><tr><td>df577a89830be69c1bfb196e925df3055cafc0ed</td><td>Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions +<br/>UC Berkeley +</td><td>('3130257', 'Bichen Wu', 'bichen wu')<br/>('40417702', 'Alvin Wan', 'alvin wan')<br/>('27577617', 'Xiangyu Yue', 'xiangyu yue')<br/>('1755487', 'Sicheng Zhao', 'sicheng zhao')<br/>('30096597', 'Noah Golmant', 'noah golmant')<br/>('3647010', 'Amir Gholaminejad', 'amir gholaminejad')<br/>('30503077', 'Joseph Gonzalez', 'joseph gonzalez')<br/>('1732330', 'Kurt Keutzer', 'kurt keutzer')</td><td>{bichen,alvinwan,xyyue,phj,schzhao,noah.golmant,amirgh,jegonzal,keutzer}@berkeley.edu </td></tr><tr><td>df0e280cae018cebd5b16ad701ad101265c369fa</td><td>Deep Attributes from Context-Aware Regional Neural Codes <br/><b>Image Processing Center, Beihang University</b><br/>2 Intel Labs China <br/><b>Columbia University</b></td><td>('2780589', 'Jianwei Luo', 'jianwei luo')<br/>('35423937', 'Jianguo Li', 'jianguo li')<br/>('1715001', 'Jun Wang', 'jun wang')<br/>('1791565', 'Zhiguo Jiang', 'zhiguo jiang')<br/>('6060281', 'Yurong Chen', 'yurong chen')</td><td></td></tr><tr><td>dfabe7ef245ca68185f4fcc96a08602ee1afb3f7</td><td></td><td></td><td></td></tr><tr><td>df51dfe55912d30fc2f792561e9e0c2b43179089</td><td>Face Hallucination using Linear Models of Coupled @@ -9635,7 +11540,10 @@ <br/>The research community has lately focused on the latter <br/>category of super-resolution methods, since they can provide <br/>higher quality images and larger magnification factors. -</td><td>('1805605', 'Reuben A. Farrugia', 'reuben a. farrugia')<br/>('1780587', 'Christine Guillemot', 'christine guillemot')</td><td></td></tr><tr><td>df054fa8ee6bb7d2a50909939d90ef417c73604c</td><td>Image Quality-Aware Deep Networks Ensemble for Efficient +</td><td>('1805605', 'Reuben A. Farrugia', 'reuben a. farrugia')<br/>('1780587', 'Christine Guillemot', 'christine guillemot')</td><td></td></tr><tr><td>df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb</td><td>SREFI: Synthesis of Realistic Example Face Images +<br/><b>University of Notre Dame, USA</b><br/><b>FaceTec, Inc</b></td><td>('40061203', 'Sandipan Banerjee', 'sandipan banerjee')<br/>('3365839', 'John S. Bernhard', 'john s. bernhard')<br/>('2613438', 'Walter J. Scheirer', 'walter j. scheirer')<br/>('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')<br/>('1704876', 'Patrick J. Flynn', 'patrick j. flynn')</td><td>{sbanerj1, wscheire, kwb, flynn}@nd.edu +<br/>jsbernhardjr@gmail.com +</td></tr><tr><td>df054fa8ee6bb7d2a50909939d90ef417c73604c</td><td>Image Quality-Aware Deep Networks Ensemble for Efficient <br/>Gender Recognition in the Wild <br/><b>Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany</b><br/><b>German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany</b><br/>Keywords: <br/>Gender, Face, Deep Neural Networks, Quality, In the Wild @@ -9643,7 +11551,11 @@ </td></tr><tr><td>df80fed59ffdf751a20af317f265848fe6bfb9c9</td><td>1666 <br/>Learning Deep Sharable and Structural <br/>Detectors for Face Alignment -</td><td>('40387982', 'Hao Liu', 'hao liu')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('2632601', 'Jianjiang Feng', 'jianjiang feng')<br/>('25060740', 'Jie Zhou', 'jie zhou')</td><td></td></tr><tr><td>dff838ba0567ef0a6c8fbfff9837ea484314efc6</td><td>Progress Report, MSc. Dissertation: On-line +</td><td>('40387982', 'Hao Liu', 'hao liu')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('2632601', 'Jianjiang Feng', 'jianjiang feng')<br/>('25060740', 'Jie Zhou', 'jie zhou')</td><td></td></tr><tr><td>dfd8602820c0e94b624d02f2e10ce6c798193a25</td><td>STRUCTURED ANALYSIS DICTIONARY LEARNING FOR IMAGE CLASSIFICATION +<br/>Department of Electrical and Computer Engineering +<br/><b>North Carolina State University, Raleigh, NC, USA</b><br/>†Army Research Office, RTP, Raleigh, NC, USA +</td><td>('49501811', 'Wen Tang', 'wen tang')<br/>('1733181', 'Ashkan Panahi', 'ashkan panahi')<br/>('1769928', 'Hamid Krim', 'hamid krim')<br/>('2622498', 'Liyi Dai', 'liyi dai')</td><td>{wtang6, apanahi, ahk}@ncsu.edu, liyi.dai@us.army.mil +</td></tr><tr><td>dff838ba0567ef0a6c8fbfff9837ea484314efc6</td><td>Progress Report, MSc. Dissertation: On-line <br/>Random Forest for Face Detection <br/>School of Computer Science <br/><b>The University of Manchester</b><br/>May 9, 2014 @@ -9690,6 +11602,10 @@ </td><td>('1698066', 'Rui Wang', 'rui wang')<br/>('1690035', 'Andrew T. Campbell', 'andrew t. campbell')<br/>('2253140', 'Xia Zhou', 'xia zhou')</td><td>rui.wang@cs.dartmouth.edu <br/>campbell@cs.dartmouth.edu <br/>xia@cs.dartmouth.edu +</td></tr><tr><td>df9269657505fcdc1e10cf45bbb8e325678a40f5</td><td>INTERSPEECH 2016 +<br/>September 8–12, 2016, San Francisco, USA +<br/>Open-Domain Audio-Visual Speech Recognition: A Deep Learning Approach +<br/><b>Carnegie Mellon University</b></td><td>('37467623', 'Yajie Miao', 'yajie miao')<br/>('1740721', 'Florian Metze', 'florian metze')</td><td>{ymiao,fmetze}@cs.cmu.edu </td></tr><tr><td>dfb6aa168177d4685420fcb184def0aa7db7cddb</td><td>The Effect of Lighting Direction/Condition on the Performance <br/>of Face Recognition Algorithms <br/><b>West Virginia University, Morgantown, WV</b><br/><b>University of Miami, Coral Gables, FL</b></td><td>('1722978', 'Gamal Fahmy', 'gamal fahmy')<br/>('4562956', 'Ahmed El-Sherbeeny', 'ahmed el-sherbeeny')<br/>('9449390', 'Mohamed Abdel-Mottaleb', 'mohamed abdel-mottaleb')<br/>('16279046', 'Hany Ammar', 'hany ammar')</td><td></td></tr><tr><td>df2841a1d2a21a0fc6f14fe53b6124519f3812f9</td><td>Learning Image Attributes @@ -9700,7 +11616,12 @@ <br/><b>Brown University</b><br/>Providence, RI 02912 </td><td>('2059199', 'Soravit Changpinyo', 'soravit changpinyo')<br/>('1799035', 'Erik B. Sudderth', 'erik b. sudderth')</td><td>schangpi@cs.brown.edu <br/>sudderth@cs.brown.edu -</td></tr><tr><td>df5fe0c195eea34ddc8d80efedb25f1b9034d07d</td><td>Robust Modified Active Shape Model for Automatic Facial Landmark +</td></tr><tr><td>dfecaedeaf618041a5498cd3f0942c15302e75c3</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>A Recursive Framework for Expression Recognition: From +<br/>Web Images to Deep Models to Game Dataset +<br/>Received: date / Accepted: date +</td><td>('48625314', 'Wei Li', 'wei li')</td><td></td></tr><tr><td>df5fe0c195eea34ddc8d80efedb25f1b9034d07d</td><td>Robust Modified Active Shape Model for Automatic Facial Landmark <br/>Annotation of Frontal Faces </td><td>('2363348', 'Keshav Seshadri', 'keshav seshadri')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td></td></tr><tr><td>df2494da8efa44d70c27abf23f73387318cf1ca8</td><td>RESEARCH ARTICLE <br/>Supervised Filter Learning for Representation @@ -9723,7 +11644,8 @@ </td><td>('2272441', 'Ambra Demontis', 'ambra demontis')<br/>('1684175', 'Battista Biggio', 'battista biggio')<br/>('1716261', 'Giorgio Fumera', 'giorgio fumera')<br/>('1710171', 'Fabio Roli', 'fabio roli')</td><td>{ambra.demontis,battista.biggio,fumera,roli}@diee.unica.it </td></tr><tr><td>daf05febbe8406a480306683e46eb5676843c424</td><td>Robust Subspace Segmentation with Block-diagonal Prior <br/><b>National University of Singapore, Singapore</b><br/><b>Key Lab. of Machine Perception, School of EECS, Peking University, China</b><br/><b>National University of Singapore, Singapore</b></td><td>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('33383055', 'Zhouchen Lin', 'zhouchen lin')<br/>('1678675', 'Huan Xu', 'huan xu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td>1{a0066331,eleyans}@nus.edu.sg, 2zlin@pku.edu.cn, 3mpexuh@nus.edu.sg -</td></tr><tr><td>da15344a4c10b91d6ee2e9356a48cb3a0eac6a97</td><td></td><td></td><td></td></tr><tr><td>da5bfddcfe703ca60c930e79d6df302920ab9465</td><td></td><td></td><td></td></tr><tr><td>dac2103843adc40191e48ee7f35b6d86a02ef019</td><td>854 +</td></tr><tr><td>da4170c862d8ae39861aa193667bfdbdf0ecb363</td><td>Multi-task CNN Model for Attribute Prediction +</td><td>('3282196', 'Abrar H. Abdulnabi', 'abrar h. abdulnabi')<br/>('22804340', 'Gang Wang', 'gang wang')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('2370507', 'Kui Jia', 'kui jia')</td><td></td></tr><tr><td>da15344a4c10b91d6ee2e9356a48cb3a0eac6a97</td><td></td><td></td><td></td></tr><tr><td>da5bfddcfe703ca60c930e79d6df302920ab9465</td><td></td><td></td><td></td></tr><tr><td>dac2103843adc40191e48ee7f35b6d86a02ef019</td><td>854 <br/>Unsupervised Celebrity Face Naming in Web Videos </td><td>('2172810', 'Lei Pang', 'lei pang')<br/>('1751681', 'Chong-Wah Ngo', 'chong-wah ngo')</td><td></td></tr><tr><td>dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e</td><td>RECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS <br/>Institut f¨ur Nachrichtentechnik @@ -9738,7 +11660,12 @@ </td><td>('1899753', 'Ryo Yonetani', 'ryo yonetani')<br/>('37991449', 'Kris M. Kitani', 'kris m. kitani')<br/>('9467266', 'Yoichi Sato', 'yoichi sato')</td><td>yonetani@iis.u-tokyo.ac.jp <br/>kkitani@cs.cmu.edu <br/>ysato@iis.u-tokyo.ac.jp -</td></tr><tr><td>daba8f0717f3f47c272f018d0a466a205eba6395</td><td></td><td></td><td></td></tr><tr><td>b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3</td><td>Rapid Face Recognition Using Hashing +</td></tr><tr><td>daba8f0717f3f47c272f018d0a466a205eba6395</td><td></td><td></td><td></td></tr><tr><td>daefac0610fdeff415c2a3f49b47968d84692e87</td><td>New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +<br/>Proceedings of NAACL-HLT 2018, pages 1481–1491 +<br/>1481 +</td><td></td><td></td></tr><tr><td>b49affdff167f5d170da18de3efa6fd6a50262a2</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +<br/>(2008)" +</td><td></td><td></td></tr><tr><td>b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3</td><td>Rapid Face Recognition Using Hashing <br/><b>Australian National University, and NICTA</b><br/><b>Australian National University, and NICTA</b><br/>Canberra, Australia <br/>Canberra, Australia <br/><b>NICTA, and Australian National University</b><br/>Canberra, Australia @@ -9773,7 +11700,23 @@ </td></tr><tr><td>b41374f4f31906cf1a73c7adda6c50a78b4eb498</td><td>This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. <br/>Iterative Gaussianization: From ICA to <br/>Random Rotations -</td><td>('2732577', 'Valero Laparra', 'valero laparra')<br/>('1684246', 'Gustavo Camps-Valls', 'gustavo camps-valls')<br/>('2186866', 'Jesús Malo', 'jesús malo')</td><td></td></tr><tr><td>b4d7ca26deb83cec1922a6964c1193e8dd7270e7</td><td></td><td></td><td></td></tr><tr><td>b40290a694075868e0daef77303f2c4ca1c43269</td><td>第 40 卷 第 4 期 +</td><td>('2732577', 'Valero Laparra', 'valero laparra')<br/>('1684246', 'Gustavo Camps-Valls', 'gustavo camps-valls')<br/>('2186866', 'Jesús Malo', 'jesús malo')</td><td></td></tr><tr><td>b42a97fb47bcd6bfa72e130c08960a77ee96f9ab</td><td>FACIAL EXPRESSION RECOGNITION BASED ON GRAPH-PRESERVING SPARSE +<br/>NON-NEGATIVE MATRIX FACTORIZATION +<br/><b>Institute of Information Science</b><br/><b>Beijing Jiaotong University</b><br/>Beijing 100044, P.R. China +<br/>Qiuqi Ruan +<br/>ACCESS Linnaeus Center +<br/><b>KTH Royal Institute of Technology, Stockholm</b><br/>School of Electrical Engineering +</td><td>('3247912', 'Ruicong Zhi', 'ruicong zhi')<br/>('1749334', 'Markus Flierl', 'markus flierl')</td><td>{05120370, qqruan}@bjtu.edu.cn +<br/>{ruicong, mflierl, bastiaan}@kth.se +</td></tr><tr><td>b4d209845e1c67870ef50a7c37abaf3770563f3e</td><td>GHODRATI, GAVVES, SNOEK: VIDEO TIME +<br/>Video Time: Properties, Encoders and +<br/>Evaluation +<br/>Cees G. M. Snoek +<br/>QUVA Lab +<br/><b>University of Amsterdam</b><br/>Netherlands +</td><td>('3060081', 'Amir Ghodrati', 'amir ghodrati')<br/>('2304222', 'Efstratios Gavves', 'efstratios gavves')</td><td>{a.ghodrati,egavves,cgmsnoek}@uva.nl +</td></tr><tr><td>b4d7ca26deb83cec1922a6964c1193e8dd7270e7</td><td></td><td></td><td></td></tr><tr><td>b4ee64022cc3ccd14c7f9d4935c59b16456067d3</td><td>Unsupervised Cross-Domain Image Generation +</td><td>('40084473', 'Davis Rempe', 'davis rempe')<br/>('9184695', 'Haotian Zhang', 'haotian zhang')</td><td></td></tr><tr><td>b40290a694075868e0daef77303f2c4ca1c43269</td><td>第 40 卷 第 4 期 <br/>2014 年 4 月 <br/>自 动 化 学 报 <br/>ACTA AUTOMATICA SINICA @@ -9813,7 +11756,10 @@ <br/><b>University of Illinois at Urbana-Champaign</b><br/>2 Computer Vision Group, School of Mathematics <br/><b>Institute for studies in theoretical Physics and Mathematics(IPM</b></td><td>('2270286', 'Ali Farhadi', 'ali farhadi')<br/>('1888731', 'Mohsen Hejrati', 'mohsen hejrati')<br/>('21160985', 'Mohammad Amin Sadeghi', 'mohammad amin sadeghi')<br/>('35527128', 'Peter Young', 'peter young')<br/>('3125805', 'Cyrus Rashtchian', 'cyrus rashtchian')<br/>('3118681', 'Julia Hockenmaier', 'julia hockenmaier')</td><td>{afarhad2,pyoung2,crashtc2,juliahmr,daf}@illinois.edu <br/>{m.a.sadeghi,mhejrati}@gmail.com -</td></tr><tr><td>b43b6551ecc556557b63edb8b0dc39901ed0343b</td><td>ICA AND GABOR REPRESENTATION FOR FACIAL EXPRESSION RECOGNITION +</td></tr><tr><td>b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4</td><td>Autonomous Learning Framework Based on Online Hybrid +<br/>Classifier for Multi-view Object Detection in Video +<br/><b>aSchool of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China</b><br/><b>bSchool of Automation, China University of Geosciences, Wuhan, Hubei 430074, China</b><br/><b>cHuizhou School Affiliated to Beijing Normal University, Huizhou 516002, China</b><br/>dNational Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong +<br/><b>University of Science and Technology, Wuhan, 430074, China</b></td><td>('2588731', 'Dapeng Luo', 'dapeng luo')</td><td></td></tr><tr><td>b43b6551ecc556557b63edb8b0dc39901ed0343b</td><td>ICA AND GABOR REPRESENTATION FOR FACIAL EXPRESSION RECOGNITION <br/>I. Buciu C. Kotropoulos <br/>and I. Pitas <br/><b>Aristotle University of Thessaloniki</b></td><td></td><td>GR-54124, Thessaloniki, Box 451, Greece, {nelu,costas,pitas}@zeus.csd.auth.gr @@ -9827,11 +11773,28 @@ <br/>Department of Computer Science <br/><b>University of Texas at Austin</b><br/>May 6, 2011 </td><td>('39573884', 'Andy Luong', 'andy luong')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>aluong@cs.utexas.edu +</td></tr><tr><td>a285b6edd47f9b8966935878ad4539d270b406d1</td><td>Sensors 2011, 11, 9573-9588; doi:10.3390/s111009573 +<br/>OPEN ACCESS +<br/>sensors +<br/>ISSN 1424-8220 +<br/>www.mdpi.com/journal/sensors +<br/>Article +<br/>Facial Expression Recognition Based on Local Binary Patterns +<br/>and Kernel Discriminant Isomap +<br/><b>Taizhou University, Taizhou 317000, China</b><br/><b>School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China</b><br/>Tel.: +86-576-8513-7178; Fax: ++86-576-8513-7178. +<br/>Received: 31 August 2011; in revised form: 27 September 2011 / Accepted: 9 October 2011 / +<br/>Published: 11 October 2011 +</td><td>('48551029', 'Xiaoming Zhao', 'xiaoming zhao')<br/>('1695589', 'Shiqing Zhang', 'shiqing zhang')</td><td>E-Mail: tzczsq@163.com +<br/>* Author to whom correspondence should be addressed; E-Mail: tzxyzxm@163.com; </td></tr><tr><td>a2bd81be79edfa8dcfde79173b0a895682d62329</td><td>Multi-Objective Vehicle Routing Problem Applied to <br/>Large Scale Post Office Deliveries <br/>Zenia <br/><b>aSchool of Technology, University of Campinas</b><br/>Paschoal Marmo, 1888, Limeira, SP, Brazil -</td><td>('1788152', 'Luis A. A. Meira', 'luis a. a. meira')<br/>('37279198', 'Paulo S. Martins', 'paulo s. martins')<br/>('7809605', 'Mauro Menzori', 'mauro menzori')</td><td></td></tr><tr><td>a2eb90e334575d9b435c01de4f4bf42d2464effc</td><td>A NEW SPARSE IMAGE REPRESENTATION +</td><td>('1788152', 'Luis A. A. Meira', 'luis a. a. meira')<br/>('37279198', 'Paulo S. Martins', 'paulo s. martins')<br/>('7809605', 'Mauro Menzori', 'mauro menzori')</td><td></td></tr><tr><td>a2359c0f81a7eb032cff1fe45e3b80007facaa2a</td><td>Towards Structured Analysis of Broadcast Badminton Videos +<br/>C.V.Jawahar +<br/>CVIT, KCIS, IIIT Hyderabad +</td><td>('2964097', 'Anurag Ghosh', 'anurag ghosh')<br/>('48039353', 'Suriya Singh', 'suriya singh')</td><td>{anurag.ghosh, suriya.singh}@research.iiit.ac.in, jawahar@iiit.ac.in +</td></tr><tr><td>a2eb90e334575d9b435c01de4f4bf42d2464effc</td><td>A NEW SPARSE IMAGE REPRESENTATION <br/>ALGORITHM APPLIED TO FACIAL <br/>EXPRESSION RECOGNITION <br/>Ioan Buciu and Ioannis Pitas @@ -9992,6 +11955,12 @@ <br/>from Videos <br/><b>University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam</b></td><td>('2187730', 'Dinh-Luan Nguyen', 'dinh-luan nguyen')<br/>('1780348', 'Minh-Triet Tran', 'minh-triet tran')</td><td>1212223@student.hcmus.edu.vn <br/>tmtriet@fit.hcmus.edu.vn +</td></tr><tr><td>a5f11c132eaab258a7cea2d681875af09cddba65</td><td>A spatiotemporal model with visual attention for +<br/>video classification +<br/>Department of Electrical and Computer Engineering +<br/><b>University of California San Diego, La Jolla, California, USA</b><br/>paper proposes a spatiotemporal model in which CNN and +<br/>RNN are concatenated, as shown in Fig. 1. +</td><td>('2493180', 'Mo Shan', 'mo shan')<br/>('50365495', 'Nikolay Atanasov', 'nikolay atanasov')</td><td>Email: {moshan, natanasov}@eng.ucsd.edu </td></tr><tr><td>a546fd229f99d7fe3cf634234e04bae920a2ec33</td><td>RESEARCH ARTICLE <br/>Fast Fight Detection <br/>1 Department of Systems Engineering and Automation, E.T.S.I. Industriales, Ciudad Real, Castilla-La @@ -10108,7 +12077,9 @@ </td><td>('34703740', 'Jonathan Long', 'jonathan long')</td><td></td></tr><tr><td>a51882cfd0706512bf50e12c0a7dd0775285030d</td><td>Cross-Modal Face Matching: Beyond Viewed <br/>Sketches <br/><b>Beijing University of Posts and Telecommunications, Beijing, China. 2School of</b><br/><b>Electronic Engineering and Computer Science Queen Mary University of London</b><br/>London E1 4NS, United Kingdom -</td><td>('2961830', 'Shuxin Ouyang', 'shuxin ouyang')<br/>('1705408', 'Yi-Zhe Song', 'yi-zhe song')<br/>('7823169', 'Xueming Li', 'xueming li')</td><td></td></tr><tr><td>a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be</td><td></td><td></td><td></td></tr><tr><td>a503eb91c0bce3a83bf6f524545888524b29b166</td><td></td><td></td><td></td></tr><tr><td>a52581a7b48138d7124afc7ccfcf8ec3b48359d0</td><td>http://www.jos.org.cn +</td><td>('2961830', 'Shuxin Ouyang', 'shuxin ouyang')<br/>('1705408', 'Yi-Zhe Song', 'yi-zhe song')<br/>('7823169', 'Xueming Li', 'xueming li')</td><td></td></tr><tr><td>a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be</td><td></td><td></td><td></td></tr><tr><td>a503eb91c0bce3a83bf6f524545888524b29b166</td><td></td><td></td><td></td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>Moments in Time Dataset: one million +<br/>videos for event understanding +</td><td>('2526653', 'Mathew Monfort', 'mathew monfort')<br/>('1804424', 'Bolei Zhou', 'bolei zhou')<br/>('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')<br/>('50112310', 'Alex Andonian', 'alex andonian')<br/>('12082007', 'Tom Yan', 'tom yan')<br/>('40544169', 'Kandan Ramakrishnan', 'kandan ramakrishnan')<br/>('33421444', 'Quanfu Fan', 'quanfu fan')<br/>('1856025', 'Carl Vondrick', 'carl vondrick')<br/>('31735139', 'Aude Oliva', 'aude oliva')</td><td></td></tr><tr><td>a52581a7b48138d7124afc7ccfcf8ec3b48359d0</td><td>http://www.jos.org.cn <br/>Tel/Fax: +86-10-62562563 <br/>ISSN 1000-9825, CODEN RUXUEW <br/>Journal of Software, Vol.17, No.3, March 2006, pp.525−534 @@ -10124,7 +12095,8 @@ <br/>face reconstruction. Journal of Software, 2006,17(3):525−534. http://www.jos.org.cn/1000-9825/17/525.htm </td><td>('2100752', 'GAO Wen', 'gao wen')</td><td>E-mail: jos@iscas.ac.cn <br/>+ Corresponding author: Phn: +86-10-58858300 ext 314, Fax: +86-10-58858301, E-mail: xjchai@jdl.ac.cn, http://www.jdl.ac.cn/ -</td></tr><tr><td>bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4</td><td>Hindawi +</td></tr><tr><td>bd0265ba7f391dc3df9059da3f487f7ef17144df</td><td>Data-Driven Sparse Sensor Placement +<br/><b>University of Washington, Seattle, WA 98195, United States</b><br/><b>University of Washington, Seattle, WA 98195, United States</b><br/><b>University of Washington, Seattle, WA 98195, United States</b></td><td>('37119658', 'Krithika Manohar', 'krithika manohar')<br/>('1824880', 'Bingni W. Brunton', 'bingni w. brunton')<br/>('1937069', 'J. Nathan Kutz', 'j. nathan kutz')<br/>('3083169', 'Steven L. Brunton', 'steven l. brunton')</td><td></td></tr><tr><td>bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4</td><td>Hindawi <br/>Computational Intelligence and Neuroscience <br/>Volume 2018, Article ID 7068349, 13 pages <br/>https://doi.org/10.1155/2018/7068349 @@ -10155,6 +12127,10 @@ <br/>GUANG.GDAI@GMAIL.COM <br/>XUCONGFU@ZJU.EDU.CN <br/>JORDAN@CS.BERKELEY.EDU +</td></tr><tr><td>bd0e100a91ff179ee5c1d3383c75c85eddc81723</td><td>Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action +<br/>Detection∗ +<br/><b>Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm</b><br/><b>Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of</b><br/><b>Tokyo, Tokyo, 6National Institute of Informatics, Tokyo</b></td><td>('39393520', 'Mohammadamin Barekatain', 'mohammadamin barekatain')<br/>('19185012', 'Hsueh-Fu Shih', 'hsueh-fu shih')<br/>('47427148', 'Samuel Murray', 'samuel murray')<br/>('1943224', 'Kotaro Nakayama', 'kotaro nakayama')<br/>('47972365', 'Yutaka Matsuo', 'yutaka matsuo')<br/>('2356111', 'Helmut Prendinger', 'helmut prendinger')</td><td>m.barekatain@tum.de, miquelmr@kth.se, r03945026@ntu.edu.tw, samuelmu@kth.se, +<br/>nakayama@weblab.t.u-tokyo.ac.jp, matsuo@weblab.t.u-tokyo.ac.jp, helmut@nii.ac.jp </td></tr><tr><td>bd8f3fef958ebed5576792078f84c43999b1b207</td><td>BUAA-iCC at ImageCLEF 2015 Scalable <br/>Concept Image Annotation Challenge <br/><b>Intelligent Recognition and Image Processing Lab, Beihang University, Beijing</b><br/>100191, P.R.China @@ -10179,19 +12155,39 @@ <br/>---------------------------------------------------------------------***--------------------------------------------------------------------- </td><td>('3124644', 'Florica Moldoveanu', 'florica moldoveanu')</td><td></td></tr><tr><td>bd8e2d27987be9e13af2aef378754f89ab20ce10</td><td></td><td></td><td></td></tr><tr><td>bd236913cfe07896e171ece9bda62c18b8c8197e</td><td>Deep Learning with Energy-efficient Binary Gradient Cameras <br/>∗NVIDIA, -<br/><b>Carnegie Mellon University</b></td><td>('39131476', 'Suren Jayasuriya', 'suren jayasuriya')<br/>('39775678', 'Orazio Gallo', 'orazio gallo')<br/>('2931118', 'Jinwei Gu', 'jinwei gu')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td></td></tr><tr><td>bd13f50b8997d0733169ceba39b6eb1bda3eb1aa</td><td>Occlusion Coherence: Detecting and Localizing Occluded Faces -<br/><b>University of California at Irvine, Irvine, CA</b></td><td>('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')<br/>('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')</td><td></td></tr><tr><td>bd8b7599acf53e3053aa27cfd522764e28474e57</td><td>Learning Long Term Face Aging Patterns +<br/><b>Carnegie Mellon University</b></td><td>('39131476', 'Suren Jayasuriya', 'suren jayasuriya')<br/>('39775678', 'Orazio Gallo', 'orazio gallo')<br/>('2931118', 'Jinwei Gu', 'jinwei gu')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td></td></tr><tr><td>bd379f8e08f88729a9214260e05967f4ca66cd65</td><td>Learning Compositional Visual Concepts with Mutual Consistency +<br/><b>School of Electrical and Computer Engineering, Cornell University, Ithaca NY</b><br/><b>Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca NY</b><br/>3Siemens Corporate Technology, Princeton NJ +<br/>Figure 1: We propose ConceptGAN, a framework that can jointly learn, transfer and compose concepts to generate semantically meaningful +<br/>images, even in subdomains with no training data (highlighted) while the state-of-the-art methods such as CycleGAN [49] fail to do so. +</td><td>('3303727', 'Yunye Gong', 'yunye gong')<br/>('1976152', 'Srikrishna Karanam', 'srikrishna karanam')<br/>('3311781', 'Ziyan Wu', 'ziyan wu')<br/>('2692770', 'Kuan-Chuan Peng', 'kuan-chuan peng')<br/>('39497207', 'Jan Ernst', 'jan ernst')<br/>('1767099', 'Peter C. Doerschuk', 'peter c. doerschuk')</td><td>{yg326,pd83}@cornell.edu,{first.last}@siemens.com +</td></tr><tr><td>bd13f50b8997d0733169ceba39b6eb1bda3eb1aa</td><td>Occlusion Coherence: Detecting and Localizing Occluded Faces +<br/><b>University of California at Irvine, Irvine, CA</b></td><td>('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')<br/>('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')</td><td></td></tr><tr><td>bd21109e40c26af83c353a3271d0cd0b5c4b4ade</td><td>Attentive Sequence to Sequence Translation for Localizing Clips of Interest +<br/>by Natural Language Descriptions +<br/><b>Zhejiang University</b><br/><b>University of Technology Sydney</b><br/><b>Zhejiang University</b><br/><b>University of Technology Sydney</b><br/><b>Hikvision Research Institute</b></td><td>('1819984', 'Ke Ning', 'ke ning')<br/>('2948393', 'Linchao Zhu', 'linchao zhu')<br/>('50140409', 'Ming Cai', 'ming cai')<br/>('1698559', 'Yi Yang', 'yi yang')<br/>('2603725', 'Di Xie', 'di xie')</td><td>ningke@zju.edu.cn +<br/>zhulinchao7@gmail.com +<br/>Yi.Yang@uts.edu.au +<br/>xiedi@hikvision.com +</td></tr><tr><td>bd8b7599acf53e3053aa27cfd522764e28474e57</td><td>Learning Long Term Face Aging Patterns <br/>from Partially Dense Aging Databases <br/>Jinli Suo1,2,3 <br/><b>Graduate University of Chinese Academy of Sciences(CAS), 100190, China</b><br/>2Key Lab of Intelligent Information Processing of CAS, <br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>Lotus Hill Institute for Computer Vision and Information Science, 436000, China</b><br/><b>School of Electronic Engineering and Computer Science, Peking University, 100871, China</b></td><td>('1698902', 'Wen Gao', 'wen gao')<br/>('1710220', 'Xilin Chen', 'xilin chen')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')</td><td>wgao@pku.edu.cn <br/>jlsuo@jdl.ac.cn <br/>{xlchen,sgshan}@ict.ac.cn +</td></tr><tr><td>bd8f77b7d3b9d272f7a68defc1412f73e5ac3135</td><td>SphereFace: Deep Hypersphere Embedding for Face Recognition +<br/><b>Georgia Institute of Technology</b><br/><b>Carnegie Mellon University</b><br/><b>Sun Yat-Sen University</b></td><td>('36326884', 'Weiyang Liu', 'weiyang liu')<br/>('1751019', 'Zhiding Yu', 'zhiding yu')<br/>('1779453', 'Le Song', 'le song')</td><td>wyliu@gatech.edu, {yandongw,yzhiding}@andrew.cmu.edu, lsong@cc.gatech.edu +</td></tr><tr><td>bd26dabab576adb6af30484183c9c9c8379bf2e0</td><td>SCUT-FBP: A Benchmark Dataset for +<br/>Facial Beauty Perception +<br/>School of Electronic and Information Engineering +<br/><b>South China University of Technology, Guangzhou 510640, China</b></td><td>('2361818', 'Duorui Xie', 'duorui xie')<br/>('2521432', 'Lingyu Liang', 'lingyu liang')<br/>('1703322', 'Lianwen Jin', 'lianwen jin')<br/>('1720015', 'Jie Xu', 'jie xu')<br/>('4997446', 'Mengru Li', 'mengru li')</td><td>*Email: lianwen.jin@gmail.com </td></tr><tr><td>bd78a853df61d03b7133aea58e45cd27d464c3cf</td><td>A Sparse Representation Approach to Facial <br/>Expression Recognition Based on LBP plus LFDA <br/>Computer science and Engineering Department, <br/><b>Government College of Engineering, Aurangabad [Autonomous</b><br/>Station Road, Aurangabad, Maharashtra, India. -</td><td></td><td></td></tr><tr><td>bd2d7c7f0145028e85c102fe52655c2b6c26aeb5</td><td>Attribute-based People Search: Lessons Learnt from a +</td><td></td><td></td></tr><tr><td>bd9c9729475ba7e3b255e24e7478a5acb393c8e9</td><td>Interpretable Partitioned Embedding for Customized Fashion Outfit +<br/>Composition +<br/><b>Zhejiang University, Hangzhou, China</b><br/><b>Arizona State University, Phoenix, Arizona</b><br/>♭Alibaba Group, Hangzhou, China +</td><td>('7357719', 'Zunlei Feng', 'zunlei feng')<br/>('46218293', 'Zhenyun Yu', 'zhenyun yu')<br/>('7607499', 'Yezhou Yang', 'yezhou yang')<br/>('9633703', 'Yongcheng Jing', 'yongcheng jing')<br/>('46179768', 'Junxiao Jiang', 'junxiao jiang')<br/>('1727111', 'Mingli Song', 'mingli song')</td><td></td></tr><tr><td>bd2d7c7f0145028e85c102fe52655c2b6c26aeb5</td><td>Attribute-based People Search: Lessons Learnt from a <br/>Practical Surveillance System <br/>Rogerio Feris <br/>IBM Watson @@ -10206,6 +12202,56 @@ <br/>sharat@us.ibm.com </td></tr><tr><td>bd9157331104a0708aa4f8ae79b7651a5be797c6</td><td>SLAC: A Sparsely Labeled Dataset for Action Classification and Localization <br/><b>Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College</b></td><td>('1683002', 'Hang Zhao', 'hang zhao')<br/>('3305169', 'Zhicheng Yan', 'zhicheng yan')<br/>('1804138', 'Heng Wang', 'heng wang')<br/>('1732879', 'Lorenzo Torresani', 'lorenzo torresani')<br/>('1690178', 'Antonio Torralba', 'antonio torralba')</td><td>{hangzhao, torralba}@mit.edu, {zyan3, hengwang, torresani}@fb.com +</td></tr><tr><td>bdbba95e5abc543981fb557f21e3e6551a563b45</td><td>International Journal of Computational Intelligence and Applications +<br/>Vol. 17, No. 2 (2018) 1850008 (15 pages) +<br/>#.c The Author(s) +<br/>DOI: 10.1142/S1469026818500086 +<br/>Speeding up the Hyperparameter Optimization of Deep +<br/>Convolutional Neural Networks +<br/>Knowledge Technology, Department of Informatics +<br/>Universit€at Hamburg +<br/>Vogt-K€olln-Str. 30, Hamburg 22527, Germany +<br/>Received 15 August 2017 +<br/>Accepted 23 March 2018 +<br/>Published 18 June 2018 +<br/>Most learning algorithms require the practitioner to manually set the values of many hyper- +<br/>parameters before the learning process can begin. However, with modern algorithms, the +<br/>evaluation of a given hyperparameter setting can take a considerable amount of time and the +<br/>search space is often very high-dimensional. We suggest using a lower-dimensional represen- +<br/>tation of the original data to quickly identify promising areas in the hyperparameter space. This +<br/>information can then be used to initialize the optimization algorithm for the original, higher- +<br/>dimensional data. We compare this approach with the standard procedure of optimizing the +<br/>hyperparameters only on the original input. +<br/>We perform experiments with various state-of-the-art hyperparameter optimization algo- +<br/>rithms such as random search, the tree of parzen estimators (TPEs), sequential model-based +<br/>algorithm con¯guration (SMAC), and a genetic algorithm (GA). Our experiments indicate that +<br/>it is possible to speed up the optimization process by using lower-dimensional data repre- +<br/>sentations at the beginning, while increasing the dimensionality of the input later in the opti- +<br/>mization process. This is independent of the underlying optimization procedure, making the +<br/>approach promising for many existing hyperparameter optimization algorithms. +<br/>Keywords: Hyperparameter optimization; hyperparameter importance; convolutional neural +<br/>networks; genetic algorithm; Bayesian optimization. +<br/>1. Introduction +<br/>The performance of many contemporary machine learning algorithms depends cru- +<br/>cially on the speci¯c initialization of hyperparameters such as the general architec- +<br/>ture, the learning rate, regularization parameters, and many others.1,2 Indeed, +<br/>This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under +<br/>the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is +<br/>permitted, provided the original work is properly cited. +<br/>1850008-1 +<br/>Int. J. Comp. Intel. Appl. 2018.17. Downloaded from www.worldscientific.comby WSPC on 07/18/18. Re-use and distribution is strictly not permitted, except for Open Access articles.</td><td>('11634287', 'Tobias Hinz', 'tobias hinz')<br/>('2632932', 'Sven Magg', 'sven magg')<br/>('1736513', 'Stefan Wermter', 'stefan wermter')</td><td>*hinz@informatik.uni-hamburg.de +<br/>†navarro@informatik.uni-hamburg.de +<br/>‡magg@informatik.uni-hamburg.de +<br/>wermter@informatik.uni-hamburg.de +</td></tr><tr><td>bd70f832e133fb87bae82dfaa0ae9d1599e52e4b</td><td>Combining Classifier for Face Identification +<br/><b>HCI Lab., Samsung Advanced Institute of Technology, Yongin, Korea</b><br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK</b></td><td>('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td>taekyun@sait.samsung.co.kr +<br/>J.Kittler@surrey.ac.uk +</td></tr><tr><td>d1dfdc107fa5f2c4820570e369cda10ab1661b87</td><td>Super SloMo: High Quality Estimation of Multiple Intermediate Frames +<br/>for Video Interpolation +<br/>Erik Learned-Miller1 +<br/>1UMass Amherst +<br/>2NVIDIA 3UC Merced +</td><td>('40175280', 'Huaizu Jiang', 'huaizu jiang')<br/>('3232265', 'Deqing Sun', 'deqing sun')<br/>('2745026', 'Varun Jampani', 'varun jampani')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td>{hzjiang,elm}@cs.umass.edu,{deqings,vjampani,jkautz}@nvidia.com, mhyang@ucmerced.edu </td></tr><tr><td>d185f4f05c587e23c0119f2cdfac8ea335197ac0</td><td> 33 <br/>Chapter III <br/>Facial Expression Analysis, @@ -10235,7 +12281,9 @@ <br/><b>Swansea University</b><br/>Singleton Park, Swansea SA2 8PP, United Kingdom <br/>http://csvision.swan.ac.uk </td><td>('6248353', 'Jingjing Deng', 'jingjing deng')<br/>('2168049', 'Xianghua Xie', 'xianghua xie')<br/>('13154093', 'Michael Edwards', 'michael edwards')</td><td>*x.xie@swansea.ac.uk -</td></tr><tr><td>d122d66c51606a8157a461b9d7eb8b6af3d819b0</td><td>Vol-3 Issue-4 2017 +</td></tr><tr><td>d1a43737ca8be02d65684cf64ab2331f66947207</td><td>IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3) +<br/>Kevin O’Connor z +</td><td>('1718102', 'Nathan D. Kalka', 'nathan d. kalka')<br/>('48889427', 'Stephen Elliott', 'stephen elliott')<br/>('8033275', 'Brianna Maze', 'brianna maze')<br/>('40205896', 'James A. Duncan', 'james a. duncan')<br/>('40577714', 'Julia Bryan', 'julia bryan')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>d122d66c51606a8157a461b9d7eb8b6af3d819b0</td><td>Vol-3 Issue-4 2017 <br/>IJARIIE-ISSN(O)-2395-4396 <br/>AUTOMATED RECOGNITION OF FACIAL <br/>EXPRESSIONS @@ -10267,7 +12315,10 @@ </td></tr><tr><td>d1881993c446ea693bbf7f7d6e750798bf958900</td><td>Large-Scale YouTube-8M Video Understanding with Deep Neural Networks <br/><b>Institute for System Programming</b><br/><b>Institute for System Programming</b><br/>ispras.ru </td><td>('34125461', 'Manuk Akopyan', 'manuk akopyan')<br/>('19228325', 'Eshsou Khashba', 'eshsou khashba')</td><td>manuk@ispras.ru -</td></tr><tr><td>d61578468d267c2d50672077918c1cda9b91429b</td><td>Available Online at www.ijcsmc.com +</td></tr><tr><td>d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576</td><td>Neural Face Editing with Intrinsic Image Disentangling +<br/><b>Stony Brook University 2Adobe Research 3 CentraleSup elec, Universit e Paris-Saclay</b></td><td>('2496409', 'Zhixin Shu', 'zhixin shu')</td><td>1{zhshu,samaras}@cs.stonybrook.edu +<br/>2{yumer,hadap,sunkaval,elishe}@adobe.com +</td></tr><tr><td>d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0</td><td></td><td></td><td></td></tr><tr><td>d61578468d267c2d50672077918c1cda9b91429b</td><td>Available Online at www.ijcsmc.com <br/>International Journal of Computer Science and Mobile Computing <br/> A Monthly Journal of Computer Science and Information Technology <br/>ISSN 2320–088X @@ -10285,9 +12336,14 @@ <br/>tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any me- <br/>dium, provided the original work is properly cited. </td><td></td><td>Email: *kathirvalavakumar@yahoo.com, jebaarul07@yahoo.com -</td></tr><tr><td>d647099e571f9af3a1762f895fd8c99760a3916e</td><td>Exploring Facial Expressions with Compositional Features +</td></tr><tr><td>d69719b42ee53b666e56ed476629a883c59ddf66</td><td>Learning Facial Action Units from Web Images with +<br/>Scalable Weakly Supervised Clustering +<br/>Aleix M. Martinez3 +<br/><b>School of Comm. and Info. Engineering, Beijing University of Posts and Telecom</b><br/><b>Robotics Institute, Carnegie Mellon University</b><br/><b>The Ohio State University</b></td><td>('2393320', 'Kaili Zhao', 'kaili zhao')</td><td></td></tr><tr><td>d647099e571f9af3a1762f895fd8c99760a3916e</td><td>Exploring Facial Expressions with Compositional Features <br/><b>Rutgers University</b><br/>110 Frelinghuysen Road, Piscataway, NJ 08854, USA </td><td>('39606160', 'Peng Yang', 'peng yang')<br/>('1734954', 'Qingshan Liu', 'qingshan liu')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>peyang@cs.rutgers.edu, qsliu@cs.rutgers.edu, dnm@cs.rutgers.edu +</td></tr><tr><td>d69271c7b77bc3a06882884c21aa1b609b3f76cc</td><td>FaceBoxes: A CPU Real-time Face Detector with High Accuracy +<br/><b>CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, China</b></td><td>('3220556', 'Shifeng Zhang', 'shifeng zhang')</td><td>{shifeng.zhang,xiangyu.zhu,zlei,hailin.shi,xiaobo.wang,szli}@nlpr.ia.ac.cn </td></tr><tr><td>d6a9ea9b40a7377c91c705f4c7f206a669a9eea2</td><td>Visual Representations for Fine-grained <br/>Categorization <br/>Electrical Engineering and Computer Sciences @@ -10419,15 +12475,150 @@ <br/>naturalistic driving data largely due to concerns over indi- <br/>vidual privacy. Camera sensors looking at a driver, which </td><td>('1841835', 'Sujitha Martin', 'sujitha martin')<br/>('1713989', 'Mohan M. Trivedi', 'mohan m. trivedi')</td><td>scmartin@ucsd.edu, mtrivedi@ucsd.edu -</td></tr><tr><td>d6fb606e538763282e3942a5fb45c696ba38aee6</td><td></td><td></td><td></td></tr><tr><td>bcee40c25e8819955263b89a433c735f82755a03</td><td>Biologically inspired vision for human-robot +</td></tr><tr><td>d666ce9d783a2d31550a8aa47da45128a67304a7</td><td>On Relating Visual Elements to City Statistics +<br/><b>University of California, Berkeley</b><br/>Maneesh Agrawala† +<br/><b>University of California, Berkeley</b><br/><b>University of California, Berkeley</b><br/>(c) Visual Elements for Thefts in San Francisco +<br/>(a) Predicted High Theft Location in Oakland +<br/>(b) Predicted Low Theft Location in Oakland +<br/>(d) Predicted Theft Rate in Oakland +<br/>Figure 1: Our system automatically computes a predictor from a set of Google StreetView images of areas where a statistic was observed. In this example +<br/>we use a predictor generated from reports of theft in San Francisco to predict the probability of thefts occurring in Oakland. Our system can predict high +<br/>theft rate areas (a) and low theft rates area (b) based solely on street-level images from the areas. Visually, the high theft area exhibits a marked quality of +<br/>disrepair (bars on the windows, unkempt facades, etc), a visual cue that the probability of theft is likely higher. Our method automatically computes machine +<br/>learning models that detect visual elements similar to these cues (c) from San Francisco. To compute predictions, we use the models to detect the presence of +<br/>these visual elements in an image and combine all of the detections according to an automatically learned set of weights. Our resulting predictions are 63% +<br/>accurate in this case and can be computed everywhere in Oakland (d) as they only rely on images as input. +</td><td>('2288243', 'Sean M. Arietta', 'sean m. arietta')<br/>('1752236', 'Ravi Ramamoorthi', 'ravi ramamoorthi')</td><td></td></tr><tr><td>d6fb606e538763282e3942a5fb45c696ba38aee6</td><td></td><td></td><td></td></tr><tr><td>bcee40c25e8819955263b89a433c735f82755a03</td><td>Biologically inspired vision for human-robot <br/>interaction <br/>M. Saleiro, M. Farrajota, K. Terzi´c, S. Krishna, J.M.F. Rodrigues, and J.M.H. <br/>du Buf <br/><b>Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal</b></td><td></td><td>{masaleiro, mafarrajota, kterzic, jrodrig, dubuf}@ualg.pt, <br/>saikrishnap2003@gmail.com, -</td></tr><tr><td>bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9</td><td>Using Deep Autoencoders for Facial Expression +</td></tr><tr><td>bc6de183cd8b2baeebafeefcf40be88468b04b74</td><td>Age Group Recognition using Human Facial Images +<br/>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 126 – No.13, September 2015 +<br/>Dept. of Electronics and Telecommunication +<br/><b>Government College of Engineering</b><br/>Aurangabad, Maharashtra, India +</td><td>('31765215', 'Shailesh S. Kulkarni', 'shailesh s. kulkarni')</td><td></td></tr><tr><td>bcf19b964e7d1134d00332cf1acf1ee6184aff00</td><td>1922 +<br/>IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017 +<br/>LETTER +<br/>Trajectory-Set Feature for Action Recognition +<br/>SUMMARY We propose a feature for action recognition called +<br/>Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT). +<br/>The TS feature encodes only trajectories around densely sampled inter- +<br/>est points, without any appearance features. Experimental results on the +<br/>UCF50 action dataset demonstrates that TS is comparable to state-of-the- +<br/>arts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by +<br/>iDT. +<br/>key words: action recognition, trajectory, improved Dense Trajectory +<br/>the two-stream CNN [2] that uses a single frame and a opti- +<br/>cal flow stack. In their paper stacking trajectories was also +<br/>reported but did not perform well, probably the sparseness +<br/>of trajectories does not fit to CNN architectures. In contrast, +<br/>we take a hand-crafted approach that can be fused later with +<br/>CNN outputs. +<br/>1. +<br/>Introduction +<br/>Action recognition has been well studied in the computer +<br/>vision literature [1] because it is an important and challeng- +<br/>ing task. Deep learning approaches have been proposed +<br/>recently [2]–[4], however still a hand-crafted feature, im- +<br/>proved Dense Trajectory (iDT) [5], [6], is comparable in +<br/>performance. Moreover, top performances of deep learn- +<br/>ing approaches are obtained by combining the iDT fea- +<br/>ture [3], [7], [8]. +<br/>In this paper, we propose a novel hand-crafted feature +<br/>for action recognition, called Trajectory-Set (TS), that en- +<br/>codes trajectories in a local region of a video. The con- +<br/>tribution of this paper is summarized as follows. We pro- +<br/>pose another hand-crafted feature that can be combined with +<br/>deep learning approaches. Hand-crafted features are com- +<br/>plement to deep learning approaches, however a little effort +<br/>has been done in this direction after iDT. Second, the pro- +<br/>posed TS feature focuses on the better handling of motions +<br/>in the scene. The iDT feature uses trajectories of densely +<br/>samples interest points in a simple way, while we explore +<br/>here the way to extract a rich information from trajectories. +<br/>The proposed TS feature is complement to appearance in- +<br/>formation such as HOG and objects in the scene, which can +<br/>be computed separately and combined afterward in a late +<br/>fusion fashion. +<br/>There are two relate works relevant to our work. One +<br/>is trajectons [9] that uses a global dictionary of trajectories +<br/>in a video to cluster representative trajectories as snippets. +<br/>Our TS feature is computed locally, not globally, inspired +<br/>by the success of local image descriptors [10]. The other is +<br/>Manuscript received March 2, 2017. +<br/>Manuscript revised April 27, 2017. +<br/>Manuscript publicized May 10, 2017. +<br/><b>The authors are with Hiroshima University, Higashihiroshima</b><br/>shi, 739–8527 Japan. +<br/>DOI: 10.1587/transinf.2017EDL8049 +<br/>2. Dense Trajectory +<br/>Here we briefly summarize the improved dense trajectory +<br/>(iDT) [6] on which we base for the proposed method. First, +<br/>the image pyramid for a particular frame at time t in a video +<br/>is constructed, and interest points are densely sampled at +<br/>each level of the pyramid. Next, interest points are tracked +<br/>in the following L frames (L = 15 by default). Then, the +<br/>iDT is computed by using local features such as HOG (His- +<br/>togram of Oriented Gradient) [10], HOF (Histogram of Op- +<br/>tical Flow), and MBH (Motion Boundary Histograms) [11] +<br/>along the trajectory tube; a stack of patches centered at the +<br/>trajectory in the frames. +<br/>, pt1 +<br/>In fact, Tt0,tL +<br/>For example, between two points in time t0 and tL, a +<br/>, . . . , ptL in frames {t0, t1, +<br/>trajectory Tt0,tL has points pt0 +<br/>. . . , tL}. +<br/>is a vector of displacement be- +<br/>tween frames rather than point coordinates, that is, Tt0,tL +<br/>(v0, v1, . . . , vL−1) where vi = pi−1 − pi. Local features such as +<br/>HOGti are computed with a patch centered at pti in frame at +<br/>time ti. +<br/>To improve the performance, the global motion is re- +<br/>moved by computing homography, and background trajec- +<br/>tories are removed by using a people detector. The Fisher +<br/>vector encoding [12] is used to compute an iDT feature of a +<br/>video. +<br/>3. Proposed Trajectory-Set Feature +<br/>We think that extracted trajectories might have rich informa- +<br/>tion discriminative enough for classifying different actions, +<br/>even although trajectories have no appearance information. +<br/>As shown in Fig. 1, different actions are expected to have +<br/>different trajectories, regardless of appearance, texture, or +<br/>shape of the video frame contents. However a single trajec- +<br/>tory Tt0,tL may be severely affected by inaccurate tracking +<br/>results and an irregular motion in the frame. +<br/>We instead propose to aggregate nearby trajectories to +<br/>form a Trajectory-Set (TS) feature. First, a frame is divided +<br/>into non-overlapping cells of M × M pixels as shown in +<br/><b>Copyright c(cid:2) 2017 The Institute of Electronics, Information and Communication Engineers</b></td><td>('47916686', 'Kenji Matsui', 'kenji matsui')<br/>('1744862', 'Toru Tamaki', 'toru tamaki')<br/>('1688940', 'Bisser Raytchev', 'bisser raytchev')<br/>('1686272', 'Kazufumi Kaneda', 'kazufumi kaneda')</td><td>a) E-mail: tamaki@hiroshima-u.ac.jp +</td></tr><tr><td>bc9003ad368cb79d8a8ac2ad025718da5ea36bc4</td><td>Technische Universit¨at M¨unchen +<br/>Bildverstehen und Intelligente Autonome Systeme +<br/>Facial Expression Recognition With A +<br/>Three-Dimensional Face Model +<br/>Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Informatik der Technischen Uni- +<br/>versit¨at M¨unchen zur Erlangung des akademischen Grades eines +<br/>Doktors der Naturwissenschaften +<br/>genehmigten Dissertation. +<br/>Vorsitzender: +<br/>Univ.-Prof. Dr. Johann Schlichter +<br/>Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. Bernd Radig (i.R.) +<br/>2. Univ.-Prof. Gudrun J. Klinker, Ph.D. +<br/>Die Dissertation wurde am 04.07.2011 bei der Technischen Universit¨at M¨unchen +<br/>eingereicht und durch die Fakult¨at f¨ur Informatik am 02.12.2011 angenommen. +</td><td>('50565622', 'Christoph Mayer', 'christoph mayer')</td><td></td></tr><tr><td>bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9</td><td>Using Deep Autoencoders for Facial Expression <br/>Recognition <br/><b>COMSATS Institute of Information Technology, Islamabad</b><br/><b>Information Technology University (ITU), Punjab, Lahore, Pakistan</b><br/><b>National University of Sciences and Technology (NUST), Islamabad, Pakistan</b></td><td>('24040678', 'Siddique Latif', 'siddique latif')<br/>('1734917', 'Junaid Qadir', 'junaid qadir')</td><td>engr.ussman@gmail.com, slatif.msee15seecs@seecs.edu.pk, junaid.qadir@itu.edu.pk +</td></tr><tr><td>bcc346f4a287d96d124e1163e4447bfc47073cd8</td><td></td><td></td><td></td></tr><tr><td>bc27434e376db89fe0e6ef2d2fabc100d2575ec6</td><td>Faceless Person Recognition; +<br/>Privacy Implications in Social Media +<br/><b>Max-Planck Institute for Informatics</b><br/>Person A training samples. +<br/>Is this person A ? +<br/>Fig. 1: An illustration of one of the scenarios considered: can a vision system +<br/>recognise that the person in the right image is the same as the tagged person in +<br/>the left images, even when the head is obfuscated? +</td><td>('2390510', 'Seong Joon Oh', 'seong joon oh')<br/>('1798000', 'Rodrigo Benenson', 'rodrigo benenson')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td>{joon, benenson, mfritz, schiele}@mpi-inf.mpg.de </td></tr><tr><td>bcc172a1051be261afacdd5313619881cbe0f676</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>2197 <br/>ICASSP 2017 @@ -10456,7 +12647,21 @@ </td><td>('3817476', 'Shouyi Yin', 'shouyi yin')<br/>('34585208', 'Xu Dai', 'xu dai')<br/>('12263637', 'Peng Ouyang', 'peng ouyang')<br/>('1743798', 'Leibo Liu', 'leibo liu')<br/>('1803672', 'Shaojun Wei', 'shaojun wei')</td><td>E-Mails: daixu@gmail.com (X.D.); oyangpeng12@163.com (P.O.); liulb@tsinghua.edu.cn (L.L.); <br/>wsj@tsinghua.edu.cn (S.W.) <br/>* Author to whom correspondence should be addressed; E-Mail: yinsy@tsinghua.edu.cn; -</td></tr><tr><td>bcb99d5150d792001a7d33031a3bd1b77bea706b</td><td></td><td></td><td></td></tr><tr><td>bc98027b331c090448492eb9e0b9721e812fac84</td><td>Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273 +</td></tr><tr><td>bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Deep Learning for Fixed Model Reuse∗ +<br/><b>National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China</b><br/>Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, 210023, China +</td><td>('1708973', 'Yang Yang', 'yang yang')<br/>('1721819', 'De-Chuan Zhan', 'de-chuan zhan')<br/>('3750883', 'Ying Fan', 'ying fan')<br/>('2192443', 'Yuan Jiang', 'yuan jiang')<br/>('1692625', 'Zhi-Hua Zhou', 'zhi-hua zhou')</td><td>{yangy, zhandc, fany, jiangy, zhouzh}@lamda.nju.edu.cn +</td></tr><tr><td>bcb99d5150d792001a7d33031a3bd1b77bea706b</td><td></td><td></td><td></td></tr><tr><td>bc811a66855aae130ca78cd0016fd820db1603ec</td><td>Towards three-dimensional face recognition in the real +<br/>To cite this version: +<br/>HAL Id: tel-00998798 +<br/>https://tel.archives-ouvertes.fr/tel-00998798 +<br/>Submitted on 2 Jun 2014 +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>teaching and research institutions in France or +<br/>destin´ee au d´epˆot et `a la diffusion de documents +<br/>recherche fran¸cais ou ´etrangers, des laboratoires +</td><td>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')<br/>('47144044', 'Li', 'li')</td><td></td></tr><tr><td>bc98027b331c090448492eb9e0b9721e812fac84</td><td>Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273 <br/>http://dx.doi.org/10.4236/jilsa.2012.44027 Published Online November 2012 (http://www.SciRP.org/journal/jilsa) <br/>Face Representation Using Combined Method of Gabor <br/>Filters, Wavelet Transformation and DCV and Recognition @@ -10464,6 +12669,11 @@ <br/><b>VHNSN College, Virudhunagar, ANJA College</b><br/>Sivakasi, India. <br/>Received April 27th, 2012; revised July 19th, 2012; accepted July 26th, 2012 </td><td>('39000426', 'Kathirvalavakumar Thangairulappan', 'kathirvalavakumar thangairulappan')<br/>('15392239', 'Jebakumari Beulah Vasanthi Jeyasingh', 'jebakumari beulah vasanthi jeyasingh')</td><td>Email: *kathirvalavakumar@yahoo.com, jebaarul07@yahoo.com +</td></tr><tr><td>bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab</td><td>MoCoGAN: Decomposing Motion and Content for Video Generation +<br/>Snap Research +<br/>NVIDIA +</td><td>('1715440', 'Sergey Tulyakov', 'sergey tulyakov')<br/>('9536217', 'Ming-Yu Liu', 'ming-yu liu')<br/>('50030951', 'Xiaodong Yang', 'xiaodong yang')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td>stulyakov@snap.com +<br/>{mingyul,xiaodongy,jkautz}@nvidia.com </td></tr><tr><td>bcac3a870501c5510df80c2a5631f371f2f6f74a</td><td>CVPR <br/>#1387 <br/>000 @@ -10526,15 +12736,38 @@ <br/>Structured Face Hallucination <br/>Anonymous CVPR submission <br/>Paper ID 1387 -</td><td></td><td></td></tr><tr><td>aed321909bb87c81121c841b21d31509d6c78f69</td><td></td><td></td><td></td></tr><tr><td>ae936628e78db4edb8e66853f59433b8cc83594f</td><td></td><td></td><td></td></tr><tr><td>ae0765ebdffffd6e6cc33c7705df33b7e8478627</td><td>Self-Reinforced Cascaded Regression for Face Alignment +</td><td></td><td></td></tr><tr><td>ae8d5be3caea59a21221f02ef04d49a86cb80191</td><td>Published as a conference paper at ICLR 2018 +<br/>SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +<br/>RECURRENT NEURAL NETWORKS +<br/>†Barcelona Supercomputing Center, ‡Google Inc, +<br/><b>Universitat Polit`ecnica de Catalunya, Columbia University</b></td><td>('2447185', 'Brendan Jou', 'brendan jou')<br/>('1711068', 'Jordi Torres', 'jordi torres')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td>{victor.campos, jordi.torres}@bsc.es, bjou@google.com, +<br/>xavier.giro@upc.edu, shih.fu.chang@columbia.edu +</td></tr><tr><td>aed321909bb87c81121c841b21d31509d6c78f69</td><td></td><td></td><td></td></tr><tr><td>ae936628e78db4edb8e66853f59433b8cc83594f</td><td></td><td></td><td></td></tr><tr><td>ae0765ebdffffd6e6cc33c7705df33b7e8478627</td><td>Self-Reinforced Cascaded Regression for Face Alignment <br/><b>DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China</b><br/>2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China <br/><b>School of Mathematical Science, Dalian University of Technology, Dalian, China</b></td><td>('1710408', 'Xin Fan', 'xin fan')<br/>('34469457', 'Risheng Liu', 'risheng liu')<br/>('3453975', 'Kang Huyan', 'kang huyan')<br/>('3013708', 'Yuyao Feng', 'yuyao feng')<br/>('7864960', 'Zhongxuan Luo', 'zhongxuan luo')</td><td>{xin.fan, rsliu, zxluo}@dlut.edu.cn, huyankang@hotmail.com yyaofeng@gmail.com </td></tr><tr><td>aefc7c708269b874182a5c877fb6dae06da210d4</td><td>Deep Learning of Invariant Features via Simulated <br/>Fixations in Video <br/><b>Stanford University, CA</b><br/><b>Stanford University, CA</b><br/><b>NEC Laboratories America, Inc., Cupertino, CA</b></td><td>('2860351', 'Will Y. Zou', 'will y. zou')<br/>('1682028', 'Shenghuo Zhu', 'shenghuo zhu')<br/>('1701538', 'Andrew Y. Ng', 'andrew y. ng')<br/>('38701713', 'Kai Yu', 'kai yu')</td><td>{wzou, ang}@cs.stanford.edu <br/>{zsh, kyu}@sv.nec-labs.com -</td></tr><tr><td>aebb9649bc38e878baef082b518fa68f5cda23a5</td><td> -</td><td></td><td></td></tr><tr><td>ae5bb02599244d6d88c4fe466a7fdd80aeb91af4</td><td>Analysis of Recognition Algorithms using Linear, Generalized Linear, and +</td></tr><tr><td>ae2cf545565c157813798910401e1da5dc8a6199</td><td>Mahkonen et al. EURASIP Journal on Image and Video +<br/>Processing (2018) 2018:61 +<br/>https://doi.org/10.1186/s13640-018-0303-9 +<br/>EURASIP Journal on Image +<br/>and Video Processing +<br/>RESEARCH +<br/>Open Access +<br/>Cascade of Boolean detector +<br/>combinations +</td><td>('3292563', 'Katariina Mahkonen', 'katariina mahkonen')</td><td></td></tr><tr><td>aebb9649bc38e878baef082b518fa68f5cda23a5</td><td> +</td><td></td><td></td></tr><tr><td>aeaf5dbb3608922246c7cd8a619541ea9e4a7028</td><td>Weakly Supervised Facial Action Unit Recognition through Adversarial Training +<br/><b>University of Science and Technology of China, Hefei, Anhui, China</b></td><td>('46217896', 'Guozhu Peng', 'guozhu peng')<br/>('1791319', 'Shangfei Wang', 'shangfei wang')</td><td>gzpeng@mail.ustc.edu.cn, sfwang@ustc.edu.cn +</td></tr><tr><td>ae836e2be4bb784760e43de88a68c97f4f9e44a1</td><td>Semi-Supervised Dimensionality Reduction∗ +<br/>1National Laboratory for Novel Software Technology +<br/><b>Nanjing University, Nanjing 210093, China</b><br/>2Department of Computer Science and Engineering +<br/><b>Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China</b></td><td>('51326748', 'Daoqiang Zhang', 'daoqiang zhang')<br/>('46228434', 'Zhi-Hua Zhou', 'zhi-hua zhou')<br/>('1680768', 'Songcan Chen', 'songcan chen')</td><td>dqzhang@nuaa.edu.cn +<br/>zhouzh@nju.edu.cn +<br/>s.chen@nuaa.edu.cn +</td></tr><tr><td>ae5bb02599244d6d88c4fe466a7fdd80aeb91af4</td><td>Analysis of Recognition Algorithms using Linear, Generalized Linear, and <br/>Generalized Linear Mixed Models <br/>Dept. of Computer Science <br/><b>Colorado State University</b><br/>Fort Colllins, CO 80523 @@ -10595,6 +12828,10 @@ </td><td>('39048426', 'Nan Sun', 'nan sun')<br/>('11832393', 'Zheng Chen', 'zheng chen')<br/>('1818364', 'Richard Day', 'richard day')</td><td>bruce.n.sun@gmail.com1 <br/>z.chen@glyndwr.ac.uk2 <br/>r.day@glyndwr.ac.uk3 +</td></tr><tr><td>aeff403079022683b233decda556a6aee3225065</td><td>DeepFace: Face Generation using Deep Learning +</td><td>('31560532', 'Hardie Cate', 'hardie cate')<br/>('6415321', 'Fahim Dalvi', 'fahim dalvi')<br/>('8815003', 'Zeshan Hussain', 'zeshan hussain')</td><td>ccate@stanford.edu +<br/>fdalvi@cs.stanford.edu +<br/>zeshanmh@stanford.edu </td></tr><tr><td>ae753fd46a744725424690d22d0d00fb05e53350</td><td>000 <br/>001 <br/>002 @@ -10646,11 +12883,71 @@ </td><td></td><td></td></tr><tr><td>aea4128ba18689ff1af27b90c111bbd34013f8d5</td><td>Efficient k-Support Matrix Pursuit <br/><b>National University of Singapore</b><br/><b>School of Software, Sun Yat-sen University, China</b><br/><b>School of Information Science and Technology, Sun Yat-sen University, China</b><br/><b>School of Computer Science, South China Normal University, China</b></td><td>('2356867', 'Hanjiang Lai', 'hanjiang lai')<br/>('2493641', 'Yan Pan', 'yan pan')<br/>('33224509', 'Canyi Lu', 'canyi lu')<br/>('1704995', 'Yong Tang', 'yong tang')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td>{laihanj,canyilu}@gmail.com, panyan5@mail.sysu.edu.cn, <br/>ytang@scnu.edu.cn, eleyans@nus.edu.sg +</td></tr><tr><td>ae2c71080b0e17dee4e5a019d87585f2987f0508</td><td>Research Paper: Emotional Face Recognition in Children +<br/>With Attention Deficit/Hyperactivity Disorder: Evidence +<br/>From Event Related Gamma Oscillation +<br/>CrossMark +<br/><b>School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran</b><br/><b>School of Medicine, Tehran University of Medical Sciences, Tehran, Iran</b><br/><b>Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran</b><br/><b>Amirkabir University of Technology, Tehran, Iran</b><br/>Use your device to scan +<br/>and read the article online +<br/>Citation: Sarraf Razavi, M., Tehranidoost, M., Ghassemi, F., Purabassi, P., & Taymourtash, A. (2017). Emotional Face Rec- +<br/>ognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation. Basic +<br/>and Clinical Neuroscience, 8(5):419-426. https://doi.org/10.18869/NIRP.BCN.8.5.419 +<br/> : : https://doi.org/10.18869/NIRP.BCN.8.5.419 +<br/>Article info: +<br/>Received: 03 Feb. 2017 +<br/>First Revision: 29 Feb. 2017 +<br/>Accepted: 11 Jul. 2017 +<br/>Key Words: +<br/>Emotional face +<br/>recognition, Event- +<br/>Related Oscillation +<br/>(ERO), Gamma band +<br/>activity, Attention Deficit +<br/>Hyperactivity Disorder +<br/>(ADHD) +<br/>A B S T R A C T +<br/>Introduction: Children with attention-deficit/hyperactivity disorder (ADHD) have some +<br/>impairment in emotional relationship which can be due to problems in emotional processing. +<br/>The present study investigated neural correlates of early stages of emotional face processing in +<br/>this group compared with typically developing children using the Gamma Band Activity (GBA). +<br/>Methods: A total of 19 children diagnosed with ADHD (Combined type) based on DSM-IV +<br/>classification were compared with 19 typically developing children matched on age, gender, and +<br/>IQ. The participants performed an emotional face recognition while their brain activities were +<br/>recorded using an event-related oscillation procedure. +<br/>Results: The results indicated that ADHD children compared to normal group showed a significant +<br/>reduction in the gamma band activity, which is thought to reflect early perceptual emotion +<br/>discrimination for happy and angry emotions (P<0.05). +<br/>Conclusion: The present study supports the notion that individuals with ADHD have some +<br/>impairments in early stage of emotion processing which can cause their misinterpretation of +<br/>emotional faces. +<br/>1. Introduction +<br/>DHD is a common neurodevelopmental +<br/>disorder characterized by inattentiveness +<br/>and hyperactivity/impulsivity (American +<br/>Psychiatric Association, 2013). Individu- +<br/>als with ADHD also show problems in social and emo- +<br/><b>tional functions, including the effective assessment of</b><br/>the emotional state of others. It is important to set the +<br/>adaptive behavior of human facial expressions in social +<br/>interactions (Cadesky, Mota, & Schachar, 2000; Corbett +<br/>& Glidden, 2000). Based on the evidence, frontotem- +<br/>poral-posterior and fronto striatal cerebellar systems +<br/>are involved in emotional functions. These regions may +<br/>contribute to impairments of emotional recognition in +<br/>ADHD (Corbett & Glidden, 2000; Dickstein, Bannon, +<br/>Xavier Castellanos, & Milham, 2006; Durston, Van +<br/>Belle, & De Zeeuw, 2011). +<br/>* Corresponding Author: +<br/><b>Amirkabir University of Technology, Tehran, Iran</b><br/>Tel:+98 (912) 3260661 +<br/>419 +<br/>Basic and ClinicalSeptember, October 2017, Volume 8, Number 5</td><td>('29928144', 'Mahdiyeh Sarraf Razavi', 'mahdiyeh sarraf razavi')<br/>('7171067', 'Mehdi Tehranidoost', 'mehdi tehranidoost')<br/>('34494047', 'Farnaz Ghassemi', 'farnaz ghassemi')<br/>('29839761', 'Parivash Purabassi', 'parivash purabassi')<br/>('29933673', 'Athena Taymourtash', 'athena taymourtash')<br/>('34494047', 'Farnaz Ghassemi', 'farnaz ghassemi')</td><td>E-mail: ghassemi@aut.ac.ir </td></tr><tr><td>ae4e2c81c8a8354c93c4b21442c26773352935dd</td><td></td><td></td><td></td></tr><tr><td>ae85c822c6aec8b0f67762c625a73a5d08f5060d</td><td>This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. <br/>The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624 <br/>IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR <br/>Retrieving Similar Styles to Parse Clothing -</td><td>('1721910', 'Kota Yamaguchi', 'kota yamaguchi')<br/>('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')<br/>('35258350', 'Luis E. Ortiz', 'luis e. ortiz')<br/>('1685538', 'Tamara L. Berg', 'tamara l. berg')</td><td></td></tr><tr><td>ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf</td><td>Contents lists available at ScienceDirect +</td><td>('1721910', 'Kota Yamaguchi', 'kota yamaguchi')<br/>('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')<br/>('35258350', 'Luis E. Ortiz', 'luis e. ortiz')<br/>('1685538', 'Tamara L. Berg', 'tamara l. berg')</td><td></td></tr><tr><td>ae5f32e489c4d52e7311b66060c7381d932f4193</td><td>Appearance-and-Relation Networks for Video Classification +<br/><b>State Key Laboratory for Novel Software Technology, Nanjing University, China</b><br/>2Computer Vision Laboratory, ETH Zurich, Switzerland +<br/>3Google Research +</td><td>('33345248', 'Limin Wang', 'limin wang')<br/>('47113208', 'Wei Li', 'wei li')<br/>('50135099', 'Wen Li', 'wen li')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td></td></tr><tr><td>ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf</td><td>Contents lists available at ScienceDirect <br/>j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o m p h u m b e h <br/>Full length article <br/>That personal profile image might jeopardize your rental opportunity! @@ -10788,7 +13085,12 @@ </td><td></td><td></td></tr><tr><td>d83ae5926b05894fcda0bc89bdc621e4f21272da</td><td>version of the following thesis: <br/>Frugal Forests: Learning a Dynamic and Cost Sensitive <br/>Feature Extraction Policy for Anytime Activity Classification -</td><td>('1794409', 'Kristen Grauman', 'kristen grauman')<br/>('1728389', 'Peter Stone', 'peter stone')</td><td></td></tr><tr><td>d8bf148899f09a0aad18a196ce729384a4464e2b</td><td>FACIAL EXPRESSION RECOGNITION AND EXPRESSION +</td><td>('1794409', 'Kristen Grauman', 'kristen grauman')<br/>('1728389', 'Peter Stone', 'peter stone')</td><td></td></tr><tr><td>d86fabd4498c8feaed80ec342d254fb877fb92f5</td><td>Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD +<br/>Region-Object Relevance-Guided +<br/>Visual Relationship Detection +<br/><b>National Institute of Informatics</b><br/>Tokyo, Japan +</td><td>('2897806', 'Yusuke Goutsu', 'yusuke goutsu')</td><td>goutsu@nii.ac.jp +</td></tr><tr><td>d8bf148899f09a0aad18a196ce729384a4464e2b</td><td>FACIAL EXPRESSION RECOGNITION AND EXPRESSION <br/>INTENSITY ESTIMATION <br/>A dissertation submitted to the <br/>Graduate School—New Brunswick @@ -10800,7 +13102,16 @@ <br/>and approved by <br/>New Brunswick, New Jersey <br/>May, 2011 -</td><td>('1683829', 'PENG YANG', 'peng yang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e</td><td><b>UNIVERSITY OF CALIFORNIA</b><br/>IRVINE +</td><td>('1683829', 'PENG YANG', 'peng yang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>d80a3d1f3a438e02a6685e66ee908446766fefa9</td><td>ZHANG ET AL.: QUANTIFYING FACIAL AGE BY POSTERIOR OF AGE COMPARISONS +<br/>Quantifying Facial Age by Posterior of +<br/>Age Comparisons +<br/>1 SenseTime Group Limited +<br/>2 Department of Information Engineering, +<br/><b>The Chinese University of Hong Kong</b></td><td>('6693591', 'Yunxuan Zhang', 'yunxuan zhang')<br/>('46457827', 'Li Liu', 'li liu')<br/>('46651787', 'Cheng Li', 'cheng li')<br/>('1717179', 'Chen Change Loy', 'chen change loy')</td><td>zhangyunxuan@sensetime.com +<br/>liuli@sensetime.com +<br/>chengli@sensetime.com +<br/>ccloy@ie.cuhk.edu.hk +</td></tr><tr><td>d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e</td><td><b>UNIVERSITY OF CALIFORNIA</b><br/>IRVINE <br/>Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter <br/>DISSERTATION <br/>submitted in partial satisfaction of the requirements @@ -10813,9 +13124,21 @@ <br/>Professor Deva Ramanan <br/>Professor Alexander Ihler <br/>2016 -</td><td>('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')</td><td></td></tr><tr><td>ab8f9a6bd8f582501c6b41c0e7179546e21c5e91</td><td>Nonparametric Face Verification Using a Novel +</td><td>('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')</td><td></td></tr><tr><td>d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d</td><td>Robust Face Recognition via Multimodal Deep +<br/>Face Representation +</td><td>('37990555', 'Changxing Ding', 'changxing ding')<br/>('1692693', 'Dacheng Tao', 'dacheng tao')</td><td></td></tr><tr><td>ab8f9a6bd8f582501c6b41c0e7179546e21c5e91</td><td>Nonparametric Face Verification Using a Novel <br/>Face Representation -</td><td>('3326805', 'Hae Jong Seo', 'hae jong seo')<br/>('1718280', 'Peyman Milanfar', 'peyman milanfar')</td><td></td></tr><tr><td>aba770a7c45e82b2f9de6ea2a12738722566a149</td><td>Face Recognition in the Scrambled Domain via Salience-Aware +</td><td>('3326805', 'Hae Jong Seo', 'hae jong seo')<br/>('1718280', 'Peyman Milanfar', 'peyman milanfar')</td><td></td></tr><tr><td>ab58a7db32683aea9281c188c756ddf969b4cdbd</td><td>Efficient Solvers for Sparse Subspace Clustering +</td><td>('50333204', 'Stephen Becker', 'stephen becker')</td><td></td></tr><tr><td>ab734bac3994b00bf97ce22b9abc881ee8c12918</td><td>Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold +<br/>with Application to Image Set Classification +<br/>†Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +<br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, 100049, China</b><br/>§Cooperative Medianet Innovation Center, China +</td><td>('7945869', 'Zhiwu Huang', 'zhiwu huang')<br/>('3373117', 'Ruiping Wang', 'ruiping wang')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('3046528', 'Xianqiu Li', 'xianqiu li')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td>ZHIWU.HUANG@VIPL.ICT.AC.CN +<br/>WANGRUIPING@ICT.AC.CN +<br/>SGSHAN@ICT.AC.CN +<br/>XIANQIU.LI@VIPL.ICT.AC.CN +<br/>XLCHEN@ICT.AC.CN +</td></tr><tr><td>aba770a7c45e82b2f9de6ea2a12738722566a149</td><td>Face Recognition in the Scrambled Domain via Salience-Aware <br/>Ensembles of Many Kernels <br/>Jiang, R., Al-Maadeed, S., Bouridane, A., Crookes, D., & Celebi, M. E. (2016). Face Recognition in the <br/>Scrambled Domain via Salience-Aware Ensembles of Many Kernels. IEEE Transactions on Information @@ -10841,7 +13164,9 @@ </td></tr><tr><td>abb396490ba8b112f10fbb20a0a8ce69737cd492</td><td>Robust Face Recognition Using Color <br/>Information <br/><b>New Jersey Institute of Technology</b></td><td>('2047820', 'Zhiming Liu', 'zhiming liu')<br/>('39664966', 'Chengjun Liu', 'chengjun liu')</td><td>Newark, New Jersey 07102, USA. femail:zl9@njit.edug -</td></tr><tr><td>abac0fa75281c9a0690bf67586280ed145682422</td><td>Describable Visual Attributes for Face Images +</td></tr><tr><td>ab989225a55a2ddcd3b60a99672e78e4373c0df1</td><td>Sample, Computation vs Storage Tradeoffs for +<br/>Classification Using Tensor Subspace Models +</td><td>('9039699', 'Mohammadhossein Chaghazardi', 'mohammadhossein chaghazardi')<br/>('1980683', 'Shuchin Aeron', 'shuchin aeron')</td><td></td></tr><tr><td>abac0fa75281c9a0690bf67586280ed145682422</td><td>Describable Visual Attributes for Face Images <br/>Submitted in partial fulfillment of the <br/>requirements for the degree <br/>of Doctor of Philosophy @@ -10851,7 +13176,53 @@ <br/>ISSN 2229-5518 <br/>A Survey on Various Facial Expression <br/>Techniques -</td><td>('2122870', 'Joy Bhattacharya', 'joy bhattacharya')</td><td></td></tr><tr><td>ab87dfccb1818bdf0b41d732da1f9335b43b74ae</td><td>SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING +</td><td>('2122870', 'Joy Bhattacharya', 'joy bhattacharya')</td><td></td></tr><tr><td>ab1719f573a6c121d7d7da5053fe5f12de0182e7</td><td>Combining Visual Recognition +<br/>and Computational Linguistics +<br/>Linguistic Knowledge for Visual Recognition +<br/>and Natural Language Descriptions +<br/>of Visual Content +<br/>Thesis for obtaining the title of +<br/>Doctor of Engineering Science +<br/>(Dr.-Ing.) +<br/>of the Faculty of Natural Science and Technology I +<br/><b>of Saarland University</b><br/>by +<br/>Saarbrücken +<br/>March 2014 +</td><td>('34849128', 'Marcus Rohrbach', 'marcus rohrbach')</td><td></td></tr><tr><td>ab2b09b65fdc91a711e424524e666fc75aae7a51</td><td>Multi-modal Biomarkers to Discriminate Cognitive State* +<br/>1MIT Lincoln Laboratory, Lexington, Massachusetts, USA +<br/>2USARIEM, 3NSRDEC +<br/>1. Introduction +<br/>Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have +<br/>recently obtained increasing popularity in the detection of cognitive stress- and neurological-based +<br/>disorders. Such conditions are significantly and adversely affecting human performance and quality +<br/>of life for a large fraction of the world’s population. Example modalities used in detection of these +<br/>conditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. +<br/>Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive +<br/>stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy +<br/>three criteria. First, we seek biomarkers that reflect core components of cognitive status such as +<br/>working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we +<br/>seek biomarkers that reflect timing and coordination relations both within components of each +<br/>modality and across different modalities. This is based on the hypothesis that neural coordination +<br/>across different parts of the brain is essential in cognition (Figure 1). An example of timing and +<br/>coordination within a modality is the set of finely timed and synchronized physiological +<br/>components of speech production, while an example of coordination across modalities is the timing +<br/>and synchrony that occurs across speech and facial expression while speaking. Third, we seek +<br/>multimodal biomarkers that contribute in a complementary fashion under various channel and +<br/>background conditions. In this chapter, as an illustration of this biomarker approach we focus on +<br/>cognitive stress and the particular case of detecting different cognitive load levels. We also briefly +<br/>show how similar feature-extraction principles can be applied to a neurological condition through +<br/>the example of major depression disorder (MDD). MDD is one of several neurological disorders +<br/>where multi-modal biomarkers based on principles of timing and coordination are important for +<br/>detection [11]-[22]. In our cognitive load experiments, we use two easily obtained noninvasive +<br/>modalities, voice and face, and show how these two modalities can be fused to produce results on +<br/>par with more invasive, “gold-standard” EEG measurements. Vocal and facial biomarkers will also +<br/>be used in our MDD case study. In both application areas we focus on timing and coordination +<br/>relations within the components of each modality. +<br/>* Distribution A: public release.This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force contract +<br/>#FA8721-05-C-0002. Opinions,interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States +<br/>Government. +</td><td>('1718470', 'Thomas F. Quatieri', 'thomas f. quatieri')<br/>('48628822', 'James R. Williamson', 'james r. williamson')<br/>('2794344', 'Christopher J. Smalt', 'christopher j. smalt')<br/>('38799981', 'Tejash Patel', 'tejash patel')<br/>('2894484', 'Brian S. Helfer', 'brian s. helfer')<br/>('3051832', 'Daryush D. Mehta', 'daryush d. mehta')<br/>('35718569', 'Kristin Heaton', 'kristin heaton')<br/>('47534051', 'Marianna Eddy', 'marianna eddy')<br/>('49739272', 'Joseph Moran', 'joseph moran')</td><td>[quatieri,jrw]@ll.mit.edu +</td></tr><tr><td>ab87dfccb1818bdf0b41d732da1f9335b43b74ae</td><td>SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING <br/>Structured Dictionary Learning for Classification </td><td>('36657778', 'Yuanming Suo', 'yuanming suo')<br/>('31507586', 'Minh Dao', 'minh dao')<br/>('35210356', 'Umamahesh Srinivas', 'umamahesh srinivas')<br/>('3346079', 'Vishal Monga', 'vishal monga')<br/>('1709073', 'Trac D. Tran', 'trac d. tran')</td><td></td></tr><tr><td>abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72</td><td>Raisonnement abductif en logique de <br/>description exploitant les domaines concrets @@ -10870,6 +13241,14 @@ <br/>concrets pour évaluer le degré de satisfaction des relations spatiales entre les objets. </td><td>('4156317', 'Yifan Yang', 'yifan yang')<br/>('1773774', 'Jamal Atif', 'jamal atif')<br/>('1695917', 'Isabelle Bloch', 'isabelle bloch')</td><td>{yifan.yang,isabelle.bloch}@telecom-paristech.fr <br/>jamal.atif@dauphine.fr +</td></tr><tr><td>abba1bf1348a6f1b70a26aac237338ee66764458</td><td>Facial Action Unit Detection Using Attention and Relation Learning +<br/><b>Shanghai Jiao Tong University, China</b><br/><b>School of Computer Science and Technology, Tianjin University, China</b><br/><b>School of Computer Science and Engineering, Nanyang Technological University, Singapore</b><br/>4 Tencent YouTu, China +<br/><b>School of Computer Science and Software Engineering, East China Normal University, China</b></td><td>('3403352', 'Zhiwen Shao', 'zhiwen shao')<br/>('1771215', 'Zhilei Liu', 'zhilei liu')<br/>('1688642', 'Jianfei Cai', 'jianfei cai')<br/>('10609538', 'Yunsheng Wu', 'yunsheng wu')<br/>('8452947', 'Lizhuang Ma', 'lizhuang ma')</td><td>shaozhiwen@sjtu.edu.cn, zhileiliu@tju.edu.cn, asjfcai@ntu.edu.sg +<br/>simonwu@tencent.com, ma-lz@cs.sjtu.edu.cn +</td></tr><tr><td>abdd17e411a7bfe043f280abd4e560a04ab6e992</td><td>Pose-Robust Face Recognition via Deep Residual Equivariant Mapping +<br/><b>The Chinese University of Hong Kong</b><br/>2SenseTime Research +</td><td>('9963152', 'Kaidi Cao', 'kaidi cao')<br/>('46651787', 'Cheng Li', 'cheng li')</td><td>{ry017, ccloy, xtang}@ie.cuhk.edu.hk +<br/>{caokaidi, chengli}@sensetime.com </td></tr><tr><td>ab1dfcd96654af0bf6e805ffa2de0f55a73c025d</td><td></td><td></td><td></td></tr><tr><td>abeda55a7be0bbe25a25139fb9a3d823215d7536</td><td>UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015</td><td></td><td></td></tr><tr><td>ab427f0c7d4b0eb22c045392107509451165b2ba</td><td>LEARNING SCALE RANGES FOR THE EXTRACTION OF REGIONS OF <br/>INTEREST <br/><b>Western Kentucky University</b><br/>Department of Mathematics and Computer Science @@ -10888,7 +13267,27 @@ <br/>GENÈVE <br/>Repro-Mail - Université de Genève <br/>2011 -</td><td>('1809085', 'Thierry Pun', 'thierry pun')<br/>('2463695', 'Mohammad SOLEYMANI', 'mohammad soleymani')</td><td></td></tr><tr><td>e5737ffc4e74374b0c799b65afdbf0304ff344cb</td><td></td><td></td><td></td></tr><tr><td>e510f2412999399149d8635a83eca89c338a99a1</td><td>Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283 +</td><td>('1809085', 'Thierry Pun', 'thierry pun')<br/>('2463695', 'Mohammad SOLEYMANI', 'mohammad soleymani')</td><td></td></tr><tr><td>e5e5f31b81ed6526c26d277056b6ab4909a56c6c</td><td>Revisit Multinomial Logistic Regression in Deep Learning: +<br/>Data Dependent Model Initialization for Image Recognition +<br/><b>University of Illinois at Urbana-Champaign</b><br/>2Ping An Property&Casualty Insurance Company of China, +<br/>3Microsoft +</td><td>('50563570', 'Bowen Cheng', 'bowen cheng')<br/>('1972288', 'Rong Xiao', 'rong xiao')<br/>('3133575', 'Yandong Guo', 'yandong guo')<br/>('1689532', 'Yuxiao Hu', 'yuxiao hu')<br/>('38504661', 'Jianfeng Wang', 'jianfeng wang')<br/>('48571185', 'Lei Zhang', 'lei zhang')</td><td>1bcheng9@illinois.edu +<br/>2xiaorong283@pingan.com.cn +<br/>3yandong.guo@live.com, yuxiaohu@msn.com, {jianfw, leizhang}@microsoft.com +</td></tr><tr><td>e5737ffc4e74374b0c799b65afdbf0304ff344cb</td><td></td><td></td><td></td></tr><tr><td>e506cdb250eba5e70c5147eb477fbd069714765b</td><td>Heterogeneous Face Recognition +<br/>By +<br/>Brendan F. Klare +<br/>A Dissertation +<br/>Submitted to +<br/><b>Michigan State University</b><br/>in partial fulfillment of the requirements +<br/>for the degree of +<br/>Doctor of Philosophy +<br/>Computer Science and Engineering +<br/>2012 +</td><td></td><td></td></tr><tr><td>e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf</td><td>A Visual Historical Record of American High School Yearbooks +<br/>A Century of Portraits: +<br/><b>University of California Berkeley</b><br/><b>Brown University</b><br/><b>University of California Berkeley</b></td><td>('2361255', 'Shiry Ginosar', 'shiry ginosar')<br/>('2660664', 'Kate Rakelly', 'kate rakelly')<br/>('33385802', 'Sarah Sachs', 'sarah sachs')<br/>('2130100', 'Brian Yin', 'brian yin')<br/>('1763086', 'Alexei A. Efros', 'alexei a. efros')</td><td></td></tr><tr><td>e5823a9d3e5e33e119576a34cb8aed497af20eea</td><td>DocFace+: ID Document to Selfie* Matching +</td><td>('9644181', 'Yichun Shi', 'yichun shi')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>e5dfd17dbfc9647ccc7323a5d62f65721b318ba9</td><td></td><td></td><td></td></tr><tr><td>e510f2412999399149d8635a83eca89c338a99a1</td><td>Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283 <br/>c(cid:13)Science Publishing Corporation <br/>www.sciencepubco.com/index.php/JACST <br/>Face Recognition using Block-Based @@ -10899,6 +13298,12 @@ <br/>E-mail: vaish.india@gmail.com <br/>E-mail: sasikiran.f4@gmail.com <br/>E-mail: ramachandr@gmail.com +</td></tr><tr><td>e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69</td><td>Human Activity Recognition Based on Wearable +<br/>Sensor Data: A Standardization of the +<br/>State-of-the-Art +<br/>Smart Surveillance Interest Group, Computer Science Department +<br/>Universidade Federal de Minas Gerais, Brazil +</td><td>('2954974', 'Antonio C. Nazare', 'antonio c. nazare')<br/>('1679142', 'William Robson Schwartz', 'william robson schwartz')</td><td>Email: {arturjordao, antonio.nazare, jessicasena, william}@dcc.ufmg.br </td></tr><tr><td>e59813940c5c83b1ce63f3f451d03d34d2f68082</td><td>Faculty of Informatics - Papers (Archive) <br/>Faculty of Engineering and Information Sciences <br/><b>University of Wollongong</b><br/>Research Online @@ -10916,7 +13321,26 @@ <br/>Library: research-pubs@uow.edu.au </td></tr><tr><td>e5b301ee349ba8e96ea6c71782295c4f06be6c31</td><td>The Case for Onloading Continuous High-Datarate Perception to the Phone <br/><b>University of Washington</b><br/>Microsoft Research -</td><td>('1871038', 'Seungyeop Han', 'seungyeop han')<br/>('3041721', 'Matthai Philipose', 'matthai philipose')</td><td></td></tr><tr><td>e5342233141a1d3858ed99ccd8ca0fead519f58b</td><td>ISSN: 2277 – 9043 +</td><td>('1871038', 'Seungyeop Han', 'seungyeop han')<br/>('3041721', 'Matthai Philipose', 'matthai philipose')</td><td></td></tr><tr><td>e569f4bd41895028c4c009e5b46b935056188e91</td><td>SIMONYAN et al.: FISHER VECTOR FACES IN THE WILD +<br/>Fisher Vector Faces in the Wild +<br/>Visual Geometry Group +<br/>Department of Engineering Science +<br/><b>University of Oxford</b><br/>Omkar M. Parkhi +<br/>Andrea Vedaldi +<br/>Andrew Zisserman +</td><td>('34838386', 'Karen Simonyan', 'karen simonyan')</td><td>karen@robots.ox.ac.uk +<br/>omkar@robots.ox.ac.uk +<br/>vedaldi@robots.ox.ac.uk +<br/>az@robots.ox.ac.uk +</td></tr><tr><td>e5fbffd3449a2bfe0acb4ec339a19f5b88fff783</td><td>WILES, KOEPKE, ZISSERMAN: SELF-SUP. FACIAL ATTRIBUTE FROM VIDEO +<br/>Self-supervised learning of a facial attribute +<br/>embedding from video +<br/>Visual Geometry Group +<br/><b>University of Oxford</b><br/>Oxford, UK +</td><td>('8792285', 'Olivia Wiles', 'olivia wiles')<br/>('47104886', 'A. Sophia Koepke', 'a. sophia koepke')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>ow@robots.ox.ac.uk +<br/>koepke@robots.ox.ac.uk +<br/>az@robots.ox.ac.uk +</td></tr><tr><td>e5342233141a1d3858ed99ccd8ca0fead519f58b</td><td>ISSN: 2277 – 9043 <br/>International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE) <br/>Volume 2, Issue 2, February 2013 <br/>Finger print and Palm print based Multibiometric @@ -10939,22 +13363,77 @@ <br/>your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask <br/><b>the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam</b><br/>The Netherlands. You will be contacted as soon as possible. <br/>Download date: 12 Sep 2017 -<br/><b>UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl</b></td><td></td><td></td></tr><tr><td>e5799fd239531644ad9270f49a3961d7540ce358</td><td>KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY +<br/><b>UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl</b></td><td></td><td></td></tr><tr><td>e5d53a335515107452a30b330352cad216f88fc3</td><td>Generalized Loss-Sensitive Adversarial Learning +<br/>with Manifold Margins +<br/>Laboratory for MAchine Perception and LEarning (MAPLE) +<br/>http://maple.cs.ucf.edu/ +<br/><b>University of Central Florida, Orlando FL 32816, USA</b></td><td>('46232436', 'Marzieh Edraki', 'marzieh edraki')<br/>('2272096', 'Guo-Jun Qi', 'guo-jun qi')</td><td>m.edraki@knights.ucf.edu, guojun.qi@ucf.edu +</td></tr><tr><td>e5799fd239531644ad9270f49a3961d7540ce358</td><td>KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY <br/><b>Cornell University 2Eastman Kodak Company</b></td><td>('2666471', 'Ruogu Fang', 'ruogu fang')<br/>('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')<br/>('1746230', 'Tsuhan Chen', 'tsuhan chen')</td><td></td></tr><tr><td>e5eb7fa8c9a812d402facfe8e4672670541ed108</td><td>Performance of PCA Based Semi-supervised <br/>Learning in Face Recognition Using MPEG-7 <br/>Edge Histogram Descriptor <br/>Department of Computer Science and Engineering <br/><b>Bangladesh University of Engineering and Technology(BUET</b><br/>Dhaka-1000, Bangladesh </td><td>('3034202', 'Sheikh Motahar Naim', 'sheikh motahar naim')<br/>('9248625', 'Abdullah Al Farooq', 'abdullah al farooq')<br/>('1990532', 'Md. Monirul Islam', 'md. monirul islam')</td><td>Email: {shafin buet, naim sbh2007, saurav00001}@yahoo.com, mmislam@cse.buet.ac.bd +</td></tr><tr><td>e22adcd2a6a7544f017ec875ce8f89d5c59e09c8</td><td>Published in Proc. of IEEE 9th International Conference on Biometrics: Theory, Applications and Systems (BTAS), (Los +<br/>Angeles, CA), October 2018. +<br/>Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding +<br/>Arbitrary Gender Classifiers +<br/><b>Computer Science and Engineering, Michigan State University, East Lansing, USA</b><br/><b>University of Wisconsin Madison, USA</b></td><td>('5456235', 'Vahid Mirjalili', 'vahid mirjalili')<br/>('2562040', 'Sebastian Raschka', 'sebastian raschka')<br/>('1698707', 'Arun Ross', 'arun ross')</td><td>mirjalil@cse.msu.edu +<br/>mail@sebastianraschka.com +<br/>rossarun@cse.msu.edu </td></tr><tr><td>e27c92255d7ccd1860b5fb71c5b1277c1648ed1e</td><td></td><td></td><td></td></tr><tr><td>e200c3f2849d56e08056484f3b6183aa43c0f13a</td><td></td><td></td><td></td></tr><tr><td>e2d265f606cd25f1fd72e5ee8b8f4c5127b764df</td><td>Real-Time End-to-End Action Detection <br/>with Two-Stream Networks <br/><b>School of Engineering, University of Guelph</b><br/><b>Vector Institute for Arti cial Intelligence</b><br/><b>Canadian Institute for Advanced Research</b></td><td>('35933395', 'Alaaeldin El-Nouby', 'alaaeldin el-nouby')<br/>('3861110', 'Graham W. Taylor', 'graham w. taylor')</td><td>{aelnouby,gwtaylor}@uoguelph.ca +</td></tr><tr><td>e293a31260cf20996d12d14b8f29a9d4d99c4642</td><td>Published as a conference paper at ICLR 2017 +<br/>LR-GAN: LAYERED RECURSIVE GENERATIVE AD- +<br/>VERSARIAL NETWORKS FOR IMAGE GENERATION +<br/>Virginia Tech +<br/>Blacksburg, VA +<br/>Facebook AI Research +<br/>Menlo Park, CA +<br/><b>Georgia Institute of Technology</b><br/>Atlanta, GA +</td><td>('2404941', 'Jianwei Yang', 'jianwei yang')<br/>('39248118', 'Anitha Kannan', 'anitha kannan')<br/>('1746610', 'Dhruv Batra', 'dhruv batra')</td><td>jw2yang@vt.edu +<br/>akannan@fb.com +<br/>{dbatra, parikh}@gatech.edu +</td></tr><tr><td>e20e2db743e8db1ff61279f4fda32bf8cf381f8e</td><td>Deep Cross Polarimetric Thermal-to-visible Face Recognition +<br/><b>West Virginia University</b></td><td>('6779960', 'Seyed Mehdi Iranmanesh', 'seyed mehdi iranmanesh')<br/>('35477977', 'Ali Dabouei', 'ali dabouei')<br/>('2700951', 'Hadi Kazemi', 'hadi kazemi')<br/>('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')</td><td>{seiranmanesh, ad0046, hakazemi}@mix.wvu.edu, {nasser.nasrabadi}@mail.wvu.edu </td></tr><tr><td>f437b3884a9e5fab66740ca2a6f1f3a5724385ea</td><td>Human Identification Technical Challenges <br/>DARPA <br/>3701 N. Fairfax Dr <br/>Arlington, VA 22203 </td><td>('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')</td><td>jphillips@darpa.mil -</td></tr><tr><td>f43eeb578e0ca48abfd43397bbd15825f94302e4</td><td>Optical Computer Recognition of Facial Expressions +</td></tr><tr><td>f412d9d7bc7534e7daafa43f8f5eab811e7e4148</td><td>Durham Research Online +<br/>Deposited in DRO: +<br/>16 December 2014 +<br/>Version of attached le: +<br/>Accepted Version +<br/>Peer-review status of attached le: +<br/>Peer-reviewed +<br/>Citation for published item: +<br/>Kirk, H. E. and Hocking, D. R. and Riby, D. M. and Cornish, K. M. (2013) 'Linking social behaviour and +<br/>anxiety to attention to emotional faces in Williams syndrome.', Research in developmental disabilities., 34 +<br/>(12). pp. 4608-4616. +<br/>Further information on publisher's website: +<br/>http://dx.doi.org/10.1016/j.ridd.2013.09.042 +<br/>Publisher's copyright statement: +<br/>NOTICE: this is the author's version of a work that was accepted for publication in Research in Developmental +<br/>Disabilities. Changes resulting from the publishing process, such as peer review, editing, corrections, structural +<br/>formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made +<br/>to this work since it was submitted for publication. A denitive version was subsequently published in Research in +<br/>Developmental Disabilities, 34, 12, December 2013, 10.1016/j.ridd.2013.09.042. +<br/>Additional information: +<br/>Use policy +<br/>The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for +<br/>personal research or study, educational, or not-for-prot purposes provided that: +<br/>• a full bibliographic reference is made to the original source +<br/>• a link is made to the metadata record in DRO +<br/>• the full-text is not changed in any way +<br/>The full-text must not be sold in any format or medium without the formal permission of the copyright holders. +<br/>Please consult the full DRO policy for further details. +<br/><b>Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom</b><br/>Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 +<br/>http://dro.dur.ac.uk +</td><td></td><td></td></tr><tr><td>f43eeb578e0ca48abfd43397bbd15825f94302e4</td><td>Optical Computer Recognition of Facial Expressions <br/>Associated with Stress Induced by Performance <br/>Demands <br/>DINGES DF, RIDER RL, DORRIAN J, MCGLINCHEY EL, ROGERS NL, @@ -11046,12 +13525,13 @@ <br/>dria, VA. <br/>B172 </td><td>('5515440', 'Jillian Dorrian', 'jillian dorrian')<br/>('4940404', 'Ziga Cizman', 'ziga cizman')<br/>('2467082', 'Christian Vogler', 'christian vogler')<br/>('2898034', 'Sundara Venkataraman', 'sundara venkataraman')</td><td>423 Guardian Drive, Philadelphia, PA 19104-6021; dinges@mail. -</td></tr><tr><td>f4f9697f2519f1fe725ee7e3788119ed217dca34</td><td>Selfie-Presentation in Everyday Life: A Large-scale +</td></tr><tr><td>f442a2f2749f921849e22f37e0480ac04a3c3fec</td><td></td><td></td><td> Critical Features for Face Recognition in Humans and Machines Naphtali Abudarham1, Lior Shkiller1, Galit Yovel1,2 1School of Psychological Sciences, 2Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel Correspondence regarding this manuscript should be addressed to: Galit Yovel School of Psychological Sciences & Sagol School of Neuroscience Tel Aviv University Tel Aviv, 69978, Israel Email: gality@post.tau.ac.il, </td></tr><tr><td>f4f9697f2519f1fe725ee7e3788119ed217dca34</td><td>Selfie-Presentation in Everyday Life: A Large-scale <br/>Characterization of Selfie Contexts on Instagram <br/><b>Georgia Institute of Technology</b><br/>North Ave NW <br/>Atlanta, GA 30332 </td><td>('10799246', 'Julia Deeb-Swihart', 'julia deeb-swihart')<br/>('39723397', 'Christopher Polack', 'christopher polack')<br/>('1809407', 'Eric Gilbert', 'eric gilbert')</td><td>{jdeeb3, cfpolack,gilbert,irfan}@gatech.edu -</td></tr><tr><td>f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0</td><td></td><td></td><td></td></tr><tr><td>f4373f5631329f77d85182ec2df6730cbd4686a9</td><td>Soft Computing manuscript No. +</td></tr><tr><td>f4f6fc473effb063b7a29aa221c65f64a791d7f4</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407.</td><td></td><td></td></tr><tr><td>f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0</td><td></td><td></td><td></td></tr><tr><td>f4373f5631329f77d85182ec2df6730cbd4686a9</td><td>Soft Computing manuscript No. <br/>(will be inserted by the editor) <br/>Recognizing Gender from Human Facial Regions using <br/>Genetic Algorithm @@ -11066,13 +13546,22 @@ <br/>Network </td><td>('7530203', 'Sneha Thakur', 'sneha thakur')</td><td> 1sne_thakur@yahoo.co.in <br/> 2ligendra@rediffmail.com -</td></tr><tr><td>f4ebbeb77249d1136c355f5bae30f02961b9a359</td><td>Human Computation for Attribute and Attribute Value Acquisition +</td></tr><tr><td>f4d30896c5f808a622824a2d740b3130be50258e</td><td>DS++: A Flexible, Scalable and Provably Tight Relaxation for Matching Problems +<br/><b>Weizmann Institute of Science</b></td><td>('3046344', 'Nadav Dym', 'nadav dym')<br/>('3416939', 'Haggai Maron', 'haggai maron')<br/>('3232072', 'Yaron Lipman', 'yaron lipman')</td><td></td></tr><tr><td>f4ebbeb77249d1136c355f5bae30f02961b9a359</td><td>Human Computation for Attribute and Attribute Value Acquisition <br/>School of Computer Science <br/><b>Carnegie Melon University</b></td><td>('2987829', 'Edith Law', 'edith law')<br/>('1717452', 'Burr Settles', 'burr settles')<br/>('2681926', 'Aaron Snook', 'aaron snook')<br/>('2762792', 'Harshit Surana', 'harshit surana')<br/>('3328108', 'Luis von Ahn', 'luis von ahn')<br/>('39182987', 'Tom Mitchell', 'tom mitchell')</td><td>edith@cmu.edu </td></tr><tr><td>f4aed1314b2d38fd8f1b9d2bc154295bbd45f523</td><td>Subspace Clustering using Ensembles of <br/>K-Subspaces <br/>Department of Electrical and Computer Engineering <br/><b>University of Michigan, Ann Arbor</b></td><td>('1782134', 'John Lipor', 'john lipor')<br/>('5250186', 'David Hong', 'david hong')<br/>('2358258', 'Dejiao Zhang', 'dejiao zhang')<br/>('1682385', 'Laura Balzano', 'laura balzano')</td><td>{lipor,dahong,dejiao,girasole}@umich.edu +</td></tr><tr><td>f42dca4a4426e5873a981712102aa961be34539a</td><td>Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +<br/>Optical-Flow Estimation in the Wild +<br/><b>University of Freiburg</b><br/>Germany +</td><td>('31656404', 'Nima Sedaghat', 'nima sedaghat')</td><td>nima@cs.uni-freiburg.de +</td></tr><tr><td>f3ca2c43e8773b7062a8606286529c5bc9b3ce25</td><td>Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative +<br/>Entropy Minimization +<br/><b>Electrical and Computer Engineering, University of Pittsburgh, USA</b><br/><b>Computer Science and Engineering, University of Texas at Arlington, USA</b><br/><b>cid:93)School of Electronic Engineering, Xidian University, China</b><br/><b>cid:92)School of Information Technologies, University of Sydney, Australia</b></td><td>('2331771', 'Kamran Ghasedi Dizaji', 'kamran ghasedi dizaji')<br/>('10797930', 'Amirhossein Herandi', 'amirhossein herandi')<br/>('1748032', 'Heng Huang', 'heng huang')</td><td>kamran.ghasedi@gmail.com, amirhossein.herandi@uta.edu, chdeng@mail.xidian.edu.cn +<br/>tom.cai@sydney.edu.au, heng.huang@pitt.edu </td></tr><tr><td>f3fcaae2ea3e998395a1443c87544f203890ae15</td><td></td><td></td><td></td></tr><tr><td>f3015be0f9dbc1a55b6f3dc388d97bb566ff94fe</td><td>A Study on the Effective Approach <br/>to Illumination-Invariant Face Recognition <br/>Based on a Single Image @@ -11083,33 +13572,113 @@ <br/>methodology for head pose estimation in the wild <br/>IMAGO Research Group - Universidade Federal do Paran´a </td><td>('37435823', 'Antonio C. P. Nascimento', 'antonio c. p. nascimento')<br/>('1800955', 'Olga R. P. Bellon', 'olga r. p. bellon')</td><td>{flavio,antonio.paes,olga,luciano}@ufpr.br +</td></tr><tr><td>f3a59d85b7458394e3c043d8277aa1ffe3cdac91</td><td>Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource +<br/>Constraints +<br/><b>Chinese University of Hong Kong</b><br/><b>Indiana University</b><br/><b>Chinese University of Hong Kong</b></td><td>('1807925', 'Di Tang', 'di tang')<br/>('47119002', 'XiaoFeng Wang', 'xiaofeng wang')<br/>('3297454', 'Kehuan Zhang', 'kehuan zhang')</td><td>td016@ie.cuhk.edu.hk +<br/>xw7@indiana.edu +<br/>khzhang@ie.cuhk.edu.hk </td></tr><tr><td>f3f77b803b375f0c63971b59d0906cb700ea24ed</td><td>Advances in Electrical and Computer Engineering Volume 9, Number 3, 2009 <br/>Feature Extraction for Facial Expression <br/>Recognition based on Hybrid Face Regions <br/>Seyed M. LAJEVARDI, Zahir M. HUSSAIN <br/><b>RMIT University, Australia</b></td><td></td><td>seyed.lajevardi @ rmit.edu.au -</td></tr><tr><td>f355e54ca94a2d8bbc598e06e414a876eb62ef99</td><td></td><td></td><td></td></tr><tr><td>f35a493afa78a671b9d2392c69642dcc3dd2cdc2</td><td>Automatic Attribute Discovery with Neural +</td></tr><tr><td>f355e54ca94a2d8bbc598e06e414a876eb62ef99</td><td></td><td></td><td></td></tr><tr><td>f3df296de36b7c114451865778e211350d153727</td><td>Spatio-Temporal Facial Expression Recognition Using Convolutional +<br/>Neural Networks and Conditional Random Fields +<br/><b>University of Denver, Denver, CO</b></td><td>('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')</td><td>behzad.hasani@du.edu, and mmahoor@du.edu +</td></tr><tr><td>f3ea181507db292b762aa798da30bc307be95344</td><td>Covariance Pooling for Facial Expression Recognition +<br/>†Computer Vision Lab, ETH Zurich, Switzerland +<br/>‡VISICS, KU Leuven, Belgium +</td><td>('32610154', 'Dinesh Acharya', 'dinesh acharya')<br/>('7945869', 'Zhiwu Huang', 'zhiwu huang')<br/>('35268081', 'Danda Pani Paudel', 'danda pani paudel')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>{acharyad, zhiwu.huang, paudel, vangool}@vision.ee.ethz.ch +</td></tr><tr><td>f3fed71cc4fc49b02067b71c2df80e83084b2a82</td><td>Published as a conference paper at ICLR 2018 +<br/>LEARNING SPARSE LATENT REPRESENTATIONS WITH +<br/>THE DEEP COPULA INFORMATION BOTTLENECK +<br/><b>University of Basel, Switzerland</b></td><td>('30069186', 'Aleksander Wieczorek', 'aleksander wieczorek')<br/>('30537851', 'Mario Wieser', 'mario wieser')<br/>('2620254', 'Damian Murezzan', 'damian murezzan')<br/>('39891341', 'Volker Roth', 'volker roth')</td><td>{firstname.lastname}@unibas.ch +</td></tr><tr><td>f3cf10c84c4665a0b28734f5233d423a65ef1f23</td><td>Title +<br/>Temporal Exemplar-based Bayesian Networks for facial +<br/>expression recognition +<br/>Author(s) +<br/>Shang, L; Chan, KP +<br/>Citation +<br/>Proceedings - 7Th International Conference On Machine +<br/>Learning And Applications, Icmla 2008, 2008, p. 16-22 +<br/>Issued Date +<br/>2008 +<br/>URL +<br/>http://hdl.handle.net/10722/61208 +<br/>Rights +<br/>This work is licensed under a Creative Commons Attribution- +<br/>NonCommercial-NoDerivatives 4.0 International License.; +<br/>International Conference on Machine Learning and Applications +<br/>Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +<br/>this material is permitted. However, permission to +<br/>reprint/republish this material for advertising or promotional +<br/>purposes or for creating new collective works for resale or +<br/>redistribution to servers or lists, or to reuse any copyrighted +<br/>component of this work in other works must be obtained from +<br/>the IEEE. +</td><td></td><td></td></tr><tr><td>f35a493afa78a671b9d2392c69642dcc3dd2cdc2</td><td>Automatic Attribute Discovery with Neural <br/>Activations <br/><b>University of North Carolina at Chapel Hill, USA</b><br/>2 NTT Media Intelligence Laboratories, Japan -<br/><b>Tohoku University, Japan</b></td><td>('3302783', 'Sirion Vittayakorn', 'sirion vittayakorn')<br/>('1706592', 'Takayuki Umeda', 'takayuki umeda')<br/>('2023568', 'Kazuhiko Murasaki', 'kazuhiko murasaki')<br/>('1745497', 'Kyoko Sudo', 'kyoko sudo')<br/>('1718872', 'Takayuki Okatani', 'takayuki okatani')<br/>('1721910', 'Kota Yamaguchi', 'kota yamaguchi')</td><td></td></tr><tr><td>ebedc841a2c1b3a9ab7357de833101648281ff0e</td><td></td><td></td><td></td></tr><tr><td>eb526174fa071345ff7b1fad1fad240cd943a6d7</td><td>Deeply Vulnerable – A Study of the Robustness of Face Recognition to +<br/><b>Tohoku University, Japan</b></td><td>('3302783', 'Sirion Vittayakorn', 'sirion vittayakorn')<br/>('1706592', 'Takayuki Umeda', 'takayuki umeda')<br/>('2023568', 'Kazuhiko Murasaki', 'kazuhiko murasaki')<br/>('1745497', 'Kyoko Sudo', 'kyoko sudo')<br/>('1718872', 'Takayuki Okatani', 'takayuki okatani')<br/>('1721910', 'Kota Yamaguchi', 'kota yamaguchi')</td><td></td></tr><tr><td>f3b7938de5f178e25a3cf477107c76286c0ad691</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017 +<br/>Object Detection with Deep Learning: A Review +</td><td>('33698309', 'Zhong-Qiu Zhao', 'zhong-qiu zhao')<br/>('36659418', 'Peng Zheng', 'peng zheng')<br/>('51132438', 'Shou-tao Xu', 'shou-tao xu')<br/>('1748808', 'Xindong Wu', 'xindong wu')</td><td></td></tr><tr><td>ebedc841a2c1b3a9ab7357de833101648281ff0e</td><td></td><td></td><td></td></tr><tr><td>eb526174fa071345ff7b1fad1fad240cd943a6d7</td><td>Deeply Vulnerable – A Study of the Robustness of Face Recognition to <br/>Presentation Attacks -</td><td>('1990628', 'Amir Mohammadi', 'amir mohammadi')<br/>('1952348', 'Sushil Bhattacharjee', 'sushil bhattacharjee')</td><td></td></tr><tr><td>eb6ee56e085ebf473da990d032a4249437a3e462</td><td>Age/Gender Classification with Whole-Component +</td><td>('1990628', 'Amir Mohammadi', 'amir mohammadi')<br/>('1952348', 'Sushil Bhattacharjee', 'sushil bhattacharjee')</td><td></td></tr><tr><td>eb100638ed73b82e1cce8475bb8e180cb22a09a2</td><td>Temporal Action Detection with Structured Segment Networks +<br/><b>The Chinese University of Hong Kong</b><br/>2Computer Vision Laboratory, ETH Zurich, Switzerland +</td><td>('47827548', 'Yue Zhao', 'yue zhao')<br/>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('33345248', 'Limin Wang', 'limin wang')<br/>('2765994', 'Zhirong Wu', 'zhirong wu')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')<br/>('1807606', 'Dahua Lin', 'dahua lin')</td><td></td></tr><tr><td>eb6ee56e085ebf473da990d032a4249437a3e462</td><td>Age/Gender Classification with Whole-Component <br/>Convolutional Neural Networks (WC-CNN) <br/><b>University of Southern California, Los Angeles, CA 90089, USA</b></td><td>('39004239', 'Chun-Ting Huang', 'chun-ting huang')<br/>('7022231', 'Yueru Chen', 'yueru chen')<br/>('35521292', 'Ruiyuan Lin', 'ruiyuan lin')<br/>('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')</td><td>E-mail: {chuntinh, yueruche, ruiyuanl}@usc.edu, cckuo@sipi.usc.edu +</td></tr><tr><td>eb8519cec0d7a781923f68fdca0891713cb81163</td><td>Temporal Non-Volume Preserving Approach to Facial Age-Progression and +<br/>Age-Invariant Face Recognition +<br/><b>Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada</b><br/>2 CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +<br/><b>Carnegie Mellon University, Pittsburgh, PA, USA</b></td><td>('1876581', 'Chi Nhan Duong', 'chi nhan duong')<br/>('2687827', 'Kha Gia Quach', 'kha gia quach')<br/>('1769788', 'Khoa Luu', 'khoa luu')<br/>('6131978', 'T. Hoang Ngan Le', 't. hoang ngan le')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td>{chinhand, kquach, kluu, thihoanl}@andrew.cmu.edu, msavvid@ri.cmu.edu </td></tr><tr><td>ebb1c29145d31c4afa3c9be7f023155832776cd3</td><td>CASME II: An Improved Spontaneous Micro-Expression <br/>Database and the Baseline Evaluation -<br/><b>State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences</b><br/><b>Beijing, China, 3 Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Oulu, Finland, 4 TNList, Department of</b><br/><b>Computer Science and Technology, Tsinghua University, Beijing, China</b></td><td>('9185305', 'Wen-Jing Yan', 'wen-jing yan')<br/>('39522870', 'Xiaobai Li', 'xiaobai li')<br/>('2819642', 'Su-Jing Wang', 'su-jing wang')<br/>('1757287', 'Guoying Zhao', 'guoying zhao')<br/>('1715826', 'Yong-Jin Liu', 'yong-jin liu')<br/>('1838009', 'Yu-Hsin Chen', 'yu-hsin chen')<br/>('1684007', 'Xiaolan Fu', 'xiaolan fu')</td><td></td></tr><tr><td>eb9312458f84a366e98bd0a2265747aaed40b1a6</td><td>1-4244-1437-7/07/$20.00 ©2007 IEEE +<br/><b>State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences</b><br/><b>Beijing, China, 3 Center for Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Oulu, Finland, 4 TNList, Department of</b><br/><b>Computer Science and Technology, Tsinghua University, Beijing, China</b></td><td>('9185305', 'Wen-Jing Yan', 'wen-jing yan')<br/>('39522870', 'Xiaobai Li', 'xiaobai li')<br/>('2819642', 'Su-Jing Wang', 'su-jing wang')<br/>('1757287', 'Guoying Zhao', 'guoying zhao')<br/>('1715826', 'Yong-Jin Liu', 'yong-jin liu')<br/>('1838009', 'Yu-Hsin Chen', 'yu-hsin chen')<br/>('1684007', 'Xiaolan Fu', 'xiaolan fu')</td><td></td></tr><tr><td>eb566490cd1aa9338831de8161c6659984e923fd</td><td>From Lifestyle Vlogs to Everyday Interactions +<br/>EECS Department, UC Berkeley +</td><td>('1786435', 'David F. Fouhey', 'david f. fouhey')<br/>('1763086', 'Alexei A. Efros', 'alexei a. efros')<br/>('1689212', 'Jitendra Malik', 'jitendra malik')</td><td></td></tr><tr><td>eb9312458f84a366e98bd0a2265747aaed40b1a6</td><td>1-4244-1437-7/07/$20.00 ©2007 IEEE <br/>IV - 473 <br/>ICIP 2007 </td><td></td><td></td></tr><tr><td>eb716dd3dbd0f04e6d89f1703b9975cad62ffb09</td><td>Copyright <br/>by <br/>2012 -</td><td>('1883898', 'Yong Jae Lee', 'yong jae lee')</td><td></td></tr><tr><td>ebabd1f7bc0274fec88a3dabaf115d3e226f198f</td><td>Driver drowsiness detection system based on feature +</td><td>('1883898', 'Yong Jae Lee', 'yong jae lee')</td><td></td></tr><tr><td>eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6</td><td>Int. J. Information Technology and Management, Vol. 11, Nos. 1/2, 2012 +<br/>35 +<br/>A new soft biometric approach for keystroke +<br/>dynamics based on gender recognition +<br/><b>GREYC Research Lab</b><br/>ENSICAEN – Université de Caen Basse Normandie – CNRS, +<br/>14000 Caen, France +<br/>Fax: +33-231538110 +<br/>*Corresponding author +</td><td>('2615638', 'Romain Giot', 'romain giot')<br/>('1793765', 'Christophe Rosenberger', 'christophe rosenberger')</td><td>E-mail: romain.giot@ensicaen.fr +<br/>E-mail: christophe.rosenberger@ensicaen.fr +</td></tr><tr><td>ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9</td><td>Journal of Computational Mathematics +<br/>Vol.xx, No.x, 200x, 1–25. +<br/>http://www.global-sci.org/jcm +<br/>doi:?? +<br/>Fast algorithms for Higher-order Singular Value Decomposition +<br/>from incomplete data* +<br/><b>University of Alabama, Tuscaloosa, AL</b></td><td>('40507939', 'Yangyang Xu', 'yangyang xu')</td><td>Email: yangyang.xu@ua.edu +</td></tr><tr><td>ebabd1f7bc0274fec88a3dabaf115d3e226f198f</td><td>Driver drowsiness detection system based on feature <br/>representation learning using various deep networks <br/>School of Electrical Engineering, KAIST, <br/>Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea </td><td>('1989730', 'Sanghyuk Park', 'sanghyuk park')<br/>('1773194', 'Fei Pan', 'fei pan')<br/>('3315036', 'Sunghun Kang', 'sunghun kang')</td><td>{shine0624, feipan, sunghun.kang, cd yoo}@kaist.ac.kr -</td></tr><tr><td>ebb9d53668205c5797045ba130df18842e3eadef</td><td></td><td></td><td></td></tr><tr><td>eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a</td><td>Facial Expression Recognition using Neural +</td></tr><tr><td>eb70c38a350d13ea6b54dc9ebae0b64171d813c9</td><td>On Graph-Structured Discrete +<br/>Labelling Problems in Computer +<br/>Vision: Learning, Inference and +<br/>Applications +<br/>Submitted in partial fulfillment of the requirements for +<br/>the degree of +<br/>Doctor of Philosophy +<br/>in +<br/>Electrical and Computer Engineering +<br/><b>M.S., Electrical and Computer Engineering, Carnegie Mellon University</b><br/><b>B.Tech., Electronics Engineering, Institute of Technology, Banaras Hindu University</b><br/><b>Carnegie Mellon University</b><br/>August, 2010 +</td><td>('1746610', 'Dhruv Batra', 'dhruv batra')</td><td></td></tr><tr><td>ebb9d53668205c5797045ba130df18842e3eadef</td><td></td><td></td><td></td></tr><tr><td>eb027969f9310e0ae941e2adee2d42cdf07d938c</td><td>VGGFace2: A dataset for recognising faces across pose and age +<br/><b>Visual Geometry Group, University of Oxford</b></td><td>('46632720', 'Qiong Cao', 'qiong cao')<br/>('46980108', 'Li Shen', 'li shen')<br/>('10096695', 'Weidi Xie', 'weidi xie')<br/>('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>{qiong,lishen,weidi,omkar,az}@robots.ox.ac.uk +</td></tr><tr><td>eb48a58b873295d719827e746d51b110f5716d6c</td><td>Face Alignment Using K-cluster Regression Forests +<br/>With Weighted Splitting +</td><td>('2393538', 'Marek Kowalski', 'marek kowalski')<br/>('1930272', 'Jacek Naruniec', 'jacek naruniec')</td><td></td></tr><tr><td>eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a</td><td>Facial Expression Recognition using Neural <br/>Network <br/><b>National Cheng Kung University</b><br/>Tainan, Taiwan, R.O.C. <br/> @@ -11126,16 +13695,50 @@ <br/>Submitted for the degree of Doctor of Philosophy <br/>Department of Computer Science <br/><b>The University of York</b><br/>June, 2011 -</td><td>('37519514', 'Ankur Patel', 'ankur patel')</td><td></td></tr><tr><td>c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e</td><td>The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 +</td><td>('37519514', 'Ankur Patel', 'ankur patel')</td><td></td></tr><tr><td>c7c53d75f6e963b403057d8ba5952e4974a779ad</td><td><b>Purdue University</b><br/>Purdue e-Pubs +<br/>Open Access Theses +<br/>8-2016 +<br/>Theses and Dissertations +<br/>Aging effects in automated face recognition +<br/><b>Purdue University</b><br/>Follow this and additional works at: http://docs.lib.purdue.edu/open_access_theses +<br/>Recommended Citation +<br/>Agamez, Miguel Cedeno, "Aging effects in automated face recognition" (2016). Open Access Theses. 930. +<br/>http://docs.lib.purdue.edu/open_access_theses/930 +<br/>additional information. +</td><td></td><td>This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for +</td></tr><tr><td>c79cf7f61441195404472102114bcf079a72138a</td><td>Pose-Invariant 2D Face Recognition by Matching +<br/>Using Graphical Models +<br/>Submitted for the Degree of +<br/>Doctor of Philosophy +<br/>from the +<br/><b>University of Surrey</b><br/>Center for Vision, Speech and Signal Processing +<br/>Faculty of Engineering and Physical Sciences +<br/><b>University of Surrey</b><br/>Guildford, Surrey GU2 7XH, U.K. +<br/>September 2010 +</td><td>('1690611', 'Shervin Rahimzadeh Arashloo', 'shervin rahimzadeh arashloo')<br/>('1690611', 'Shervin Rahimzadeh Arashloo', 'shervin rahimzadeh arashloo')</td><td></td></tr><tr><td>c73dd452c20460f40becb1fd8146239c88347d87</td><td>Manifold Constrained Low-Rank Decomposition +<br/>1State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang, China +<br/><b>Center for Research in Computer Vision (CRCV), University of Central Florida (UCF</b><br/><b>School of Automation Science and Electrical Engineering, Beihang University, Beijing, China</b><br/>4 Istituto Italiano di Tecnologia, Genova, Italy +</td><td>('9497155', 'Chen Chen', 'chen chen')<br/>('1740430', 'Baochang Zhang', 'baochang zhang')<br/>('1714730', 'Alessio Del Bue', 'alessio del bue')<br/>('1727204', 'Vittorio Murino', 'vittorio murino')</td><td>chenchen870713@gmail.com, alessio.delbue@iit.it, bczhang@buaa.edu.cn, vittorio.murino@iit.it ∗ +</td></tr><tr><td>c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e</td><td>The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 <br/>DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL <br/>EXPRESSIONS OF EMOTIONS <br/>1LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France <br/>2LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France -</td><td>('3209946', 'Anna Tcherkassof', 'anna tcherkassof')<br/>('20944713', 'Damien Dupré', 'damien dupré')<br/>('2357225', 'Brigitte Meillon', 'brigitte meillon')<br/>('2872246', 'Nadine Mandran', 'nadine mandran')<br/>('1870899', 'Michel Dubois', 'michel dubois')<br/>('1828394', 'Jean-Michel Adam', 'jean-michel adam')</td><td></td></tr><tr><td>c74aba9a096379b3dbe1ff95e7af5db45c0fd680</td><td>Neuro-Fuzzy Analysis of Facial Action Units +</td><td>('3209946', 'Anna Tcherkassof', 'anna tcherkassof')<br/>('20944713', 'Damien Dupré', 'damien dupré')<br/>('2357225', 'Brigitte Meillon', 'brigitte meillon')<br/>('2872246', 'Nadine Mandran', 'nadine mandran')<br/>('1870899', 'Michel Dubois', 'michel dubois')<br/>('1828394', 'Jean-Michel Adam', 'jean-michel adam')</td><td></td></tr><tr><td>c72e6992f44ce75a40f44be4365dc4f264735cfb</td><td>Story Understanding in Video +<br/>Advertisements +<br/>Department of Computer Science +<br/><b>University of Pittsburgh</b><br/>Pennsylvania, United States +</td><td>('9085797', 'Keren Ye', 'keren ye')<br/>('51150048', 'Kyle Buettner', 'kyle buettner')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')<br/>('9085797', 'Keren Ye', 'keren ye')<br/>('51150048', 'Kyle Buettner', 'kyle buettner')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td>yekeren@cs.pitt.edu +<br/>buettnerk@pitt.edu +<br/>kovashka@cs.pitt.edu +</td></tr><tr><td>c74aba9a096379b3dbe1ff95e7af5db45c0fd680</td><td>Neuro-Fuzzy Analysis of Facial Action Units <br/>and Expressions <br/>Digital Signal Processing Lab, Department of Computer Engineering <br/><b>Sharif University of Technology</b><br/>Tehran, Iran, Tel: +98 21 6616 4632 </td><td>('1736464', 'Mahmoud Khademi', 'mahmoud khademi')<br/>('2936650', 'Mohammad Taghi Manzuri', 'mohammad taghi manzuri')<br/>('1702826', 'Mohammad Hadi Kiapour', 'mohammad hadi kiapour')</td><td>khademi@ce.sharif.edu, manzuri@sharif.edu, kiapour@ee.sharif.edu +</td></tr><tr><td>c7de0c85432ad17a284b5b97c4f36c23f506d9d1</td><td>INTERSPEECH 2011 +<br/>RANSAC-based Training Data Selection for Speaker State Recognition +<br/><b>Multimedia, Vision and Graphics Laboratory, Koc University, Istanbul, Turkey</b><br/><b>Bahc es ehir University, Istanbul, Turkey</b><br/><b>Ozye gin University, Istanbul, Turkey</b></td><td>('1777185', 'Elif Bozkurt', 'elif bozkurt')<br/>('1749677', 'Engin Erzin', 'engin erzin')</td><td>ebozkurt, eerzin@ku.edu.tr, cigdem.eroglu@bahcesehir.edu.tr, tanju.erdem@ozyegin.edu.tr </td></tr><tr><td>c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c</td><td>THE IMPACT OF PRODUCT PHOTO ON ONLINE CONSUMER <br/>PURCHASE INTENTION: AN IMAGE-PROCESSING ENABLED <br/>EMPIRICAL STUDY @@ -11152,13 +13755,25 @@ <br/>By <br/>Crefeda Faviola Rodrigues <br/>School of Computer Science -</td><td></td><td></td></tr><tr><td>c758b9c82b603904ba8806e6193c5fefa57e9613</td><td>Heterogeneous Face Recognition with CNNs +</td><td></td><td></td></tr><tr><td>c71217b2b111a51a31cf1107c71d250348d1ff68</td><td>One Network to Solve Them All — Solving Linear Inverse Problems +<br/>using Deep Projection Models +<br/><b>Carnegie Mellon University, Pittsburgh, PA</b></td><td>('2088535', 'Chun-Liang Li', 'chun-liang li')<br/>('1783087', 'B. V. K. Vijaya Kumar', 'b. v. k. vijaya kumar')<br/>('1745861', 'Aswin C. Sankaranarayanan', 'aswin c. sankaranarayanan')</td><td></td></tr><tr><td>c758b9c82b603904ba8806e6193c5fefa57e9613</td><td>Heterogeneous Face Recognition with CNNs <br/>INRIA Grenoble, Laboratoire Jean Kuntzmann </td><td>('2143851', 'Shreyas Saxena', 'shreyas saxena')<br/>('34602236', 'Jakob Verbeek', 'jakob verbeek')</td><td>{firstname.lastname}@inria.fr </td></tr><tr><td>c7c03324833ba262eeaada0349afa1b5990c1ea7</td><td>A Wearable Face Recognition System on Google <br/>Glass for Assisting Social Interactions <br/><b>Institute for Infocomm Research, Singapore</b></td><td>('1709001', 'Bappaditya Mandal', 'bappaditya mandal')<br/>('35718875', 'Liyuan Li', 'liyuan li')<br/>('1694051', 'Cheston Tan', 'cheston tan')</td><td>Email address: bmandal@i2r.a-star.edu.sg (∗Contact author: Bappaditya Mandal); <br/>{scchia, lyli, vijay, cheston-tan, joohwee}@i2r.a-star.edu.sg +</td></tr><tr><td>c76f64e87f88475069f7707616ad9df1719a6099</td><td>T-RECS: Training for Rate-Invariant +<br/>Embeddings by Controlling Speed for Action +<br/>Recognition +<br/><b>University of Michigan</b></td><td>('31646172', 'Madan Ravi Ganesh', 'madan ravi ganesh')<br/>('24337238', 'Eric Hofesmann', 'eric hofesmann')<br/>('40893359', 'Byungsu Min', 'byungsu min')<br/>('40893002', 'Nadha Gafoor', 'nadha gafoor')<br/>('3587688', 'Jason J. Corso', 'jason j. corso')</td><td></td></tr><tr><td>c7f0c0636d27a1d45b8fcef37e545b902195d937</td><td>Towards Around-Device Interaction using Corneal Imaging +<br/><b>Coburg University</b><br/><b>Coburg University</b></td><td>('49770541', 'Daniel Schneider', 'daniel schneider')<br/>('2708269', 'Jens Grubert', 'jens grubert')</td><td>daniel.schneider@hs-coburg.de +<br/>jg@jensgrubert.de +</td></tr><tr><td>c7c8d150ece08b12e3abdb6224000c07a6ce7d47</td><td>DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification +<br/>National Laboratory of Pattern Recognition, CASIA +<br/>Center for Research on Intelligent Perception and Computing, CASIA +</td><td>('50202300', 'Shu Zhang', 'shu zhang')</td><td>{shu.zhang,rhe,tnt}@nlpr.ia.ac.cn </td></tr><tr><td>c78fdd080df01fff400a32fb4cc932621926021f</td><td>Robust Automatic Facial Expression Detection <br/>Method <br/><b>Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan</b><br/><b>Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan</b><br/>China @@ -11176,6 +13791,8 @@ </td><td>('38746097', 'Xuan Zou', 'xuan zou')<br/>('39685698', 'Wenwu Wang', 'wenwu wang')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td>xuan.zou@surrey.ac.uk <br/>w.wang@surrey.ac.uk <br/>j.kittler@surrey.ac.uk +</td></tr><tr><td>c75e6ce54caf17b2780b4b53f8d29086b391e839</td><td>ExpNet: Landmark-Free, Deep, 3D Facial Expressions +<br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b><br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b></td><td>('1752756', 'Feng-Ju Chang', 'feng-ju chang')<br/>('46634688', 'Anh Tuan Tran', 'anh tuan tran')<br/>('1756099', 'Tal Hassner', 'tal hassner')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')</td><td>{fengjuch,anhttran,iacopoma,nevatia,medioni}@usc.edu, hassner@openu.ac.il </td></tr><tr><td>c0723e0e154a33faa6ff959d084aebf07770ffaf</td><td>Interpolation Between Eigenspaces Using <br/>Rotation in Multiple Dimensions <br/><b>Graduate School of Information Science, Nagoya University, Japan</b><br/>2 No Japan Society for the Promotion of Science @@ -11186,10 +13803,26 @@ <br/>I-vector Speaker Recognition System <br/><b>School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China</b></td><td>('3308432', 'Zhenchun Lei', 'zhenchun lei')<br/>('2947033', 'Yanhong Wan', 'yanhong wan')<br/>('1853437', 'Jian Luo', 'jian luo')<br/>('2956877', 'Yingen Yang', 'yingen yang')</td><td>zhenchun.lei@hotmail.com, wyanhhappy@126.com, <br/>luo.jian@hotmail.com, ygyang@jxnu.edu.cn -</td></tr><tr><td>c043f8924717a3023a869777d4c9bee33e607fb5</td><td>Emotion Separation Is Completed Early and It Depends +</td></tr><tr><td>c038beaa228aeec174e5bd52460f0de75e9cccbe</td><td>Temporal Segment Networks for Action +<br/>Recognition in Videos +</td><td>('33345248', 'Limin Wang', 'limin wang')<br/>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('48708388', 'Zhe Wang', 'zhe wang')<br/>('40612284', 'Yu Qiao', 'yu qiao')<br/>('1807606', 'Dahua Lin', 'dahua lin')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td></td></tr><tr><td>c043f8924717a3023a869777d4c9bee33e607fb5</td><td>Emotion Separation Is Completed Early and It Depends <br/>on Visual Field Presentation <br/><b>Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia</b><br/>Cyprus -</td><td>('2259342', 'Lichan Liu', 'lichan liu')<br/>('2348276', 'Andreas A. Ioannides', 'andreas a. ioannides')</td><td></td></tr><tr><td>c03e01717b2d93f04cce9b5fd2dcfd1143bcc180</td><td>Locality-constrained Active Appearance Model +</td><td>('2259342', 'Lichan Liu', 'lichan liu')<br/>('2348276', 'Andreas A. Ioannides', 'andreas a. ioannides')</td><td></td></tr><tr><td>c05a7c72e679745deab9c9d7d481f7b5b9b36bdd</td><td>NPS-CS-11-005 +<br/> +<br/> +<br/>NAVAL +<br/>POSTGRADUATE +<br/>SCHOOL +<br/>MONTEREY, CALIFORNIA +<br/>by +<br/>BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS: +<br/>A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE, +<br/> AND SOCIAL CONDITIONS ON THE EFFECTIVE +<br/>COLLECTION OF BIOMETRICS +<br/>April 2011 +<br/>Approved for public release; distribution is unlimited +</td><td>('3337733', 'Paul C. Clark', 'paul c. clark')</td><td></td></tr><tr><td>c03e01717b2d93f04cce9b5fd2dcfd1143bcc180</td><td>Locality-constrained Active Appearance Model <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences <br/><b>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing 100049, China</b></td><td>('1874505', 'Xiaowei Zhao', 'xiaowei zhao')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1695600', 'Xiujuan Chai', 'xiujuan chai')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td>mathzxw2002@gmail.com,{sgshan,chaixiujuan,xlchen}@ict.ac.cn </td></tr><tr><td>c0ff7dc0d575658bf402719c12b676a34271dfcd</td><td>A New Incremental Optimal Feature Extraction @@ -11226,7 +13859,10 @@ <br/>because a higher resolution image will require larger filters and deeper networks which is turn hard to <br/>train [3]. So it is not clear whether the low resolution will cause challenge for fine-grained <br/>classification task. Last but not the least, there is not a large training database like PASCAL, MNIST -</td><td>('2355840', 'Chenyu Wang', 'chenyu wang')</td><td></td></tr><tr><td>c035c193eed5d72c7f187f0bc880a17d217dada0</td><td>Local Gradient Gabor Pattern (LGGP) with Applications in +</td><td>('2355840', 'Chenyu Wang', 'chenyu wang')</td><td></td></tr><tr><td>c0c8d720658374cc1ffd6116554a615e846c74b5</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>Modeling Multimodal Clues in a Hybrid Deep +<br/>Learning Framework for Video Classification +</td><td>('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')<br/>('3099139', 'Zuxuan Wu', 'zuxuan wu')<br/>('8053308', 'Jinhui Tang', 'jinhui tang')<br/>('3233021', 'Zechao Li', 'zechao li')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td></td></tr><tr><td>c035c193eed5d72c7f187f0bc880a17d217dada0</td><td>Local Gradient Gabor Pattern (LGGP) with Applications in <br/>Face Recognition, Cross-spectral Matching and Soft <br/>Biometrics <br/><b>West Virginia University</b><br/><b>Michigan State University</b><br/>Morgantown, WV, USA @@ -11249,6 +13885,9 @@ </td><td>('7652095', 'Young Bin Kim', 'young bin kim')<br/>('40267433', 'Shin Jin Kang', 'shin jin kang')<br/>('4972813', 'Sang Hyeok Lee', 'sang hyeok lee')<br/>('5702793', 'Jang Young Jung', 'jang young jung')<br/>('3000093', 'Hyeong Ryeol Kam', 'hyeong ryeol kam')<br/>('2013790', 'Jung Lee', 'jung lee')<br/>('2467280', 'Young Sun Kim', 'young sun kim')<br/>('3103240', 'Joonsoo Lee', 'joonsoo lee')<br/>('22232963', 'Chang Hun Kim', 'chang hun kim')</td><td></td></tr><tr><td>c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774</td><td>A Two-Layer Representation For Large-Scale Action Recognition <br/><b>Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University</b><br/>2Shanghai Key Lab of Digital Media Processing and Transmission, 3Microsoft Research Asia <br/><b>University of California, San Diego</b></td><td>('1701941', 'Jun Zhu', 'jun zhu')<br/>('2450889', 'Baoyuan Wang', 'baoyuan wang')<br/>('1795291', 'Xiaokang Yang', 'xiaokang yang')<br/>('38790729', 'Wenjun Zhang', 'wenjun zhang')<br/>('1736745', 'Zhuowen Tu', 'zhuowen tu')</td><td>{zhujun.sjtu,zhuowen.tu}@gmail.com, baoyuanw@microsoft.com, {xkyang,zhangwenjun}@sjtu.edu.cn +</td></tr><tr><td>c00df53bd46f78ae925c5768d46080159d4ef87d</td><td>Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks +<br/><b>Aristotle University of Thessaloniki</b><br/>Thessaloniki, Greece +</td><td>('3200630', 'Nikolaos Passalis', 'nikolaos passalis')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')</td><td>passalis@csd.auth.gr, tefas@aiia.csd.auth.gr </td></tr><tr><td>c0d5c3aab87d6e8dd3241db1d931470c15b9e39d</td><td></td><td></td><td></td></tr><tr><td>c05441dd1bc418fb912a6fafa84c0659a6850bf0</td><td>Received on 16th July 2014 <br/>Revised on 11th September 2014 <br/>Accepted on 23rd September 2014 @@ -11335,11 +13974,39 @@ <br/>Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira, <br/> ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria <br/>www.intechopen.com -</td><td>('1932760', 'Masaki Ishii', 'masaki ishii')<br/>('2052920', 'Kazuhito Sato', 'kazuhito sato')<br/>('1738333', 'Hirokazu Madokoro', 'hirokazu madokoro')<br/>('21063785', 'Makoto Nishida', 'makoto nishida')</td><td></td></tr><tr><td>ee7093e91466b81d13f4d6933bcee48e4ee63a16</td><td>Discovering Person Identity via +</td><td>('1932760', 'Masaki Ishii', 'masaki ishii')<br/>('2052920', 'Kazuhito Sato', 'kazuhito sato')<br/>('1738333', 'Hirokazu Madokoro', 'hirokazu madokoro')<br/>('21063785', 'Makoto Nishida', 'makoto nishida')</td><td></td></tr><tr><td>ee815f60dc4a090fa9fcfba0135f4707af21420d</td><td>EAC-Net: A Region-based Deep Enhancing and Cropping Approach for +<br/>Facial Action Unit Detection +<br/><b>Grove School of Engineering, CUNY City College, NY, USA</b><br/>2 Department of Computer Science, CUNY Graduate Center, NY, USA +<br/><b>Engineering and Applied Science, SUNY Binghamton University, NY, USA</b></td><td>('48625314', 'Wei Li', 'wei li')</td><td></td></tr><tr><td>eed7920682789a9afd0de4efd726cd9a706940c8</td><td>Computers to Help with Conversations: +<br/>Affective Framework to Enhance Human Nonverbal Skills +<br/>by +<br/>Mohammed Ehsan Hoque +<br/><b>B.S., Pennsylvania State University</b><br/><b>M.S., University of Memphis</b><br/>Submitted to the Program in Media Arts and Sciences, +<br/>School of Architecture and Planning, +<br/>In partial fulfilment of the requirements for the degree of +<br/>DOCTOR OF PHILOSOPHY +<br/>at the +<br/><b>MASSACHUSETTS INSTITUTE OF TECHNOLOGY</b><br/>September 2013 +<br/><b>Massachusetts Institute of Technology 2013. All rights reserved</b><br/>Author +<br/>Certified by +<br/>Accepted by +<br/> Program in Media Arts and Sciences +<br/>August 15, 2013 +<br/> Rosalind W. Picard +<br/> Professor of Media Arts and Sciences +<br/> Program in Media Arts and Sciences, MIT +<br/> Thesis supervisor +<br/>Pattie Maes +<br/>Associate Academic Head +<br/>Program in Media Arts and Sciences, MIT +</td><td></td><td></td></tr><tr><td>ee7093e91466b81d13f4d6933bcee48e4ee63a16</td><td>Discovering Person Identity via <br/>Large-Scale Observations <br/><b>Interactive and Digital Media Institute, National University of Singapore, SG</b><br/><b>School of Computing, National University of Singapore, SG</b></td><td>('3026404', 'Yongkang Wong', 'yongkang wong')<br/>('1986874', 'Lekha Chaisorn', 'lekha chaisorn')<br/>('1744045', 'Mohan S. Kankanhalli', 'mohan s. kankanhalli')</td><td></td></tr><tr><td>ee461d060da58d6053d2f4988b54eff8655ecede</td><td></td><td></td><td></td></tr><tr><td>eefb8768f60c17d76fe156b55b8a00555eb40f4d</td><td>Subspace Scores for Feature Selection in Computer Vision </td><td>('2032038', 'Cameron Musco', 'cameron musco')<br/>('2767340', 'Christopher Musco', 'christopher musco')</td><td>cnmusco@mit.edu <br/>cpmusco@mit.edu +</td></tr><tr><td>ee463f1f72a7e007bae274d2d42cd2e5d817e751</td><td>Automatically Extracting Qualia Relations for the Rich Event Ontology +<br/><b>University of Colorado Boulder, 2U.S. Army Research Lab</b></td><td>('51203051', 'Ghazaleh Kazeminejad', 'ghazaleh kazeminejad')<br/>('3202888', 'Claire Bonial', 'claire bonial')<br/>('1783500', 'Susan Windisch Brown', 'susan windisch brown')<br/>('1728285', 'Martha Palmer', 'martha palmer')</td><td>{ghazaleh.kazeminejad, susan.brown, martha.palmer}@colorado.edu +<br/>claire.n.bonial.civ@mail.mil </td></tr><tr><td>eed1dd2a5959647896e73d129272cb7c3a2e145c</td><td></td><td></td><td></td></tr><tr><td>ee92d36d72075048a7c8b2af5cc1720c7bace6dd</td><td>FACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS <br/>Video and Display Processing <br/>Philips Research USA @@ -11349,7 +14016,32 @@ <br/>of Oriented Gradients and Adaboost Classifier <br/>Electrical and Computer Engineering Department <br/><b>University of California, San Diego</b></td><td>('2812409', 'Kevan Yuen', 'kevan yuen')</td><td>kcyuen@eng.ucsd.edu -</td></tr><tr><td>c94b3a05f6f41d015d524169972ae8fd52871b67</td><td>The Fastest Deformable Part Model for Object Detection +</td></tr><tr><td>eee06d68497be8bf3a8aba4fde42a13aa090b301</td><td>CR-GAN: Learning Complete Representations for Multi-view Generation +<br/><b>Rutgers University</b><br/><b>University of North Carolina at Charlotte</b></td><td>('6812347', 'Yu Tian', 'yu tian')<br/>('4340744', 'Xi Peng', 'xi peng')<br/>('33860220', 'Long Zhao', 'long zhao')<br/>('1753384', 'Shaoting Zhang', 'shaoting zhang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>{yt219, px13, lz311, dnm}@cs.rutgers.edu, szhang16@uncc.edu +</td></tr><tr><td>eee2d2ac461f46734c8e674ae14ed87bbc8d45c6</td><td>Generalized Rank Pooling for Activity Recognition +<br/>1Australian Centre for Robotic Vision, 2Data61/CSIRO +<br/><b>The Australian National University, Canberra, Australia</b></td><td>('2691929', 'Anoop Cherian', 'anoop cherian')<br/>('1688071', 'Basura Fernando', 'basura fernando')<br/>('23911916', 'Mehrtash Harandi', 'mehrtash harandi')<br/>('49384847', 'Stephen Gould', 'stephen gould')</td><td>firstname.lastname@{anu.edu.au, data61.csiro.au} +</td></tr><tr><td>eed93d2e16b55142b3260d268c9e72099c53d5bc</td><td>ICFVR 2017: 3rd International Competition on Finger Vein Recognition +<br/><b>Chittagong University of Engineering and Technology</b><br/>∗ These authors contributed equally to this work +<br/><b>Peking University</b><br/>2Shenzhen Maidi Technology Co., LTD. +<br/>3TigerIT +</td><td>('46867002', 'Yi Zhang', 'yi zhang')<br/>('2560109', 'Houjun Huang', 'houjun huang')<br/>('38728899', 'Haifeng Zhang', 'haifeng zhang')<br/>('3142600', 'Liao Ni', 'liao ni')<br/>('47210488', 'Wei Xu', 'wei xu')<br/>('1694788', 'Nasir Uddin Ahmed', 'nasir uddin ahmed')<br/>('9336364', 'Md. Shakil Ahmed', 'md. shakil ahmed')<br/>('9372198', 'Yilun Jin', 'yilun jin')<br/>('23100665', 'Yingjie Chen', 'yingjie chen')<br/>('35273470', 'Jingxuan Wen', 'jingxuan wen')<br/>('39201759', 'Wenxin Li', 'wenxin li')</td><td></td></tr><tr><td>eedfb384a5e42511013b33104f4cd3149432bd9e</td><td>Multimodal Probabilistic Person +<br/>Tracking and Identification +<br/>in Smart Spaces +<br/>zur Erlangung des akademischen Grades eines +<br/>Doktors der Ingenieurwissenschaften +<br/>der Fakultät für Informatik +<br/>der Universität Fridericiana zu Karlsruhe (TH) +<br/>genehmigte +<br/>Dissertation +<br/>von +<br/>aus Karlsruhe +<br/>Tag der mündlichen Prüfung: 20.11.2009 +<br/>Erster Gutachter: +<br/>Zweiter Gutachter: +<br/>Prof. Dr. A. Waibel +<br/>Prof. Dr. R. Stiefelhagen +</td><td>('1701229', 'Keni Bernardin', 'keni bernardin')</td><td></td></tr><tr><td>c94b3a05f6f41d015d524169972ae8fd52871b67</td><td>The Fastest Deformable Part Model for Object Detection <br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition <br/><b>Institute of Automation, Chinese Academy of Sciences, China</b></td><td>('1721677', 'Junjie Yan', 'junjie yan')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('39774417', 'Longyin Wen', 'longyin wen')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{jjyan,zlei,lywen,szli}@nlpr.ia.ac.cn </td></tr><tr><td>c9424d64b12a4abe0af201e7b641409e182babab</td><td>Article @@ -11363,14 +14055,23 @@ <br/>statistical-like moments <br/><b>Integrated Research Center, Universit`a Campus Bio-Medico di Roma</b><br/>Via Alvaro del Portillo, 00128 Roma, Italy </td><td>('1679260', 'Giulio Iannello', 'giulio iannello')<br/>('1720099', 'Paolo Soda', 'paolo soda')</td><td>{r.dambrosio, g.iannello, p.soda}@unicampus.it -</td></tr><tr><td>c903af0d69edacf8d1bff3bfd85b9470f6c4c243</td><td></td><td></td><td></td></tr><tr><td>c95cd36779fcbe45e3831ffcd3314e19c85defc5</td><td>FACE RECOGNITION USING MULTI-MODAL LOW-RANK DICTIONARY LEARNING +</td></tr><tr><td>c903af0d69edacf8d1bff3bfd85b9470f6c4c243</td><td></td><td></td><td></td></tr><tr><td>c97a5f2241cc6cd99ef0c4527ea507a50841f60b</td><td>Person Search in Videos with One Portrait +<br/>Through Visual and Temporal Links +<br/><b>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</b><br/><b>Tsinghua University</b><br/>3 SenseTime Research +</td><td>('39360892', 'Qingqiu Huang', 'qingqiu huang')<br/>('40584026', 'Wentao Liu', 'wentao liu')<br/>('1807606', 'Dahua Lin', 'dahua lin')</td><td>{hq016,dhlin}@ie.cuhk.edu.hk +<br/>liuwtwinter@gmail.com +</td></tr><tr><td>c95cd36779fcbe45e3831ffcd3314e19c85defc5</td><td>FACE RECOGNITION USING MULTI-MODAL LOW-RANK DICTIONARY LEARNING <br/><b>University of Alberta, Edmonton, Canada</b></td><td>('1807674', 'Homa Foroughi', 'homa foroughi')<br/>('2627414', 'Moein Shakeri', 'moein shakeri')<br/>('1772846', 'Nilanjan Ray', 'nilanjan ray')<br/>('1734058', 'Hong Zhang', 'hong zhang')</td><td></td></tr><tr><td>c9e955cb9709f16faeb0c840f4dae92eb875450a</td><td>Proposal of Novel Histogram Features <br/>for Face Detection <br/><b>Harbin Institute of Technology, School of Computer Science and Technology</b><br/>P.O.Box 1071, Harbin, Heilongjiang 150001, China <br/><b>Heilongjiang University, College of Computer Science and Technology, China</b></td><td>('2607285', 'Haijing Wang', 'haijing wang')<br/>('40426020', 'Peihua Li', 'peihua li')<br/>('1821107', 'Tianwen Zhang', 'tianwen zhang')</td><td>ninhaijing@yahoo.com <br/>peihualj@hotmail.com </td></tr><tr><td>c92bb26238f6e30196b0c4a737d8847e61cfb7d4</td><td>BEYOND CONTEXT: EXPLORING SEMANTIC SIMILARITY FOR TINY FACE DETECTION -<br/><b>School of Computer Science, Northwestern Polytechnical University, P.R.China</b><br/><b>Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia</b><br/><b>School of Data and Computer Science, Sun Yat-sen University, P.R.China</b></td><td>('24336288', 'Yue Xi', 'yue xi')<br/>('3104013', 'Jiangbin Zheng', 'jiangbin zheng')<br/>('1714410', 'Wenjing Jia', 'wenjing jia')<br/>('3031842', 'Hanhui Li', 'hanhui li')</td><td></td></tr><tr><td>c9f588d295437009994ddaabb64fd4e4c499b294</td><td>Predicting Professions through +<br/><b>School of Computer Science, Northwestern Polytechnical University, P.R.China</b><br/><b>Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia</b><br/><b>School of Data and Computer Science, Sun Yat-sen University, P.R.China</b></td><td>('24336288', 'Yue Xi', 'yue xi')<br/>('3104013', 'Jiangbin Zheng', 'jiangbin zheng')<br/>('1714410', 'Wenjing Jia', 'wenjing jia')<br/>('3031842', 'Hanhui Li', 'hanhui li')</td><td></td></tr><tr><td>c9bbd7828437e70cc3e6863b278aa56a7d545150</td><td>Unconstrained Fashion Landmark Detection via +<br/>Hierarchical Recurrent Transformer Networks +<br/><b>The Chinese University of Hong Kong</b><br/>2SenseTime Group Limited +</td><td>('1979911', 'Sijie Yan', 'sijie yan')<br/>('3243969', 'Ziwei Liu', 'ziwei liu')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('1725421', 'Shi Qiu', 'shi qiu')</td><td>{ys016,lz013,pluo,xtang}@ie.cuhk.edu.hk,sqiu@sensetime.com,xgwang@ee.cuhk.edu.hk +</td></tr><tr><td>c9f588d295437009994ddaabb64fd4e4c499b294</td><td>Predicting Professions through <br/>Probabilistic Model under Social Context <br/><b>Northeastern University</b><br/>Boston, MA, 02115 </td><td>('2025056', 'Ming Shao', 'ming shao')<br/>('2897748', 'Liangyue Li', 'liangyue li')<br/>('1708679', 'Yun Fu', 'yun fu')</td><td>mingshao@ccs.neu.edu, {liangyue, yunfu}@ece.neu.edu @@ -11384,7 +14085,21 @@ <br/>Department of Electrical Engineering <br/><b>National Chiao-Tung University</b><br/>Hsinchu, Taiwan, R.O.C </td><td>('4525043', 'Kuo-Yu Chiu', 'kuo-yu chiu')<br/>('1707677', 'Sheng-Fuu Lin', 'sheng-fuu lin')</td><td>Alvin_cgr@hotmail.com -</td></tr><tr><td>fc1e37fb16006b62848def92a51434fc74a2431a</td><td>DRAFT +</td></tr><tr><td>c98983592777952d1751103b4d397d3ace00852d</td><td>Face Synthesis from Facial Identity Features +<br/>Google Research +<br/>Google Research +<br/><b>University of Massachusetts Amherst</b><br/>Google Research +<br/>Google Research +<br/>CSAIL, MIT and Google Research +</td><td>('39578349', 'Forrester Cole', 'forrester cole')<br/>('8707513', 'Aaron Sarna', 'aaron sarna')<br/>('2636941', 'David Belanger', 'david belanger')<br/>('1707347', 'Dilip Krishnan', 'dilip krishnan')<br/>('2138834', 'Inbar Mosseri', 'inbar mosseri')<br/>('1768236', 'William T. Freeman', 'william t. freeman')</td><td>fcole@google.com +<br/>sarna@google.com +<br/>belanger@cs.umass.edu +<br/>dilipkay@google.com +<br/>inbarm@google.com +<br/>wfreeman@google.com +</td></tr><tr><td>c9367ed83156d4d682cefc59301b67f5460013e0</td><td>Geometry-Contrastive GAN for Facial Expression +<br/>Transfer +<br/><b>Institute of Software, Chinese Academy of Sciences</b></td><td>('35790820', 'Fengchun Qiao', 'fengchun qiao')<br/>('35996065', 'Zirui Jiao', 'zirui jiao')<br/>('3238696', 'Zhihao Li', 'zhihao li')<br/>('1804472', 'Hui Chen', 'hui chen')<br/>('7643981', 'Hongan Wang', 'hongan wang')</td><td></td></tr><tr><td>fc1e37fb16006b62848def92a51434fc74a2431a</td><td>DRAFT <br/>A Comprehensive Analysis of Deep Regression </td><td>('2793152', 'Pablo Mesejo', 'pablo mesejo')<br/>('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')<br/>('1794229', 'Radu Horaud', 'radu horaud')</td><td></td></tr><tr><td>fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192</td><td>Initialization Strategies of Spatio-Temporal <br/>Convolutional Neural Networks @@ -11398,7 +14113,14 @@ <br/>Editor: Donald Geman </td><td>('5692650', 'Chao-Chun Liu', 'chao-chun liu')<br/>('1726138', 'Dao-Qing Dai', 'dao-qing dai')<br/>('1718530', 'Hong Yan', 'hong yan')</td><td>STSDDQ@MAIL.SYSU.EDU.CN <br/>H.YAN@CITYU.EDU.HK -</td></tr><tr><td>fc516a492cf09aaf1d319c8ff112c77cfb55a0e5</td><td></td><td></td><td></td></tr><tr><td>fcbec158e6a4ace3d4311b26195482b8388f0ee9</td><td>Face Recognition from Still Images and Videos +</td></tr><tr><td>fc516a492cf09aaf1d319c8ff112c77cfb55a0e5</td><td></td><td></td><td></td></tr><tr><td>fc0f5859a111fb17e6dcf6ba63dd7b751721ca61</td><td>Design of an Automatic +<br/>Facial Expression Detector +<br/>An essay presented for the degree +<br/>of +<br/>M.Math +<br/>Applied Mathematics +<br/><b>University of Waterloo</b><br/>2018/01/26 +</td><td>('2662893', 'Jian Liang', 'jian liang')</td><td></td></tr><tr><td>fcbec158e6a4ace3d4311b26195482b8388f0ee9</td><td>Face Recognition from Still Images and Videos <br/>Center for Automation Research (CfAR) and <br/>Department of Electrical and Computer Engineering <br/><b>University of Maryland, College Park, MD</b><br/>I. INTRODUCTION @@ -11431,7 +14153,10 @@ <br/>Recognition <br/>Bogaziçi Un. Electronics Eng. Dept. March 2010 </td><td>('3398552', 'Bilgin Esme', 'bilgin esme')</td><td></td></tr><tr><td>fcd77f3ca6b40aad6edbd1dab9681d201f85f365</td><td>c(cid:13)Copyright 2014 -</td><td>('3299424', 'Miro Enev', 'miro enev')</td><td></td></tr><tr><td>fc798314994bf94d1cde8d615ba4d5e61b6268b6</td><td>Face Recognition: face in video, age invariance, +</td><td>('3299424', 'Miro Enev', 'miro enev')</td><td></td></tr><tr><td>fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Asymmetric Discrete Graph Hashing +<br/><b>University of Florida, Gainesville, FL, 32611, USA</b></td><td>('2766473', 'Xiaoshuang Shi', 'xiaoshuang shi')<br/>('2082604', 'Fuyong Xing', 'fuyong xing')<br/>('46321210', 'Kaidi Xu', 'kaidi xu')<br/>('2599018', 'Manish Sapkota', 'manish sapkota')<br/>('49576071', 'Lin Yang', 'lin yang')</td><td>xsshi2015@ufl.edu +</td></tr><tr><td>fc798314994bf94d1cde8d615ba4d5e61b6268b6</td><td>Face Recognition: face in video, age invariance, <br/>and facial marks <br/>By <br/>A DISSERTATION @@ -11460,14 +14185,39 @@ <br/>Unsupervised Semantic Action Discovery from Video <br/>Collections <br/>Received: date / Accepted: date -</td><td>('3114252', 'Ozan Sener', 'ozan sener')<br/>('1681995', 'Ashutosh Saxena', 'ashutosh saxena')</td><td></td></tr><tr><td>fd4ac1da699885f71970588f84316589b7d8317b</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +</td><td>('3114252', 'Ozan Sener', 'ozan sener')<br/>('1681995', 'Ashutosh Saxena', 'ashutosh saxena')</td><td></td></tr><tr><td>fdff2da5bdca66e0ab5874ef58ac2205fb088ed7</td><td>Continuous Supervised Descent Method for +<br/>Facial Landmark Localisation +<br/>1Universitat Oberta de Catalunya, 156 Rambla del Poblenou, Barcelona, Spain +<br/>2Universitat de Barcelona, 585 Gran Via de les Corts Catalanes, Barcelona, Spain +<br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA</b><br/>4Computer Vision Center, O Building, UAB Campus, Bellaterra, Spain +<br/><b>University of Pittsburgh, Pittsburgh, PA, USA</b></td><td>('3305641', 'Marc Oliu', 'marc oliu')<br/>('1733113', 'Takeo Kanade', 'takeo kanade')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')</td><td></td></tr><tr><td>fdfd57d4721174eba288e501c0c120ad076cdca8</td><td>An Analysis of Action Recognition Datasets for +<br/>Language and Vision Tasks +<br/><b>Institute for Language, Cognition and Computation</b><br/><b>School of Informatics, University of Edinburgh</b><br/>10 Crichton Street, Edinburgh EH8 9AB +</td><td>('2921001', 'Spandana Gella', 'spandana gella')<br/>('48716849', 'Frank Keller', 'frank keller')</td><td>S.Gella@sms.ed.ac.uk, keller@inf.ed.ac.uk +</td></tr><tr><td>fd4ac1da699885f71970588f84316589b7d8317b</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 <br/>Supervised Descent Method <br/>for Solving Nonlinear Least Squares <br/>Problems in Computer Vision -</td><td>('3182065', 'Xuehan Xiong', 'xuehan xiong')<br/>('1707876', 'Fernando De la Torre', 'fernando de la torre')</td><td></td></tr><tr><td>fdf533eeb1306ba418b09210387833bdf27bb756</td><td>951 -</td><td></td><td></td></tr><tr><td>fdfaf46910012c7cdf72bba12e802a318b5bef5a</td><td>Computerized Face Recognition in Renaissance +</td><td>('3182065', 'Xuehan Xiong', 'xuehan xiong')<br/>('1707876', 'Fernando De la Torre', 'fernando de la torre')</td><td></td></tr><tr><td>fd33df02f970055d74fbe69b05d1a7a1b9b2219b</td><td>Single Shot Temporal Action Detection +<br/><b>Shanghai Jiao Tong University, China. 2Columbia University, USA</b><br/><b>Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, China</b></td><td>('6873935', 'Tianwei Lin', 'tianwei lin')<br/>('1758267', 'Xu Zhao', 'xu zhao')<br/>('2195345', 'Zheng Shou', 'zheng shou')</td><td>{wzmsltw,zhaoxu}@sjtu.edu.cn,zs2262@columbia.edu +</td></tr><tr><td>fdf533eeb1306ba418b09210387833bdf27bb756</td><td>951 +</td><td></td><td></td></tr><tr><td>fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3</td><td>Im2Flow: Motion Hallucination from Static Images for Action Recognition +<br/>UT Austin +<br/>UT Austin +<br/>UT Austin +</td><td>('3387849', 'Ruohan Gao', 'ruohan gao')<br/>('50398746', 'Bo Xiong', 'bo xiong')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>rhgao@cs.utexas.edu +<br/>bxiong@cs.utexas.edu +<br/>grauman@cs.utexas.edu +</td></tr><tr><td>fdfaf46910012c7cdf72bba12e802a318b5bef5a</td><td>Computerized Face Recognition in Renaissance <br/>Portrait Art -</td><td>('18640672', 'Ramya Srinivasan', 'ramya srinivasan')<br/>('3007257', 'Conrad Rudolph', 'conrad rudolph')<br/>('1688416', 'Amit Roy-Chowdhury', 'amit roy-chowdhury')</td><td></td></tr><tr><td>fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f</td><td><b>University of Twente</b><br/>Department of Services, Cybersecurity and Safety +</td><td>('18640672', 'Ramya Srinivasan', 'ramya srinivasan')<br/>('3007257', 'Conrad Rudolph', 'conrad rudolph')<br/>('1688416', 'Amit Roy-Chowdhury', 'amit roy-chowdhury')</td><td></td></tr><tr><td>fd15e397629e0241642329fc8ee0b8cd6c6ac807</td><td>Semi-Supervised Clustering with Neural Networks +<br/>IIIT-Delhi, India +</td><td>('2200208', 'Ankita Shukla', 'ankita shukla')<br/>('39866663', 'Gullal Singh Cheema', 'gullal singh cheema')<br/>('34817359', 'Saket Anand', 'saket anand')</td><td>{ankitas, gullal1408, anands}@iiitd.ac.in +</td></tr><tr><td>fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f</td><td>Multi-Expert Gender Classification on Age Group by Integrating Deep Neural +<br/>Networks +<br/><b>Yonsei University</b><br/>50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. +</td><td>('51430701', 'Jun Beom Kho', 'jun beom kho')</td><td>kojb87@hanmail.net +</td></tr><tr><td>fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f</td><td><b>University of Twente</b><br/>Department of Services, Cybersecurity and Safety <br/>Master Thesis <br/>Deep Verification Learning <br/>Author: @@ -11494,10 +14244,24 @@ <br/>under the 7th Framework Programme (FP7) for Research and Technological Development under grant <br/>under the 7th Framework Programme (FP7) for Research and Technological Development under grant <br/>agreement n°2010-248085. -</td><td></td><td></td></tr><tr><td>fd96432675911a702b8a4ce857b7c8619498bf9f</td><td>Improved Face Detection and Alignment using Cascade +</td><td></td><td></td></tr><tr><td>fd53be2e0a9f33080a9db4b5a5e416e24ae8e198</td><td>Apparent Age Estimation Using Ensemble of Deep Learning Models +<br/>Refik Can Mallı∗ +<br/>Mehmet Ayg¨un∗ +<br/>Hazım Kemal Ekenel +<br/><b>Istanbul Technical University</b><br/>Istanbul, Turkey +</td><td></td><td>{mallir,aygunme,ekenel}@itu.edu.tr +</td></tr><tr><td>fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81</td><td>Action Detection from a Robot-Car Perspective +<br/>Universit´a degli Studi Federico II +<br/>Naples, Italy +<br/><b>Oxford Brookes University</b><br/>Oxford, UK +</td><td>('39078800', 'Valentina Fontana', 'valentina fontana')<br/>('51149466', 'Manuele Di Maio', 'manuele di maio')<br/>('51152717', 'Stephen Akrigg', 'stephen akrigg')<br/>('1931660', 'Gurkirt Singh', 'gurkirt singh')<br/>('49348905', 'Suman Saha', 'suman saha')<br/>('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')</td><td>vale.fontana@studenti.unina.it, man.dimaio@gmail.com +<br/>15057204@brookes.ac.uk, gurkirt.singh-2015@brookes.ac.uk, +<br/>suman.saha-2014@brookes.ac.uk, fabio.cuzzolin@brookes.ac.uk +</td></tr><tr><td>fd96432675911a702b8a4ce857b7c8619498bf9f</td><td>Improved Face Detection and Alignment using Cascade <br/>Deep Convolutional Network <br/>†Beijing Key Laboratory of Intelligent Information Technology, School of -<br/><b>Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China</b><br/><b>China Mobile Research Institute, Xuanwu Men West Street, Beijing</b></td><td>('22244104', 'Weilin Cong', 'weilin cong')<br/>('2901725', 'Sanyuan Zhao', 'sanyuan zhao')<br/>('1698061', 'Hui Tian', 'hui tian')<br/>('34926055', 'Jianbing Shen', 'jianbing shen')</td><td></td></tr><tr><td>fd7b6c77b46420c27725757553fcd1fb24ea29a8</td><td>MEXSVMs: Mid-level Features for Scalable Action Recognition +<br/><b>Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China</b><br/><b>China Mobile Research Institute, Xuanwu Men West Street, Beijing</b></td><td>('22244104', 'Weilin Cong', 'weilin cong')<br/>('2901725', 'Sanyuan Zhao', 'sanyuan zhao')<br/>('1698061', 'Hui Tian', 'hui tian')<br/>('34926055', 'Jianbing Shen', 'jianbing shen')</td><td></td></tr><tr><td>fd10b0c771a2620c0db294cfb82b80d65f73900d</td><td>Identifying The Most Informative Features Using A Structurally Interacting Elastic Net +<br/><b>Central University of Finance and Economics, Beijing, China</b><br/><b>Xiamen University, Xiamen, Fujian, China</b><br/><b>University of York, York, UK</b></td><td>('2290930', 'Lixin Cui', 'lixin cui')<br/>('1749518', 'Lu Bai', 'lu bai')<br/>('47295137', 'Zhihong Zhang', 'zhihong zhang')<br/>('49416727', 'Yue Wang', 'yue wang')<br/>('1679753', 'Edwin R. Hancock', 'edwin r. hancock')</td><td></td></tr><tr><td>fd7b6c77b46420c27725757553fcd1fb24ea29a8</td><td>MEXSVMs: Mid-level Features for Scalable Action Recognition <br/><b>Dartmouth College</b><br/>6211 Sudikoff Lab, Hanover, NH 03755 <br/>Dartmouth Computer Science Technical Report TR2013-726 </td><td>('1687325', 'Du Tran', 'du tran')<br/>('1732879', 'Lorenzo Torresani', 'lorenzo torresani')</td><td>{dutran,lorenzo}@cs.dartmouth.edu @@ -11573,7 +14337,71 @@ <br/>et al., 2014). <br/>The SOM makes use of an unsupervised learning </td><td>('2274078', 'Francisco A. Pujol', 'francisco a. pujol')</td><td>e-mail: {fpujol,hmora}@dtic.ua.es,jags20@alu.ua.es -</td></tr><tr><td>fde0180735699ea31f6c001c71eae507848b190f</td><td>International Journal of Computer Applications (0975 – 8887) +</td></tr><tr><td>fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e</td><td>ORIGINAL RESEARCH +<br/>published: 17 August 2018 +<br/>doi: 10.3389/fnhum.2018.00327 +<br/>Recognizing Frustration of Drivers +<br/>From Face Video Recordings and +<br/>Brain Activation Measurements With +<br/>Functional Near-Infrared +<br/>Spectroscopy +<br/><b>Institute of Transportation Systems, German Aerospace Center (DLR), Braunschweig</b><br/><b>Germany, University of Oldenburg, Oldenburg, Germany</b><br/>Experiencing frustration while driving can harm cognitive processing, result in aggressive +<br/>behavior and hence negatively influence driving performance and traffic safety. Being +<br/>able to automatically detect frustration would allow adaptive driver assistance and +<br/>automation systems to adequately react to a driver’s frustration and mitigate potential +<br/>negative consequences. To identify reliable and valid indicators of driver’s frustration, +<br/>we conducted two driving simulator experiments. In the first experiment, we aimed to +<br/>reveal facial expressions that indicate frustration in continuous video recordings of the +<br/>driver’s face taken while driving highly realistic simulator scenarios in which frustrated +<br/>or non-frustrated emotional states were experienced. An automated analysis of facial +<br/>expressions combined with multivariate logistic regression classification revealed that +<br/>frustrated time intervals can be discriminated from non-frustrated ones with accuracy +<br/>of 62.0% (mean over 30 participants). A further analysis of the facial expressions +<br/>revealed that frustrated drivers tend to activate muscles in the mouth region (chin +<br/>raiser, lip pucker, lip pressor). In the second experiment, we measured cortical activation +<br/>with almost whole-head functional near-infrared spectroscopy (fNIRS) while participants +<br/>experienced frustrating and non-frustrating driving simulator scenarios. Multivariate +<br/>logistic regression applied to the fNIRS measurements allowed us to discriminate +<br/>between frustrated and non-frustrated driving intervals with higher accuracy of 78.1% +<br/>(mean over 12 participants). Frustrated driving intervals were indicated by increased +<br/>activation in the inferior frontal, putative premotor and occipito-temporal cortices. +<br/>Our results show that facial and cortical markers of +<br/>frustration can be informative +<br/>for time resolved driver state identification in complex realistic driving situations. The +<br/>markers derived here can potentially be used as an input for future adaptive driver +<br/>assistance and automation systems that detect driver frustration and adaptively react +<br/>to mitigate it. +<br/>Keywords: frustration, driver state recognition, facial expressions, functional near-infrared spectroscopy, adaptive +<br/>automation +<br/>Edited by: +<br/>Guido P. H. Band, +<br/><b>Leiden University, Netherlands</b><br/>Reviewed by: +<br/>Paola Pinti, +<br/><b>University College London</b><br/>United Kingdom +<br/>Edmund Wascher, +<br/>Leibniz-Institut für Arbeitsforschung +<br/>an der TU Dortmund (IfADo), +<br/>Germany +<br/>*Correspondence: +<br/>Received: 17 April 2018 +<br/>Accepted: 25 July 2018 +<br/>Published: 17 August 2018 +<br/>Citation: +<br/>Ihme K, Unni A, Zhang M, Rieger JW +<br/>and Jipp M (2018) Recognizing +<br/>Frustration of Drivers From Face +<br/>Video Recordings and Brain +<br/>Activation Measurements With +<br/>Functional Near-Infrared +<br/>Spectroscopy. +<br/>Front. Hum. Neurosci. 12:327. +<br/>doi: 10.3389/fnhum.2018.00327 +<br/>Frontiers in Human Neuroscience | www.frontiersin.org +<br/>August 2018 | Volume 12 | Article 327 +</td><td>('2873465', 'Klas Ihme', 'klas ihme')<br/>('34722642', 'Anirudh Unni', 'anirudh unni')<br/>('48984951', 'Meng Zhang', 'meng zhang')<br/>('2743311', 'Jochem W. Rieger', 'jochem w. rieger')<br/>('50093361', 'Meike Jipp', 'meike jipp')<br/>('2873465', 'Klas Ihme', 'klas ihme')</td><td>klas.ihme@dlr.de +</td></tr><tr><td>fd892e912149e3f5ddd82499e16f9ea0f0063fa3</td><td>GazeDirector: Fully Articulated Eye Gaze Redirection in Video +<br/><b>University of Cambridge, UK 2Carnegie Mellon University, USA</b><br/><b>Max Planck Institute for Informatics, Germany</b><br/>4Microsoft +</td><td>('34399452', 'Erroll Wood', 'erroll wood')<br/>('49933077', 'Louis-Philippe Morency', 'louis-philippe morency')</td><td></td></tr><tr><td>fde0180735699ea31f6c001c71eae507848b190f</td><td>International Journal of Computer Applications (0975 – 8887) <br/>Volume 76– No.3, August 2013 <br/>Face Detection and Sex Identification from Color Images <br/>using AdaBoost with SVM based Component Classifier @@ -11589,10 +14417,36 @@ <br/><b>International University of</b><br/>Business Agriculture and <br/>Technology (IUBAT) <br/>Dhaka-1230, Bangladesh -</td><td>('1804849', 'Tonmoy Das', 'tonmoy das')<br/>('2832495', 'Md. Hafizur Rahman', 'md. hafizur rahman')</td><td></td></tr><tr><td>fd615118fb290a8e3883e1f75390de8a6c68bfde</td><td>Joint Face Alignment with Non-Parametric +</td><td>('1804849', 'Tonmoy Das', 'tonmoy das')<br/>('2832495', 'Md. Hafizur Rahman', 'md. hafizur rahman')</td><td></td></tr><tr><td>fdf8e293a7618f560e76bd83e3c40a0788104547</td><td>Interspecies Knowledge Transfer for Facial Keypoint Detection +<br/><b>University of California, Davis</b><br/><b>Zhejiang University</b><br/><b>University of California, Davis</b></td><td>('35157022', 'Maheen Rashid', 'maheen rashid')<br/>('10734287', 'Xiuye Gu', 'xiuye gu')<br/>('1883898', 'Yong Jae Lee', 'yong jae lee')</td><td>mhnrashid@ucdavis.edu +<br/>gxy0922@zju.edu.cn +<br/>yongjaelee@ucdavis.edu +</td></tr><tr><td>fd615118fb290a8e3883e1f75390de8a6c68bfde</td><td>Joint Face Alignment with Non-Parametric <br/>Shape Models <br/><b>University of Wisconsin Madison</b><br/>http://www.cs.wisc.edu/~lizhang/projects/joint-align/ -</td><td>('1893050', 'Brandon M. Smith', 'brandon m. smith')<br/>('40396555', 'Li Zhang', 'li zhang')</td><td></td></tr><tr><td>f24e379e942e134d41c4acec444ecf02b9d0d3a9</td><td>International Scholarly Research Network +</td><td>('1893050', 'Brandon M. Smith', 'brandon m. smith')<br/>('40396555', 'Li Zhang', 'li zhang')</td><td></td></tr><tr><td>fdaf65b314faee97220162980e76dbc8f32db9d6</td><td>Accepted Manuscript +<br/>Face recognition using both visible light image and near-infrared image and a deep +<br/>network +<br/>PII: +<br/>DOI: +<br/>Reference: +<br/>S2468-2322(17)30014-8 +<br/>10.1016/j.trit.2017.03.001 +<br/>TRIT 41 +<br/>To appear in: +<br/>CAAI Transactions on Intelligence Technology +<br/>Received Date: 30 January 2017 +<br/>Accepted Date: 28 March 2017 +<br/>Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and +<br/>near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi: +<br/>10.1016/j.trit.2017.03.001. +<br/>This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to +<br/>our customers we are providing this early version of the manuscript. The manuscript will undergo +<br/>copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please +<br/>note that during the production process errors may be discovered which could affect the content, and all +<br/>legal disclaimers that apply to the journal pertain. +</td><td>('48477652', 'Kai Guo', 'kai guo')<br/>('40200363', 'Shuai Wu', 'shuai wu')</td><td></td></tr><tr><td>f22d6d59e413ee255e5e0f2104f1e03be1a6722e</td><td>Lattice Long Short-Term Memory for Human Action Recognition +<br/><b>The Hong Kong University of Science and Technology</b><br/><b>Stanford University</b><br/><b>South China University of Technology</b></td><td>('41191188', 'Lin Sun', 'lin sun')<br/>('2370507', 'Kui Jia', 'kui jia')<br/>('1794604', 'Kevin Chen', 'kevin chen')<br/>('2131088', 'Bertram E. Shi', 'bertram e. shi')<br/>('1702137', 'Silvio Savarese', 'silvio savarese')</td><td></td></tr><tr><td>f24e379e942e134d41c4acec444ecf02b9d0d3a9</td><td>International Scholarly Research Network <br/>ISRN Machine Vision <br/>Volume 2012, Article ID 505974, 7 pages <br/>doi:10.5402/2012/505974 @@ -11685,7 +14539,98 @@ <br/><b>Nanjing University, Nanjing 210093, P.R.China</b><br/>2Department of Computer Science <br/><b>North Dakota State University, Fargo, ND58105, USA</b></td><td>('7878359', 'Wu-Jun Li', 'wu-jun li')<br/>('2697799', 'Chong-Jun Wang', 'chong-jun wang')<br/>('1737124', 'Bin Luo', 'bin luo')</td><td>Email: {liwujun, chjwang}@ai.nju.edu.cn <br/>Email: Dianxiang.xu@ndsu.nodak.edu -</td></tr><tr><td>f2e9494d0dca9fb6b274107032781d435a508de6</td><td></td><td></td><td></td></tr><tr><td>f2c568fe945e5743635c13fe5535af157b1903d1</td><td></td><td></td><td></td></tr><tr><td>f26097a1a479fb6f32b27a93f8f32609cfe30fdc</td><td></td><td></td><td></td></tr><tr><td>f214bcc6ecc3309e2efefdc21062441328ff6081</td><td></td><td></td><td></td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Low-Rank-Sparse Subspace Representation for Robust Regression +</td></tr><tr><td>f2e9494d0dca9fb6b274107032781d435a508de6</td><td></td><td></td><td></td></tr><tr><td>f2c568fe945e5743635c13fe5535af157b1903d1</td><td></td><td></td><td></td></tr><tr><td>f2a7f9bd040aa8ea87672d38606a84c31163e171</td><td>Human Action Recognition without Human +<br/><b>National Institute of Advanced Industrial Science and Technology (AIST</b><br/>Tsukuba, Ibaraki, Japan +</td><td>('1713046', 'Yun He', 'yun he')<br/>('3393640', 'Soma Shirakabe', 'soma shirakabe')<br/>('1732705', 'Yutaka Satoh', 'yutaka satoh')<br/>('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')</td><td>{yun.he, shirakabe-s, yu.satou, hirokatsu.kataoka}@aist.go.jp +</td></tr><tr><td>f257300b2b4141aab73f93c146bf94846aef5fa1</td><td>Eigen Evolution Pooling for Human Action Recognition +<br/><b>Stony Brook University, Stony Brook, NY 11794, USA</b></td><td>('2295608', 'Yang Wang', 'yang wang')<br/>('49701507', 'Vinh Tran', 'vinh tran')<br/>('2356016', 'Minh Hoai', 'minh hoai')</td><td>{wang33, tquangvinh, minhhoai}@cs.stonybrook.edu +</td></tr><tr><td>f20e0eefd007bc310d2a753ba526d33a8aba812c</td><td>Lee et al.: RGB-D FACE RECOGNITION WITH A DEEP LEARNING APPROACH +<br/>Accurate and robust face recognition from +<br/>RGB-D images with a deep learning +<br/>approach +<br/>Yuancheng Lee +<br/>http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=150 +<br/>http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=153 +<br/>Ching-Wei Tseng +<br/>http://cv.cs.nthu.edu.tw/php/people/profile.php?uid=156 +<br/>Computer Vision Lab, +<br/>Department of +<br/>Computer Science, +<br/>National Tsing Hua +<br/><b>University</b><br/>Hsinchu, Taiwan +<br/>http://www.cs.nthu.edu.tw/~lai/ +</td><td>('7557765', 'Jiancong Chen', 'jiancong chen')<br/>('1696527', 'Shang-Hong Lai', 'shang-hong lai')</td><td></td></tr><tr><td>f26097a1a479fb6f32b27a93f8f32609cfe30fdc</td><td></td><td></td><td></td></tr><tr><td>f231046d5f5d87e2ca5fae88f41e8d74964e8f4f</td><td>We are IntechOpen, +<br/>the first native scientific +<br/>publisher of Open Access books +<br/>3,350 +<br/>108,000 +<br/>1.7 M +<br/>Open access books available +<br/>International authors and editors +<br/>Downloads +<br/>Our authors are among the +<br/>151 +<br/>Countries delivered to +<br/>TOP 1% +<br/>12.2% +<br/>most cited scientists +<br/>Contributors from top 500 universities +<br/>Selection of our books indexed in the Book Citation Index +<br/>in Web of Science™ Core Collection (BKCI) +<br/>Interested in publishing with us? +<br/>Numbers displayed above are based on latest data collected. +<br/>For more information visit www.intechopen.com +</td><td></td><td>Contact book.department@intechopen.com +</td></tr><tr><td>f28b7d62208fdaaa658716403106a2b0b527e763</td><td>Clustering-driven Deep Embedding with Pairwise Constraints +<br/><b>JACOB GOLDBERGER, Bar-Ilan University</b><br/>Fig. 1. Employing deep embeddings for clustering 3D shapes. Above, we use PCA to visualize the output embedding of point clouds of chairs. We also highlight +<br/>(in unique colors) a few random clusters and display a few representative chairs from these clusters. +<br/>Recently, there has been increasing interest to leverage the competence +<br/>of neural networks to analyze data. In particular, new clustering meth- +<br/>ods that employ deep embeddings have been presented. In this paper, we +<br/>depart from centroid-based models and suggest a new framework, called +<br/>Clustering-driven deep embedding with PAirwise Constraints (CPAC), for +<br/>non-parametric clustering using a neural network. We present a clustering- +<br/>driven embedding based on a Siamese network that encourages pairs of data +<br/>points to output similar representations in the latent space. Our pair-based +<br/>model allows augmenting the information with labeled pairs to constitute a +<br/>semi-supervised framework. Our approach is based on analyzing the losses +<br/>associated with each pair to refine the set of constraints. We show that clus- +<br/>tering performance increases when using this scheme, even with a limited +<br/>amount of user queries. We demonstrate how our architecture is adapted +<br/>for various types of data and present the first deep framework to cluster 3D +<br/>shapes. +<br/>INTRODUCTION +<br/>Autoencoders provide means to analyze data without supervision. +<br/>Autoencoders based on deep neural networks include non-linear +<br/>neurons which significantly strengthen the power of the analysis. +<br/>The key idea is that the encoders project the data into an embedding +<br/>latent space, where the L2 proximity among the projected elements +<br/>better expresses their similarity. To further enhance the data prox- +<br/>imity in the embedding space, the encoder can be encouraged to +<br/>form tight clusters in the embedding space. Xie et al. [2016] have +<br/>presented an unsupervised embedding driven by a centroid-based +<br/>clustering. They have shown that their deep embedding leads to +<br/>better clustering of the data. More advanced clustering-driven em- +<br/>bedding techniques have been recently presented [Dizaji et al. 2017; +<br/>Yang et al. 2016]. These techniques are all centroid-based and para- +<br/>metric, in the sense that the number of clusters is known a-priori. +<br/>In this paper, we present a clustering-driven embedding technique +<br/>that allows semi-supervision. The idea is to depart from centroid- +<br/>based methods and use pairwise constraints to drive the clustering. +<br/>Most, or all the constraints, can be learned with no supervision, +<br/>while possibly a small portion of the data is supervised. More specifi- +<br/>cally, we adopt robust continuous clustering (RCC) [Shah and Koltun +<br/>2017] as a driving mechanism to encourage a tight clustering of the +<br/>embedded data. +<br/>The idea is to extract pairwise constraints using a mutual k- +<br/>nearest neighbors analysis, and use these pairs as must-link con- +<br/>straints. With no supervision, the set of constraints is imperfect +<br/>and contains false positive pairs on one hand. Our technique allows +<br/>removing false positive pairs and strengthening true positive pairs +<br/>actively by a user. We present an approach that analyzes the losses +<br/>associated with the pairs to form a set of false positive candidates. +<br/>See Figure 2(b)-(c) for a visualization of the distribution of the data +</td><td>('40901326', 'Sharon Fogel', 'sharon fogel')<br/>('1793313', 'Hadar Averbuch-Elor', 'hadar averbuch-elor')<br/>('1701009', 'Daniel Cohen-Or', 'daniel cohen-or')</td><td></td></tr><tr><td>f214bcc6ecc3309e2efefdc21062441328ff6081</td><td></td><td></td><td></td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Low-Rank-Sparse Subspace Representation for Robust Regression <br/><b>Harbin Institute of Technology</b><br/><b>Harbin Institute of Technology;Shenzhen University</b><br/>Harbin, China <br/>Harbin, China;Shenzhen, China <br/><b>The University of Sydney</b><br/><b>Harbin Institute of Technology</b><br/>Sydney, Australia @@ -11694,6 +14639,30 @@ <br/>d.m.shi@hotmail.com <br/>junbin.gao@sydney.edu.au <br/>cdsinhit@hit.edu.cn +</td></tr><tr><td>f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Feature Selection Guided Auto-Encoder +<br/>1Department of Electrical & Computer Engineering, +<br/><b>College of Computer and Information Science</b><br/><b>Northeastern University, Boston, MA, USA</b></td><td>('47673521', 'Shuyang Wang', 'shuyang wang')<br/>('2788685', 'Zhengming Ding', 'zhengming ding')<br/>('1708679', 'Yun Fu', 'yun fu')</td><td>{shuyangwang, allanding, yunfu}@ece.neu.edu +</td></tr><tr><td>f5eb0cf9c57716618fab8e24e841f9536057a28a</td><td>Rethinking Feature Distribution for Loss Functions in Image Classification +<br/><b>Tsinghua University, Beijing, China</b><br/><b>University of at Urbana-Champaign, Illinois, USA</b></td><td>('47718901', 'Weitao Wan', 'weitao wan')<br/>('1752427', 'Jiansheng Chen', 'jiansheng chen')<br/>('8802368', 'Yuanyi Zhong', 'yuanyi zhong')<br/>('2641581', 'Tianpeng Li', 'tianpeng li')</td><td>wwt16@mails.tsinghua.edu.cn +<br/>yuanyiz2@illinois.edu +<br/>ltp16@mails.tsinghua.edu.cn +<br/>jschenthu@mail.tsinghua.edu.cn +</td></tr><tr><td>f571fe3f753765cf695b75b1bd8bed37524a52d2</td><td>Submodular Attribute Selection for Action +<br/>Recognition in Video +<br/>Jinging Zheng +<br/><b>UMIACS, University of Maryland</b><br/><b>College Park, MD, USA</b><br/>Noah’s Ark Lab +<br/>Huawei Technologies +<br/><b>UMIACS, University of Maryland</b><br/><b>National Institute of Standards and Technology</b><br/><b>College Park, MD, USA</b><br/>Gaithersburg, MD, USA +</td><td>('34145947', 'Zhuolin Jiang', 'zhuolin jiang')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')<br/>('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')</td><td>zjngjng@umiacs.umd.edu +<br/>zhuolin.jiang@huawei.com +<br/>rama@umiacs.umd.edu +<br/>jonathon.phillips@nist.gov +</td></tr><tr><td>f5fae7810a33ed67852ad6a3e0144cb278b24b41</td><td>Multilingual Gender Classification with Multi-view +<br/>Deep Learning +<br/>Notebook for PAN at CLEF 2018 +<br/><b>Jo ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia</b><br/>2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia +<br/><b>USHER Institute, University of Edinburgh, United Kingdom</b></td><td>('22684661', 'Matej Martinc', 'matej martinc')<br/>('40235216', 'Senja Pollak', 'senja pollak')</td><td>{matej.martinc,blaz.skrlj,senja.pollak}@ijs.si </td></tr><tr><td>f5af4e9086b0c3aee942cb93ece5820bdc9c9748</td><td>ENHANCING PERSON ANNOTATION <br/>FOR PERSONAL PHOTO MANAGEMENT <br/>USING CONTENT AND CONTEXT @@ -11704,7 +14673,9 @@ <br/>DEGREE OF DOCTOR OF PHILOSOPHY <br/>September 2008 <br/>SCHOOL OF ELECTRONIC ENGINEERING -<br/><b>DUBLIN CITY UNIVERSITY</b></td><td>('2668569', 'Saman H. Cooray', 'saman h. cooray')</td><td></td></tr><tr><td>f5aee1529b98136194ef80961ba1a6de646645fe</td><td>Large-Scale Learning of +<br/><b>DUBLIN CITY UNIVERSITY</b></td><td>('2668569', 'Saman H. Cooray', 'saman h. cooray')</td><td></td></tr><tr><td>f5770dd225501ff3764f9023f19a76fad28127d4</td><td>Real Time Online Facial Expression Transfer +<br/>with Single Video Camera +</td><td></td><td></td></tr><tr><td>f5aee1529b98136194ef80961ba1a6de646645fe</td><td>Large-Scale Learning of <br/>Discriminative Image Representations <br/>D.Phil Thesis <br/>Robotics Research Group @@ -11721,7 +14692,17 @@ <br/>aEURECOM, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia <br/> <br/>Antipolis cedex, FRANCE -</td><td>('24362694', 'V. Chiesa', 'v. chiesa')</td><td></td></tr><tr><td>f558af209dd4c48e4b2f551b01065a6435c3ef33</td><td>International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) +</td><td>('24362694', 'V. Chiesa', 'v. chiesa')</td><td></td></tr><tr><td>f5eb411217f729ad7ae84bfd4aeb3dedb850206a</td><td>Tackling Low Resolution for Better Scene Understanding +<br/>Thesis submitted in partial fulfillment +<br/>of the requirements for the degree of +<br/>MS in Computer Science and Engineering +<br/>By Research +<br/>by +<br/>201202172 +<br/><b>International Institute of Information Technology</b><br/>Hyderabad - 500 032, INDIA +<br/>July 2018 +</td><td>('41033644', 'Harish Krishna', 'harish krishna')</td><td>harishkrishna.v@research.iiit.ac.in +</td></tr><tr><td>f558af209dd4c48e4b2f551b01065a6435c3ef33</td><td>International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) <br/>ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016. <br/>AN ENHANCED ATTRIBUTE <br/>RERANKING DESIGN FOR WEB IMAGE @@ -11729,13 +14710,33 @@ <br/>#Student,Cse, CIET, Lam,Guntur, India <br/>* Assistant Professort,Cse, CIET, Lam,Guntur , India </td><td>('4384318', 'G K Kishore Babu', 'g k kishore babu')</td><td></td></tr><tr><td>e378ce25579f3676ca50c8f6454e92a886b9e4d7</td><td>Robust Video Super-Resolution with Learned Temporal Dynamics -<br/><b>University of Illinois at Urbana-Champaign 2Adobe Research</b><br/><b>Facebook 4Texas AandM University 5IBM Research</b></td><td>('1771885', 'Ding Liu', 'ding liu')<br/>('2969311', 'Zhangyang Wang', 'zhangyang wang')</td><td></td></tr><tr><td>e35b09879a7df814b2be14d9102c4508e4db458b</td><td>Optimal Sensor Placement and +<br/><b>University of Illinois at Urbana-Champaign 2Adobe Research</b><br/><b>Facebook 4Texas AandM University 5IBM Research</b></td><td>('1771885', 'Ding Liu', 'ding liu')<br/>('2969311', 'Zhangyang Wang', 'zhangyang wang')</td><td></td></tr><tr><td>e393a038d520a073b9835df7a3ff104ad610c552</td><td>Automatic temporal segment +<br/>detection via bilateral long short- +<br/>term memory recurrent neural +<br/>networks +<br/>detection via bilateral long short-term memory recurrent neural networks,” J. +<br/>Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501. +<br/>Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx</td><td>('49447269', 'Bo Sun', 'bo sun')<br/>('7886608', 'Siming Cao', 'siming cao')<br/>('49264106', 'Jun He', 'jun he')<br/>('8834504', 'Lejun Yu', 'lejun yu')<br/>('2089565', 'Liandong Li', 'liandong li')<br/>('49447269', 'Bo Sun', 'bo sun')<br/>('7886608', 'Siming Cao', 'siming cao')<br/>('49264106', 'Jun He', 'jun he')<br/>('8834504', 'Lejun Yu', 'lejun yu')<br/>('2089565', 'Liandong Li', 'liandong li')</td><td></td></tr><tr><td>e35b09879a7df814b2be14d9102c4508e4db458b</td><td>Optimal Sensor Placement and <br/>Enhanced Sparsity for Classification -<br/><b>University of Washington, Seattle, WA 98195, United States</b><br/><b>University of Washington, Seattle, WA 98195, United States</b><br/><b>Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States</b></td><td>('1824880', 'Bingni W. Brunton', 'bingni w. brunton')<br/>('3083169', 'Steven L. Brunton', 'steven l. brunton')<br/>('2424683', 'Joshua L. Proctor', 'joshua l. proctor')<br/>('1937069', 'J. Nathan Kutz', 'j. nathan kutz')</td><td></td></tr><tr><td>e3657ab4129a7570230ff25ae7fbaccb4ba9950c</td><td></td><td></td><td></td></tr><tr><td>e315959d6e806c8fbfc91f072c322fb26ce0862b</td><td>An Efficient Face Recognition System Based on Sub-Window +<br/><b>University of Washington, Seattle, WA 98195, United States</b><br/><b>University of Washington, Seattle, WA 98195, United States</b><br/><b>Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States</b></td><td>('1824880', 'Bingni W. Brunton', 'bingni w. brunton')<br/>('3083169', 'Steven L. Brunton', 'steven l. brunton')<br/>('2424683', 'Joshua L. Proctor', 'joshua l. proctor')<br/>('1937069', 'J. Nathan Kutz', 'j. nathan kutz')</td><td></td></tr><tr><td>e3b324101157daede3b4d16bdc9c2388e849c7d4</td><td>Robust Real-Time 3D Face Tracking from RGBD Videos under Extreme Pose, +<br/>Depth, and Expression Variations +<br/>Hai X. Pham +<br/><b>Rutgers University, USA</b></td><td>('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')</td><td>{hxp1,vladimir}@cs.rutgers.edu +</td></tr><tr><td>e3657ab4129a7570230ff25ae7fbaccb4ba9950c</td><td></td><td></td><td></td></tr><tr><td>e315959d6e806c8fbfc91f072c322fb26ce0862b</td><td>An Efficient Face Recognition System Based on Sub-Window <br/>International Journal of Soft Computing and Engineering (IJSCE) <br/>ISSN: 2231-2307, Volume-1, Issue-6, January 2012 <br/>Extraction Algorithm -</td><td>('1696227', 'Manish Gupta', 'manish gupta')<br/>('36776003', 'Govind sharma', 'govind sharma')</td><td></td></tr><tr><td>e39a0834122e08ba28e7b411db896d0fdbbad9ba</td><td>1368 +</td><td>('1696227', 'Manish Gupta', 'manish gupta')<br/>('36776003', 'Govind sharma', 'govind sharma')</td><td></td></tr><tr><td>e3c011d08d04c934197b2a4804c90be55e21d572</td><td>How to Train Triplet Networks with 100K Identities? +<br/>Orion Star +<br/>Beijing, China +<br/>Orion Star +<br/>Beijing, China +<br/>Orion Star +<br/>Beijing, China +</td><td>('1747751', 'Chong Wang', 'chong wang')<br/>('46447079', 'Xue Zhang', 'xue zhang')<br/>('26403761', 'Xipeng Lan', 'xipeng lan')</td><td>chongwang.nlpr@gmail.com +<br/>yuannixue@126.com +<br/>xipeng.lan@gmail.com +</td></tr><tr><td>e39a0834122e08ba28e7b411db896d0fdbbad9ba</td><td>1368 <br/>Maximum Likelihood Estimation of Depth Maps <br/>Using Photometric Stereo </td><td>('2964822', 'Adam P. Harrison', 'adam p. harrison')<br/>('39367958', 'Dileepan Joseph', 'dileepan joseph')</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Face Verification using Correlation Filters @@ -11802,9 +14803,29 @@ <br/>each session 13 conditions with varying facial expressions, illumination and occlusion were captured. Figure 1 shows an <br/>example for each condition. So far, more than 200 research groups have accessed the database. </td><td>('33731953', 'Ralph Gross', 'ralph gross')</td><td>Email: {rgross}@cs.cmu.edu +</td></tr><tr><td>e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa</td><td><b>University of Massachusetts - Amherst</b><br/>Dissertations +<br/>5-1-2012 +<br/>Dissertations and Theses +<br/>Weakly Supervised Learning for Unconstrained +<br/>Face Processing +<br/>Follow this and additional works at: http://scholarworks.umass.edu/open_access_dissertations +<br/>Recommended Citation +<br/>Huang, Gary B., "Weakly Supervised Learning for Unconstrained Face Processing" (2012). Dissertations. Paper 559. +</td><td>('3219900', 'Gary B. Huang', 'gary b. huang')</td><td>ScholarWorks@UMass Amherst +<br/>University of Massachusetts - Amherst, garybhuang@gmail.com +<br/>This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has +<br/>been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact +<br/>scholarworks@library.umass.edu. </td></tr><tr><td>e3a6e9ddbbfc4c5160082338d46808cea839848a</td><td>Vision-Based Classification of Developmental Disorders <br/>Using Eye-Movements -<br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b></td><td>('3147852', 'Guido Pusiol', 'guido pusiol')<br/>('1811529', 'Andre Esteva', 'andre esteva')<br/>('3472674', 'Arnold Milstein', 'arnold milstein')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>e3917d6935586b90baae18d938295e5b089b5c62</td><td>152 +<br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b></td><td>('3147852', 'Guido Pusiol', 'guido pusiol')<br/>('1811529', 'Andre Esteva', 'andre esteva')<br/>('3472674', 'Arnold Milstein', 'arnold milstein')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>e3c8e49ffa7beceffca3f7f276c27ae6d29b35db</td><td>Families in the Wild (FIW): Large-Scale Kinship Image +<br/>Database and Benchmarks +<br/><b>Northeastern University, Boston, USA</b><br/><b>College of Computer and Information Science, Northeastern University, Boston, USA</b></td><td>('4056993', 'Joseph P. Robinson', 'joseph p. robinson')<br/>('49248003', 'Ming Shao', 'ming shao')<br/>('47096713', 'Yue Wu', 'yue wu')<br/>('1708679', 'Yun Fu', 'yun fu')</td><td>{jrobins1, mingshao, yuewu, yunfu}@ece.neu.edu +</td></tr><tr><td>e38371b69be4f341baa95bc854584e99b67c6d3a</td><td>DYAN: A Dynamical Atoms-Based Network +<br/>For Video Prediction(cid:63) +<br/><b>Electrical and Computer Engineering, Northeastern University, Boston, MA</b><br/>http://robustsystems.coe.neu.edu +</td><td>('40366599', 'WenQian Liu', 'wenqian liu')<br/>('1785252', 'Abhishek Sharma', 'abhishek sharma')<br/>('30929906', 'Octavia Camps', 'octavia camps')<br/>('1687866', 'Mario Sznaier', 'mario sznaier')</td><td>liu.wenqi,sharma.abhis@husky.neu.edu, camps,msznaier@northeastern.edu +</td></tr><tr><td>e3917d6935586b90baae18d938295e5b089b5c62</td><td>152 <br/>Face Localization and Authentication <br/>Using Color and Depth Images </td><td>('1807962', 'Filareti Tsalakanidou', 'filareti tsalakanidou')<br/>('1744180', 'Sotiris Malassiotis', 'sotiris malassiotis')<br/>('1721460', 'Michael G. Strintzis', 'michael g. strintzis')</td><td></td></tr><tr><td>e328d19027297ac796aae2470e438fe0bd334449</td><td>Automatic Micro-expression Recognition from @@ -11819,7 +14840,10 @@ <br/>Optical-Flow Estimation in the Wild <br/><b>University of Freiburg</b><br/>Germany </td><td>('31656404', 'Nima Sedaghat', 'nima sedaghat')</td><td>nima@cs.uni-freiburg.de -</td></tr><tr><td>cffebdf88e406c27b892857d1520cb2d7ccda573</td><td>LEARNING FROM LARGE-SCALE VISUAL DATA +</td></tr><tr><td>e3a6e5a573619a97bd6662b652ea7d088ec0b352</td><td>Compare and Contrast: Learning Prominent Visual Differences +<br/><b>The University of Texas at Austin</b></td><td>('50357985', 'Steven Chen', 'steven chen')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td></td></tr><tr><td>cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd</td><td>CapsNet comparative performance evaluation for image +<br/>classification +<br/><b>University of Waterloo, ON, Canada</b></td><td>('30421594', 'Rinat Mukhometzianov', 'rinat mukhometzianov')<br/>('36957611', 'Juan Carrillo', 'juan carrillo')</td><td></td></tr><tr><td>cffebdf88e406c27b892857d1520cb2d7ccda573</td><td>LEARNING FROM LARGE-SCALE VISUAL DATA <br/>FOR ROBOTS <br/>A Dissertation <br/>Presented to the Faculty of the Graduate School @@ -11828,13 +14852,18 @@ <br/>by <br/>Ozan S¸ener <br/>August 2016 -</td><td></td><td></td></tr><tr><td>cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2</td><td></td><td></td><td></td></tr><tr><td>cfd933f71f4a69625390819b7645598867900eab</td><td>INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 03 55 +</td><td></td><td></td></tr><tr><td>cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2</td><td></td><td></td><td></td></tr><tr><td>cfffae38fe34e29d47e6deccfd259788176dc213</td><td>TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012 +<br/>Matrix Completion for Weakly-supervised +<br/>Multi-label Image Classification +</td><td>('1707876', 'Fernando De la Torre', 'fernando de la torre')<br/>('2884203', 'Alexandre Bernardino', 'alexandre bernardino')</td><td></td></tr><tr><td>cfd4004054399f3a5f536df71f9b9987f060f434</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? +<br/>Person Recognition in Personal Photo Collections +</td><td>('2390510', 'Seong Joon Oh', 'seong joon oh')<br/>('1798000', 'Rodrigo Benenson', 'rodrigo benenson')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td></td></tr><tr><td>cfd933f71f4a69625390819b7645598867900eab</td><td>INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 3, ISSUE 03 55 <br/>ISSN 2347-4289 <br/>Person Authentication Using Face And Palm Vein: <br/>A Survey Of Recognition And Fusion Techniques <br/><b>College of Engineering, Pune, India</b><br/>Image Processing & Machine Vision Section, Electronics & Instrumentation Services Division, BARC </td><td>('38561481', 'Dhanashree Vaidya', 'dhanashree vaidya')<br/>('2623250', 'Madhuri A. Joshi', 'madhuri a. joshi')</td><td>Email: preethimedu@gmail.com, dvaidya33@gmail.com, hod.extc@coep.ac.in, maj.extc@coep.ac.in, skar@barc.gov.in -</td></tr><tr><td>cf875336d5a196ce0981e2e2ae9602580f3f6243</td><td>7 What 1 +</td></tr><tr><td>cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce</td><td></td><td></td><td></td></tr><tr><td>cf875336d5a196ce0981e2e2ae9602580f3f6243</td><td>7 What 1 <br/>Rosalind W. Picard <br/>It Mean for a Computer to "Have" Emotions? <br/>There is a lot of talk about giving machines emotions, some of @@ -11885,15 +14914,66 @@ <br/>Qu´ebec, Canada </td><td>('2811524', 'Md. Kamrul Hasan', 'md. kamrul hasan')</td><td>md-kamrul.hasan@polymtl.ca <br/>christopher.pal@polymtl.ca -</td></tr><tr><td>cf5c9b521c958b84bb63bea9d5cbb522845e4ba7</td><td>Towards Arbitrary-View Face Alignment by Recommendation Trees∗ +</td></tr><tr><td>cfa92e17809e8d20ebc73b4e531a1b106d02b38c</td><td>Advances in Data Analysis and Classification manuscript No. +<br/>(will be inserted by the editor) +<br/>Parametric Classification with Soft Labels using the +<br/>Evidential EM Algorithm +<br/>Linear Discriminant Analysis vs. Logistic Regression +<br/>Received: date / Accepted: date +</td><td>('1772306', 'Benjamin Quost', 'benjamin quost')<br/>('2259794', 'Shoumei Li', 'shoumei li')</td><td></td></tr><tr><td>cf5c9b521c958b84bb63bea9d5cbb522845e4ba7</td><td>Towards Arbitrary-View Face Alignment by Recommendation Trees∗ <br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b><br/>2SenseTime Group </td><td>('2226254', 'Shizhan Zhu', 'shizhan zhu')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>zs014@ie.cuhk.edu.hk, chengli@sensetime.com, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk +</td></tr><tr><td>cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150</td><td>Detection of emotions from video in non-controlled +<br/>environment +<br/>To cite this version: +<br/>Processing. Universit´e Claude Bernard - Lyon I, 2013. English. <NNT : 2013LYO10227>. +<br/><tel-01166539v2> +<br/>HAL Id: tel-01166539 +<br/>https://tel.archives-ouvertes.fr/tel-01166539v2 +<br/>Submitted on 23 Jun 2015 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destin´ee au d´epˆot et `a la diffusion de documents +<br/>scientifiques de niveau recherche, publi´es ou non, +<br/>´emanant des ´etablissements d’enseignement et de +<br/>recherche fran¸cais ou ´etrangers, des laboratoires +<br/>publics ou priv´es. +</td><td>('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')<br/>('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')</td><td></td></tr><tr><td>cfdc632adcb799dba14af6a8339ca761725abf0a</td><td>Probabilistic Formulations of Regression with Mixed +<br/>Guidance +</td><td>('38688704', 'Aubrey Gress', 'aubrey gress')<br/>('38673135', 'Ian Davidson', 'ian davidson')</td><td>adgress@ucdavis.edu, davidson@cs.ucdavis.edu +</td></tr><tr><td>cfa931e6728a825caada65624ea22b840077f023</td><td>Deformable Generator Network: Unsupervised Disentanglement of +<br/>Appearance and Geometry +<br/><b>College of Automation, Harbin Engineering University, Heilongjiang, China</b><br/><b>University of California, Los Angeles, California, USA</b></td><td>('7306249', 'Xianglei Xing', 'xianglei xing')<br/>('9659905', 'Ruiqi Gao', 'ruiqi gao')<br/>('50495880', 'Tian Han', 'tian han')<br/>('3133970', 'Song-Chun Zhu', 'song-chun zhu')<br/>('39092098', 'Ying Nian Wu', 'ying nian wu')</td><td></td></tr><tr><td>cfc30ce53bfc204b8764ebb764a029a8d0ad01f4</td><td>Regularizing Deep Neural Networks by Noise: +<br/>Its Interpretation and Optimization +<br/>Dept. of Computer Science and Engineering, POSTECH, Korea +</td><td>('2018393', 'Hyeonwoo Noh', 'hyeonwoo noh')<br/>('2205770', 'Tackgeun You', 'tackgeun you')<br/>('8511875', 'Jonghwan Mun', 'jonghwan mun')<br/>('40030651', 'Bohyung Han', 'bohyung han')</td><td>{shgusdngogo,tackgeun.you,choco1916,bhhan}@postech.ac.kr +</td></tr><tr><td>cff911786b5ac884bb71788c5bc6acf6bf569eff</td><td>Multi-task Learning of Cascaded CNN for +<br/>Facial Attribute Classification +<br/><b>School of Information Science and Engineering, Xiamen University, Xiamen 361005, China</b><br/><b>School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China</b></td><td>('41034942', 'Ni Zhuang', 'ni zhuang')<br/>('40461734', 'Yan Yan', 'yan yan')<br/>('47336404', 'Si Chen', 'si chen')<br/>('37414077', 'Hanzi Wang', 'hanzi wang')</td><td>Email: ni.zhuang@foxmail.com, {yanyan, hanzi.wang}@xmu.edu.cn, chensi@xmut.edu.cn </td></tr><tr><td>cf09e2cb82961128302b99a34bff91ec7d198c7c</td><td>OFFICE ENTRANCE CONTROL WITH FACE RECOGNITION <br/> Dept. of Computer Science and Information Engineering, <br/><b>National Taiwan University, Taiwan</b><br/> Dept. of Computer Science and Information Engineering, <br/><b>National Taiwan University, Taiwan</b></td><td>('1721106', 'Yun-Che Tsai', 'yun-che tsai')<br/>('1703041', 'Chiou-Shann Fuh', 'chiou-shann fuh')</td><td>E-mail: jpm9ie8c@gmail.com <br/>E-mail: fuh@csie.ntu.edu.tw -</td></tr><tr><td>cf86616b5a35d5ee777585196736dfafbb9853b5</td><td>This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +</td></tr><tr><td>cfc4aa456d9da1a6fabd7c6ca199332f03e35b29</td><td><b>University of Amsterdam and Renmin University at TRECVID</b><br/>Searching Video, Detecting Events and Describing Video +<br/><b>University of Amsterdam</b><br/><b>Zhejiang University</b><br/>Amsterdam, The Netherlands +<br/>Hangzhou, China +<br/><b>Renmin University of China</b><br/>Beijing, China +</td><td>('46741353', 'Cees G. M. Snoek', 'cees g. m. snoek')<br/>('40240283', 'Jianfeng Dong', 'jianfeng dong')<br/>('9931285', 'Xirong Li', 'xirong li')<br/>('48631563', 'Xiaoxu Wang', 'xiaoxu wang')<br/>('24332496', 'Qijie Wei', 'qijie wei')<br/>('2896042', 'Weiyu Lan', 'weiyu lan')<br/>('2304222', 'Efstratios Gavves', 'efstratios gavves')<br/>('13142264', 'Noureldien Hussein', 'noureldien hussein')<br/>('1769315', 'Dennis C. Koelma', 'dennis c. koelma')<br/>('1705182', 'Arnold W. M. Smeulders', 'arnold w. m. smeulders')</td><td></td></tr><tr><td>cf805d478aeb53520c0ab4fcdc9307d093c21e52</td><td>Finding Tiny Faces in the Wild with Generative Adversarial Network +<br/>Mingli Ding2 +<br/><b>Visual Computing Center, King Abdullah University of Science and Technology (KAUST</b><br/><b>School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT</b><br/><b>Institute of Software, Chinese Academy of Sciences (CAS</b><br/>Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of +<br/>re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned +<br/>by the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in. +</td><td>('2860057', 'Yancheng Bai', 'yancheng bai')<br/>('48378890', 'Yongqiang Zhang', 'yongqiang zhang')<br/>('2931652', 'Bernard Ghanem', 'bernard ghanem')</td><td>baiyancheng20@gmail.com +<br/>{zhangyongqiang, dingml}@hit.edu.cn +<br/>bernard.ghanem@kaust.edu.sa +</td></tr><tr><td>cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab</td><td>Quaero at TRECVID 2010: Semantic Indexing +<br/>1UJF-Grenoble 1 / UPMF-Grenoble 2 / Grenoble INP / CNRS, LIG UMR 5217, Grenoble, F-38041, France +<br/><b>Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany</b></td><td>('2357942', 'Bahjat Safadi', 'bahjat safadi')<br/>('1921500', 'Yubing Tong', 'yubing tong')<br/>('1981024', 'Franck Thollard', 'franck thollard')<br/>('40303076', 'Tobias Gehrig', 'tobias gehrig')<br/>('3025777', 'Hazim Kemal Ekenel', 'hazim kemal ekenel')</td><td></td></tr><tr><td>cf86616b5a35d5ee777585196736dfafbb9853b5</td><td>This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. <br/>Learning Multiscale Active Facial Patches for <br/>Expression Analysis </td><td>('29803023', 'Lin Zhong', 'lin zhong')<br/>('1734954', 'Qingshan Liu', 'qingshan liu')<br/>('39606160', 'Peng Yang', 'peng yang')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td></td></tr><tr><td>cacd51221c592012bf2d9e4894178c1c1fa307ca</td><td> @@ -11921,7 +15001,18 @@ <br/>Weighted Interactions from Other Attributes <br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition <br/><b>Institute of Automation, Chinese Academy of Sciences</b></td><td>('1739258', 'Jianqing Zhu', 'jianqing zhu')<br/>('40397682', 'Shengcai Liao', 'shengcai liao')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>jianqingzhu@foxmail.com, {scliao, zlei, szli}@cbsr.ia.ac.cn -</td></tr><tr><td>cadba72aa3e95d6dcf0acac828401ddda7ed8924</td><td>THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES +</td></tr><tr><td>cad24ba99c7b6834faf6f5be820dd65f1a755b29</td><td>Understanding hand-object +<br/>manipulation by modeling the +<br/>contextual relationship between actions, +<br/>grasp types and object attributes +<br/>Journal Title +<br/>XX(X):1–14 +<br/>c(cid:13)The Author(s) 2016 +<br/>Reprints and permission: +<br/>sagepub.co.uk/journalsPermissions.nav +<br/>DOI: 10.1177/ToBeAssigned +<br/>www.sagepub.com/ +</td><td>('3172280', 'Minjie Cai', 'minjie cai')<br/>('37991449', 'Kris M. Kitani', 'kris m. kitani')<br/>('9467266', 'Yoichi Sato', 'yoichi sato')</td><td></td></tr><tr><td>cadba72aa3e95d6dcf0acac828401ddda7ed8924</td><td>THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES <br/>POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES <br/>Algorithms and VLSI Architectures <br/>for Low-Power Mobile Face Verification @@ -11935,7 +15026,9 @@ <br/>INSTITUT DE MICROTECHNIQUE <br/>UNIVERSITÉ DE NEUCHÂTEL <br/>2006 -</td><td>('1844418', 'Jean-Luc Nagel', 'jean-luc nagel')</td><td></td></tr><tr><td>ca606186715e84d270fc9052af8500fe23befbda</td><td>Using Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for +</td><td>('1844418', 'Jean-Luc Nagel', 'jean-luc nagel')</td><td></td></tr><tr><td>ca37eda56b9ee53610c66951ee7ca66a35d0a846</td><td>Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection +<br/><b>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</b><br/><b>Language Technologies Institute, Carnegie Mellon University</b><br/><b>Carnegie Mellon University</b></td><td>('1729163', 'Xiaojun Chang', 'xiaojun chang')<br/>('39033919', 'Yi Yang', 'yi yang')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')<br/>('1752601', 'Eric P. Xing', 'eric p. xing')</td><td>{cxj273, yee.i.yang}@gmail.com, {alex, epxing, yaoliang}@cs.cmu.edu +</td></tr><tr><td>ca606186715e84d270fc9052af8500fe23befbda</td><td>Using Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for <br/>Face Recognition <br/>Department of Electrical Engineering, <br/>Iran Univ. of Science and Technology, @@ -12023,6 +15116,24 @@ <br/>Weighted Feature Extraction and Fuzzy Classifier </td><td>('2121174', 'Maryam Imani', 'maryam imani')<br/>('1801348', 'Gholam Ali Montazer', 'gholam ali montazer')</td><td></td></tr><tr><td>e4391993f5270bdbc621b8d01702f626fba36fc2</td><td>Author manuscript, published in "18th Scandinavian Conference on Image Analysis (2013)" <br/> DOI : 10.1007/978-3-642-38886-6_31 +</td><td></td><td></td></tr><tr><td>e43045a061421bd79713020bc36d2cf4653c044d</td><td>A New Representation of Skeleton Sequences for 3D Action Recognition +<br/><b>The University of Western Australia</b><br/><b>Murdoch University</b></td><td>('2796959', 'Qiuhong Ke', 'qiuhong ke')<br/>('1698675', 'Mohammed Bennamoun', 'mohammed bennamoun')<br/>('1782428', 'Senjian An', 'senjian an')</td><td>qiuhong.ke@research.uwa.edu.au +<br/>{mohammed.bennamoun,senjian.an,farid.boussaid}@uwa.edu.au +<br/>f.sohel@murdoch.edu.au +</td></tr><tr><td>e4d8ba577cabcb67b4e9e1260573aea708574886</td><td>UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO +<br/>AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA +<br/>Gaspare Giuliano Elias Bruno +<br/>Tese de Doutorado apresentada ao Programa +<br/>de P´os-gradua¸c˜ao em Engenharia de Sistemas e +<br/>Computa¸c˜ao, COPPE, da Universidade Federal +<br/>do Rio de Janeiro, como parte dos requisitos +<br/>necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em +<br/>Engenharia de Sistemas e Computa¸c˜ao. +<br/>Orientadores: Edmundo Albuquerque de +<br/>Souza e Silva +<br/>Rosa Maria Meri Le˜ao +<br/>Rio de Janeiro +<br/>Janeiro de 2016 </td><td></td><td></td></tr><tr><td>e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd</td><td>Accepted in Pattern Recognition Letters <br/>Pattern Recognition Letters <br/>journal homepage: www.elsevier.com @@ -12031,7 +15142,12 @@ <br/>IIIT-Delhi, New Delhi, 110020, India <br/>Article history: <br/>Received 15 March 2017 -</td><td>('2220719', 'Maneet Singh', 'maneet singh')<br/>('1925017', 'Shruti Nagpal', 'shruti nagpal')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('39129417', 'Richa Singh', 'richa singh')</td><td></td></tr><tr><td>e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b</td><td>Implicit Video Multi-Emotion Tagging by Exploiting Multi-Expression +</td><td>('2220719', 'Maneet Singh', 'maneet singh')<br/>('1925017', 'Shruti Nagpal', 'shruti nagpal')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('39129417', 'Richa Singh', 'richa singh')</td><td></td></tr><tr><td>e4abc40f79f86dbc06f5af1df314c67681dedc51</td><td>Head Detection with Depth Images in the Wild +<br/>Department of Engineering ”Enzo Ferrari” +<br/><b>University of Modena and Reggio Emilia, Italy</b><br/>Keywords: +<br/>Head Detection, Head Localization, Depth Maps, Convolutional Neural Network +</td><td>('6125279', 'Diego Ballotta', 'diego ballotta')<br/>('12010968', 'Guido Borghi', 'guido borghi')<br/>('1723285', 'Roberto Vezzani', 'roberto vezzani')<br/>('1741922', 'Rita Cucchiara', 'rita cucchiara')</td><td>{name.surname}@unimore.it +</td></tr><tr><td>e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b</td><td>Implicit Video Multi-Emotion Tagging by Exploiting Multi-Expression <br/>Relations </td><td>('1771215', 'Zhilei Liu', 'zhilei liu')<br/>('1791319', 'Shangfei Wang', 'shangfei wang')<br/>('3558606', 'Zhaoyu Wang', 'zhaoyu wang')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td></td></tr><tr><td>e48e94959c4ce799fc61f3f4aa8a209c00be8d7f</td><td>Hindawi Publishing Corporation <br/>The Scientific World Journal @@ -12135,7 +15251,58 @@ <br/>www.iosrjournals.org <br/>Performance Evaluation of Gabor Wavelet Features for Face <br/>Representation and Recognition -<br/><b>Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India</b><br/><b>University B.D.T.College of Engineering, Visvesvaraya</b><br/><b>Technological University, Davanagere, Karnataka, India</b></td><td>('2038371', 'M. E. Ashalatha', 'm. e. ashalatha')<br/>('3283067', 'Mallikarjun S. Holi', 'mallikarjun s. holi')</td><td></td></tr><tr><td>fe5df5fe0e4745d224636a9ae196649176028990</td><td><b>University of Massachusetts - Amherst</b><br/>Dissertations +<br/><b>Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India</b><br/><b>University B.D.T.College of Engineering, Visvesvaraya</b><br/><b>Technological University, Davanagere, Karnataka, India</b></td><td>('2038371', 'M. E. Ashalatha', 'm. e. ashalatha')<br/>('3283067', 'Mallikarjun S. Holi', 'mallikarjun s. holi')</td><td></td></tr><tr><td>fe464b2b54154d231671750053861f5fd14454f5</td><td>Multi Joint Action in CoTeSys +<br/>- Setup and Challenges - +<br/>Technical report CoTeSys-TR-10-01 +<br/>D. Brˇsˇci´c, F. Rohrm¨uller, O. Kourakos, S. Sosnowski, D. Althoff, M. Lawitzky, +<br/>{drazen, rohrm, omirosk, sosnowski, dalthoff, lawitzky, moertl, rambow, vicky, +<br/>M. Eggers, C. Mayer, T. Kruse, A. Kirsch, M. Beetz and B. Radig 2 +<br/>T. Lorenz and A. Schub¨o 4 +<br/>P. Basili and S. Glasauer 5 +<br/>W. Maier and E. Steinbach 7 +<br/><b>Institute of Automatic Control</b><br/>4 Experimental Psychology Unit +<br/>Engineering +<br/>Department of Psychology +<br/>Department of Electrical Engineering +<br/>Ludwig-Maximilians-Universit¨at +<br/>and Information Technology +<br/>Technische Universit¨at M¨unchen +<br/>Arcisstraße 21, 80333 M¨unchen +<br/>2Intelligent Autonomous Systems +<br/>Department of Informatics +<br/>M¨unchen +<br/>Leopoldstraße 13, 80802 M¨unchen +<br/>5Center for Sensorimotor Research +<br/>Clinical Neurosciences and +<br/>Department of Neurology +<br/>Technische Universit¨at M¨unchen +<br/>Ludwig-Maximilians-Universit¨at +<br/>Boltzmannstraße 3, 85748 Garching +<br/>M¨unchen +<br/>bei M¨unchen +<br/>Marchionistraße 23, 81377 M¨unchen +<br/><b>Institute for Human-Machine</b><br/>6Robotics and Embedded Systems +<br/>Communication +<br/>Department of Informatics +<br/>Department of Electrical Engineering +<br/>Technische Universit¨at M¨unchen +<br/>and Information Technology +<br/>Boltzmannstraße 3, 85748 Garching +<br/>Technische Universit¨at M¨unchen +<br/>Arcisstraße 21, 80333 M¨unchen +<br/>bei M¨unchen +<br/><b>Institute for Media Technology</b><br/>Department of Electrical Engineering +<br/>and Information Technology +<br/>Technische Universit¨at M¨unchen +<br/>Arcisstraße 21, 80333 M¨unchen +</td><td>('46953125', 'X. Zang', 'x. zang')<br/>('47824592', 'W. Wang', 'w. wang')<br/>('48172476', 'A. Bannat', 'a. bannat')<br/>('30849638', 'G. Panin', 'g. panin')</td><td>medina, xueliang zang, wangwei, dirk, kuehnlen, hirche, buss}@lsr.ei.tum.de +<br/>{eggers, mayerc, kruset, kirsch, beetz, radig}@in.tum.de +<br/>{blume, bannat, rehrl, wallhoff}@tum.de +<br/>{lorenz, schuboe}@psy.lmu.de +<br/>{p.basili,s.glasauer}@lrz.uni-muenchen.de +<br/>{lenz,roeder,panin,knoll}@in.tum.de +<br/>{werner.maier, eckehard.steinbach}@tum.de +</td></tr><tr><td>fe7c0bafbd9a28087e0169259816fca46db1a837</td><td></td><td></td><td></td></tr><tr><td>fe5df5fe0e4745d224636a9ae196649176028990</td><td><b>University of Massachusetts - Amherst</b><br/>Dissertations <br/>9-1-2010 <br/>Dissertations and Theses <br/>Using Context to Enhance the Understanding of @@ -12183,6 +15350,11 @@ <br/>mhussain@ksu.edu.sa <br/>ghulam@ksu.edu.sa <br/>anwar.m.mirza@gmail.com +</td></tr><tr><td>fe48f0e43dbdeeaf4a03b3837e27f6705783e576</td><td></td><td></td><td></td></tr><tr><td>fea83550a21f4b41057b031ac338170bacda8805</td><td>Learning a Metric Embedding +<br/>for Face Recognition +<br/>using the Multibatch Method +<br/>Orcam Ltd., Jerusalem, Israel +</td><td>('46273386', 'Oren Tadmor', 'oren tadmor')<br/>('1743988', 'Yonatan Wexler', 'yonatan wexler')<br/>('31601132', 'Tal Rosenwein', 'tal rosenwein')<br/>('2554670', 'Shai Shalev-Shwartz', 'shai shalev-shwartz')<br/>('3140335', 'Amnon Shashua', 'amnon shashua')</td><td>firstname.lastname@orcam.com </td></tr><tr><td>feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc</td><td>EURECOM <br/>Multimedia Communications Department <br/>and @@ -12198,7 +15370,13 @@ <br/>Last update June 1st, 2011 <br/>1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco, <br/>Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales. -</td><td>('3299530', 'Antitza Dantcheva', 'antitza dantcheva')<br/>('15758502', 'Arun Singh', 'arun singh')<br/>('1688531', 'Petros Elia', 'petros elia')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')</td><td></td></tr><tr><td>fe108803ee97badfa2a4abb80f27fa86afd9aad9</td><td></td><td></td><td></td></tr><tr><td>c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d</td><td>Modeling for part-based visual object +</td><td>('3299530', 'Antitza Dantcheva', 'antitza dantcheva')<br/>('15758502', 'Arun Singh', 'arun singh')<br/>('1688531', 'Petros Elia', 'petros elia')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')</td><td></td></tr><tr><td>fe108803ee97badfa2a4abb80f27fa86afd9aad9</td><td></td><td></td><td></td></tr><tr><td>fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139</td><td>Rahman et al. EURASIP Journal on Image and Video Processing (2015) 2015:35 +<br/>DOI 10.1186/s13640-015-0090-5 +<br/>RESEARCH +<br/>Open Access +<br/>Bayesian face recognition using 2D +<br/>Gaussian-Hermite moments +</td><td>('47081388', 'S. M. Mahbubur Rahman', 's. m. mahbubur rahman')<br/>('2021126', 'Tamanna Howlader', 'tamanna howlader')</td><td></td></tr><tr><td>c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d</td><td>Modeling for part-based visual object <br/>detection based on local features <br/>Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik <br/>der Rheinisch-Westf¨alischen Technischen Hochschule Aachen @@ -12213,15 +15391,210 @@ <br/>Tag der m¨undlichen Pr¨ufung: 28. September 2011 <br/>Diese Dissertation ist auf den Internetseiten der <br/>Hochschulbibliothek online verf¨ugbar. -</td><td>('2447988', 'Mark Asbach', 'mark asbach')</td><td></td></tr><tr><td>c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3</td><td>LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS +</td><td>('2447988', 'Mark Asbach', 'mark asbach')</td><td></td></tr><tr><td>c86e6ed734d3aa967deae00df003557b6e937d3d</td><td>Generative Adversarial Networks with +<br/>Decoder-Encoder Output Noise +<br/>conditional distribution of their neighbors. In [32], Portilla and +<br/>Simoncelli proposed a parametric texture model based on joint +<br/>statistics, which uses a decomposition method that is called +<br/>steerable pyramid decomposition to decompose the texture +<br/>of images. An example-based super-resolution algorithm [11] +<br/>was proposed in 2002, which uses a Markov network to model +<br/>the spatial relationship between the pixels of an image. A +<br/>scene completion algorithm [16] was proposed in 2007, which +<br/>applied a semantic scene match technique. These traditional +<br/>algorithms can be applied to particular image generation tasks, +<br/>such as texture synthesis and super-resolution. Their common +<br/>characteristic is that they predict the images pixel by pixel +<br/>rather than generate an image as a whole, and the basic idea +<br/>of them is to make an interpolation according to the existing +<br/>part of the images. Here, the problem is, given a set of images, +<br/>can we generate totally new images with the same distribution +<br/>of the given ones? +</td><td>('2421012', 'Guoqiang Zhong', 'guoqiang zhong')<br/>('46874300', 'Wei Gao', 'wei gao')<br/>('3142351', 'Yongbin Liu', 'yongbin liu')<br/>('47796538', 'Youzhao Yang', 'youzhao yang')</td><td></td></tr><tr><td>c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3</td><td>LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS <br/>J´er´emie Nicolle <br/>K´evin Bailly <br/>Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France </td><td>('3074790', 'Vincent Rapp', 'vincent rapp')<br/>('1680828', 'Mohamed Chetouani', 'mohamed chetouani')</td><td>{nicolle, bailly, rapp, chetouani}@isir.upmc.fr +</td></tr><tr><td>c87f7ee391d6000aef2eadb49f03fc237f4d1170</td><td>1 +<br/>A real-time and unsupervised face Re-Identification system for Human-Robot +<br/>Interaction +<br/><b>Intelligent Behaviour Understanding Group, Imperial College London, London, UK</b><br/>A B S T R A C T +<br/>In the context of Human-Robot Interaction (HRI), face Re-Identification (face Re-ID) aims to verify if certain detected faces have already been +<br/>observed by robots. The ability of distinguishing between different users is crucial in social robots as it will enable the robot to tailor the interaction +<br/>strategy toward the users’ individual preferences. So far face recognition research has achieved great success, however little attention has been paid +<br/>to the realistic applications of Face Re-ID in social robots. In this paper, we present an effective and unsupervised face Re-ID system which +<br/>simultaneously re-identifies multiple faces for HRI. This Re-ID system employs Deep Convolutional Neural Networks to extract features, and an +<br/>online clustering algorithm to determine the face’s ID. Its performance is evaluated on two datasets: the TERESA video dataset collected by the +<br/>TERESA robot, and the YouTube Face Dataset (YTF Dataset). We demonstrate that the optimised combination of techniques achieves an overall +<br/>93.55% accuracy on TERESA dataset and an overall 90.41% accuracy on YTF dataset. We have implemented the proposed method into a software +<br/>module in the HCI^2 Framework [1] for it to be further integrated into the TERESA robot [2], and has achieved real-time performance at 10~26 +<br/>Frames per second. +<br/>Keywords: Real-Time Face Re-Identification, Open Set Re-ID, Multiple Re-ID, Human-Robot Interaction, CNN Descriptors, Online Clustering +<br/>1. Introduction +<br/>Face recognition problem is one of the oldest topics in +<br/>Computer Vision [3]. Recently, the interest in this problem has +<br/>been revamped, mostly due to the observation that standard face +<br/>recognition approaches do not perform well in real-time +<br/>scenarios where faces can be rotated, occluded, and under +<br/>unconstrained illumination. Face recognition tasks are generally +<br/>classified into two categories: +<br/>1. Face Verification. Given two face images, the task of face +<br/>verification is to determine if these two faces belong to the same +<br/>person. +<br/>2. Face Identification. This refers to the process of finding the +<br/>identity of an unknown face image given a database of known +<br/>faces. +<br/>However, there are certain situations where a third type of +<br/>face recognition is needed: face re-identification (face Re-ID). In +<br/>the context of Human-Robot Interaction (HRI), the goal of face +<br/>Re-ID is to determine if certain faces have been seen by the robot +<br/>before, and if so, to determine their identity. +<br/>Generally, a real-time and unsupervised face re-identification +<br/>system is required to achieve effective interactions between +<br/>humans and robots. In the realistic scenarios of HRI, the face re- +<br/>identification task is confronted with the following challenges: +<br/>a. The system needs to be able to build and update the run- +<br/>time user gallery on the fly as there is usually no prior +<br/>knowledge about the interaction targets in advance. +<br/>b. The system should achieve high processing speed in +<br/>order for the robot to maintain real-time interaction with +<br/>the users. +<br/>c. The method should be robust against high intra-class +<br/>illumination changes, partial +<br/>variance caused by +<br/> +<br/>occlusion, pose variation, and/or the display of facial +<br/>expressions. +<br/>d. The system should achieve high recognition accuracy on +<br/>low-quality images resulted from motion blur (when the +<br/>robot and / or the user is moving), out-of-focus blur, +<br/>and/or over /under-exposure. +<br/>Recently, deep-learning approaches, especially Convolutional +<br/>Neural Networks (CNNs), have achieved great success in solving +<br/>face recognition problems [4]–[8]. Comparing +<br/>to classic +<br/>approaches, deep-learning-based methods are characterised by +<br/>their powerful feature extraction abilities. However, as existing +<br/>works mostly focused on traditional face identification problems, +<br/>the potential applications of deep-learning-based methods in +<br/>solving face Re-ID problems is yet to be explored. +<br/>that can work effectively +<br/>In this paper, we present a real-time unsupervised face re- +<br/>identification system +<br/>in an +<br/>unconstrained environment. Firstly, we employ a pre-trained +<br/>CNN [7] as the feature extractor and try to improve its +<br/>performance and processing speed in HRI context by utilising a +<br/>variety of pre-processing techniques. In the Re-Identification step, +<br/>we then use an online clustering algorithm to build and update a +<br/>run-time face gallery and to output the probe faces’ ID. +<br/>Experiments show that our system can achieve a Re-ID accuracy +<br/>of 93.55% and 90.41% on the TERESA video dataset and the +<br/>YTF Dataset respectively and is able to achieve a real-time +<br/>processing speed of 10~26 FPS. +<br/>2. Related Works +<br/>Various methods [9]–[15] have been developed to solve the +<br/>person Re-ID problem in surveillance context. However, most of +<br/>them [9]–[13] are unsuitable to HRI applications as these +<br/>approaches often rely on soft biometrics (i.e. clothing’s colours +<br/>and textures) that are unavailable to the robot (which usually only +<br/>sees the user’s face). Due to the unavailability of such soft +<br/>biometrics, it is difficult to apply person re-identification +</td><td>('2563750', 'Yujiang Wang', 'yujiang wang')<br/>('49927631', 'Jie Shen', 'jie shen')<br/>('2403354', 'Stavros Petridis', 'stavros petridis')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Surveillance Face Recognition Challenge +<br/>Received: date / Accepted: date +</td><td>('5314735', 'Zhiyi Cheng', 'zhiyi cheng')</td><td></td></tr><tr><td>c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd</td><td>1 Department of Computer Science +<br/><b>Rutgers University</b><br/>New Jersey, USA +<br/>2 Department of Computer Science +<br/><b>The University of Texas at Arlington</b><br/>Texas, USA +<br/>PENG, XI: TRACK FACIAL POINTS IN UNCONSTRAINED VIDEOS +<br/>Track Facial Points in Unconstrained Videos +</td><td>('4340744', 'Xi Peng', 'xi peng')<br/>('40420376', 'Qiong Hu', 'qiong hu')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>xipeng.cs@rutgers.edu +<br/>qionghu.cs@rutgers.edu +<br/>jzhuang@uta.edu +<br/>dnm@cs.rutgers.edu </td></tr><tr><td>c8292aa152a962763185e12fd7391a1d6df60d07</td><td>Camera Distance from Face Images <br/><b>University of California, San Diego</b><br/>9500 Gilman Drive, La Jolla, CA, USA </td><td>('25234832', 'Arturo Flores', 'arturo flores')</td><td>{aflores,echristiansen,kriegman,sjb}@cs.ucsd.edu -</td></tr><tr><td>c82c147c4f13e79ad49ef7456473d86881428b89</td><td></td><td></td><td></td></tr><tr><td>c8e84cdff569dd09f8d31e9f9ba3218dee65e961</td><td>Dictionaries for Image and Video-based Face Recognition +</td></tr><tr><td>c82c147c4f13e79ad49ef7456473d86881428b89</td><td></td><td></td><td></td></tr><tr><td>c84233f854bbed17c22ba0df6048cbb1dd4d3248</td><td>Exploring Locally Rigid Discriminative +<br/>Patches for Learning Relative Attributes +<br/>http://researchweb.iiit.ac.in/~yashaswi.verma/ +<br/>http://www.iiit.ac.in/~jawahar/ +<br/>CVIT +<br/>IIIT-Hyderabad, India +<br/>http://cvit.iiit.ac.in +</td><td>('1694502', 'C. V. Jawahar', 'c. v. jawahar')<br/>('2169614', 'Yashaswi Verma', 'yashaswi verma')<br/>('1694502', 'C. V. Jawahar', 'c. v. jawahar')</td><td></td></tr><tr><td>c829be73584966e3162f7ccae72d9284a2ebf358</td><td>shuttleNet: A biologically-inspired RNN with loop connection and parameter +<br/>sharing +<br/>1 National Engineering Laboratory for Video Technology, School of EE&CS, +<br/><b>Peking University, Beijing, China</b><br/>2 Cooperative Medianet Innovation Center, China +<br/>3 School of Information and Electronics, +<br/><b>Beijing Institute of Technology, Beijing, China</b></td><td>('38179026', 'Yemin Shi', 'yemin shi')<br/>('1705972', 'Yonghong Tian', 'yonghong tian')<br/>('5765799', 'Yaowei Wang', 'yaowei wang')<br/>('34097174', 'Tiejun Huang', 'tiejun huang')</td><td></td></tr><tr><td>c87d5036d3a374c66ec4f5870df47df7176ce8b9</td><td>ORIGINAL RESEARCH +<br/>published: 12 July 2018 +<br/>doi: 10.3389/fpsyg.2018.01190 +<br/>Temporal Dynamics of Natural Static +<br/>Emotional Facial Expressions +<br/>Decoding: A Study Using Event- and +<br/>Eye Fixation-Related Potentials +<br/><b>GIPSA-lab, Institute of Engineering, Universit Grenoble Alpes, Centre National de la Recherche Scienti que, Grenoble INP</b><br/>Grenoble, France, 2 Department of Conception and Control of Aeronautical and Spatial Vehicles, Institut Supérieur de +<br/>l’Aéronautique et de l’Espace, Université Fédérale de Toulouse, Toulouse, France, 3 Laboratoire InterUniversitaire de +<br/>Psychologie – Personnalité, Cognition, Changement Social, Université Grenoble Alpes, Université Savoie Mont Blanc, +<br/>Grenoble, France, 4 Exploration Fonctionnelle du Système Nerveux, Pôle Psychiatrie, Neurologie et Rééducation +<br/>Neurologique, CHU Grenoble Alpes, Grenoble, France, 5 Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble +<br/>Institut des Neurosciences, Grenoble, France +<br/>This study aims at examining the precise temporal dynamics of the emotional facial +<br/>decoding as it unfolds in the brain, according to the emotions displayed. To characterize +<br/>this processing as it occurs in ecological settings, we focused on unconstrained visual +<br/>explorations of natural emotional faces (i.e., free eye movements). The General Linear +<br/>Model (GLM; Smith and Kutas, 2015a,b; Kristensen et al., 2017a) enables such a +<br/>depiction. It allows deconvolving adjacent overlapping responses of the eye fixation- +<br/>related potentials (EFRPs) elicited by the subsequent fixations and the event-related +<br/>potentials (ERPs) elicited at the stimuli onset. Nineteen participants were displayed +<br/>with spontaneous static facial expressions of emotions (Neutral, Disgust, Surprise, and +<br/>Happiness) from the DynEmo database (Tcherkassof et al., 2013). Behavioral results +<br/>on participants’ eye movements show that the usual diagnostic features in emotional +<br/>decoding (eyes for negative facial displays and mouth for positive ones) are consistent +<br/>with the literature. The impact of emotional category on both the ERPs and the EFRPs +<br/>elicited by the free exploration of the emotional faces is observed upon the temporal +<br/>dynamics of the emotional facial expression processing. Regarding the ERP at stimulus +<br/>onset, there is a significant emotion-dependent modulation of the P2–P3 complex +<br/>and LPP components’ amplitude at the left frontal site for the ERPs computed by +<br/>averaging. Yet, the GLM reveals the impact of subsequent fixations on the ERPs time- +<br/>locked on stimulus onset. Results are also in line with the valence hypothesis. The +<br/>observed differences between the two estimation methods (Average vs. GLM) suggest +<br/>the predominance of the right hemisphere at the stimulus onset and the implication +<br/>of the left hemisphere in the processing of the information encoded by subsequent +<br/>fixations. Concerning the first EFRP, the Lambda response and the P2 component are +<br/>modulated by the emotion of surprise compared to the neutral emotion, suggesting +<br/>Edited by: +<br/>Eva G. Krumhuber, +<br/><b>University College London</b><br/>United Kingdom +<br/>Reviewed by: +<br/>Marie Arsalidou, +<br/><b>National Research University Higher</b><br/>School of Economics, Russia +<br/>Jaana Simola, +<br/><b>University of Helsinki, Finland</b><br/>*Correspondence: +<br/>Specialty section: +<br/>This article was submitted to +<br/>Emotion Science, +<br/>a section of the journal +<br/>Frontiers in Psychology +<br/>Received: 07 March 2018 +<br/>Accepted: 20 June 2018 +<br/>Published: 12 July 2018 +<br/>Citation: +<br/>Guérin-Dugué A, Roy RN, +<br/>Kristensen E, Rivet B, Vercueil L and +<br/>Tcherkassof A (2018) Temporal +<br/>Dynamics of Natural Static Emotional +<br/>Facial Expressions Decoding: A Study +<br/>Using Event- and Eye Fixation-Related +<br/>Potentials. Front. Psychol. 9:1190. +<br/>doi: 10.3389/fpsyg.2018.01190 +<br/>Frontiers in Psychology | www.frontiersin.org +<br/>July 2018 | Volume 9 | Article 1190 +</td><td>('7200702', 'Anne Guérin-Dugué', 'anne guérin-dugué')<br/>('20903548', 'Raphaëlle N. Roy', 'raphaëlle n. roy')<br/>('33987947', 'Emmanuelle Kristensen', 'emmanuelle kristensen')<br/>('48223466', 'Bertrand Rivet', 'bertrand rivet')<br/>('2544058', 'Laurent Vercueil', 'laurent vercueil')<br/>('3209946', 'Anna Tcherkassof', 'anna tcherkassof')<br/>('7200702', 'Anne Guérin-Dugué', 'anne guérin-dugué')</td><td>anne.guerin@gipsa-lab.grenoble-inp.fr +</td></tr><tr><td>c8e84cdff569dd09f8d31e9f9ba3218dee65e961</td><td>Dictionaries for Image and Video-based Face Recognition <br/><b>Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA</b><br/><b>National Institute of Standards and Technology, Gaithersburg, MD 20899, USA</b><br/>In recent years, sparse representation and dictionary learning-based methods have emerged as <br/>powerful tools for efficiently processing data in non-traditional ways. A particular area of promise <br/>for these theories is face recognition. @@ -12319,7 +15692,15 @@ <br/>Labeled Facial Images <br/><b>Savitribai Phule Pune University</b><br/><b>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</b><br/>Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India <br/><b>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University</b><br/>DYPIET, Pimpri, Pune-18, MH, India -</td><td>('15731441', 'Shital Shinde', 'shital shinde')<br/>('3392505', 'Archana Chaugule', 'archana chaugule')</td><td></td></tr><tr><td>c88ce5ef33d5e544224ab50162d9883ff6429aa3</td><td>Face Match for Family Reunification: +</td><td>('15731441', 'Shital Shinde', 'shital shinde')<br/>('3392505', 'Archana Chaugule', 'archana chaugule')</td><td></td></tr><tr><td>c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f</td><td>BREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS +<br/>A Deep Learning Perspective on the Origin +<br/>of Facial Expressions +<br/>Department of Computer Science +<br/><b>Technion - Israel Institute of Technology</b><br/>Technion City, Haifa, Israel +<br/>Figure 1: Demonstration of the filter visualization process. +</td><td>('50484701', 'Ran Breuer', 'ran breuer')<br/>('1692832', 'Ron Kimmel', 'ron kimmel')</td><td>rbreuer@cs.technion.ac.il +<br/>ron@cs.technion.ac.il +</td></tr><tr><td>c88ce5ef33d5e544224ab50162d9883ff6429aa3</td><td>Face Match for Family Reunification: <br/>Real-world Face Image Retrieval <br/>U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA <br/><b>Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA</b></td><td>('1744255', 'Eugene Borovikov', 'eugene borovikov')<br/>('34928283', 'Michael Gill', 'michael gill')<br/>('35029039', 'Szilárd Vajda', 'szilárd vajda')</td><td>(FaceMatch@NIH.gov) @@ -12329,33 +15710,194 @@ <br/>Department of Computer Science and Engineering <br/><b>The Chinese University of Hong Kong</b><br/>Shatin, Hong Kong </td><td>('2899702', 'Ho-Man Tang', 'ho-man tang')<br/>('1681775', 'Michael R. Lyu', 'michael r. lyu')<br/>('1706259', 'Irwin King', 'irwin king')</td><td>fhmtang, lyu, kingg@cse.cuhk.edu.hk -</td></tr><tr><td>c8adbe00b5661ab9b3726d01c6842c0d72c8d997</td><td>Deep Architectures for Face Attributes +</td></tr><tr><td>c88c21eb9a8e08b66c981db35f6556f4974d27a8</td><td>Attribute Learning +<br/>Using Joint Human and Machine Computation +<br/>Edith Law +<br/>April 2011 +<br/>Machine Learning Department +<br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA 15213 +<br/>Thesis Committee: +<br/>Luis von Ahn (co-Chair) +<br/>Tom Mitchell (co-Chair) +<br/>Jaime Carbonell +<br/>Eric Horvitz, Microsoft Research +<br/>Rob Miller, MIT +<br/>Submitted in partial fulfillment of the requirements +<br/>for the degree of Doctor of Philosophy. +<br/>Copyright c(cid:13) 2011 Edith Law +</td><td></td><td></td></tr><tr><td>c8adbe00b5661ab9b3726d01c6842c0d72c8d997</td><td>Deep Architectures for Face Attributes <br/>Computer Vision and Machine Learning Group, Flickr, Yahoo, </td><td>('3469274', 'Tobi Baumgartner', 'tobi baumgartner')<br/>('31922487', 'Jack Culpepper', 'jack culpepper')</td><td>{tobi, jackcul}@yahoo-inc.com </td></tr><tr><td>fb4545782d9df65d484009558e1824538030bbb1</td><td></td><td></td><td></td></tr><tr><td>fbf196d83a41d57dfe577b3a54b1b7fa06666e3b</td><td>Extreme Learning Machine for Large-Scale <br/>Action Recognition -<br/><b>Bo gazi ci University, Turkey</b></td><td>('1764521', 'Albert Ali Salah', 'albert ali salah')</td><td></td></tr><tr><td>fbb6ee4f736519f7231830a8e337b263e91f06fe</td><td>Illumination Robust Facial Feature Detection via +<br/><b>Bo gazi ci University, Turkey</b></td><td>('1764521', 'Albert Ali Salah', 'albert ali salah')</td><td></td></tr><tr><td>fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1</td><td>Learning Discriminative Features via Label Consistent Neural Network +<br/>†Raytheon BBN Technologies, Cambridge, MA, 02138 +<br/><b>University of Maryland, College Park, MD</b></td><td>('34145947', 'Zhuolin Jiang', 'zhuolin jiang')<br/>('1691470', 'Yaming Wang', 'yaming wang')<br/>('2502892', 'Viktor Rozgic', 'viktor rozgic')</td><td>{zjiang,wandrews,vrozgic}@bbn.com, {wym,lsd}@umiacs.umd.edu +</td></tr><tr><td>fbb6ee4f736519f7231830a8e337b263e91f06fe</td><td>Illumination Robust Facial Feature Detection via <br/>Decoupled Illumination and Texture Features <br/><b>University of Waterloo, Waterloo ON N2L3G1, Canada</b><br/>WWW home page: http://vip.uwaterloo.ca/ (cid:63) </td><td>('2797326', 'Brendan Chwyl', 'brendan chwyl')<br/>('1685952', 'Alexander Wong', 'alexander wong')<br/>('1720258', 'David A. Clausi', 'david a. clausi')</td><td>{bchwyl,a28wong,dclausi}@uwaterloo.ca, -</td></tr><tr><td>fb5280b80edcf088f9dd1da769463d48e7b08390</td><td></td><td></td><td></td></tr><tr><td>fba464cb8e3eff455fe80e8fb6d3547768efba2f</td><td> +</td></tr><tr><td>fb87045600da73b07f0757f345a937b1c8097463</td><td>JIA, YANG, ZHU, KUANG, NIU, CHAN: RCCR FOR LARGE POSE +<br/>Reflective Regression of 2D-3D Face Shape +<br/>Across Large Pose +<br/><b>The University of Hong Kong</b><br/><b>National University of Defense</b><br/>Technology +<br/>3 Tencent Inc. +<br/>4 Sensetime Inc. +</td><td>('34760532', 'Xuhui Jia', 'xuhui jia')<br/>('2966679', 'Heng Yang', 'heng yang')<br/>('35130187', 'Xiaolong Zhu', 'xiaolong zhu')<br/>('1874900', 'Zhanghui Kuang', 'zhanghui kuang')<br/>('1939702', 'Yifeng Niu', 'yifeng niu')<br/>('40392393', 'Kwok-Ping Chan', 'kwok-ping chan')</td><td>xhjia@cs.hku.hk +<br/>yanghengnudt@gmail.com +<br/>lucienzhu@gmail.com +<br/>kuangzhanghui@sensetime.com +<br/>niuyifeng@nudt.edu.cn +<br/>kpchan@cs.hku.hk +</td></tr><tr><td>fb85867c989b9ee6b7899134136f81d6372526a9</td><td>Learning to Align Images using Weak Geometric Supervision +<br/><b>Georgia Institute of Technology</b><br/>2 Microsoft Research +</td><td>('1703391', 'Jing Dong', 'jing dong')<br/>('3288815', 'Byron Boots', 'byron boots')<br/>('2038264', 'Frank Dellaert', 'frank dellaert')<br/>('1757937', 'Sudipta N. Sinha', 'sudipta n. sinha')</td><td></td></tr><tr><td>fb5280b80edcf088f9dd1da769463d48e7b08390</td><td></td><td></td><td></td></tr><tr><td>fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a</td><td>Beauty and the Burst: +<br/>Remote Identification of Encrypted Video Streams +<br/><b>Tel Aviv University, Cornell Tech</b><br/>Cornell Tech +<br/><b>Tel Aviv University, Columbia University</b></td><td>('39347554', 'Roei Schuster', 'roei schuster')<br/>('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')<br/>('2337345', 'Eran Tromer', 'eran tromer')</td><td>rs864@cornell.edu +<br/>shmat@cs.cornell.edu +<br/>tromer@cs.tau.ac.il +</td></tr><tr><td>fba464cb8e3eff455fe80e8fb6d3547768efba2f</td><td> <br/>International Journal of Engineering and Applied Sciences (IJEAS) <br/> ISSN: 2394-3661, Volume-3, Issue-2, February 2016 <br/>Survey Paper on Emotion Recognition <br/> -</td><td>('40502287', 'Prachi Shukla', 'prachi shukla')<br/>('2229305', 'Sandeep Patil', 'sandeep patil')</td><td></td></tr><tr><td>fb084b1fe52017b3898c871514cffcc2bdb40b73</td><td>RESEARCH ARTICLE +</td><td>('40502287', 'Prachi Shukla', 'prachi shukla')<br/>('2229305', 'Sandeep Patil', 'sandeep patil')</td><td></td></tr><tr><td>fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59</td><td>Reading Hidden Emotions: Spontaneous +<br/>Micro-expression Spotting and Recognition +</td><td>('50079101', 'Xiaobai Li', 'xiaobai li')<br/>('1836646', 'Xiaopeng Hong', 'xiaopeng hong')<br/>('39056318', 'Antti Moilanen', 'antti moilanen')<br/>('47932625', 'Xiaohua Huang', 'xiaohua huang')<br/>('1757287', 'Guoying Zhao', 'guoying zhao')</td><td></td></tr><tr><td>fb084b1fe52017b3898c871514cffcc2bdb40b73</td><td>RESEARCH ARTICLE <br/>Illumination Normalization of Face Image <br/>Based on Illuminant Direction Estimation and <br/>Improved Retinex <br/><b>School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China</b><br/><b>Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics</b><br/><b>University POLITEHNICA Timisoara, Timisoara, 300223, Romania</b></td><td>('1699804', 'Jizheng Yi', 'jizheng yi')<br/>('1724834', 'Xia Mao', 'xia mao')<br/>('35153304', 'Lijiang Chen', 'lijiang chen')<br/>('3399189', 'Yuli Xue', 'yuli xue')<br/>('1734732', 'Alberto Rovetta', 'alberto rovetta')<br/>('1860887', 'Catalin-Daniel Caleanu', 'catalin-daniel caleanu')</td><td>* clj@ee.buaa.edu.cn -</td></tr><tr><td>ed28e8367fcb7df7e51963add9e2d85b46e2d5d6</td><td>International J. of Engg. Research & Indu. Appls. (IJERIA). +</td></tr><tr><td>fb9ad920809669c1b1455cc26dbd900d8e719e61</td><td>3D Gaze Estimation from Remote RGB-D Sensors +<br/>THÈSE NO 6680 (2015) +<br/>PRÉSENTÉE LE 9 OCTOBRE 2015 +<br/>À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR +<br/>LABORATOIRE DE L'IDIAP +<br/>PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE +<br/>ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE +<br/>POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +<br/>PAR +<br/>acceptée sur proposition du jury: +<br/>Prof. K. Aminian, président du jury +<br/>Dr J.-M. Odobez, directeur de thèse +<br/>Prof. L.-Ph. Morency, rapporteur +<br/>Prof. D. Witzner Hansen, rapporteur +<br/>Dr R. Boulic, rapporteur +<br/>Suisse +<br/>2015 +</td><td>('9206411', 'Kenneth Alberto Funes Mora', 'kenneth alberto funes mora')</td><td></td></tr><tr><td>ed28e8367fcb7df7e51963add9e2d85b46e2d5d6</td><td>International J. of Engg. Research & Indu. Appls. (IJERIA). <br/>ISSN 0974-1518, Vol.9, No. III (December 2016), pp.23-42 <br/>A NOVEL APPROACH OF FACE RECOGNITION USING <br/>CONVOLUTIONAL NEURAL NETWORKS WITH AUTO <br/>ENCODER <br/>1 Research Scholar, Dept. of Electronics & Communication Engineering, <br/><b>Rayalaseema University Kurnool, Andhra Pradesh</b><br/> 2 Research Supervisor, Professor, Dept. of Electronics & Communication Engineering, -<br/><b>Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh</b></td><td>('7006226', 'S. A. K JILANI', 's. a. k jilani')</td><td></td></tr><tr><td>ed08ac6da6f8ead590b390b1d14e8a9b97370794</td><td> +<br/><b>Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh</b></td><td>('7006226', 'S. A. K JILANI', 's. a. k jilani')</td><td></td></tr><tr><td>ed0cf5f577f5030ac68ab62fee1cf065349484cc</td><td>Revisiting Data Normalization for +<br/>Appearance-Based Gaze Estimation +<br/><b>Max Planck Institute for Informatics</b><br/>Saarland Informatics Campus, +<br/>Graduate School of Information +<br/>Science and Technology, Osaka +<br/><b>Max Planck Institute for Informatics</b><br/>Saarland Informatics Campus, +<br/>Germany +<br/><b>University, Japan</b><br/>Germany +</td><td>('2520795', 'Xucong Zhang', 'xucong zhang')<br/>('1751242', 'Yusuke Sugano', 'yusuke sugano')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')</td><td>xczhang@mpi-inf.mpg.de +<br/>sugano@ist.osaka-u.ac.jp +<br/>bulling@mpi-inf.mpg.de +</td></tr><tr><td>edde81b2bdd61bd757b71a7b3839b6fef81f4be4</td><td>SHIH, MALLYA, SINGH, HOIEM: MULTI-PROPOSAL PART LOCALIZATION +<br/>Part Localization using Multi-Proposal +<br/>Consensus for Fine-Grained Categorization +<br/><b>University of Illinois</b><br/>Urbana-Champaign +<br/>IL, US +</td><td>('2525469', 'Kevin J. Shih', 'kevin j. shih')<br/>('36508529', 'Arun Mallya', 'arun mallya')<br/>('37415643', 'Saurabh Singh', 'saurabh singh')<br/>('2433269', 'Derek Hoiem', 'derek hoiem')</td><td>kjshih2@illinois.edu +<br/>amallya2@illinois.edu +<br/>ss1@illinois.edu +<br/>dhoiem@illinois.edu +</td></tr><tr><td>edf98a925bb24e39a6e6094b0db839e780a77b08</td><td>Simplex Representation for Subspace Clustering +<br/><b>The Hong Kong Polytechnic University, Hong Kong SAR, China</b><br/><b>School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China</b><br/>Spectral clustering based methods have achieved leading performance on subspace clustering problem. State-of-the-art subspace +<br/>clustering methods follow a three-stage framework: compute a coefficient matrix from the data by solving an optimization problem; +<br/>construct an affinity matrix from the coefficient matrix; and obtain the final segmentation by applying spectral clustering to the +<br/>affinity matrix. To construct a feasible affinity matrix, these methods mostly employ the operations of exponentiation, absolutely +<br/>symmetrization, or squaring, etc. However, all these operations will force the negative entries (which cannot be explicitly avoided) +<br/>the data. In this paper, we introduce the simplex representation (SR) to remedy this problem of representation based subspace +<br/>clustering. We propose an SR based least square regression (SRLSR) model to construct a physically more meaningful affinity matrix +<br/>by integrating the nonnegative property of graph into the representation coefficient computation while maintaining the discrimination +<br/>of original data. The SRLSR model is reformulated as a linear equality-constrained problem, which is solved efficiently under the +<br/>alternating direction method of multipliers framework. Experiments on benchmark datasets demonstrate that the proposed SRLSR +<br/>algorithm is very efficient and outperforms state-of-the-art subspace clustering methods on accuracy. +<br/>Index Terms—Subspace clustering, simplex representation, spectral clustering. +<br/>I. INTRODUCTION +<br/>H IGH-dimensional data are commonly observed in var- +<br/>ious computer vision and image processing prob- +<br/>lems. Contrary to their high-dimensional appearance, +<br/>the +<br/>latent structure of those data usually lie in a union of +<br/>low-dimensional subspaces [1]. Recovering the latent low- +<br/>dimensional subspaces from the high-dimensional observation +<br/>can not only reduce the computational cost and memory +<br/>requirements of subsequent algorithms, but also reduce the +<br/>learning and computer vision tasks, we need to find the clusters +<br/>of high-dimensional data such that each cluster can be fitted +<br/>by a subspace, which is referred to as the subspace clustering +<br/>(SC) problem [1]. +<br/>SC has been extensively studied in the past decades [2]– +<br/>[33]. Most of existing SC methods can be categorized into +<br/>four categories: iterative based methods [2], [3], algebraic +<br/>based methods [4]–[6], statistical based methods [7]–[10], and +<br/>spectral clustering based methods [14]–[33]. Among these four +<br/>categories, spectral clustering based methods have become the +<br/>mainstream due to their theoretical guarantees and promising +<br/>performance on real-world applications such as motion seg- +<br/>mentation [16] and face clustering [18]. The spectral clustering +<br/>based methods usually follow a three-step framework: Step +<br/>1) obtain a coefficient matrix of the data points by solving +<br/>an optimization problem, which usually incorporates sparse +<br/>or low rank regularizations due to their good mathematical +<br/>properties; Step 2) construct an affinity matrix from the +<br/>coefficient matrix by employing exponentiation [14], abso- +<br/>lutely symmetrization [15], [16], [20], [23]–[31], and squaring +<br/>operations [17]–[19], [32], [33], etc.; Step 3) apply spectral +<br/>analysis techniques [34] to the affinity matrix and obtain the +<br/>final clusters of the data points. +<br/>Most spectral clustering based methods [14]–[33] obtain +<br/>the expected coefficient matrix under the self-expressiveness +<br/>property [15], [16], which states that each data point in a union +<br/>of multiple subspaces can be linearly represented by the other +<br/>data points in the same subspace. However, in some real-world +<br/>applications, the data points lie in a union of multiple affine +<br/>subspaces rather than linear subspaces [16]. A trivial solution +<br/>is to ignore the affine structure of the data points and directly +<br/>perform clustering as in the subspaces of linear structures. +<br/>A non-negligible drawback of this solution is the increasing +<br/>dimension of the intersection of two subspaces, which can +<br/>make the subspaces indistinguishable from each other [16]. To +<br/>cluster data points lying in affine subspaces instead of linear +<br/>subspaces, the affine constraint is introduced [15], [16], in +<br/>which each data point can be written as an affine combination +<br/>of other points with the sum of coefficients being one. +<br/>Despite their high clustering accuracy, most of spectral +<br/>clustering based methods [14]–[33] suffer from three major +<br/>drawbacks. First, under the affine constraint, the coefficient +<br/>vector is not flexible enough to handle real-world applications +<br/>Second, negative coefficients cannot be fully avoided since +<br/>the existing methods do not explicitly consider non-negative +<br/>constraint +<br/>in real-world applications, +<br/>it is physically problematic to reconstruct a data point by +<br/>allowing the others to “cancel each other out” with complex +<br/>additions and subtractions [35]. Thus, most of these methods +<br/>are limited by being stranded at this physical bottleneck. Third, +<br/>the exponentiation, absolutely symmetrization, and squaring +<br/>operations in Step 2 will force the negative coefficients to +<br/>among the data points. +<br/>in Step 1. However, +<br/>To solve the three drawbacks mentioned above, we intro- +<br/>duce the Simplex Representation (SR) for spectral clustering +<br/>based SC. Specifically, the SR is introduced from two in- +<br/>terdependent aspects. First, to broaden its adaptivity to real +<br/>scenarios, we extend the affine constraint to the scaled affine +<br/>constraint, in which the coefficient vector in the optimization +</td><td>('47882783', 'Jun Xu', 'jun xu')<br/>('1803714', 'Deyu Meng', 'deyu meng')<br/>('48571185', 'Lei Zhang', 'lei zhang')</td><td></td></tr><tr><td>ed08ac6da6f8ead590b390b1d14e8a9b97370794</td><td> <br/> <br/> <br/> @@ -12369,18 +15911,47 @@ <br/>Vol. 3, Issue 9, September 2015 <br/>An Efficient Approach for 3D Face <br/>Recognition Using ANN Based Classifiers -<br/><b>Shri Shivaji College, Parbhani, M.S, India</b><br/><b>Arts, Commerce and Science College, Gangakhed, M.S, India</b><br/><b>Dnyanopasak College Parbhani, M.S, India</b></td><td>('34443070', 'Vaibhav M. Pathak', 'vaibhav m. pathak')</td><td></td></tr><tr><td>edef98d2b021464576d8d28690d29f5431fd5828</td><td>Pixel-Level Alignment of Facial Images +<br/><b>Shri Shivaji College, Parbhani, M.S, India</b><br/><b>Arts, Commerce and Science College, Gangakhed, M.S, India</b><br/><b>Dnyanopasak College Parbhani, M.S, India</b></td><td>('34443070', 'Vaibhav M. Pathak', 'vaibhav m. pathak')</td><td></td></tr><tr><td>ed9d11e995baeec17c5d2847ec1a8d5449254525</td><td>Efficient Gender Classification Using a Deep LDA-Pruned Net +<br/><b>McGill University</b><br/>845 Sherbrooke Street W, Montreal, QC H3A 0G4, Canada +</td><td>('48087399', 'Qing Tian', 'qing tian')<br/>('1699104', 'Tal Arbel', 'tal arbel')<br/>('1713608', 'James J. Clark', 'james j. clark')</td><td>{qtian,arbel,clark}@cim.mcgill.ca +</td></tr><tr><td>edef98d2b021464576d8d28690d29f5431fd5828</td><td>Pixel-Level Alignment of Facial Images <br/>for High Accuracy Recognition <br/>Using Ensemble of Patches </td><td>('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')<br/>('35809715', 'Amirhossein Sayyafan', 'amirhossein sayyafan')<br/>('24033665', 'Benyamin Ghojogh', 'benyamin ghojogh')</td><td></td></tr><tr><td>ed04e161c953d345bcf5b910991d7566f7c486f7</td><td>Combining facial expression analysis and synthesis on a <br/>Mirror my emotions! <br/>robot -</td><td>('2185308', 'Stefan Sosnowski', 'stefan sosnowski')<br/>('39124596', 'Christoph Mayer', 'christoph mayer')<br/>('1699132', 'Bernd Radig', 'bernd radig')</td><td></td></tr><tr><td>edd7504be47ebc28b0d608502ca78c0aea6a65a2</td><td>Recurrent Residual Learning for Action +</td><td>('2185308', 'Stefan Sosnowski', 'stefan sosnowski')<br/>('39124596', 'Christoph Mayer', 'christoph mayer')<br/>('1699132', 'Bernd Radig', 'bernd radig')</td><td></td></tr><tr><td>ed07856461da6c7afa4f1782b5b607b45eebe9f6</td><td>3D Morphable Models as Spatial Transformer Networks +<br/><b>University of York, UK</b><br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</b></td><td>('39180407', 'Anil Bas', 'anil bas')<br/>('39976184', 'Patrik Huber', 'patrik huber')<br/>('1687021', 'William A. P. Smith', 'william a. p. smith')<br/>('46649582', 'Muhammad Awais', 'muhammad awais')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td>{ab1792,william.smith}@york.ac.uk, {p.huber,m.a.rana,j.kittler}@surrey.ac.uk +</td></tr><tr><td>ed1886e233c8ecef7f414811a61a83e44c8bbf50</td><td>Deep Alignment Network: A convolutional neural network for robust face +<br/>alignment +<br/><b>Warsaw University of Technology</b></td><td>('2393538', 'Marek Kowalski', 'marek kowalski')<br/>('1930272', 'Jacek Naruniec', 'jacek naruniec')<br/>('1760267', 'Tomasz Trzcinski', 'tomasz trzcinski')</td><td>m.kowalski@ire.pw.edu.pl, j.naruniec@ire.pw.edu.pl, t.trzcinski@ii.pw.edu.pl +</td></tr><tr><td>edd7504be47ebc28b0d608502ca78c0aea6a65a2</td><td>Recurrent Residual Learning for Action <br/>Recognition <br/><b>University of Bonn, Germany</b></td><td>('3434584', 'Ahsan Iqbal', 'ahsan iqbal')<br/>('32774629', 'Alexander Richard', 'alexander richard')<br/>('2946643', 'Juergen Gall', 'juergen gall')</td><td>{iqbalm,richard,kuehne,gall}@iai.uni-bonn.de +</td></tr><tr><td>ed388878151a3b841f95a62c42382e634d4ab82e</td><td>DenseImage Network: Video Spatial-Temporal Evolution +<br/>Encoding and Understanding +<br/><b>Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, China</b></td><td>('3162023', 'Xiaokai Chen', 'xiaokai chen')<br/>('2027479', 'Ke Gao', 'ke gao')</td><td>{chenxiaokai,kegao}@ict.ac.cn </td></tr><tr><td>edbb8cce0b813d3291cae4088914ad3199736aa0</td><td>Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence <br/>Efficient Subspace Segmentation via Quadratic Programming <br/><b>College of Computer Science and Technology, Zhejiang University, China</b><br/><b>National University of Singapore, Singapore</b><br/><b>School of Information Systems, Singapore Management University, Singapore</b></td><td>('35019367', 'Shusen Wang', 'shusen wang')<br/>('2026127', 'Tiansheng Yao', 'tiansheng yao')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('38203359', 'Jialie Shen', 'jialie shen')</td><td>wssatzju@gmail.com, eleyuanx@nus.edu.sg, tsyaoo@gmail.com, eleyans@nus.edu.sg, jlshen@smu.edu.sg +</td></tr><tr><td>edff76149ec44f6849d73f019ef9bded534a38c2</td><td>Privacy-Preserving Visual Learning Using +<br/>Doubly Permuted Homomorphic Encryption +<br/><b>The University of Tokyo</b><br/>Tokyo, Japan +<br/><b>Michigan State University</b><br/>East Lansing, MI, USA +<br/><b>The University of Tokyo</b><br/>Tokyo, Japan +<br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA, USA +</td><td>('1899753', 'Ryo Yonetani', 'ryo yonetani')<br/>('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')<br/>('9467266', 'Yoichi Sato', 'yoichi sato')<br/>('37991449', 'Kris M. Kitani', 'kris m. kitani')</td><td>yonetani@iis.u-tokyo.ac.jp +<br/>vishnu@msu.edu +<br/>kkitani@cs.cmu.edu +<br/>ysato@iis.u-tokyo.ac.jp +</td></tr><tr><td>ed96f2eb1771f384df2349879970065a87975ca7</td><td>Adversarial Attacks on Face Detectors using Neural +<br/>Net based Constrained Optimization +<br/>Department of Electrical and +<br/>Computer Engineering +<br/><b>University of Toronto</b><br/>Department of Electrical and +<br/>Computer Engineering +<br/><b>University of Toronto</b></td><td>('26418299', 'Avishek Joey Bose', 'avishek joey bose')<br/>('3241876', 'Parham Aarabi', 'parham aarabi')</td><td>Email: joey.bose@mail.utoronto.ca +<br/>Email: parham@ecf.utoronto.ca </td></tr><tr><td>c178a86f4c120eca3850a4915134fff44cbccb48</td><td></td><td></td><td></td></tr><tr><td>c1d2d12ade031d57f8d6a0333cbe8a772d752e01</td><td>Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156 <br/>Convex optimization techniques for the efficient recovery of a sparsely <br/>corrupted low-rank matrix @@ -12391,6 +15962,8 @@ <br/>Selective Prior <br/>Department of Information Processing, School of Information Science, <br/><b>Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan</b></td><td>('1753878', 'Fan Chen', 'fan chen')<br/>('1791753', 'Kazunori Kotani', 'kazunori kotani')</td><td>{chen-fan, ikko}@jaist.ac.jp +</td></tr><tr><td>c146aa6d56233ce700032f1cb179700778557601</td><td>3D Morphable Models as Spatial Transformer Networks +<br/><b>University of York, UK</b><br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</b></td><td>('39180407', 'Anil Bas', 'anil bas')<br/>('39976184', 'Patrik Huber', 'patrik huber')<br/>('1687021', 'William A. P. Smith', 'william a. p. smith')<br/>('9170545', 'Muhammad Awais', 'muhammad awais')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td>{ab1792,william.smith}@york.ac.uk, {p.huber,m.a.rana,j.kittler}@surrey.ac.uk </td></tr><tr><td>c1f07ec629be1c6fe562af0e34b04c54e238dcd1</td><td>A Novel Facial Feature Localization Method Using Probabilistic-like Output* <br/>Microsoft Research Asia <br/> @@ -12427,6 +16000,13 @@ </td><td>('1684635', 'Lei Zhang', 'lei zhang')<br/>('9310930', 'Long', 'long')<br/>('8392859', 'Mingjing Li', 'mingjing li')<br/>('38188346', 'Hongjiang Zhang', 'hongjiang zhang')<br/>('1679242', 'Longbin Chen', 'longbin chen')</td><td>{leizhang, mjli,hjzhang}@microsoft.com <br/>longzhu@msrchina.research.microsoft.com <br/>l.chen6@umiami.edu +</td></tr><tr><td>c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d</td><td>Dual-Agent GANs for Photorealistic and Identity +<br/>Preserving Profile Face Synthesis +<br/><b>National University of Singapore</b><br/>3 Panasonic R&D Center Singapore +<br/><b>National University of Defense Technology</b><br/><b>Franklin. W. Olin College of Engineering</b><br/><b>Qihoo 360 AI Institute</b></td><td>('46509484', 'Jian Zhao', 'jian zhao')<br/>('33419682', 'Lin Xiong', 'lin xiong')<br/>('2757639', 'Jianshu Li', 'jianshu li')<br/>('40345914', 'Fang Zhao', 'fang zhao')<br/>('2513111', 'Zhecan Wang', 'zhecan wang')<br/>('2668358', 'Sugiri Pranata', 'sugiri pranata')<br/>('3493398', 'Shengmei Shen', 'shengmei shen')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')</td><td>{zhaojian90, jianshu}@u.nus.edu +<br/>{lin.xiong, karlekar.jayashree, sugiri.pranata, shengmei.shen}@sg.panasonic.com +<br/>zhecan.wang@students.olin.edu +<br/>{elezhf, eleyans, elefjia}@u.nus.edu </td></tr><tr><td>c10a15e52c85654db9c9343ae1dd892a2ac4a279</td><td>Int J Comput Vis (2012) 100:134–153 <br/>DOI 10.1007/s11263-011-0494-3 <br/>Learning the Relative Importance of Objects from Tagged Images @@ -12499,7 +16079,10 @@ <br/>Subspace Regression: Predicting a Subspace from one Sample <br/>Anonymous CVPR submission <br/>Paper ID 1369 -</td><td></td><td></td></tr><tr><td>c17a332e59f03b77921942d487b4b102b1ee73b6</td><td>Learning an appearance-based gaze estimator +</td><td></td><td></td></tr><tr><td>c11eb653746afa8148dc9153780a4584ea529d28</td><td>Global and Local Consistent Wavelet-domain Age +<br/>Synthesis +</td><td>('2112221', 'Peipei Li', 'peipei li')<br/>('49995036', 'Yibo Hu', 'yibo hu')<br/>('1705643', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td></td></tr><tr><td>c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee</td><td>Robust Facial Landmark Localization Based on +</td><td>('19254504', 'Yiyun Pan', 'yiyun pan')<br/>('7934466', 'Junwei Zhou', 'junwei zhou')<br/>('46636537', 'Yongsheng Gao', 'yongsheng gao')<br/>('2065968', 'Shengwu Xiong', 'shengwu xiong')</td><td></td></tr><tr><td>c17a332e59f03b77921942d487b4b102b1ee73b6</td><td>Learning an appearance-based gaze estimator <br/>from one million synthesised images <br/>Tadas Baltruˇsaitis2 </td><td>('34399452', 'Erroll Wood', 'erroll wood')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')<br/>('39626495', 'Peter Robinson', 'peter robinson')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')</td><td>1University of Cambridge, United Kingdom {erroll.wood,peter.robinson}@cam.ac.uk @@ -12513,7 +16096,49 @@ </td><td>('1804963', 'Harald Hanselmann', 'harald hanselmann')<br/>('35362682', 'Shen Yan', 'shen yan')<br/>('1685956', 'Hermann Ney', 'hermann ney')</td><td>hanselmann@cs.rwth-aachen.de <br/>shen.yan@rwth-aachen.de <br/>ney@cs.rwth-aachen.de -</td></tr><tr><td>c696c9bbe27434cb6279223a79b17535cd6e88c8</td><td>International Journal of Information Technology Vol.11 No.9 2005 +</td></tr><tr><td>c1298120e9ab0d3764512cbd38b47cd3ff69327b</td><td>Disguised Faces in the Wild +<br/>IIIT-Delhi, India +<br/><b>IBM TJ Watson Research Center, USA</b><br/>Rama Chellappa +<br/><b>University of Maryland, College Park, USA</b></td><td>('2573268', 'Vineet Kushwaha', 'vineet kushwaha')<br/>('2220719', 'Maneet Singh', 'maneet singh')<br/>('50631607', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('47733712', 'Nalini Ratha', 'nalini ratha')</td><td>{maneets, rsingh, mayank}@iiitd.ac.in +<br/>ratha@us.ibm.com +<br/>rama@umiacs.umd.ed +</td></tr><tr><td>c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290</td><td>Unconstrained face identification with multi-scale block-based +<br/>correlation +<br/>Gaston, J., MIng, J., & Crookes, D. (2016). Unconstrained face identification with multi-scale block-based +<br/>correlation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal +<br/><b>Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE</b><br/>Published in: +<br/>Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing +<br/>Document Version: +<br/>Peer reviewed version +<br/><b>Queen's University Belfast - Research Portal</b><br/><b>Link to publication record in Queen's University Belfast Research Portal</b><br/>Publisher rights +<br/>© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future +<br/><b>media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or</b><br/>redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. +<br/>General rights +<br/><b>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</b><br/>copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +<br/>with these rights. +<br/>Take down policy +<br/>The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +<br/>ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +<br/>Download date:29. Nov. 2017 +</td><td></td><td>Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk. +</td></tr><tr><td>c68ec931585847b37cde9f910f40b2091a662e83</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, +<br/>Vol. 9, No. 6, 2018 +<br/>A Comparative Evaluation of Dotted Raster- +<br/>Stereography and Feature-Based Techniques for +<br/>Automated Face Recognition +<br/>S. Talha Ahsan +<br/>Department of Computer Science +<br/>Department of Electrical Engineering +<br/><b>Usman Institute of Technology</b><br/><b>Usman Institute of Technology</b><br/>Karachi, Pakistan +<br/>Karachi, Pakistan +<br/>Department of Computer Science +<br/><b>Usman Institute of Technology</b><br/>Karachi, Pakistan +<br/>and +<br/>feature-based +<br/>system. The +<br/>techniques +<br/>two candidate +</td><td>('49508503', 'Muhammad Wasim', 'muhammad wasim')<br/>('3251091', 'Lubaid Ahmed', 'lubaid ahmed')<br/>('33238128', 'Syed Faisal Ali', 'syed faisal ali')</td><td></td></tr><tr><td>c696c9bbe27434cb6279223a79b17535cd6e88c8</td><td>International Journal of Information Technology Vol.11 No.9 2005 <br/>* <br/>Discriminant Analysis <br/>Facial Expression Recognition with Pyramid Gabor @@ -12566,17 +16191,29 @@ <br/>Edmund A. Hajim School of Engineering and Applied Sciences <br/><b>University of Rochester</b><br/>Rochester, New York <br/>2015 -</td><td>('2296971', 'Iftekhar Naim', 'iftekhar naim')</td><td></td></tr><tr><td>c62c910264658709e9bf0e769e011e7944c45c90</td><td>Recent Progress of Face Image Synthesis +</td><td>('2296971', 'Iftekhar Naim', 'iftekhar naim')</td><td></td></tr><tr><td>c6f3399edb73cfba1248aec964630c8d54a9c534</td><td>A Comparison of CNN-based Face and Head Detectors for +<br/>Real-Time Video Surveillance Applications +<br/>1 ´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada +<br/>2 Genetec Inc., Montreal, Canada +</td><td>('38993564', 'Le Thanh Nguyen-Meidine', 'le thanh nguyen-meidine')<br/>('1697195', 'Eric Granger', 'eric granger')<br/>('40185782', 'Madhu Kiran', 'madhu kiran')<br/>('38755219', 'Louis-Antoine Blais-Morin', 'louis-antoine blais-morin')</td><td>lethanh@livia.etsmtl.ca, eric.granger@etsmtl.ca, mkiran@livia.etsmtl.ca +<br/>lablaismorin@genetec.com +</td></tr><tr><td>c62c910264658709e9bf0e769e011e7944c45c90</td><td>Recent Progress of Face Image Synthesis <br/>National Laboratory of Pattern Recognition, CASIA <br/>Center for Research on Intelligent Perception and Computing, CASIA <br/>Center for Excellence in Brain Science and Intelligence Technology, CAS <br/><b>University of Chinese Academy of Sciences, Beijing, 100049, China</b></td><td>('9702077', 'Zhihe Lu', 'zhihe lu')<br/>('7719475', 'Zhihang Li', 'zhihang li')<br/>('1680853', 'Jie Cao', 'jie cao')<br/>('1705643', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>{luzhihe2016, lizhihang2016, caojie2016}@ia.ac.cn, {rhe, znsun}@nlpr.ia.ac.cn +</td></tr><tr><td>c678920facffd35853c9d185904f4aebcd2d8b49</td><td>Learning to Anonymize Faces for +<br/>Privacy Preserving Action Detection +<br/>1 EgoVid Inc., South Korea +<br/><b>University of California, Davis</b></td><td>('10805888', 'Zhongzheng Ren', 'zhongzheng ren')<br/>('1883898', 'Yong Jae Lee', 'yong jae lee')<br/>('1766489', 'Michael S. Ryoo', 'michael s. ryoo')</td><td>{zzren,yongjaelee}@ucdavis.edu, mryoo@egovid.com </td></tr><tr><td>c660500b49f097e3af67bb14667de30d67db88e3</td><td>www.elsevier.com/locate/cviu <br/>Facial asymmetry quantification for <br/>expression invariant human identification <br/>and Sinjini Mitrac <br/><b>a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA</b><br/><b>University of Pittsburgh, Pittsburgh, PA 15260, USA</b><br/><b>Carnegie Mellon University, Pittsburgh, PA 15213, USA</b><br/>Received 15 February 2002; accepted 24 March 2003 -</td><td>('1689241', 'Yanxi Liu', 'yanxi liu')<br/>('2185899', 'Karen L. Schmidt', 'karen l. schmidt')</td><td></td></tr><tr><td>c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6</td><td>This article appeared in a journal published by Elsevier. The attached +</td><td>('1689241', 'Yanxi Liu', 'yanxi liu')<br/>('2185899', 'Karen L. Schmidt', 'karen l. schmidt')</td><td></td></tr><tr><td>c6241e6fc94192df2380d178c4c96cf071e7a3ac</td><td>Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors +<br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China</b></td><td>('33345248', 'Limin Wang', 'limin wang')<br/>('33427555', 'Yu Qiao', 'yu qiao')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>07wanglimin@gmail.com, yu.qiao@siat.ac.cn, xtang@ie.cuhk.edu.hk +</td></tr><tr><td>c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6</td><td>This article appeared in a journal published by Elsevier. The attached <br/>copy is furnished to the author for internal non-commercial research <br/><b>and education use, including for instruction at the authors institution</b><br/>and sharing with colleagues. <br/><b>Other uses, including reproduction and distribution, or selling or</b><br/>licensing copies, or posting to personal, institutional or third party @@ -12631,14 +16268,26 @@ <br/>trait anxiety interact to alter cognition has rarely been studied10. In particular, does induced anxiety have a <br/><b>Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain</b><br/><b>Lab, University College London, London WC1H 0AP, UK. 3Clinical</b><br/><b>Psychopharmacology Unit, Educational and Health Psychology, University College</b><br/>London, WC1E 7HB. *These authors contributed equally to this work. †These authors jointly supervised this work. </td><td>('4177273', 'Chandni Hindocha', 'chandni hindocha')</td><td>Correspondence and requests for materials should be addressed to C.J.C. (email: caroline.charpentier.11@ucl.ac.uk) -</td></tr><tr><td>c65a394118d34beda5dd01ae0df163c3db88fceb</td><td>In press : Proceedings of the 30th European Conference On Information Retrieval +</td></tr><tr><td>c62c07de196e95eaaf614fb150a4fa4ce49588b4</td><td>Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +<br/>1078 +</td><td></td><td></td></tr><tr><td>c65a394118d34beda5dd01ae0df163c3db88fceb</td><td>In press : Proceedings of the 30th European Conference On Information Retrieval <br/>Glasgow, March-April 2008 <br/>Finding the Best Picture: <br/>Cross-Media Retrieval of Content <br/><b>Katholieke Universiteit Leuven</b><br/>Celestijnenlaan 200A, B-3001 Heverlee, Belgium <br/>http://www.cs.kuleuven.be/~liir/ </td><td>('1797588', 'Koen Deschacht', 'koen deschacht')<br/>('1802161', 'Marie-Francine Moens', 'marie-francine moens')</td><td>{Koen.Deschacht,Marie-Francine.Moens}@cs.kuleuven.be -</td></tr><tr><td>ec12f805a48004a90e0057c7b844d8119cb21b4a</td><td>Distance-Based Descriptors and Their +</td></tr><tr><td>ec90d333588421764dff55658a73bbd3ea3016d2</td><td>Research Article +<br/>Protocol for Systematic Literature Review of Face +<br/>Recognition in Uncontrolled Environment +<br/><b>Bacha Khan University, Charsadda, KPK, Pakistan</b></td><td>('12144785', 'Faizan Ullah', 'faizan ullah')<br/>('46463663', 'Sabir Shah', 'sabir shah')<br/>('49669073', 'Dilawar Shah', 'dilawar shah')<br/>('12579194', 'Shujaat Ali', 'shujaat ali')</td><td>faizanullah@bkuc.edu.pk +</td></tr><tr><td>ec8ec2dfd73cf3667f33595fef84c95c42125945</td><td>Pose-Invariant Face Alignment with a Single CNN +<br/><b>Michigan State University</b><br/>2Visualization Group, Bosch Research and Technology Center North America +</td><td>('2357264', 'Amin Jourabloo', 'amin jourabloo')<br/>('3876303', 'Mao Ye', 'mao ye')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')<br/>('3334600', 'Liu Ren', 'liu ren')</td><td>1,2 {jourablo, liuxm}@msu.edu, {mao.ye2, liu.ren}@us.bosch.com +</td></tr><tr><td>ec1e03ec72186224b93b2611ff873656ed4d2f74</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>3D Reconstruction of “In-the-Wild” Faces in +<br/>Images and Videos +</td><td>('47456731', 'James Booth', 'james booth')<br/>('2931390', 'Anastasios Roussos', 'anastasios roussos')<br/>('31243357', 'Evangelos Ververas', 'evangelos ververas')<br/>('2015036', 'Stylianos Ploumpis', 'stylianos ploumpis')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')</td><td></td></tr><tr><td>ec12f805a48004a90e0057c7b844d8119cb21b4a</td><td>Distance-Based Descriptors and Their <br/>Application in the Task of Object Detection <br/><b>Technical University of Ostrava, FEECS</b><br/>17. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic </td><td>('2467747', 'Radovan Fusek', 'radovan fusek')<br/>('2557877', 'Eduard Sojka', 'eduard sojka')</td><td>{radovan.fusek,eduard.sojka}@vsb.cz @@ -12665,7 +16314,28 @@ <br/><b>aInformation Sciences Institute</b><br/><b>University of Southern California</b><br/>Marina Del Rey, CA <br/><b>b Institute for Robotics and Intelligent Systems</b><br/><b>University of Southern California</b><br/>Los Angeles, California <br/><b>cThe Open University</b><br/>Raanana, Israel -</td><td>('1746738', 'Yue Wu', 'yue wu')<br/>('38696444', 'Stephen Rawls', 'stephen rawls')<br/>('35840854', 'Shai Harel', 'shai harel')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')<br/>('1689391', 'Jongmoo Choi', 'jongmoo choi')<br/>('2955822', 'Jatuporn Toy Leksut', 'jatuporn toy leksut')<br/>('5911467', 'Jungyeon Kim', 'jungyeon kim')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>4e5dc3b397484326a4348ccceb88acf309960e86</td><td>Hindawi Publishing Corporation +</td><td>('1746738', 'Yue Wu', 'yue wu')<br/>('38696444', 'Stephen Rawls', 'stephen rawls')<br/>('35840854', 'Shai Harel', 'shai harel')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')<br/>('1689391', 'Jongmoo Choi', 'jongmoo choi')<br/>('2955822', 'Jatuporn Toy Leksut', 'jatuporn toy leksut')<br/>('5911467', 'Jungyeon Kim', 'jungyeon kim')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f</td><td>Представление новостных сюжетов с помощью +<br/>событийных фотографий +<br/>© М.М. Постников +<br/> © Б.В. Добров +<br/>Московский государственный университет имени М.В. Ломоносова +<br/>факультет вычислительной математики и кибернетики, +<br/>Москва, Россия +<br/>Аннотация. Рассмотрена задача аннотирования новостного сюжета изображениями, +<br/>ассоциированными с конкретными текстами сюжета. Введено понятие «событийной фотографии», +<br/>содержащей конкретную информацию, дополняющую текст сюжета. Для решения задачи применены +<br/>нейронные сети с использованием переноса обучения (Inception v3) для специальной размеченной +<br/>коллекции из 4114 изображений. Средняя точность полученных результатов составила более 94,7%. +<br/>Ключевые слова: событийная фотография, новостные иллюстрации, перенос обучения. +<br/>News Stories Representation Using Event Photos +<br/>© M.M. Postnikov +<br/> © B.V. Dobrov +<br/><b>Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics</b><br/>Moscow, Russia +</td><td></td><td>mihanlg@yandex.ru +<br/> dobrov_bv@mail.ru +<br/>mihanlg@yandex.ru +<br/> dobrov_bv@mail.ru +</td></tr><tr><td>4e5dc3b397484326a4348ccceb88acf309960e86</td><td>Hindawi Publishing Corporation <br/>e Scientific World Journal <br/>Volume 2014, Article ID 219732, 12 pages <br/>http://dx.doi.org/10.1155/2014/219732 @@ -12736,7 +16406,10 @@ </td></tr><tr><td>4e4fa167d772f34dfffc374e021ab3044566afc3</td><td>Learning Low-Rank Representations with Classwise <br/>Block-Diagonal Structure for Robust Face Recognition <br/><b>National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences</b><br/><b>School of Computer Science, Nanjing University of Science and Technology</b><br/><b>University of Maryland, College Park</b></td><td>('1689181', 'Yong Li', 'yong li')<br/>('38188270', 'Jing Liu', 'jing liu')<br/>('3233021', 'Zechao Li', 'zechao li')<br/>('34868330', 'Yangmuzi Zhang', 'yangmuzi zhang')<br/>('1694235', 'Hanqing Lu', 'hanqing lu')<br/>('38450168', 'Songde Ma', 'songde ma')</td><td>{yong.li,jliu,luhq}@nlpr.ia.ac.cn, zechao.li@gmail.com, ymzhang@umiacs.umd.edu, masd@most.cn -</td></tr><tr><td>4ed54d5093d240cc3644e4212f162a11ae7d1e3b</td><td>Learning Visual Compound Models from Parallel +</td></tr><tr><td>4e32fbb58154e878dd2fd4b06398f85636fd0cf4</td><td>A Hierarchical Matcher using Local Classifier Chains +<br/>L. Zhang and I.A. Kakadiaris +<br/>Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 +</td><td></td><td></td></tr><tr><td>4ed54d5093d240cc3644e4212f162a11ae7d1e3b</td><td>Learning Visual Compound Models from Parallel <br/>Image-Text Datasets <br/><b>Bielefeld University</b><br/><b>University of Toronto</b></td><td>('2872318', 'Jan Moringen', 'jan moringen')<br/>('1724954', 'Sven Wachsmuth', 'sven wachsmuth')<br/>('1792908', 'Suzanne Stevenson', 'suzanne stevenson')</td><td>{jmoringe,swachsmu}@techfak.uni-bielefeld.de <br/>{sven,suzanne}@cs.toronto.edu @@ -12755,7 +16428,15 @@ </td></tr><tr><td>4e97b53926d997f451139f74ec1601bbef125599</td><td>Discriminative Regularization for Generative Models <br/><b>Montreal Institute for Learning Algorithms, Universit e de Montr eal</b></td><td>('2059369', 'Alex Lamb', 'alex lamb')<br/>('3074927', 'Vincent Dumoulin', 'vincent dumoulin')</td><td>FIRST.LAST@UMONTREAL.CA </td></tr><tr><td>4e8168fbaa615009d1618a9d6552bfad809309e9</td><td>Deep Convolutional Neural Network Features and the Original Image -<br/><b>School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA</b><br/><b>University of Maryland, College Park, USA</b></td><td>('7493834', 'Connor J. Parde', 'connor j. parde')<br/>('3363752', 'Matthew Q. Hill', 'matthew q. hill')<br/>('15929465', 'Y. Ivette Colon', 'y. ivette colon')<br/>('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')</td><td></td></tr><tr><td>4ea4116f57c5d5033569690871ba294dc3649ea5</td><td>Multi-View Face Alignment Using 3D Shape Model for +<br/><b>School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA</b><br/><b>University of Maryland, College Park, USA</b></td><td>('7493834', 'Connor J. Parde', 'connor j. parde')<br/>('3363752', 'Matthew Q. Hill', 'matthew q. hill')<br/>('15929465', 'Y. Ivette Colon', 'y. ivette colon')<br/>('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')</td><td></td></tr><tr><td>4e0636a1b92503469b44e2807f0bb35cc0d97652</td><td>Adversarial Localization Network +<br/><b>Tsinghua University</b><br/><b>Stanford University</b><br/><b>Stanford University</b></td><td>('2548303', 'Lijie Fan', 'lijie fan')<br/>('3303970', 'Shengjia Zhao', 'shengjia zhao')<br/>('2490652', 'Stefano Ermon', 'stefano ermon')</td><td>flj14@mails.tsinghua.edu.cn +<br/>sjzhao@stanford.edu +<br/>ermon@stanford.edu +</td></tr><tr><td>4e27fec1703408d524d6b7ed805cdb6cba6ca132</td><td>SSD-Sface: Single shot multibox detector for small faces +<br/>C. Thuis +</td><td></td><td></td></tr><tr><td>4e6c9be0b646d60390fe3f72ce5aeb0136222a10</td><td>Long-term Temporal Convolutions +<br/>for Action Recognition +</td><td>('1785596', 'Ivan Laptev', 'ivan laptev')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>4ea4116f57c5d5033569690871ba294dc3649ea5</td><td>Multi-View Face Alignment Using 3D Shape Model for <br/>View Estimation <br/><b>Tsinghua University</b><br/>2Core Technology Center, Omron Corporation </td><td>('1739678', 'Yanchao Su', 'yanchao su')<br/>('1679380', 'Haizhou Ai', 'haizhou ai')<br/>('1710195', 'Shihong Lao', 'shihong lao')</td><td>ahz@mail.tsinghua.edu.cn @@ -12799,6 +16480,73 @@ <br/><b>German Research Center for Arti cial Intelligence (DFKI</b><br/>Tripstaddterstr. 122, 67663 Kaiserslautern, Germany <br/><b>Technical University of Kaiserslautern</b><br/>http://www.av.dfki.de </td><td>('2585383', 'Mohamed Selim', 'mohamed selim')<br/>('1771057', 'Alain Pagani', 'alain pagani')<br/>('1807169', 'Didier Stricker', 'didier stricker')</td><td>{mohamed.selim,alain.pagani,didier.stricker}@dfki.uni-kl.de +</td></tr><tr><td>20b994a78cd1db6ba86ea5aab7211574df5940b3</td><td>Enriched Long-term Recurrent Convolutional Network +<br/>for Facial Micro-Expression Recognition +<br/><b>Faculty of Computing and Informatics, Multimedia University, Malaysia</b><br/><b>Faculty of Engineering, Multimedia University, Malaysia</b><br/><b>Shanghai Jiao Tong University, China</b></td><td>('30470673', 'Huai-Qian Khor', 'huai-qian khor')<br/>('2339975', 'John See', 'john see')<br/>('8131625', 'Weiyao Lin', 'weiyao lin')</td><td>Emails: 1hqkhor95@gmail.com, 2johnsee@mmu.edu.my, 3raphael@mmu.edu.my, 4wylin@sjtu.edu.cn +</td></tr><tr><td>2004afb2276a169cdb1f33b2610c5218a1e47332</td><td>Hindawi +<br/>Computational Intelligence and Neuroscience +<br/>Volume 2018, Article ID 3803627, 11 pages +<br/>https://doi.org/10.1155/2018/3803627 +<br/>Research Article +<br/>Deep Convolutional Neural Network Used in Single Sample per +<br/>Person Face Recognition +<br/><b>School of Information Engineering, Wuyi University, Jiangmen 529020, China</b><br/>Received 27 November 2017; Revised 23 May 2018; Accepted 26 July 2018; Published 23 August 2018 +<br/>Academic Editor: Jos´e Alfredo Hern´andez-P´erez +<br/>which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +<br/>Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be +<br/>trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper +<br/>proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample +<br/>method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and +<br/>conveniently. Besides, it can generate samples such as disguise, expression, and mixed variation. Second, it uses transfer learning and +<br/>introduces a well-trained deep convolutional neural network (DCNN) model and then selects some expanding samples to fine-tune the +<br/>DCNN model. 0ird, the fine-tuned model is used to implement experiment. Experimental results on AR face database, Extend Yale B +<br/>face database, FERET face database, and LFW database demonstrate that TDL achieves the state-of-the-art performance in SSPP FR. +<br/>1. Introduction +<br/>As artificial +<br/>intelligence (AI) becomes more and more +<br/>popular, computer vision (CV) also has been proved to be +<br/>a very hot topic in academic such as face recognition [1], +<br/>facial expression recognition [2], and object recognition [3]. +<br/>It is well known that the basic and important foundation in +<br/>CV is that there are an amount of training samples. But in +<br/>actual scenarios such as immigration management, fugitive +<br/>tracing, and video surveillance, there may be only one +<br/>sample, which leads to single sample per person (SSPP) +<br/>problem such as gait recognition [4], face recognition (FR) +<br/>[5, 6], and low-resolution face recognition [7] in CV. +<br/>However, as the widely use of second-generation ID card +<br/>which is convenient to be collected, SSPP FR becomes one of +<br/>the most popular topics no matter in academic or in +<br/>industry. +<br/>Beymer and Poggio [8] proposed one example view +<br/>problem in 1996. In [8], it was researched that how to +<br/>perform face recognition (FR) using one example view. +<br/>Firstly, it exploited prior knowledge to generate multiple +<br/>virtual views. 0en, the example view and these multiple +<br/>virtual views were used as example views in a view-based, +<br/>pose-invariant +<br/>face recognizer. Later, SSPP FR became +<br/>a popular research topic at the beginning of the 21st century. +<br/>Recently, many methods have been proposed. Generally +<br/>speaking, these methods can be summarized in five basic +<br/>methods: direct method, generic learning method, patch- +<br/>based method, expanding sample method, and deep learning +<br/>(DL) method. Direct method does experiment based on the +<br/>SSPP directly by using an algorithm. Generic learning +<br/>method is the way that using an auxiliary dataset to build +<br/>a generic dataset from which some variation information +<br/>can be learned by single sample. Patch-based method par- +<br/>titions single sample into several patches first, then extracts +<br/>features on these patches, respectively, and does classifica- +<br/>tion finally. 0e expanding sample method is with some +<br/>special means such as perturbation-based method [9, 10], +<br/>photometric transforms, and geometric distortion [11] to +<br/>increase sample so that abundant training samples can be +<br/>used to process this task. 0e DL method uses the DL model +<br/>to perform the research. +<br/>Attracted by the good performance of DCNN, inspired +<br/>by [12] and driven by AI, in this paper, a scheme combined +</td><td>('9363278', 'Junying Zeng', 'junying zeng')<br/>('12054657', 'Xiaoxiao Zhao', 'xiaoxiao zhao')<br/>('2926767', 'Junying Gan', 'junying gan')<br/>('40552250', 'Chaoyun Mai', 'chaoyun mai')<br/>('1716453', 'Fan Wang', 'fan wang')<br/>('3003242', 'Yikui Zhai', 'yikui zhai')<br/>('9363278', 'Junying Zeng', 'junying zeng')</td><td>Correspondence should be addressed to Xiaoxiao Zhao; xiaoxiao-zhao@foxmail.com </td></tr><tr><td>20e504782951e0c2979d9aec88c76334f7505393</td><td>Robust LSTM-Autoencoders for Face De-Occlusion <br/>in the Wild </td><td>('37182704', 'Fang Zhao', 'fang zhao')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('39913117', 'Jian Zhao', 'jian zhao')<br/>('1898172', 'Wenhan Yang', 'wenhan yang')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>209324c152fa8fab9f3553ccb62b693b5b10fb4d</td><td>CROWDSOURCED VISUAL KNOWLEDGE REPRESENTATIONS @@ -12813,7 +16561,9 @@ </td><td>('2580593', 'Ranjay Krishna', 'ranjay krishna')</td><td></td></tr><tr><td>2050847bc7a1a0453891f03aeeb4643e360fde7d</td><td>Accio: A Data Set for Face Track Retrieval <br/>in Movies Across Age <br/><b>Istanbul Technical University, Istanbul, Turkey</b><br/><b>Karlsruhe Institute of Technology, Karlsruhe, Germany</b></td><td>('2398366', 'Esam Ghaleb', 'esam ghaleb')<br/>('2103464', 'Makarand Tapaswi', 'makarand tapaswi')<br/>('2256981', 'Ziad Al-Halah', 'ziad al-halah')<br/>('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')</td><td>{ghalebe, ekenel}@itu.edu.tr, {tapaswi, ziad.al-halah, rainer.stiefelhagen}@kit.edu -</td></tr><tr><td>202d8d93b7b747cdbd6e24e5a919640f8d16298a</td><td>Face Classification via Sparse Approximation +</td></tr><tr><td>20ade100a320cc761c23971d2734388bfe79f7c5</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +<br/>Subspace Clustering via Good Neighbors +</td><td>('1755872', 'Jufeng Yang', 'jufeng yang')<br/>('1780418', 'Jie Liang', 'jie liang')<br/>('39329211', 'Kai Wang', 'kai wang')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>202d8d93b7b747cdbd6e24e5a919640f8d16298a</td><td>Face Classification via Sparse Approximation <br/><b>Bilgi University, Dolapdere, Istanbul, TR</b><br/><b>Bo gazici University, Istanbul, TR</b><br/><b>Y ld z Teknik University, Istanbul, TR</b></td><td>('2804969', 'Songul Albayrak', 'songul albayrak')</td><td></td></tr><tr><td>20767ca3b932cbc7b8112db21980d7b9b3ea43a3</td><td></td><td></td><td></td></tr><tr><td>20a16efb03c366fa4180659c2b2a0c5024c679da</td><td>SCREENING RULES FOR OVERLAPPING GROUP LASSO <br/><b>Carnegie Mellon University</b><br/>Recently, to solve large-scale lasso and group lasso problems, <br/>screening rules have been developed, the goal of which is to reduce @@ -12875,7 +16625,10 @@ </td><td></td><td>e-mail: vretos,nikolaid,pitas@aiia.csd.auth.gr </td></tr><tr><td>2098983dd521e78746b3b3fa35a22eb2fa630299</td><td></td><td></td><td></td></tr><tr><td>20b437dc4fc44c17f131713ffcbb4a8bd672ef00</td><td>Head pose tracking from RGBD sensor based on <br/>direct motion estimation -<br/><b>Warsaw University of Technology, Poland</b></td><td>('1899063', 'Adam Strupczewski', 'adam strupczewski')<br/>('2393538', 'Marek Kowalski', 'marek kowalski')<br/>('1930272', 'Jacek Naruniec', 'jacek naruniec')</td><td></td></tr><tr><td>208a2c50edb5271a050fa9f29d3870f891daa4dc</td><td>http://www.journalofvision.org/content/11/13/24 +<br/><b>Warsaw University of Technology, Poland</b></td><td>('1899063', 'Adam Strupczewski', 'adam strupczewski')<br/>('2393538', 'Marek Kowalski', 'marek kowalski')<br/>('1930272', 'Jacek Naruniec', 'jacek naruniec')</td><td></td></tr><tr><td>206e24f7d4b3943b35b069ae2d028143fcbd0704</td><td>Learning Structure and Strength of CNN Filters for Small Sample Size Training +<br/>IIIT-Delhi, India +</td><td>('3390448', 'Rohit Keshari', 'rohit keshari')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('39129417', 'Richa Singh', 'richa singh')</td><td>{rohitk, mayank, rsingh}@iiitd.ac.in +</td></tr><tr><td>208a2c50edb5271a050fa9f29d3870f891daa4dc</td><td>http://www.journalofvision.org/content/11/13/24 <br/>The resolution of facial expressions of emotion <br/>Aleix M. Martinez <br/><b>The Ohio State University, Columbus, OH, USA</b><br/><b>The Ohio State University, Columbus, OH, USA</b><br/><b>Much is known on how facial expressions of emotion are produced, including which individual muscles are most active in</b><br/>each expression. Yet, little is known on how this information is interpreted by the human visual system. This paper presents @@ -12969,10 +16722,36 @@ <br/>Coahuila, Mexico <br/><b>The University of York, Heslington, York YO10 5DD, United Kingdom</b></td><td>('1679753', 'Edwin R. Hancock', 'edwin r. hancock')</td><td>mario.castelan@cinvestav.edu.mx <br/>erh@cs.york.ac.uk -</td></tr><tr><td>2042aed660796b14925db17c0a8b9fbdd7f3ebac</td><td>Saliency in Crowd +</td></tr><tr><td>2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b</td><td>TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015 +<br/>Co-Localization of Audio Sources in Images Using +<br/>Binaural Features and Locally-Linear Regression +<br/>∗ INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +<br/>† Univ. Grenoble Alpes, GIPSA-Lab, France +<br/>‡ Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel +</td><td>('3307172', 'Antoine Deleforge', 'antoine deleforge')</td><td></td></tr><tr><td>206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8</td><td></td><td></td><td></td></tr><tr><td>2042aed660796b14925db17c0a8b9fbdd7f3ebac</td><td>Saliency in Crowd <br/>Department of Electrical and Computer Engineering <br/><b>National University of Singapore, Singapore</b></td><td>('40452812', 'Ming Jiang', 'ming jiang')<br/>('1946538', 'Juan Xu', 'juan xu')<br/>('3243515', 'Qi Zhao', 'qi zhao')</td><td>eleqiz@nus.edu.sg -</td></tr><tr><td>20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6</td><td>Appears in the Second International Conference on Audio- and Video-based Biometric Person Authentication, AVBPA’99, Washington D. C. USA, March 22-24, 1999. +</td></tr><tr><td>202dc3c6fda654aeb39aee3e26a89340fb06802a</td><td>Spatio-Temporal Instance Learning: +<br/>Action Tubes from Class Supervision +<br/><b>University of Amsterdam</b></td><td>('2606260', 'Pascal Mettes', 'pascal mettes')</td><td></td></tr><tr><td>20111924fbf616a13d37823cd8712a9c6b458cd6</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 130 – No.11, November2015 +<br/>Linear Regression Line based Partial Face Recognition +<br/>Naveena M. +<br/>Department of Studies in +<br/>Computer Science, +<br/>Manasagagothri, +<br/>Mysore. +<br/>Department of Studies in +<br/>Computer Science, +<br/>Manasagagothri, +<br/>Mysore. +<br/>P. Nagabhushan +<br/>Department of Studies in +<br/>Computer Science, +<br/>Manasagagothri, +<br/>Mysore. +<br/>images. In +</td><td>('33377948', 'G. Hemantha Kumar', 'g. hemantha kumar')</td><td></td></tr><tr><td>20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6</td><td>Appears in the Second International Conference on Audio- and Video-based Biometric Person Authentication, AVBPA’99, Washington D. C. USA, March 22-24, 1999. <br/>Comparative Assessment of Independent Component <br/>Analysis (ICA) for Face Recognition <br/><b>George Mason University</b><br/><b>University Drive, Fairfax, VA 22030-4444, USA</b><br/> @@ -12988,7 +16767,13 @@ <br/>Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008 <br/>© Springer-Verlag 2008 </td><td>('1716880', 'Y. Yang', 'y. yang')</td><td></td></tr><tr><td>20cfb4136c1a984a330a2a9664fcdadc2228b0bc</td><td>Sparse Coding Trees with Application to Emotion Classification -<br/><b>Harvard University, Cambridge, MA</b></td><td>('3144257', 'Hsieh-Chung Chen', 'hsieh-chung chen')<br/>('2512314', 'Marcus Z. Comiter', 'marcus z. comiter')<br/>('1731308', 'H. T. Kung', 'h. t. kung')<br/>('1841852', 'Bradley McDanel', 'bradley mcdanel')</td><td></td></tr><tr><td>2020e8c0be8fa00d773fd99b6da55029a6a83e3d</td><td>An Evaluation of the Invariance Properties +<br/><b>Harvard University, Cambridge, MA</b></td><td>('3144257', 'Hsieh-Chung Chen', 'hsieh-chung chen')<br/>('2512314', 'Marcus Z. Comiter', 'marcus z. comiter')<br/>('1731308', 'H. T. Kung', 'h. t. kung')<br/>('1841852', 'Bradley McDanel', 'bradley mcdanel')</td><td></td></tr><tr><td>20c02e98602f6adf1cebaba075d45cef50de089f</td><td>Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video +<br/>Action Recognition +<br/><b>Georgia Institute of Technology</b><br/><b>Carnegie Mellon University</b><br/>Irfan Essa +<br/><b>Georgia Institute of Technology</b></td><td>('2308598', 'Unaiza Ahsan', 'unaiza ahsan')<br/>('37714701', 'Rishi Madhok', 'rishi madhok')</td><td>uahsan3@gatech.edu +<br/>rmadhok@andrew.cmu.edu +<br/>irfan@gatech.edu +</td></tr><tr><td>2020e8c0be8fa00d773fd99b6da55029a6a83e3d</td><td>An Evaluation of the Invariance Properties <br/>of a Biologically-Inspired System <br/>for Unconstrained Face Recognition <br/><b>Massachusetts Institute of Technology, Cambridge, MA 02139, USA</b><br/><b>Rowland Institute at Harvard, Cambridge, MA 02142, USA</b></td><td>('30017846', 'Nicolas Pinto', 'nicolas pinto')</td><td>pinto@mit.edu @@ -13037,15 +16822,47 @@ </td><td>('2720935', 'Jihun Ham', 'jihun ham')<br/>('1732066', 'Daniel D. Lee', 'daniel d. lee')</td><td>jhham@seas.upenn.edu, ddlee@seas.upenn.edu </td></tr><tr><td>18d5b0d421332c9321920b07e0e8ac4a240e5f1f</td><td>Collaborative Representation Classification <br/>Ensemble for Face Recognition -</td><td>('2972883', 'Suah Kim', 'suah kim')<br/>('2434811', 'Run Cui', 'run cui')<br/>('1730037', 'Hyoung Joong Kim', 'hyoung joong kim')</td><td></td></tr><tr><td>18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae</td><td>Learning invariant representations and applications +</td><td>('2972883', 'Suah Kim', 'suah kim')<br/>('2434811', 'Run Cui', 'run cui')<br/>('1730037', 'Hyoung Joong Kim', 'hyoung joong kim')</td><td></td></tr><tr><td>18d51a366ce2b2068e061721f43cb798177b4bb7</td><td>Cognition and Emotion +<br/>ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20 +<br/>Looking into your eyes: observed pupil size +<br/>influences approach-avoidance responses +<br/>eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI: +<br/>10.1080/02699931.2018.1472554 +<br/>To link to this article: https://doi.org/10.1080/02699931.2018.1472554 +<br/>View supplementary material +<br/>Published online: 11 May 2018. +<br/>Submit your article to this journal +<br/>View related articles +<br/>View Crossmark data +<br/>Full Terms & Conditions of access and use can be found at +<br/>http://www.tandfonline.com/action/journalInformation?journalCode=pcem20 +</td><td>('47930228', 'Marco Brambilla', 'marco brambilla')<br/>('41074530', 'Marco Biella', 'marco biella')<br/>('47930228', 'Marco Brambilla', 'marco brambilla')<br/>('41074530', 'Marco Biella', 'marco biella')</td><td></td></tr><tr><td>18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae</td><td>Learning invariant representations and applications <br/>to face verification <br/>Center for Brains, Minds and Machines <br/><b>McGovern Institute for Brain Research</b><br/><b>Massachusetts Institute of Technology</b><br/>Cambridge MA 02139 </td><td>('1694846', 'Qianli Liao', 'qianli liao')</td><td>lql@mit.edu, jzleibo@mit.edu, tp@ai.mit.edu +</td></tr><tr><td>185263189a30986e31566394680d6d16b0089772</td><td>Efficient Annotation of Objects for Video Analysis +<br/>Thesis submitted in partial fulfillment +<br/>of the requirements for the degree of +<br/>MS in Computer Science and Engineering +<br/>by +<br/>Research +<br/>by +<br/>Sirnam Swetha +<br/>201303014 +<br/><b>International Institute of Information Technology</b><br/>Hyderabad - 500 032, INDIA +<br/>June 2018 +</td><td></td><td>sirnam.swetha@research.iiit.ac.in </td></tr><tr><td>1885acea0d24e7b953485f78ec57b2f04e946eaf</td><td>Combining Local and Global Features for 3D Face Tracking <br/>Megvii (face++) Research </td><td>('40448951', 'Pengfei Xiong', 'pengfei xiong')<br/>('1775836', 'Guoqing Li', 'guoqing li')<br/>('3756559', 'Yuhang Sun', 'yuhang sun')</td><td>{xiongpengfei, liguoqing, sunyuhang}@megvii.com -</td></tr><tr><td>184750382fe9b722e78d22a543e852a6290b3f70</td><td></td><td></td><td></td></tr><tr><td>18a849b1f336e3c3b7c0ee311c9ccde582d7214f</td><td>Int J Comput Vis +</td></tr><tr><td>184750382fe9b722e78d22a543e852a6290b3f70</td><td></td><td></td><td></td></tr><tr><td>18b9dc55e5221e704f90eea85a81b41dab51f7da</td><td>Attention-based Temporal Weighted +<br/>Convolutional Neural Network for +<br/>Action Recognition +<br/><b>Xi an Jiaotong University, Xi an, Shannxi 710049, P.R.China</b><br/>2HERE Technologies, Chicago, IL 60606, USA +<br/>3Alibaba Group, Hangzhou, Zhejiang 311121, P.R.China +<br/>4Microsoft Research, Redmond, WA 98052, USA +</td><td>('14800230', 'Jinliang Zang', 'jinliang zang')<br/>('40367806', 'Le Wang', 'le wang')<br/>('46324995', 'Qilin Zhang', 'qilin zhang')<br/>('1786361', 'Zhenxing Niu', 'zhenxing niu')<br/>('1745420', 'Gang Hua', 'gang hua')<br/>('1715389', 'Nanning Zheng', 'nanning zheng')</td><td></td></tr><tr><td>18a849b1f336e3c3b7c0ee311c9ccde582d7214f</td><td>Int J Comput Vis <br/>DOI 10.1007/s11263-012-0564-1 <br/>Efficiently Scaling up Crowdsourced Video Annotation <br/>A Set of Best Practices for High Quality, Economical Video Labeling @@ -13089,13 +16906,20 @@ <br/>1School of Computer Science & Engineering, South China Univ. of Tech., Guangzhou 510006, China <br/>2School of Automation Science & Engineering, South China Univ. of Tech., Guangzhou 510006, China <br/><b>National University of Singapore, Singapore</b></td><td>('2217653', 'Yuhui Quan', 'yuhui quan')<br/>('1725160', 'Yong Xu', 'yong xu')<br/>('2111796', 'Yuping Sun', 'yuping sun')<br/>('34881546', 'Yan Huang', 'yan huang')<br/>('39689301', 'Hui Ji', 'hui ji')</td><td>{csyhquan@scut.edu.cn, yxu@scut.edu.cn, ausyp@scut.edu.cn, matjh@nus.edu.sg} +</td></tr><tr><td>18941b52527e6f15abfdf5b86a0086935706e83b</td><td>DeepGUM: Learning Deep Robust Regression with a +<br/>Gaussian-Uniform Mixture Model +<br/>1 Inria Grenoble Rhˆone-Alpes, Montbonnot-Saint-Martin, France, +<br/><b>University of Granada, Granada, Spain</b><br/><b>University of Trento, Trento, Italy</b></td><td>('2793152', 'Pablo Mesejo', 'pablo mesejo')<br/>('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')<br/>('1794229', 'Radu Horaud', 'radu horaud')</td><td>firstname.name@inria.fr </td></tr><tr><td>185360fe1d024a3313042805ee201a75eac50131</td><td>299 <br/>Person De-Identification in Videos </td><td>('35624289', 'Prachi Agrawal', 'prachi agrawal')<br/>('1729020', 'P. J. Narayanan', 'p. j. narayanan')</td><td></td></tr><tr><td>1824b1ccace464ba275ccc86619feaa89018c0ad</td><td>One Millisecond Face Alignment with an Ensemble of Regression Trees <br/><b>KTH, Royal Institute of Technology</b><br/>Computer Vision and Active Perception Lab <br/>Teknikringen 14, Stockholm, Sweden </td><td>('2626422', 'Vahid Kazemi', 'vahid kazemi')<br/>('1736906', 'Josephine Sullivan', 'josephine sullivan')</td><td>{vahidk,sullivan}@csc.kth.se -</td></tr><tr><td>18dfc2434a95f149a6cbb583cca69a98c9de9887</td><td></td><td></td><td></td></tr><tr><td>271e2856e332634eccc5e80ba6fa9bbccf61f1be</td><td>3D Spatio-Temporal Face Recognition Using Dynamic Range Model Sequences +</td></tr><tr><td>18dfc2434a95f149a6cbb583cca69a98c9de9887</td><td></td><td></td><td></td></tr><tr><td>27a00f2490284bc0705349352d36e9749dde19ab</td><td>VoxCeleb2: Deep Speaker Recognition +<br/>Visual Geometry Group, Department of Engineering Science, +<br/><b>University of Oxford, UK</b></td><td>('2863890', 'Joon Son Chung', 'joon son chung')<br/>('19263506', 'Arsha Nagrani', 'arsha nagrani')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>{joon,arsha,az}@robots.ox.ac.uk +</td></tr><tr><td>271e2856e332634eccc5e80ba6fa9bbccf61f1be</td><td>3D Spatio-Temporal Face Recognition Using Dynamic Range Model Sequences <br/>Department of Computer Science <br/><b>State University of New York at Binghamton, Binghamton, NY</b></td><td>('1681656', 'Yi Sun', 'yi sun')<br/>('8072251', 'Lijun Yin', 'lijun yin')</td><td></td></tr><tr><td>27846b464369095f4909f093d11ed481277c8bba</td><td>Journal of Signal and Information Processing, 2017, 8, 99-112 <br/>http://www.scirp.org/journal/jsip @@ -13159,7 +16983,14 @@ </td><td>('34316743', 'Junsong Yuan', 'junsong yuan')<br/>('40634508', 'Ming Yang', 'ming yang')<br/>('39955137', 'Ying Wu', 'ying wu')</td><td>jsyuan@ntu.edu.sg <br/>myang@sv.nec-labs.com <br/>yingwu@eecs.northwestern.edu -</td></tr><tr><td>27218ff58c3f0e7d7779fba3bb465d746749ed7c</td><td>Active Learning for Image Ranking +</td></tr><tr><td>275b5091c50509cc8861e792e084ce07aa906549</td><td>Institut für Informatik +<br/>der Technischen +<br/>Universität München +<br/>Dissertation +<br/>Leveraging the User’s Face as a Known Object +<br/>in Handheld Augmented Reality +<br/>Sebastian Bernhard Knorr +</td><td></td><td></td></tr><tr><td>27218ff58c3f0e7d7779fba3bb465d746749ed7c</td><td>Active Learning for Image Ranking <br/>Over Relative Visual Attributes <br/>by <br/>Department of Computer Science @@ -13173,7 +17004,29 @@ <br/>image-based 3D <br/>techniques. Then we describe <br/>Received: 21Feburary 2011 / Revised: 20 March 2011 / Accepted: 11 May 2011 -<br/><b>D Research Center, Kwangwoon University and Springer</b></td><td>('1908324', 'Steffen Herbort', 'steffen herbort')</td><td></td></tr><tr><td>27c6cd568d0623d549439edc98f6b92528d39bfe</td><td>Regressive Tree Structured Model for Facial Landmark Localization +<br/><b>D Research Center, Kwangwoon University and Springer</b></td><td>('1908324', 'Steffen Herbort', 'steffen herbort')</td><td></td></tr><tr><td>270733d986a1eb72efda847b4b55bc6ba9686df4</td><td>We are IntechOpen, +<br/>the first native scientific +<br/>publisher of Open Access books +<br/>3,350 +<br/>108,000 +<br/>1.7 M +<br/>Open access books available +<br/>International authors and editors +<br/>Downloads +<br/>Our authors are among the +<br/>151 +<br/>Countries delivered to +<br/>TOP 1% +<br/>12.2% +<br/>most cited scientists +<br/>Contributors from top 500 universities +<br/>Selection of our books indexed in the Book Citation Index +<br/>in Web of Science™ Core Collection (BKCI) +<br/>Interested in publishing with us? +<br/>Numbers displayed above are based on latest data collected. +<br/>For more information visit www.intechopen.com +</td><td></td><td>Contact book.department@intechopen.com +</td></tr><tr><td>27c6cd568d0623d549439edc98f6b92528d39bfe</td><td>Regressive Tree Structured Model for Facial Landmark Localization <br/>Artificial Vision Lab., Dept Mechanical Engineering <br/><b>National Taiwan University of Science and Technology</b></td><td>('2329565', 'Kai-Hsiang Chang', 'kai-hsiang chang')<br/>('2421405', 'Shih-Chieh Huang', 'shih-chieh huang')</td><td>jison@mail.ntust.edu.tw </td></tr><tr><td>273b0511588ab0a81809a9e75ab3bd93d6a0f1e3</td><td>The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3428-9 @@ -13257,7 +17110,7 @@ <br/>surveillance, <br/>access </td><td>('3222448', 'Sikyung Kim', 'sikyung kim')<br/>('2387342', 'Se Jin Park', 'se jin park')</td><td>*Corresponding author. E-mail: mynudding@yahoo.com. -</td></tr><tr><td>27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd</td><td>To Appear in The IEEE 6th International Conference on Biometrics: Theory, Applications and +</td></tr><tr><td>27da432cf2b9129dce256e5bf7f2f18953eef5a5</td><td></td><td></td><td></td></tr><tr><td>27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd</td><td>To Appear in The IEEE 6th International Conference on Biometrics: Theory, Applications and <br/>Systems (BTAS), Sept. 29-Oct. 2, 2013, Washington DC, USA <br/>Automatic Multi-view Face Recognition via 3D Model Based Pose Regularization <br/>Department of Computer Science and Engineering @@ -13272,6 +17125,13 @@ <br/>Erik Learned-Miller <br/><b>University of Massachusetts Amherst</b><br/>Amherst, MA </td><td>('3219900', 'Gary B. Huang', 'gary b. huang')</td><td>{gbhuang,elm}@cs.umass.edu +</td></tr><tr><td>2717b044ae9933f9ab87f16d6c611352f66b2033</td><td>GNAS: A Greedy Neural Architecture Search Method for +<br/>Multi-Attribute Learning +<br/><b>Zhejiang University, 2Southwest Jiaotong University, 3Carnegie Mellon University</b></td><td>('2986516', 'Siyu Huang', 'siyu huang')<br/>('50079147', 'Xi Li', 'xi li')<br/>('1720488', 'Zhongfei Zhang', 'zhongfei zhang')</td><td>{siyuhuang,xilizju,zhongfei}@zju.edu.cn,zhiqicheng@gmail.com,alex@cs.cmu.edu +</td></tr><tr><td>2770b095613d4395045942dc60e6c560e882f887</td><td>GridFace: Face Rectification via Learning Local +<br/>Homography Transformations +<br/>Face++, Megvii Inc. +</td><td>('1848243', 'Erjin Zhou', 'erjin zhou')<br/>('2695115', 'Zhimin Cao', 'zhimin cao')<br/>('40055995', 'Jian Sun', 'jian sun')</td><td>{zej,czm,sunjian}@megvii.com </td></tr><tr><td>27cccf992f54966feb2ab4831fab628334c742d8</td><td>International Journal of Computer Applications (0975 – 8887) <br/>Volume 64– No.18, February 2013 <br/>Facial Expression Recognition by Statistical, Spatial @@ -13599,13 +17459,19 @@ </td><td>('3251767', 'Steve Branson', 'steve branson')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td>sbranson@caltech.edu <br/>keh4@hi.is <br/>perona@caltech.edu -</td></tr><tr><td>4bd3de97b256b96556d19a5db71dda519934fd53</td><td>Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face +</td></tr><tr><td>4b61d8490bf034a2ee8aa26601d13c83ad7f843a</td><td>A Modulation Module for Multi-task Learning with +<br/>Applications in Image Retrieval +<br/><b>Northwestern University</b><br/>2 AIBee +<br/>3 Bytedance AI Lab +<br/><b>Carnegie Mellon University</b></td><td>('8343585', 'Xiangyun Zhao', 'xiangyun zhao')</td><td></td></tr><tr><td>4bd3de97b256b96556d19a5db71dda519934fd53</td><td>Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face <br/>Recognition <br/><b>School of Electronic and Information Engineering, South China University of Technology</b><br/><b>Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China</b></td><td>('2512949', 'Yandong Wen', 'yandong wen')<br/>('32787758', 'Zhifeng Li', 'zhifeng li')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td>yd.wen@siat.ac.cn, zhifeng.li@siat.ac.cn, yu.qiao@siat.ac.cn </td></tr><tr><td>4b04247c7f22410681b6aab053d9655cf7f3f888</td><td>Robust Face Recognition by Constrained Part-based <br/>Alignment </td><td>('1692992', 'Yuting Zhang', 'yuting zhang')<br/>('2370507', 'Kui Jia', 'kui jia')<br/>('7135663', 'Yueming Wang', 'yueming wang')<br/>('1734380', 'Gang Pan', 'gang pan')<br/>('1926757', 'Tsung-Han Chan', 'tsung-han chan')<br/>('1700297', 'Yi Ma', 'yi ma')</td><td></td></tr><tr><td>4b60e45b6803e2e155f25a2270a28be9f8bec130</td><td>Attribute Based Object Identification -</td><td>('1686318', 'Yuyin Sun', 'yuyin sun')<br/>('1766509', 'Liefeng Bo', 'liefeng bo')<br/>('1731079', 'Dieter Fox', 'dieter fox')</td><td></td></tr><tr><td>4b5eeea5dd8bd69331bd4bd4c66098b125888dea</td><td>Human Activity Recognition Using Conditional +</td><td>('1686318', 'Yuyin Sun', 'yuyin sun')<br/>('1766509', 'Liefeng Bo', 'liefeng bo')<br/>('1731079', 'Dieter Fox', 'dieter fox')</td><td></td></tr><tr><td>4b48e912a17c79ac95d6a60afed8238c9ab9e553</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>Minimum Margin Loss for Deep Face Recognition +</td><td>('49141822', 'Xin Wei', 'xin wei')<br/>('3552546', 'Hui Wang', 'hui wang')<br/>('2986129', 'Huan Wan', 'huan wan')</td><td></td></tr><tr><td>4b5eeea5dd8bd69331bd4bd4c66098b125888dea</td><td>Human Activity Recognition Using Conditional <br/>Random Fields and Privileged Information <br/>submitted to <br/>the designated by the General Assembly Composition of the @@ -13638,6 +17504,9 @@ <br/><b>Cambridge Research Laboratory</b><br/>Department of Engineering <br/><b>University of Cambridge</b></td><td>('1801052', 'Atsuto Maki', 'atsuto maki')<br/>('1745672', 'Roberto Cipolla', 'roberto cipolla')</td><td>atsuto.maki@crl.toshiba.co.uk <br/>cipolla@cam.ac.uk +</td></tr><tr><td>4bbe460ab1b279a55e3c9d9f488ff79884d01608</td><td>GAGAN: Geometry-Aware Generative Adversarial Networks +<br/>Jean Kossaifi∗ +<br/><b>Middlesex University London</b><br/><b>Imperial College London</b></td><td>('47801605', 'Linh Tran', 'linh tran')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td>{jean.kossaifi;linh.tran;i.panagakis;m.pantic}@imperial.ac.uk </td></tr><tr><td>4b3eaedac75ac419c2609e131ea9377ba8c3d4b8</td><td>FAST NEWTON ACTIVE APPEARANCE MODELS <br/>Jean Kossaifi(cid:63) <br/><b>cid:63) Imperial College London, UK</b><br/><b>University of Lincoln, UK</b><br/><b>University of Twente, The Netherlands</b></td><td>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>4b507a161af8a7dd41e909798b9230f4ac779315</td><td>A Theory of Multiplexed Illumination @@ -13980,6 +17849,8 @@ <br/>Recommendations for the Use of Performance Metrics </td><td>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')<br/>('1707876', 'Fernando De la Torre', 'fernando de la torre')</td><td>1Carnegie Mellon University, Pittsburgh, PA, laszlo.jeni@ieee.org,ftorre@cs.cmu.edu <br/>2University of Pittsburgh, Pittsburgh, PA, jeffcohn@cs.cmu.edu +</td></tr><tr><td>11691f1e7c9dbcbd6dfd256ba7ac710581552baa</td><td>SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos +<br/><b>King Abdullah University of Science and Technology (KAUST), Saudi Arabia</b></td><td>('22314218', 'Silvio Giancola', 'silvio giancola')<br/>('41022271', 'Mohieddine Amine', 'mohieddine amine')<br/>('41015552', 'Tarek Dghaily', 'tarek dghaily')<br/>('2931652', 'Bernard Ghanem', 'bernard ghanem')</td><td>silvio.giancola@kaust.edu.sa, maa249@mail.aub.edu, tad05@mail.aub.edu, bernard.ghanem@kaust.edu.sa </td></tr><tr><td>11c04c4f0c234a72f94222efede9b38ba6b2306c</td><td>Real-Time Human Action Recognition by Luminance Field <br/>Trajectory Analysis <br/>Dept of Computing @@ -14030,7 +17901,7 @@ </td><td>('8118823', 'Bala Shankar', 'bala shankar')<br/>('27686729', 'S R Kumar', 's r kumar')</td><td></td></tr><tr><td>11b3877df0213271676fa8aa347046fd4b1a99ad</td><td>Unsupervised Identification of Multiple Objects of <br/>Interest from Multiple Images: dISCOVER <br/><b>Carnegie Mellon University</b></td><td>('1713589', 'Devi Parikh', 'devi parikh')<br/>('1746230', 'Tsuhan Chen', 'tsuhan chen')</td><td>{dparikh,tsuhan}@cmu.edu -</td></tr><tr><td>1130c38e88108cf68b92ecc61a9fc5aeee8557c9</td><td>Dynamically Encoded Actions based on Spacetime Saliency +</td></tr><tr><td>112780a7fe259dc7aff2170d5beda50b2bfa7bda</td><td></td><td></td><td></td></tr><tr><td>1130c38e88108cf68b92ecc61a9fc5aeee8557c9</td><td>Dynamically Encoded Actions based on Spacetime Saliency <br/><b>Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria</b><br/><b>York University, Toronto, Canada</b></td><td>('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')<br/>('1718587', 'Axel Pinz', 'axel pinz')<br/>('1709096', 'Richard P. Wildes', 'richard p. wildes')</td><td>{feichtenhofer, axel.pinz}@tugraz.at <br/>wildes@cse.yorku.ca </td></tr><tr><td>11b89011298e193d9e6a1d99302221c1d8645bda</td><td>Structured Feature Selection @@ -14043,7 +17914,17 @@ <br/>1Advanced Digital Sciences Center, Singapore <br/><b>School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore</b><br/><b>School of ICE, Beijing University of Posts and Telecommunications, Beijing, China</b><br/><b>University of Illinois at Urbana-Champaign, Urbana, IL, USA</b><br/><b>Tsinghua University, Beijing, China</b></td><td>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('22804340', 'Gang Wang', 'gang wang')<br/>('1774956', 'Weihong Deng', 'weihong deng')<br/>('1742248', 'Pierre Moulin', 'pierre moulin')<br/>('39491387', 'Jie Zhou', 'jie zhou')</td><td>jiwen.lu@adsc.com.sg; wanggang@ntu.edu.sg; whdeng@bupt.edu.cn; <br/>moulin@ifp.uiuc.edu; jzhou@tsinghua.edu.cn -</td></tr><tr><td>11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0</td><td>Hybrid Cascade Model for Face Detection in the Wild +</td></tr><tr><td>1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc</td><td>Squared Earth Mover’s Distance Loss for Training +<br/>Deep Neural Networks on Ordered-Classes +<br/>Dept. of Computer Science +<br/><b>Stony Brook University</b><br/>Chen-Ping Yu +<br/><b>Phiar Technologies, Inc</b></td><td>('2321406', 'Le Hou', 'le hou')</td><td></td></tr><tr><td>111d0b588f3abbbea85d50a28c0506f74161e091</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 134 – No.10, January 2016 +<br/>Facial Expression Recognition from Visual Information +<br/>using Curvelet Transform +<br/>Surabhi Group of Institution Bhopal +<br/>systems. Further applications +</td><td>('6837599', 'Pratiksha Singh', 'pratiksha singh')</td><td></td></tr><tr><td>11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0</td><td>Hybrid Cascade Model for Face Detection in the Wild <br/>Based on Normalized Pixel Difference and a Deep <br/>Convolutional Neural Network <br/>Darijan Marčetić[0000-0002-6556-665X], Martin Soldić[0000-0002-4031-0404] @@ -14057,6 +17938,9 @@ <br/>Engineering <br/><b>Chosun University</b><br/>Gwangju, Korea </td><td>('2806903', 'Yun-Hee Han', 'yun-hee han')</td><td>Yhhan1059@gmail.com +</td></tr><tr><td>7d2556d674ad119cf39df1f65aedbe7493970256</td><td>Now You Shake Me: Towards Automatic 4D Cinema +<br/><b>University of Toronto</b><br/><b>Vector Institute</b><br/>http://www.cs.toronto.edu/˜henryzhou/movie4d/ +</td><td>('2481662', 'Yuhao Zhou', 'yuhao zhou')<br/>('37895334', 'Sanja Fidler', 'sanja fidler')</td><td>{henryzhou, makarand, fidler}@cs.toronto.edu </td></tr><tr><td>7d94fd5b0ca25dd23b2e36a2efee93244648a27b</td><td>Convolutional Network for Attribute-driven and Identity-preserving Human Face <br/>Generation <br/><b>The Hong Kong Polytechnic University, Hong Kong</b><br/><b>bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China</b></td><td>('1701799', 'Mu Li', 'mu li')<br/>('1724520', 'Wangmeng Zuo', 'wangmeng zuo')<br/>('1698371', 'David Zhang', 'david zhang')</td><td></td></tr><tr><td>7d8c2d29deb80ceed3c8568100376195ce0914cb</td><td>Identity-Aware Textual-Visual Matching with Latent Co-attention @@ -14088,7 +17972,10 @@ </td><td>('1714536', 'Erik Learned-Miller', 'erik learned-miller')<br/>('1799600', 'Gary Huang', 'gary huang')<br/>('2895705', 'Aruni RoyChowdhury', 'aruni roychowdhury')<br/>('3131569', 'Haoxiang Li', 'haoxiang li')<br/>('1745420', 'Gang Hua', 'gang hua')</td><td></td></tr><tr><td>7d73adcee255469aadc5e926066f71c93f51a1a5</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>1283 <br/>ICASSP 2016 -</td><td></td><td></td></tr><tr><td>7d9fe410f24142d2057695ee1d6015fb1d347d4a</td><td>Facial Expression Feature Extraction Based on +</td><td></td><td></td></tr><tr><td>7df4f96138a4e23492ea96cf921794fc5287ba72</td><td>A Jointly Learned Deep Architecture for Facial Attribute Analysis and Face +<br/>Detection in the Wild +<br/><b>Fudan University</b></td><td>('37391748', 'Keke He', 'keke he')<br/>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')</td><td>{kkhe15, yanweifu, xyxue}@fudan.edu.cn +</td></tr><tr><td>7d9fe410f24142d2057695ee1d6015fb1d347d4a</td><td>Facial Expression Feature Extraction Based on <br/>FastLBP <br/><b>Beijing, China</b><br/><b>Beijing, China</b><br/>facial expression </td><td>('1921151', 'Ya Zheng', 'ya zheng')<br/>('2780963', 'Xiuxin Chen', 'xiuxin chen')<br/>('2671173', 'Chongchong Yu', 'chongchong yu')<br/>('39681852', 'Cheng Gao', 'cheng gao')</td><td>Email: zy_lovedabao@163.com @@ -14099,6 +17986,11 @@ </td></tr><tr><td>7dffe7498c67e9451db2d04bb8408f376ae86992</td><td>LEAR-INRIA submission for the THUMOS workshop <br/>LEAR, INRIA, France </td><td>('40465030', 'Heng Wang', 'heng wang')</td><td>firstname.lastname@inria.fr +</td></tr><tr><td>7df268a3f4da7d747b792882dfb0cbdb7cc431bc</td><td>Semi-supervised Adversarial Learning to Generate +<br/>Photorealistic Face Images of New Identities from 3D +<br/>Morphable Model +<br/><b>Imperial College London, UK</b><br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</b></td><td>('2151914', 'Baris Gecer', 'baris gecer')<br/>('48467774', 'Binod Bhattarai', 'binod bhattarai')<br/>('1748684', 'Josef Kittler', 'josef kittler')<br/>('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')</td><td>{b.gecer,b.bhattarai,tk.kim}@imperial.ac.uk, +<br/>j.kittler@surrey.ac.uk </td></tr><tr><td>7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2</td><td>2106 <br/>Linear Regression for Face Recognition </td><td>('2095953', 'Imran Naseem', 'imran naseem')<br/>('2444665', 'Roberto Togneri', 'roberto togneri')<br/>('1698675', 'Mohammed Bennamoun', 'mohammed bennamoun')</td><td></td></tr><tr><td>7de386bf2a1b2436c836c0cc1f1f23fccb24aad6</td><td>Finding What the Driver Does @@ -14163,6 +18055,9 @@ <br/>and Sparse Representation <br/><b>Institute of control science and engineering</b><br/><b>University of Science and Technology Beijing</b><br/>1,2,330 Xueyuan Road, Haidian District, Beijing 100083 P. R.China </td><td>('11241192', 'Deng Nan', 'deng nan')<br/>('7814565', 'Zhengguang Xu', 'zhengguang xu')</td><td>1dengnan666666@163.com, 2xzg_1@263.net, 3 xiaobian@ustb.edu.cn +</td></tr><tr><td>2902f62457fdf7e8e8ee77a9155474107a2f423e</td><td>Non-rigid 3D Shape Registration using an +<br/>Adaptive Template +<br/><b>University of York, UK</b></td><td>('1694260', 'Hang Dai', 'hang dai')<br/>('1737428', 'Nick Pears', 'nick pears')<br/>('32131827', 'William Smith', 'william smith')</td><td>{hd816,nick.pears,william.smith}@york.ac.uk </td></tr><tr><td>29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea</td><td>Parametric Dictionaries and Feature Augmentation for <br/>Continuous Domain Adaptation∗ <br/>Adobe Research @@ -14237,13 +18132,26 @@ <br/>yanrong@cs.cmu.edu <br/>alex+@cs.cmu.edu </td></tr><tr><td>290136947fd44879d914085ee51d8a4f433765fa</td><td>On a Taxonomy of Facial Features -</td><td>('1817623', 'Brendan Klare', 'brendan klare')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>291f527598c589fb0519f890f1beb2749082ddfd</td><td>Seeing People in Social Context: Recognizing +</td><td>('1817623', 'Brendan Klare', 'brendan klare')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>2957715e96a18dbb5ed5c36b92050ec375214aa6</td><td>Improving Face Attribute Detection with Race and Gender Diversity +<br/>InclusiveFaceNet: +</td><td>('3766392', 'Hee Jung Ryu', 'hee jung ryu')</td><td></td></tr><tr><td>291f527598c589fb0519f890f1beb2749082ddfd</td><td>Seeing People in Social Context: Recognizing <br/>People and Social Relationships <br/><b>University of Illinois at Urbana-Champaign, Urbana, IL</b><br/><b>Kodak Research Laboratories, Rochester, NY</b></td><td>('22804340', 'Gang Wang', 'gang wang')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')</td><td></td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>MS-Celeb-1M: A Dataset and Benchmark for <br/>Large-Scale Face Recognition <br/>Microsoft Research </td><td>('3133575', 'Yandong Guo', 'yandong guo')<br/>('1684635', 'Lei Zhang', 'lei zhang')<br/>('1689532', 'Yuxiao Hu', 'yuxiao hu')<br/>('1722627', 'Xiaodong He', 'xiaodong he')<br/>('1800422', 'Jianfeng Gao', 'jianfeng gao')</td><td>{yandong.guo,leizhang,yuxiao.hu,xiaohe,jfgao}@microsoft.com -</td></tr><tr><td>297d3df0cf84d24f7efea44f87c090c7d9be4bed</td><td>Appearance-based 3-D Face Recognition from +</td></tr><tr><td>29c340c83b3bbef9c43b0c50b4d571d5ed037cbd</td><td>Stacked Dense U-Nets with Dual +<br/>Transformers for Robust Face Alignment +<br/>https://github.com/deepinsight/insightface +<br/>https://jiankangdeng.github.io/ +<br/>https://ibug.doc.ic.ac.uk/people/nxue +<br/>Stefanos Zafeiriou2 +<br/>https://wp.doc.ic.ac.uk/szafeiri/ +<br/>1 InsightFace +<br/>Shanghai, China +<br/>2 IBUG +<br/><b>Imperial College London</b><br/>London, UK +</td><td>('3007274', 'Jia Guo', 'jia guo')<br/>('3234063', 'Jiankang Deng', 'jiankang deng')<br/>('3007274', 'Jia Guo', 'jia guo')<br/>('3234063', 'Jiankang Deng', 'jiankang deng')<br/>('4091869', 'Niannan Xue', 'niannan xue')</td><td></td></tr><tr><td>297d3df0cf84d24f7efea44f87c090c7d9be4bed</td><td>Appearance-based 3-D Face Recognition from <br/>Video <br/><b>University of Maryland, Center for Automation Research</b><br/>A.V. Williams Building <br/><b>College Park, MD</b><br/><b>The Robotics Institute, Carnegie Mellon University</b><br/>5000 Forbes Avenue, Pittsburgh, PA 15213 @@ -14431,6 +18339,14 @@ <br/>Networks <br/>Department of Electronics and Communication Engineering and <br/><b>Computer Vision Group, L. D. College of Engineering, Ahmedabad, India</b></td><td>('23922616', 'Vandit Gajjar', 'vandit gajjar')</td><td> gajjar.vandit.381@ldce.ac.in +</td></tr><tr><td>7c47da191f935811f269f9ba3c59556c48282e80</td><td>Robust Eye Centers Localization +<br/>with Zero–Crossing Encoded Image Projections +<br/>Image Processing and Analysis Laboratory +<br/><b>University Politehnica of Bucharest, Romania, Address Splaiul Independent ei</b><br/>Image Processing and Analysis Laboratory +<br/><b>University Politehnica of Bucharest, Romania, Address Splaiul Independent ei</b><br/>Image Processing and Analysis Laboratory +<br/><b>University Politehnica of Bucharest, Romania, Address Splaiul Independent ei</b></td><td>('2143956', 'Laura Florea', 'laura florea')<br/>('2760434', 'Corneliu Florea', 'corneliu florea')<br/>('2905899', 'Constantin Vertan', 'constantin vertan')</td><td>laura.florea@upb.ro +<br/>corneliu.florea@upb.ro +<br/>constantin.vertan@upb.ro </td></tr><tr><td>7c7ab59a82b766929defd7146fd039b89d67e984</td><td>Improving Multiview Face Detection with <br/>Multi-Task Deep Convolutional Neural Networks <br/>Microsoft Research @@ -14443,11 +18359,35 @@ <br/>Harini Veeraraghavan Stefan Atev Nathaniel Bird Paul Schrater Nikolaos Papanikolopoulos† <br/>Department of Computer Science and Engineering <br/><b>University of Minnesota</b></td><td></td><td>{harini,atev,bird,schrater,npapas}@cs.umn.edu +</td></tr><tr><td>7c1cfab6b60466c13f07fe028e5085a949ec8b30</td><td>Deep Feature Consistent Variational Autoencoder +<br/><b>University of Nottingham, Ningbo China</b><br/><b>Shenzhen University, Shenzhen China</b><br/><b>University of Nottingham, Ningbo China</b><br/><b>University of Nottingham, Ningbo China</b></td><td>('3468964', 'Xianxu Hou', 'xianxu hou')<br/>('1687690', 'Linlin Shen', 'linlin shen')<br/>('39508183', 'Ke Sun', 'ke sun')<br/>('1698461', 'Guoping Qiu', 'guoping qiu')</td><td>xianxu.hou@nottingham.edu.cn +<br/>llshen@szu.edu.cn +<br/>ke.sun@nottingham.edu.cn +<br/>guoping.qiu@nottingham.edu.cn </td></tr><tr><td>7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f</td><td>News image annotation on a large parallel text-image corpus <br/>Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique <br/>Campus de Beaulieu <br/>35042 Rennes Cedex, France </td><td>('1694537', 'Pierre Tirilly', 'pierre tirilly')<br/>('1735666', 'Vincent Claveau', 'vincent claveau')<br/>('2436627', 'Patrick Gros', 'patrick gros')</td><td>ptirilly@irisa.fr, vclaveau@irisa.fr, pgros@inria.fr +</td></tr><tr><td>7c17280c9193da3e347416226b8713b99e7825b8</td><td>VideoCapsuleNet: A Simplified Network for Action +<br/>Detection +<br/>Kevin Duarte +<br/>Yogesh S Rawat +<br/>Center for Research in Computer Vision +<br/><b>University of Central Florida</b><br/>Orlando, FL 32816 +</td><td>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td>kevin_duarte@knights.ucf.edu +<br/>yogesh@crcv.ucf.edu +<br/>shah@crcv.ucf.edu +</td></tr><tr><td>7cffcb4f24343a924a8317d560202ba9ed26cd0b</td><td>The Unconstrained Ear Recognition Challenge +<br/><b>University of Ljubljana</b><br/>Ljubljana, Slovenia +<br/>IIT Kharagpur +<br/>Kharagpur, India +<br/><b>University of Colorado Colorado Springs</b><br/>Colorado Springs, CO, USA +<br/><b>Islamic Azad University</b><br/>Qazvin, Iran +<br/><b>Imperial College London</b><br/>London, UK +<br/>ITU Department of Computer Engineering +<br/>Istanbul, Turkey +</td><td>('34862665', 'Peter Peer', 'peter peer')<br/>('3110004', 'Anjith George', 'anjith george')<br/>('2173052', 'Adil Ahmad', 'adil ahmad')<br/>('39000630', 'Elshibani Omar', 'elshibani omar')<br/>('1760117', 'Terrance E. Boult', 'terrance e. boult')<br/>('3062107', 'Reza Safdari', 'reza safdari')<br/>('47943220', 'Yuxiang Zhou', 'yuxiang zhou')<br/>('23981209', 'Dogucan Yaman', 'dogucan yaman')</td><td>ziga.emersic@fri.uni-lj.si </td></tr><tr><td>7c0a6824b556696ad7bdc6623d742687655852db</td><td>18th Telecommunications forum TELFOR 2010 <br/>Serbia, Belgrade, November 23-25, 2010. <br/>MPCA+DATER: A Novel Approach for Face @@ -14506,6 +18446,34 @@ <br/><b>University of Massachusetts Amherst</b><br/>Amherst, MA <br/>Erik Learned-Miller </td><td>('3219900', 'Gary B. Huang', 'gary b. huang')<br/>('2246870', 'Vidit Jain', 'vidit jain')</td><td>fgbhuang,vidit,elmg@cs.umass.edu +</td></tr><tr><td>7c825562b3ff4683ed049a372cb6807abb09af2a</td><td>Finding Tiny Faces +<br/>Supplementary Materials +<br/><b>Robotics Institute</b><br/><b>Carnegie Mellon University</b><br/>1. Error analysis +<br/>Quantitative analysis We plot the distribution of error modes among false positives in Fig. 1 and the impact of object +<br/>characteristics on detection performance in Fig. 2 and Fig. 3. +<br/>Qualitative analysis We show top 20 scoring false positives in Fig. 4. +<br/>2. Experimental details +<br/>Multi-scale features Inspired by the way [3] trains “FCN-8s at-once”, we scale the learning rate of predictor built on +<br/>top of each layer by a fixed constant. Specifically, we use a scaling factor of 1 for res4, 0.1 for res3, and 0.01 for res2. +<br/>One more difference between our model and [3] is that: instead of predicting at original resolution, our model predicts +<br/>at the resolution of res3 feature (downsampled by 8X comparing to input resolution). +<br/>Input sampling We first randomly re-scale the input image by 0.5X, 1X, or 2X. Then we randomly crop a 500x500 +<br/>image region out of the re-scaled input. We pad with average RGB value (prior to average subtraction) when cropping +<br/>outside image boundary. +<br/>Border cases Similar to [2], we ignore gradients coming from heatmap locations whose detection windows cross the +<br/>image boundary. The only difference is, we treat padded average pixels (as described in Input sampling) as outside +<br/>image boundary as well. +<br/>Online hard mining and balanced sampling We apply hard mining on both positive and negative examples. Our +<br/>implementation is simpler yet still effective comparing to [4]. We set a small threshold (0.03) on classification loss +<br/>to filter out easy locations. Then we sample at most 128 locations for both positive and negative (respectively) from +<br/>remaining ones whose losses are above the threshold. We compare training with and without hard mining on validation +<br/>performance in Table 1. +<br/>Loss function Our loss function is formulated in the same way as [2]. Note that we also use Huber loss as the loss +<br/>function for bounding box regression. +<br/>Bounding box regression Our bounding box regression is formulated as [2] and trained jointly with classification +<br/>using stochastic gradient descent. We compare between testing with and without regression in terms of performance +<br/>on WIDER FACE validation set. +</td><td>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td>{peiyunh,deva}@cs.cmu.edu </td></tr><tr><td>7c7b0550ec41e97fcfc635feffe2e53624471c59</td><td>1051-4651/14 $31.00 © 2014 IEEE <br/>DOI 10.1109/ICPR.2014.124 <br/>660 @@ -14519,6 +18487,11 @@ <br/><b>Intelligence Computing Research Center</b><br/>HIT Shenzhen Graduate School <br/>Shenzhen, China </td><td>('24233679', 'Languang He', 'languang he')<br/>('1747105', 'Xuan Wang', 'xuan wang')<br/>('10106946', 'Chenglong Yu', 'chenglong yu')<br/>('38700402', 'Kun Wu', 'kun wu')</td><td>{telent, wangxuan, ycl, wukun} @cs.hitsz.edu.cn +</td></tr><tr><td>7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d</td><td>Stereo Matching for Unconstrained Face Recognition +<br/>Ph.D. Proposal +<br/><b>University of Maryland</b><br/>Department of Computer Science +<br/><b>College Park, MD</b><br/>May 10, 2009 +</td><td>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')</td><td>carlos@cs.umd.edu </td></tr><tr><td>7c42371bae54050dbbf7ded1e7a9b4109a23a482</td><td>The International Arab Journal of Information Technology, Vol. 12, No. 2, March 2015 183 <br/>Optimized Features Selection using Hybrid PSO- <br/>GA for Multi-View Gender Classification @@ -14535,23 +18508,138 @@ <br/>School of Electrical, Electronic and Computer Engineering <br/><b>University of Newcastle</b><br/>Newcastle upon Tyne, NE1 7RU <br/>UNITED KINDOM -</td><td>('3156162', 'R. M. MUTELO', 'r. m. mutelo')</td><td></td></tr><tr><td>7c1e1c767f7911a390d49bed4f73952df8445936</td><td>NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) +</td><td>('3156162', 'R. M. MUTELO', 'r. m. mutelo')</td><td></td></tr><tr><td>7c9a65f18f7feb473e993077d087d4806578214e</td><td>SpringerLink - Zeitschriftenbeitrag +<br/>http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352... +<br/>Deutsch +<br/>Deutsch +<br/>Go +<br/>Vorherige Beitrag Nächste Beitrag +<br/>Beitrag markieren +<br/>In den Warenkorb legen +<br/>Zu gespeicherten Artikeln +<br/>hinzufügen +<br/>Permissions & Reprints +<br/>Diesen Artikel empfehlen +<br/>Ergebnisse +<br/>finden +<br/>Erweiterte Suche +<br/>Go +<br/>im gesamten Inhalt +<br/>in dieser Zeitschrift +<br/>in diesem Heft +<br/>Diesen Beitrag exportieren +<br/>Diesen Beitrag exportieren als RIS +<br/>| Text +<br/>Text +<br/>PDF +<br/>PDF ist das gebräuchliche Format +<br/>für Online Publikationen. Die Größe +<br/>dieses Dokumentes beträgt 564 +<br/>Kilobyte. Je nach Art Ihrer +<br/>Internetverbindung kann der +<br/>Download einige Zeit in Anspruch +<br/>nehmen. +<br/>öffnen: Gesamtdokument +<br/>Publikationsart Subject Collections +<br/>Zurück zu: Journal Issue +<br/>Athens Authentication Point +<br/>Zeitschriftenbeitrag +<br/>Willkommen! +<br/>Um unsere personalisierten +<br/>Angebote nutzen zu können, +<br/>müssen Sie angemeldet sein. +<br/>Login +<br/>Jetzt registrieren +<br/>Zugangsdaten vergessen? +<br/>Hilfe. +<br/>Mein Menü +<br/>Markierte Beiträge +<br/>Alerts +<br/>Meine Bestellungen +<br/>Private emotions versus social interaction: a data-driven approach towards +<br/>analysing emotion in speech +<br/>Zeitschrift +<br/>Verlag +<br/>ISSN +<br/>Heft +<br/>Kategorie +<br/>DOI +<br/>Seiten +<br/>Subject Collection +<br/>SpringerLink Date +<br/>User Modeling and User-Adapted Interaction +<br/>Springer Netherlands +<br/>0924-1868 (Print) 1573-1391 (Online) +<br/>Volume 18, Numbers 1-2 / Februar 2008 +<br/>Original Paper +<br/>10.1007/s11257-007-9039-4 +<br/>175-206 +<br/>Informatik +<br/>Freitag, 12. Oktober 2007 +<br/>Gespeicherte Beiträge +<br/>Alle +<br/>Favoriten +<br/>(1) Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Martensstr. 3, 91058 Erlangen, +<br/>Germany +<br/>Received: 3 July 2006 Accepted: 14 January 2007 Published online: 12 October 2007 +</td><td>('1745089', 'Anton Batliner', 'anton batliner')<br/>('1732747', 'Stefan Steidl', 'stefan steidl')<br/>('2596771', 'Christian Hacker', 'christian hacker')<br/>('1739326', 'Elmar Nöth', 'elmar nöth')</td><td></td></tr><tr><td>7c1e1c767f7911a390d49bed4f73952df8445936</td><td>NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) <br/>Non-Rigid Object Detection with Local <br/>Interleaved Sequential Alignment (LISA) <br/>and Tom´aˇs Svoboda, Member, IEEE -</td><td>('35274952', 'Karel Zimmermann', 'karel zimmermann')<br/>('2687885', 'David Hurych', 'david hurych')</td><td></td></tr><tr><td>7c349932a3d083466da58ab1674129600b12b81c</td><td></td><td></td><td></td></tr><tr><td>1648cf24c042122af2f429641ba9599a2187d605</td><td>Boosting Cross-Age Face Verification via Generative Age Normalization +</td><td>('35274952', 'Karel Zimmermann', 'karel zimmermann')<br/>('2687885', 'David Hurych', 'david hurych')</td><td></td></tr><tr><td>7cf579088e0456d04b531da385002825ca6314e2</td><td>Emotion Detection on TV Show Transcripts with +<br/>Sequence-based Convolutional Neural Networks +<br/>Mathematics and Computer Science +<br/>Mathematics and Computer Science +<br/><b>Emory University</b><br/>Atlanta, GA 30322, USA +<br/><b>Emory University</b><br/>Atlanta, GA 30322, USA +</td><td>('10669356', 'Sayyed M. Zahiri', 'sayyed m. zahiri')<br/>('4724587', 'Jinho D. Choi', 'jinho d. choi')</td><td>sayyed.zahiri@emory.edu +<br/>jinho.choi@emory.edu +</td></tr><tr><td>7c80d91db5977649487388588c0c823080c9f4b4</td><td>DocFace: Matching ID Document Photos to Selfies∗ +<br/><b>Michigan State University</b><br/>East Lansing, Michigan, USA +</td><td>('9644181', 'Yichun Shi', 'yichun shi')<br/>('1739705', 'Anil K. Jain', 'anil k. jain')</td><td>shiyichu@msu.edu, jain@cse.msu.edu +</td></tr><tr><td>7c349932a3d083466da58ab1674129600b12b81c</td><td></td><td></td><td></td></tr><tr><td>7c30ea47f5ae1c5abd6981d409740544ed16ed16</td><td>ROITBERG, AL-HALAH, STIEFELHAGEN: NOVELTY DETECTION FOR ACTION RECOGNITION +<br/>Informed Democracy: Voting-based Novelty +<br/>Detection for Action Recognition +<br/><b>Karlsruhe Institute of Technology</b><br/>76131 Karlsruhe, +<br/>Germany +</td><td>('33390229', 'Alina Roitberg', 'alina roitberg')<br/>('2256981', 'Ziad Al-Halah', 'ziad al-halah')<br/>('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')</td><td>alina.roitberg@kit.edu +<br/>ziad.al-halah@kit.edu +<br/>rainer.stiefelhagen@kit.edu +</td></tr><tr><td>1648cf24c042122af2f429641ba9599a2187d605</td><td>Boosting Cross-Age Face Verification via Generative Age Normalization <br/>(cid:2) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France <br/>† Eurecom, 450 route des Chappes, 06410 Biot, France </td><td>('3116433', 'Grigory Antipov', 'grigory antipov')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')<br/>('2341854', 'Moez Baccouche', 'moez baccouche')</td><td>{grigory.antipov,moez.baccouche}@orange.com <br/>jean-luc.dugelay@eurecom.fr -</td></tr><tr><td>160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b</td><td>Discriminant Multi-Label Manifold Embedding for Facial Action Unit +</td></tr><tr><td>162403e189d1b8463952fa4f18a291241275c354</td><td>Action Recognition with Spatio-Temporal +<br/>Visual Attention on Skeleton Image Sequences +<br/>With a strong ability of modeling sequential data, Recur- +<br/>rent Neural Networks (RNN) with Long Short-Term Memory +<br/>(LSTM) neurons outperform the previous hand-crafted feature +<br/>based methods [9], [10]. Each skeleton frame is converted into +<br/>a feature vector and the whole sequence is fed into the RNN. +<br/>Despite the strong ability in modeling temporal sequences, +<br/>RNN structures lack the ability to efficiently learn the spatial +<br/>relations between the joints. To better use spatial information, +<br/>a hierarchical structure is proposed in [11], [12] that feeds +<br/>the joints into the network as several pre-defined body part +<br/>groups. However, +<br/>limit +<br/>the effectiveness of representing spatial relations. A spatio- +<br/>temporal 2D LSTM (ST-LSTM) network [13] is proposed +<br/>to learn the spatial and temporal relations simultaneously. +<br/>Furthermore, a two-stream RNN structure [14] is proposed to +<br/>learn the spatio-temporal relations with two RNN branches. +<br/>the pre-defined body regions still +</td><td>('21518096', 'Zhengyuan Yang', 'zhengyuan yang')<br/>('3092578', 'Yuncheng Li', 'yuncheng li')<br/>('1706007', 'Jianchao Yang', 'jianchao yang')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')</td><td></td></tr><tr><td>160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b</td><td>Discriminant Multi-Label Manifold Embedding for Facial Action Unit <br/>Detection <br/>Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland </td><td>('1697965', 'Hua Gao', 'hua gao')<br/>('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')</td><td>anil.yuce@epfl.ch, hua.gao@epfl.ch, jean-philippe.thiran@epfl.ch </td></tr><tr><td>16671b2dc89367ce4ed2a9c241246a0cec9ec10e</td><td>2006 <br/>Detecting the Number of Clusters <br/>in n-Way Probabilistic Clustering -</td><td>('1788526', 'Zhaoshui He', 'zhaoshui he')<br/>('1747156', 'Andrzej Cichocki', 'andrzej cichocki')<br/>('1795838', 'Shengli Xie', 'shengli xie')<br/>('1775180', 'Kyuwan Choi', 'kyuwan choi')</td><td></td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Mutual Component Analysis for Heterogeneous Face Recognition +</td><td>('1788526', 'Zhaoshui He', 'zhaoshui he')<br/>('1747156', 'Andrzej Cichocki', 'andrzej cichocki')<br/>('1795838', 'Shengli Xie', 'shengli xie')<br/>('1775180', 'Kyuwan Choi', 'kyuwan choi')</td><td></td></tr><tr><td>16fdd6d842475e6fbe58fc809beabbed95f0642e</td><td>Learning Temporal Embeddings for Complex Video Analysis +<br/><b>Stanford University, 2Simon Fraser University</b></td><td>('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')<br/>('10771328', 'Greg Mori', 'greg mori')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td>{vigneshr, kdtang}@cs.stanford.edu, mori@cs.sfu.ca, feifeili@cs.stanford.edu +</td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Mutual Component Analysis for Heterogeneous Face Recognition <br/>39 <br/>Heterogeneous face recognition, also known as cross-modality face recognition or inter-modality face recogni- <br/>tion, refers to matching two face images from alternative image modalities. Since face images from different @@ -14585,7 +18673,7 @@ <br/>of Technology Sydney, 81 Broadway, Ultimo, NSW 2007, Australia; e-mail: qiang.li-2@student.uts.edu.au, <br/>dacheng.tao@uts.edu.au; X. Li, the Center for OPTical IMagery Analysis and Learning (OPTIMAL), State <br/>nese Academy of Sciences, Xi’an 710119, Shaanxi, China; e-mail: xuelong li@opt.ac.cn. -</td></tr><tr><td>16892074764386b74b6040fe8d6946b67a246a0b</td><td></td><td></td><td></td></tr><tr><td>16395b40e19cbc6d5b82543039ffff2a06363845</td><td>Action Recognition in Video Using Sparse Coding and Relative Features +</td></tr><tr><td>16de1324459fe8fdcdca80bba04c3c30bb789bdf</td><td></td><td></td><td></td></tr><tr><td>16892074764386b74b6040fe8d6946b67a246a0b</td><td></td><td></td><td></td></tr><tr><td>16395b40e19cbc6d5b82543039ffff2a06363845</td><td>Action Recognition in Video Using Sparse Coding and Relative Features <br/>Anal´ı Alfaro <br/>P. Universidad Catolica de Chile <br/>P. Universidad Catolica de Chile @@ -14599,6 +18687,19 @@ </td></tr><tr><td>1677d29a108a1c0f27a6a630e74856e7bddcb70d</td><td>Efficient Misalignment-Robust Representation <br/>for Real-Time Face Recognition <br/><b>The Hong Kong Polytechnic University, Hong Kong</b></td><td>('5828998', 'Meng Yang', 'meng yang')<br/>('36685537', 'Lei Zhang', 'lei zhang')<br/>('1698371', 'David Zhang', 'david zhang')</td><td>{csmyang,cslzhang}@comp.polyu.edu.hk +</td></tr><tr><td>16b9d258547f1eccdb32111c9f45e2e4bbee79af</td><td>2006 Xiyuan Ave. +<br/>Chengdu, Sichuan 611731 +<br/>2006 Xiyuan Ave. +<br/>Chengdu, Sichuan 611731 +<br/><b>University of Electronic Science and Technology of China</b><br/><b>Johns Hopkins University</b><br/>3400 N. Charles St. +<br/>Baltimore, Maryland 21218 +<br/><b>Johns Hopkins University</b><br/>3400 N. Charles St. +<br/>Baltimore, Maryland 21218 +<br/>NormFace: L2 Hypersphere Embedding for Face Verification +<br/><b>University of Electronic Science and Technology of China</b></td><td>('1709439', 'Jian Cheng', 'jian cheng')<br/>('40031188', 'Xiang Xiang', 'xiang xiang')<br/>('1746141', 'Alan L. Yuille', 'alan l. yuille')<br/>('39369840', 'Feng Wang', 'feng wang')</td><td>feng.w(cid:29)@gmail.com +<br/>chengjian@uestc.edu.cn +<br/>xxiang@cs.jhu.edu +<br/>alan.yuille@jhu.edu </td></tr><tr><td>16c884be18016cc07aec0ef7e914622a1a9fb59d</td><td>UNIVERSITÉ DE GRENOBLE <br/>No attribué par la bibliothèque <br/>THÈSE @@ -14651,6 +18752,10 @@ </td><td>('3075941', 'Fengyi Song', 'fengyi song')<br/>('2248421', 'Xiaoyang Tan', 'xiaoyang tan')<br/>('1680768', 'Songcan Chen', 'songcan chen')</td><td>f.song@nuaa.edu.cn <br/>x.tan@nuaa.edu.cn <br/>s.chen@nuaa.edu.cn +</td></tr><tr><td>164b0e2a03a5a402f66c497e6c327edf20f8827b</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Sparse Deep Transfer Learning for +<br/>Convolutional Neural Network +<br/><b>The Chinese University of Hong Kong, Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China</b></td><td>('2335888', 'Jiaming Liu', 'jiaming liu')<br/>('47903936', 'Yali Wang', 'yali wang')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td>jiaming.liu@email.ucr.edu, {yl.wang, yu.qiao}@siat.ac.cn </td></tr><tr><td>16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb</td><td>J Nonverbal Behav <br/>DOI 10.1007/s10919-008-0059-5 <br/>O R I G I N A L P A P E R @@ -14706,6 +18811,28 @@ <br/>framework. Finally, they analyze the shapes of full facial surfaces. <br/>1249 </td><td>('3282147', 'Xue-Qiao Wang', 'xue-qiao wang')<br/>('2130097', 'Jia-Zheng Yuan', 'jia-zheng yuan')<br/>('1930238', 'Qing Li', 'qing li')</td><td>E-mail: {ldxueqiao; jiazheng; liqing10}@buu.edu.cn +</td></tr><tr><td>166186e551b75c9b5adcc9218f0727b73f5de899</td><td>Volume 4, Issue 2, February 2016 +<br/>International Journal of Advance Research in +<br/>Computer Science and Management Studies +<br/>Research Article / Survey Paper / Case Study +<br/>Available online at: www.ijarcsms.com +<br/>ISSN: 2321-7782 (Online) +<br/>Automatic Age and Gender Recognition in Human Face Image +<br/>Dataset using Convolutional Neural Network System +<br/>Subhani Shaik1 +<br/>Assoc. Prof & Head of the Department +<br/>Department of CSE, +<br/>Associate Professor +<br/>Department of CSE, +<br/>St.Mary’s Group of Institutions Guntur +<br/>St.Mary’s Group of Institutions Guntur +<br/>Chebrolu(V&M),Guntur(Dt), +<br/>Andhra Pradesh - India +<br/>Chebrolu(V&M),Guntur(Dt), +<br/>Andhra Pradesh - India +</td><td>('39885231', 'Anto A. Micheal', 'anto a. micheal')</td><td></td></tr><tr><td>16d6737b50f969247339a6860da2109a8664198a</td><td>Convolutional Neural Networks +<br/>for Age and Gender Classification +<br/><b>Stanford University</b></td><td>('22241470', 'Ari Ekmekji', 'ari ekmekji')</td><td>aekmekji@stanford.edu </td></tr><tr><td>16d9b983796ffcd151bdb8e75fc7eb2e31230809</td><td>EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer <br/>(Guest Editors) <br/>Volume 37 (2018), Number 2 @@ -14807,7 +18934,11 @@ <br/>Department of Computer Science and Engineering <br/><b>Waseda University, Tokyo, Japan</b></td><td>('3114470', 'Edgar Simo-Serra', 'edgar simo-serra')<br/>('1692113', 'Hiroshi Ishikawa', 'hiroshi ishikawa')</td><td>esimo@aoni.waseda.jp <br/>hfs@waseda.jp -</td></tr><tr><td>42e3dac0df30d754c7c7dab9e1bb94990034a90d</td><td>PANDA: Pose Aligned Networks for Deep Attribute Modeling +</td></tr><tr><td>4209783b0cab1f22341f0600eed4512155b1dee6</td><td>Accurate and Efficient Similarity Search for Large Scale Face Recognition +<br/>BUPT +<br/>BUPT +<br/>BUPT +</td><td>('49712251', 'Ce Qi', 'ce qi')<br/>('35963823', 'Zhizhong Liu', 'zhizhong liu')<br/>('1684263', 'Fei Su', 'fei su')</td><td></td></tr><tr><td>42e3dac0df30d754c7c7dab9e1bb94990034a90d</td><td>PANDA: Pose Aligned Networks for Deep Attribute Modeling <br/>2EECS, UC Berkeley <br/>1Facebook AI Research </td><td>('40565777', 'Ning Zhang', 'ning zhang')<br/>('2210374', 'Manohar Paluri', 'manohar paluri')<br/>('1753210', 'Trevor Darrell', 'trevor darrell')</td><td>{mano, ranzato, lubomir}@fb.com @@ -14870,7 +19001,10 @@ <br/>Modeling for Face Reconstruction <br/><b>School of Computer Science, Tianjin University</b><br/><b>School of Computer Science, Tianjin University</b><br/><b>School of Software, Tianjin University</b></td><td>('1919846', 'Weilong Peng', 'weilong peng')<br/>('1683334', 'Zhiyong Feng', 'zhiyong feng')<br/>('29962190', 'Chao Xu', 'chao xu')</td><td>wlpeng@tju.edu.cn <br/>zyfeng@tju.edu.cn -</td></tr><tr><td>42c9394ca1caaa36f535721fa9a64b2c8d4e0dee</td><td>Label Efficient Learning of Transferable +</td></tr><tr><td>42eda7c20db9dc0f42f72bb997dd191ed8499b10</td><td>Gaze Embeddings for Zero-Shot Image Classification +<br/><b>Max Planck Institute for Informatics</b><br/>Saarland Informatics Campus +<br/>2Amsterdam Machine Learning Lab +<br/><b>University of Amsterdam</b></td><td>('7789181', 'Nour Karessli', 'nour karessli')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')</td><td></td></tr><tr><td>42c9394ca1caaa36f535721fa9a64b2c8d4e0dee</td><td>Label Efficient Learning of Transferable <br/>Representations across Domains and Tasks <br/><b>Stanford University</b><br/>Virginia Tech <br/><b>University of California, Berkeley</b></td><td>('3378742', 'Zelun Luo', 'zelun luo')<br/>('8299168', 'Yuliang Zou', 'yuliang zou')<br/>('4742485', 'Judy Hoffman', 'judy hoffman')</td><td>zelunluo@stanford.edu @@ -14887,7 +19021,8 @@ <br/>Computer Science and Artificial Intelligence Laboratory <br/><b>Massachusetts Institute of Technology</b><br/>Cambridge, Massachusetts 02139, USA </td><td>('2852664', 'Dominic Kao', 'dominic kao')<br/>('1709421', 'D. Fox Harrell', 'd. fox harrell')</td><td>{dkao,fox.harrell}@mit.edu -</td></tr><tr><td>42f6f5454dda99d8989f9814989efd50fe807ee8</td><td>Conditional generative adversarial nets for convolutional face generation +</td></tr><tr><td>42ea8a96eea023361721f0ea34264d3d0fc49ebd</td><td>Parameterized Principal Component Analysis +<br/><b>Florida State University, USA</b></td><td>('2109527', 'Ajay Gupta', 'ajay gupta')<br/>('2455529', 'Adrian Barbu', 'adrian barbu')</td><td></td></tr><tr><td>42f6f5454dda99d8989f9814989efd50fe807ee8</td><td>Conditional generative adversarial nets for convolutional face generation <br/>Symbolic Systems Program, Natural Language Processing Group <br/><b>Stanford University</b></td><td>('24339276', 'Jon Gauthier', 'jon gauthier')</td><td>jgauthie@stanford.edu </td></tr><tr><td>429d4848d03d2243cc6a1b03695406a6de1a7abd</td><td>Face Recognition based on Logarithmic Fusion @@ -15054,28 +19189,70 @@ <br/>1Eimad E.A. Abusham, 1Andrew T.B. Jin, 1Wong E. Kiong and 2G. Debashis <br/>1Faculty of Information Science and Technology, <br/><b>Faculty of Engineering and Technology, Multimedia University (Melaka Campus</b><br/>Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia -</td><td></td><td></td></tr><tr><td>89e7d23e0c6a1d636f2da68aaef58efee36b718b</td><td>Lucas-Kanade Scale Invariant Feature Transform for +</td><td></td><td></td></tr><tr><td>89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199</td><td>Application of an Improved Mean Shift Algorithm +<br/>in Real-time Facial Expression Recognition +<br/><b>School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china</b><br/><b>School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008 china</b><br/><b>School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china</b><br/>Yan-hui ZHU +<br/><b>School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china</b><br/>facial +<br/>real-time +<br/>expression +</td><td>('1719090', 'Zhao-yi Peng', 'zhao-yi peng')<br/>('1696179', 'Yu Zhou', 'yu zhou')<br/>('2276926', 'Zhi-qiang Wen', 'zhi-qiang wen')</td><td>Email:pengzhaoyi@163.com +<br/>Email:zypzy@163.com +<br/>Email: swayhzhu@163.com +<br/>Email: zhqwen20001@163.com +</td></tr><tr><td>89e7d23e0c6a1d636f2da68aaef58efee36b718b</td><td>Lucas-Kanade Scale Invariant Feature Transform for <br/>Uncontrolled Viewpoint Face Recognition <br/>1Division of Computer Science and Engineering, <br/>2Center for Advanced Image and Information Technology -<br/><b>Chonbuk National University, Jeonju 561-756, Korea</b></td><td>('2642847', 'Yongbin Gao', 'yongbin gao')<br/>('4292934', 'Hyo Jong Lee', 'hyo jong lee')</td><td></td></tr><tr><td>89f4bcbfeb29966ab969682eae235066a89fc151</td><td>A Comparison of Photometric Normalisation Algorithms for Face Verification +<br/><b>Chonbuk National University, Jeonju 561-756, Korea</b></td><td>('2642847', 'Yongbin Gao', 'yongbin gao')<br/>('4292934', 'Hyo Jong Lee', 'hyo jong lee')</td><td></td></tr><tr><td>893239f17dc2d17183410d8a98b0440d98fa2679</td><td>UvA-DARE (Digital Academic Repository) +<br/>Expression-Invariant Age Estimation +<br/>Published in: +<br/>Proceedings of the British Machine Vision Conference 2014 +<br/>DOI: +<br/>10.5244/C.28.14 +<br/>Link to publication +<br/>Citation for published version (APA): +<br/>French, & T. Pridmore (Eds.), Proceedings of the British Machine Vision Conference 2014 (pp. 14.1-14.11). +<br/>BMVA Press. DOI: 10.5244/C.28.14 +<br/>General rights +<br/>It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +<br/>other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +<br/>Disclaimer/Complaints regulations +<br/>If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +<br/>your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +<br/><b>the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam</b><br/>The Netherlands. You will be contacted as soon as possible. +<br/>Download date: 04 Aug 2017 +<br/><b>UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl</b></td><td>('49776777', 'Alvarez Lopez', 'alvarez lopez')</td><td></td></tr><tr><td>89f4bcbfeb29966ab969682eae235066a89fc151</td><td>A Comparison of Photometric Normalisation Algorithms for Face Verification <br/>Centre for Vision, Speech and Signal Processing <br/><b>University of Surrey</b><br/>Guildford, Surrey, GU2 7XH, UK </td><td>('39213687', 'James Short', 'james short')<br/>('1748684', 'Josef Kittler', 'josef kittler')<br/>('2173900', 'Kieron Messer', 'kieron messer')</td><td>(cid:0)j.short,j.kittler,k.messer(cid:1)@eim.surrey.ac.uk +</td></tr><tr><td>892c911ca68f5b4bad59cde7eeb6c738ec6c4586</td><td>RESEARCH ARTICLE +<br/>The Ryerson Audio-Visual Database of +<br/>Emotional Speech and Song (RAVDESS): A +<br/>dynamic, multimodal set of facial and vocal +<br/>expressions in North American English +<br/><b>Ryerson University, Toronto, Canada</b><br/><b>Information Systems, University of Wisconsin-River Falls, Wisconsin, WI, United States of America</b></td><td>('2940438', 'Frank A. Russo', 'frank a. russo')</td><td>* steven.livingstone@uwrf.edu </td></tr><tr><td>8913a5b7ed91c5f6dec95349fbc6919deee4fc75</td><td>BigBIRD: A Large-Scale 3D Database of Object Instances -</td><td>('37248999', 'Arjun Singh', 'arjun singh')<br/>('1905626', 'James Sha', 'james sha')<br/>('39537097', 'Karthik S. Narayan', 'karthik s. narayan')<br/>('2461427', 'Tudor Achim', 'tudor achim')<br/>('1689992', 'Pieter Abbeel', 'pieter abbeel')</td><td></td></tr><tr><td>89cabb60aa369486a1ebe586dbe09e3557615ef8</td><td>Bayesian Networks as Generative +</td><td>('37248999', 'Arjun Singh', 'arjun singh')<br/>('1905626', 'James Sha', 'james sha')<br/>('39537097', 'Karthik S. Narayan', 'karthik s. narayan')<br/>('2461427', 'Tudor Achim', 'tudor achim')<br/>('1689992', 'Pieter Abbeel', 'pieter abbeel')</td><td></td></tr><tr><td>8986585975c0090e9ad97bec2ba6c4b437419dae</td><td>Unsupervised Hard Example Mining from +<br/>Videos for Improved Object Detection +<br/><b>College of Information and Computer Sciences, University of Massachusetts, Amherst</b><br/>{souyoungjin,arunirc,hzjiang,ashishsingh, +</td><td>('24525313', 'SouYoung Jin', 'souyoung jin')<br/>('2895705', 'Aruni RoyChowdhury', 'aruni roychowdhury')<br/>('40175280', 'Huaizu Jiang', 'huaizu jiang')<br/>('1785936', 'Ashish Singh', 'ashish singh')<br/>('39087749', 'Aditya Prasad', 'aditya prasad')<br/>('32315404', 'Deep Chakraborty', 'deep chakraborty')</td><td>aprasad,dchakraborty,elm}@cs.umass.edu +</td></tr><tr><td>89cabb60aa369486a1ebe586dbe09e3557615ef8</td><td>Bayesian Networks as Generative <br/>Models for Face Recognition <br/><b>IDIAP RESEARCH INSTITUTE</b><br/>´ECOLE POLYTECHNIQUE F´ED´ERALE DE LAUSANNE <br/>supervised by: <br/>Dr. S. Marcel <br/>Prof. H. Bourlard <br/>2009 -</td><td>('16602458', 'Guillaume Heusch', 'guillaume heusch')</td><td></td></tr><tr><td>8983485996d5d9d162e70d66399047c5d01ac451</td><td>Deep Feature-based Face Detection on Mobile Devices +</td><td>('16602458', 'Guillaume Heusch', 'guillaume heusch')</td><td></td></tr><tr><td>89d3a57f663976a9ac5e9cdad01267c1fc1a7e06</td><td>Neural Class-Specific Regression for face +<br/>verification +</td><td>('38813382', 'Guanqun Cao', 'guanqun cao')<br/>('9219875', 'Moncef Gabbouj', 'moncef gabbouj')</td><td></td></tr><tr><td>8983485996d5d9d162e70d66399047c5d01ac451</td><td>Deep Feature-based Face Detection on Mobile Devices <br/><b>Center for Automation Research, University of Maryland, College Park, MD</b><br/><b>Rutgers University, Piscataway, NJ</b></td><td>('40599829', 'Sayantan Sarkar', 'sayantan sarkar')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{ssarkar2, rama}@umiacs.umd.edu <br/>vishal.m.patel@rutgers.edu </td></tr><tr><td>89bc311df99ad0127383a9149d1684dfd8a5aa34</td><td>Towards ontology driven learning of <br/>visual concept detectors -<br/><b>Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA</b></td><td>('3407640', 'Sanchit Arora', 'sanchit arora')<br/>('21781318', 'Chuck Cho', 'chuck cho')<br/>('1810102', 'Paul Fitzpatrick', 'paul fitzpatrick')</td><td></td></tr><tr><td>898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c</td><td>Dynamic vs. Static Recognition of Facial +<br/><b>Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA</b></td><td>('3407640', 'Sanchit Arora', 'sanchit arora')<br/>('21781318', 'Chuck Cho', 'chuck cho')<br/>('1810102', 'Paul Fitzpatrick', 'paul fitzpatrick')</td><td></td></tr><tr><td>8981be3a69cd522b4e57e9914bf19f034d4b530c</td><td>Fast Automatic Video Retrieval using Web Images +<br/><b>Center For Automation Research, University of Maryland, College Park</b></td><td>('2257769', 'Xintong Han', 'xintong han')<br/>('47679939', 'Bharat Singh', 'bharat singh')<br/>('2852035', 'Vlad I. Morariu', 'vlad i. morariu')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td>{xintong,bharat,morariu,lsd}@umiacs.umd.edu +</td></tr><tr><td>898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c</td><td>Dynamic vs. Static Recognition of Facial <br/>Expressions <br/>No Author Given <br/><b>No Institute Given</b></td><td></td><td></td></tr><tr><td>89d7cc9bbcd2fdc4f4434d153ecb83764242227b</td><td>(IJERA) ISSN: 2248-9622 www.ijera.com @@ -15085,7 +19262,16 @@ <br/><b>VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College</b><br/><b>Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai</b><br/>Chennai.) </td><td></td><td></td></tr><tr><td>896f4d87257abd0f628c1ffbbfdac38c86a56f50</td><td>Action and Gesture Temporal Spotting with <br/>Super Vector Representation -<br/><b>Southwest Jiaotong University, Chengdu, China</b><br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS</b></td><td>('1766837', 'Xiaojiang Peng', 'xiaojiang peng')<br/>('33345248', 'Limin Wang', 'limin wang')<br/>('2985266', 'Zhuowei Cai', 'zhuowei cai')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>45c340c8e79077a5340387cfff8ed7615efa20fd</td><td></td><td></td><td></td></tr><tr><td>455204fa201e9936b42756d362f62700597874c4</td><td>A REGION BASED METHODOLOGY FOR FACIAL +<br/><b>Southwest Jiaotong University, Chengdu, China</b><br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Key Lab of CVPR, Shenzhen Institutes of Advanced Technology, CAS</b></td><td>('1766837', 'Xiaojiang Peng', 'xiaojiang peng')<br/>('33345248', 'Limin Wang', 'limin wang')<br/>('2985266', 'Zhuowei Cai', 'zhuowei cai')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>891b10c4b3b92ca30c9b93170ec9abd71f6099c4</td><td>Facial landmark detection using structured output deep +<br/>neural networks +<br/>Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +<br/>1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +<br/>2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +<br/>September 24, 2015 +</td><td>('49529671', 'Adam', 'adam')</td><td></td></tr><tr><td>451b6409565a5ad18ea49b063561a2645fa4281b</td><td>Action Sets: Weakly Supervised Action Segmentation without Ordering +<br/>Constraints +<br/><b>University of Bonn, Germany</b></td><td>('32774629', 'Alexander Richard', 'alexander richard')<br/>('51267303', 'Hilde Kuehne', 'hilde kuehne')<br/>('2946643', 'Juergen Gall', 'juergen gall')</td><td>{richard,kuehne,gall}@iai.uni-bonn.de +</td></tr><tr><td>45c340c8e79077a5340387cfff8ed7615efa20fd</td><td></td><td></td><td></td></tr><tr><td>455204fa201e9936b42756d362f62700597874c4</td><td>A REGION BASED METHODOLOGY FOR FACIAL <br/>EXPRESSION RECOGNITION <br/><b>Medical School, University of Ioannina, Ioannina, Greece</b><br/>Unit of Medical Technology and Intelligent Information Systems, Dept. of Computer Science <br/><b>University of Ioannina, Ioannina, Greece</b><br/>Keywords: @@ -15124,13 +19310,19 @@ <br/># 2006 Psychology Press, an imprint of the Taylor & Francis Group, an informa business <br/>DOI: 10.1080/13576500600832758 </td><td>('1689241', 'Yanxi Liu', 'yanxi liu')</td><td>Pittsburgh, 121 University Place, Pittsburgh PA 15217, USA. E-mail: kschmidt@pitt.edu -</td></tr><tr><td>459960be65dd04317dd325af5b7cbb883d822ee4</td><td>The Meme Quiz: A Facial Expression Game Combining +</td></tr><tr><td>4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec</td><td>Disentangling Features in 3D Face Shapes +<br/>for Joint Face Reconstruction and Recognition∗ +<br/><b>College of Computer Science, Sichuan University</b><br/><b>Michigan State University</b></td><td>('1734409', 'Feng Liu', 'feng liu')<br/>('1778454', 'Ronghang Zhu', 'ronghang zhu')<br/>('39422721', 'Dan Zeng', 'dan zeng')<br/>('7345195', 'Qijun Zhao', 'qijun zhao')<br/>('38284381', 'Xiaoming Liu', 'xiaoming liu')</td><td></td></tr><tr><td>459960be65dd04317dd325af5b7cbb883d822ee4</td><td>The Meme Quiz: A Facial Expression Game Combining <br/>Human Agency and Machine Involvement <br/>Department of Computer Science and Engineering <br/><b>University of Washington</b></td><td>('3059933', 'Kathleen Tuite', 'kathleen tuite')</td><td>{ktuite,kemelmi}@cs.washington.edu </td></tr><tr><td>45f858f9e8d7713f60f52618e54089ba68dfcd6d</td><td>What Actions are Needed for Understanding Human Actions in Videos? <br/><b>Carnegie Mellon University</b><br/>github.com/gsig/actions-for-actions -</td><td>('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')</td><td></td></tr><tr><td>45215e330a4251801877070c85c81f42c2da60fb</td><td>Domain Adaptive Dictionary Learning +</td><td>('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')</td><td></td></tr><tr><td>45e7ddd5248977ba8ec61be111db912a4387d62f</td><td>CHEN ET AL.: ADVERSARIAL POSENET +<br/>Adversarial Learning of Structure-Aware Fully +<br/>Convolutional Networks for Landmark +<br/>Localization +</td><td>('50579509', 'Yu Chen', 'yu chen')<br/>('1780381', 'Chunhua Shen', 'chunhua shen')<br/>('2126047', 'Xiu-Shen Wei', 'xiu-shen wei')<br/>('2161037', 'Lingqiao Liu', 'lingqiao liu')<br/>('49499405', 'Jian Yang', 'jian yang')</td><td></td></tr><tr><td>45215e330a4251801877070c85c81f42c2da60fb</td><td>Domain Adaptive Dictionary Learning <br/><b>Center for Automation Research, UMIACS, University of Maryland, College Park</b><br/><b>Arts Media and Engineering, Arizona State University</b></td><td>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>qiu@cs.umd.edu, {pvishalm, rama}@umiacs.umd.edu, pturaga@asu.edu </td></tr><tr><td>457cf73263d80a1a1338dc750ce9a50313745d1d</td><td>Published as a conference paper at ICLR 2017 <br/>DECOMPOSING MOTION AND CONTENT FOR @@ -15150,7 +19342,12 @@ <br/>{zlei,szli}@nlpr.ia.ac.cn </td></tr><tr><td>45efd6c2dd4ca19eed38ceeb7c2c5568231451e1</td><td>Comparative Analysis of Statistical Approach <br/>for Face Recognition -<br/><b>CMR Institute of Technology, Hyderabad, (India</b></td><td>('39463904', 'M.Janga Reddy', 'm.janga reddy')</td><td></td></tr><tr><td>45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8</td><td></td><td></td><td></td></tr><tr><td>4571626d4d71c0d11928eb99a3c8b10955a74afe</td><td>Geometry Guided Adversarial Facial Expression Synthesis +<br/><b>CMR Institute of Technology, Hyderabad, (India</b></td><td>('39463904', 'M.Janga Reddy', 'm.janga reddy')</td><td></td></tr><tr><td>45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8</td><td></td><td></td><td></td></tr><tr><td>4560491820e0ee49736aea9b81d57c3939a69e12</td><td>Investigating the Impact of Data Volume and +<br/>Domain Similarity on Transfer Learning +<br/>Applications +<br/>State Farm Insurance, Bloomington IL 61710, USA, +</td><td>('30492517', 'Michael Bernico', 'michael bernico')<br/>('50024782', 'Yuntao Li', 'yuntao li')<br/>('41092475', 'Dingchao Zhang', 'dingchao zhang')</td><td>michael.bernico.qepz@statefarm.com +</td></tr><tr><td>4571626d4d71c0d11928eb99a3c8b10955a74afe</td><td>Geometry Guided Adversarial Facial Expression Synthesis <br/>1National Laboratory of Pattern Recognition, CASIA <br/>2Center for Research on Intelligent Perception and Computing, CASIA <br/>3Center for Excellence in Brain Science and Intelligence Technology, CAS @@ -15195,15 +19392,43 @@ <br/>https://webspace.utexas.edu/yl3663/~ylee/ <br/>http://www.cs.utexas.edu/~grauman/ <br/><b>University of Texas at Austin</b><br/>Austin, TX, USA -</td><td>('1883898', 'Yong Jae Lee', 'yong jae lee')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td></td></tr><tr><td>458677de7910a5455283a2be99f776a834449f61</td><td>Face Image Retrieval Using Facial Attributes By +</td><td>('1883898', 'Yong Jae Lee', 'yong jae lee')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td></td></tr><tr><td>45e459462a80af03e1bb51a178648c10c4250925</td><td>LCrowdV: Generating Labeled Videos for +<br/>Simulation-based Crowd Behavior Learning +<br/><b>The University of North Carolina at Chapel Hill</b></td><td>('3422427', 'Ernest Cheung', 'ernest cheung')<br/>('3422442', 'Tsan Kwong Wong', 'tsan kwong wong')<br/>('2718563', 'Aniket Bera', 'aniket bera')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1699159', 'Dinesh Manocha', 'dinesh manocha')</td><td></td></tr><tr><td>458677de7910a5455283a2be99f776a834449f61</td><td>Face Image Retrieval Using Facial Attributes By <br/>K-Means <br/>[1]I.Sudha, [2]V.Saradha, [3]M.Tamilselvi, [4]D.Vennila <br/>[1]AP, Department of CSE ,[2][3][4] B.Tech(CSE) <br/><b>Achariya college of Engineering Technology</b><br/>Puducherry -</td><td></td><td></td></tr><tr><td>1f9b2f70c24a567207752989c5bd4907442a9d0f</td><td>Deep Representations to Model User ‘Likes’ +</td><td></td><td></td></tr><tr><td>45a6333fc701d14aab19f9e2efd59fe7b0e89fec</td><td>HAND POSTURE DATASET CREATION FOR GESTURE +<br/>RECOGNITION +<br/>Luis Anton-Canalis +<br/>Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +<br/>Campus Universitario de Tafira, 35017 Gran Canaria, Spain +<br/>Elena Sanchez-Nielsen +<br/>Departamento de E.I.O. y Computacion +<br/>38271 Universidad de La Laguna, Spain +<br/>Keywords: +<br/>Image understanding, Gesture recognition, Hand dataset. +</td><td></td><td></td></tr><tr><td>450c6a57f19f5aa45626bb08d7d5d6acdb863b4b</td><td>Towards Interpretable Face Recognition +<br/><b>Michigan State University</b><br/>2 Adobe Inc. +<br/>3 Aibee +</td><td>('32032812', 'Bangjie Yin', 'bangjie yin')<br/>('1849929', 'Luan Tran', 'luan tran')<br/>('3131569', 'Haoxiang Li', 'haoxiang li')<br/>('1720987', 'Xiaohui Shen', 'xiaohui shen')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td>{yinbangj, tranluan, liuxm}@msu.edu, xshen@adobe.com, lhxustcer@gmail.com +</td></tr><tr><td>1f9b2f70c24a567207752989c5bd4907442a9d0f</td><td>Deep Representations to Model User ‘Likes’ <br/><b>School of Computer Engineering, Nanyang Technological University, Singapore</b><br/><b>Institute for Infocomm Research, Singapore</b><br/><b>QCIS, University of Technology, Sydney</b></td><td>('2731733', 'Sharath Chandra Guntuku', 'sharath chandra guntuku')<br/>('10638646', 'Joey Tianyi Zhou', 'joey tianyi zhou')<br/>('1872875', 'Sujoy Roy', 'sujoy roy')<br/>('1807998', 'Ivor W. Tsang', 'ivor w. tsang')</td><td>sharathc001@e.ntu.edu.sg, tzhou1@ntu.edu.sg, wslin@ntu.edu.sg <br/>sujoy@i2r.a-star.edu.sg <br/>ivor.tsang@uts.edu.au +</td></tr><tr><td>1fe1bd6b760e3059fff73d53a57ce3a6079adea1</td><td>SINGH ET AL.: SCALING BAG-OF-VISUAL-WORDS GENERATION +<br/>Fast-BoW: Scaling Bag-of-Visual-Words +<br/>Generation +<br/>Visual Learning & Intelligence Group +<br/>Department of Computer Science and +<br/>Engineering +<br/><b>Indian Institute of Technology</b><br/>Hyderabad +<br/>Kandi, Sangareddy, Telangana, India +</td><td>('40624178', 'Dinesh Singh', 'dinesh singh')<br/>('51292354', 'Abhijeet Bhure', 'abhijeet bhure')<br/>('51305895', 'Sumit Mamtani', 'sumit mamtani')<br/>('34358756', 'C. Krishna Mohan', 'c. krishna mohan')</td><td>cs14resch11003@iith.ac.in +<br/>cs15btech11001@iith.ac.in +<br/>cs15btech11022@iith.ac.in +<br/>ckm@iith.ac.in </td></tr><tr><td>1f05473c587e2a3b587f51eb808695a1c10bc153</td><td>Towards Good Practices for Very Deep Two-Stream ConvNets <br/><b>The Chinese University of Hong Kong, Hong Kong</b><br/><b>Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China</b></td><td>('33345248', 'Limin Wang', 'limin wang')<br/>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('1915826', 'Zhe Wang', 'zhe wang')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td>{07wanglimin,bitxiong,buptwangzhe2012}@gmail.com, yu.qiao@siat.ac.cn </td></tr><tr><td>1fa3948af1c338f9ae200038c45adadd2b39a3e4</td><td>Computational Explorations of Split Architecture in Modeling Face and Object @@ -15213,7 +19438,9 @@ </td><td></td><td>Janet Hui-wen Hsiao (jhsiao@cs.ucsd.edu) <br/>Garrison W. Cottrell (gary@ucsd.edu) <br/>Danke Shieh (danke@ucsd.edu) -</td></tr><tr><td>1f8304f4b51033d2671147b33bb4e51b9a1e16fe</td><td>Noname manuscript No. +</td></tr><tr><td>1ffe20eb32dbc4fa85ac7844178937bba97f4bf0</td><td>Face Clustering: Representation and Pairwise +<br/>Constraints +</td><td>('9644181', 'Yichun Shi', 'yichun shi')<br/>('40653304', 'Charles Otto', 'charles otto')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>1f8304f4b51033d2671147b33bb4e51b9a1e16fe</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>Beyond Trees: <br/>MAP Inference in MRFs via Outer-Planar Decomposition @@ -15271,7 +19498,9 @@ </td></tr><tr><td>1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58d</td><td>vExplorer: A Search Method to Find Relevant YouTube Videos for Health <br/>Researchers <br/>IBM Research, Cambridge, MA, USA -</td><td>('1764750', 'Hillol Sarker', 'hillol sarker')<br/>('3456866', 'Murtaza Dhuliawala', 'murtaza dhuliawala')<br/>('31633051', 'Nicholas Fay', 'nicholas fay')<br/>('15793829', 'Amar Das', 'amar das')</td><td></td></tr><tr><td>1f8e44593eb335c2253d0f22f7f9dc1025af8c0d</td><td>Fine-tuning regression forests votes for object alignment in the wild. +</td><td>('1764750', 'Hillol Sarker', 'hillol sarker')<br/>('3456866', 'Murtaza Dhuliawala', 'murtaza dhuliawala')<br/>('31633051', 'Nicholas Fay', 'nicholas fay')<br/>('15793829', 'Amar Das', 'amar das')</td><td></td></tr><tr><td>1fdeba9c4064b449231eac95e610f3288801fd3e</td><td>Fine-Grained Head Pose Estimation Without Keypoints +<br/><b>Georgia Institute of Technology</b></td><td>('31601235', 'Nataniel Ruiz', 'nataniel ruiz')<br/>('39832600', 'Eunji Chong', 'eunji chong')<br/>('1692956', 'James M. Rehg', 'james m. rehg')</td><td>{nataniel.ruiz, eunjichong, rehg}@gatech.edu +</td></tr><tr><td>1f8e44593eb335c2253d0f22f7f9dc1025af8c0d</td><td>Fine-tuning regression forests votes for object alignment in the wild. <br/>Yang, H; Patras, I <br/>© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be <br/><b>obtained for all other uses, in any current or future media, including reprinting/republishing</b><br/>this material for advertising or promotional purposes, creating new collective works, for resale @@ -15304,6 +19533,8 @@ </td><td>('38996894', 'Marie-Lena Eckert', 'marie-lena eckert')<br/>('1862703', 'Neslihan Kose', 'neslihan kose')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')</td><td>1 marie-lena.eckert@mytum.de <br/>2 kose@eurecom.fr <br/>3 jld@eurecom.fr +</td></tr><tr><td>1fff309330f85146134e49e0022ac61ac60506a9</td><td>Data-Driven Sparse Sensor Placement for Reconstruction +</td><td>('37119658', 'Krithika Manohar', 'krithika manohar')<br/>('1824880', 'Bingni W. Brunton', 'bingni w. brunton')<br/>('1937069', 'J. Nathan Kutz', 'j. nathan kutz')<br/>('3083169', 'Steven L. Brunton', 'steven l. brunton')</td><td>∗Corresponding author: kmanohar@uw.edu </td></tr><tr><td>1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c</td><td><b>ARISTOTLE UNIVERSITY OF THESSALONIKI</b><br/>FACULTY OF SCIENCES <br/>DEPARTMENT OF INFORMATICS <br/>POSTGRADUATE STUDIES PROGRAMME @@ -15357,15 +19588,45 @@ <br/>Communicated by Chung-Lin Huang. <br/>1711 </td><td>('2078993', 'Xiaochao Zhao', 'xiaochao zhao')<br/>('2138422', 'Yaping Lin', 'yaping lin')<br/>('2431083', 'Bo Ou', 'bo ou')<br/>('1824216', 'Junfeng Yang', 'junfeng yang')</td><td>E-mail: {s12103017; yplin; oubo; B12100031}@hnu.edu.cn -</td></tr><tr><td>73f467b4358ac1cafb57f58e902c1cab5b15c590</td><td> ISSN 0976 3724 47 +</td></tr><tr><td>1feeab271621128fe864e4c64bab9b2e2d0ed1f1</td><td>Article +<br/>Perception-Link Behavior Model: Supporting +<br/>a Novel Operator Interface for a Customizable +<br/>Anthropomorphic Telepresence Robot +<br/><b>BeingTogether Centre, Institute for Media Innovation, Singapore 637553, Singapore</b><br/><b>Robotic Research Centre, Nanyang Technological University, Singapore 639798, Singapore</b><br/>Received: 15 May 2017; Accepted: 15 July 2017; Published: 20 July 2017 +</td><td>('1768723', 'William Gu', 'william gu')<br/>('9216152', 'Gerald Seet', 'gerald seet')<br/>('1695679', 'Nadia Magnenat-Thalmann', 'nadia magnenat-thalmann')</td><td>mglseet@ntu.edu.sg (G.S.); NADIATHALMANN@ntu.edu.sg (N.M.-T.) +<br/>* Correspondence: GUYU0007@e.ntu.edu.sg +</td></tr><tr><td>73b90573d272887a6d835ace89bfaf717747c59b</td><td>Feature Disentangling Machine - A Novel +<br/>Approach of Feature Selection and Disentangling +<br/>in Facial Expression Analysis +<br/><b>University of South Carolina, USA</b><br/><b>Center for Computational Intelligence, Nanyang Technology University, Singapore</b><br/>3 Center for Quantum Computation and Intelligent Systems, +<br/><b>University of Technology, Australia</b></td><td>('40205868', 'Ping Liu', 'ping liu')<br/>('10638646', 'Joey Tianyi Zhou', 'joey tianyi zhou')<br/>('3091647', 'Zibo Meng', 'zibo meng')<br/>('49107074', 'Shizhong Han', 'shizhong han')<br/>('1686235', 'Yan Tong', 'yan tong')</td><td></td></tr><tr><td>73f467b4358ac1cafb57f58e902c1cab5b15c590</td><td> ISSN 0976 3724 47 <br/>Combination of Dimensionality Reduction Techniques for Face <br/>Image Retrieval: A Review <br/><b>M.Tech Scholar, MES College of Engineering, Kuttippuram</b><br/>Kerala <br/><b>MES College of Engineering, Kuttippuram</b><br/>Kerala </td><td></td><td>fousisadath@gmail.com <br/>Jahfar.ali@gmail.com -</td></tr><tr><td>732e8d8f5717f8802426e1b9debc18a8361c1782</td><td>Unimodal Probability Distributions for Deep Ordinal Classification -</td><td>('12757989', 'Christopher Beckham', 'christopher beckham')</td><td></td></tr><tr><td>739d400cb6fb730b894182b29171faaae79e3f01</td><td>A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image +</td></tr><tr><td>7323b594d3a8508f809e276aa2d224c4e7ec5a80</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>An Experimental Evaluation of Covariates +<br/>Effects on Unconstrained Face Verification +</td><td>('2927406', 'Boyu Lu', 'boyu lu')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>732e8d8f5717f8802426e1b9debc18a8361c1782</td><td>Unimodal Probability Distributions for Deep Ordinal Classification +</td><td>('12757989', 'Christopher Beckham', 'christopher beckham')</td><td></td></tr><tr><td>73ed64803d6f2c49f01cffef8e6be8fc9b5273b8</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Cooking in the kitchen: Recognizing and Segmenting Human +<br/>Activities in Videos +<br/>Received: date / Accepted: date +</td><td>('51267303', 'Hilde Kuehne', 'hilde kuehne')</td><td></td></tr><tr><td>7306d42ca158d40436cc5167e651d7ebfa6b89c1</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Transductive Zero-Shot Action Recognition by +<br/>Word-Vector Embedding +<br/>Received: date / Accepted: date +</td><td>('47158489', 'Xun Xu', 'xun xu')</td><td></td></tr><tr><td>734cdda4a4de2a635404e4c6b61f1b2edb3f501d</td><td>Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 +<br/>http://jivp.eurasipjournals.com/content/2013/1/8 +<br/>R ES EAR CH +<br/>Open Access +<br/>Automatic landmark point detection and tracking +<br/>for human facial expressions +</td><td>('1721867', 'Ling Guan', 'ling guan')</td><td></td></tr><tr><td>739d400cb6fb730b894182b29171faaae79e3f01</td><td>A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image <br/>Feature Extraction <br/>dept. name of organization, name of organization, City, Country <br/><b>School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China</b><br/><b>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China</b></td><td>('2539310', 'ZHONGFENG WANG', 'zhongfeng wang')<br/>('2539310', 'ZHONGFENG WANG', 'zhongfeng wang')<br/>('1718667', 'Zhan WANG', 'zhan wang')</td><td></td></tr><tr><td>732e4016225280b485c557a119ec50cffb8fee98</td><td>Are all training examples equally valuable? @@ -15437,11 +19698,28 @@ </td><td>('1687579', 'Vo Dinh Minh Nhat', 'vo dinh minh nhat')<br/>('1700806', 'Sungyoung Lee', 'sungyoung lee')<br/>('1718666', 'Hee Yong Youn', 'hee yong youn')</td><td>vdmnhat@oslab.khu.ac.kr <br/>sylee@oslab.khu.ac.kr <br/>youn@ece.skku.ac.kr -</td></tr><tr><td>877100f430b72c5d60de199603ab5c65f611ce17</td><td>Within-person variability in men’s facial +</td></tr><tr><td>73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c</td><td></td><td></td><td></td></tr><tr><td>877100f430b72c5d60de199603ab5c65f611ce17</td><td>Within-person variability in men’s facial <br/>width-to-height ratio <br/><b>University of York, York, United Kingdom</b></td><td>('40598264', 'Robin S.S. Kramer', 'robin s.s. kramer')</td><td></td></tr><tr><td>870433ba89d8cab1656e57ac78f1c26f4998edfb</td><td>Regressing Robust and Discriminative 3D Morphable Models <br/>with a very Deep Neural Network -<br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b><br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b></td><td>('1756099', 'Tal Hassner', 'tal hassner')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')</td><td></td></tr><tr><td>8796f2d54afb0e5c924101f54d469a1d54d5775d</td><td>Journal of Signal and Information Processing, 2012, 3, 45-50 +<br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b><br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b></td><td>('1756099', 'Tal Hassner', 'tal hassner')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')</td><td></td></tr><tr><td>872dfdeccf99bbbed7c8f1ea08afb2d713ebe085</td><td>L2-constrained Softmax Loss for Discriminative Face Verification +<br/><b>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</b></td><td>('48467498', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{rranjan1,carlos,rama}@umiacs.umd.edu +</td></tr><tr><td>87e6cb090aecfc6f03a3b00650a5c5f475dfebe1</td><td>KIM, BALTRUŠAITIS et al.: HOLISTICALLY CONSTRAINED LOCAL MODEL +<br/>Holistically Constrained Local Model: +<br/>Going Beyond Frontal Poses for Facial +<br/>Landmark Detection +<br/>Tadas Baltrušaitis2 +<br/>Amir Zadeh2 +<br/>Gérard Medioni1 +<br/><b>Institute for Robotics and Intelligent</b><br/>Systems +<br/><b>University of Southern California</b><br/>Los Angeles, CA, USA +<br/><b>Language Technologies Institute</b><br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA, USA +</td><td>('2792633', 'KangGeon Kim', 'kanggeon kim')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')</td><td>kanggeon.kim@usc.edu +<br/>tbaltrus@cs.cmu.edu +<br/>abagherz@cs.cmu.edu +<br/>morency@cs.cmu.edu +<br/>medioni@usc.edu +</td></tr><tr><td>8796f2d54afb0e5c924101f54d469a1d54d5775d</td><td>Journal of Signal and Information Processing, 2012, 3, 45-50 <br/>http://dx.doi.org/10.4236/jsip.2012.31007 Published Online February 2012 (http://www.SciRP.org/journal/jsip) <br/>45 <br/>Illumination Invariant Face Recognition Using Fuzzy LDA @@ -15463,12 +19741,26 @@ <br/>2 ESAT - PSI / IBBT, K.U. Leuven, Belgium </td><td>('2173683', 'Rasmus Rothe', 'rasmus rothe')<br/>('2113583', 'Marko Ristin', 'marko ristin')<br/>('1727791', 'Matthias Dantone', 'matthias dantone')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>{rrothe,ristin,mdantone,vangool}@vision.ee.ethz.ch <br/>luc.vangool@esat.kuleuven.be +</td></tr><tr><td>8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f</td><td>Ordered Pooling of Optical Flow Sequences for Action Recognition +<br/>1Data61/CSIRO, 2 Australian Center for Robotic Vision +<br/><b>Australian National University, Canberra, Australia</b><br/>Fatih Porikli1,2,3 +</td><td>('48094509', 'Jue Wang', 'jue wang')<br/>('2691929', 'Anoop Cherian', 'anoop cherian')</td><td>jue.wang@anu.edu.au +<br/>anoop.cherian@anu.edu.au +<br/>fatih.porikli@anu.edu.au </td></tr><tr><td>87bee0e68dfc86b714f0107860d600fffdaf7996</td><td>Automated 3D Face Reconstruction from Multiple Images <br/>using Quality Measures <br/><b>Institute for Vision and Graphics, University of Siegen, Germany</b></td><td>('2712313', 'Marcel Piotraschke', 'marcel piotraschke')<br/>('2880906', 'Volker Blanz', 'volker blanz')</td><td>piotraschke@nt.uni-siegen.de, blanz@informatik.uni-siegen.de </td></tr><tr><td>87309bdb2b9d1fb8916303e3866eca6e3452c27d</td><td>Kernel Coding: General Formulation and Special Cases <br/><b>Australian National University, Canberra, ACT 0200, Australia</b><br/>NICTA(cid:63), Locked Bag 8001, Canberra, ACT 2601, Australia -</td><td>('2862871', 'Mathieu Salzmann', 'mathieu salzmann')</td><td></td></tr><tr><td>87147418f863e3d8ff8c97db0b42695a1c28195b</td><td>Attributes for Improved Attributes: A +</td><td>('2862871', 'Mathieu Salzmann', 'mathieu salzmann')</td><td></td></tr><tr><td>878169be6e2c87df2d8a1266e9e37de63b524ae7</td><td>CBMM Memo No. 089 +<br/>May 10, 2018 +<br/>Image interpretation above and below the object level +</td><td>('2507298', 'Guy Ben-Yosef', 'guy ben-yosef')<br/>('1743045', 'Shimon Ullman', 'shimon ullman')</td><td></td></tr><tr><td>878301453e3d5cb1a1f7828002ea00f59cbeab06</td><td>Faceness-Net: Face Detection through +<br/>Deep Facial Part Responses +</td><td>('1692609', 'Shuo Yang', 'shuo yang')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>87e592ee1a7e2d34e6b115da08700a1ae02e9355</td><td>Deep Pictorial Gaze Estimation +<br/>AIT Lab, Department of Computer Science, ETH Zurich +</td><td>('20466488', 'Seonwook Park', 'seonwook park')<br/>('21195502', 'Adrian Spurr', 'adrian spurr')<br/>('2531379', 'Otmar Hilliges', 'otmar hilliges')</td><td>{firstname.lastname}@inf.ethz.ch +</td></tr><tr><td>87147418f863e3d8ff8c97db0b42695a1c28195b</td><td>Attributes for Improved Attributes: A <br/>Multi-Task Network for Attribute Classification <br/><b>University of Maryland, College Park</b></td><td>('3351637', 'Emily M. Hand', 'emily m. hand')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5</td><td>SPATIO-TEMPORAL MAXIMUM AVERAGE CORRELATION <br/>HEIGHT TEMPLATES IN ACTION RECOGNITION AND VIDEO @@ -15482,7 +19774,7 @@ <br/>2010 <br/>Major Professor: Mubarak Shah </td><td>('35188194', 'MIKEL RODRIGUEZ', 'mikel rodriguez')</td><td></td></tr><tr><td>87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd</td><td>Craniofacial Image Analysis -</td><td>('1935115', 'Ezgi Mercan', 'ezgi mercan')<br/>('1771661', 'Indriyati Atmosukarto', 'indriyati atmosukarto')<br/>('10423763', 'Jia Wu', 'jia wu')<br/>('1744684', 'Shu Liang', 'shu liang')<br/>('1809809', 'Linda G. Shapiro', 'linda g. shapiro')</td><td></td></tr><tr><td>80193dd633513c2d756c3f568ffa0ebc1bb5213e</td><td></td><td></td><td></td></tr><tr><td>808b685d09912cbef4a009e74e10476304b4cccf</td><td>From Understanding to Controlling Privacy +</td><td>('1935115', 'Ezgi Mercan', 'ezgi mercan')<br/>('1771661', 'Indriyati Atmosukarto', 'indriyati atmosukarto')<br/>('10423763', 'Jia Wu', 'jia wu')<br/>('1744684', 'Shu Liang', 'shu liang')<br/>('1809809', 'Linda G. Shapiro', 'linda g. shapiro')</td><td></td></tr><tr><td>8006219efb6ab76754616b0e8b7778dcfb46603d</td><td>CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble</td><td></td><td></td></tr><tr><td>80193dd633513c2d756c3f568ffa0ebc1bb5213e</td><td></td><td></td><td></td></tr><tr><td>808b685d09912cbef4a009e74e10476304b4cccf</td><td>From Understanding to Controlling Privacy <br/>against Automatic Person Recognition in Social Media <br/><b>Max Planck Institute for Informatics, Germany</b></td><td>('2390510', 'Seong Joon Oh', 'seong joon oh')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')<br/>('1739548', 'Mario Fritz', 'mario fritz')</td><td>{joon,mfritz,schiele}@mpi-inf.mpg.de </td></tr><tr><td>804b4c1b553d9d7bae70d55bf8767c603c1a09e3</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE @@ -15499,7 +19791,8 @@ <br/>Master of Science <br/>Graduate Program in Computer Engineering <br/><b>Bo gazi ci University</b><br/>2015 -</td><td></td><td></td></tr><tr><td>80277fb3a8a981933533cf478245f262652a33b5</td><td>Synergy-based Learning of Facial Identity +</td><td></td><td></td></tr><tr><td>803c92a3f0815dbf97e30c4ee9450fd005586e1a</td><td>Max-Mahalanobis Linear Discriminant Analysis Networks +</td><td>('19201674', 'Tianyu Pang', 'tianyu pang')</td><td></td></tr><tr><td>80277fb3a8a981933533cf478245f262652a33b5</td><td>Synergy-based Learning of Facial Identity <br/><b>Institute for Computer Graphics and Vision</b><br/><b>Graz University of Technology, Austria</b></td><td>('1791182', 'Peter M. Roth', 'peter m. roth')<br/>('3628150', 'Horst Bischof', 'horst bischof')</td><td>{koestinger,pmroth,bischof}@icg.tugraz.at </td></tr><tr><td>80840df0802399838fe5725cce829e1b417d7a2e</td><td>Fast Approximate L∞ Minimization: Speeding Up Robust Regression <br/><b>School of Computer Science and Technology, Nanjing University of Science and Technology, China</b><br/><b>School of Computer Science, The University of Adelaide, Australia</b></td><td>('2731972', 'Fumin Shen', 'fumin shen')<br/>('1780381', 'Chunhua Shen', 'chunhua shen')<br/>('26065407', 'Rhys Hill', 'rhys hill')<br/>('5546141', 'Anton van den Hengel', 'anton van den hengel')<br/>('3195119', 'Zhenmin Tang', 'zhenmin tang')</td><td></td></tr><tr><td>80c8d143e7f61761f39baec5b6dfb8faeb814be9</td><td>Local Directional Pattern based Fuzzy Co- @@ -15513,7 +19806,11 @@ </td><td>('3234063', 'Jiankang Deng', 'jiankang deng')<br/>('3007274', 'Jia Guo', 'jia guo')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td>j.deng16@imperial.ac.uk <br/>guojia@gmail.com <br/>s.zafeiriou@imperial.ac.uk -</td></tr><tr><td>80a6bb337b8fdc17bffb8038f3b1467d01204375</td><td>Proceedings of the International Conference on Computer and Information Science and Technology +</td></tr><tr><td>80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923</td><td>Research Article +<br/>Soft Biometrics for a Socially Assistive Robotic +<br/>Platform +<br/>Open Access +</td><td>('2104853', 'Pierluigi Carcagnì', 'pierluigi carcagnì')<br/>('2417460', 'Dario Cazzato', 'dario cazzato')<br/>('33097940', 'Marco Del Coco', 'marco del coco')<br/>('35438199', 'Pier Luigi Mazzeo', 'pier luigi mazzeo')<br/>('4730472', 'Marco Leo', 'marco leo')<br/>('1741861', 'Cosimo Distante', 'cosimo distante')</td><td></td></tr><tr><td>80a6bb337b8fdc17bffb8038f3b1467d01204375</td><td>Proceedings of the International Conference on Computer and Information Science and Technology <br/>Ottawa, Ontario, Canada, May 11 – 12, 2015 <br/>Paper No. 126 <br/>Subspace LDA Methods for Solving the Small Sample Size @@ -15525,7 +19822,9 @@ <br/>1 Advanced Digital Sciences Center, Singapore <br/><b>Nanyang Technological University, Singapore</b><br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b><br/><b>University of Illinois at Urbana-Champaign, IL USA</b></td><td>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('39209795', 'Gang Wang', 'gang wang')</td><td></td></tr><tr><td>8000c4f278e9af4d087c0d0895fff7012c5e3d78</td><td>Multi-Task Warped Gaussian Process for Personalized Age Estimation <br/><b>Hong Kong University of Science and Technology</b></td><td>('36233573', 'Yu Zhang', 'yu zhang')</td><td>{zhangyu,dyyeung}@cse.ust.hk -</td></tr><tr><td>80bd795930837330e3ced199f5b9b75398336b87</td><td>Relative Forest for Attribute Prediction +</td></tr><tr><td>80097a879fceff2a9a955bf7613b0d3bfa68dc23</td><td>Active Self-Paced Learning for Cost-Effective and +<br/>Progressive Face Identification +</td><td>('1737218', 'Liang Lin', 'liang lin')<br/>('3170394', 'Keze Wang', 'keze wang')<br/>('1803714', 'Deyu Meng', 'deyu meng')<br/>('1724520', 'Wangmeng Zuo', 'wangmeng zuo')<br/>('36685537', 'Lei Zhang', 'lei zhang')</td><td></td></tr><tr><td>80bd795930837330e3ced199f5b9b75398336b87</td><td>Relative Forest for Attribute Prediction <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences <br/><b>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</b></td><td>('1688086', 'Shaoxin Li', 'shaoxin li')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td>{shaoxin.li, shiguang.shan, xilin.chen}@vipl.ict.ac.cn </td></tr><tr><td>74de03923a069ffc0fb79e492ee447299401001f</td><td>On Film Character Retrieval in Feature-Length Films @@ -15612,9 +19911,37 @@ <br/>features, which is robust to face image variation of <br/>is </td><td>('5828998', 'Meng Yang', 'meng yang')<br/>('36685537', 'Lei Zhang', 'lei zhang')<br/>('40613710', 'Lin Zhang', 'lin zhang')<br/>('1698371', 'David Zhang', 'david zhang')</td><td>E-mail: {csmyang, cslzhang, cslinzhang, csdzhang}@comp.polyu.edu.hk +</td></tr><tr><td>74ce7e5e677a4925489897665c152a352c49d0a2</td><td>SONG ET AL.: SEGMENTATION-GUIDED IMAGE INPAINTING +<br/>SPG-Net: Segmentation Prediction and +<br/>Guidance Network for Image Inpainting +<br/><b>University of Southern California</b><br/>3740 McClintock Ave +<br/>Los Angeles, USA +<br/>2 Baidu Research +<br/>1195 Bordeaux Dr., +<br/>Sunnyvale, USA +</td><td>('3383051', 'Yuhang Song', 'yuhang song')<br/>('1683340', 'Chao Yang', 'chao yang')<br/>('8035191', 'Yeji Shen', 'yeji shen')<br/>('1722767', 'Peng Wang', 'peng wang')<br/>('38592052', 'Qin Huang', 'qin huang')<br/>('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')</td><td>yuhangso@usc.edu +<br/>chaoy@usc.edu +<br/>yejishen@usc.edu +<br/>wangpeng54@baidu.com +<br/>qinhuang@usc.edu +<br/>cckuo@sipi.usc.edu </td></tr><tr><td>74408cfd748ad5553cba8ab64e5f83da14875ae8</td><td>Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation <br/>and Evaluation -</td><td></td><td></td></tr><tr><td>747d5fe667519acea1bee3df5cf94d9d6f874f20</td><td></td><td></td><td></td></tr><tr><td>740e095a65524d569244947f6eea3aefa3cca526</td><td>Towards Human-like Performance Face Detection: A +</td><td></td><td></td></tr><tr><td>747d5fe667519acea1bee3df5cf94d9d6f874f20</td><td></td><td></td><td></td></tr><tr><td>74dbe6e0486e417a108923295c80551b6d759dbe</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 45– No.11, May 2012 +<br/>An HMM based Model for Prediction of Emotional +<br/>Composition of a Facial Expression using both +<br/>Significant and Insignificant Action Units and +<br/>Associated Gender Differences +<br/>Department of Management and Information +<br/>Department of Management and Information +<br/>Systems Science +<br/>1603-1 Kamitomioka, Nagaoka +<br/>Niigata, Japan +<br/>Systems Science +<br/>1603-1 Kamitomioka, Nagaoka +<br/>Niigata, Japan +</td><td>('2931637', 'Suvashis Das', 'suvashis das')<br/>('1808643', 'Koichi Yamada', 'koichi yamada')</td><td></td></tr><tr><td>740e095a65524d569244947f6eea3aefa3cca526</td><td>Towards Human-like Performance Face Detection: A <br/>Convolutional Neural Network Approach <br/><b>University of Twente</b><br/>P.O. Box 217, 7500AE Enschede <br/>The Netherlands @@ -15632,9 +19959,37 @@ <br/>Martial Hebert, Co-Chair <br/>Alexei A. Efros, Co-Chair <br/>Takeo Kanade -<br/><b>Deva Ramanan, University of California at Irvine</b></td><td>('2038685', 'Santosh K. Divvala', 'santosh k. divvala')<br/>('2038685', 'Santosh K. Divvala', 'santosh k. divvala')</td><td></td></tr><tr><td>741485741734a99e933dd0302f457158c6842adf</td><td> A Novel Automatic Facial Expression +<br/><b>Deva Ramanan, University of California at Irvine</b></td><td>('2038685', 'Santosh K. Divvala', 'santosh k. divvala')<br/>('2038685', 'Santosh K. Divvala', 'santosh k. divvala')</td><td></td></tr><tr><td>747c25bff37b96def96dc039cc13f8a7f42dbbc7</td><td>EmoNets: Multimodal deep learning approaches for emotion +<br/>recognition in video +</td><td>('3127597', 'Samira Ebrahimi Kahou', 'samira ebrahimi kahou')<br/>('1748421', 'Vincent Michalski', 'vincent michalski')<br/>('2488222', 'Nicolas Boulanger-Lewandowski', 'nicolas boulanger-lewandowski')<br/>('1923596', 'David Warde-Farley', 'david warde-farley')<br/>('1751762', 'Yoshua Bengio', 'yoshua bengio')</td><td></td></tr><tr><td>741485741734a99e933dd0302f457158c6842adf</td><td> A Novel Automatic Facial Expression <br/>Recognition Method Based on AAM <br/><b>State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China</b></td><td>('1703431', 'Li Wang', 'li wang')<br/>('2677485', 'Ruifeng Li', 'ruifeng li')<br/>('1751643', 'Ke Wang', 'ke wang')</td><td>Email: wangli-hb@163.com, lrf100@ hit.edu.cn, wangke@ hit.edu.cn +</td></tr><tr><td>744fa8062d0ae1a11b79592f0cd3fef133807a03</td><td>Aalborg Universitet +<br/>Deep Pain +<br/>Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal; +<br/>Moeslund, Thomas B.; Xavier Roca, F. +<br/>Published in: +<br/>I E E E Transactions on Cybernetics +<br/>DOI (link to publication from Publisher): +<br/>10.1109/TCYB.2017.2662199 +<br/>Publication date: +<br/>2017 +<br/>Document Version +<br/>Accepted author manuscript, peer reviewed version +<br/><b>Link to publication from Aalborg University</b><br/>Citation for published version (APA): +<br/>Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F. +<br/>(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E +<br/>Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199 +<br/>General rights +<br/>Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +<br/>and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +<br/> ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. +<br/> ? You may not further distribute the material or use it for any profit-making activity or commercial gain +<br/> ? You may freely distribute the URL identifying the publication in the public portal ? +<br/>Take down policy +<br/>the work immediately and investigate your claim. +<br/>Downloaded from vbn.aau.dk on: marts 22, 2018 +<br/> </td><td></td><td>If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to </td></tr><tr><td>743e582c3e70c6ec07094887ce8dae7248b970ad</td><td>International Journal of Signal Processing, Image Processing and Pattern Recognition <br/>Vol.8, No.10 (2015), pp.29-38 <br/>http://dx.doi.org/10.14257/ijsip.2015.8.10.04 @@ -15647,11 +20002,18 @@ <br/>Recognition <br/><b>MIRACL-FSEG, University of Sfax</b><br/>3018 Sfax, Tunisia <br/><b>MIRACL-FS, University of Sfax</b><br/>3018 Sfax, Tunisia -</td><td>('2049116', 'Hazar Mliki', 'hazar mliki')<br/>('1749733', 'Mohamed Hammami', 'mohamed hammami')</td><td></td></tr><tr><td>745b42050a68a294e9300228e09b5748d2d20b81</td><td></td><td></td><td></td></tr><tr><td>749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7</td><td>A Modular Framework to Detect and Analyze Faces for +</td><td>('2049116', 'Hazar Mliki', 'hazar mliki')<br/>('1749733', 'Mohamed Hammami', 'mohamed hammami')</td><td></td></tr><tr><td>745b42050a68a294e9300228e09b5748d2d20b81</td><td></td><td></td><td></td></tr><tr><td>749d605dd12a4af58de1fae6f5ef5e65eb06540e</td><td>Multi-Task Video Captioning with Video and Entailment Generation +<br/>UNC Chapel Hill +</td><td>('10721120', 'Ramakanth Pasunuru', 'ramakanth pasunuru')<br/>('7736730', 'Mohit Bansal', 'mohit bansal')</td><td>{ram, mbansal}@cs.unc.edu +</td></tr><tr><td>749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7</td><td>A Modular Framework to Detect and Analyze Faces for <br/>Audience Measurement Systems <br/><b>Fraunhofer Institute for Integrated Circuits IIS</b><br/>Department Electronic Imaging <br/>Am Wolfsmantel 33, 91058 Erlangen, Germany </td><td>('33046373', 'Andreas Ernst', 'andreas ernst')<br/>('27421829', 'Tobias Ruf', 'tobias ruf')</td><td>{andreas.ernst, tobias.ruf, christian.kueblbeck}@iis.fraunhofer.de +</td></tr><tr><td>74c19438c78a136677a7cb9004c53684a4ae56ff</td><td>RESOUND: Towards Action Recognition +<br/>without Representation Bias +<br/>UC San Diego +</td><td>('48513320', 'Yingwei Li', 'yingwei li')<br/>('47002970', 'Yi Li', 'yi li')<br/>('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')</td><td>{yil325,yil898,nvasconcelos}@ucsd.edu </td></tr><tr><td>74618fb4ce8ce0209db85cc6069fe64b1f268ff4</td><td>Rendering and Animating Expressive <br/>Caricatures <br/>Mukundan @@ -15800,7 +20162,27 @@ <br/>J. Paone, D. Bolme, R. Ferrell, Member, IEEE, D. Aykac, and <br/>T. Karnowski, Member, IEEE <br/>Oak Ridge National Laboratory, Oak Ridge, TN -</td><td></td><td></td></tr><tr><td>1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d</td><td>Online Robust Image Alignment via Iterative Convex Optimization +</td><td></td><td></td></tr><tr><td>1a849b694f2d68c3536ed849ed78c82e979d64d5</td><td>This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling. +<br/>White Rose Research Online URL for this paper: +<br/>http://eprints.whiterose.ac.uk/131760/ +<br/>Version: Accepted Version +<br/>Proceedings Paper: +<br/>Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred +<br/>Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape +<br/>Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic +<br/>Face and Gesture Recognition. IEEE . +<br/>Reuse +<br/>Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless +<br/>indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by +<br/>national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of +<br/>the full text version. This is indicated by the licence information on the White Rose Research Online record +<br/>for the item. +<br/>Takedown +<br/>If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +<br/>https://eprints.whiterose.ac.uk/ +</td><td></td><td>emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. +<br/>eprints@whiterose.ac.uk +</td></tr><tr><td>1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d</td><td>Online Robust Image Alignment via Iterative Convex Optimization <br/>Center for Data Analytics & Biomedical Informatics, Computer & Information Science Department, <br/><b>Temple University, Philadelphia, PA 19122, USA</b><br/><b>School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China</b><br/><b>Purdue University, West Lafayette, IN 47907, USA</b></td><td>('36578908', 'Yi Wu', 'yi wu')<br/>('39274045', 'Bin Shen', 'bin shen')<br/>('1805398', 'Haibin Ling', 'haibin ling')</td><td>fwuyi,hblingg@temple.edu, bshen@purdue.edu </td></tr><tr><td>1a878e4667fe55170252e3f41d38ddf85c87fcaf</td><td>Discriminative Machine Learning with Structure @@ -16123,7 +20505,13 @@ <br/>bgirod@stanford.edu </td></tr><tr><td>28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b</td><td>A New Fuzzy Stacked Generalization Technique <br/>and Analysis of its Performance -</td><td>('2159942', 'Mete Ozay', 'mete ozay')<br/>('7158165', 'Fatos T. Yarman Vural', 'fatos t. yarman vural')</td><td></td></tr><tr><td>28bc378a6b76142df8762cd3f80f737ca2b79208</td><td>Understanding Objects in Detail with Fine-grained Attributes +</td><td>('2159942', 'Mete Ozay', 'mete ozay')<br/>('7158165', 'Fatos T. Yarman Vural', 'fatos t. yarman vural')</td><td></td></tr><tr><td>281486d172cf0c78d348ce7d977a82ff763efccd</td><td>Mining a Deep And-OR Object Semantics from Web Images via Cost-Sensitive +<br/>Question-Answer-Based Active Annotations +<br/><b>Shanghai Jiao Tong University</b><br/><b>University of California, Los Angeles</b><br/><b>cid:107)Chongqing University of Posts and Telecommunications</b></td><td>('22063226', 'Quanshi Zhang', 'quanshi zhang')<br/>('39092098', 'Ying Nian Wu', 'ying nian wu')<br/>('3133970', 'Song-Chun Zhu', 'song-chun zhu')</td><td></td></tr><tr><td>288964068cd87d97a98b8bc927d6e0d2349458a2</td><td>Mean-Variance Loss for Deep Age Estimation from a Face +<br/>1Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +<br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, 100049, China</b><br/>3CAS Center for Excellence in Brain Science and Intelligence Technology +</td><td>('34393045', 'Hu Han', 'hu han')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td>hongyu.pan@vipl.ict.ac.cn, {hanhu,sgshan,xlchen}@ict.ac.cn +</td></tr><tr><td>28bc378a6b76142df8762cd3f80f737ca2b79208</td><td>Understanding Objects in Detail with Fine-grained Attributes <br/>Ross Girshick5 <br/>David Weiss7 </td><td>('1687524', 'Andrea Vedaldi', 'andrea vedaldi')<br/>('2585200', 'Siddharth Mahendran', 'siddharth mahendran')<br/>('2381485', 'Stavros Tsogkas', 'stavros tsogkas')<br/>('35208858', 'Subhransu Maji', 'subhransu maji')<br/>('1776374', 'Juho Kannala', 'juho kannala')<br/>('2827962', 'Esa Rahtu', 'esa rahtu')<br/>('1758219', 'Matthew B. Blaschko', 'matthew b. blaschko')<br/>('1685978', 'Ben Taskar', 'ben taskar')<br/>('2362960', 'Naomi Saphra', 'naomi saphra')<br/>('2920190', 'Sammy Mohamed', 'sammy mohamed')<br/>('2010660', 'Iasonas Kokkinos', 'iasonas kokkinos')<br/>('34838386', 'Karen Simonyan', 'karen simonyan')</td><td></td></tr><tr><td>287900f41dd880802aa57f602e4094a8a9e5ae56</td><td></td><td></td><td></td></tr><tr><td>28c0cb56e7f97046d6f3463378d084e9ea90a89a</td><td>Automatic Face Recognition for Film Character Retrieval in Feature-Length @@ -16409,6 +20797,13 @@ <br/>Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted <br/>use, provided the original author and source are credited. </td><td></td><td>e-mail: q.atkinson@auckland.ac.nz +</td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td></td><td></td><td></td></tr><tr><td>2866cbeb25551257683cf28f33d829932be651fe</td><td>In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP) +<br/>The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026 +<br/>A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS +<br/>ON FACES FROM DIFFERENT DOMAINS +<br/>Erickson R. Nascimento +<br/>Universidade Federal de Minas Gerais (UFMG), Brazil +</td><td>('2749017', 'Bruna Vieira Frade', 'bruna vieira frade')</td><td>{brunafrade, erickson}@dcc.ufmg.br </td></tr><tr><td>28d99dc2d673d62118658f8375b414e5192eac6f</td><td>Using Ranking-CNN for Age Estimation <br/>1Department of Computer Science <br/>2Department of Mathematics @@ -16522,7 +20917,21 @@ </td></tr><tr><td>17cf838720f7892dbe567129dcf3f7a982e0b56e</td><td>Global-Local Face Upsampling Network <br/><b>Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA</b></td><td>('2577513', 'Oncel Tuzel', 'oncel tuzel')<br/>('2066068', 'Yuichi Taguchi', 'yuichi taguchi')<br/>('2387467', 'John R. Hershey', 'john r. hershey')</td><td></td></tr><tr><td>17035089959a14fe644ab1d3b160586c67327db2</td><td></td><td></td><td></td></tr><tr><td>17370f848801871deeed22af152489e39b6e1454</td><td>UNDERSAMPLED FACE RECOGNITION WITH ONE-PASS DICTIONARY LEARNING <br/><b>Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan</b></td><td>('2017922', 'Chia-Po Wei', 'chia-po wei')<br/>('2733735', 'Yu-Chiang Frank Wang', 'yu-chiang frank wang')</td><td>{cpwei, ycwang}@citi.sinica.edu.tw -</td></tr><tr><td>17fa1c2a24ba8f731c8b21f1244463bc4b465681</td><td>Published as a conference paper at ICLR 2016 +</td></tr><tr><td>178a82e3a0541fa75c6a11350be5bded133a59fd</td><td>Techset Composition Ltd, Salisbury +<br/>Doc: +<br/>{IEE}BMT/Articles/Pagination/BMT20140045.3d +<br/>www.ietdl.org +<br/>Received on 15th July 2014 +<br/>Revised on 17th September 2014 +<br/>Accepted on 23rd September 2014 +<br/>doi: 10.1049/iet-bmt.2014.0045 +<br/>ISSN 2047-4938 +<br/>BioHDD: a dataset for studying biometric +<br/>identification on heavily degraded data +<br/><b>IT Instituto de Telecomunica es, University of Beira Interior, Covilh , Portugal</b><br/><b>Remote Sensing Unit Optics, Optometry and Vision Sciences Group, University of Beira Interior</b><br/>Covilhã, Portugal +</td><td>('1712429', 'Hugo Proença', 'hugo proença')</td><td>E-mail: gmelfe@ubi.pt +</td></tr><tr><td>17479e015a2dcf15d40190e06419a135b66da4e0</td><td>Predicting First Impressions with Deep Learning +<br/><b>University of Notre Dame</b><br/><b>Harvard University 3Perceptive Automata, Inc</b></td><td>('7215627', 'Mel McCurrie', 'mel mccurrie')<br/>('51174355', 'Fernando Beletti', 'fernando beletti')<br/>('51176594', 'Lucas Parzianello', 'lucas parzianello')<br/>('51176974', 'Allen Westendorp', 'allen westendorp')<br/>('2613438', 'Walter J. Scheirer', 'walter j. scheirer')</td><td></td></tr><tr><td>17fa1c2a24ba8f731c8b21f1244463bc4b465681</td><td>Published as a conference paper at ICLR 2016 <br/>DEEP MULTI-SCALE VIDEO PREDICTION BEYOND <br/>MEAN SQUARE ERROR <br/><b>New York University</b><br/>2Facebook Artificial Intelligence Research @@ -16542,7 +20951,10 @@ <br/>melih.aslan@wayne.edu <br/>kunlei.zhang@wayne.edu <br/>t-huang1@illinois.edu -</td></tr><tr><td>17aa78bd4331ef490f24bdd4d4cd21d22a18c09c</td><td></td><td></td><td></td></tr><tr><td>170a5f5da9ac9187f1c88f21a88d35db38b4111a</td><td>Online Real-time Multiple Spatiotemporal Action Localisation and Prediction +</td></tr><tr><td>17a995680482183f3463d2e01dd4c113ebb31608</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z +<br/>Structured Label Inference for +<br/>Visual Understanding +</td><td>('3079079', 'Nelson Nauata', 'nelson nauata')<br/>('2804000', 'Hexiang Hu', 'hexiang hu')<br/>('2057809', 'Guang-Tong Zhou', 'guang-tong zhou')<br/>('47640964', 'Zhiwei Deng', 'zhiwei deng')<br/>('2928799', 'Zicheng Liao', 'zicheng liao')<br/>('10771328', 'Greg Mori', 'greg mori')</td><td></td></tr><tr><td>17aa78bd4331ef490f24bdd4d4cd21d22a18c09c</td><td></td><td></td><td></td></tr><tr><td>170a5f5da9ac9187f1c88f21a88d35db38b4111a</td><td>Online Real-time Multiple Spatiotemporal Action Localisation and Prediction <br/>Philip Torr2 <br/><b>Oxford Brookes University</b><br/><b>Oxford University</b><br/>Figure 1: Online spatiotemporal action localisation in a test ‘fencing’ video from UCF-101 [39]. (a) to (c): A 3D volumetric view of <br/>the video showing detection boxes and selected frames. At any given time, a certain portion (%) of the entire video is observed by the @@ -16552,7 +20964,9 @@ <br/>at frame 114, and initiating a new tube (03) at frame 146. </td><td>('1931660', 'Gurkirt Singh', 'gurkirt singh')<br/>('3017538', 'Suman Saha', 'suman saha')<br/>('3019396', 'Michael Sapienza', 'michael sapienza')<br/>('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')</td><td>{gurkirt.singh-2015,suman.saha-2014,fabio.cuzzolin}@brookes.ac.uk <br/>{michael.sapienza,philip.torr}@eng.ox.ac.uk -</td></tr><tr><td>1742ffea0e1051b37f22773613f10f69d2e4ed2c</td><td></td><td></td><td></td></tr><tr><td>1791f790b99471fc48b7e9ec361dc505955ea8b1</td><td></td><td></td><td></td></tr><tr><td>171d8a39b9e3d21231004f7008397d5056ff23af</td><td>Simultaneous Facial Landmark Detection, Pose and Deformation Estimation +</td></tr><tr><td>17c0d99171efc957b88c31a465c59485ab033234</td><td></td><td></td><td></td></tr><tr><td>1742ffea0e1051b37f22773613f10f69d2e4ed2c</td><td></td><td></td><td></td></tr><tr><td>1791f790b99471fc48b7e9ec361dc505955ea8b1</td><td></td><td></td><td></td></tr><tr><td>17a8d1b1b4c23a630b051f35e47663fc04dcf043</td><td>Differential Angular Imaging for Material Recognition +<br/><b>Rutgers University, Piscataway, NJ</b><br/><b>Drexel University, Philadelphia, PA</b></td><td>('48181328', 'Jia Xue', 'jia xue')</td><td>{jia.xue,zhang.hang}@rutgers.edu, kdana@ece.rutgers.edu, kon@drexel.edu +</td></tr><tr><td>171d8a39b9e3d21231004f7008397d5056ff23af</td><td>Simultaneous Facial Landmark Detection, Pose and Deformation Estimation <br/>under Facial Occlusion <br/>ECSE Department <br/><b>Institute of Automation</b><br/>ECSE Department @@ -16592,7 +21006,13 @@ <br/>Department of Electrical and Computer Engineering <br/><b>The University of Tennessee, Knoxville</b><br/>AUTOMATIC FACE REGION TRACKING FOR HIGHLY ACCURATE FACE <br/>RECOGNITION IN UNCONSTRAINED ENVIRONMENTS -</td><td>('2243148', 'Young-Ouk Kim', 'young-ouk kim')<br/>('1684329', 'Joonki Paik', 'joonki paik')<br/>('39533703', 'Jingu Heo', 'jingu heo')</td><td></td></tr><tr><td>174f46eccb5852c1f979d8c386e3805f7942bace</td><td>The Shape-Time Random Field for Semantic Video Labeling +</td><td>('2243148', 'Young-Ouk Kim', 'young-ouk kim')<br/>('1684329', 'Joonki Paik', 'joonki paik')<br/>('39533703', 'Jingu Heo', 'jingu heo')</td><td></td></tr><tr><td>173657da03e3249f4e47457d360ab83b3cefbe63</td><td>HKU-Face: A Large Scale Dataset for +<br/>Deep Face Recognition +<br/>Final Report +<br/>3035140108 +<br/>COMP4801 Final Year Project +<br/>Project Code: 17007 +</td><td>('3347561', 'Haicheng Wang', 'haicheng wang')</td><td></td></tr><tr><td>174f46eccb5852c1f979d8c386e3805f7942bace</td><td>The Shape-Time Random Field for Semantic Video Labeling <br/>School of Computer Science <br/><b>University of Massachusetts, Amherst MA, USA</b></td><td>('2177037', 'Andrew Kae', 'andrew kae')</td><td>{akae,marlin,elm}@cs.umass.edu </td></tr><tr><td>17670b60dcfb5cbf8fdae0b266e18cf995f6014c</td><td>Longitudinal Face Modeling via @@ -16616,7 +21036,15 @@ <br/><b>The Chinese University of Hong Kong</b><br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b></td><td>('1681656', 'Yi Sun', 'yi sun')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>sy011@ie.cuhk.edu.hk <br/>xgwang@ee.cuhk.edu.hk <br/>xtang@ie.cuhk.edu.hk -</td></tr><tr><td>7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889</td><td></td><td></td><td></td></tr><tr><td>7b63ed54345d8c06523f6b03c41a09b5c8f227e2</td><td>Facial Expression Recognition Based on +</td></tr><tr><td>7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889</td><td></td><td></td><td></td></tr><tr><td>7bbaa09c9e318da4370a83b126bcdb214e7f8428</td><td>FaaSter, Better, Cheaper: The Prospect of +<br/>Serverless Scientific Computing and HPC +<br/><b>Zurich University of Applied Sciences, School of Engineering</b><br/>Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland +<br/><b>ISISTAN Research Institute - CONICET - UNICEN</b><br/>Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina +<br/><b>ITIC Research Institute, National University of Cuyo</b><br/>Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina +</td><td>('1765470', 'Josef Spillner', 'josef spillner')<br/>('2891834', 'Cristian Mateos', 'cristian mateos')<br/>('34889755', 'David A. Monge', 'david a. monge')</td><td>josef.spillner@zhaw.ch +<br/>cristian.mateos@isistan.unicen.edu.ar +<br/>dmonge@uncu.edu.ar +</td></tr><tr><td>7b63ed54345d8c06523f6b03c41a09b5c8f227e2</td><td>Facial Expression Recognition Based on <br/>Combination of Spatio-temporal and Spectral <br/>Features in Local Facial Regions <br/>Department of Electrical Engineering, @@ -16649,6 +21077,16 @@ <br/>for Video-Based Facial Expression Recognition <br/><b>VISLab, EBUII-216, University of California Riverside</b><br/>Riverside, California, USA, 92521-0425 </td><td>('1707159', 'Bir Bhanu', 'bir bhanu')<br/>('1803478', 'Songfan Yang', 'songfan yang')</td><td>{acruz, bhanu, syang}@ee.ucr.edu +</td></tr><tr><td>7b0f1fc93fb24630eb598330e13f7b839fb46cce</td><td>Learning to Find Eye Region Landmarks for Remote Gaze +<br/>Estimation in Unconstrained Settings +<br/>ETH Zurich +<br/>MPI for Informatics +<br/>MPI for Informatics +<br/>ETH Zurich +</td><td>('20466488', 'Seonwook Park', 'seonwook park')<br/>('2520795', 'Xucong Zhang', 'xucong zhang')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')<br/>('2531379', 'Otmar Hilliges', 'otmar hilliges')</td><td>spark@inf.ethz.ch +<br/>xczhang@mpi-inf.mpg.de +<br/>bulling@mpi-inf.mpg.de +<br/>otmarh@inf.ethz.ch </td></tr><tr><td>7be60f8c34a16f30735518d240a01972f3530e00</td><td>Facial Expression Recognition with Temporal Modeling of Shapes <br/><b></b><br/><b>The University of Texas at Austin</b></td><td>('18692590', 'Suyog Jain', 'suyog jain')<br/>('1713065', 'Changbo Hu', 'changbo hu')</td><td>suyog@cs.utexas.edu, changbo.hu@gmail.com, aggarwaljk@mail.utexas.edu </td></tr><tr><td>7bdcd85efd1e3ce14b7934ff642b76f017419751</td><td>289 @@ -16677,13 +21115,53 @@ <br/>erikmc@google.com <br/>sycheng@hrl.com <br/>mtrivedi@ucsd.edu -</td></tr><tr><td>8f3e120b030e6c1d035cb7bd9c22f6cc75782025</td><td>Bayesian Networks and the Imprecise Dirichlet +</td></tr><tr><td>8fe38962c24300129391f6d7ac24d7783e0fddd0</td><td><b>Center for Research in Computer Vision, University of Central Florida</b></td><td>('33209161', 'Amir Mazaheri', 'amir mazaheri')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td>amirmazaheri@knights.ucf.edu +<br/>shah@crcv.ucf.edu +</td></tr><tr><td>8f6d05b8f9860c33c7b1a5d704694ed628db66c7</td><td>Non-linear dimensionality reduction and sparse +<br/>representation models for facial analysis +<br/>To cite this version: +<br/>Medical Imaging. INSA de Lyon, 2014. English. <NNT : 2014ISAL0019>. <tel-01127217> +<br/>HAL Id: tel-01127217 +<br/>https://tel.archives-ouvertes.fr/tel-01127217 +<br/>Submitted on 7 Mar 2015 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('35061362', 'Yuyao Zhang', 'yuyao zhang')<br/>('35061362', 'Yuyao Zhang', 'yuyao zhang')</td><td></td></tr><tr><td>8f772d9ce324b2ef5857d6e0b2a420bc93961196</td><td>MAHPOD et al.: CFDRNN +<br/>Facial Landmark Point Localization using +<br/>Coarse-to-Fine Deep Recurrent Neural Network +</td><td>('2748312', 'Shahar Mahpod', 'shahar mahpod')<br/>('3001038', 'Rig Das', 'rig das')<br/>('1767715', 'Emanuele Maiorana', 'emanuele maiorana')<br/>('1926432', 'Yosi Keller', 'yosi keller')<br/>('1682433', 'Patrizio Campisi', 'patrizio campisi')</td><td></td></tr><tr><td>8f3e120b030e6c1d035cb7bd9c22f6cc75782025</td><td>Bayesian Networks and the Imprecise Dirichlet <br/>Model applied to Recognition Problems <br/><b>Dalle Molle Institute for Arti cial Intelligence</b><br/>Galleria 2, Manno-Lugano, Switzerland <br/><b>Rensselaer Polytechnic Institute</b><br/>110 Eighth St., Troy, NY, USA </td><td>('1726583', 'Qiang Ji', 'qiang ji')</td><td>cassio@idsia.ch, jiq@rpi.edu -</td></tr><tr><td>8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483</td><td></td><td></td><td></td></tr><tr><td>8fa3478aaf8e1f94e849d7ffbd12146946badaba</td><td>Attributes for Classifier Feedback -<br/><b>Indraprastha Institute of Information Technology (Delhi, India</b><br/><b>Toyota Technological Institute (Chicago, US</b></td><td>('2076800', 'Amar Parkash', 'amar parkash')<br/>('1713589', 'Devi Parikh', 'devi parikh')</td><td></td></tr><tr><td>8f8c0243816f16a21dea1c20b5c81bc223088594</td><td></td><td></td><td></td></tr><tr><td>8f08b2101d43b1c0829678d6a824f0f045d57da5</td><td>Supplementary Material for: Active Pictorial Structures +</td></tr><tr><td>8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483</td><td></td><td></td><td></td></tr><tr><td>8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a</td><td>Feature Selection with Annealing for Big Data +<br/>Learning +</td><td>('2455529', 'Adrian Barbu', 'adrian barbu')<br/>('34680388', 'Yiyuan She', 'yiyuan she')<br/>('2139735', 'Liangjing Ding', 'liangjing ding')<br/>('3019469', 'Gary Gramajo', 'gary gramajo')</td><td></td></tr><tr><td>8fed5ea3b69ea441a8b02f61473eafee25fb2374</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Two-Dimensional PCA with F-Norm Minimization +<br/><b>State Key Laboratory of ISN, Xidian University</b><br/><b>State Key Laboratory of ISN, Xidian University</b><br/>Xi’an China +<br/>Xi’an China +</td><td>('38469552', 'Quanxue Gao', 'quanxue gao')<br/>('40326660', 'Qianqian Wang', 'qianqian wang')</td><td></td></tr><tr><td>8fa3478aaf8e1f94e849d7ffbd12146946badaba</td><td>Attributes for Classifier Feedback +<br/><b>Indraprastha Institute of Information Technology (Delhi, India</b><br/><b>Toyota Technological Institute (Chicago, US</b></td><td>('2076800', 'Amar Parkash', 'amar parkash')<br/>('1713589', 'Devi Parikh', 'devi parikh')</td><td></td></tr><tr><td>8f3da45ff0c3e1777c3a7830f79c10f5896bcc21</td><td>Situation Recognition with Graph Neural Networks +<br/><b>The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent</b><br/><b>Uber Advanced Technologies Group, 5Vector Institute</b></td><td>('8139953', 'Ruiyu Li', 'ruiyu li')<br/>('2103464', 'Makarand Tapaswi', 'makarand tapaswi')<br/>('2246396', 'Renjie Liao', 'renjie liao')<br/>('1729056', 'Jiaya Jia', 'jiaya jia')<br/>('2422559', 'Raquel Urtasun', 'raquel urtasun')<br/>('37895334', 'Sanja Fidler', 'sanja fidler')</td><td>ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com +</td></tr><tr><td>8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8</td><td>Age Estimation Using Expectation of Label Distribution Learning ∗ +<br/><b>National Key Laboratory for Novel Software Technology, Nanjing University, China</b><br/><b>MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China</b></td><td>('2226422', 'Bin-Bin Gao', 'bin-bin gao')<br/>('7678704', 'Hong-Yu Zhou', 'hong-yu zhou')<br/>('1808816', 'Jianxin Wu', 'jianxin wu')<br/>('1735299', 'Xin Geng', 'xin geng')</td><td>{gaobb,zhouhy,wujx}@lamda.nju.edu.cn, xgeng@seu.edu.cn +</td></tr><tr><td>8f9c37f351a91ed416baa8b6cdb4022b231b9085</td><td>Generative Adversarial Style Transfer Networks for Face Aging +<br/>Sveinn Palsson +<br/>D-ITET, ETH Zurich +<br/>Eirikur Agustsson +<br/>D-ITET, ETH Zurich +</td><td></td><td>spalsson@ethz.ch +<br/>aeirikur@ethz.ch +</td></tr><tr><td>8f8c0243816f16a21dea1c20b5c81bc223088594</td><td></td><td></td><td></td></tr><tr><td>8f08b2101d43b1c0829678d6a824f0f045d57da5</td><td>Supplementary Material for: Active Pictorial Structures <br/><b>Imperial College London</b><br/>180 Queens Gate, SW7 2AZ, London, U.K. <br/>In the following sections, we provide additional material for the paper “Active Pictorial Structures”. Section 1 explains in <br/>more detail the differences between the proposed Active Pictorial Structures (APS) and Pictorial Structures (PS). Section 2 @@ -16809,6 +21287,21 @@ <br/><b>Hankuk University of Foreign Studies, South Korea</b><br/>M. Abdullah-Al-Wadud </td><td>('39036762', 'Mohammad Ibrahim', 'mohammad ibrahim')<br/>('31210416', 'Humayun Kayesh', 'humayun kayesh')<br/>('13193999', 'Shah', 'shah')<br/>('2233124', 'Mohammad Shoyaib', 'mohammad shoyaib')</td><td>ibrahim iit@yahoo.com, iftekhar.efat@gmail.com, hkayesh@gmail.com, khaled@univdhaka.edu, shoyaib@du.ac.bd <br/>wadud@hufs.ac.kr +</td></tr><tr><td>8acdc4be8274e5d189fb67b841c25debf5223840</td><td>Gultepe and Makrehchi +<br/>Hum. Cent. Comput. Inf. Sci. (2018) 8:25 +<br/>https://doi.org/10.1186/s13673-018-0148-3 +<br/>RESEARCH +<br/>Improving clustering performance +<br/>using independent component analysis +<br/>and unsupervised feature learning +<br/>Open Access +<br/>*Correspondence: +<br/>Department of Electrical +<br/>and Computer Engineering, +<br/><b>University of Ontario Institute</b><br/>of Technology, 2000 Simcoe +<br/>St N, Oshawa, ON L1H 7K4, +<br/>Canada +</td><td>('2729102', 'Eren Gultepe', 'eren gultepe')<br/>('3183840', 'Masoud Makrehchi', 'masoud makrehchi')</td><td>eren.gultepe@uoit.net </td></tr><tr><td>8a1ed5e23231e86216c9bdd62419c3b05f1e0b4d</td><td>Facial Keypoint Detection <br/><b>Stanford University</b><br/>March 13, 2016 </td><td>('29909347', 'Shayne Longpre', 'shayne longpre')<br/>('9928926', 'Ajay Sohmshetty', 'ajay sohmshetty')</td><td>slongpre@stanford.edu, ajay14@stanford.edu @@ -16834,18 +21327,37 @@ <br/>émanant des établissements d’enseignement et de <br/>recherche français ou étrangers, des laboratoires <br/>publics ou privés. -</td><td>('34678433', 'Filippo Mazza', 'filippo mazza')<br/>('40130265', 'Matthieu Perreira Da Silva', 'matthieu perreira da silva')<br/>('7591543', 'Patrick Le Callet', 'patrick le callet')<br/>('34678433', 'Filippo Mazza', 'filippo mazza')<br/>('40130265', 'Matthieu Perreira Da Silva', 'matthieu perreira da silva')<br/>('7591543', 'Patrick Le Callet', 'patrick le callet')<br/>('1728396', 'Ingrid Heynderickx', 'ingrid heynderickx')</td><td></td></tr><tr><td>8aae23847e1beb4a6d51881750ce36822ca7ed0b</td><td>Comparison Between Geometry-Based and Gabor-Wavelets-Based +</td><td>('34678433', 'Filippo Mazza', 'filippo mazza')<br/>('40130265', 'Matthieu Perreira Da Silva', 'matthieu perreira da silva')<br/>('7591543', 'Patrick Le Callet', 'patrick le callet')<br/>('34678433', 'Filippo Mazza', 'filippo mazza')<br/>('40130265', 'Matthieu Perreira Da Silva', 'matthieu perreira da silva')<br/>('7591543', 'Patrick Le Callet', 'patrick le callet')<br/>('1728396', 'Ingrid Heynderickx', 'ingrid heynderickx')</td><td></td></tr><tr><td>8a8861ad6caedc3993e31d46e7de6c251a8cda22</td><td>StreetStyle: Exploring world-wide clothing styles from millions of photos +<br/><b>Cornell University</b><br/>Figure 1: Extracting and measuring clothing style from Internet photos at scale. (a) We apply deep learning methods to learn to extract +<br/>fashion attributes from images and create a visual embedding of clothing style. We use this embedding to analyze millions of Instagram photos +<br/>of people sampled worldwide, in order to study spatio-temporal trends in clothing around the globe. (b) Further, using our embedding, we +<br/>can cluster images to produce a global set of representative styles, from which we can (c) use temporal and geo-spatial statistics to generate +<br/>concise visual depictions of what makes clothing unique in each city versus the rest. +</td><td>('40353974', 'Kevin Matzen', 'kevin matzen')<br/>('1791337', 'Kavita Bala', 'kavita bala')<br/>('1830653', 'Noah Snavely', 'noah snavely')</td><td></td></tr><tr><td>8aae23847e1beb4a6d51881750ce36822ca7ed0b</td><td>Comparison Between Geometry-Based and Gabor-Wavelets-Based <br/>Facial Expression Recognition Using Multi-Layer Perceptron <br/><b>ATR Human Information Processing Research Laboratories</b><br/><b>ATR Interpreting Telecommunications Research Laboratories</b><br/>2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan <br/>INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France </td><td>('1809184', 'Zhengyou Zhang', 'zhengyou zhang')<br/>('34801422', 'Shigeru Akamatsu', 'shigeru akamatsu')<br/>('36206997', 'Michael Schuster', 'michael schuster')</td><td>e-mail: zzhang@sophia.inria.fr, zzhang@hip.atr.co.jp +</td></tr><tr><td>8a866bc0d925dfd8bb10769b8b87d7d0ff01774d</td><td>WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art +<br/>National Research Council Canada +</td><td>('2886725', 'Svetlana Kiritchenko', 'svetlana kiritchenko')</td><td>{saif.mohammad,svetlana.kiritchenko}@nrc-cnrc.gc.ca </td></tr><tr><td>8a40b6c75dd6392ee0d3af73cdfc46f59337efa9</td><td></td><td></td><td></td></tr><tr><td>8a3bb63925ac2cdf7f9ecf43f71d65e210416e17</td><td>ShearFace: Efficient Extraction of Anisotropic <br/>Features for Face Recognition <br/>1Research Groups on Intelligent Machines, <br/><b>University of Sfax</b><br/> Sfax 3038, Tunisia <br/>and anisotropic </td><td>('2791150', 'Mohamed Anouar Borgi', 'mohamed anouar borgi')<br/>('8847309', 'Demetrio Labate', 'demetrio labate')</td><td>{anoir.borgi@ieee.org; dlabate@math.uh.edu} -</td></tr><tr><td>8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b</td><td>Predicting the Future with Transformational +</td></tr><tr><td>8a0159919ee4e1a9f4cbfb652a1be212bf0554fd</td><td><b>University of Surrey</b><br/>Faculty of Engineering and Physical Sciences +<br/>Department of Computer Science +<br/>PhD Thesis +<br/>Application of Power Laws to +<br/>Biometrics, Forensics and +<br/>Network Traffic Analysis +<br/>by +<br/>Supervisor: Prof. A.T.S. Ho +<br/>Co-supervisors: Dr. N. Poh, Dr. S. Li +<br/>November, 2016 +</td><td>('2909991', 'Aamo Iorliam', 'aamo iorliam')</td><td></td></tr><tr><td>8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b</td><td>Predicting the Future with Transformational <br/>States <br/><b>University of Pennsylvania, 2Ryerson University</b></td><td>('2689633', 'Andrew Jaegle', 'andrew jaegle')<br/>('40805511', 'Oleh Rybkin', 'oleh rybkin')<br/>('3150825', 'Konstantinos G. Derpanis', 'konstantinos g. derpanis')<br/>('1751586', 'Kostas Daniilidis', 'kostas daniilidis')</td><td>ajaegle@upenn.edu, oleh@cis.upenn.edu, <br/>kosta@scs.ryerson.ca, kostas@cis.upenn.edu @@ -16874,7 +21386,15 @@ <br/>Detecting Visually Observable Disease <br/>Symptoms from Faces <br/>Open Access -</td><td>('2207567', 'Kuan Wang', 'kuan wang')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')</td><td></td></tr><tr><td>7e8016bef2c180238f00eecc6a50eac473f3f138</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +</td><td>('2207567', 'Kuan Wang', 'kuan wang')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')</td><td></td></tr><tr><td>7e600faee0ba11467d3f7aed57258b0db0448a72</td><td></td><td></td><td></td></tr><tr><td>7ed3b79248d92b255450c7becd32b9e5c834a31e</td><td>L1-regularized Logistic Regression Stacking and Transductive CRF Smoothing +<br/>for Action Recognition in Video +<br/><b>University of Florence</b><br/>Lorenzo Seidenari +<br/><b>University of Florence</b><br/>Andrew D. Bagdanov +<br/><b>University of Florence</b><br/><b>University of Florence</b></td><td>('2602265', 'Svebor Karaman', 'svebor karaman')<br/>('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')</td><td>svebor.karaman@unifi.it +<br/>lorenzo.seidenari@unifi.it +<br/>bagdanov@dsi.unifi.it +<br/>alberto.delbimbo@unifi.it +</td></tr><tr><td>7e8016bef2c180238f00eecc6a50eac473f3f138</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN <br/>Lehrstuhl f¨ur Mensch-Maschine-Kommunikation <br/>Immersive Interactive Data Mining and Machine <br/>Learning Algorithms for Big Data Visualization @@ -16927,6 +21447,15 @@ <br/>aFor a comprehensive review of object recognition methods and deformable templates in particular, <br/>see Refs. 1–4. </td><td>('1797883', 'Vasileios Zografos', 'vasileios zografos')<br/>('31557997', 'Bernard F. Buxton', 'bernard f. buxton')</td><td>{v.zografos,b.buxton}@cs.ucl.ac.uk +</td></tr><tr><td>7eaa97be59019f0d36aa7dac27407b004cad5e93</td><td>Sampling Generative Networks +<br/>School of Design +<br/><b>Victoria University of Wellington</b><br/>Wellington, New Zealand +</td><td>('40603980', 'Tom White', 'tom white')</td><td>tom.white@vuw.ac.nz +</td></tr><tr><td>7eb895e7de883d113b75eda54389460c61d63f67</td><td>Can you tell a face from a HEVC bitstream? +<br/><b>School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada</b></td><td>('3393216', 'Saeed Ranjbar Alvar', 'saeed ranjbar alvar')<br/>('3320198', 'Hyomin Choi', 'hyomin choi')</td><td>Email: {saeedr,chyomin, ibajic}@sfu.ca +</td></tr><tr><td>7e467e686f9468b826133275484e0a1ec0f5bde6</td><td>Efficient On-the-fly Category Retrieval +<br/>using ConvNets and GPUs +<br/><b>Visual Geometry Group, University of Oxford</b></td><td>('34838386', 'Karen Simonyan', 'karen simonyan')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>{ken,karen,az}@robots.ox.ac.uk </td></tr><tr><td>7e3367b9b97f291835cfd0385f45c75ff84f4dc5</td><td>Improved Local Binary Pattern Based Action Unit Detection Using <br/>Morphological and Bilateral Filters <br/>1Signal Processing Laboratory (LTS5) @@ -16936,10 +21465,37 @@ <br/>Lausanne, Switzerland </td><td>('2916630', 'Matteo Sorci', 'matteo sorci')<br/>('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')</td><td>{anil.yuce;jean-philippe.thiran}@epfl.ch <br/>matteo.sorci@nviso.ch -</td></tr><tr><td>7e00fb79576fe213853aeea39a6bc51df9fdca16</td><td>Online Multi-Face Detection and Tracking +</td></tr><tr><td>7ef0cc4f3f7566f96f168123bac1e07053a939b2</td><td>Triangular Similarity Metric Learning: a Siamese +<br/>Architecture Approach +<br/>To cite this version: +<br/>puter Science [cs]. UNIVERSITE DE LYON, 2016. English. <NNT : 2016LYSEI045>. <tel- +<br/>01314392> +<br/>HAL Id: tel-01314392 +<br/>https://hal.archives-ouvertes.fr/tel-01314392 +<br/>Submitted on 11 May 2016 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destin´ee au d´epˆot et `a la diffusion de documents +<br/>scientifiques de niveau recherche, publi´es ou non, +<br/>´emanant des ´etablissements d’enseignement et de +<br/>recherche fran¸cais ou ´etrangers, des laboratoires +<br/>publics ou priv´es. +</td><td>('37848497', 'Lilei Zheng', 'lilei zheng')<br/>('37848497', 'Lilei Zheng', 'lilei zheng')</td><td></td></tr><tr><td>7e00fb79576fe213853aeea39a6bc51df9fdca16</td><td>Online Multi-Face Detection and Tracking <br/>using Detector Confidence and Structured SVMs <br/><b>Eindhoven University of Technology, The Netherlands</b><br/>2TNO Embedded Systems Innovation, Eindhoven, The Netherlands </td><td>('3199035', 'Francesco Comaschi', 'francesco comaschi')<br/>('1679431', 'Sander Stuijk', 'sander stuijk')<br/>('1708289', 'Twan Basten', 'twan basten')<br/>('1684335', 'Henk Corporaal', 'henk corporaal')</td><td>{f.comaschi, s.stuijk, a.a.basten, h.corporaal}@tue.nl +</td></tr><tr><td>7e2cfbfd43045fbd6aabd9a45090a5716fc4e179</td><td>Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate +<br/>Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False +<br/>Positive Rate +<br/><b>a School of Computer and Information Technology, Beijing Jiaotong University, Beijing</b><br/>China +<br/><b>b Research Institute, Watchdata Inc., Beijing, China</b><br/>c DeepInSight, China +</td><td>('39326372', 'Sheng Chen', 'sheng chen')<br/>('3007274', 'Jia Guo', 'jia guo')<br/>('1681842', 'Yang Liu', 'yang liu')<br/>('46757550', 'Xiang Gao', 'xiang gao')<br/>('2765914', 'Zhen Han', 'zhen han')</td><td>{shengchen, zhan}@bjtu.edu.cn +<br/>{yang.liu.yj, xiang.gao}@watchdata.com +<br/>guojia@gmail.com </td></tr><tr><td>7ee53d931668fbed1021839db4210a06e4f33190</td><td>What if we do not have multiple videos of the same action? — <br/>Video Action Localization Using Web Images <br/><b>Center for Research in Computer Vision (CRCV), University of Central Florida (UCF</b></td><td>('3195774', 'Waqas Sultani', 'waqas sultani')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td>waqassultani@knights.ucf.edu, shah@crcv.ucf.edu @@ -17023,13 +21579,124 @@ <br/><b>Nanyang Technological University, 2University of California San Diego</b></td><td>('36375772', 'Supriya Sathyanarayana', 'supriya sathyanarayana')<br/>('1710219', 'Ravi Kumar Satzoda', 'ravi kumar satzoda')<br/>('1924458', 'Suchitra Sathyanarayana', 'suchitra sathyanarayana')</td><td>supriya001@e.ntu.edu.sg, rsatzoda@eng.ucsd.edu, ssathyanarayana@ucsd.edu, astsrikan@ntu.edu.sg </td></tr><tr><td>7ed6ff077422f156932fde320e6b3bd66f8ffbcb</td><td>State of 3D Face Biometrics for Homeland Security Applications <br/>Chaudhari4 -</td><td>('2925401', 'Anshuman Razdan', 'anshuman razdan')<br/>('1693971', 'Gerald Farin', 'gerald farin')</td><td></td></tr><tr><td>7e0c75ce731131e613544e1a85ae0f2c28ee4c1f</td><td><b>Imperial College London</b><br/>Department of Computing +</td><td>('2925401', 'Anshuman Razdan', 'anshuman razdan')<br/>('1693971', 'Gerald Farin', 'gerald farin')</td><td></td></tr><tr><td>7ebb153704706e457ab57b432793d2b6e5d12592</td><td>ZHONG, ARANDJELOVI ´C, ZISSERMAN: FACES IN PLACES +<br/>Faces In Places: compound query retrieval +<br/>Relja Arandjelovi´c2 +<br/>1 Visual Geometry Group +<br/>Department of Engineering Science +<br/><b>University of Oxford, UK</b><br/>2 WILLOW project +<br/>Departement d’Informatique de l’École +<br/>Normale Supérieure +<br/>ENS/INRIA/CNRS UMR 8548 +</td><td>('6730372', 'Yujie Zhong', 'yujie zhong')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>yujie@robots.ox.ac.uk +<br/>relja.arandjelovic@inria.fr +<br/>az@robots.ox.ac.uk +</td></tr><tr><td>7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922</td><td>ORIGINAL RESEARCH +<br/>published: 20 June 2018 +<br/>doi: 10.3389/fpsyg.2018.00971 +<br/>Skiing and Thinking About It: +<br/>Moment-to-Moment and +<br/>Retrospective Analysis of Emotions +<br/>in an Extreme Sport +<br/>and Tove Irene Dahl +<br/><b>UiT The Arctic University of Norway, Troms , Norway</b><br/>Happiness is typically reported as an important reason for participating in challenging +<br/>activities like extreme sport. While in the middle of the activity, however, participants +<br/>do not seem particularly happy. So where does the happiness come from? The +<br/>article proposes some answers from a study of facially expressed emotions measured +<br/>moment-by-moment during a backcountry skiing event. Self-reported emotions were +<br/>also assessed immediately after the skiing. Participants expressed lower levels of +<br/>happiness while skiing, compared to when stopping for a break. Moment-to-moment +<br/>and self-reported measures of emotions were largely unrelated. These findings are +<br/>explained with reference to the Functional Wellbeing Approach (Vittersø, 2013), which +<br/>argues that some moment-to-moment feelings are non-evaluative in the sense of being +<br/>generated directly by the difficulty of an activity. By contrast, retrospective emotional +<br/>feelings are more complex as they include an evaluation of the overall goals and values +<br/>associated with the activity as a whole. +<br/>Keywords: emotions, facial expression, moment-to-moment, functional wellbeing approach, extreme sport, +<br/>backcountry skiing +<br/>INTRODUCTION +<br/>We engage in recreational activities in order to feel good. This pursuit is not restricted to +<br/>leisure activities like sunbathing at the beach or enjoying a fine meal with friends and family. +<br/>Mountaineers, BASE jumpers, and other extreme athletes also claim that the importance of their +<br/>favorite activities is the experience of positive feelings (Brymer, 2005; Willig, 2008; Brown and +<br/>Fraser, 2009; Hetland and Vittersø, 2012). But what exactly is it that feels so good about these +<br/>vigorous and exhausting activities, often referred to as extreme sport? To explore this question, +<br/>we developed a new way of measuring emotions in real time during the activity. We equipped +<br/>the participants with a camera that captured their facially expressed emotion while skiing. These +<br/>films were then analyzed with software for automatic coding of facial expressions and compared +<br/>the participants self-reported emotions assessed in retrospect. This approach enabled us to explore +<br/>long standing questions as to how such positive experiences are created. Are they a result of a series +<br/>of online positive feelings? Or is it the impact of a few central features like intensity peaks, rapid +<br/>emotional changes, and happy endings that create them? Is it the experience of flow? Or is it the +<br/>feeling of mastery that kicks in only after the activity has been successfully accomplished? +<br/>Edited by: +<br/>Eric Brymer, +<br/><b>Leeds Beckett University</b><br/>United Kingdom +<br/>Reviewed by: +<br/>Michael Banissy, +<br/><b>Goldsmiths, University of London</b><br/>United Kingdom +<br/>Ralf Christopher Buckley, +<br/><b>Grif th University, Australia</b><br/>*Correspondence: +<br/>Specialty section: +<br/>This article was submitted to +<br/>Movement Science and Sport +<br/>Psychology, +<br/>a section of the journal +<br/>Frontiers in Psychology +<br/>Received: 26 September 2017 +<br/>Accepted: 25 May 2018 +<br/>Published: 20 June 2018 +<br/>Citation: +<br/>Hetland A, Vittersø J, Wie SOB, +<br/>Kjelstrup E, Mittner M and Dahl TI +<br/>(2018) Skiing and Thinking About It: +<br/>Moment-to-Moment +<br/>and Retrospective Analysis +<br/>of Emotions in an Extreme Sport. +<br/>Front. Psychol. 9:971. +<br/>doi: 10.3389/fpsyg.2018.00971 +<br/>Frontiers in Psychology | www.frontiersin.org +<br/>June 2018 | Volume 9 | Article 971 +</td><td>('50814786', 'Audun Hetland', 'audun hetland')<br/>('2956586', 'Joar Vittersø', 'joar vittersø')<br/>('50823709', 'Simen Oscar Bø Wie', 'simen oscar bø wie')<br/>('50829546', 'Eirik Kjelstrup', 'eirik kjelstrup')<br/>('4281140', 'Matthias Mittner', 'matthias mittner')<br/>('50814786', 'Audun Hetland', 'audun hetland')</td><td>audun.hetland@uit.no +</td></tr><tr><td>7e0c75ce731131e613544e1a85ae0f2c28ee4c1f</td><td><b>Imperial College London</b><br/>Department of Computing <br/>Regression-based Estimation of Pain and <br/>Facial Expression Intensity <br/>June, 2015 <br/>Submitted in part fulfilment of the requirements for the degree of PhD in Computing and <br/><b>the Diploma of Imperial College London. This thesis is entirely my own work, and, except</b><br/>where otherwise indicated, describes my own research. -</td><td>('3291812', 'Sebastian Kaltwang', 'sebastian kaltwang')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83</td><td>Extensions of Hierarchical Slow Feature +</td><td>('3291812', 'Sebastian Kaltwang', 'sebastian kaltwang')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>7ef44b7c2b5533d00001ae81f9293bdb592f1146</td><td>No d’ordre : 227-2013 +<br/>Anne 2013 +<br/>THESE DE L’UNIVERSITE DE LYON +<br/>Dlivre par +<br/>L’UNIVERSITE CLAUDE BERNARD - LYON 1 +<br/>Ecole Doctorale Informatique et Mathmatiques +<br/>P H D T H E S I S +<br/>D´etection des ´emotions `a partir de vid´eos dans un +<br/>environnement non contrˆol´e +<br/>Detection of emotions from video in non-controlled environment +<br/>Soutenue publiquement (Public defense) le 14/11/2013 +<br/>Composition du jury (Dissertation committee): +<br/>Rapporteurs +<br/>Mr. Renaud SEGUIER +<br/>Mr. Jean-Claude MARTIN +<br/>Examinateurs +<br/>Mr. Thomas MOESLUND +<br/>Mr. Patrick LAMBERT +<br/>Mr. Samir GARBAYA +<br/>Directeur +<br/>Mme. Saida BOUAKAZ +<br/>Co-encadrant +<br/>Mr. Alexandre MEYER +<br/>Mr. Hubert KONIK +<br/>Professor, Supelec, CNRS UMR 6164, Rennes, France +<br/>Professor, LIMSI-CNRS, Universit´e Paris-Sud, France +<br/>Professor, Department of Architecture, Design and Media Technology, +<br/><b>Aalborg University, Denmark</b><br/>Professor, LISTIC - Polytech Annecy-Chambery, France +<br/>Associate Professor, Le2i, ENSAM, Chalon sur Saone, France +<br/>Professor, LIRIS-CNRS, Universit´e Claude Bernard Lyon 1, France +<br/>Associate Professor, LIRIS, Universit´e Claude Bernard Lyon 1, France +<br/>Associate Professor, LaHC, Universit´e Jean Monnet, Saint-Etienne, France +</td><td>('1943666', 'Rizwan Ahmed Khan', 'rizwan ahmed khan')</td><td></td></tr><tr><td>7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83</td><td>Extensions of Hierarchical Slow Feature <br/>Analysis for Efficient Classification and <br/>Regression on High-Dimensional Data <br/>Dissertation @@ -17070,7 +21737,9 @@ <br/>‡Department of Electrical Engineering <br/><b>California Institute of Technology</b></td><td>('2367820', 'Catherine Wah', 'catherine wah')<br/>('3251767', 'Steve Branson', 'steve branson')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td>{cwah,sbranson,sjb}@cs.ucsd.edu <br/>perona@caltech.edu -</td></tr><tr><td>10ab1b48b2a55ec9e2920a5397febd84906a7769</td><td></td><td></td><td></td></tr><tr><td>10ce3a4724557d47df8f768670bfdd5cd5738f95</td><td>Fihe igh Fie +</td></tr><tr><td>10ab1b48b2a55ec9e2920a5397febd84906a7769</td><td></td><td></td><td></td></tr><tr><td>10af69f11301679b6fbb23855bf10f6af1f3d2e6</td><td>Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition +<br/><b>School of Computer Science, Carnegie Mellon University</b></td><td>('46329993', 'Ming Lin', 'ming lin')<br/>('2314980', 'Xuanchong Li', 'xuanchong li')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')<br/>('1681921', 'Bhiksha Raj', 'bhiksha raj')</td><td>lanzhzh, minglin, xcli, alex, bhiksha@cs.cmu.edu +</td></tr><tr><td>10ce3a4724557d47df8f768670bfdd5cd5738f95</td><td>Fihe igh Fie <br/>Ac e ad <br/>Ra <br/>The Rbic i e Caegie e @@ -17126,7 +21795,13 @@ </td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Affective Multimodal Human-Computer Interaction <br/><b>Faculty of EEMCS, Delft University of Technology, The Netherlands</b><br/><b>Faculty of Science, University of Amsterdam, The Netherlands</b><br/><b>Psychology and Psychiatry, University of Pittsburgh, USA</b><br/><b>Beckman Institute, University of Illinois at Urbana-Champaign, USA</b></td><td>('1694605', 'Maja Pantic', 'maja pantic')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td>mpantic@ieee.org, nicu@science.uva.nl, jeffcohn@pitt.edu, huang@ifp.uiuc.edu </td></tr><tr><td>100641ed8a5472536dde53c1f50fa2dd2d4e9be9</td><td>Visual Attributes for Enhanced Human-Machine Communication* -</td><td>('1713589', 'Devi Parikh', 'devi parikh')</td><td></td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td></td><td></td><td></td></tr><tr><td>10e704c82616fb5d9c48e0e68ee86d4f83789d96</td><td></td><td></td><td></td></tr><tr><td>106732a010b1baf13c61d0994552aee8336f8c85</td><td>Expanded Parts Model for Semantic Description +</td><td>('1713589', 'Devi Parikh', 'devi parikh')</td><td></td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td></td><td></td><td></td></tr><tr><td>10e704c82616fb5d9c48e0e68ee86d4f83789d96</td><td></td><td></td><td></td></tr><tr><td>101569eeef2cecc576578bd6500f1c2dcc0274e2</td><td>Multiaccuracy: Black-Box Post-Processing for Fairness in +<br/>Classification +<br/>James Zou +</td><td>('40102677', 'Michael P. Kim', 'michael p. kim')<br/>('27316199', 'Amirata Ghorbani', 'amirata ghorbani')</td><td>mpk@cs.stanford.edu +<br/>amiratag@stanford.edu +<br/>jamesz@stanford.edu +</td></tr><tr><td>106732a010b1baf13c61d0994552aee8336f8c85</td><td>Expanded Parts Model for Semantic Description <br/>of Humans in Still Images </td><td>('2515597', 'Gaurav Sharma', 'gaurav sharma')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>10e70a34d56258d10f468f8252a7762950830d2b</td><td></td><td></td><td></td></tr><tr><td>102b27922e9bd56667303f986404f0e1243b68ab</td><td>Wang et al. Appl Inform (2017) 4:13 <br/>DOI 10.1186/s40535-017-0042-5 @@ -17148,10 +21823,22 @@ <br/>*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310 <br/>Skudai, Johor, Malaysia. </td><td>('1731121', 'Dzulkifli Mohamad', 'dzulkifli mohamad')<br/>('1921146', 'M. Othman', 'm. othman')</td><td> 1dzul@fsksm.utm.my, faisal@gmm.fsksm.utm.my, razib@fsksm.utm.my -</td></tr><tr><td>108b2581e07c6b7ca235717c749d45a1fa15bb24</td><td>Using Stereo Matching with General Epipolar +</td></tr><tr><td>101d4cfbd6f8a7a10bd33505e2b183183f1d8770</td><td>The 2013 SESAME Multimedia Event Detection and +<br/>Recounting System +<br/>SRI International (SRI) +<br/><b>University of Amsterdam (UvA</b><br/><b>University of Southern California</b><br/>(USC) +<br/>Cees G.M. Snoek +<br/>Remi Trichet +</td><td>('1764443', 'Robert C. Bolles', 'robert c. bolles')<br/>('40560201', 'J. Brian Burns', 'j. brian burns')<br/>('48804780', 'James A. Herson', 'james a. herson')<br/>('31693932', 'Gregory K. Myers', 'gregory k. myers')<br/>('2594026', 'Stephanie Pancoast', 'stephanie pancoast')<br/>('1746492', 'Julien van Hout', 'julien van hout')<br/>('49966591', 'Julie Wong', 'julie wong')<br/>('3000952', 'AmirHossein Habibian', 'amirhossein habibian')<br/>('1769315', 'Dennis C. Koelma', 'dennis c. koelma')<br/>('3245057', 'Zhenyang Li', 'zhenyang li')<br/>('2690389', 'Masoud Mazloom', 'masoud mazloom')<br/>('37806314', 'Silvia-Laura Pintea', 'silvia-laura pintea')<br/>('1964898', 'Sung Chun Lee', 'sung chun lee')<br/>('1858100', 'Pramod Sharma', 'pramod sharma')<br/>('40559421', 'Chen Sun', 'chen sun')</td><td></td></tr><tr><td>108b2581e07c6b7ca235717c749d45a1fa15bb24</td><td>Using Stereo Matching with General Epipolar <br/>Geometry for 2D Face Recognition <br/>across Pose -</td><td>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')<br/>('34734622', 'David W. Jacobs', 'david w. jacobs')</td><td></td></tr><tr><td>10d334a98c1e2a9e96c6c3713aadd42a557abb8b</td><td>Scene Text Recognition using Part-based Tree-structured Character Detection +</td><td>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')<br/>('34734622', 'David W. Jacobs', 'david w. jacobs')</td><td></td></tr><tr><td>106092fafb53e36077eba88f06feecd07b9e78e7</td><td>Attend and Interact: Higher-Order Object Interactions for Video Understanding +<br/><b>Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institute</b></td><td>('7437104', 'Chih-Yao Ma', 'chih-yao ma')<br/>('2293919', 'Asim Kadav', 'asim kadav')<br/>('50162780', 'Iain Melvin', 'iain melvin')<br/>('1746245', 'Zsolt Kira', 'zsolt kira')<br/>('1775043', 'Hans Peter Graf', 'hans peter graf')</td><td></td></tr><tr><td>103c8eaca2a2176babab2cc6e9b25d48870d6928</td><td>FINDING RELEVANT SEMANTIC CONTENT FOR GROUNDED LANGUAGE LEARNING +<br/>PANNING FOR GOLD: +<br/><b>The University of Texas at Austin</b><br/>Department of Computer Science +<br/>Austin, TX 78712, USA +</td><td>('47514115', 'David L. Chen', 'david l. chen')<br/>('1797655', 'Raymond J. Mooney', 'raymond j. mooney')</td><td>dlcc@cs.utexas.edu and mooney@cs.utexas.edu +</td></tr><tr><td>10d334a98c1e2a9e96c6c3713aadd42a557abb8b</td><td>Scene Text Recognition using Part-based Tree-structured Character Detection <br/>State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China </td><td>('1959339', 'Cunzhao Shi', 'cunzhao shi')<br/>('1683416', 'Chunheng Wang', 'chunheng wang')<br/>('2658590', 'Baihua Xiao', 'baihua xiao')<br/>('1698138', 'Yang Zhang', 'yang zhang')<br/>('39001252', 'Song Gao', 'song gao')<br/>('34539206', 'Zhong Zhang', 'zhong zhang')</td><td>{cunzhao.shi,chunheng.wang,baihua.xiao,yang.zhang,song.gao,zhong.zhang}@ia.ac.cn </td></tr><tr><td>10f66f6550d74b817a3fdcef7fdeba13ccdba51c</td><td>Benchmarking Face Alignment @@ -17286,6 +21973,12 @@ </td><td>('1764724', 'Guoxu Zhou', 'guoxu zhou')<br/>('1747156', 'Andrzej Cichocki', 'andrzej cichocki')<br/>('38741479', 'Yu Zhang', 'yu zhang')</td><td></td></tr><tr><td>198b6beb53e0e61357825d57938719f614685f75</td><td>Vaulted Verification: A Scheme for Revocable Face <br/>Recognition <br/><b>University of Colorado, Colorado Springs</b></td><td>('3035230', 'Michael Wilber', 'michael wilber')</td><td>mwilber@uccs.edu +</td></tr><tr><td>1921795408345751791b44b379f51b7dd54ebfa2</td><td>From Face Recognition to Models of Identity: +<br/>A Bayesian Approach to Learning about +<br/>Unknown Identities from Unsupervised Data +<br/><b>Imperial College London, UK</b><br/>2 Microsoft Research, Cambridge, UK +</td><td>('2388416', 'Sebastian Nowozin', 'sebastian nowozin')</td><td>dc315@imperial.ac.uk +<br/>Sebastian.Nowozin@microsoft.com </td></tr><tr><td>190b3caa2e1a229aa68fd6b1a360afba6f50fde4</td><td></td><td></td><td></td></tr><tr><td>19e0cc41b9f89492b6b8c2a8a58d01b8242ce00b</td><td>W. ZHANG ET AL.: IMPROVING HFR WITH CGAN <br/>Improving Heterogeneous Face Recognition <br/>with Conditional Adversarial Networks @@ -17369,9 +22062,21 @@ </td><td>('3302320', 'Florian Schroff', 'florian schroff')<br/>('2741985', 'Dmitry Kalenichenko', 'dmitry kalenichenko')<br/>('2276542', 'James Philbin', 'james philbin')</td><td>fschroff@google.com <br/>dkalenichenko@google.com <br/>jphilbin@google.com -</td></tr><tr><td>19a9f658ea14701502d169dc086651b1d9b2a8ea</td><td>Structural Models for Face Detection +</td></tr><tr><td>1910f5f7ac81d4fcc30284e88dee3537887acdf3</td><td> Volume 6, Issue 5, May 2016 ISSN: 2277 128X +<br/>International Journal of Advanced Research in +<br/> Computer Science and Software Engineering +<br/> Research Paper +<br/> Available online at: www.ijarcsse.com +<br/>Semantic Based Hypergraph Reranking Model for Web +<br/>Image Search +<br/>1, 2, 3, 4 B. E. Dept of CSE, 5 Asst. Prof. Dept of CSE +<br/><b>Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India</b></td><td></td><td></td></tr><tr><td>19a9f658ea14701502d169dc086651b1d9b2a8ea</td><td>Structural Models for Face Detection <br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition <br/><b>Institute of Automation, Chinese Academy of Sciences, China</b></td><td>('1721677', 'Junjie Yan', 'junjie yan')<br/>('2520795', 'Xucong Zhang', 'xucong zhang')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('1716143', 'Dong Yi', 'dong yi')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{jjyan,xczhang,zlei,dyi,szli}@nlpr.ia.ac.cn +</td></tr><tr><td>197c64c36e8a9d624a05ee98b740d87f94b4040c</td><td>Regularized Greedy Column Subset Selection +<br/>aDepartment of Computer Systems, Universidad Polit´ecnica de Madrid +<br/>bDepartment of Applied Mathematics, Universidad Polit´ecnica de Madrid +</td><td>('1858768', 'Alberto Mozo', 'alberto mozo')</td><td>*bruno.ordozgoiti@upm.es </td></tr><tr><td>19d4855f064f0d53cb851e9342025bd8503922e2</td><td>Learning SURF Cascade for Fast and Accurate Object Detection <br/>Intel Labs China </td><td>('35423937', 'Jianguo Li', 'jianguo li')<br/>('2470865', 'Yimin Zhang', 'yimin zhang')</td><td></td></tr><tr><td>19d3b02185ad36fb0b792f2a15a027c58ac91e8e</td><td>Im2Text: Describing Images Using 1 Million @@ -17475,7 +22180,7 @@ </td></tr><tr><td>4c87aafa779747828054cffee3125fcea332364d</td><td>View-Constrained Latent Variable Model <br/>for Multi-view Facial Expression Classification <br/><b>Imperial College London, UK</b><br/><b>EEMCS, University of Twente, The Netherlands</b></td><td>('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')<br/>('1729713', 'Ognjen Rudovic', 'ognjen rudovic')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td>{s.eleftheriadis,o.rudovic,m.pantic}@imperial.ac.uk -</td></tr><tr><td>4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56</td><td>Photorealistic Facial Texture Inference Using Deep Neural Networks +</td></tr><tr><td>4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc</td><td></td><td></td><td></td></tr><tr><td>4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56</td><td>Photorealistic Facial Texture Inference Using Deep Neural Networks <br/>*Pinscreen <br/><b>University of Southern California</b><br/><b>USC Institute for Creative Technologies</b><br/>Figure 1: We present an inference framework based on deep neural networks for synthesizing photorealistic facial texture <br/>along with 3D geometry from a single unconstrained image. We can successfully digitize historic figures that are no longer @@ -17499,7 +22204,19 @@ </td><td>('2121584', 'Wangjiang Zhu', 'wangjiang zhu')<br/>('1748341', 'Jie Hu', 'jie hu')<br/>('1687740', 'Gang Sun', 'gang sun')<br/>('2032273', 'Xudong Cao', 'xudong cao')<br/>('40612284', 'Yu Qiao', 'yu qiao')</td><td></td></tr><tr><td>4c815f367213cc0fb8c61773cd04a5ca8be2c959</td><td>978-1-4244-4296-6/10/$25.00 ©2010 IEEE <br/>2470 <br/>ICASSP 2010 -</td><td></td><td></td></tr><tr><td>4c6233765b5f83333f6c675d3389bbbf503805e3</td><td>Real-time High Performance Deformable Model for Face Detection in the Wild +</td><td></td><td></td></tr><tr><td>4ccf64fc1c9ca71d6aefdf912caf8fea048fb211</td><td>Light-weight Head Pose Invariant Gaze Tracking +<br/><b>University of Maryland</b><br/>NVIDIA +<br/>NVIDIA +</td><td>('48467498', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('24817039', 'Shalini De Mello', 'shalini de mello')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td>rranjan1@umiacs.umd.edu +<br/>shalinig@nvidia.com +<br/>jkautz@nvidia.com +</td></tr><tr><td>4cdb6144d56098b819076a8572a664a2c2d27f72</td><td>Face Synthesis for Eyeglass-Robust Face +<br/>Recognition +<br/><b>CBSRandNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, China</b></td><td>('46220439', 'Jianzhu Guo', 'jianzhu guo')<br/>('8362374', 'Xiangyu Zhu', 'xiangyu zhu')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{jianzhu.guo,xiangyu.zhu,zlei,szli}@nlpr.ia.ac.cn +</td></tr><tr><td>4c4e49033737467e28aa2bb32f6c21000deda2ef</td><td>Improving Landmark Localization with Semi-Supervised Learning +<br/><b>MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research</b></td><td>('25056820', 'Sina Honari', 'sina honari')<br/>('2824500', 'Pavlo Molchanov', 'pavlo molchanov')<br/>('2342481', 'Stephen Tyree', 'stephen tyree')<br/>('1707326', 'Pascal Vincent', 'pascal vincent')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td>1{honaris, vincentp}@iro.umontreal.ca, +<br/>2{pmolchanov, styree, jkautz}@nvidia.com, 3christopher.pal@polymtl.ca +</td></tr><tr><td>4c6233765b5f83333f6c675d3389bbbf503805e3</td><td>Real-time High Performance Deformable Model for Face Detection in the Wild <br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition <br/><b>Institute of Automation, Chinese Academy of Sciences, China</b></td><td>('1721677', 'Junjie Yan', 'junjie yan')<br/>('2520795', 'Xucong Zhang', 'xucong zhang')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{jjyan,xczhang,zlei,szli}@nlpr.ia.ac.cn </td></tr><tr><td>4c078c2919c7bdc26ca2238fa1a79e0331898b56</td><td>Unconstrained Facial Landmark Localization with Backbone-Branches @@ -17564,12 +22281,33 @@ <br/>IIIT-Delhi, India </td><td>('2559473', 'Himanshu S. Bhatt', 'himanshu s. bhatt')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td></td></tr><tr><td>264a84f4d27cd4bca94270620907cffcb889075c</td><td>Deep Motion Features for Visual Tracking <br/><b>Computer Vision Laboratory, Link oping University, Sweden</b></td><td>('8161428', 'Susanna Gladh', 'susanna gladh')<br/>('2488938', 'Martin Danelljan', 'martin danelljan')<br/>('2358803', 'Fahad Shahbaz Khan', 'fahad shahbaz khan')<br/>('2228323', 'Michael Felsberg', 'michael felsberg')</td><td></td></tr><tr><td>26d407b911d1234e8e3601e586b49316f0818c95</td><td>[POSTER] Feasibility of Corneal Imaging for Handheld Augmented Reality -<br/><b>Coburg University</b></td><td>('37101400', 'Daniel Schneider', 'daniel schneider')<br/>('2708269', 'Jens Grubert', 'jens grubert')</td><td></td></tr><tr><td>26a72e9dd444d2861298d9df9df9f7d147186bcd</td><td>DOI 10.1007/s00138-016-0768-4 +<br/><b>Coburg University</b></td><td>('37101400', 'Daniel Schneider', 'daniel schneider')<br/>('2708269', 'Jens Grubert', 'jens grubert')</td><td></td></tr><tr><td>26a44feb7a64db7986473ca801c251aa88748477</td><td>Journal of Machine Learning Research 1 () +<br/>Submitted ; Published +<br/>Unsupervised Learning of Gaussian Mixture Models with a +<br/>Uniform Background Component +<br/>Department of Statistics +<br/><b>Florida State University</b><br/>Tallahassee, FL 32306-4330, USA +<br/>Department of Statistics +<br/><b>Florida State University</b><br/>Tallahassee, FL 32306-4330, USA +<br/>Editor: +</td><td>('2761870', 'Sida Liu', 'sida liu')<br/>('2455529', 'Adrian Barbu', 'adrian barbu')</td><td>sida.liu@stat.fsu.edu +<br/>abarbu@stat.fsu.edu +</td></tr><tr><td>264f7ab36ff2e23a1514577a6404229d7fe1242b</td><td>Facial Expression Recognition by De-expression Residue Learning +<br/>Department of Computer Science +<br/><b>State University of New York at Binghamton, USA</b></td><td>('2671017', 'Huiyuan Yang', 'huiyuan yang')<br/>('8072251', 'Lijun Yin', 'lijun yin')</td><td>{hyang51, uciftci}@binghamton.edu; lijun@cs.binghamton.edu +</td></tr><tr><td>26a72e9dd444d2861298d9df9df9f7d147186bcd</td><td>DOI 10.1007/s00138-016-0768-4 <br/>ORIGINAL PAPER <br/>Collecting and annotating the large continuous action dataset <br/>Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016 <br/>© The Author(s) 2016. This article is published with open access at Springerlink.com -</td><td>('2089428', 'Daniel Paul Barrett', 'daniel paul barrett')</td><td></td></tr><tr><td>265af79627a3d7ccf64e9fe51c10e5268fee2aae</td><td>1817 +</td><td>('2089428', 'Daniel Paul Barrett', 'daniel paul barrett')</td><td></td></tr><tr><td>266766818dbc5a4ca1161ae2bc14c9e269ddc490</td><td>Article +<br/>Boosting a Low-Cost Smart Home Environment with +<br/>Usage and Access Control Rules +<br/><b>Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy</b><br/>Received: 27 April 2018; Accepted: 31 May 2018; Published: 8 June 2018 +</td><td>('1773887', 'Paolo Barsocchi', 'paolo barsocchi')<br/>('38567341', 'Antonello Calabrò', 'antonello calabrò')<br/>('1693901', 'Erina Ferro', 'erina ferro')<br/>('2209975', 'Claudio Gennaro', 'claudio gennaro')<br/>('1709783', 'Eda Marchetti', 'eda marchetti')<br/>('2508924', 'Claudio Vairo', 'claudio vairo')</td><td>antonello.calabro@isti.cnr.it (A.C.); erina.ferro@isti.cnr.it (E.F.); claudio.gennaro@isti.cnr.it (C.G.); +<br/>eda.marchetti@isti.cnr.it (E.M.); claudio.vairo@isti.cnr.it (C.V.) +<br/>* Correspondence: paolo.barsocchi@isti.cnr.it; Tel.: +39-050-315-2965 +</td></tr><tr><td>265af79627a3d7ccf64e9fe51c10e5268fee2aae</td><td>1817 <br/>A Mixture of Transformed Hidden Markov <br/>Models for Elastic Motion Estimation </td><td>('1932096', 'Huijun Di', 'huijun di')<br/>('3265275', 'Linmi Tao', 'linmi tao')<br/>('1797002', 'Guangyou Xu', 'guangyou xu')</td><td></td></tr><tr><td>267c6e8af71bab68547d17966adfaab3b4711e6b</td><td></td><td></td><td></td></tr><tr><td>26af867977f90342c9648ccf7e30f94470d40a73</td><td>IJIRST –International Journal for Innovative Research in Science & Technology| Volume 3 | Issue 04 | September 2016 @@ -17705,7 +22443,13 @@ <br/>IPEDR vol.37 (2012) © (2012) IACSIT Press, Singapore <br/>Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and <br/>Game-Based Development of Thinking Skills in Classroom Settings -<br/><b>University of Szeged, 2 E tv s Lor nd University</b></td><td>('39201903', 'Gyöngyvér Molnár', 'gyöngyvér molnár')<br/>('32197908', 'András Lőrincz', 'andrás lőrincz')</td><td></td></tr><tr><td>2654ef92491cebeef0997fd4b599ac903e48d07a</td><td>Facial Expression Recognition from Near-Infrared Video Sequences +<br/><b>University of Szeged, 2 E tv s Lor nd University</b></td><td>('39201903', 'Gyöngyvér Molnár', 'gyöngyvér molnár')<br/>('32197908', 'András Lőrincz', 'andrás lőrincz')</td><td></td></tr><tr><td>26e570049aaedcfa420fc8c7b761bc70a195657c</td><td>J Sign Process Syst +<br/>DOI 10.1007/s11265-017-1276-0 +<br/>Hybrid Facial Regions Extraction for Micro-expression +<br/>Recognition System +<br/>Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017 +<br/>© Springer Science+Business Media, LLC 2017 +</td><td>('39888137', 'Sze-Teng Liong', 'sze-teng liong')<br/>('2339975', 'John See', 'john see')<br/>('37809010', 'Su-Wei Tan', 'su-wei tan')</td><td></td></tr><tr><td>2654ef92491cebeef0997fd4b599ac903e48d07a</td><td>Facial Expression Recognition from Near-Infrared Video Sequences <br/>1. Machine Vision Group, Infotech Oulu and Department of Electrical and Information <br/>Engineering, <br/><b>P. O. Box 4500 FI-90014 University of Oulu, Finland</b><br/><b>Institute of Automation, Chinese Academy of Sciences</b><br/>P. O. Box 95 Zhongguancun Donglu, Beijing 100080, China @@ -17836,6 +22580,12 @@ <br/>Verification, and Attribute Estimation <br/><b>Columbia University</b><br/><b>Columbia University</b></td><td>('1778562', 'Thomas Berg', 'thomas berg')<br/>('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')</td><td>tberg@cs.columbia.edu <br/>belhumeur@cs.columbia.edu +</td></tr><tr><td>2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44</td><td>Lessons from Collecting a Million Biometric Samples +<br/><b>University of Notre Dame</b><br/>Notre Dame, IN 46556, USA +<br/><b>National Institute of Standards and Technology</b><br/>Gaithersburg, MD 20899, USA +</td><td>('1704876', 'Patrick J. Flynn', 'patrick j. flynn')<br/>('1799014', 'Kevin W. Bowyer', 'kevin w. bowyer')<br/>('32028519', 'P. Jonathon Phillips', 'p. jonathon phillips')</td><td>flynn@cse.nd.edu +<br/>kwb@cse.nd.edu +<br/>jonathon@nist.gov </td></tr><tr><td>210b98394c3be96e7fd75d3eb11a391da1b3a6ca</td><td>Spatiotemporal Derivative Pattern: A Dynamic <br/>Texture Descriptor for Video Matching <br/>Saeed Mian3 @@ -17857,6 +22607,10 @@ <br/>Feira de Santana, Brazil </td><td>('2009399', 'Igor L. O. Bastos', 'igor l. o. bastos')<br/>('3057269', 'Michele F. Angelo', 'michele f. angelo')<br/>('2563043', 'Angelo C. Loula', 'angelo c. loula')</td><td>igorcrexito@gmail.com <br/>mfangelo@uefs.ecomp.br, angelocl@gmail.com +</td></tr><tr><td>212608e00fc1e8912ff845ee7a4a67f88ba938fc</td><td>Coupled Deep Learning for Heterogeneous Face Recognition +<br/>Center for Research on Intelligent Perception and Computing (CRIPAC), +<br/>National Laboratory of Pattern Recognition (NLPR), +<br/><b>Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China</b></td><td>('2225749', 'Xiang Wu', 'xiang wu')<br/>('3051419', 'Lingxiao Song', 'lingxiao song')<br/>('1705643', 'Ran He', 'ran he')<br/>('1688870', 'Tieniu Tan', 'tieniu tan')</td><td>alfredxiangwu@gmail.com, {lingxiao.song, rhe, tnt}@nlpr.ia.ac.cn </td></tr><tr><td>4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27</td><td>Topological Principal Component Analysis for <br/>face encoding and recognition <br/>Juan J. Villanueva @@ -17887,7 +22641,11 @@ <br/>1 Computer Vision Center, Campus UAB, Edifici O, Bellaterra, Barcelona, Spain <br/><b>Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain</b><br/>http://www.cvc.uab.es, http://www.maia.ub.es </td><td>('7629833', 'Pierluigi Casale', 'pierluigi casale')<br/>('9783922', 'Oriol Pujol', 'oriol pujol')<br/>('1724155', 'Petia Radeva', 'petia radeva')</td><td>pierluigi@cvc.uab.es -</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td></td><td></td><td></td></tr><tr><td>4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41</td><td></td><td></td><td></td></tr><tr><td>4de757faa69c1632066391158648f8611889d862</td><td>International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-3 , March- 2016] +</td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td></td><td></td><td></td></tr><tr><td>4db9e5f19366fe5d6a98ca43c1d113dac823a14d</td><td>Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers +<br/>Are 1,000 Features Worth A Picture? +<br/>Department of Computer Science and Center for Human-Computer Interaction +<br/>Virginia Tech, Arlington, VA, USA +</td><td>('32698591', 'Vikram Mohanty', 'vikram mohanty')<br/>('51219402', 'David Thames', 'david thames')<br/>('2427623', 'Kurt Luther', 'kurt luther')</td><td></td></tr><tr><td>4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41</td><td></td><td></td><td></td></tr><tr><td>4de757faa69c1632066391158648f8611889d862</td><td>International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-3 , March- 2016] <br/>ISSN: 2349-6495 <br/>Review of Face Recognition Technology Using <br/>Feature Fusion Vector @@ -17895,7 +22653,9 @@ </td><td></td><td></td></tr><tr><td>4dd71a097e6b3cd379d8c802460667ee0cbc8463</td><td>Real-time Multi-view Facial Landmark Detector <br/>Learned by the Structured Output SVM <br/>1 Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech -<br/><b>Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic</b><br/><b>National Institute of Informatics, Tokyo, Japan</b></td><td>('39492787', 'Diego Thomas', 'diego thomas')<br/>('1691286', 'Akihiro Sugimoto', 'akihiro sugimoto')</td><td></td></tr><tr><td>4d9c02567e7b9e065108eb83ea3f03fcff880462</td><td>Towards Facial Expression Recognition in the Wild: A New Database and Deep +<br/><b>Technical University in Prague, 166 27 Prague 6, Technick a 2 Czech Republic</b><br/><b>National Institute of Informatics, Tokyo, Japan</b></td><td>('39492787', 'Diego Thomas', 'diego thomas')<br/>('1691286', 'Akihiro Sugimoto', 'akihiro sugimoto')</td><td></td></tr><tr><td>4db0968270f4e7b3fa73e41c50d13d48e20687be</td><td>Fashion Forward: Forecasting Visual Style in Fashion +<br/><b>Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany</b><br/><b>The University of Texas at Austin, 78701 Austin, USA</b></td><td>('2256981', 'Ziad Al-Halah', 'ziad al-halah')<br/>('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>{ziad.al-halah, rainer.stiefelhagen}@kit.edu, grauman@cs.utexas.edu +</td></tr><tr><td>4d9c02567e7b9e065108eb83ea3f03fcff880462</td><td>Towards Facial Expression Recognition in the Wild: A New Database and Deep <br/>Recognition System <br/><b>School of Electronics and Information, Northwestern Polytechnical University, China</b></td><td>('3411701', 'Xianlin Peng', 'xianlin peng')<br/>('1917901', 'Zhaoqiang Xia', 'zhaoqiang xia')<br/>('2871379', 'Lei Li', 'lei li')<br/>('4729239', 'Xiaoyi Feng', 'xiaoyi feng')</td><td>pengxl515@163.com, zxia@nwpu.edu.cn, li lei 08@163.com, fengxiao@nwpu.edu.cn </td></tr><tr><td>4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE @@ -17922,6 +22682,12 @@ <br/><b>Rutgers University, Piscataway NJ 08854, USA</b><br/>2 National Laboratory of Pattern Recognition, Chinese Academy of Sciences <br/>Beijing, 100080, China </td><td>('39606160', 'Peng Yang', 'peng yang')<br/>('1734954', 'Qingshan Liu', 'qingshan liu')</td><td>peyang@cs.rutgers.edu +</td></tr><tr><td>4d6ad0c7b3cf74adb0507dc886993e603c863e8c</td><td>Human Activity Recognition Based on Wearable +<br/>Sensor Data: A Standardization of the +<br/>State-of-the-Art +<br/>Smart Surveillance Interest Group, Computer Science Department +<br/>Universidade Federal de Minas Gerais, Brazil +</td><td>('2954974', 'Antonio C. Nazare', 'antonio c. nazare')</td><td>Email: {arturjordao, antonio.nazare, jessicasena, william}@dcc.ufmg.br </td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>A Scalable and Privacy-Aware IoT Service for Live Video Analytics <br/><b>Carnegie Mellon University</b><br/><b>Carnegie Mellon University</b><br/>Intel Labs <br/>Norman Sadeh @@ -17937,7 +22703,8 @@ <br/>Conference on <br/>Applications of <br/>Computer Vision -</td><td>('1916866', 'Nils Murrugarra-Llerena', 'nils murrugarra-llerena')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td></td></tr><tr><td>4d0ef449de476631a8d107c8ec225628a67c87f9</td><td>© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE +</td><td>('1916866', 'Nils Murrugarra-Llerena', 'nils murrugarra-llerena')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td></td></tr><tr><td>4dca3d6341e1d991c902492952e726dc2a443d1c</td><td>Learning towards Minimum Hyperspherical Energy +<br/><b>Georgia Institute of Technology 2Emory University</b><br/><b>South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial</b></td><td>('36326884', 'Weiyang Liu', 'weiyang liu')<br/>('10035476', 'Rongmei Lin', 'rongmei lin')<br/>('46270580', 'Zhen Liu', 'zhen liu')<br/>('47968201', 'Lixin Liu', 'lixin liu')<br/>('1751019', 'Zhiding Yu', 'zhiding yu')<br/>('47175326', 'Bo Dai', 'bo dai')<br/>('1779453', 'Le Song', 'le song')</td><td></td></tr><tr><td>4d0ef449de476631a8d107c8ec225628a67c87f9</td><td>© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE <br/>must be obtained for all other uses, in any current or future media, including <br/>reprinting/republishing this material for advertising or promotional purposes, <br/>creating new collective works, for resale or redistribution to servers or lists, or @@ -17945,12 +22712,64 @@ <br/>Pre-print of article that appeared at BTAS 2010. <br/>The published article can be accessed from: <br/>http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517 +</td><td></td><td></td></tr><tr><td>4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f</td><td>Deep multi-frame face super-resolution +<br/>Evgeniya Ustinova, Victor Lempitsky +<br/>October 17, 2017 </td><td></td><td></td></tr><tr><td>4df3143922bcdf7db78eb91e6b5359d6ada004d2</td><td>Behav Res (2015) 47:1122–1135 <br/>DOI 10.3758/s13428-014-0532-5 <br/>The Chicago face database: A free stimulus set of faces <br/>and norming data <br/>Published online: 13 January 2015 -<br/><b>Psychonomic Society, Inc</b></td><td>('2428798', 'Joshua Correll', 'joshua correll')</td><td></td></tr><tr><td>75fcbb01bc7e53e9de89cb1857a527f97ea532ce</td><td>Detection of Facial Landmarks from Neutral, Happy, +<br/><b>Psychonomic Society, Inc</b></td><td>('2428798', 'Joshua Correll', 'joshua correll')</td><td></td></tr><tr><td>75879ab7a77318bbe506cb9df309d99205862f6c</td><td>Analysis Of Emotion Recognition From Facial +<br/>Expressions Using Spatial And Transform Domain +<br/>Methods +</td><td>('2855399', 'P. Suja', 'p. suja')<br/>('2510426', 'Shikha Tripathi', 'shikha tripathi')</td><td></td></tr><tr><td>7574f999d2325803f88c4915ba8f304cccc232d1</td><td>Transfer Learning For Cross-Dataset Recognition: A Survey +<br/>This paper summarises and analyses the cross-dataset recognition transfer learning techniques with the +<br/>emphasis on what kinds of methods can be used when the available source and target data are presented +<br/>in different forms for boosting the target task. This paper for the first time summarises several transferring +<br/>criteria in details from the concept level, which are the key bases to guide what kind of knowledge to transfer +<br/>between datasets. In addition, a taxonomy of cross-dataset scenarios and problems is proposed according the +<br/>properties of data that define how different datasets are diverged, thereby review the recent advances on +<br/>each specific problem under different scenarios. Moreover, some real world applications and corresponding +<br/>commonly used benchmarks of cross-dataset recognition are reviewed. Lastly, several future directions are +<br/>identified. +<br/>Additional Key Words and Phrases: Cross-dataset, transfer learning, domain adaptation +<br/>1. INTRODUCTION +<br/>It has been explored how human would transfer learning in one context to another +<br/>similar context [Woodworth and Thorndike 1901; Perkins et al. 1992] in the field of +<br/>Psychology and Education. For example, learning to drive a car helps a person later +<br/>to learn more quickly to drive a truck, and learning mathematics prepares students to +<br/>study physics. The machine learning algorithms are mostly inspired by human brains. +<br/>However, most of them require a huge amount of training examples to learn a new +<br/>model from scratch and fail to apply knowledge learned from previous domains or +<br/>tasks. This may be due to that a basic assumption of statistical learning theory is +<br/>that the training and test data are drawn from the same distribution and belong to +<br/>the same task. Intuitively, learning from scratch is not realistic and practical, because +<br/>it violates how human learn things. In addition, manually labelling a large amount +<br/>of data for new domain or task is labour extensive, especially for the modern “data- +<br/>hungry” and “data-driven” learning techniques (i.e. deep learning). However, the big +<br/>data era provides a huge amount available data collected for other domains and tasks. +<br/>Hence, how to use the previously available data smartly for the current task with +<br/>scarce data will be beneficial for real world applications. +<br/>To reuse the previous knowledge for current tasks, the differences between old data +<br/>and new data need to be taken into account. Take the object recognition as an ex- +<br/>ample. As claimed by Torralba and Efros [2011], despite the great efforts of object +<br/>datasets creators, the datasets appear to have strong build-in bias caused by various +<br/>factors, such as selection bias, capture bias, category or label bias, and negative set +<br/>bias. This suggests that no matter how big the dataset is, it is impossible to cover +<br/>the complexity of the real visual world. Hence, the dataset bias needs to be consid- +<br/>ered before reusing data from previous datasets. Pan and Yang [2010] summarise that +<br/>the differences between different datasets can be caused by domain divergence (i.e. +<br/>distribution shift or feature space difference) or task divergence (i.e. conditional dis- +<br/>tribution shift or label space difference), or both. For example, in visual recognition, +<br/>the distributions between the previous and current data can be discrepant due to the +<br/>different environments, lighting, background, sensor types, resolutions, view angles, +<br/>and post-processing. Those external factors may cause the distribution divergence or +<br/>even feature space divergence between different domains. On the other hand, the task +<br/>divergence between current and previous data is also ubiquitous. For example, it is +<br/>highly possible that an animal species that we want to recognize have not been seen +<br/>ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. +</td><td>('47539715', 'Jing Zhang', 'jing zhang')<br/>('40508657', 'Wanqing Li', 'wanqing li')<br/>('1719314', 'Philip Ogunbona', 'philip ogunbona')</td><td></td></tr><tr><td>75fcbb01bc7e53e9de89cb1857a527f97ea532ce</td><td>Detection of Facial Landmarks from Neutral, Happy, <br/>and Disgust Facial Images <br/>Research Group for Emotions, Sociality, and Computing <br/>Tampere Unit for Computer-Human Interaction @@ -18057,8 +22876,22 @@ <br/>TPAMI, 23(6):681–685, 2001. <br/>[2] Piotr Dollár, Peter Welinder, and Pietro Perona. Cascaded pose regres- <br/>sion. In CVPR, 2010. -</td><td>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td></td></tr><tr><td>75cd81d2513b7e41ac971be08bbb25c63c37029a</td><td></td><td></td><td></td></tr><tr><td>75bf3b6109d7a685236c8589f8ead7d769ea863f</td><td>Model Selection with Nonlinear Embedding for Unsupervised Domain Adaptation +</td><td>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td></td></tr><tr><td>75308067ddd3c53721430d7984295838c81d4106</td><td>Article +<br/>Rapid Facial Reactions +<br/>in Response to Facial +<br/>Expressions of Emotion +<br/>Displayed by Real Versus +<br/>Virtual Faces +<br/>i-Perception +<br/>2018 Vol. 9(4), 1–18 +<br/>! The Author(s) 2018 +<br/>DOI: 10.1177/2041669518786527 +<br/>journals.sagepub.com/home/ipe +<br/><b>LIMSI, CNRS, University of Paris-Sud, Orsay, France</b></td><td>('28174013', 'Jean-Claude Martin', 'jean-claude martin')</td><td></td></tr><tr><td>75cd81d2513b7e41ac971be08bbb25c63c37029a</td><td></td><td></td><td></td></tr><tr><td>75bf3b6109d7a685236c8589f8ead7d769ea863f</td><td>Model Selection with Nonlinear Embedding for Unsupervised Domain Adaptation <br/><b>Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA</b></td><td>('3151995', 'Hemanth Venkateswara', 'hemanth venkateswara')<br/>('2471253', 'Shayok Chakraborty', 'shayok chakraborty')<br/>('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')</td><td>{hemanthv, shayok.chakraborty, troy.mcdaniel, panch}@asu.edu +</td></tr><tr><td>759cf57215fcfdd8f59c97d14e7f3f62fafa2b30</td><td>Real-time Distracted Driver Posture Classification +<br/>Department of Computer Science and Engineering, School of Sciences and Engineering +<br/><b>The American University in Cairo, New Cairo 11835, Egypt</b></td><td>('3434212', 'Yehya Abouelnaga', 'yehya abouelnaga')<br/>('2150605', 'Hesham M. Eraqi', 'hesham m. eraqi')<br/>('2233511', 'Mohamed N. Moustafa', 'mohamed n. moustafa')</td><td>{devyhia,heraqi,m.moustafa}@aucegypt.edu </td></tr><tr><td>751970d4fb6f61d1b94ca82682984fd03c74f127</td><td>Array-based Electromyographic Silent Speech Interface <br/><b>Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany</b><br/>Keywords: <br/>EMG, EMG-based Speech Recognition, Silent Speech Interface, Electrode Array @@ -18069,7 +22902,10 @@ <br/><b>University of Oxford</b></td><td>('3056091', 'Mark Everingham', 'mark everingham')<br/>('1782755', 'Josef Sivic', 'josef sivic')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>{me,josef,az}@robots.ox.ac.uk </td></tr><tr><td>75e5ba7621935b57b2be7bf4a10cad66a9c445b9</td><td></td><td></td><td></td></tr><tr><td>75859ac30f5444f0d9acfeff618444ae280d661d</td><td>Multibiometric Cryptosystems based on Feature <br/>Level Fusion -</td><td>('2743820', 'Abhishek Nagar', 'abhishek nagar')<br/>('34633765', 'Karthik Nandakumar', 'karthik nandakumar')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>7553fba5c7f73098524fbb58ca534a65f08e91e7</td><td>Available Online at www.ijcsmc.com +</td><td>('2743820', 'Abhishek Nagar', 'abhishek nagar')<br/>('34633765', 'Karthik Nandakumar', 'karthik nandakumar')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>IEEE TRANSACTIONS ON AFFECTIVE COMPUTING +<br/>AffectNet: A Database for Facial Expression, +<br/>Valence, and Arousal Computing in the Wild +</td><td>('2314025', 'Ali Mollahosseini', 'ali mollahosseini')<br/>('3093835', 'Mohammad H. Mahoor', 'mohammad h. mahoor')</td><td></td></tr><tr><td>7553fba5c7f73098524fbb58ca534a65f08e91e7</td><td>Available Online at www.ijcsmc.com <br/>International Journal of Computer Science and Mobile Computing <br/>A Monthly Journal of Computer Science and Information Technology <br/>ISSN 2320–088X @@ -18091,10 +22927,23 @@ <br/>vidit@cs.umass.edu </td></tr><tr><td>75259a613285bdb339556ae30897cb7e628209fa</td><td>Unsupervised Domain Adaptation for Zero-Shot Learning <br/><b>Queen Mary University of London, London E1 4NS, UK</b></td><td>('2999293', 'Elyor Kodirov', 'elyor kodirov')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')</td><td>{e.kodirov, t.xiang, z.fu, s.gong}@qmul.ac.uk +</td></tr><tr><td>754f7f3e9a44506b814bf9dc06e44fecde599878</td><td>Quantized Densely Connected U-Nets for +<br/>Efficient Landmark Localization +</td><td>('2986505', 'Zhiqiang Tang', 'zhiqiang tang')<br/>('4340744', 'Xi Peng', 'xi peng')<br/>('1947101', 'Shijie Geng', 'shijie geng')<br/>('3008832', 'Lingfei Wu', 'lingfei wu')<br/>('1753384', 'Shaoting Zhang', 'shaoting zhang')</td><td>1Rutgers University, {zt53, sg1309, dnm}@rutgers.edu +<br/>2Binghamton University, xpeng@binghamton.edu +<br/>3IBM T. J. Watson, lwu@email.wm.edu +<br/>4SenseTime, zhangshaoting@sensetime.com +</td></tr><tr><td>75249ebb85b74e8932496272f38af274fbcfd696</td><td>Face Identification in Large Galleries +<br/>Smart Surveillance Interest Group, Department of Computer Science +<br/>Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +</td><td>('1679142', 'William Robson Schwartz', 'william robson schwartz')</td><td>rafaelvareto@dcc.ufmg.br, filipe.oc87@gmail.com, william@dcc.ufmg.br </td></tr><tr><td>75d2ecbbcc934563dff6b39821605dc6f2d5ffcc</td><td>Capturing Subtle Facial Motions in 3D Face Tracking <br/><b>Beckman Institute</b><br/><b>University of Illinois at Urbana-Champaign</b><br/>Urbana, IL 61801 </td><td>('1735018', 'Zhen Wen', 'zhen wen')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td>{zhenwen, huang}@ifp.uiuc.edu -</td></tr><tr><td>81bfe562e42f2eab3ae117c46c2e07b3d142dade</td><td>A Hajj And Umrah Location Classification System For Video +</td></tr><tr><td>81a142c751bf0b23315fb6717bc467aa4fdfbc92</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE +<br/>1767 +<br/>ICASSP 2017 +</td><td></td><td></td></tr><tr><td>81bfe562e42f2eab3ae117c46c2e07b3d142dade</td><td>A Hajj And Umrah Location Classification System For Video <br/>Crowded Scenes <br/>Adnan A. Gutub† <br/><b>Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA</b><br/><b>College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA</b></td><td>('2872536', 'Hossam M. Zawbaa', 'hossam m. zawbaa')<br/>('1977955', 'Salah A. Aly', 'salah a. aly')</td><td></td></tr><tr><td>81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f</td><td><b>UNIVERSITY OF TARTU</b><br/>FACULTY OF SCIENCE AND TECHNOLOGY @@ -18108,7 +22957,12 @@ <br/>A Robust Quadratic Criterion <br/>Stella X. Yu, Member, <br/>IEEE -</td><td></td><td></td></tr><tr><td>816bd8a7f91824097f098e4f3e0f4b69f481689d</td><td>Latent Semantic Analysis of Facial Action Codes +</td><td></td><td></td></tr><tr><td>8199803f476c12c7f6c0124d55d156b5d91314b6</td><td>The iNaturalist Species Classification and Detection Dataset +<br/>1Caltech +<br/>2Google +<br/>3Cornell Tech +<br/>4iNaturalist +</td><td>('2996914', 'Grant Van Horn', 'grant van horn')<br/>('13412044', 'Alex Shepard', 'alex shepard')<br/>('1690922', 'Pietro Perona', 'pietro perona')<br/>('50172592', 'Serge Belongie', 'serge belongie')</td><td></td></tr><tr><td>816bd8a7f91824097f098e4f3e0f4b69f481689d</td><td>Latent Semantic Analysis of Facial Action Codes <br/>for Automatic Facial Expression Recognition <br/>D-ITET/BIWI <br/>ETH Zurich @@ -18118,7 +22972,17 @@ </td><td>('8745904', 'Beat Fasel', 'beat fasel')<br/>('1824057', 'Florent Monay', 'florent monay')<br/>('1698682', 'Daniel Gatica-Perez', 'daniel gatica-perez')</td><td>bfasel@vision.ee.ethz.ch <br/>monay@idiap.ch <br/>gatica@idiap.ch -</td></tr><tr><td>81831ed8e5b304e9d28d2d8524d952b12b4cbf55</td><td></td><td></td><td></td></tr><tr><td>81b2a541d6c42679e946a5281b4b9dc603bc171c</td><td>Universit¨at Ulm | 89069 Ulm | Deutschland +</td></tr><tr><td>81706277ed180a92d2eeb94ac0560f7dc591ee13</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 55– No.15, October 2012 +<br/>Emotion based Contextual Semantic Relevance +<br/>Feedback in Multimedia Information Retrieval +<br/>Department of Computer Engineering, Indian +<br/><b>Institute of Technology, Banaras Hindu</b><br/><b>University, Varanasi, 221005, India</b><br/>Anil K. Tripathi +<br/>Department of Computer Engineering, Indian +<br/><b>Institute of Technology, Banaras Hindu</b><br/><b>University, Varanasi, 221005, India</b><br/>to +<br/>find some +<br/>issued by a user +</td><td>('41132883', 'Karm Veer Singh', 'karm veer singh')</td><td></td></tr><tr><td>81831ed8e5b304e9d28d2d8524d952b12b4cbf55</td><td></td><td></td><td></td></tr><tr><td>81b2a541d6c42679e946a5281b4b9dc603bc171c</td><td>Universit¨at Ulm | 89069 Ulm | Deutschland <br/>Fakult¨at f¨ur Ingenieurwissenschaften und Informatik <br/>Institut f¨ur Neuroinformatik <br/>Direktor: Prof. Dr. G¨unther Palm @@ -18143,6 +23007,10 @@ <br/>Institut Mines-Telecom / Telecom SudParis </td><td>('2120042', 'Daniel Wesierski', 'daniel wesierski')<br/>('2603633', 'Patrick Horain', 'patrick horain')</td><td>daniel.wesierski@pg.gda.pl <br/>patrick.horain@telecom-sudaris.eu +</td></tr><tr><td>8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c</td><td>Shuffle-Then-Assemble: Learning +<br/>Object-Agnostic Visual Relationship Features +<br/>School of Computer Science and Engineering, +<br/><b>Nanyang Technological University</b></td><td>('47008946', 'Xu Yang', 'xu yang')<br/>('5462268', 'Hanwang Zhang', 'hanwang zhang')<br/>('1688642', 'Jianfei Cai', 'jianfei cai')</td><td>s170018@e.ntu.edu.sg,{hanwangzhang,asjfcai}@ntu.edu.sg </td></tr><tr><td>81fc86e86980a32c47410f0ba7b17665048141ec</td><td>Segment-based Methods for Facial Attribute <br/>Detection from Partial Faces <br/>Department of Electrical and Computer Engineering and the Center for Automation Research, @@ -18151,7 +23019,11 @@ <br/>Exploiting Discriminant Information in Nonnegative <br/>Matrix Factorization With Application <br/>to Frontal Face Verification -</td><td>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')<br/>('2336758', 'Ioan Buciu', 'ioan buciu')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td></td></tr><tr><td>816eff5e92a6326a8ab50c4c50450a6d02047b5e</td><td>fLRR: Fast Low-Rank Representation Using +</td><td>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')<br/>('2336758', 'Ioan Buciu', 'ioan buciu')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td></td></tr><tr><td>814d091c973ff6033a83d4e44ab3b6a88cc1cb66</td><td>Behav Res (2016) 48:567–576 +<br/>DOI 10.3758/s13428-015-0601-4 +<br/>The EU-Emotion Stimulus Set: A validation study +<br/>Published online: 30 September 2015 +<br/><b>Psychonomic Society, Inc</b></td><td>('2625704', 'Delia Pigat', 'delia pigat')<br/>('2391819', 'Shahar Tal', 'shahar tal')<br/>('2100443', 'Ofer Golan', 'ofer golan')<br/>('1884685', 'Simon Baron-Cohen', 'simon baron-cohen')<br/>('3343472', 'Daniel Lundqvist', 'daniel lundqvist')</td><td></td></tr><tr><td>816eff5e92a6326a8ab50c4c50450a6d02047b5e</td><td>fLRR: Fast Low-Rank Representation Using <br/>Frobenius Norm <br/>Low Rank Representation (LRR) intends to find the representation <br/>with lowest-rank of a given data set, which can be formulated as a @@ -18377,13 +23249,15 @@ <br/>National Library of Medicine, NIH, Bethesda, MD </td><td>('1726787', 'Zhiyun Xue', 'zhiyun xue')<br/>('1721328', 'Sameer Antani', 'sameer antani')<br/>('1691151', 'L. Rodney Long', 'l. rodney long')<br/>('1705831', 'Dina Demner-Fushman', 'dina demner-fushman')<br/>('1692057', 'George R. Thoma', 'george r. thoma')</td><td></td></tr><tr><td>86904aee566716d9bef508aa9f0255dc18be3960</td><td>Learning Anonymized Representations with <br/>Adversarial Neural Networks -</td><td>('1743922', 'Pablo Piantanida', 'pablo piantanida')<br/>('1751762', 'Yoshua Bengio', 'yoshua bengio')<br/>('1694313', 'Pierre Duhamel', 'pierre duhamel')</td><td></td></tr><tr><td>867e709a298024a3c9777145e037e239385c0129</td><td> INTERNATIONAL JOURNAL +</td><td>('1743922', 'Pablo Piantanida', 'pablo piantanida')<br/>('1751762', 'Yoshua Bengio', 'yoshua bengio')<br/>('1694313', 'Pierre Duhamel', 'pierre duhamel')</td><td></td></tr><tr><td>86f191616423efab8c0d352d986126a964983219</td><td>Visual to Sound: Generating Natural Sound for Videos in the Wild +<br/><b>University of North Carolina at Chapel Hill, 2Adobe Research</b></td><td>('49455017', 'Yipin Zhou', 'yipin zhou')<br/>('8056043', 'Zhaowen Wang', 'zhaowen wang')<br/>('2442612', 'Chen Fang', 'chen fang')<br/>('30190128', 'Trung Bui', 'trung bui')<br/>('1685538', 'Tamara L. Berg', 'tamara l. berg')</td><td></td></tr><tr><td>867e709a298024a3c9777145e037e239385c0129</td><td> INTERNATIONAL JOURNAL <br/> OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 2 / FEB 2017 <br/>ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE <br/>RECOGNITION APPROACH BASED ON DICTIONARY LEARNING <br/>AND SPARSE REPRESENTATION <br/>(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4 -</td><td>('32628937', 'Murala Sandeep', 'murala sandeep')<br/>('1702980', 'Ranga Reddy', 'ranga reddy')</td><td></td></tr><tr><td>86c5478f21c4a9f9de71b5ffa90f2a483ba5c497</td><td>Kernel Selection using Multiple Kernel Learning and Domain +</td><td>('32628937', 'Murala Sandeep', 'murala sandeep')<br/>('1702980', 'Ranga Reddy', 'ranga reddy')</td><td></td></tr><tr><td>869a2fbe42d3fdf40ed8b768edbf54137be7ac71</td><td>Relative Attributes for Enhanced Human-Machine Communication +<br/><b>Toyota Technological Institute, Chicago</b><br/><b>Indraprastha Institute of Information Technology, Delhi</b><br/><b>University of Texas, Austin</b></td><td>('1713589', 'Devi Parikh', 'devi parikh')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')<br/>('2076800', 'Amar Parkash', 'amar parkash')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td></td></tr><tr><td>86c5478f21c4a9f9de71b5ffa90f2a483ba5c497</td><td>Kernel Selection using Multiple Kernel Learning and Domain <br/>Adaptation in Reproducing Kernel Hilbert Space, for Face <br/>Recognition under Surveillance Scenario <br/><b>Indian Institute of Technology, Madras, Chennai 600036, INDIA</b><br/>Face Recognition (FR) has been the interest to several researchers over the past few decades due to its passive nature of biometric @@ -18494,10 +23368,28 @@ <br/> Pune, India </td><td>('2947776', 'Ayesha Butalia', 'ayesha butalia')</td><td>deepikapatil941@gmail.com <br/>ayeshabutalia@gmail.com +</td></tr><tr><td>86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd</td><td>YUE et al.: ATTENTIONAL ALIGNMENT NETWORK +<br/>Attentional Alignment Network +<br/><b>Beihang University, Beijing, China</b><br/>2 The Key Laboratory of Advanced +<br/>Technologies for Near Space +<br/>Information Systems +<br/>Ministry of +<br/>Technology of China +<br/><b>University of Texas at Arlington</b><br/>TX, USA +<br/><b>Shanghai Jiao Tong University</b><br/>Shanghai, China +<br/>Industry and Information +</td><td>('35310815', 'Lei Yue', 'lei yue')<br/>('6050999', 'Xin Miao', 'xin miao')<br/>('3127895', 'Pengbo Wang', 'pengbo wang')<br/>('1740430', 'Baochang Zhang', 'baochang zhang')<br/>('34798935', 'Xiantong Zhen', 'xiantong zhen')<br/>('40916581', 'Xianbin Cao', 'xianbin cao')</td><td>yuelei@buaa.edu.cn +<br/>xin.miao@mavs.uta.edu +<br/>wangpengbo_vincent@sjtu.edu.cn +<br/>bczhang@buaa.edu.cn +<br/>zhenxt@buaa.edu.cn +<br/>xbcao@buaa.edu.cn </td></tr><tr><td>862d17895fe822f7111e737cbcdd042ba04377e8</td><td>Semi-Latent GAN: Learning to generate and modify facial images from <br/>attributes <br/><b>The school of Data Science, Fudan University</b><br/>† Disney Research, </td><td>('11740128', 'Weidong Yin', 'weidong yin')<br/>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('14517812', 'Leonid Sigal', 'leonid sigal')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')</td><td>yanweifu@fudan.edu.cn +</td></tr><tr><td>86d0127e1fd04c3d8ea78401c838af621647dc95</td><td>Facial Attribute Prediction +<br/><b>College of Information and Engineering, Hunan University, Changsha, China</b><br/><b>School of Computer Science, National University of Defense Technology, Changsha, China</b><br/><b>University of Texas at San Antonio, USA</b></td><td>('48664471', 'Mingxing Duan', 'mingxing duan')<br/>('50842217', 'Qi Tian', 'qi tian')</td><td>duanmingxing16@nudt.edu.cn, lkl@hnu.edu.cn, qi.tian@utsa.edu </td></tr><tr><td>86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6</td><td>The Kinetics Human Action Video Dataset <br/>Jo˜ao Carreira <br/>Paul Natsev @@ -18528,9 +23420,18 @@ </td><td>('1779859', 'Tao Liu', 'tao liu')<br/>('32611393', 'Ying Liu', 'ying liu')<br/>('38837555', 'Cong Li', 'cong li')<br/>('40032263', 'Chao Li', 'chao li')</td><td></td></tr><tr><td>86b105c3619a433b6f9632adcf9b253ff98aee87</td><td>1424403677/06/$20.00 ©2006 IEEE <br/>1013 <br/>ICME 2006 -</td><td></td><td></td></tr><tr><td>86a8b3d0f753cb49ac3250fa14d277983e30a4b7</td><td>Exploiting Unlabeled Ages for Aging Pattern Analysis on A Large Database +</td><td></td><td></td></tr><tr><td>86f3552b822f6af56cb5079cc31616b4035ccc4e</td><td>Towards Miss Universe Automatic Prediction: The Evening Gown Competition +<br/><b>University of Queensland, Brisbane, Australia</b><br/>(cid:5) Data61, CSIRO, Australia +</td><td>('1850202', 'Johanna Carvajal', 'johanna carvajal')<br/>('2331880', 'Arnold Wiliem', 'arnold wiliem')<br/>('1781182', 'Conrad Sanderson', 'conrad sanderson')</td><td></td></tr><tr><td>86a8b3d0f753cb49ac3250fa14d277983e30a4b7</td><td>Exploiting Unlabeled Ages for Aging Pattern Analysis on A Large Database <br/><b>West Virginia University, Morgantown, WV</b></td><td>('1720735', 'Chao Zhang', 'chao zhang')<br/>('1822413', 'Guodong Guo', 'guodong guo')</td><td>cazhang@mix.wvu.edu, guodong.guo@mail.wvu.edu -</td></tr><tr><td>86b51bd0c80eecd6acce9fc538f284b2ded5bcdd</td><td></td><td></td><td></td></tr><tr><td>8699268ee81a7472a0807c1d3b1db0d0ab05f40d</td><td></td><td></td><td></td></tr><tr><td>72282287f25c5419dc6fd9e89ec9d86d660dc0b5</td><td>A Rotation Invariant Latent Factor Model for +</td></tr><tr><td>860588fafcc80c823e66429fadd7e816721da42a</td><td>Unsupervised Discovery of Object Landmarks as Structural Representations +<br/><b>University of Michigan, Ann Arbor</b><br/>2Google Brain +</td><td>('1692992', 'Yuting Zhang', 'yuting zhang')<br/>('1857914', 'Yijie Guo', 'yijie guo')<br/>('50442731', 'Yixin Jin', 'yixin jin')<br/>('49513553', 'Yijun Luo', 'yijun luo')<br/>('46915665', 'Zhiyuan He', 'zhiyuan he')<br/>('1697141', 'Honglak Lee', 'honglak lee')</td><td>{yutingzh, guoyijie, jinyixin, lyjtour, zhiyuan, honglak}@umich.edu +<br/>honglak@google.com +</td></tr><tr><td>86b51bd0c80eecd6acce9fc538f284b2ded5bcdd</td><td></td><td></td><td></td></tr><tr><td>8699268ee81a7472a0807c1d3b1db0d0ab05f40d</td><td></td><td></td><td></td></tr><tr><td>86374bb8d309ad4dbde65c21c6fda6586ae4147a</td><td>Detect-and-Track: Efficient Pose Estimation in Videos +<br/><b>The Robotics Institute, Carnegie Mellon University</b><br/><b>Dartmouth College</b><br/>2Facebook +<br/>https://rohitgirdhar.github.io/DetectAndTrack +</td><td>('3102850', 'Rohit Girdhar', 'rohit girdhar')<br/>('2082991', 'Georgia Gkioxari', 'georgia gkioxari')<br/>('1732879', 'Lorenzo Torresani', 'lorenzo torresani')<br/>('2210374', 'Manohar Paluri', 'manohar paluri')</td><td></td></tr><tr><td>869583b700ecf33a9987447aee9444abfe23f343</td><td></td><td></td><td></td></tr><tr><td>72282287f25c5419dc6fd9e89ec9d86d660dc0b5</td><td>A Rotation Invariant Latent Factor Model for <br/>Moveme Discovery from Static Poses <br/><b>California Institute of Technology, Pasadena, CA, USA</b></td><td>('3339867', 'Matteo Ruggero Ronchi', 'matteo ruggero ronchi')<br/>('14834454', 'Joon Sik Kim', 'joon sik kim')<br/>('1740159', 'Yisong Yue', 'yisong yue')</td><td>{mronchi, jkim5, yyue}@caltech.edu </td></tr><tr><td>72a87f509817b3369f2accd7024b2e4b30a1f588</td><td>Fault diagnosis of a railway device using semi-supervised @@ -18558,7 +23459,7 @@ <br/>identification <br/>Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007 <br/>C(cid:1) Springer Science + Business Media, LLC 2007 -</td><td>('2046854', 'Sinjini Mitra', 'sinjini mitra')</td><td></td></tr><tr><td>726b8aba2095eef076922351e9d3a724bb71cb51</td><td></td><td></td><td></td></tr><tr><td>727ecf8c839c9b5f7b6c7afffe219e8b270e7e15</td><td>LEVERAGING GEO-REFERENCED DIGITAL PHOTOGRAPHS +</td><td>('2046854', 'Sinjini Mitra', 'sinjini mitra')</td><td></td></tr><tr><td>726b8aba2095eef076922351e9d3a724bb71cb51</td><td></td><td></td><td></td></tr><tr><td>721b109970bf5f1862767a1bec3f9a79e815f79a</td><td></td><td></td><td></td></tr><tr><td>727ecf8c839c9b5f7b6c7afffe219e8b270e7e15</td><td>LEVERAGING GEO-REFERENCED DIGITAL PHOTOGRAPHS <br/>A DISSERTATION <br/>SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE <br/>AND THE COMMITTEE ON GRADUATE STUDIES @@ -18573,7 +23474,13 @@ </td><td>('18780812', 'Xiaohua Huang', 'xiaohua huang')<br/>('1757287', 'Guoying Zhao', 'guoying zhao')<br/>('40608983', 'Wenming Zheng', 'wenming zheng')</td><td>{huang.xiaohua,gyzhao,mkp}@ee.oulu.fi <br/>wenming_zheng@seu.edu.cn </td></tr><tr><td>72ecaff8b57023f9fbf8b5b2588f3c7019010ca7</td><td>Facial Keypoints Detection -</td><td>('27744156', 'Shenghao Shi', 'shenghao shi')</td><td></td></tr><tr><td>729dbe38538fbf2664bc79847601f00593474b05</td><td></td><td></td><td></td></tr><tr><td>729a9d35bc291cc7117b924219bef89a864ce62c</td><td>Recognizing Material Properties from Images +</td><td>('27744156', 'Shenghao Shi', 'shenghao shi')</td><td></td></tr><tr><td>72591a75469321074b072daff80477d8911c3af3</td><td>Group Component Analysis for Multi-block Data: +<br/>Common and Individual Feature Extraction +</td><td>('1764724', 'Guoxu Zhou', 'guoxu zhou')<br/>('1747156', 'Andrzej Cichocki', 'andrzej cichocki')<br/>('38741479', 'Yu Zhang', 'yu zhang')</td><td></td></tr><tr><td>7224d58a7e1f02b84994b60dc3b84d9fe6941ff5</td><td>When Face Recognition Meets with Deep Learning: an Evaluation of +<br/>Convolutional Neural Networks for Face Recognition +<br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</b><br/><b>Electronic Engineering and Computer Science, Queen Mary University of London, UK</b><br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Chinese Academy of Sciences, China♠ +</td><td>('38819702', 'Guosheng Hu', 'guosheng hu')<br/>('2653152', 'Yongxin Yang', 'yongxin yang')<br/>('1716143', 'Dong Yi', 'dong yi')<br/>('1748684', 'Josef Kittler', 'josef kittler')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{g.hu,j.kittler,w.christmas}@surrey.ac.uk,{yongxin.yang,t.hospedales}@qmul.ac.uk, {szli,dyi}@cbsr.ia.ac.cn +</td></tr><tr><td>729dbe38538fbf2664bc79847601f00593474b05</td><td></td><td></td><td></td></tr><tr><td>729a9d35bc291cc7117b924219bef89a864ce62c</td><td>Recognizing Material Properties from Images </td><td>('40116153', 'Gabriel Schwartz', 'gabriel schwartz')<br/>('1708819', 'Ko Nishino', 'ko nishino')</td><td></td></tr><tr><td>72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114</td><td>Face Alignment using Cascade Gaussian Process Regression Trees <br/><b>Korea Advanced institute of Science and Technology</b><br/>Face alignment is a task to locate fiducial facial landmark points, such as eye <br/>corners, nose tip, mouth corners, and chin, in a face image. Shape regression @@ -18652,7 +23559,10 @@ <br/> 1 Department of Computer Science and Engineering <br/><b>Stamford University Bangladesh, Dhaka-1209, Bangladesh</b><br/>2 Department of Computer Science and Engineering <br/><b>Stamford University Bangladesh, Dhaka-1209, Bangladesh</b><br/>3 Department of Computer Science and Engineering -<br/><b>Stamford University Bangladesh, Dhaka-1209, Bangladesh</b></td><td>('7484236', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')<br/>('7497618', 'Tarin Kazi', 'tarin kazi')</td><td></td></tr><tr><td>72c0c8deb9ea6f59fde4f5043bff67366b86bd66</td><td>Age progression in Human Faces : A Survey +<br/><b>Stamford University Bangladesh, Dhaka-1209, Bangladesh</b></td><td>('7484236', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')<br/>('7497618', 'Tarin Kazi', 'tarin kazi')</td><td></td></tr><tr><td>72cbbdee4f6eeee8b7dd22cea6092c532271009f</td><td>Adversarial Occlusion-aware Face Detection +<br/>1National Laboratory of Pattern Recognition, CASIA +<br/>2Center for Research on Intelligent Perception and Computing, CASIA +<br/><b>University of Chinese Academy of Sciences, Beijing 100190, China</b></td><td>('3065234', 'Yujia Chen', 'yujia chen')<br/>('3051419', 'Lingxiao Song', 'lingxiao song')<br/>('1705643', 'Ran He', 'ran he')</td><td></td></tr><tr><td>721d9c387ed382988fce6fa864446fed5fb23173</td><td></td><td></td><td></td></tr><tr><td>72c0c8deb9ea6f59fde4f5043bff67366b86bd66</td><td>Age progression in Human Faces : A Survey </td><td>('34713849', 'Narayanan Ramanathan', 'narayanan ramanathan')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>721e5ba3383b05a78ef1dfe85bf38efa7e2d611d</td><td>BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE <br/>Convolutional aggregation of local evidence <br/>for large pose face alignment @@ -18687,6 +23597,10 @@ <br/>ElectricalandComputerEngineeringDepartment <br/><b>UniversityofMaryland</b><br/><b>CollegePark, MD</b><br/>ThesupportoftheO(cid:14)ceofNavalResearchunderGrantN </td><td></td><td>Email:fwyzhao,ramag@cfar.umd.edu +</td></tr><tr><td>725c3605c2d26d113637097358cd4c08c19ff9e1</td><td>Deep Reasoning with Knowledge Graph for Social Relationship Understanding +<br/><b>School of Data and Computer Science, Sun Yat-sen University, China</b><br/>2 SenseTime Research, China +</td><td>('29988001', 'Zhouxia Wang', 'zhouxia wang')<br/>('1765674', 'Tianshui Chen', 'tianshui chen')<br/>('12254824', 'Weihao Yu', 'weihao yu')<br/>('47413456', 'Hui Cheng', 'hui cheng')<br/>('1737218', 'Liang Lin', 'liang lin')</td><td>zhouzi1212,tianshuichen,jimmy.sj.ren,weihaoyu6@gmail.com, +<br/>chengh9@mail.sysu.edu.cn, linliang@ieee.org </td></tr><tr><td>445461a34adc4bcdccac2e3c374f5921c93750f8</td><td>Emotional Expression Classification using Time-Series Kernels∗ </td><td>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')<br/>('1733113', 'Takeo Kanade', 'takeo kanade')</td><td>1E¨otv¨os Lor´and University, Budapest, Hungary, {andras.lorincz,szzoli}@elte.hu <br/>2Carnegie Mellon University, Pittsburgh, PA, laszlo.jeni@ieee.org,tk@cs.cmu.edu @@ -18735,14 +23649,21 @@ </td><td>('2716937', 'Srikanth Muralidharan', 'srikanth muralidharan')<br/>('2190580', 'Simon Fraser', 'simon fraser')<br/>('15695326', 'Mehrsan Javan', 'mehrsan javan')<br/>('10771328', 'Greg Mori', 'greg mori')<br/>('2190580', 'Simon Fraser', 'simon fraser')</td><td>smuralid@sfu.ca <br/>mehrsan@sportlogiq.com <br/>mori@cs.sfu.ca -</td></tr><tr><td>44f48a4b1ef94a9104d063e53bf88a69ff0f55f3</td><td>Automatically Building Face Datasets of New Domains +</td></tr><tr><td>44b1399e8569a29eed0d22d88767b1891dbcf987</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +<br/>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +<br/>Learning Multi-modal Latent Attributes +</td><td>('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')</td><td></td></tr><tr><td>44f48a4b1ef94a9104d063e53bf88a69ff0f55f3</td><td>Automatically Building Face Datasets of New Domains <br/>from Weakly Labeled Data with Pretrained Models -<br/><b>Sun Yat-sen University</b></td><td>('2442939', 'Shengyong Ding', 'shengyong ding')<br/>('4080607', 'Junyu Wu', 'junyu wu')<br/>('1723992', 'Wei Xu', 'wei xu')<br/>('38255852', 'Hongyang Chao', 'hongyang chao')</td><td></td></tr><tr><td>44a3ec27f92c344a15deb8e5dc3a5b3797505c06</td><td>A Taxonomy of Part and Attribute Discovery +<br/><b>Sun Yat-sen University</b></td><td>('2442939', 'Shengyong Ding', 'shengyong ding')<br/>('4080607', 'Junyu Wu', 'junyu wu')<br/>('1723992', 'Wei Xu', 'wei xu')<br/>('38255852', 'Hongyang Chao', 'hongyang chao')</td><td></td></tr><tr><td>446dc1413e1cfaee0030dc74a3cee49a47386355</td><td>Recent Advances in Zero-shot Recognition +</td><td>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')<br/>('14517812', 'Leonid Sigal', 'leonid sigal')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')</td><td></td></tr><tr><td>44a3ec27f92c344a15deb8e5dc3a5b3797505c06</td><td>A Taxonomy of Part and Attribute Discovery <br/>Techniques </td><td>('35208858', 'Subhransu Maji', 'subhransu maji')</td><td></td></tr><tr><td>44aeda8493ad0d44ca1304756cc0126a2720f07b</td><td>Face Alive Icons </td><td>('1685323', 'Xin Li', 'xin li')<br/>('2304980', 'Chieh-Chih Chang', 'chieh-chih chang')<br/>('1679040', 'Shi-Kuo Chang', 'shi-kuo chang')</td><td>1University of Pittsburgh, USA,{flying, chang}@cs.pitt.edu <br/>2Industrial Technology Research Institute, Taiwan, chieh@itri.org.tw -</td></tr><tr><td>449b1b91029e84dab14b80852e35387a9275870e</td><td></td><td></td><td></td></tr><tr><td>44078d0daed8b13114cffb15b368acc467f96351</td><td></td><td></td><td></td></tr><tr><td>44c9b5c55ca27a4313daf3760a3f24a440ce17ad</td><td>Revisiting hand-crafted feature for action recognition: +</td></tr><tr><td>449b1b91029e84dab14b80852e35387a9275870e</td><td></td><td></td><td></td></tr><tr><td>44078d0daed8b13114cffb15b368acc467f96351</td><td></td><td></td><td></td></tr><tr><td>44d23df380af207f5ac5b41459c722c87283e1eb</td><td>Human Attribute Recognition by Deep +<br/>Hierarchical Contexts +<br/><b>The Chinese University of Hong Kong</b></td><td>('47002704', 'Yining Li', 'yining li')<br/>('2000034', 'Chen Huang', 'chen huang')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>{ly015,chuang,ccloy,xtang}@ie.cuhk.edu.hk +</td></tr><tr><td>44c9b5c55ca27a4313daf3760a3f24a440ce17ad</td><td>Revisiting hand-crafted feature for action recognition: <br/>a set of improved dense trajectories <br/><b>Hiroshima University, Japan</b><br/>ENSICAEN, France <br/><b>Hiroshima University, Japan</b></td><td>('2223849', 'Kenji Matsui', 'kenji matsui')<br/>('1744862', 'Toru Tamaki', 'toru tamaki')<br/>('30171131', 'Gwladys Auffret', 'gwladys auffret')<br/>('1688940', 'Bisser Raytchev', 'bisser raytchev')<br/>('1686272', 'Kazufumi Kaneda', 'kazufumi kaneda')</td><td></td></tr><tr><td>44dd150b9020b2253107b4a4af3644f0a51718a3</td><td>An Analysis of the Sensitivity of Active Shape @@ -18819,7 +23740,9 @@ <br/><b>Institute of Automation, Chinese Academy of Sciences</b><br/><b>Michigan State University</b></td><td>('8362374', 'Xiangyu Zhu', 'xiangyu zhu')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')<br/>('1704812', 'Hailin Shi', 'hailin shi')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{xiangyu.zhu,zlei,hailin.shi,szli}@nlpr.ia.ac.cn <br/>liuxm@msu.edu </td></tr><tr><td>2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40</td><td>Estimating Sheep Pain Level Using Facial Action Unit Detection -<br/><b>Computer Laboratory, University of Cambridge, Cambridge, UK</b></td><td>('9871228', 'Yiting Lu', 'yiting lu')<br/>('2022940', 'Marwa Mahmoud', 'marwa mahmoud')<br/>('39626495', 'Peter Robinson', 'peter robinson')</td><td></td></tr><tr><td>2ae139b247057c02cda352f6661f46f7feb38e45</td><td>Combining Modality Specific Deep Neural Networks for +<br/><b>Computer Laboratory, University of Cambridge, Cambridge, UK</b></td><td>('9871228', 'Yiting Lu', 'yiting lu')<br/>('2022940', 'Marwa Mahmoud', 'marwa mahmoud')<br/>('39626495', 'Peter Robinson', 'peter robinson')</td><td></td></tr><tr><td>2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c</td><td>Robust Registration and Geometry Estimation from Unstructured +<br/>Facial Scans +</td><td>('19214361', 'Maxim Bazik', 'maxim bazik')</td><td></td></tr><tr><td>2ae139b247057c02cda352f6661f46f7feb38e45</td><td>Combining Modality Specific Deep Neural Networks for <br/>Emotion Recognition in Video <br/>1École Polytechique de Montréal, Université de Montréal, Montréal, Canada <br/>2Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada @@ -18840,7 +23763,41 @@ <br/>cm3052@columbia.edu <br/>sfchang@ee.columbia.edu <br/>sanjivk@google.com -</td></tr><tr><td>2a02355c1155f2d2e0cf7a8e197e0d0075437b19</td><td></td><td></td><td></td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>Learning Social Relation Traits from Face Images +</td></tr><tr><td>2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83</td><td>121 +<br/>The Effect of Computer-Generated Descriptions +<br/>on Photo-Sharing Experiences of People With +<br/>Visual Impairments +<br/>Like sighted people, visually impaired people want to share photographs on social networking services, but +<br/>find it difficult to identify and select photos from their albums. We aimed to address this problem by +<br/>incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature. We +<br/>interviewed 12 visually impaired participants to understand their photo-sharing experiences and designed a +<br/>photo description feature for the Facebook mobile application. We evaluated this feature with six +<br/>participants in a seven-day diary study. We found that participants used the descriptions to recall and +<br/>organize their photos, but they hesitated to upload photos without a sighted person’s input. In addition to +<br/>basic information about photo content, participants wanted to know more details about salient objects and +<br/>people, and whether the photos reflected their personal aesthetic. We discuss these findings from the lens of +<br/>self-disclosure and self-presentation theories and propose new computer vision research directions that will +<br/>better support visual content sharing by visually impaired people. +<br/>CCS Concepts: • Information interfaces and presentations → Multimedia and information systems; • +<br/>Social and professional topics → People with disabilities +<br/>KEYWORDS +<br/>Visual impairments; computer-generated descriptions; SNSs; photo sharing; self-disclosure; self-presentation +<br/>ACM Reference format: +<br/>The Effect of Computer-Generated Descriptions On Photo-Sharing Experiences of People With Visual +<br/>Impairments. Proc. ACM Hum.-Comput. Interact. 1, CSCW. 121 (November 2017), 22 pages. +<br/>DOI: 10.1145/3134756 +<br/>1 INTRODUCTION +<br/>Sharing memories and experiences via photos is a common way to engage with others on social networking +<br/>services (SNSs) [39,46,51]. For instance, Facebook users uploaded more than 350 million photos a day [24] +<br/>and Twitter, which initially supported only text in tweets, now has more than 28.4% of tweets containing +<br/>images [39]. Visually impaired people (both blind and low vision) have a strong presence on SNS and are +<br/>interested in sharing photos [50]. They take photos for the same reasons that sighted people do: sharing +<br/>daily moments with their sighted friends and family [30,32]. A prior study showed that visually impaired +<br/>people shared a relatively large number of photos on Facebook—only slightly less than their sighted +<br/>counterparts [50]. +<br/> +<br/> PACM on Human-Computer Interaction, Vol. 1, No. 2, Article 121. Publication date: November 2017 +</td><td>('2582568', 'Yuhang Zhao', 'yuhang zhao')<br/>('1968133', 'Shaomei Wu', 'shaomei wu')<br/>('39685591', 'Lindsay Reynolds', 'lindsay reynolds')<br/>('3283573', 'Shiri Azenkot', 'shiri azenkot')</td><td></td></tr><tr><td>2a02355c1155f2d2e0cf7a8e197e0d0075437b19</td><td></td><td></td><td></td></tr><tr><td>2a171f8d14b6b8735001a11c217af9587d095848</td><td>Learning Social Relation Traits from Face Images <br/><b>The Chinese University of Hong Kong</b></td><td>('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')<br/>('1693209', 'Ping Luo', 'ping luo')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>zz013@ie.cuhk.edu.hk, pluo@ie.cuhk.edu.hk, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk </td></tr><tr><td>2aea27352406a2066ddae5fad6f3f13afdc90be9</td><td></td><td></td><td></td></tr><tr><td>2a0623ae989f2236f5e1fe3db25ab708f5d02955</td><td>3D Face Modelling for 2D+3D Face Recognition <br/>J.R. Tena Rodr´ıguez @@ -18857,6 +23814,11 @@ <br/>David Kriegman, Senior Member, IEEE </td><td>('2457452', 'Kuang-chih Lee', 'kuang-chih lee')<br/>('1788818', 'Jeffrey Ho', 'jeffrey ho')</td><td></td></tr><tr><td>2afdda6fb85732d830cea242c1ff84497cd5f3cb</td><td>Face Image Retrieval by Using Haar Features <br/><b>Institute ofInformation Science, Academia Sinica, Taipei, Taiwan</b><br/><b>Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan</b><br/><b>Tamkang University, Taipei, Taiwan</b></td><td>('2609751', 'Bau-Cheng Shen', 'bau-cheng shen')<br/>('1720473', 'Chu-Song Chen', 'chu-song chen')<br/>('1679560', 'Hui-Huang Hsu', 'hui-huang hsu')</td><td>{bcshen, song} @ iis.sinica. edu. tw, h_hsu@mail. tku. edu. tw +</td></tr><tr><td>2ab034e1f54c37bfc8ae93f7320160748310dc73</td><td>Siamese Capsule Networks +<br/>James O’ Neill +<br/>Department of Computer Science +<br/><b>University of Liverpool</b><br/>Liverpool, L69 3BX +</td><td></td><td>james.o-neill@liverpool.ac.uk </td></tr><tr><td>2ff9618ea521df3c916abc88e7c85220d9f0ff06</td><td>Facial Tic Detection Using Computer Vision <br/>Christopher D. Leveille <br/>March 20, 2014 @@ -18872,7 +23834,16 @@ </td><td>('1720307', 'Dong Zhang', 'dong zhang')<br/>('2405613', 'Omar Oreifej', 'omar oreifej')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td>dzhang@cs.ucf.edu <br/>oreifej@eecs.berkeley.edu <br/>shah@crcv.ucf.edu -</td></tr><tr><td>2fdce3228d384456ea9faff108b9c6d0cf39e7c7</td><td></td><td></td><td></td></tr><tr><td>2f7e9b45255c9029d2ae97bbb004d6072e70fa79</td><td>Noname manuscript No. +</td></tr><tr><td>2fdce3228d384456ea9faff108b9c6d0cf39e7c7</td><td></td><td></td><td></td></tr><tr><td>2ffcd35d9b8867a42be23978079f5f24be8d3e35</td><td> +<br/>ISSN XXXX XXXX © 2018 IJESC +<br/> +<br/> +<br/>Research Article Volume 8 Issue No.6 +<br/>Satellite based Image Processing using Data mining +<br/>E.Malleshwari1, S.Nirmal Kumar2, J.Dhinesh3 +<br/>Professor1, Assistant Professor2, PG Scholar3 +<br/>Department of Information Technology1, 2, Master of Computer Applications3 +<br/><b>Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India</b></td><td></td><td></td></tr><tr><td>2f7e9b45255c9029d2ae97bbb004d6072e70fa79</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>cvpaper.challenge in 2015 <br/>A review of CVPR2015 and DeepSurvey @@ -18918,14 +23889,31 @@ <br/><b>Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman</b><br/>2Department of Computer Science, Faculty of Electrical Engineering and Computer Science, <br/><b>VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic</b><br/>DOI: 10.15598/aeee.v14i5.1116 </td><td>('1681072', 'Ivan ZELINKA', 'ivan zelinka')<br/>('1856530', 'Petr SALOUN', 'petr saloun')<br/>('2053234', 'Jakub STONAWSKI', 'jakub stonawski')<br/>('2356663', 'Adam ONDREJKA', 'adam ondrejka')</td><td>ivan.zelinka@tdt.edu.vn, petr.saloun@vsb.cz, stonawski.jakub@gmail.com, adam.ondrejka@gmail.com -</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>Names and Faces in the News +</td></tr><tr><td>2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a</td><td>Hierarchical Video Generation from Orthogonal +<br/>Information: Optical Flow and Texture +<br/><b>The University of Tokyo</b><br/><b>The University of Tokyo</b><br/><b>The University of Tokyo</b><br/><b>The University of Tokyo / RIKEN</b></td><td>('8197937', 'Katsunori Ohnishi', 'katsunori ohnishi')<br/>('48333400', 'Shohei Yamamoto', 'shohei yamamoto')<br/>('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')<br/>('1790553', 'Tatsuya Harada', 'tatsuya harada')</td><td>ohnishi@mi.t.u-tokyo.ac.jp +<br/>yamamoto@mi.t.u-tokyo.ac.jp +<br/>ushiku@mi.t.u-tokyo.ac.jp +<br/>harada@mi.t.u-tokyo.ac.jp +</td></tr><tr><td>2f88d3189723669f957d83ad542ac5c2341c37a5</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018 +<br/>Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021.</td><td></td><td></td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>Names and Faces in the News <br/>Computer Science Division <br/>U.C. Berkeley <br/>Berkeley, CA 94720 </td><td>('1685538', 'Tamara L. Berg', 'tamara l. berg')<br/>('39668247', 'Alexander C. Berg', 'alexander c. berg')<br/>('34497462', 'Jaety Edwards', 'jaety edwards')<br/>('1965929', 'Michael Maire', 'michael maire')<br/>('6714943', 'Ryan White', 'ryan white')</td><td>daf@cs.berkeley.edu </td></tr><tr><td>2fa057a20a2b4a4f344988fee0a49fce85b0dc33</td><td></td><td></td><td></td></tr><tr><td>2f8ef26bfecaaa102a55b752860dbb92f1a11dc6</td><td>A Graph Based Approach to Speaker Retrieval in Talk <br/>Show Videos with Transcript-Based Supervision -</td><td>('1859487', 'Yina Han', 'yina han')<br/>('1774346', 'Guizhong Liu', 'guizhong liu')<br/>('1692389', 'Hichem Sahbi', 'hichem sahbi')<br/>('1693574', 'Gérard Chollet', 'gérard chollet')</td><td></td></tr><tr><td>2f184c6e2c31d23ef083c881de36b9b9b6997ce9</td><td>Polichotomies on Imbalanced Domains +</td><td>('1859487', 'Yina Han', 'yina han')<br/>('1774346', 'Guizhong Liu', 'guizhong liu')<br/>('1692389', 'Hichem Sahbi', 'hichem sahbi')<br/>('1693574', 'Gérard Chollet', 'gérard chollet')</td><td></td></tr><tr><td>2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd</td><td>Article +<br/>Robust Face Recognition Using the Deep C2D-CNN +<br/>Model Based on Decision-Level Fusion +<br/><b>School of Electronic and Information, Yangtze University, Jingzhou 434023, China</b><br/><b>National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University</b><br/>Jingzhou 434023, China +<br/>† These authors contributed equally to this work. +<br/>Received: 20 May 2018; Accepted: 25 June 2018; Published: 28 June 2018 +</td><td>('1723081', 'Jing Li', 'jing li')<br/>('48216473', 'Tao Qiu', 'tao qiu')<br/>('41208300', 'Chang Wen', 'chang wen')<br/>('36203475', 'Kai Xie', 'kai xie')</td><td>201501479@yangtzeu.edu.cn (J.L.); 500646@yangtzeu.edu.cn (K.X.); wenfangqing@yangtzeu.edu.cn (F-Q.W.) +<br/>School of Computer Science, Yangtze University, Jingzhou 434023, China; 201603441@yangtzeu.edu.cn +<br/>* Correspondence: 400100@yangtzeu.edu.cn; Tel.: +86-136-9731-5482 +</td></tr><tr><td>2f184c6e2c31d23ef083c881de36b9b9b6997ce9</td><td>Polichotomies on Imbalanced Domains <br/>by One-per-Class Compensated Reconstruction Rule <br/>Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy </td><td>('1720099', 'Paolo Soda', 'paolo soda')</td><td>{r.dambrosio,p.soda}@unicampus.it @@ -18951,7 +23939,7 @@ <br/>1Data61/CSIRO, <br/>2Australian Centre for Robotic Vision <br/><b>The Australian National University, Canberra, Australia</b></td><td>('36541522', 'Jue Wang', 'jue wang')<br/>('2691929', 'Anoop Cherian', 'anoop cherian')<br/>('2377076', 'Stephen Gould', 'stephen gould')</td><td>firstname.lastname@anu.edu.au -</td></tr><tr><td>2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1</td><td>Facial Expression Recognition Using a Hybrid CNN–SIFT Aggregator +</td></tr><tr><td>2fea258320c50f36408032c05c54ba455d575809</td><td></td><td></td><td></td></tr><tr><td>2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1</td><td>Facial Expression Recognition Using a Hybrid CNN–SIFT Aggregator <br/>Mundher Ahmed Al-Shabi <br/>Tee Connie <br/>Faculty of Information Science and Technology (FIST) @@ -18989,7 +23977,10 @@ <br/>Prof. Francesco G. B. De Natale <br/>Universit`a degli Studi di Trento <br/>February 2014 -</td><td>('2598811', 'Duc-Tien Dang-Nguyen', 'duc-tien dang-nguyen')</td><td></td></tr><tr><td>439ac8edfa1e7cbc65474cab544a5b8c4c65d5db</td><td>SIViP (2011) 5:401–413 +</td><td>('2598811', 'Duc-Tien Dang-Nguyen', 'duc-tien dang-nguyen')</td><td></td></tr><tr><td>438c4b320b9a94a939af21061b4502f4a86960e3</td><td>Reconstruction-Based Disentanglement for Pose-invariant Face Recognition +<br/><b>Rutgers, The State University of New Jersey</b><br/><b>University of California, San Diego</b><br/>‡ NEC Laboratories America +</td><td>('4340744', 'Xi Peng', 'xi peng')<br/>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1729571', 'Kihyuk Sohn', 'kihyuk sohn')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>{xipeng.cs, dnm}@rutgers.edu, {xiangyu,ksohn,manu}@nec-labs.com +</td></tr><tr><td>439ac8edfa1e7cbc65474cab544a5b8c4c65d5db</td><td>SIViP (2011) 5:401–413 <br/>DOI 10.1007/s11760-011-0244-6 <br/>ORIGINAL PAPER <br/>Face authentication with undercontrolled pose and illumination @@ -19044,7 +24035,7 @@ </td><td>('9318822', 'Mahesh Goyani', 'mahesh goyani')<br/>('40632096', 'Ronak Paun', 'ronak paun')<br/>('40803051', 'Sardar Patel', 'sardar patel')<br/>('40803051', 'Sardar Patel', 'sardar patel')<br/>('40803051', 'Sardar Patel', 'sardar patel')</td><td>e- mail : mgoyani@gmail.com <br/>e- mail : akashdhorajiya@gmail.com <br/>e- mail : ronak_paun@yahoo.com -</td></tr><tr><td>4350bb360797a4ade4faf616ed2ac8e27315968e</td><td><b>MITSUBISHI ELECTRIC RESEARCH LABORATORIES</b><br/>http://www.merl.com +</td></tr><tr><td>43e268c118ac25f1f0e984b57bc54f0119ded520</td><td></td><td></td><td></td></tr><tr><td>4350bb360797a4ade4faf616ed2ac8e27315968e</td><td><b>MITSUBISHI ELECTRIC RESEARCH LABORATORIES</b><br/>http://www.merl.com <br/>Edge Suppression by Gradient Field <br/>Transformation using Cross-Projection <br/>Tensors @@ -19097,15 +24088,31 @@ <br/>Chennai, India </td><td>('1717115', 'Anurag Mittal', 'anurag mittal')</td><td>akatti@cse.iitm.ac.in <br/>amittal@cse.iitm.ac.in +</td></tr><tr><td>432d8cba544bf7b09b0455561fea098177a85db1</td><td>Published as a conference paper at ICLR 2017 +<br/>TOWARDS A NEURAL STATISTICIAN +<br/>Harrison Edwards +<br/>School of Informatics +<br/><b>University of Edinburgh</b><br/>Edinburgh, UK +<br/>Amos Storkey +<br/>School of Informatics +<br/><b>University of Edinburgh</b><br/>Edinburgh, UK +</td><td></td><td>H.L.Edwards@sms.ed.ac.uk +<br/>A.Storkey@ed.ac.uk </td></tr><tr><td>43ed518e466ff13118385f4e5d039ae4d1c000fb</td><td>Classification of Occluded Objects using Fast Recurrent <br/>Processing <br/>Ozgur Yilmaza,∗ <br/><b>aTurgut Ozal University, Ankara Turkey</b></td><td></td><td></td></tr><tr><td>439647914236431c858535a2354988dde042ef4d</td><td>Face Illumination Normalization on Large and Small Scale Features <br/><b>School of Mathematics and Computational Science, Sun Yat-sen University, China</b><br/><b>School of Information Science and Technology, Sun Yat-sen University, China</b><br/>3 Guangdong Province Key Laboratory of Information Security, China, <br/><b>Hong Kong Baptist University</b></td><td>('2002129', 'Xiaohua Xie', 'xiaohua xie')<br/>('3333315', 'Wei-Shi Zheng', 'wei-shi zheng')<br/>('1768574', 'Pong C. Yuen', 'pong c. yuen')</td><td>Email: sysuxiexh@gmail.com, wszheng@ieee.org, stsljh@mail.sysu.edu.cn, pcyuen@comp.hkbu.edu.hk -</td></tr><tr><td>439ca6ded75dffa5ddea203dde5e621dc4a88c3e</td><td>Robust Real-time Performance-driven 3D Face Tracking +</td></tr><tr><td>43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a</td><td>Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl +<br/>Data: 04/05/2018 16:53:32 +<br/>U M CS +</td><td></td><td></td></tr><tr><td>439ca6ded75dffa5ddea203dde5e621dc4a88c3e</td><td>Robust Real-time Performance-driven 3D Face Tracking <br/><b>School of Computer Science and Engineering, Nanyang Technological University, Singapore</b><br/><b>Rutgers University, USA</b></td><td>('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')<br/>('1688642', 'Jianfei Cai', 'jianfei cai')<br/>('1775268', 'Tat-Jen Cham', 'tat-jen cham')</td><td>{hxp1,vladimir}@cs.rutgers.edu <br/>{asjfcai,astfcham}@ntu.edu.sg +</td></tr><tr><td>88e090ffc1f75eed720b5afb167523eb2e316f7f</td><td>Attribute-Based Transfer Learning for Object +<br/>Categorization with Zero/One Training Example +<br/><b>University of Maryland, College Park, MD, USA</b></td><td>('3099583', 'Xiaodong Yu', 'xiaodong yu')<br/>('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')</td><td>xdyu@umiacs.umd.edu, yiannis@cs.umd.edu </td></tr><tr><td>8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4</td><td>AUTOMATIC FACIAL EXPRESSION RECOGNITION FOR AFFECTIVE COMPUTING <br/>BASED ON BAG OF DISTANCES <br/><b>National Chung Cheng University, Chiayi, Taiwan, R.O.C</b><br/>E-mail: {hfs95p,wylin}cs.ccu.edu.tw @@ -19118,7 +24125,13 @@ </td><td>('2040369', 'Zeyu Li', 'zeyu li')</td><td></td></tr><tr><td>889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7</td><td>174 <br/>Using Support Vector Machines to Enhance the <br/>Performance of Bayesian Face Recognition -</td><td>('1911510', 'Zhifeng Li', 'zhifeng li')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>88f7a3d6f0521803ca59fde45601e94c3a34a403</td><td>Semantic Aware Video Transcription +</td><td>('1911510', 'Zhifeng Li', 'zhifeng li')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>88a898592b4c1dfd707f04f09ca58ec769a257de</td><td>MobileFace: 3D Face Reconstruction +<br/>with Efficient CNN Regression +<br/>1 VisionLabs, Amsterdam, The Netherlands +<br/>2 Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL +<br/><b>Research University, ENS/INRIA/CNRS UMR 8548, Paris, France</b></td><td>('51318557', 'Nikolai Chinaev', 'nikolai chinaev')<br/>('2564281', 'Alexander Chigorin', 'alexander chigorin')<br/>('1785596', 'Ivan Laptev', 'ivan laptev')</td><td>{n.chinaev, a.chigorin}@visionlabs.ru +<br/>ivan.laptev@inria.fr +</td></tr><tr><td>88f7a3d6f0521803ca59fde45601e94c3a34a403</td><td>Semantic Aware Video Transcription <br/>Using Random Forest Classifiers <br/><b>University of Southern California, Institute for Robotics and Intelligent Systems</b><br/>Los Angeles, CA 90089, USA </td><td>('1726241', 'Chen Sun', 'chen sun')</td><td></td></tr><tr><td>8812aef6bdac056b00525f0642702ecf8d57790b</td><td>A Unified Features Approach to Human Face Image @@ -19228,7 +24241,10 @@ <br/>Dino.Miniutti@ausport.gov.au </td></tr><tr><td>88f2952535df5859c8f60026f08b71976f8e19ec</td><td>A neural network framework for face <br/>recognition by elastic bunch graph matching -</td><td>('37048377', 'Francisco A. Pujol López', 'francisco a. pujol lópez')<br/>('3144590', 'Higinio Mora Mora', 'higinio mora mora')<br/>('2260459', 'José A. Girona Selva', 'josé a. girona selva')</td><td></td></tr><tr><td>8862a573a42bbaedd392e9e634c1ccbfd177a01d</td><td>3D Face Tracking and Texture Fusion in the Wild +</td><td>('37048377', 'Francisco A. Pujol López', 'francisco a. pujol lópez')<br/>('3144590', 'Higinio Mora Mora', 'higinio mora mora')<br/>('2260459', 'José A. Girona Selva', 'josé a. girona selva')</td><td></td></tr><tr><td>8818b12aa0ff3bf0b20f9caa250395cbea0e8769</td><td>Fashion Conversation Data on Instagram +<br/>∗Graduate School of Culture Technology, KAIST, South Korea +<br/>†Department of Communication Studies, UCLA, USA +</td><td>('3459091', 'Yu-i Ha', 'yu-i ha')<br/>('2399803', 'Sejeong Kwon', 'sejeong kwon')<br/>('1775511', 'Meeyoung Cha', 'meeyoung cha')<br/>('1834047', 'Jungseock Joo', 'jungseock joo')</td><td></td></tr><tr><td>8862a573a42bbaedd392e9e634c1ccbfd177a01d</td><td>3D Face Tracking and Texture Fusion in the Wild <br/>Centre for Vision, Speech and Signal Processing <br/>Image Understanding and Interactive Robotics <br/><b>University of Surrey</b><br/>Guildford, GU2 7XH, United Kingdom @@ -19241,7 +24257,33 @@ <br/>Human Action Recognition in Unconstrained <br/>Videos by Explicit Motion Modeling </td><td>('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')<br/>('9227981', 'Qi Dai', 'qi dai')<br/>('39059457', 'Wei Liu', 'wei liu')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')<br/>('1751681', 'Chong-Wah Ngo', 'chong-wah ngo')</td><td></td></tr><tr><td>8855d6161d7e5b35f6c59e15b94db9fa5bbf2912</td><td>COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD -</td><td></td><td></td></tr><tr><td>88bee9733e96958444dc9e6bef191baba4fa6efa</td><td>Extending Face Identification to +</td><td></td><td></td></tr><tr><td>8895d6ae9f095a8413f663cc83f5b7634b3dc805</td><td>BEHL ET AL: INCREMENTAL TUBE CONSTRUCTION FOR HUMAN ACTION DETECTION 1 +<br/>Incremental Tube Construction for Human +<br/>Action Detection +<br/>Harkirat Singh Behl1 +<br/>1 Department of Engineering Science +<br/><b>University of Oxford</b><br/>Oxford, UK +<br/>2 Think Tank Team +<br/>Samsung Research America +<br/>Mountain View, CA +<br/>3 Dept. of Computing and +<br/>Communication Technologies +<br/><b>Oxford Brookes University</b><br/>Oxford, UK +<br/>(a) Illustrative results on a video sequence from the LIRIS-HARL dataset [23]. Two people enter a room +<br/>Figure 1: +<br/>and put/take an object from a box (frame 150). They then shake hands (frame 175) and start having a discussion +<br/>(frame 350). In frame 450, another person enters the room, shakes hands, and then joins the discussion. Each +<br/>action tube instance is numbered and coloured according to its action category. We selected this video to show that +<br/>our tube construction algorithm can handle very complex situations in which multiple distinct action categories +<br/>occur in sequence and at concurrent times. (b) Action tubes drawn as viewed from above, compared to (c) the +<br/>ground truth action tubes. +</td><td>('3019396', 'Michael Sapienza', 'michael sapienza')<br/>('1931660', 'Gurkirt Singh', 'gurkirt singh')<br/>('49348905', 'Suman Saha', 'suman saha')<br/>('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')<br/>('1730268', 'Philip H. S. Torr', 'philip h. s. torr')</td><td>harkirat@robots.ox.ac.uk +<br/>m.sapienza@samsung.com +<br/>gurkirt.singh-2015@brookes.ac.uk +<br/>suman.saha-2014@brookes.ac.uk +<br/>fabio.cuzzolin@brookes.ac.uk +<br/>phst@robots.ox.ac.uk +</td></tr><tr><td>88bee9733e96958444dc9e6bef191baba4fa6efa</td><td>Extending Face Identification to <br/>Open-Set Face Recognition <br/>Department of Computer Science <br/>Universidade Federal de Minas Gerais @@ -19391,7 +24433,78 @@ <br/>201 Washington Rd, <br/>Princeton, NJ, 08540 </td><td>('1981308', 'Manika Puri', 'manika puri')</td><td>{mpuri, zzhu, qyu, adivakaran, hsawhney}@sarnoff.com -</td></tr><tr><td>6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9</td><td></td><td></td><td></td></tr><tr><td>6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0</td><td>Facial expression recognition in the wild using improved dense trajectories and +</td></tr><tr><td>9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd</td><td>EURASIP Journal on Applied Signal Processing 2005:13, 2091–2100 +<br/>c(cid:1) 2005 Hindawi Publishing Corporation +<br/>Spatio-Temporal Graphical-Model-Based +<br/>Multiple Facial Feature Tracking +<br/>Congyong Su +<br/><b>College of Computer Science, Zhejiang University, Hangzhou 310027, China</b><br/>Li Huang +<br/><b>College of Computer Science, Zhejiang University, Hangzhou 310027, China</b><br/>Received 1 January 2004; Revised 20 February 2005 +<br/>It is challenging to track multiple facial features simultaneously when rich expressions are presented on a face. We propose a two- +<br/>step solution. In the first step, several independent condensation-style particle filters are utilized to track each facial feature in the +<br/>temporal domain. Particle filters are very effective for visual tracking problems; however multiple independent trackers ignore +<br/>the spatial constraints and the natural relationships among facial features. In the second step, we use Bayesian inference—belief +<br/>propagation—to infer each facial feature’s contour in the spatial domain, in which we learn the relationships among contours of +<br/>facial features beforehand with the help of a large facial expression database. The experimental results show that our algorithm +<br/>can robustly track multiple facial features simultaneously, while there are large interframe motions with expression changes. +<br/>Keywords and phrases: facial feature tracking, particle filter, belief propagation, graphical model. +<br/>1. +<br/>INTRODUCTION +<br/>Multiple facial feature tracking is very important in the com- +<br/>puter vision field: it needs to be carried out before video- +<br/>based facial expression analysis and expression cloning. Mul- +<br/>tiple facial feature tracking is also very challenging be- +<br/>cause there are plentiful nonrigid motions in facial fea- +<br/>tures besides rigid motions in faces. Nonrigid facial fea- +<br/>ture motions are usually very rapid and often form dense +<br/>clutter by facial features themselves. Only using traditional +<br/>Kalman filter is inadequate because it is based on Gaus- +<br/>sian density, and works relatively poorly in clutter, which +<br/>causes the density for facial feature’s contour to be multi- +<br/>modal and therefore non-Gaussian. Isard and Blake [1] firstly +<br/>proposed a face tracker by particle filters—condensation— +<br/>which is more effective in clutter than comparable Kalman +<br/>filter. +<br/>Although particle filters are often very effective for visual +<br/>tracking problems, they are specialized to temporal problems +<br/>whose corresponding graphs are simple Markov chains (see +<br/>Figure 1). There is often structure within each time instant +<br/>that is ignored by particle filters. For example, in multiple +<br/>facial feature tracking, the expressions of each facial feature +<br/>(such as eyes, brows, lips) are closely related; therefore a more +<br/>complex graph should be formulated. +<br/>The contribution of this paper is extending particle filters +<br/>to track multiple facial features simultaneously. The straight- +<br/>forward approach of tracking each facial feature by one in- +<br/>dependent particle filter is questionable, because influences +<br/>and actions among facial features are not taken into account. +<br/>In this paper, we propose a spatio-temporal graphical +<br/>model for multiple facial feature tracking (see Figure 2). Here +<br/>the graphical model is not a 2D or a 3D facial mesh model. +<br/>In the spatial domain, the model is shown in Figure 3, where +<br/>xi is a hidden random variable and yi is a noisy local ob- +<br/>servation. Nonparametric belief propagation is used to infer +<br/>facial feature’s interrelationships in a part-based face model, +<br/>allowing positions and states of some features in clutter to +<br/>be recovered. Facial structure is also taken into account, be- +<br/>cause facial features have spatial position constraints [2]. In +<br/>the temporal domain, every facial feature forms a Markov +<br/>chain (see Figure 1). +<br/>After briefly reviewing related work in Section 2, we +<br/>introduce the details of our algorithm in Sections 3 and +<br/>4. Many convincing experimental results are shown in +<br/>Section 5. Conclusions are given in Section 6. +<br/>2. RELATED WORK +<br/>After the pioneering work of Isard and Blake [1] who +<br/>creatively used particle filters for visual tracking, many +</td><td></td><td>Email: su@cs.zju.edu.cn +<br/>Email: lihuang@cs.zju.edu.cn +</td></tr><tr><td>6b333b2c6311e36c2bde920ab5813f8cfcf2b67b</td><td></td><td></td><td></td></tr><tr><td>6b3e360b80268fda4e37ff39b7f303e3684e8719</td><td>FACE RECOGNITION FROM SKETCHES USING ADVANCED +<br/>CORRELATION FILTERS USING HYBRID EIGENANALYSIS +<br/>FOR FACE SYNTHESIS +<br/><b>Language Technology Institute, Carnegie Mellon Universty</b><br/><b>Carnegie Mellon University</b><br/>Keywords: +<br/>Face from sketch synthesis, face recognition, eigenface, advanced correlation filters, OTSDF. +</td><td>('3036546', 'Yung-hui Li', 'yung-hui li')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td></td></tr><tr><td>6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9</td><td></td><td></td><td></td></tr><tr><td>6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0</td><td>Facial expression recognition in the wild using improved dense trajectories and <br/>Fisher vector encoding <br/><b>Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey</b><br/><b>Bo gazic i University, Istanbul, Turkey</b></td><td>('2471932', 'Sadaf Afshar', 'sadaf afshar')<br/>('1764521', 'Albert Ali Salah', 'albert ali salah')</td><td>{sadaf.afshar, salah}@boun.edu.tr </td></tr><tr><td>6bca0d1f46b0f7546ad4846e89b6b842d538ee4e</td><td>FACE RECOGNITION FROM SURVEILLANCE-QUALITY VIDEO @@ -19413,7 +24526,12 @@ <br/>JANUARY 2012 <br/>Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny </td><td>('1843477', 'Roy Wallace', 'roy wallace')<br/>('1698382', 'Sébastien Marcel', 'sébastien marcel')</td><td>T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch -</td></tr><tr><td>6be0ab66c31023762e26d309a4a9d0096f72a7f0</td><td>Enhance Visual Recognition under Adverse +</td></tr><tr><td>6b8d0569fffce5cc221560d459d6aa10c4db2f03</td><td>Interlinked Convolutional Neural Networks for +<br/>Face Parsing +<br/>State Key Laboratory of Intelligent Technology and Systems +<br/>Tsinghua National Laboratory for Information Science and Technology (TNList) +<br/>Department of Computer Science and Technology +<br/><b>Tsinghua University, Beijing 100084, China</b></td><td>('1879713', 'Yisu Zhou', 'yisu zhou')<br/>('1705418', 'Xiaolin Hu', 'xiaolin hu')<br/>('49846744', 'Bo Zhang', 'bo zhang')</td><td></td></tr><tr><td>6be0ab66c31023762e26d309a4a9d0096f72a7f0</td><td>Enhance Visual Recognition under Adverse <br/>Conditions via Deep Networks </td><td>('1771885', 'Ding Liu', 'ding liu')<br/>('2392101', 'Bowen Cheng', 'bowen cheng')<br/>('2969311', 'Zhangyang Wang', 'zhangyang wang')<br/>('40479011', 'Haichao Zhang', 'haichao zhang')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td></td></tr><tr><td>6bcee7dba5ed67b3f9926d2ae49f9a54dee64643</td><td>Assessment of Time Dependency in Face Recognition: <br/>An Initial Study @@ -19497,7 +24615,20 @@ <br/>This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been <br/>accepted for inclusion in Language Technologies Institute by an authorized administrator of Research Showcase @ CMU. For more information, please <br/>contact research-showcase@andrew.cmu.edu. -</td></tr><tr><td>6bb630dfa797168e6627d972560c3d438f71ea99</td><td></td><td></td><td></td></tr><tr><td>0729628db4bb99f1f70dd6cb2353d7b76a9fce47</td><td>Separating Pose and Expression in Face Images: +</td></tr><tr><td>6bb630dfa797168e6627d972560c3d438f71ea99</td><td></td><td></td><td></td></tr><tr><td>6b6ff9d55e1df06f8b3e6f257e23557a73b2df96</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 61– No.17, January 2013 +<br/>Survey of Threats to the Biometric Authentication +<br/>Systems and Solutions +<br/>Research Scholor,Mewar +<br/><b>University, Chitorgarh. (INDIA</b><br/>P.C.Gupta +<br/><b>Kota University, Kota(INDIA</b><br/>Khushboo Mantri +<br/><b>M.tech.student, Arya College of</b><br/>engineering ,Jaipur(INDIA) +</td><td>('2875951', 'Sarika Khandelwal', 'sarika khandelwal')</td><td></td></tr><tr><td>07377c375ac76a34331c660fe87ebd7f9b3d74c4</td><td>Detailed Human Avatars from Monocular Video +<br/>1Computer Graphics Lab, TU Braunschweig, Germany +<br/><b>Max Planck Institute for Informatics, Saarland Informatics Campus, Germany</b><br/>Figure 1: Our method creates a detailed avatar from a monocular video of a person turning around. Based on the SMPL +<br/>model, we first compute a medium-level avatar, then add subject-specific details and finally generate a seamless texture. +</td><td>('1914886', 'Thiemo Alldieck', 'thiemo alldieck')<br/>('9765909', 'Weipeng Xu', 'weipeng xu')</td><td>{alldieck,magnor}@cg.cs.tu-bs.de {wxu,theobalt,gpons}@mpi-inf.mpg.de +</td></tr><tr><td>0729628db4bb99f1f70dd6cb2353d7b76a9fce47</td><td>Separating Pose and Expression in Face Images: <br/>A Manifold Learning Approach <br/><b>University of Pennsylvania</b><br/>Moore Bldg, 200 South 33rd St, Philadelphia, PA 19104, USA <br/>(Submitted on December 27, 2006) @@ -19544,7 +24675,11 @@ <br/>fayyaz@iai.uni-bonn.de, vivek.sharma@kit.edu </td></tr><tr><td>0754e769eb613fd3968b6e267a301728f52358be</td><td>Towards a Watson That Sees: Language-Guided Action Recognition for <br/>Robots -</td><td>('7607499', 'Yezhou Yang', 'yezhou yang')<br/>('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')</td><td></td></tr><tr><td>0773c320713dae62848fceac5a0ac346ba224eca</td><td>Digital Facial Augmentation for Interactive +</td><td>('7607499', 'Yezhou Yang', 'yezhou yang')<br/>('1697493', 'Yiannis Aloimonos', 'yiannis aloimonos')</td><td></td></tr><tr><td>07c83f544d0604e6bab5d741b0bf9a3621d133da</td><td>Learning Spatio-Temporal Features with 3D Residual Networks +<br/>for Action Recognition +<br/><b>National Institute of Advanced Industrial Science and Technology (AIST</b><br/>Tsukuba, Ibaraki, Japan +</td><td>('2199251', 'Kensho Hara', 'kensho hara')<br/>('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')<br/>('1732705', 'Yutaka Satoh', 'yutaka satoh')</td><td>{kensho.hara, hirokatsu.kataoka, yu.satou}@aist.go.jp +</td></tr><tr><td>0773c320713dae62848fceac5a0ac346ba224eca</td><td>Digital Facial Augmentation for Interactive <br/>Entertainment <br/>Centre for Intelligent Machines <br/><b>McGill University</b><br/>Montreal, Quebec, Canada @@ -19567,11 +24702,17 @@ <br/>Robust Face Recognition and Tagging in Visual Surveillance <br/>System </td><td>('21008397', 'Kavitha MS', 'kavitha ms')<br/>('39546266', 'Siva Pradeepa', 'siva pradeepa')<br/>('21008397', 'Kavitha MS', 'kavitha ms')<br/>('39546266', 'Siva Pradeepa', 'siva pradeepa')</td><td>e-mail:kavithams999@gmail.com +</td></tr><tr><td>07fa153b8e6196ee6ef6efd8b743de8485a07453</td><td>Action Prediction from Videos via Memorizing Hard-to-Predict Samples +<br/><b>Northeastern University, Boston, MA, USA</b><br/><b>College of Engineering, Northeastern University, Boston, MA, USA</b><br/><b>College of Computer and Information Science, Northeastern University, Boston, MA, USA</b></td><td>('48901920', 'Yu Kong', 'yu kong')<br/>('9355577', 'Shangqian Gao', 'shangqian gao')<br/>('47935056', 'Bin Sun', 'bin sun')<br/>('1708679', 'Yun Fu', 'yun fu')</td><td>{yukong,yunfu}@ece.neu.edu, {gao.sh,sun.bi}@husky.neu.edu </td></tr><tr><td>0708059e3bedbea1cbfae1c8cd6b7259d4b56b5b</td><td>Graph-regularized Multi-class Support Vector <br/>Machines for Face and Action Recognition <br/><b>Tampere University of Technology, Tampere, Finland</b></td><td>('9219875', 'Moncef Gabbouj', 'moncef gabbouj')</td><td>Email: {alexandros.iosifidis,moncef.gabbouj}@tut.fi </td></tr><tr><td>074af31bd9caa61fea3c4216731420bd7c08b96a</td><td>Face Verification Using Sparse Representations <br/><b>Institute for Advanced Computer Studies, University of Maryland, College Park, MD</b><br/><b>TNLIST, Tsinghua University, Beijing, 100084, China</b></td><td>('2723427', 'Huimin Guo', 'huimin guo')<br/>('3373117', 'Ruiping Wang', 'ruiping wang')<br/>('3826759', 'Jonghyun Choi', 'jonghyun choi')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td>{hmguo, jhchoi, lsd}@umiacs.umd.edu, rpwang@tsinghua.edu.cn +</td></tr><tr><td>0750a816858b601c0dbf4cfb68066ae7e788f05d</td><td>CosFace: Large Margin Cosine Loss for Deep Face Recognition +<br/>Tencent AI Lab +</td><td>('39049654', 'Hao Wang', 'hao wang')<br/>('1996677', 'Yitong Wang', 'yitong wang')<br/>('48741267', 'Zheng Zhou', 'zheng zhou')<br/>('3478009', 'Xing Ji', 'xing ji')<br/>('2856494', 'Dihong Gong', 'dihong gong')<br/>('2263912', 'Jingchao Zhou', 'jingchao zhou')<br/>('1911510', 'Zhifeng Li', 'zhifeng li')<br/>('46641573', 'Wei Liu', 'wei liu')</td><td>{hawelwang,yitongwang,encorezhou,denisji,sagazhou,michaelzfli}@tencent.com +<br/>gongdihong@gmail.com wliu@ee.columbia.edu </td></tr><tr><td>078d507703fc0ac4bf8ca758be101e75ea286c80</td><td> ISSN: 2321-8169 <br/>International Journal on Recent and Innovation Trends in Computing and Communication <br/>Volume: 3 Issue: 8 @@ -19682,7 +24823,25 @@ <br/><b>University of Piraeus</b><br/>Karaoli & Dimitriou 80, Piraeus 185 34 <br/>GREECE </td><td>('2828175', 'Ioanna-Ourania Stathopoulou', 'ioanna-ourania stathopoulou')<br/>('1802584', 'George A. Tsihrintzis', 'george a. tsihrintzis')</td><td>phone: + 30 210 4142322, fax: + 30 210 4142264, email: {iostath, geoatsi}@unipi.gr -</td></tr><tr><td>385750bcf95036c808d63db0e0b14768463ff4c6</td><td></td><td></td><td></td></tr><tr><td>3852968082a16db8be19b4cb04fb44820ae823d4</td><td>Unsupervised Learning of Long-Term Motion Dynamics for Videos +</td></tr><tr><td>3803b91e784922a2dacd6a18f61b3100629df932</td><td>Temporal Multimodal Fusion +<br/>for Video Emotion Classification in the Wild +<br/>Orange Labs +<br/>Cesson-Sévigné, France +<br/>Orange Labs +<br/>Cesson-Sévigné, France +<br/>Normandie Univ., UNICAEN, +<br/>ENSICAEN, CNRS +<br/>Caen, France +</td><td>('26339425', 'Valentin Vielzeuf', 'valentin vielzeuf')<br/>('2642628', 'Stéphane Pateux', 'stéphane pateux')<br/>('1801809', 'Frédéric Jurie', 'frédéric jurie')</td><td>valentin.vielzeuf@orange.com +<br/>stephane.pateux@orange.com +<br/>frederic.jurie@unicaen.fr +</td></tr><tr><td>38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Multi-distance Support Matrix Machine +<br/>Received: date / Accepted: date +</td><td>('34679353', 'Yunfei Ye', 'yunfei ye')<br/>('49405675', 'Dong Han', 'dong han')</td><td></td></tr><tr><td>38c901a58244be9a2644d486f9a1284dc0edbf8a</td><td>Multi-Camera Action Dataset for Cross-Camera Action Recognition +<br/>Benchmarking +<br/><b>School of Electronic Information Engineering, Tianjin University, China</b><br/><b>Interactive and Digital Media Institute, National University of Singapore, Singapore</b><br/><b>School of Computing, National University of Singapore, Singapore</b></td><td>('1803305', 'Wenhui Li', 'wenhui li')<br/>('3026404', 'Yongkang Wong', 'yongkang wong')<br/>('1678662', 'Yang Li', 'yang li')</td><td></td></tr><tr><td>385750bcf95036c808d63db0e0b14768463ff4c6</td><td></td><td></td><td></td></tr><tr><td>3852968082a16db8be19b4cb04fb44820ae823d4</td><td>Unsupervised Learning of Long-Term Motion Dynamics for Videos <br/><b>Stanford University</b></td><td>('3378742', 'Zelun Luo', 'zelun luo')<br/>('3378457', 'Boya Peng', 'boya peng')<br/>('38485317', 'De-An Huang', 'de-an huang')<br/>('3304525', 'Alexandre Alahi', 'alexandre alahi')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td>{zelunluo,boya,dahuang,alahi,feifeili}@cs.stanford.edu </td></tr><tr><td>38cc2f1c13420170c7adac30f9dfac69b297fb76</td><td><b>Rochester Institute of Technology</b><br/>RIT Scholar Works <br/>Theses @@ -19703,11 +24862,17 @@ <br/>Multi-Fold Gabor, PCA and ICA Filter <br/>Convolution Descriptor for Face Recognition <br/> -</td><td>('1801904', 'Andrew Beng Jin Teoh', 'andrew beng jin teoh')<br/>('3326176', 'Cong Jie Ng', 'cong jie ng')</td><td></td></tr><tr><td>38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f</td><td>Shrinkage Expansion Adaptive Metric Learning +</td><td>('1801904', 'Andrew Beng Jin Teoh', 'andrew beng jin teoh')<br/>('3326176', 'Cong Jie Ng', 'cong jie ng')</td><td></td></tr><tr><td>38f1fac3ed0fd054e009515e7bbc72cdd4cf801a</td><td>Finding Person Relations in Image Data of the +<br/>Internet Archive +<br/>Eric M¨uller-Budack1,2[0000−0002−6802−1241], +<br/>1 Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany +<br/><b>L3S Research Center, Leibniz Universit at Hannover, Germany</b></td><td>('51008013', 'Kader Pustu-Iren', 'kader pustu-iren')<br/>('50983345', 'Sebastian Diering', 'sebastian diering')<br/>('1738703', 'Ralph Ewerth', 'ralph ewerth')</td><td></td></tr><tr><td>38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f</td><td>Shrinkage Expansion Adaptive Metric Learning <br/>1 School of Information and Communications Engineering, <br/><b>Dalian University of Technology, China</b><br/><b>School of Computer Science and Technology, Harbin Institute of Technology, China</b><br/><b>Hong Kong Polytechnic University, Hong Kong</b></td><td>('2769011', 'Qilong Wang', 'qilong wang')<br/>('1724520', 'Wangmeng Zuo', 'wangmeng zuo')<br/>('36685537', 'Lei Zhang', 'lei zhang')<br/>('40426020', 'Peihua Li', 'peihua li')</td><td>{csqlwang,cswmzuo}@gmail.com, cslzhang@comp.polyu.edu.hk, <br/>peihuali@dlut.edu.cn -</td></tr><tr><td>384945abd53f6a6af51faf254ba8ef0f0fb3f338</td><td>Visual Recognition with Humans in the Loop +</td></tr><tr><td>380d5138cadccc9b5b91c707ba0a9220b0f39271</td><td>Deep Imbalanced Learning for Face Recognition +<br/>and Attribute Prediction +</td><td>('2000034', 'Chen Huang', 'chen huang')<br/>('47002704', 'Yining Li', 'yining li')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>384945abd53f6a6af51faf254ba8ef0f0fb3f338</td><td>Visual Recognition with Humans in the Loop <br/><b>University of California, San Diego</b><br/><b>California Institute of Technology</b></td><td>('3251767', 'Steve Branson', 'steve branson')<br/>('2367820', 'Catherine Wah', 'catherine wah')<br/>('2490700', 'Boris Babenko', 'boris babenko')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td>{sbranson,cwah,gschroff,bbabenko,sjb}@cs.ucsd.edu <br/>{welinder,perona}@caltech.edu </td></tr><tr><td>38215c283ce4bf2c8edd597ab21410f99dc9b094</td><td>The SEMAINE Database: Annotated Multimodal Records of @@ -19789,7 +24954,7 @@ </td></tr><tr><td>3802da31c6d33d71b839e260f4022ec4fbd88e2d</td><td>Deep Attributes for One-Shot Face Recognition <br/><b>Xerox Research Center India</b><br/>3Department of Electrical Engineering, IIT Kanpur </td><td>('5060928', 'Aishwarya Jadhav', 'aishwarya jadhav')<br/>('1744135', 'Vinay P. Namboodiri', 'vinay p. namboodiri')<br/>('1797662', 'K. S. Venkatesh', 'k. s. venkatesh')</td><td>aishwaryauj@gmail.com, vinaypn@iitk.ac.in, venkats@iitk.ac.in -</td></tr><tr><td>00f7f7b72a92939c36e2ef9be97397d8796ee07c</td><td>3D ConvNets with Optical Flow Based Regularization +</td></tr><tr><td>00fb2836068042c19b5197d0999e8e93b920eb9c</td><td></td><td></td><td></td></tr><tr><td>00f7f7b72a92939c36e2ef9be97397d8796ee07c</td><td>3D ConvNets with Optical Flow Based Regularization <br/><b>Stanford University</b><br/>Stanford, CA </td><td>('35627656', 'Kevin Chavez', 'kevin chavez')</td><td>kjchavez@stanford.edu </td></tr><tr><td>0021f46bda27ea105d722d19690f5564f2b8869e</td><td>Deep Region and Multi-label Learning for Facial Action Unit Detection @@ -19878,7 +25043,7 @@ </td><td>('1804963', 'Harald Hanselmann', 'harald hanselmann')<br/>('1967060', 'Philippe Dreuw', 'philippe dreuw')</td><td></td></tr><tr><td>004e3292885463f97a70e1f511dc476289451ed5</td><td>Quadruplet-wise Image Similarity Learning <br/>Marc T. Law <br/><b>LIP6, UPMC - Sorbonne University, Paris, France</b></td><td>('1728523', 'Nicolas Thome', 'nicolas thome')<br/>('1702233', 'Matthieu Cord', 'matthieu cord')</td><td>{Marc.Law, Nicolas.Thome, Matthieu.Cord}@lip6.fr -</td></tr><tr><td>00b08d22abc85361e1c781d969a1b09b97bc7010</td><td>Who is the Hero? − Semi-Supervised Person Re-Identification in Videos +</td></tr><tr><td>0004f72a00096fa410b179ad12aa3a0d10fc853c</td><td></td><td></td><td></td></tr><tr><td>00b08d22abc85361e1c781d969a1b09b97bc7010</td><td>Who is the Hero? − Semi-Supervised Person Re-Identification in Videos <br/><b>Tampere University of Technology, Tampere, Finland</b><br/><b>Nokia Research Center, Tampere, Finland</b><br/>Keywords: <br/>Semi-supervised person re-identification, Important person detection, Face tracks, Clustering </td><td>('13413642', 'Umar Iqbal', 'umar iqbal')<br/>('9219875', 'Moncef Gabbouj', 'moncef gabbouj')</td><td>{umar.iqbal, moncef.gabbouj}@tut.fi, igor.curcio@nokia.com @@ -20029,9 +25194,26 @@ <br/>NSF-REU Site at UNC Wilmington, Summer 2017 </td><td>('39845059', 'G. Bingham', 'g. bingham')<br/>('1693470', 'B. Yip', 'b. yip')<br/>('1833570', 'M. Ferguson', 'm. ferguson')<br/>('1693283', 'C. Chen', 'c. chen')<br/>('11134292', 'Y. Wang', 'y. wang')<br/>('3369885', 'T. Kling', 't. kling')</td><td></td></tr><tr><td>6eaf446dec00536858548fe7cc66025b70ce20eb</td><td></td><td></td><td></td></tr><tr><td>6e173ad91b288418c290aa8891193873933423b3</td><td>Are you from North or South India? A hard race classification task reveals <br/>systematic representational differences between humans and machines -<br/><b>aCentre for Neuroscience, Indian Institute of Science, Bangalore, India</b></td><td>('2478739', 'Harish Katti', 'harish katti')</td><td></td></tr><tr><td>6eba25166fe461dc388805cc2452d49f5d1cdadd</td><td>Pages 122.1-122.12 +<br/><b>aCentre for Neuroscience, Indian Institute of Science, Bangalore, India</b></td><td>('2478739', 'Harish Katti', 'harish katti')</td><td></td></tr><tr><td>6e91be2ad74cf7c5969314b2327b513532b1be09</td><td>Dimensionality Reduction with Subspace Structure +<br/>Preservation +<br/>Department of Computer Science +<br/>SUNY Buffalo +<br/>Buffalo, NY 14260 +</td><td>('2309967', 'Devansh Arpit', 'devansh arpit')<br/>('1841118', 'Ifeoma Nwogu', 'ifeoma nwogu')<br/>('1723877', 'Venu Govindaraju', 'venu govindaraju')</td><td>{devansh,inwogua,govind}@buffalo.edu +</td></tr><tr><td>6eba25166fe461dc388805cc2452d49f5d1cdadd</td><td>Pages 122.1-122.12 <br/>DOI: https://dx.doi.org/10.5244/C.30.122 -</td><td></td><td></td></tr><tr><td>6ed738ff03fd9042965abdfaa3ed8322de15c116</td><td>This document is downloaded from DR-NTU, Nanyang Technological +</td><td></td><td></td></tr><tr><td>6e8a81d452a91f5231443ac83e4c0a0db4579974</td><td>Illumination robust face representation based on intrinsic geometrical +<br/>information +<br/>Soyel, H; Ozmen, B; McOwan, PW +<br/>This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET +<br/>Conference on Image Processing (IPR 2012). The version of record is available +<br/>http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1 +<br/>For additional information about this publication click this link. +<br/>http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147 +<br/>Information about this research object was correct at the time of download; we occasionally +<br/>make corrections to records, please therefore check the published record when citing. For +</td><td></td><td>more information contact scholarlycommunications@qmul.ac.uk +</td></tr><tr><td>6ed738ff03fd9042965abdfaa3ed8322de15c116</td><td>This document is downloaded from DR-NTU, Nanyang Technological <br/><b>University Library, Singapore</b><br/>Title <br/>K-MEAP: Generating Specified K Clusters with Multiple <br/>Exemplars by Efficient Affinity Propagation @@ -20114,7 +25296,14 @@ <br/>Andr´e Uschmajew </td><td>('2391697', 'Yuji Nakatsukasa', 'yuji nakatsukasa')</td><td></td></tr><tr><td>6ef1996563835b4dfb7fda1d14abe01c8bd24a05</td><td>Nonparametric Part Transfer for Fine-grained Recognition <br/><b>Computer Vision Group, Friedrich Schiller University Jena</b><br/>www.inf-cv.uni-jena.de -</td><td>('1679449', 'Erik Rodner', 'erik rodner')<br/>('1720839', 'Alexander Freytag', 'alexander freytag')<br/>('1728382', 'Joachim Denzler', 'joachim denzler')</td><td></td></tr><tr><td>6ee8a94ccba10062172e5b31ee097c846821a822</td><td>Submitted 3/13; Revised 10/13; Published 12/13 +</td><td>('1679449', 'Erik Rodner', 'erik rodner')<br/>('1720839', 'Alexander Freytag', 'alexander freytag')<br/>('1728382', 'Joachim Denzler', 'joachim denzler')</td><td></td></tr><tr><td>6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f</td><td>Deep Episodic Memory: Encoding, Recalling, and Predicting +<br/>Episodic Experiences for Robot Action Execution +</td><td>('35309584', 'Jonas Rothfuss', 'jonas rothfuss')<br/>('2128564', 'Fabio Ferreira', 'fabio ferreira')<br/>('34876449', 'Eren Erdal Aksoy', 'eren erdal aksoy')<br/>('46432716', 'You Zhou', 'you zhou')<br/>('1722677', 'Tamim Asfour', 'tamim asfour')</td><td></td></tr><tr><td>6e911227e893d0eecb363015754824bf4366bdb7</td><td>Wasserstein Divergence for GANs +<br/>1 Computer Vision Lab, ETH Zurich, Switzerland +<br/>2 VISICS, KU Leuven, Belgium +</td><td>('1839268', 'Jiqing Wu', 'jiqing wu')<br/>('7945869', 'Zhiwu Huang', 'zhiwu huang')<br/>('30691454', 'Janine Thoma', 'janine thoma')<br/>('32610154', 'Dinesh Acharya', 'dinesh acharya')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>{jwu,zhiwu.huang,jthoma,vangool}@vision.ee.ethz.ch, +<br/>acharyad@student.ethz.ch +</td></tr><tr><td>6ee8a94ccba10062172e5b31ee097c846821a822</td><td>Submitted 3/13; Revised 10/13; Published 12/13 <br/>How to Solve Classification and Regression Problems on <br/>High-Dimensional Data with a Supervised <br/>Extension of Slow Feature Analysis @@ -20325,7 +25514,12 @@ <br/>1Neutral expression is not included. <br/>2Please see http://vdb.kyb.tuebingen.mpg.de/. <br/>3Please see http://bml.ym.edu.tw/ download/html/news.htm. -</td><td></td><td></td></tr><tr><td>6e94c579097922f4bc659dd5d6c6238a428c4d22</td><td>Graph Based Multi-class Semi-supervised +</td><td></td><td></td></tr><tr><td>6e00a406edb508312108f683effe6d3c1db020fb</td><td>Faces as Lighting Probes via Unsupervised Deep +<br/>Highlight Extraction +<br/><b>Simon Fraser University, Burnaby, Canada</b><br/><b>National University of Defense Technology, Changsha, China</b><br/>3 Microsoft Research, Beijing, China +</td><td>('2693616', 'Renjiao Yi', 'renjiao yi')<br/>('2041096', 'Chenyang Zhu', 'chenyang zhu')<br/>('37291674', 'Ping Tan', 'ping tan')<br/>('1686911', 'Stephen Lin', 'stephen lin')</td><td>{renjiaoy, cza68, pingtan}@sfu.ca +<br/>stevelin@microsoft.com +</td></tr><tr><td>6e94c579097922f4bc659dd5d6c6238a428c4d22</td><td>Graph Based Multi-class Semi-supervised <br/>Learning Using Gaussian Process <br/>State Key Laboratory of Intelligent Technology and Systems, <br/><b>Tsinghua University, Beijing, China</b></td><td>('1809614', 'Yangqiu Song', 'yangqiu song')<br/>('1700883', 'Changshui Zhang', 'changshui zhang')<br/>('1760678', 'Jianguo Lee', 'jianguo lee')</td><td>{songyq99, lijg01}@mails.tsinghua.edu.cn, zcs@mail.tsinghua.edu.cn @@ -20520,19 +25714,34 @@ </td></tr><tr><td>9ac15845defcd0d6b611ecd609c740d41f0c341d</td><td>Copyright <br/>by <br/>2011 -</td><td>('1926834', 'Juhyun Lee', 'juhyun lee')</td><td></td></tr><tr><td>9af1cf562377b307580ca214ecd2c556e20df000</td><td>Feb. 28 +</td><td>('1926834', 'Juhyun Lee', 'juhyun lee')</td><td></td></tr><tr><td>9ac43a98fe6fde668afb4fcc115e4ee353a6732d</td><td>Survey of Face Detection on Low-quality Images +<br/><b>Beckmann Institute, University of Illinois at Urbana-Champaign, USA</b></td><td>('1698743', 'Yuqian Zhou', 'yuqian zhou')<br/>('1771885', 'Ding Liu', 'ding liu')</td><td>{yuqian2, dingliu2}@illinois.edu +<br/>huang@ifp.uiuc.edu +</td></tr><tr><td>9af1cf562377b307580ca214ecd2c556e20df000</td><td>Feb. 28 <br/> International Journal of Advanced Studies in Computer Science and Engineering <br/>IJASCSE, Volume 4, Issue 2, 2015 <br/> Video-Based Facial Expression Recognition <br/>Using Local Directional Binary Pattern <br/>Electrical Engineering Dept., AmirKabir Univarsity of Technology <br/>Tehran, Iran -</td><td>('38519671', 'Sahar Hooshmand', 'sahar hooshmand')<br/>('3232144', 'Ali Jamali Avilaq', 'ali jamali avilaq')<br/>('3293075', 'Amir Hossein Rezaie', 'amir hossein rezaie')</td><td></td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>A Facial Features Detector Integrating Holistic Facial Information and +</td><td>('38519671', 'Sahar Hooshmand', 'sahar hooshmand')<br/>('3232144', 'Ali Jamali Avilaq', 'ali jamali avilaq')<br/>('3293075', 'Amir Hossein Rezaie', 'amir hossein rezaie')</td><td></td></tr><tr><td>9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb</td><td>High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs +<br/>1NVIDIA Corporation +<br/>2UC Berkeley +<br/>Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps +<br/>(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can +<br/>change labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also +<br/>allows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road. +<br/>Please visit our website for more side-by-side comparisons as well as interactive editing demos. +</td><td>('2195314', 'Ting-Chun Wang', 'ting-chun wang')<br/>('2436356', 'Jun-Yan Zhu', 'jun-yan zhu')<br/>('1690538', 'Jan Kautz', 'jan kautz')</td><td></td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>A Facial Features Detector Integrating Holistic Facial Information and <br/>Part-based Model <br/>Eslam Mostafa1,2 <br/>Aly Farag1 <br/><b>CVIP Lab, University of Louisville, Louisville, KY 40292, USA</b><br/><b>Alexandria University, Alexandria, Egypt</b><br/><b>Assiut University, Assiut 71515, Egypt</b><br/>4Kentucky Imaging Technology (KIT), Louisville, KY 40245, USA. -</td><td>('28453046', 'Asem A. Ali', 'asem a. ali')<br/>('2239392', 'Ahmed Shalaby', 'ahmed shalaby')</td><td></td></tr><tr><td>9a7858eda9b40b16002c6003b6db19828f94a6c6</td><td>MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE +</td><td>('28453046', 'Asem A. Ali', 'asem a. ali')<br/>('2239392', 'Ahmed Shalaby', 'ahmed shalaby')</td><td></td></tr><tr><td>9af9a88c60d9e4b53e759823c439fc590a4b5bc5</td><td>Learning Deep Convolutional Embeddings for Face Representation Using Joint +<br/>Sample- and Set-based Supervision +<br/>Department of Electrical and Electronic Engineering, +<br/><b>Imperial College London</b></td><td>('2151914', 'Baris Gecer', 'baris gecer')<br/>('3288623', 'Vassileios Balntas', 'vassileios balntas')<br/>('1700968', 'Tae-Kyun Kim', 'tae-kyun kim')</td><td>{b.gecer,v.balntas15,tk.kim}@imperial.ac.uk +</td></tr><tr><td>9a7858eda9b40b16002c6003b6db19828f94a6c6</td><td>MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE <br/>(cid:63) UC Berkeley / †ICSI </td><td>('2301765', 'Tsung-Wei Ke', 'tsung-wei ke')<br/>('2251428', 'Stella X. Yu', 'stella x. yu')<br/>('1821337', 'David Whitney', 'david whitney')</td><td></td></tr><tr><td>9a3535cabf5d0f662bff1d897fb5b777a412d82e</td><td><b>University of Kentucky</b><br/>UKnowledge <br/>Computer Science @@ -20565,13 +25774,26 @@ <br/>mfrank83@buffalo.edu </td></tr><tr><td>9a42c519f0aaa68debbe9df00b090ca446d25bc4</td><td>Face Recognition via Centralized Coordinate <br/>Learning -</td><td>('2689287', 'Xianbiao Qi', 'xianbiao qi')<br/>('1684635', 'Lei Zhang', 'lei zhang')</td><td></td></tr><tr><td>36b40c75a3e53c633c4afb5a9309d10e12c292c7</td><td></td><td></td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011 +</td><td>('2689287', 'Xianbiao Qi', 'xianbiao qi')<br/>('1684635', 'Lei Zhang', 'lei zhang')</td><td></td></tr><tr><td>9aad8e52aff12bd822f0011e6ef85dfc22fe8466</td><td>Temporal-Spatial Mapping for Action Recognition +</td><td>('3865974', 'Xiaolin Song', 'xiaolin song')<br/>('40093162', 'Cuiling Lan', 'cuiling lan')<br/>('8434337', 'Wenjun Zeng', 'wenjun zeng')<br/>('1757173', 'Junliang Xing', 'junliang xing')<br/>('1759461', 'Jingyu Yang', 'jingyu yang')<br/>('1692735', 'Xiaoyan Sun', 'xiaoyan sun')</td><td></td></tr><tr><td>36b40c75a3e53c633c4afb5a9309d10e12c292c7</td><td></td><td></td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011 <br/> Local Binary Patterns and Linear Programming using <br/>Facial Expression <br/>Ms.P.Jennifer <br/><b>Bharath Institute of Science and Technology</b><br/><b>B.Tech (C.S.E), Bharath University, Chennai</b><br/>Dr. A. Muthu kumaravel <br/><b>Bharath Institute of Science and Technology</b><br/><b>B.Tech (C.S.E), Bharath University, Chennai</b><br/> -</td><td></td><td></td></tr><tr><td>365f67fe670bf55dc9ccdcd6888115264b2a2c56</td><td></td><td></td><td></td></tr><tr><td>36fe39ed69a5c7ff9650fd5f4fe950b5880760b0</td><td>Tracking von Gesichtsmimik +</td><td></td><td></td></tr><tr><td>36939e6a365e9db904d81325212177c9e9e76c54</td><td>Assessing the Accuracy of Four Popular Face Recognition Tools for +<br/>Inferring Gender, Age, and Race +<br/><b>Qatar Computing Research Institute, HBKU</b><br/>HBKU Research Complex, Doha, P.O. Box 34110, Qatar +</td><td>('1861541', 'Soon-Gyo Jung', 'soon-gyo jung')<br/>('40660541', 'Jisun An', 'jisun an')<br/>('2592694', 'Haewoon Kwak', 'haewoon kwak')<br/>('2734912', 'Joni Salminen', 'joni salminen')</td><td>{sjung,jan,hkwak,jsalminen,bjansen}@hbku.edu.qa +</td></tr><tr><td>3646b42511a6a0df5470408bc9a7a69bb3c5d742</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015 +<br/>Detection of Facial Parts based on ABLATA +<br/>Technical Campus, Bhilai +<br/>Vikas Singh +<br/>Technical Campus, Bhilai +<br/>Abha Choubey +<br/>Technical Campus, Bhilai +</td><td>('9173769', 'Siddhartha Choubey', 'siddhartha choubey')</td><td></td></tr><tr><td>365f67fe670bf55dc9ccdcd6888115264b2a2c56</td><td></td><td></td><td></td></tr><tr><td>36fe39ed69a5c7ff9650fd5f4fe950b5880760b0</td><td>Tracking von Gesichtsmimik <br/>mit Hilfe von Gitterstrukturen <br/>zur Klassifikation von schmerzrelevanten Action <br/>Units @@ -20624,7 +25846,36 @@ <br/>network using constructive training algorithm <br/>Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014 <br/>© Springer Science+Business Media New York 2014 -</td><td>('1746834', 'Hayet Boughrara', 'hayet boughrara')<br/>('3410172', 'Chokri Ben Amar', 'chokri ben amar')</td><td></td></tr><tr><td>360d66e210f7011423364327b7eccdf758b5fdd2</td><td>17th European Signal Processing Conference (EUSIPCO 2009) +</td><td>('1746834', 'Hayet Boughrara', 'hayet boughrara')<br/>('3410172', 'Chokri Ben Amar', 'chokri ben amar')</td><td></td></tr><tr><td>3674f3597bbca3ce05e4423611d871d09882043b</td><td>ISSN 1796-2048 +<br/>Volume 7, Number 4, August 2012 +<br/>Contents +<br/>Special Issue: Multimedia Contents Security in Social Networks Applications +<br/>Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran +<br/>Guest Editorial +<br/>Zhiyong Zhang and Muthucumaru Maheswaran +<br/>SPECIAL ISSUE PAPERS +<br/>DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding +<br/>Gang Wang and Xiao-lin Gui +<br/>Block-Based Parallel Intra Prediction Scheme for HEVC +<br/>Jie Jiang, Baolong, Wei Mo, and Kefeng Fan +<br/>Optimized LSB Matching Steganography Based on Fisher Information +<br/>Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao +<br/>A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform +<br/>Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo +<br/>Stego Key Estimation in LSB Steganography +<br/>Jing Liu and Guangming Tang +<br/>REGULAR PAPERS +<br/>Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions +<br/>277 +<br/>279 +<br/>289 +<br/>295 +<br/>303 +<br/>309 +<br/>314 +</td><td>('46575279', 'H. Madokoro', 'h. madokoro')</td><td></td></tr><tr><td>362bfeb28adac5f45b6ef46c07c59744b4ed6a52</td><td>INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE +<br/>LEARNING +<br/><b>University of California, Riverside, CA</b></td><td>('49616225', 'Sujoy Paul', 'sujoy paul')<br/>('2177805', 'Sourya Roy', 'sourya roy')<br/>('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')</td><td></td></tr><tr><td>360d66e210f7011423364327b7eccdf758b5fdd2</td><td>17th European Signal Processing Conference (EUSIPCO 2009) <br/>Glasgow, Scotland, August 24-28, 2009 <br/>LOCAL FEATURE EXTRACTION METHODS FOR FACIAL EXPRESSION <br/>RECOGNITION @@ -20651,11 +25902,23 @@ <br/>Dr. M.A. (Marco) Wiering <br/>Prof. dr. L.R.B. (Lambert) Schomaker <br/><b>ALICE Institute</b><br/><b>University of Groningen</b><br/>Nijenborgh 9, 9747 AG, Groningen, The Netherlands -</td><td>('3405120', 'Jos van de Wolfshaar', 'jos van de wolfshaar')</td><td></td></tr><tr><td>362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE +</td><td>('3405120', 'Jos van de Wolfshaar', 'jos van de wolfshaar')</td><td></td></tr><tr><td>368e99f669ea5fd395b3193cd75b301a76150f9d</td><td>One-to-many face recognition with bilinear CNNs +<br/>Aruni RoyChowdhury +<br/><b>University of Massachusetts, Amherst</b><br/>Erik Learned-Miller +</td><td>('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')<br/>('35208858', 'Subhransu Maji', 'subhransu maji')</td><td>{arunirc,tsungyulin,smaji,elm}@cs.umass.edu +</td></tr><tr><td>362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>2792 <br/>ICASSP 2016 </td><td></td><td></td></tr><tr><td>36df81e82ea5c1e5edac40b60b374979a43668a5</td><td>ON-THE-FLY SPECIFIC PERSON RETRIEVAL <br/><b>University of Oxford, United Kingdom</b></td><td>('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')<br/>('1687524', 'Andrea Vedaldi', 'andrea vedaldi')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>{omkar,vedaldi,az}@robots.ox.ac.uk +</td></tr><tr><td>3619a9b46ad4779d0a63b20f7a6a8d3d49530339</td><td>SIMONYAN et al.: FISHER VECTOR FACES IN THE WILD +<br/>Fisher Vector Faces in the Wild +<br/>Visual Geometry Group +<br/>Department of Engineering Science +<br/><b>University of Oxford</b></td><td>('34838386', 'Karen Simonyan', 'karen simonyan')<br/>('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')<br/>('1687524', 'Andrea Vedaldi', 'andrea vedaldi')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>karen@robots.ox.ac.uk +<br/>omkar@robots.ox.ac.uk +<br/>vedaldi@robots.ox.ac.uk +<br/>az@robots.ox.ac.uk </td></tr><tr><td>366d20f8fd25b4fe4f7dc95068abc6c6cabe1194</td><td></td><td></td><td></td></tr><tr><td>3630324c2af04fd90f8668f9ee9709604fe980fd</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE <br/>Transactions on Circuits and Systems for Video Technology <br/>Image Classification with Tailored Fine-Grained @@ -20713,7 +25976,28 @@ <br/>boxin@microsoft.com <br/>yizhou.wang@pku.edu.cn <br/>ganghua@microsoft.com -</td></tr><tr><td>3634b4dd263c0f330245c086ce646c9bb748cd6b</td><td>Temporal Localization of Fine-Grained Actions in Videos +</td></tr><tr><td>361d6345919c2edc5c3ce49bb4915ed2b4ee49be</td><td><b>Delft University of Technology</b><br/>Models for supervised learning in sequence data +<br/>Pei, Wenjie +<br/>DOI +<br/>10.4233/uuid:fff15717-71ec-402d-96e6-773884659f2c +<br/>Publication date +<br/>2018 +<br/>Document Version +<br/>Publisher's PDF, also known as Version of record +<br/>Citation (APA) +<br/>Pei, W. (2018). Models for supervised learning in sequence data DOI: 10.4233/uuid:fff15717-71ec-402d- +<br/>96e6-773884659f2c +<br/>Important note +<br/>To cite this publication, please use the final published version (if applicable). +<br/>Please check the document version above. +<br/>Copyright +<br/>Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent +<br/>of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. +<br/>Takedown policy +<br/>Please contact us and provide details if you believe this document breaches copyrights. +<br/>We will remove access to the work immediately and investigate your claim. +<br/><b>This work is downloaded from Delft University of Technology</b><br/>For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. +<br/> </td><td></td><td></td></tr><tr><td>3634b4dd263c0f330245c086ce646c9bb748cd6b</td><td>Temporal Localization of Fine-Grained Actions in Videos <br/>by Domain Transfer from Web Images <br/><b>University of Southern California</b><br/><b>Google, Inc</b></td><td>('1726241', 'Chen Sun', 'chen sun')</td><td>{chensun,nevatia}@usc.edu <br/>{sanketh,sukthankar}@google.com @@ -20742,6 +26026,8 @@ <br/>*Corresponding author </td><td>('1678263', 'Chandrashekhar N. Padole', 'chandrashekhar n. padole')<br/>('1712429', 'Hugo Proença', 'hugo proença')</td><td>E-mail: chandupadole@ubi.pt <br/>E-mail: hugomcp@di.ubi.pt +</td></tr><tr><td>5cbe1445d683d605b31377881ac8540e1d17adf0</td><td>On 3D Face Reconstruction via Cascaded Regression in Shape Space +<br/><b>College of Computer Science, Sichuan University, Chengdu, China</b></td><td>('50207647', 'Feng Liu', 'feng liu')<br/>('39422721', 'Dan Zeng', 'dan zeng')<br/>('1723081', 'Jing Li', 'jing li')<br/>('7345195', 'Qijun Zhao', 'qijun zhao')</td><td>qjzhao@scu.edu.cn </td></tr><tr><td>5ca23ceb0636dfc34c114d4af7276a588e0e8dac</td><td>Texture Representation in AAM using Gabor Wavelet <br/>and Local Binary Patterns <br/>School of Electronic Engineering, @@ -20756,7 +26042,12 @@ <br/>xuelong@dcs.bbk.ac.uk <br/>dacheng.tao@gmail.com <br/>xbgao@mail.xidian.edu.cn -</td></tr><tr><td>5c2a7518fb26a37139cebff76753d83e4da25159</td><td></td><td></td><td></td></tr><tr><td>5cb83eba8d265afd4eac49eb6b91cdae47def26d</td><td>Face Recognition with Local Line Binary Pattern +</td></tr><tr><td>5c2a7518fb26a37139cebff76753d83e4da25159</td><td></td><td></td><td></td></tr><tr><td>5c493c42bfd93e4d08517438983e3af65e023a87</td><td>The Thirty-Second AAAI Conference +<br/>on Artificial Intelligence (AAAI-18) +<br/>Multimodal Keyless Attention +<br/>Fusion for Video Classification +<br/><b>Tsinghua University, 2Rutgers University, 3Baidu IDL</b></td><td>('1716690', 'Xiang Long', 'xiang long')<br/>('2551285', 'Chuang Gan', 'chuang gan')<br/>('1732213', 'Gerard de Melo', 'gerard de melo')<br/>('48033101', 'Xiao Liu', 'xiao liu')<br/>('48515099', 'Yandong Li', 'yandong li')<br/>('9921390', 'Fu Li', 'fu li')<br/>('35247507', 'Shilei Wen', 'shilei wen')</td><td>{longx13, ganc13}@mails.tsinghua.edu.cn, gdm@demelo.org, {liuxiao12, liyandong, lifu, wenshilei}@baidu.com +</td></tr><tr><td>5cb83eba8d265afd4eac49eb6b91cdae47def26d</td><td>Face Recognition with Local Line Binary Pattern <br/><b>Mahanakorn University of Technology</b><br/>51 Cheum-Sampan Rd., Nong Chok, Bangkok, THAILAND 10530 </td><td>('2337544', 'Amnart Petpon', 'amnart petpon')<br/>('1805935', 'Sanun Srisuk', 'sanun srisuk')</td><td>ta tee473@hotmail.com, sanun@mut.ac.th </td></tr><tr><td>5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48</td><td>Robust Face Detection by Simple Means @@ -20804,7 +26095,10 @@ <br/>Robust Face Alignment <br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b></td><td>('9120475', 'Liu Liu', 'liu liu')<br/>('23224233', 'Jiani Hu', 'jiani hu')<br/>('1678529', 'Shuo Zhang', 'shuo zhang')<br/>('1774956', 'Weihong Deng', 'weihong deng')</td><td></td></tr><tr><td>5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0</td><td>2132 <br/>Reference Face Graph for Face Recognition -</td><td>('1784929', 'Mehran Kafai', 'mehran kafai')<br/>('39776603', 'Le An', 'le an')<br/>('1707159', 'Bir Bhanu', 'bir bhanu')</td><td></td></tr><tr><td>5c435c4bc9c9667f968f891e207d241c3e45757a</td><td>RUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU? +</td><td>('1784929', 'Mehran Kafai', 'mehran kafai')<br/>('39776603', 'Le An', 'le an')<br/>('1707159', 'Bir Bhanu', 'bir bhanu')</td><td></td></tr><tr><td>5c35ac04260e281141b3aaa7bbb147032c887f0c</td><td>Face Detection and Tracking Control with Omni Car +<br/>CS 231A Final Report +<br/>June 31, 2016 +</td><td>('2645488', 'Tung-Yu Wu', 'tung-yu wu')</td><td></td></tr><tr><td>5c435c4bc9c9667f968f891e207d241c3e45757a</td><td>RUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU? <br/>"How old are you?" : Age Estimation with <br/>Tensors of Binary Gaussian Receptive Maps <br/>INRIA Grenoble Rhones-Alpes @@ -20852,7 +26146,8 @@ <br/>ICASSP 2012 </td><td></td><td></td></tr><tr><td>5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49</td><td>Facial Expression Intensity Estimation Using Ordinal Information <br/><b>Computer and Systems Engineering, Rensselaer Polytechnic Institute</b><br/><b>School of Computer Science and Technology, University of Science and Technology of China</b></td><td>('1746803', 'Rui Zhao', 'rui zhao')<br/>('2316359', 'Quan Gan', 'quan gan')<br/>('1791319', 'Shangfei Wang', 'shangfei wang')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>1{zhaor,jiq}@rpi.edu, 2{gqquan@mail.,sfwang@}ustc.edu.cn -</td></tr><tr><td>09b80d8eea809529b08a8b0ff3417950c048d474</td><td>Adding Unlabeled Samples to Categories by Learned Attributes +</td></tr><tr><td>5c4d4fd37e8c80ae95c00973531f34a6d810ea3a</td><td>The Open World of Micro-Videos +<br/><b>UC Irvine1, INRIA2, Carnegie Mellon University</b></td><td>('1879100', 'Phuc Xuan Nguyen', 'phuc xuan nguyen')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td></td></tr><tr><td>09b80d8eea809529b08a8b0ff3417950c048d474</td><td>Adding Unlabeled Samples to Categories by Learned Attributes <br/><b>University of Maryland, College Park</b><br/><b>University of Washington</b></td><td>('3826759', 'Jonghyun Choi', 'jonghyun choi')<br/>('2270286', 'Ali Farhadi', 'ali farhadi')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td>{jhchoi,mrastega,lsd}@umiacs.umd.edu <br/>ali@cs.uw.edu </td></tr><tr><td>09f58353e48780c707cf24a0074e4d353da18934</td><td>To appear in Proc. IEEE IJCB, 2014 @@ -20939,7 +26234,12 @@ <br/>Received: 1 June 2016; Accepted: 20 July 2016; Published: 22 July 2016 </td><td>('40290479', 'Xuan Hou', 'xuan hou')<br/>('3439025', 'Guangjun Yao', 'guangjun yao')<br/>('40362316', 'Jun Wang', 'jun wang')</td><td>hx1995@email.swu.edu.cn (X.H.); guangjunyao@email.swu.edu.cn (G.Y.) <br/>* Correspondence: kingjun@swu.edu.cn; Tel.: +86-23-6825-4396 -</td></tr><tr><td>09dd01e19b247a33162d71f07491781bdf4bfd00</td><td>Efficiently Scaling Up Video Annotation +</td></tr><tr><td>09137e3c267a3414314d1e7e4b0e3a4cae801f45</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Two Birds with One Stone: Transforming and Generating +<br/>Facial Images with Iterative GAN +<br/>Received: date / Accepted: date +</td><td>('49626434', 'Dan Ma', 'dan ma')</td><td></td></tr><tr><td>09dd01e19b247a33162d71f07491781bdf4bfd00</td><td>Efficiently Scaling Up Video Annotation <br/>with Crowdsourced Marketplaces <br/>Department of Computer Science <br/><b>University of California, Irvine, USA</b></td><td>('1856025', 'Carl Vondrick', 'carl vondrick')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td>{cvondric,dramanan,djp3}@ics.uci.edu @@ -20957,6 +26257,10 @@ </td></tr><tr><td>09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081</td><td>Where to Buy It: Matching Street Clothing Photos in Online Shops <br/><b>University of North Carolina at Chapel Hill</b><br/><b>University of Illinois at Urbana-Champaign</b></td><td>('1772294', 'M. Hadi Kiapour', 'm. hadi kiapour')<br/>('1682965', 'Xufeng Han', 'xufeng han')<br/>('1749609', 'Svetlana Lazebnik', 'svetlana lazebnik')<br/>('39668247', 'Alexander C. Berg', 'alexander c. berg')<br/>('1685538', 'Tamara L. Berg', 'tamara l. berg')</td><td>{hadi,xufeng,tlberg,aberg}@cs.unc.edu <br/>slazebni@illinois.edu +</td></tr><tr><td>09926ed62511c340f4540b5bc53cf2480e8063f8</td><td>Action Tubelet Detector for Spatio-Temporal Action Localization +</td><td>('1881509', 'Vicky Kalogeiton', 'vicky kalogeiton')<br/>('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')<br/>('1749692', 'Vittorio Ferrari', 'vittorio ferrari')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>0951f42abbf649bb564a21d4ff5dddf9a5ea54d9</td><td>Joint Estimation of Age and Gender from Unconstrained Face Images +<br/>using Lightweight Multi-task CNN for Mobile Applications +<br/><b>Institute of Information Science, Academia Sinica, Taipei</b></td><td>('1781429', 'Jia-Hong Lee', 'jia-hong lee')<br/>('2679814', 'Yi-Ming Chan', 'yi-ming chan')<br/>('2329177', 'Ting-Yen Chen', 'ting-yen chen')<br/>('1720473', 'Chu-Song Chen', 'chu-song chen')</td><td>{honghenry.lee, yiming, timh20022002, song}@iis.sinica.edu.tw </td></tr><tr><td>09628e9116e7890bc65ebeabaaa5f607c9847bae</td><td>Semantically Consistent Regularization for Zero-Shot Recognition <br/>Department of Electrical and Computer Engineering <br/><b>University of California, San Diego</b></td><td>('1797523', 'Pedro Morgado', 'pedro morgado')<br/>('1699559', 'Nuno Vasconcelos', 'nuno vasconcelos')</td><td>{pmaravil,nuno}@ucsd.edu @@ -20973,6 +26277,13 @@ </td><td>('1968256', 'Erald VUÇINI', 'erald vuçini')<br/>('1766445', 'Muhittin GÖKMEN', 'muhittin gökmen')<br/>('1725803', 'Eduard GRÖLLER', 'eduard gröller')</td><td>vucini@cg.tuwien.ac.at <br/> gokmen@cs.itu.edu.tr <br/>groeller@cg.tuwien.ac.at +</td></tr><tr><td>097340d3ac939ce181c829afb6b6faff946cdce0</td><td>Adding New Tasks to a Single Network with +<br/>Weight Transformations using Binary Masks +<br/><b>Sapienza University of Rome, 2Fondazione Bruno Kessler, 3University of Trento</b><br/><b>Italian Institute of Technology, 5Mapillary Research</b></td><td>('38286801', 'Massimiliano Mancini', 'massimiliano mancini')<br/>('40811261', 'Elisa Ricci', 'elisa ricci')<br/>('3033284', 'Barbara Caputo', 'barbara caputo')</td><td>{mancini,caputo}@diag.uniroma1.it,eliricci@fbk.eu,samuel@mapillary.com +</td></tr><tr><td>09507f1f1253101d04a975fc5600952eac868602</td><td>Motion Feature Network: Fixed Motion Filter +<br/>for Action Recognition +<br/><b>Seoul National University, Seoul, South Korea</b><br/>2 V.DO Inc., Suwon, Korea +</td><td>('2647624', 'Myunggi Lee', 'myunggi lee')<br/>('51151436', 'Seungeui Lee', 'seungeui lee')<br/>('51136389', 'Gyutae Park', 'gyutae park')<br/>('3160425', 'Nojun Kwak', 'nojun kwak')</td><td>{myunggi89, dehlix, sjson, pgt4861, nojunk}@snu.ac.kr </td></tr><tr><td>09718bf335b926907ded5cb4c94784fd20e5ccd8</td><td>875 <br/>Recognizing Partially Occluded, Expression Variant <br/>Faces From Single Training Image per Person @@ -21154,7 +26465,25 @@ <br/>f (m) (xi,x j), <br/>(4) <br/>(5) -</td><td>('34651153', 'Junlin Hu', 'junlin hu')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('1689805', 'Yap-Peng Tan', 'yap-peng tan')</td><td></td></tr><tr><td>09b0ef3248ff8f1a05b8704a1b4cf64951575be9</td><td>Recognizing Activities of Daily Living with a Wrist-mounted Camera +</td><td>('34651153', 'Junlin Hu', 'junlin hu')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('1689805', 'Yap-Peng Tan', 'yap-peng tan')</td><td></td></tr><tr><td>09df62fd17d3d833ea6b5a52a232fc052d4da3f5</td><td>ISSN: 1405-5546 +<br/>Instituto Politécnico Nacional +<br/>México +<br/> +<br/>Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez, +<br/>Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J. +<br/>Mejora de Contraste y Compensación en Cambios de la Iluminación +<br/>Instituto Politécnico Nacional +<br/>Distrito Federal, México +<br/>Disponible en: http://www.redalyc.org/articulo.oa?id=61509703 +<br/> Cómo citar el artículo +<br/> Número completo +<br/> Más información del artículo +<br/> Página de la revista en redalyc.org +<br/>Sistema de Información Científica +<br/>Red de Revistas Científicas de América Latina, el Caribe, España y Portugal +<br/>Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto +</td><td></td><td>computacion-y-sistemas@cic.ipn.mx +</td></tr><tr><td>09b0ef3248ff8f1a05b8704a1b4cf64951575be9</td><td>Recognizing Activities of Daily Living with a Wrist-mounted Camera <br/><b>Graduate School of Information Science and Technology, The University of Tokyo</b></td><td>('8197937', 'Katsunori Ohnishi', 'katsunori ohnishi')<br/>('2551640', 'Atsushi Kanehira', 'atsushi kanehira')<br/>('2554424', 'Asako Kanezaki', 'asako kanezaki')<br/>('1790553', 'Tatsuya Harada', 'tatsuya harada')</td><td>{ohnishi, kanehira, kanezaki, harada}@mi.t.u-tokyo.ac.jp </td></tr><tr><td>097104fc731a15fad07479f4f2c4be2e071054a2</td><td></td><td></td><td></td></tr><tr><td>094357c1a2ba3fda22aa6dd9e496530d784e1721</td><td>A Unified Probabilistic Approach Modeling Relationships <br/>between Attributes and Objects @@ -21223,7 +26552,15 @@ <br/>Received: 28 April 2013 /Accepted: 19 July 2013 /Published: 31 July 2013 </td><td>('2266189', 'Jing Zhang', 'jing zhang')<br/>('2732767', 'Caixia Yang', 'caixia yang')<br/>('1809507', 'Kecheng Liu', 'kecheng liu')</td><td>* E-mail: eduzhangjing@163.com </td></tr><tr><td>5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf</td><td>Robust Registration of Dynamic Facial Sequences -</td><td>('2046537', 'Evangelos Sariyanidi', 'evangelos sariyanidi')<br/>('1781916', 'Hatice Gunes', 'hatice gunes')<br/>('1713138', 'Andrea Cavallaro', 'andrea cavallaro')</td><td></td></tr><tr><td>5dcf78de4d3d867d0fd4a3105f0defae2234b9cb</td><td></td><td></td><td></td></tr><tr><td>5d88702cdc879396b8b2cc674e233895de99666b</td><td>Exploiting Feature Hierarchies with Convolutional Neural Networks +</td><td>('2046537', 'Evangelos Sariyanidi', 'evangelos sariyanidi')<br/>('1781916', 'Hatice Gunes', 'hatice gunes')<br/>('1713138', 'Andrea Cavallaro', 'andrea cavallaro')</td><td></td></tr><tr><td>5dcf78de4d3d867d0fd4a3105f0defae2234b9cb</td><td></td><td></td><td></td></tr><tr><td>5db4fe0ce9e9227042144758cf6c4c2de2042435</td><td>INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010 +<br/>Recognition of Facial Expression Using Haar +<br/>Wavelet Transform +<br/>for +<br/>paper +<br/>features +<br/>investigates +<br/> +</td><td>('2254697', 'M. Satiyan', 'm. satiyan')</td><td></td></tr><tr><td>5d88702cdc879396b8b2cc674e233895de99666b</td><td>Exploiting Feature Hierarchies with Convolutional Neural Networks <br/>for Cultural Event Recognition <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), <br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>School of Computer Science, Carnegie Mellon University, 15213, USA</b></td><td>('1730228', 'Mengyi Liu', 'mengyi liu')<br/>('1731144', 'Xin Liu', 'xin liu')<br/>('38751558', 'Yan Li', 'yan li')<br/>('1710220', 'Xilin Chen', 'xilin chen')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')</td><td>{mengyi.liu, xin.liu, yan.li}@vipl.ict.ac.cn, {xlchen, sgshan}@ict.ac.cn, alex@cs.cmu.edu @@ -21317,7 +26654,20 @@ </td></tr><tr><td>5d479f77ecccfac9f47d91544fd67df642dfab3c</td><td>Linking People in Videos with “Their” Names <br/>Using Coreference Resolution <br/><b>Stanford University, USA</b><br/><b>Stanford University, USA</b></td><td>('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')<br/>('2319608', 'Armand Joulin', 'armand joulin')<br/>('40085065', 'Percy Liang', 'percy liang')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td>{vigneshr,ajoulin,pliang,feifeili}@cs.stanford.edu -</td></tr><tr><td>5d01283474b73a46d80745ad0cc0c4da14aae194</td><td></td><td></td><td></td></tr><tr><td>5d197c8cd34473eb6cde6b65ced1be82a3a1ed14</td><td><b>AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The"CAS-PEAL","FERET","CMUPIE",and"YaleB"databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The"HarvardRL","CMUPIE"and"YaleB"databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe"BANCA",and"NDHID"databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com</b></td><td></td><td></td></tr><tr><td>5df376748fe5ccd87a724ef31d4fdb579dab693f</td><td>A Dashboard for Affective E-learning: +</td></tr><tr><td>5d01283474b73a46d80745ad0cc0c4da14aae194</td><td></td><td></td><td></td></tr><tr><td>5d197c8cd34473eb6cde6b65ced1be82a3a1ed14</td><td><b>AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The"CAS-PEAL","FERET","CMUPIE",and"YaleB"databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The"HarvardRL","CMUPIE"and"YaleB"databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe"BANCA",and"NDHID"databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com</b></td><td></td><td></td></tr><tr><td>5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e</td><td><b>This is an Open Access document downloaded from ORCA, Cardiff University's institutional</b><br/>repository: http://orca.cf.ac.uk/111659/ +<br/>This is the author’s version of a work that was submitted to / accepted for publication. +<br/>Citation for final published version: +<br/>Krumhuber, Eva G, Lai, Yukun, Rosin, Paul and Hugenberg, Kurt 2018. When facial expressions +<br/>Publishers page: +<br/>Please note: +<br/>Changes made as a result of publishing processes such as copy-editing, formatting and page +<br/>numbers may not be reflected in this version. For the definitive version of this publication, please +<br/>refer to the published source. You are advised to consult the publisher’s version if you wish to cite +<br/>this paper. +<br/>This version is being made available in accordance with publisher policies. See +<br/>http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications +<br/>made available in ORCA are retained by the copyright holders. +</td><td></td><td></td></tr><tr><td>5df376748fe5ccd87a724ef31d4fdb579dab693f</td><td>A Dashboard for Affective E-learning: <br/>Data Visualization for Monitoring Online Learner Emotions <br/>School of Computer Science <br/><b>Carleton University</b><br/>Canada @@ -21332,8 +26682,14 @@ <br/><b>University of Science and Technology of China</b><br/>2Microsoft Research Asia, </td><td>('3093568', 'Jianmin Bao', 'jianmin bao')<br/>('39447786', 'Dong Chen', 'dong chen')<br/>('1716835', 'Fang Wen', 'fang wen')<br/>('7179232', 'Houqiang Li', 'houqiang li')<br/>('1745420', 'Gang Hua', 'gang hua')</td><td>jmbao@mail.ustc.edu.cn, lihq@ustc.edu.cn <br/>{doch,fangwen,ganghua}@microsoft.com -</td></tr><tr><td>31c0968fb5f587918f1c49bf7fa51453b3e89cf7</td><td>Deep Transfer Learning for Person Re-identification -</td><td>('3447059', 'Mengyue Geng', 'mengyue geng')<br/>('5765799', 'Yaowei Wang', 'yaowei wang')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('1705972', 'Yonghong Tian', 'yonghong tian')</td><td></td></tr><tr><td>31e57fa83ac60c03d884774d2b515813493977b9</td><td></td><td></td><td></td></tr><tr><td>3137a3fedf23717c411483c7b4bd2ed646258401</td><td>Joint Learning of Discriminative Prototypes +</td></tr><tr><td>318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a</td><td>Sparsity in Dynamics of Spontaneous +<br/>Subtle Emotions: Analysis & Application +</td><td>('35256518', 'Anh Cat Le Ngo', 'anh cat le ngo')<br/>('2339975', 'John See', 'john see')<br/>('6633183', 'Raphael C.-W. Phan', 'raphael c.-w. phan')</td><td></td></tr><tr><td>31c0968fb5f587918f1c49bf7fa51453b3e89cf7</td><td>Deep Transfer Learning for Person Re-identification +</td><td>('3447059', 'Mengyue Geng', 'mengyue geng')<br/>('5765799', 'Yaowei Wang', 'yaowei wang')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('1705972', 'Yonghong Tian', 'yonghong tian')</td><td></td></tr><tr><td>313d5eba97fe064bdc1f00b7587a4b3543ef712a</td><td>Compact Deep Aggregation for Set Retrieval +<br/><b>Visual Geometry Group, University of Oxford, UK</b><br/>2 DeepMind +</td><td>('6730372', 'Yujie Zhong', 'yujie zhong')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>{yujie,az}@robots.ox.ac.uk +<br/>relja@google.com +</td></tr><tr><td>31e57fa83ac60c03d884774d2b515813493977b9</td><td></td><td></td><td></td></tr><tr><td>3137a3fedf23717c411483c7b4bd2ed646258401</td><td>Joint Learning of Discriminative Prototypes <br/>and Large Margin Nearest Neighbor Classifiers <br/><b>Institute for Computer Graphics and Vision, Graz University of Technology</b></td><td>('3202367', 'Paul Wohlhart', 'paul wohlhart')<br/>('1791182', 'Peter M. Roth', 'peter m. roth')<br/>('3628150', 'Horst Bischof', 'horst bischof')</td><td>{koestinger,wohlhart,pmroth,bischof}@icg.tugraz.at </td></tr><tr><td>31c34a5b42a640b824fa4e3d6187e3675226143e</td><td>Shape and Texture based Facial Action and Emotion @@ -21349,9 +26705,21 @@ <br/>High Dimensional Binary Features <br/>´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada </td><td>('3127597', 'Samira Ebrahimi Kahou', 'samira ebrahimi kahou')<br/>('2558801', 'Pierre Froumenty', 'pierre froumenty')</td><td>{samira.ebrahimi-kahou, pierre.froumenty, christopher.pal}@polymtl.ca +</td></tr><tr><td>31ea88f29e7f01a9801648d808f90862e066f9ea</td><td>Published as a conference paper at ICLR 2017 +<br/>DEEP MULTI-TASK REPRESENTATION LEARNING: +<br/>A TENSOR FACTORISATION APPROACH +<br/><b>Queen Mary, University of London</b></td><td>('2653152', 'Yongxin Yang', 'yongxin yang')<br/>('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')</td><td>{yongxin.yang, t.hospedales}@qmul.ac.uk +</td></tr><tr><td>3176ee88d1bb137d0b561ee63edf10876f805cf0</td><td>Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation +<br/><b>University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR</b></td><td>('25056820', 'Sina Honari', 'sina honari')<br/>('2965424', 'Jason Yosinski', 'jason yosinski')<br/>('1707326', 'Pascal Vincent', 'pascal vincent')</td><td>1{honaris, vincentp}@iro.umontreal.ca, 2yosinski@cs.cornell.edu, 3christopher.pal@polymtl.ca </td></tr><tr><td>31b58ced31f22eab10bd3ee2d9174e7c14c27c01</td><td></td><td></td><td></td></tr><tr><td>31835472821c7e3090abb42e57c38f7043dc3636</td><td>Flow Counting Using Realboosted <br/>Multi-sized Window Detectors -<br/><b>Lund University, Cognimatics AB</b></td><td>('38481779', 'Mikael Nilsson', 'mikael nilsson')<br/>('3181258', 'Rikard Berthilsson', 'rikard berthilsson')</td><td></td></tr><tr><td>3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4</td><td>Exploring Stereotypes and Biased Data with the Crowd +<br/><b>Lund University, Cognimatics AB</b></td><td>('38481779', 'Mikael Nilsson', 'mikael nilsson')<br/>('3181258', 'Rikard Berthilsson', 'rikard berthilsson')</td><td></td></tr><tr><td>312b2566e315dd6e65bd42cfcbe4d919159de8a1</td><td>An Accurate Algorithm for Generating a Music Playlist +<br/>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 100– No.9, August 2014 +<br/>based on Facial Expressions +<br/>Computer Science and Engineering Department +<br/>Amity School of Engineering & Technology, +<br/><b>Amity University, Noida, India</b></td><td></td><td></td></tr><tr><td>3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4</td><td>Exploring Stereotypes and Biased Data with the Crowd <br/>Department of Computer Science <br/><b>The University of Texas at Austin</b><br/>Department of Computer Science <br/><b>The University of Texas at Austin</b><br/>Introduction @@ -21508,7 +26876,18 @@ <br/>jeffcohn@pitt.edu </td></tr><tr><td>91811203c2511e919b047ebc86edad87d985a4fa</td><td>Expression Subspace Projection for Face <br/>Recognition from Single Sample per Person -</td><td>('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')</td><td></td></tr><tr><td>910524c0d0fe062bf806bb545627bf2c9a236a03</td><td>Master Thesis +</td><td>('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')</td><td></td></tr><tr><td>91495c689e6e614247495c3f322d400d8098de43</td><td>A Deep-Learning Approach to Facial Expression Recognition +<br/>with Candid Images +<br/>Wei Li +<br/><b>CUNY City College</b><br/>Min Li +<br/>Alibaba. Inc +<br/>Zhong Su +<br/><b>IBM China Research Lab</b><br/>Zhigang Zhu +<br/><b>CUNY Graduate Center and City College</b></td><td></td><td>lwei000@citymail.cuny.edu +<br/>mushi.lm@alibaba.inc +<br/>suzhong@cn.ibm.com +<br/>zhu@cs.ccny.cuny.edu +</td></tr><tr><td>910524c0d0fe062bf806bb545627bf2c9a236a03</td><td>Master Thesis <br/>Improvement of Facial Expression Recognition through the <br/>Evaluation of Dynamic and Static Features in Video Sequences <br/>Submitted by: @@ -21571,7 +26950,12 @@ <br/>Publisher: Springer <br/>http://link.springer.com/content/pdf/10.1007%2F978-3- <br/>642-04146-4_50.pdf -</td><td></td><td></td></tr><tr><td>91883dabc11245e393786d85941fb99a6248c1fb</td><td></td><td></td><td></td></tr><tr><td>91b1a59b9e0e7f4db0828bf36654b84ba53b0557</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +</td><td></td><td></td></tr><tr><td>91883dabc11245e393786d85941fb99a6248c1fb</td><td></td><td></td><td></td></tr><tr><td>917bea27af1846b649e2bced624e8df1d9b79d6f</td><td>Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for +<br/>Mobile and Embedded Applications +<br/>Gyrfalcon Technology Inc. +<br/>1900 McCarthy Blvd. Milpitas, CA 95035 +</td><td>('47935028', 'Baohua Sun', 'baohua sun')<br/>('49576071', 'Lin Yang', 'lin yang')<br/>('46195424', 'Patrick Dong', 'patrick dong')<br/>('49039276', 'Wenhan Zhang', 'wenhan zhang')<br/>('35287113', 'Jason Dong', 'jason dong')<br/>('48990565', 'Charles Young', 'charles young')</td><td>{baohua.sun,lin.yang,patrick.dong,wenhan.zhang,jason.dong,charles.yang}@gyrfalcontech.com +</td></tr><tr><td>91b1a59b9e0e7f4db0828bf36654b84ba53b0557</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI <br/>> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < <br/> <br/>Simultaneous Hallucination and Recognition of @@ -21579,7 +26963,16 @@ <br/>Decomposition <br/>(SVD) <br/>for performing both -</td><td>('1783889', 'Muwei Jian', 'muwei jian')<br/>('1703078', 'Kin-Man Lam', 'kin-man lam')</td><td></td></tr><tr><td>919d0e681c4ef687bf0b89fe7c0615221e9a1d30</td><td></td><td></td><td></td></tr><tr><td>912a6a97af390d009773452814a401e258b77640</td><td></td><td></td><td></td></tr><tr><td>91d513af1f667f64c9afc55ea1f45b0be7ba08d4</td><td>Automatic Face Image Quality Prediction +</td><td>('1783889', 'Muwei Jian', 'muwei jian')<br/>('1703078', 'Kin-Man Lam', 'kin-man lam')</td><td></td></tr><tr><td>911bef7465665d8b194b6b0370b2b2389dfda1a1</td><td>RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW +<br/>Learning Human Optical Flow +<br/>1 MPI for Intelligent Systems +<br/>Tübingen, Germany +<br/>2 Amazon Inc. +</td><td>('1952002', 'Anurag Ranjan', 'anurag ranjan')<br/>('39040964', 'Javier Romero', 'javier romero')<br/>('2105795', 'Michael J. Black', 'michael j. black')</td><td>aranjan@tuebingen.mpg.de +<br/>javier@amazon.com +<br/>black@tuebingen.mpg.de +</td></tr><tr><td>91ead35d1d2ff2ea7cf35d15b14996471404f68d</td><td>Combining and Steganography of 3D Face Textures +</td><td>('38478675', 'Mohsen Moradi', 'mohsen moradi')</td><td></td></tr><tr><td>919d0e681c4ef687bf0b89fe7c0615221e9a1d30</td><td></td><td></td><td></td></tr><tr><td>912a6a97af390d009773452814a401e258b77640</td><td></td><td></td><td></td></tr><tr><td>91d513af1f667f64c9afc55ea1f45b0be7ba08d4</td><td>Automatic Face Image Quality Prediction </td><td>('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>91e507d2d8375bf474f6ffa87788aa3e742333ce</td><td>Robust Face Recognition Using Probabilistic <br/>Facial Trait Code <br/>†Department of Computer Science and Information Engineering, National Taiwan @@ -21594,7 +26987,10 @@ <br/>Faculty of Engineering and Physical Sciences <br/><b>University of Surrey</b><br/>Guildford, Surrey GU2 7XH, U.K. <br/>April 2015 -</td><td>('38819702', 'Guosheng Hu', 'guosheng hu')<br/>('38819702', 'Guosheng Hu', 'guosheng hu')</td><td></td></tr><tr><td>915d4a0fb523249ecbc88eb62cb150a60cf60fa0</td><td>Comparison of Feature Extraction Techniques in Automatic +</td><td>('38819702', 'Guosheng Hu', 'guosheng hu')<br/>('38819702', 'Guosheng Hu', 'guosheng hu')</td><td></td></tr><tr><td>9131c990fad219726eb38384976868b968ee9d9c</td><td>Deep Facial Expression Recognition: A Survey +</td><td>('39433609', 'Shan Li', 'shan li')<br/>('1774956', 'Weihong Deng', 'weihong deng')</td><td></td></tr><tr><td>911505a4242da555c6828509d1b47ba7854abb7a</td><td>IMPROVED ACTIVE SHAPE MODEL FOR FACIAL FEATURE LOCALIZATION +<br/><b>National Formosa University, Taiwan</b></td><td>('1711364', 'Hui-Yu Huang', 'hui-yu huang')<br/>('2782376', 'Shih-Hang Hsu', 'shih-hang hsu')</td><td>Email: hyhuang@nfu.edu.tw +</td></tr><tr><td>915d4a0fb523249ecbc88eb62cb150a60cf60fa0</td><td>Comparison of Feature Extraction Techniques in Automatic <br/>Face Recognition Systems for Security Applications <br/>S . Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez <br/>Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain @@ -21665,6 +27061,26 @@ <br/><b>University of Georgia, Athens, GA, U.S.A</b></td><td>('2278811', 'Rabia Jafri', 'rabia jafri')<br/>('2227653', 'Syed Abid Ali', 'syed abid ali')<br/>('1712033', 'Hamid R. Arabnia', 'hamid r. arabnia')</td><td></td></tr><tr><td>65bba9fba03e420c96ec432a2a82521ddd848c09</td><td>Connectionist Temporal Modeling for Weakly <br/>Supervised Action Labeling <br/><b>Stanford University</b></td><td>('38485317', 'De-An Huang', 'de-an huang')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')<br/>('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')</td><td>{dahuang,feifeili,jniebles}@cs.stanford.edu +</td></tr><tr><td>656531036cee6b2c2c71954bb6540ef6b2e016d0</td><td>W. LIU ET AL.: JOINTLY LEARNING NON-NEGATIVE PROJECTION AND DICTIONARY 1 +<br/>Jointly Learning Non-negative Projection +<br/>and Dictionary with Discriminative Graph +<br/>Constraints for Classification +<br/>Yandong Wen3 +<br/>Rongmei Lin4 +<br/>Meng Yang*1 +<br/><b>College of Computer Science</b><br/>Software Engineering, +<br/><b>Shenzhen University, China</b><br/>2 School of ECE, +<br/><b>Peking University, China</b><br/>3 Dept. of ECE, +<br/><b>Carnegie Mellon University, USA</b><br/>4 Dept. of Math & Computer Science, +<br/><b>Emory University, USA</b></td><td>('36326884', 'Weiyang Liu', 'weiyang liu')<br/>('1751019', 'Zhiding Yu', 'zhiding yu')</td><td>wyliu@pku.edu.cn +<br/>yzhiding@andrew.cmu.edu +<br/>yandongw@andrew.cmu.edu +<br/>rongmei.lin@emory.edu +<br/>yang.meng@szu.edu.cn +</td></tr><tr><td>65b1209d38c259fe9ca17b537f3fb4d1857580ae</td><td>Information Constraints on Auto-Encoding Variational Bayes +<br/><b>University of California, Berkeley</b><br/><b>University of California, Berkeley</b><br/><b>Ragon Institute of MGH, MIT and Harvard</b><br/>4Chan-Zuckerberg Biohub +</td><td>('39848341', 'Romain Lopez', 'romain lopez')<br/>('39967607', 'Jeffrey Regier', 'jeffrey regier')<br/>('1694621', 'Michael I. Jordan', 'michael i. jordan')<br/>('2163873', 'Nir Yosef', 'nir yosef')</td><td>{romain_lopez, regier, niryosef}@berkeley.edu +<br/>jordan@cs.berkeley.edu </td></tr><tr><td>655d9ba828eeff47c600240e0327c3102b9aba7c</td><td>IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 <br/>489 <br/>Kernel Pooled Local Subspaces for Classification @@ -21695,7 +27111,7 @@ <br/>FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY <br/>ON WEARABLE GADGETS <br/><b>Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia</b><br/><b>Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom</b></td><td>('22422404', 'MUHAMMAD EHSAN RANA', 'muhammad ehsan rana')</td><td>*Corresponding Author: muhd_ehsanrana@apu.edu.my -</td></tr><tr><td>6577c76395896dd4d352f7b1ee8b705b1a45fa90</td><td>TOWARDS COMPUTATIONAL MODELS OF KINSHIP VERIFICATION +</td></tr><tr><td>656f05741c402ba43bb1b9a58bcc5f7ce2403d9a</td><td></td><td>('2319574', 'Danila Potapov', 'danila potapov')</td><td></td></tr><tr><td>6577c76395896dd4d352f7b1ee8b705b1a45fa90</td><td>TOWARDS COMPUTATIONAL MODELS OF KINSHIP VERIFICATION <br/><b>Cornell University</b><br/><b>Cornell University</b></td><td>('2666471', 'Ruogu Fang', 'ruogu fang')<br/>('1830653', 'Noah Snavely', 'noah snavely')<br/>('1746230', 'Tsuhan Chen', 'tsuhan chen')</td><td></td></tr><tr><td>650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772</td><td>A Deep Learning Approach for Subject Independent Emotion <br/>Recognition from Facial Expressions <br/>*Faculty of Electronics, Telecommunications & Information Technology @@ -21745,7 +27161,17 @@ <br/><b>Rensselaer Polytechnic Institute</b><br/>Troy, NY, USA <br/>2 Visualization and Computer Vision Lab <br/><b>GE Global Research Center</b><br/>Niskayuna, NY, USA -</td><td>('1686235', 'Yan Tong', 'yan tong')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td></td></tr><tr><td>62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4</td><td>Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 +</td><td>('1686235', 'Yan Tong', 'yan tong')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td></td></tr><tr><td>653d19e64bd75648cdb149f755d59e583b8367e3</td><td>Decoupling “when to update” from “how to +<br/>update” +<br/><b>School of Computer Science, The Hebrew University, Israel</b></td><td>('19201820', 'Eran Malach', 'eran malach')<br/>('2554670', 'Shai Shalev-Shwartz', 'shai shalev-shwartz')</td><td></td></tr><tr><td>65babb10e727382b31ca5479b452ee725917c739</td><td>Label Distribution Learning +</td><td>('1735299', 'Xin Geng', 'xin geng')</td><td></td></tr><tr><td>62dccab9ab715f33761a5315746ed02e48eed2a0</td><td>A Short Note about Kinetics-600 +<br/>Jo˜ao Carreira +</td><td>('51210148', 'Eric Noland', 'eric noland')<br/>('51215438', 'Andras Banki-Horvath', 'andras banki-horvath')<br/>('38961760', 'Chloe Hillier', 'chloe hillier')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>joaoluis@google.com +<br/>enoland@google.com +<br/>bhandras@google.com +<br/>chillier@google.com +<br/>zisserman@google.com +</td></tr><tr><td>62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4</td><td>Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 <br/>DOI 10.1186/s13640-017-0188-z <br/>EURASIP Journal on Image <br/>and Video Processing @@ -21773,11 +27199,78 @@ </td><td>('1746363', 'Eva L. Dyer', 'eva l. dyer')<br/>('1745861', 'Aswin C. Sankaranarayanan', 'aswin c. sankaranarayanan')<br/>('1746260', 'Richard G. Baraniuk', 'richard g. baraniuk')</td><td>e.dyer@rice.edu <br/>saswin@ece.cmu.edu <br/>richb@rice.edu -</td></tr><tr><td>62f0d8446adee6a5e8102053a63a61af07ac4098</td><td>FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK +</td></tr><tr><td>620339aef06aed07a78f9ed1a057a25433faa58b</td><td></td><td></td><td></td></tr><tr><td>62b3598b401c807288a113796f424612cc5833ca</td><td></td><td></td><td></td></tr><tr><td>62f0d8446adee6a5e8102053a63a61af07ac4098</td><td>FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK <br/>TRANSFERRED FROM A HETEROGENEOUS TASK <br/>**Tome R&D <br/><b>Chubu University</b><br/>1200, Matsumoto-cho, Kasugai, AICHI -</td><td>('1687819', 'Takayoshi Yamashita', 'takayoshi yamashita')</td><td></td></tr><tr><td>62374b9e0e814e672db75c2c00f0023f58ef442c</td><td>Frontalfaceauthenticationusingdiscriminatinggridswith +</td><td>('1687819', 'Takayoshi Yamashita', 'takayoshi yamashita')</td><td></td></tr><tr><td>628a3f027b7646f398c68a680add48c7969ab1d9</td><td>Plan for Final Year Project: +<br/>HKU-Face: A Large Scale Dataset for Deep Face +<br/>Recognition +<br/>3035140108 +<br/>3035141841 +<br/>Introduction +<br/>Face recognition has been one of the most successful techniques in the field of artificial intelligence +<br/>because of its surpassing human-level performance in academic experiments and broad application in +<br/>the industrial world. Gaussian-face[1] and Facenet[2] hold state-of-the-art record using statistical +<br/>method and deep-learning method respectively. What’s more, face recognition has been applied +<br/>in various areas like authority checking and recording, fostering a large number of start-ups like +<br/>Face++. +<br/>Our final year project will deal with the face recognition task by building a large-scaled and carefully- +<br/>filtered dataset. Our project plan specifies our roadmap and current research process. This plan first +<br/>illustrates the significance and potential enhancement in constructing large-scale face dataset for +<br/>both academics and companies. Then objectives to accomplish and related literature review will be +<br/>expressed in detail. Next, methodologies used, scope of our project and challenges faced by us are +<br/>described. The detailed timeline for this project follows as well as a small summary. +<br/>2 Motivation +<br/>Nowadays most of the face recognition tasks are supervised learning tasks which use dataset annotated +<br/>by human beings. This contains mainly two drawbacks: (1) limited size of dataset due to limited +<br/>human effort; (2) accuracy problem resulted from human perceptual bias. +<br/>Parkhi et al.[3] discuss the first problem, showing that giant companies hold private face databases +<br/>with larger size of data (See the comparison in Table 1). Other research institution could only get +<br/>access to public but smaller databases like LFW[4, 5], which acts like a barricade to even higher +<br/>performance. +<br/>Dataset +<br/>IJB-A [6] +<br/>LFW [4, 5] +<br/>YFD [7] +<br/>CelebFaces [8] +<br/>CASIA-WebFace [9] +<br/>MS-Celeb-1M [10] +<br/>Facebook +<br/>Google +<br/>Availability +<br/>public +<br/>public +<br/>public +<br/>public +<br/>public +<br/>public +<br/>private +<br/>private +<br/>identities +<br/>500 +<br/>5K +<br/>1595 +<br/>10K +<br/>10K +<br/>100K +<br/>4K +<br/>8M +<br/>images +<br/>5712 +<br/>13K +<br/>3425 videos +<br/>202K +<br/>500K +<br/>about 10M +<br/>4400K +<br/>100-200M +<br/>Table 1: Face recognition datasets +</td><td>('3347561', 'Haicheng Wang', 'haicheng wang')<br/>('40456402', 'Haoyu Li', 'haoyu li')</td><td></td></tr><tr><td>626913b8fcbbaee8932997d6c4a78fe1ce646127</td><td>Learning from Millions of 3D Scans for Large-scale 3D Face Recognition +<br/>(This the preprint of the paper published in CVPR 2018) +<br/>School of Computer Science and Software Engineering, +<br/><b>The University of Western Australia</b></td><td>('1746166', 'Syed Zulqarnain Gilani', 'syed zulqarnain gilani')<br/>('46332747', 'Ajmal Mian', 'ajmal mian')</td><td>{zulqarnain.gilani,ajmal.mian}@uwa.edu.au +</td></tr><tr><td>62374b9e0e814e672db75c2c00f0023f58ef442c</td><td>Frontalfaceauthenticationusingdiscriminatinggridswith <br/>morphologicalfeaturevectors <br/>A.Tefas <br/>C.Kotropoulos @@ -21868,17 +27361,28 @@ <br/>November 2015 | Volume 2 | Article 29 </td><td>('1689681', 'Rodrigo Verschae', 'rodrigo verschae')<br/>('1737300', 'Javier Ruiz-del-Solar', 'javier ruiz-del-solar')<br/>('1689681', 'Rodrigo Verschae', 'rodrigo verschae')<br/>('1689681', 'Rodrigo Verschae', 'rodrigo verschae')</td><td>rodrigo@verschae.org </td></tr><tr><td>62e913431bcef5983955e9ca160b91bb19d9de42</td><td>Facial Landmark Detection with Tweaked Convolutional Neural Networks -<br/><b>USC Information Sciences Institute</b><br/><b>The Open University of Israel</b></td><td>('1746738', 'Yue Wu', 'yue wu')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>624e9d9d3d941bab6aaccdd93432fc45cac28d4b</td><td>Object-Scene Convolutional Neural Networks for Event Recognition in Images +<br/><b>USC Information Sciences Institute</b><br/><b>The Open University of Israel</b></td><td>('1746738', 'Yue Wu', 'yue wu')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>626859fe8cafd25da13b19d44d8d9eb6f0918647</td><td>Activity Recognition based on a +<br/>Magnitude-Orientation Stream Network +<br/>Smart Surveillance Interest Group, Department of Computer Science +<br/>Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +</td><td>('2119408', 'Carlos Caetano', 'carlos caetano')<br/>('1679142', 'William Robson Schwartz', 'william robson schwartz')</td><td>{carlos.caetano,victorhcmelo,jefersson,william}@dcc.ufmg.br +</td></tr><tr><td>624e9d9d3d941bab6aaccdd93432fc45cac28d4b</td><td>Object-Scene Convolutional Neural Networks for Event Recognition in Images <br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China</b></td><td>('33345248', 'Limin Wang', 'limin wang')<br/>('1915826', 'Zhe Wang', 'zhe wang')<br/>('35031371', 'Wenbin Du', 'wenbin du')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td>07wanglimin@gmail.com, buptwangzhe2012@gmail.com, wb.du@siat.ac.cn, yu.qiao@siat.ac.cn </td></tr><tr><td>620e1dbf88069408b008347cd563e16aeeebeb83</td><td></td><td></td><td></td></tr><tr><td>624496296af19243d5f05e7505fd927db02fd0ce</td><td>Gauss-Newton Deformable Part Models for Face Alignment in-the-Wild <br/>1. School of Computer Science <br/><b>University of Lincoln, U.K</b><br/>2. Department of Computing <br/><b>Imperial College London, U.K</b></td><td>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td>gtzimiropoulos@lincoln.ac.uk -</td></tr><tr><td>621ff353960d5d9320242f39f85921f72be69dc8</td><td>Explicit Occlusion Detection based Deformable Fitting for +</td></tr><tr><td>62fd622b3ca97eb5577fd423fb9efde9a849cbef</td><td>Turning a Blind Eye: Explicit Removal of Biases and +<br/>Variation from Deep Neural Network Embeddings +<br/><b>Visual Geometry Group, University of Oxford</b><br/><b>University of Oxford</b><br/><b>Big Data Institute, University of Oxford</b></td><td>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td></td></tr><tr><td>621ff353960d5d9320242f39f85921f72be69dc8</td><td>Explicit Occlusion Detection based Deformable Fitting for <br/>Facial Landmark Localization <br/>1Department of Computer Science <br/><b>Rutgers University</b><br/>617 Bowser Road, Piscataway, N.J, USA </td><td>('39960064', 'Xiang Yu', 'xiang yu')<br/>('1684164', 'Fei Yang', 'fei yang')<br/>('1768190', 'Junzhou Huang', 'junzhou huang')<br/>('1711560', 'Dimitris N. Metaxas', 'dimitris n. metaxas')</td><td>{xiangyu,feiyang,dnm}@cs.rutgers.edu +</td></tr><tr><td>62007c30f148334fb4d8975f80afe76e5aef8c7f</td><td>Eye In-Painting with Exemplar Generative Adversarial Networks +<br/>Facebook Inc. +<br/>1 Hacker Way, Menlo Park (CA), USA +</td><td>('8277405', 'Brian Dolhansky', 'brian dolhansky')</td><td>{bdol, ccanton}@fb.com </td></tr><tr><td>62a30f1b149843860938de6dd6d1874954de24b7</td><td>418 <br/>Fast Algorithm for Updating the Discriminant Vectors <br/>of Dual-Space LDA @@ -21914,13 +27418,22 @@ <br/>1 ESAT-PSI/VISICS, iMinds, KU Leuven, Belgium <br/>2 MPI Informatics, Saarbrücken, Germany <br/>3 D-ITET/CVL, ETH Zürich, Switzerland -</td><td>('11983029', 'Markus Mathias', 'markus mathias')<br/>('1798000', 'Rodrigo Benenson', 'rodrigo benenson')<br/>('3048367', 'Marco Pedersoli', 'marco pedersoli')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td></td></tr><tr><td>9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c</td><td>UPTEC STS 17033 +</td><td>('11983029', 'Markus Mathias', 'markus mathias')<br/>('1798000', 'Rodrigo Benenson', 'rodrigo benenson')<br/>('3048367', 'Marco Pedersoli', 'marco pedersoli')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td></td></tr><tr><td>96f0e7416994035c91f4e0dfa40fd45090debfc5</td><td>Unsupervised Learning of Face Representations +<br/><b>Georgia Institute of Technology, CVIT, IIIT Hyderabad, IIT Kanpur</b></td><td>('19200118', 'Samyak Datta', 'samyak datta')<br/>('39396475', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c</td><td>UPTEC STS 17033 <br/>Examensarbete 30 hp <br/>November 2017 <br/>A deep learning approach for <br/>action classification in American <br/>football video sequences -</td><td>('5845058', 'Jacob Westerberg', 'jacob westerberg')</td><td></td></tr><tr><td>968b983fa9967ff82e0798a5967920188a3590a8</td><td>2013, Vol. 139, No. 2, 271–299 +</td><td>('5845058', 'Jacob Westerberg', 'jacob westerberg')</td><td></td></tr><tr><td>963d0d40de8780161b70d28d2b125b5222e75596</td><td>Convolutional Experts Network for Facial Landmark Detection +<br/><b>Carnegie Mellon University</b><br/>Tadas Baltruˇsaitis∗ +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Ave, Pittsburgh, PA 15213, USA +<br/>5000 Forbes Ave, Pittsburgh, PA 15213, USA +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Ave, Pittsburgh, PA 15213, USA +</td><td>('1783029', 'Amir Zadeh', 'amir zadeh')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')</td><td>abagherz@cs.cmu.edu +<br/>tbaltrus@cs.cmu.edu +<br/>morency@cs.cmu.edu +</td></tr><tr><td>968b983fa9967ff82e0798a5967920188a3590a8</td><td>2013, Vol. 139, No. 2, 271–299 <br/>© 2013 American Psychological Association <br/>0033-2909/13/$12.00 DOI: 10.1037/a0031640 <br/>Children’s Recognition of Disgust in Others @@ -22008,16 +27521,32 @@ </td><td>('39106061', 'Liying Chi', 'liying chi')<br/>('35028106', 'Hongxin Zhang', 'hongxin zhang')<br/>('9932177', 'Mingxiu Chen', 'mingxiu chen')</td><td>charrin0531@gmail.com <br/>zhx@cad.zju.edu.cn <br/>cmxnono@rokid.com +</td></tr><tr><td>96a9ca7a8366ae0efe6b58a515d15b44776faf6e</td><td>Grid Loss: Detecting Occluded Faces +<br/><b>Institute for Computer Graphics and Vision</b><br/><b>Graz University of Technology</b></td><td>('34847524', 'Michael Opitz', 'michael opitz')<br/>('1903921', 'Georg Waltner', 'georg waltner')<br/>('1762885', 'Georg Poier', 'georg poier')<br/>('1720811', 'Horst Possegger', 'horst possegger')<br/>('3628150', 'Horst Bischof', 'horst bischof')</td><td>{michael.opitz,waltner,poier,possegger,bischof}@icg.tugraz.at </td></tr><tr><td>9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4</td><td>J Inf Process Syst, Vol.9, No.1, March 2013 <br/>pISSN 1976-913X <br/>eISSN 2092-805X <br/>Region-Based Facial Expression Recognition in <br/>Still Images -</td><td>('2648759', 'Gawed M. Nagi', 'gawed m. nagi')<br/>('2057896', 'Fatimah Khalid', 'fatimah khalid')</td><td></td></tr><tr><td>964a3196d44f0fefa7de3403849d22bbafa73886</td><td></td><td></td><td></td></tr><tr><td>96f4a1dd1146064d1586ebe86293d02e8480d181</td><td>COMPARATIVE ANALYSIS OF RERANKING +</td><td>('2648759', 'Gawed M. Nagi', 'gawed m. nagi')<br/>('2057896', 'Fatimah Khalid', 'fatimah khalid')</td><td></td></tr><tr><td>964a3196d44f0fefa7de3403849d22bbafa73886</td><td></td><td></td><td></td></tr><tr><td>96e1ccfe96566e3c96d7b86e134fa698c01f2289</td><td>Published in Proc. of 11th IAPR International Conference on Biometrics (ICB 2018). Gold Coast, Australia, Feb. 2018 +<br/>Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy +<br/>to Face Images +<br/>Anoop Namboodiri 2 +<br/><b>Michigan State University, East Lansing, USA</b><br/><b>International Institute of Information Technology, Hyderabad, India</b></td><td>('5456235', 'Vahid Mirjalili', 'vahid mirjalili')<br/>('2562040', 'Sebastian Raschka', 'sebastian raschka')<br/>('1698707', 'Arun Ross', 'arun ross')</td><td>mirjalil@msu.edu +<br/>raschkas@msu.edu +<br/>anoop@iiit.ac.in +<br/>rossarun@cse.msu.edu +</td></tr><tr><td>96f4a1dd1146064d1586ebe86293d02e8480d181</td><td>COMPARATIVE ANALYSIS OF RERANKING <br/>TECHNIQUES FOR WEB IMAGE SEARCH <br/><b>Pune Institute of Computer Technology, Pune, ( India</b></td><td></td><td></td></tr><tr><td>9606b1c88b891d433927b1f841dce44b8d3af066</td><td>Principal Component Analysis with Tensor Train <br/>Subspace -</td><td>('2329741', 'Wenqi Wang', 'wenqi wang')<br/>('1732805', 'Vaneet Aggarwal', 'vaneet aggarwal')<br/>('1980683', 'Shuchin Aeron', 'shuchin aeron')</td><td></td></tr><tr><td>966e36f15b05ef8436afecf57a97b73d6dcada94</td><td>Dimensionality Reduction using Relative +</td><td>('2329741', 'Wenqi Wang', 'wenqi wang')<br/>('1732805', 'Vaneet Aggarwal', 'vaneet aggarwal')<br/>('1980683', 'Shuchin Aeron', 'shuchin aeron')</td><td></td></tr><tr><td>9627f28ea5f4c389350572b15968386d7ce3fe49</td><td>Load Balanced GANs for Multi-view Face Image Synthesis +<br/>1National Laboratory of Pattern Recognition, CASIA +<br/>2Center for Research on Intelligent Perception and Computing, CASIA +<br/>3Center for Excellence in Brain Science and Intelligence Technology, CAS +<br/><b>University of Chinese Academy of Sciences, Beijing, 100049, China</b><br/>5Noah’s Ark Lab of Huawei Technologies +</td><td>('1680853', 'Jie Cao', 'jie cao')<br/>('49995036', 'Yibo Hu', 'yibo hu')<br/>('49828394', 'Bing Yu', 'bing yu')<br/>('1705643', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>{jie.cao,yibo.hu}@cripac.ia.ac.cn, yubing5@huawei.com, {rhe, znsun}@nlpr.ia.ac.cn +</td></tr><tr><td>966e36f15b05ef8436afecf57a97b73d6dcada94</td><td>Dimensionality Reduction using Relative <br/>Attributes <br/><b>Institute for Human-Machine Communication, Technische Universit at M unchen</b><br/><b>Iran</b><br/><b>The Remote Sensing Technology Institute (IMF), German Aerospace Center</b><br/>1 Introduction <br/>Visual attributes are high-level semantic description of visual data that are close @@ -22049,6 +27578,13 @@ </td><td>('2133342', 'Mohammadreza Babaee', 'mohammadreza babaee')<br/>('2165157', 'Stefanos Tsoukalas', 'stefanos tsoukalas')<br/>('3281049', 'Maryam Babaee', 'maryam babaee')<br/>('1705843', 'Gerhard Rigoll', 'gerhard rigoll')<br/>('1777167', 'Mihai Datcu', 'mihai datcu')</td><td>{reza.babaee,rigoll}@tum.de, s.tsoukalas@mytum.de <br/>babaee@eng.ui.ac.ir <br/>mihai.datcu@dlr.de +</td></tr><tr><td>96b1000031c53cd4c1c154013bb722ffd87fa7da</td><td>ContextVP: Fully Context-Aware Video +<br/>Prediction +<br/>1 NVIDIA, Santa Clara, CA, USA +<br/>2 ETH Zurich, Zurich, Switzerland +<br/>3 The Swiss AI Lab IDSIA, Manno, Switzerland +<br/>4 NNAISENSE, Lugano, Switzerland +</td><td>('2387035', 'Wonmin Byeon', 'wonmin byeon')<br/>('1794816', 'Qin Wang', 'qin wang')<br/>('2100612', 'Rupesh Kumar Srivastava', 'rupesh kumar srivastava')<br/>('1802604', 'Petros Koumoutsakos', 'petros koumoutsakos')</td><td>wbyeon@nvidia.com </td></tr><tr><td>96578785836d7416bf2e9c154f687eed8f93b1e4</td><td>Automated video-based facial expression analysis <br/>of neuropsychiatric disorders <br/><b>a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA</b><br/><b>b Brain Behavior Center, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania</b><br/>3400 Spruce Street, 10th Floor Gates Building Philadelphia, PA 19104, USA @@ -22068,7 +27604,10 @@ <br/>mega-scale (with a million distractors). Observe that rates drop with increasing numbers of distractors, even though the probe set is fixed, <br/>and that algorithms trained on larger sets (dashed lines) generally perform better. Participate at: http://megaface.cs.washington.edu. </td><td>('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')<br/>('1679223', 'Steven M. Seitz', 'steven m. seitz')<br/>('2721528', 'Evan Brossard', 'evan brossard')</td><td></td></tr><tr><td>968f472477a8afbadb5d92ff1b9c7fdc89f0c009</td><td>Firefly-based Facial Expression Recognition -</td><td></td><td></td></tr><tr><td>96e731e82b817c95d4ce48b9e6b08d2394937cf8</td><td>Unconstrained Face Verification using Deep CNN Features +</td><td></td><td></td></tr><tr><td>96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d</td><td>Dynamic Attention-controlled Cascaded Shape Regression Exploiting Training +<br/>Data Augmentation and Fuzzy-set Sample Weighting +<br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</b><br/><b>School of IoT Engineering, Jiangnan University, Wuxi 214122, China</b></td><td>('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td>{z.feng, j.kittler, w.christmas, p.huber}@surrey.ac.uk, wu xiaojun@jiangnan.edu.cn +</td></tr><tr><td>96e731e82b817c95d4ce48b9e6b08d2394937cf8</td><td>Unconstrained Face Verification using Deep CNN Features <br/><b>University of Maryland, College Park</b><br/><b>Rutgers, The State University of New Jersey</b></td><td>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>pullpull@cs.umd.edu, vishal.m.patel@rutgers.edu, rama@umiacs.umd.edu </td></tr><tr><td>9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc</td><td>International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015 <br/>ISSN 2091-2730 @@ -22078,7 +27617,13 @@ <br/>3Department of Computer Science and Engineering <br/>4Asst. Professor, Department of Computer Science and Engineering <br/><b>M.H Saboo Siddik College of Engineering, University of Mumbai, India</b></td><td>('9928295', 'Sharik Khan', 'sharik khan')<br/>('1762886', 'Omar Khan', 'omar khan')<br/>('16079307', 'Shabana Tadvi', 'shabana tadvi')</td><td>Email:-kabani152@gmail.com -</td></tr><tr><td>9636c7d3643fc598dacb83d71f199f1d2cc34415</td><td></td><td></td><td></td></tr><tr><td>3af8d38469fb21368ee947d53746ea68cd64eeae</td><td>Multimodal Intelligent Affect Detection with Kinect +</td></tr><tr><td>9636c7d3643fc598dacb83d71f199f1d2cc34415</td><td></td><td></td><td></td></tr><tr><td>3a27d164e931c422d16481916a2fa6401b74bcef</td><td>Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant +<br/>Face Verification +<br/>National Laboratory of Pattern Recognition, CASIA +<br/>Center for Research on Intelligent Perception and Computing, CASIA +<br/>Center for Excellence in Brain Science and Intelligence Technology, CAS +<br/><b>University of Chinese Academy of Sciences, Beijing 100190, China</b></td><td>('2496686', 'Yi Li', 'yi li')<br/>('3051419', 'Lingxiao Song', 'lingxiao song')<br/>('2225749', 'Xiang Wu', 'xiang wu')<br/>('1705643', 'Ran He', 'ran he')<br/>('1688870', 'Tieniu Tan', 'tieniu tan')</td><td>yi.li@cripac.ia.ac.cn, {lingxiao.song, rhe, tnt}@nlpr.ia.ac.cn, alfredxiangwu@gmail.com +</td></tr><tr><td>3af8d38469fb21368ee947d53746ea68cd64eeae</td><td>Multimodal Intelligent Affect Detection with Kinect <br/>(Doctoral Consortium) <br/><b>Northumbria University</b><br/>United Kingdom <br/><b>Northumbria University</b><br/>United Kingdom @@ -22087,9 +27632,13 @@ <br/>Yang4.zhang@northumbria.ac.uk </td></tr><tr><td>3a2fc58222870d8bed62442c00341e8c0a39ec87</td><td>Probabilistic Local Variation <br/>Segmentation -<br/>Technion - Computer Science Department - M.Sc. Thesis MSC-2014-02 - 2014</td><td>('3139600', 'Michael Baltaxe', 'michael baltaxe')</td><td></td></tr><tr><td>3a76e9fc2e89bdd10a9818f7249fbf61d216efc4</td><td>Face Sketch Matching via Coupled Deep Transform Learning +<br/>Technion - Computer Science Department - M.Sc. Thesis MSC-2014-02 - 2014</td><td>('3139600', 'Michael Baltaxe', 'michael baltaxe')</td><td></td></tr><tr><td>3a3f75e0ffdc0eef07c42b470593827fcd4020b4</td><td>NORMAL SIMILARITY NETWORK FOR GENERATIVE MODELLING +<br/><b>School of Computing, National University of Singapore</b></td><td>('40456486', 'Jay Nandy', 'jay nandy')<br/>('1725063', 'Wynne Hsu', 'wynne hsu')</td><td></td></tr><tr><td>3a76e9fc2e89bdd10a9818f7249fbf61d216efc4</td><td>Face Sketch Matching via Coupled Deep Transform Learning <br/><b>IIIT-Delhi, India, 2West Virginia University</b></td><td>('1925017', 'Shruti Nagpal', 'shruti nagpal')<br/>('2220719', 'Maneet Singh', 'maneet singh')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('2487227', 'Afzel Noore', 'afzel noore')<br/>('2641605', 'Angshul Majumdar', 'angshul majumdar')</td><td>{shrutin, maneets, rsingh, mayank, angshul}@iiitd.ac.in, afzel.noore@mail.wvu.edu -</td></tr><tr><td>3a0ea368d7606030a94eb5527a12e6789f727994</td><td>Categorization by Learning +</td></tr><tr><td>3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2</td><td>End-to-End Deep Learning for Steering Autonomous +<br/>Vehicles Considering Temporal Dependencies +<br/><b>The American University in Cairo, Egypt</b><br/>2Valeo Schalter und Sensoren GmbH, Germany +</td><td>('2150605', 'Hesham M. Eraqi', 'hesham m. eraqi')<br/>('2233511', 'Mohamed N. Moustafa', 'mohamed n. moustafa')<br/>('11300101', 'Jens Honer', 'jens honer')</td><td></td></tr><tr><td>3a0ea368d7606030a94eb5527a12e6789f727994</td><td>Categorization by Learning <br/>and Combining Object Parts <br/> <br/>Tomaso Poggio @@ -22233,7 +27782,11 @@ <br/>Philadelphia, PA 19104 </td><td>('1722767', 'Peng Wang', 'peng wang')<br/>('15741672', 'Fred Barrett', 'fred barrett')<br/>('7467718', 'Ragini Verma', 'ragini verma')</td><td>{wpeng@ieee.org, ragini.verma@uphs.upenn.edu } <br/>{kohler, fbarrett, raquel, gur}@bbl.med.upenn.edu -</td></tr><tr><td>3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e</td><td>in any current or +</td></tr><tr><td>3a9681e2e07be7b40b59c32a49a6ff4c40c962a2</td><td>Biometrics & Biostatistics International Journal +<br/>Comparing treatment means: overlapping standard +<br/>errors, overlapping confidence intervals, and tests of +<br/>hypothesis +</td><td></td><td></td></tr><tr><td>3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e</td><td>in any current or <br/>future media, <br/>for all other uses, <br/>© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be @@ -22260,7 +27813,28 @@ <br/>Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 <br/> BE, DSCE, Bangalore1 <br/>Assistant Professor, DSCE, Bangalore2 -</td><td></td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>AgeDB: the first manually collected, in-the-wild age database +</td><td></td><td></td></tr><tr><td>54948ee407b5d32da4b2eee377cc44f20c3a7e0c</td><td>Right for the Right Reason: Training Agnostic +<br/>Networks +<br/><b>Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK</b><br/>use of classifiers in “out of domain” situations, a problem that +<br/>leads to research questions in domain adaptation [6], [18]. +<br/>Other concerns are also created around issues of bias, e.g. +<br/>classifiers incorporating biases that are present in the data +<br/>and are not intended to be used [2], which run the risk of +<br/>reinforcing or amplifying cultural (and other) biases [20]. +<br/>Therefore, both predictive accuracy and fairness are heavily +<br/>influenced by the choices made when developing black-box +<br/>machine-learning models. +</td><td>('1805367', 'Sen Jia', 'sen jia')<br/>('2031978', 'Thomas Lansdall-Welfare', 'thomas lansdall-welfare')<br/>('1685083', 'Nello Cristianini', 'nello cristianini')</td><td>{sen.jia, thomas.lansdall-welfare, nello.cristianini}@bris.ac.uk +</td></tr><tr><td>540b39ba1b8ef06293ed793f130e0483e777e278</td><td>ORIGINAL RESEARCH +<br/>published: 13 July 2018 +<br/>doi: 10.3389/fpsyg.2018.01191 +<br/>Biologically Inspired Emotional +<br/>Expressions for Artificial Agents +<br/><b>Optics and Engineering Informatics, Budapest University of Technology and Economics</b><br/><b>Budapest, Hungary, E tv s Lor nd University, Budapest, Hungary, 3 Institute for Computer Science</b><br/><b>and Control, Hungarian Academy of Sciences, Budapest, Hungary, Chuo University</b><br/>Tokyo, Japan, 5 MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary, 6 Department of Telecommunications +<br/><b>and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary</b><br/>A special area of human-machine interaction, +<br/>the expression of emotions gains +<br/>importance with the continuous development of artificial agents such as social robots or +</td><td>('31575111', 'Beáta Korcsok', 'beáta korcsok')<br/>('3410664', 'Veronika Konok', 'veronika konok')<br/>('10791722', 'György Persa', 'györgy persa')<br/>('2725581', 'Tamás Faragó', 'tamás faragó')<br/>('1701851', 'Mihoko Niitsuma', 'mihoko niitsuma')<br/>('1769570', 'Péter Baranyi', 'péter baranyi')<br/>('3131165', 'Márta Gácsi', 'márta gácsi')</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>AgeDB: the first manually collected, in-the-wild age database <br/><b>Imperial College London</b><br/><b>Imperial College London</b><br/><b>Imperial College London, On do</b><br/><b>Imperial College London</b><br/><b>Middlesex University London</b><br/><b>Imperial College London</b></td><td>('24278037', 'Stylianos Moschoglou', 'stylianos moschoglou')<br/>('40598566', 'Athanasios Papaioannou', 'athanasios papaioannou')<br/>('3320415', 'Christos Sagonas', 'christos sagonas')<br/>('3234063', 'Jiankang Deng', 'jiankang deng')<br/>('1754270', 'Irene Kotsia', 'irene kotsia')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td>s.moschoglou@imperial.ac.uk <br/>a.papaioannou11@imperial.ac.uk <br/>c.sagonas@imperial.ac.uk @@ -22286,19 +27860,28 @@ <br/>NETWORKS <br/><b>University of Freiburg</b><br/>79110 Freiburg, Germany </td><td>('2060551', 'Jost Tobias Springenberg', 'jost tobias springenberg')</td><td>springj@cs.uni-freiburg.de -</td></tr><tr><td>5456166e3bfe78a353df988897ec0bd66cee937f</td><td>Improved Boosting Performance by Exclusion +</td></tr><tr><td>54969bcd728b0f2d3285866c86ef0b4797c2a74d</td><td>IEEE TRANSACTION SUBMISSION +<br/>Learning for Video Compression +</td><td>('31482866', 'Zhibo Chen', 'zhibo chen')<br/>('50258851', 'Tianyu He', 'tianyu he')<br/>('50562569', 'Xin Jin', 'xin jin')<br/>('1697194', 'Feng Wu', 'feng wu')</td><td></td></tr><tr><td>5456166e3bfe78a353df988897ec0bd66cee937f</td><td>Improved Boosting Performance by Exclusion <br/>of Ambiguous Positive Examples <br/>Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden <br/>Keywords: <br/>Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007. </td><td>('1750517', 'Miroslav Kobetski', 'miroslav kobetski')<br/>('1736906', 'Josephine Sullivan', 'josephine sullivan')</td><td>{kobetski, sullivan}@kth.se -</td></tr><tr><td>541f1436c8ffef1118a0121088584ddbfd3a0a8a</td><td>A Spatio-Temporal Feature based on Triangulation of Dense SURF +</td></tr><tr><td>54a9ed950458f4b7e348fa78a718657c8d3d0e05</td><td>Learning Neural Models for End-to-End +<br/>Clustering +<br/>1 ZHAW Datalab & School of Engineering, Winterthur, Switzerland +<br/>2 ARGUS DATA INSIGHTS Schweiz AG, Zurich, Switzerland +<br/><b>Ca Foscari University of Venice, Venice, Italy</b><br/><b>Institute of Neural Information Processing, Ulm University, Germany</b><br/><b>Institute for Optical Systems, HTWG Konstanz, Germany</b></td><td>('50415299', 'Benjamin Bruno Meier', 'benjamin bruno meier')<br/>('3469013', 'Ismail Elezi', 'ismail elezi')<br/>('1985672', 'Mohammadreza Amirian', 'mohammadreza amirian')<br/>('3238279', 'Oliver Dürr', 'oliver dürr')<br/>('2793787', 'Thilo Stadelmann', 'thilo stadelmann')</td><td></td></tr><tr><td>541f1436c8ffef1118a0121088584ddbfd3a0a8a</td><td>A Spatio-Temporal Feature based on Triangulation of Dense SURF <br/><b>The University of Electro-Communications, Tokyo</b><br/>1-5-1 Chofu, Tokyo 182-0021 JAPAN </td><td>('2274625', 'Do Hang Nga', 'do hang nga')<br/>('1681659', 'Keiji Yanai', 'keiji yanai')</td><td>dohang@mm.cs.uec.ac.jp, yanai@cs.uec.ac.jp </td></tr><tr><td>54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3</td><td>A Joint Learning Framework for Attribute Models and Object Descriptions <br/>Dhruv Mahajan <br/>Yahoo! Labs, Bangalore, India </td><td>('1779926', 'Sundararajan Sellamanickam', 'sundararajan sellamanickam')<br/>('4989209', 'Vinod Nair', 'vinod nair')</td><td>{dkm,ssrajan,vnair}@yahoo-inc.com +</td></tr><tr><td>54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Local Centroids Structured Non-Negative Matrix Factorization +<br/><b>University of Texas at Arlington, Texas, USA</b><br/><b>School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xian 710072, Shaanxi, P. R. China</b></td><td>('2141896', 'Hongchang Gao', 'hongchang gao')<br/>('1688370', 'Feiping Nie', 'feiping nie')</td><td>{hongchanggao, feipingnie}@gmail.com, heng@uta.edu </td></tr><tr><td>541bccf19086755f8b5f57fd15177dc49e77d675</td><td></td><td>('2154872', 'Lijin Aryananda', 'lijin aryananda')</td><td></td></tr><tr><td>5495e224ac7b45b9edc5cfeabbb754d8a40a879b</td><td>Feature Reconstruction Disentangling for Pose-invariant Face Recognition <br/>Supplementary Material <br/><b>Rutgers, The State University of New Jersey</b><br/><b>University of California, San Diego</b><br/>‡ NEC Laboratories America @@ -22419,7 +28002,10 @@ <br/>useful information from the vast and ever changing image and video data available on the world wide web. For <br/>some of this data people provide partial annotation in the form of tags, captions, and freeform text on web pages. <br/>One major challenge is to combine results from computational visual recognition with these partial annotations to -</td><td>('39668247', 'Alexander C. Berg', 'alexander c. berg')</td><td></td></tr><tr><td>549c719c4429812dff4d02753d2db11dd490b2ae</td><td>YouTube-BoundingBoxes: A Large High-Precision +</td><td>('39668247', 'Alexander C. Berg', 'alexander c. berg')</td><td></td></tr><tr><td>54204e28af73c7aca073835a14afcc5d8f52a515</td><td>Fine-Pruning: Defending Against Backdooring Attacks +<br/>on Deep Neural Networks +<br/><b>New York University, Brooklyn, NY, USA</b></td><td>('48087922', 'Kang Liu', 'kang liu')<br/>('3337066', 'Brendan Dolan-Gavitt', 'brendan dolan-gavitt')<br/>('1696125', 'Siddharth Garg', 'siddharth garg')</td><td>{kang.liu,brendandg,siddharth.garg}@nyu.edu +</td></tr><tr><td>549c719c4429812dff4d02753d2db11dd490b2ae</td><td>YouTube-BoundingBoxes: A Large High-Precision <br/>Human-Annotated Data Set for Object Detection in Video <br/>Google Brain <br/>Google Brain @@ -22502,7 +28088,26 @@ <br/>Frontiers in Psychology | www.frontiersin.org <br/>September 2015 | Volume 6 | Article 1386 </td><td>('6402753', 'Peter Lewinski', 'peter lewinski')<br/>('6402753', 'Peter Lewinski', 'peter lewinski')</td><td>p.lewinski@uva.nl -</td></tr><tr><td>989332c5f1b22604d6bb1f78e606cb6b1f694e1a</td><td>Recurrent Face Aging +</td></tr><tr><td>9853136dbd7d5f6a9c57dc66060cab44a86cd662</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 34– No.2, November 2011 +<br/>Improving the Neural Network Training for Face +<br/>Recognition using Adaptive Learning Rate, Resilient +<br/>Back Propagation and Conjugate Gradient Algorithm +<br/>M.Sc. Student +<br/>Department of Electrical +<br/><b>Engineering, Iran University</b><br/>of Science and Technology, +<br/>Tehran, Iran +<br/>Saeid Sanei +<br/>Associate Professor +<br/>Department of Computing, +<br/>Faculty of Engineering and +<br/><b>Physical Sciences, University</b><br/>of Surrey, UK +<br/>Karim Mohammadi +<br/>Professor +<br/>Department of Electrical +<br/><b>Engineering, Iran University</b><br/>of Science and Technology, +<br/>Tehran, Iran +</td><td>('47250218', 'Hamed Azami', 'hamed azami')</td><td></td></tr><tr><td>989332c5f1b22604d6bb1f78e606cb6b1f694e1a</td><td>Recurrent Face Aging <br/><b>University of Trento, Italy</b><br/><b>National University of Singapore</b><br/><b>Research Center for Learning Science, Southeast University, Nanjing, China</b><br/><b>Arti cial Intelligence Institute, China</b></td><td>('39792736', 'Wei Wang', 'wei wang')<br/>('10338111', 'Zhen Cui', 'zhen cui')<br/>('32059677', 'Yan Yan', 'yan yan')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('2287686', 'Xiangbo Shu', 'xiangbo shu')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')</td><td>{wei.wang,yan.yan,niculae.sebe}@unitn.it {elefjia,eleyans}@nus.edu.sg <br/>zhen.cui@seu.edu.cn shuxb104@gmail.com </td></tr><tr><td>982f5c625d6ad0dac25d7acbce4dabfb35dd7f23</td><td>Facial Expression Recognition by SVM-based Two-stage Classifier on @@ -22545,6 +28150,21 @@ <br/>Center for Electrical Engineering and Informatics (CEEI) <br/><b>Federal University of Campina Grande (UFCG</b><br/>Campina Grande, Para´ıba, Brazil </td><td>('2092178', 'Herman Martins Gomes', 'herman martins gomes')</td><td>Email: {edumoura,hmg}@dsc.ufcg.edu.br, carvalho@dee.ufcg.edu.br +</td></tr><tr><td>9865fe20df8fe11717d92b5ea63469f59cf1635a</td><td>YUCEL ET AL.: WILDEST FACES +<br/>Wildest Faces: Face Detection and +<br/>Recognition in Violent Settings +<br/>Pinar Duygulu1 +<br/>1 Department of Computer Science +<br/><b>Hacettepe University</b><br/>Ankara, Turkey +<br/>2 Department of Computer Engineering +<br/><b>Middle East Technical University</b><br/>Ankara, Turkey +<br/>* indicates equal contribution. +</td><td>('46234524', 'Mehmet Kerim Yucel', 'mehmet kerim yucel')<br/>('39032755', 'Yunus Can Bilge', 'yunus can bilge')<br/>('46437368', 'Oguzhan Oguz', 'oguzhan oguz')<br/>('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')<br/>('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')</td><td>mkerimyucel@hacettepe.edu.tr +<br/>yunuscan.bilge@hacettepe.edu.tr +<br/>oguzhan.oguz@hacettepe.edu.tr +<br/>nazli@cs.hacettepe.edu.tr +<br/>pinar@cs.hacettepe.edu.tr +<br/>gcinbis@ceng.metu.edu.tr </td></tr><tr><td>98c2053e0c31fab5bcb9ce5386335b647160cc09</td><td>A Distributed Framework for Spatio-temporal Analysis on Large-scale Camera <br/>Networks <br/><b>Georgia Institute of Technology</b><br/><b>University of Stuttgart</b><br/>†SUNY Buffalo @@ -22587,7 +28207,10 @@ <br/>BANGALORE, INDIA </td><td>('39365176', 'Gouri Patil', 'gouri patil')<br/>('4787347', 'Snehalata Patil', 'snehalata patil')</td><td>Email-jyoti.spatil35@gmail.com Email-greatgouri@gmail.com <br/> Email-snehasharad09@gmail.com -</td></tr><tr><td>980266ad6807531fea94252e8f2b771c20e173b3</td><td>Continuous Regression for +</td></tr><tr><td>9825c4dddeb2ed7eaab668b55403aa2c38bc3320</td><td>Aerial Imagery for Roof Segmentation: A Large-Scale Dataset +<br/>towards Automatic Mapping of Buildings +<br/><b>aCenter for Spatial Information Science, University of Tokyo, Kashiwa 277-8568, Japan</b><br/><b>University of Waterloo, Waterloo, ON N2L 3G1, Canada</b><br/><b>cFaculty of Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China</b><br/>dAtlasAI Inc., Waterloo, ON N2L 3G1, Canada +</td><td>('1783637', 'Qi Chen', 'qi chen')<br/>('48169641', 'Lei Wang', 'lei wang')<br/>('50117915', 'Yifan Wu', 'yifan wu')<br/>('3043983', 'Guangming Wu', 'guangming wu')<br/>('40477085', 'Zhiling Guo', 'zhiling guo')</td><td></td></tr><tr><td>980266ad6807531fea94252e8f2b771c20e173b3</td><td>Continuous Regression for <br/>Non-Rigid Image Alignment <br/>Enrique S´anchez-Lozano1 <br/>Daniel Gonz´alez-Jim´enez1 @@ -22603,7 +28226,9 @@ <br/><b>California Institute of Technology</b><br/>Pasadena, California <br/>2007 <br/>(Defended April 30, 2007) -</td><td>('3075121', 'Alex Holub', 'alex holub')</td><td></td></tr><tr><td>5334ac0a6438483890d5eef64f6db93f44aacdf4</td><td></td><td></td><td></td></tr><tr><td>53e081f5af505374c3b8491e9c4470fe77fe7934</td><td>Unconstrained Realtime Facial Performance Capture +</td><td>('3075121', 'Alex Holub', 'alex holub')</td><td></td></tr><tr><td>533d14e539ae5cdca0ece392487a2b19106d468a</td><td>Bidirectional Multirate Reconstruction for Temporal Modeling in Videos +<br/><b>University of Technology Sydney</b></td><td>('2948393', 'Linchao Zhu', 'linchao zhu')<br/>('2351434', 'Zhongwen Xu', 'zhongwen xu')<br/>('1698559', 'Yi Yang', 'yi yang')</td><td>{zhulinchao7, zhongwen.s.xu, yee.i.yang}@gmail.com +</td></tr><tr><td>5334ac0a6438483890d5eef64f6db93f44aacdf4</td><td></td><td></td><td></td></tr><tr><td>53dd25350d3b3aaf19beb2104f1e389e3442df61</td><td></td><td></td><td></td></tr><tr><td>53e081f5af505374c3b8491e9c4470fe77fe7934</td><td>Unconstrained Realtime Facial Performance Capture <br/><b>University of Southern California</b><br/>† Industrial Light & Magic <br/>Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor. </td><td>('2519072', 'Pei-Lun Hsieh', 'pei-lun hsieh')<br/>('1797422', 'Chongyang Ma', 'chongyang ma')<br/>('2977637', 'Jihun Yu', 'jihun yu')<br/>('1706574', 'Hao Li', 'hao li')</td><td></td></tr><tr><td>53698b91709112e5bb71eeeae94607db2aefc57c</td><td>Two-Stream Convolutional Networks @@ -22614,7 +28239,7 @@ <br/><b>Nanjing University, China</b><br/>Minieye, Youjia Innovation LLC </td><td>('1808816', 'Jianxin Wu', 'jianxin wu')<br/>('2226422', 'Bin-Bin Gao', 'bin-bin gao')<br/>('15527784', 'Guoqing Liu', 'guoqing liu')</td><td>guoqing@minieye.cc <br/>wujx2001@nju.edu.cn, gaobb@lamda.nju.edu.cn -</td></tr><tr><td>5397c34a5e396658fa57e3ca0065a2878c3cced7</td><td>Lighting Normalization with Generic Intrinsic Illumination Subspace for Face +</td></tr><tr><td>530243b61fa5aea19b454b7dbcac9f463ed0460e</td><td></td><td></td><td></td></tr><tr><td>5397c34a5e396658fa57e3ca0065a2878c3cced7</td><td>Lighting Normalization with Generic Intrinsic Illumination Subspace for Face <br/>Recognition <br/><b>Institute of Information Science, Academia Sinica, Taipei, Taiwan</b></td><td>('1686057', 'Chia-Ping Chen', 'chia-ping chen')<br/>('1720473', 'Chu-Song Chen', 'chu-song chen')</td><td>{cpchen, song}@iis.sinica.edu.tw </td></tr><tr><td>539ca9db570b5e43be0576bb250e1ba7a727d640</td><td></td><td></td><td></td></tr><tr><td>539287d8967cdeb3ef60d60157ee93e8724efcac</td><td>Learning Deep (cid:96)0 Encoders @@ -22626,16 +28251,44 @@ <br/>tel: +30 2310 996361 <br/>1. INTRODUCTION </td><td>('1905139', 'Olga Zoidi', 'olga zoidi')<br/>('1718330', 'Nikos Nikolaidis', 'nikos nikolaidis')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td>{ozoidi, nikolaid, pitas}@aiia.csd.auth.gr -</td></tr><tr><td>53c8cbc4a3a3752a74f79b74370ed8aeed97db85</td><td></td><td></td><td></td></tr><tr><td>5366573e96a1dadfcd4fd592f83017e378a0e185</td><td>Böhlen, Chandola and Salunkhe +</td></tr><tr><td>53c8cbc4a3a3752a74f79b74370ed8aeed97db85</td><td></td><td></td><td></td></tr><tr><td>53c36186bf0ffbe2f39165a1824c965c6394fe0d</td><td>I Know How You Feel: Emotion Recognition with Facial Landmarks +<br/><b>Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology</b></td><td>('22188614', 'Ivona Tautkute', 'ivona tautkute')<br/>('1760267', 'Tomasz Trzcinski', 'tomasz trzcinski')<br/>('48657002', 'Adam Bielski', 'adam bielski')</td><td>{firstname.lastname}@tooploox.com +</td></tr><tr><td>5366573e96a1dadfcd4fd592f83017e378a0e185</td><td>Böhlen, Chandola and Salunkhe <br/>Server, server in the cloud. <br/>Who is the fairest in the crowd? -</td><td></td><td></td></tr><tr><td>533bfb82c54f261e6a2b7ed7d31a2fd679c56d18</td><td>Technical Report MSU-CSE-14-1 +</td><td></td><td></td></tr><tr><td>53a41c711b40e7fe3dc2b12e0790933d9c99a6e0</td><td>Recurrent Memory Addressing for describing videos +<br/><b>Indian Institute of Technology Kharagpur</b></td><td>('7284555', 'Arnav Kumar Jain', 'arnav kumar jain')<br/>('6565766', 'Kumar Krishna Agrawal', 'kumar krishna agrawal')<br/>('1781070', 'Pabitra Mitra', 'pabitra mitra')</td><td>{arnavkj95, abhinavagarawalla, kumarkrishna, pabitra}@iitkgp.ac.in +</td></tr><tr><td>53bfe2ab770e74d064303f3bd2867e5bf7b86379</td><td>Learning to Synthesize and Manipulate Natural Images +<br/>By +<br/>A dissertation submitted in partial satisfaction of the +<br/>requirements for the degree of +<br/>Doctor of Philosophy +<br/>in +<br/>Engineering - Electrical Engineering and Computer Science +<br/>in the +<br/>Graduate Division +<br/>of the +<br/><b>University of California, Berkeley</b><br/>Committee in charge: +<br/>Professor Alexei A. Efros, Chair +<br/>Professor Jitendra Malik +<br/>Professor Ren Ng +<br/>Professor Michael DeWeese +<br/>Fall 2017 +</td><td>('3132726', 'Junyan Zhu', 'junyan zhu')</td><td></td></tr><tr><td>533bfb82c54f261e6a2b7ed7d31a2fd679c56d18</td><td>Technical Report MSU-CSE-14-1 <br/>Unconstrained Face Recognition: Identifying a <br/>Person of Interest from a Media Collection </td><td>('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')<br/>('34393045', 'Hu Han', 'hu han')<br/>('40653304', 'Charles Otto', 'charles otto')<br/>('1817623', 'Brendan Klare', 'brendan klare')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>537d8c4c53604fd419918ec90d6ef28d045311d0</td><td>Active Collaborative Ensemble Tracking <br/><b>Graduate School of Informatics, Kyoto University</b><br/>Yoshida-Honmachi, Sakyo Ward, Kyoto 606–8501, Japan </td><td>('2146623', 'Kourosh Meshgi', 'kourosh meshgi')<br/>('31095396', 'Maryam Sadat Mirzaei', 'maryam sadat mirzaei')<br/>('38809507', 'Shigeyuki Oba', 'shigeyuki oba')<br/>('2851612', 'Shin Ishii', 'shin ishii')</td><td>meshgi-k@sys.i.kyoto-u.ac.jp -</td></tr><tr><td>530ce1097d0681a0f9d3ce877c5ba31617b1d709</td><td></td><td></td><td></td></tr><tr><td>3fbd68d1268922ee50c92b28bd23ca6669ff87e5</td><td>598 +</td></tr><tr><td>530ce1097d0681a0f9d3ce877c5ba31617b1d709</td><td></td><td></td><td></td></tr><tr><td>53ce84598052308b86ba79d873082853022aa7e9</td><td>Optimized Method for Real-Time Face Recognition System Based +<br/>on PCA and Multiclass Support Vector Machine +<br/><b>IEEE Member, Shahid Rajaee Teacher training University</b><br/>Tehran, Iran +<br/><b>Institute of Computer science, Shahid Bahonar University</b><br/>Shiraz, Iran +<br/><b>Islamic Azad University, Science and Research Campus</b><br/>Hamedan, Iran +</td><td>('1763181', 'Reza Azad', 'reza azad')<br/>('39864738', 'Babak Azad', 'babak azad')<br/>('2904132', 'Iman Tavakoli Kazerooni', 'iman tavakoli kazerooni')</td><td>rezazad68@gmail.com +<br/>babak.babi72@gmail.com +<br/>iman_tavakoli2008@yahoo.com +</td></tr><tr><td>3fbd68d1268922ee50c92b28bd23ca6669ff87e5</td><td>598 <br/>IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 <br/>A Shape- and Texture-Based Enhanced Fisher <br/>Classifier for Face Recognition @@ -22688,7 +28341,12 @@ <br/>http://crcv.ucf.edu/projects/DaMN/ </td><td>('2099254', 'Rui Hou', 'rui hou')<br/>('40029556', 'Amir Roshan Zamir', 'amir roshan zamir')<br/>('1694199', 'Rahul Sukthankar', 'rahul sukthankar')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td></td></tr><tr><td>3fb26f3abcf0d287243646426cd5ddeee33624d4</td><td>Joint Training of Cascaded CNN for Face Detection <br/><b>Grad. School at Shenzhen, Tsinghua University</b><br/><b>Tsinghua University 4SenseTime</b></td><td>('2137185', 'Hongwei Qin', 'hongwei qin')<br/>('1721677', 'Junjie Yan', 'junjie yan')<br/>('2693308', 'Xiu Li', 'xiu li')<br/>('1705418', 'Xiaolin Hu', 'xiaolin hu')</td><td>{qhw12@mails., li.xiu@sz., xlhu@}tsinghua.edu.cn yanjunjie@outlook.com -</td></tr><tr><td>3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5</td><td>Face Recognition Across Poses Using A Single 3D Reference Model +</td></tr><tr><td>3f9ca2526013e358cd8caeb66a3d7161f5507cbc</td><td>Improving Sparse Representation-Based Classification +<br/>Using Local Principal Component Analysis +<br/>Department of Mathematics +<br/><b>University of California, Davis</b><br/>One Shields Avenue +<br/>Davis, California, 95616, United States +</td><td>('32898818', 'Chelsea Weaver', 'chelsea weaver')<br/>('3493752', 'Naoki Saito', 'naoki saito')</td><td></td></tr><tr><td>3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5</td><td>Face Recognition Across Poses Using A Single 3D Reference Model <br/><b>National Taiwan University of Science and Technology</b><br/>No. 43, Sec.4, Keelung Rd., Taipei, 106, Taiwan </td><td>('38801529', 'Gee-Sern Hsu', 'gee-sern hsu')<br/>('3329222', 'Hsiao-Chia Peng', 'hsiao-chia peng')</td><td>∗jison@mail.ntust.edu.tw </td></tr><tr><td>3feb69531653e83d0986a0643e4a6210a088e3e5</td><td>Using Group Prior to Identify People in Consumer Images @@ -22698,7 +28356,9 @@ <br/>tsuhan@cmu.edu </td></tr><tr><td>3f12701449a82a5e01845001afab3580b92da858</td><td>Joint Object Class Sequencing and Trajectory <br/>Triangulation (JOST) -<br/><b>The University of North Carolina, Chapel Hill</b></td><td>('2873326', 'Enliang Zheng', 'enliang zheng')<br/>('1751643', 'Ke Wang', 'ke wang')<br/>('29274093', 'Enrique Dunn', 'enrique dunn')<br/>('40454588', 'Jan-Michael Frahm', 'jan-michael frahm')</td><td></td></tr><tr><td>3fde656343d3fd4223e08e0bc835552bff4bda40</td><td>Available Online at www.ijcsmc.com +<br/><b>The University of North Carolina, Chapel Hill</b></td><td>('2873326', 'Enliang Zheng', 'enliang zheng')<br/>('1751643', 'Ke Wang', 'ke wang')<br/>('29274093', 'Enrique Dunn', 'enrique dunn')<br/>('40454588', 'Jan-Michael Frahm', 'jan-michael frahm')</td><td></td></tr><tr><td>3fb98e76ffd8ba79e1c22eda4d640da0c037e98a</td><td>Convolutional Neural Networks for Crop Yield Prediction using Satellite Images +<br/>H. Russello +</td><td></td><td></td></tr><tr><td>3fde656343d3fd4223e08e0bc835552bff4bda40</td><td>Available Online at www.ijcsmc.com <br/>International Journal of Computer Science and Mobile Computing <br/>A Monthly Journal of Computer Science and Information Technology <br/>ISSN 2320–088X @@ -22744,7 +28404,14 @@ <br/>system uses Gabor <br/>images produces Gabor </td><td>('1810015', 'Dakshina Ranjan Kisku', 'dakshina ranjan kisku')<br/>('1868921', 'Hunny Mehrotra', 'hunny mehrotra')<br/>('1687389', 'Phalguni Gupta', 'phalguni gupta')<br/>('1786127', 'Jamuna Kanta Sing', 'jamuna kanta sing')</td><td>drkisku@ieee.org; hunny04@gmail.com; pg@cse.iitk.ac.in; , jksing@ieee.org -</td></tr><tr><td>3f5cf3771446da44d48f1d5ca2121c52975bb3d3</td><td></td><td></td><td></td></tr><tr><td>3f14b504c2b37a0e8119fbda0eff52efb2eb2461</td><td>5727 +</td></tr><tr><td>3f5cf3771446da44d48f1d5ca2121c52975bb3d3</td><td></td><td></td><td></td></tr><tr><td>3fb4bf38d34f7f7e5b3df36de2413d34da3e174a</td><td>THOMAS AND KOVASHKA: PERSUASIVE FACES: GENERATING FACES IN ADS +<br/>Persuasive Faces: Generating Faces in +<br/>Advertisements +<br/>Department of Computer Science +<br/><b>University of Pittsburgh</b><br/>Pittsburgh, PA USA +</td><td>('40540691', 'Christopher Thomas', 'christopher thomas')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td>chris@cs.pitt.edu +<br/>kovashka@cs.pitt.edu +</td></tr><tr><td>3f14b504c2b37a0e8119fbda0eff52efb2eb2461</td><td>5727 <br/>Joint Facial Action Unit Detection and Feature <br/>Fusion: A Multi-Conditional Learning Approach </td><td>('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')<br/>('1729713', 'Ognjen Rudovic', 'ognjen rudovic')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Remarks on Computational Facial Expression @@ -22753,7 +28420,13 @@ <br/><b>Information Systems Design, Doshisha University, Kyoto, Japan</b><br/><b>Graduate School of Doshisha University, Kyoto, Japan</b><br/><b>Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan</b></td><td>('39452921', 'Kazuhiko Takahashi', 'kazuhiko takahashi')<br/>('10728256', 'Sae Takahashi', 'sae takahashi')<br/>('1824476', 'Yunduan Cui', 'yunduan cui')<br/>('2565962', 'Masafumi Hashimoto', 'masafumi hashimoto')</td><td>{katakaha@mail,buj1078@mail4}.doshisha.ac.jp <br/>dum3101@mail4.doshisha.ac.jp <br/>mhashimo@mail.doshisha.ac.jp -</td></tr><tr><td>3fd90098551bf88c7509521adf1c0ba9b5dfeb57</td><td>Page 1 of 21 +</td></tr><tr><td>3f9a7d690db82cf5c3940fbb06b827ced59ec01e</td><td>VIP: Finding Important People in Images +<br/>Virginia Tech +<br/>Google Inc. +<br/>Virginia Tech +<br/>Project: https://computing.ece.vt.edu/~mclint/vip/ +<br/>Demo: http://cloudcv.org/vip/ +</td><td>('3085140', 'Clint Solomon Mathialagan', 'clint solomon mathialagan')<br/>('39460815', 'Andrew C. Gallagher', 'andrew c. gallagher')<br/>('1746610', 'Dhruv Batra', 'dhruv batra')</td><td></td></tr><tr><td>3fd90098551bf88c7509521adf1c0ba9b5dfeb57</td><td>Page 1 of 21 <br/>*****For Peer Review Only***** <br/>10 <br/>11 @@ -22824,7 +28497,18 @@ </td><td>('2108310', 'TIWUYA H. FAAYA', 'tiwuya h. faaya')</td><td></td></tr><tr><td>3f7723ab51417b85aa909e739fc4c43c64bf3e84</td><td>Improved Performance in Facial Expression <br/>Recognition Using 32 Geometric Features <br/><b>University of Bari, Bari, Italy</b><br/><b>National Institute of Optics, National Research Council, Arnesano, LE, Italy</b></td><td>('2235498', 'Giuseppe Palestra', 'giuseppe palestra')<br/>('39814343', 'Adriana Pettinicchio', 'adriana pettinicchio')<br/>('33097940', 'Marco Del Coco', 'marco del coco')<br/>('4730472', 'Marco Leo', 'marco leo')<br/>('1741861', 'Cosimo Distante', 'cosimo distante')</td><td>giuseppe.palestra@gmail.com -</td></tr><tr><td>3f63f9aaec8ba1fa801d131e3680900680f14139</td><td>Facial Expression Recognition using Local Binary +</td></tr><tr><td>3f5e8f884e71310d7d5571bd98e5a049b8175075</td><td>Making a Science of Model Search: Hyperparameter Optimization +<br/>in Hundreds of Dimensions for Vision Architectures +<br/>J. Bergstra +<br/><b>Rowland Institute at Harvard</b><br/>100 Edwin H. Land Boulevard +<br/>Cambridge, MA 02142, USA +<br/>D. Yamins +<br/>Department of Brain and Cognitive Sciences +<br/><b>Massachusetts Institute of Technology</b><br/>Cambridge, MA 02139, USA +<br/>D. D. Cox +<br/><b>Rowland Institute at Harvard</b><br/>100 Edwin H. Land Boulevard +<br/>Cambridge, MA 02142, USA +</td><td></td><td></td></tr><tr><td>3f63f9aaec8ba1fa801d131e3680900680f14139</td><td>Facial Expression Recognition using Local Binary <br/>Patterns and Kullback Leibler Divergence <br/>AnushaVupputuri, SukadevMeher <br/> @@ -22839,9 +28523,24 @@ </td><td>('3310120', 'Ali Diba', 'ali diba')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>ali.diba@esat.kuleuven.be <br/>pazandeh@ee.sharif.ir <br/>luc.vangool@esat.kuleuven.be +</td></tr><tr><td>3f5693584d7dab13ffc12122d6ddbf862783028b</td><td>Ranking CGANs: Subjective Control over Semantic Image +<br/>Attributes +<br/><b>University of Bath</b></td><td>('41020280', 'Yassir Saquil', 'yassir saquil')<br/>('1808255', 'Kwang In Kim', 'kwang in kim')</td><td></td></tr><tr><td>30b15cdb72760f20f80e04157b57be9029d8a1ab</td><td>Face Aging with Identity-Preserved +<br/>Conditional Generative Adversarial Networks +<br/><b>Shanghaitech University</b><br/>Baidu +<br/><b>Shanghaitech University</b></td><td>('50219041', 'Zongwei Wang', 'zongwei wang')<br/>('48785141', 'Xu Tang', 'xu tang')<br/>('2074878', 'Weixin Luo', 'weixin luo')<br/>('1702868', 'Shenghua Gao', 'shenghua gao')</td><td>wangzw@shanghaitech.edu.cn +<br/>tangxu02@baidu.com +<br/>{luowx, gaoshh}@shanghaitech.edu.cn </td></tr><tr><td>3039627fa612c184228b0bed0a8c03c7f754748c</td><td>Robust Regression on Image Manifolds for Ordered Label Denoising <br/><b>University of North Carolina at Charlotte</b></td><td>('1873911', 'Hui Wu', 'hui wu')<br/>('1690110', 'Richard Souvenir', 'richard souvenir')</td><td>{hwu13,souvenir}@uncc.edu -</td></tr><tr><td>303065c44cf847849d04da16b8b1d9a120cef73a</td><td></td><td></td><td></td></tr><tr><td>303a7099c01530fa0beb197eb1305b574168b653</td><td>Occlusion-free Face Alignment: Deep Regression Networks Coupled with +</td></tr><tr><td>30870ef75aa57e41f54310283c0057451c8c822b</td><td>Overcoming Catastrophic Forgetting with Hard Attention to the Task +</td><td>('50101040', 'Marius Miron', 'marius miron')</td><td></td></tr><tr><td>303065c44cf847849d04da16b8b1d9a120cef73a</td><td></td><td></td><td></td></tr><tr><td>305346d01298edeb5c6dc8b55679e8f60ba97efb</td><td>Article +<br/>Fine-Grained Face Annotation Using Deep +<br/>Multi-Task CNN +<br/><b>Systems and Communication, University of Milano-Bicocca</b><br/>Received: 3 July 2018; Accepted: 13 August 2018; Published: 14 August 2018 +</td><td>('3390122', 'Luigi Celona', 'luigi celona')<br/>('2217051', 'Simone Bianco', 'simone bianco')<br/>('1743714', 'Raimondo Schettini', 'raimondo schettini')</td><td>viale Sarca, 336 Milano, Italy; bianco@disco.unimib.it (S.B.); schettini@disco.unimib.it (R.S.) +<br/>* Correspondence: luigi.celona@disco.unimib.it +</td></tr><tr><td>303a7099c01530fa0beb197eb1305b574168b653</td><td>Occlusion-free Face Alignment: Deep Regression Networks Coupled with <br/>De-corrupt AutoEncoders <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), <br/><b>Institute of Computing Technology, CAS, Beijing 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing 100049, China</b><br/>3CAS Center for Excellence in Brain Science and Intelligence Technology @@ -22857,7 +28556,14 @@ <br/>Face Recognition <br/>Galaxy Global Imperial Technical Campus <br/>Galaxy Global Imperial Technical Campus -<br/><b>DIT UNIVERSITY, DEHRADUN</b></td><td>('34272062', 'PRACHI BANSAL', 'prachi bansal')</td><td></td></tr><tr><td>309e17e6223e13b1f76b5b0eaa123b96ef22f51b</td><td>Face Recognition based on a 3D Morphable Model +<br/><b>DIT UNIVERSITY, DEHRADUN</b></td><td>('34272062', 'PRACHI BANSAL', 'prachi bansal')</td><td></td></tr><tr><td>30fd1363fa14965e3ab48a7d6235e4b3516c1da1</td><td>A Deep Semi-NMF Model for Learning Hidden Representations +<br/>Stefanos Zafeiriou +<br/>Bj¨orn W. Schuller +<br/><b>Imperial College London, United Kingdom</b></td><td>('2814229', 'George Trigeorgis', 'george trigeorgis')<br/>('2732737', 'Konstantinos Bousmalis', 'konstantinos bousmalis')</td><td>GEORGE.TRIGEORGIS08@IMPERIAL.AC.UK +<br/>K.BOUSMALIS@IMPERIAL.AC.UK +<br/>S.ZAFEIRIOU@IMPERIAL.AC.UK +<br/>BJOERN.SCHULLER@IMPERIAL.AC.UK +</td></tr><tr><td>309e17e6223e13b1f76b5b0eaa123b96ef22f51b</td><td>Face Recognition based on a 3D Morphable Model <br/><b>University of Siegen</b><br/>H¤olderlinstr. 3 <br/>57068 Siegen, Germany </td><td>('2880906', 'Volker Blanz', 'volker blanz')</td><td>blanz@informatik.uni-siegen.de @@ -23017,7 +28723,9 @@ <br/>labeled samples. <br/>The third contribution is to apply a recently proposed machine learning technique called <br/>covariate shift adaptation (Shimodaira, 2000; Sugiyama & Kawanabe, 2011; Sugiyama et al., -</td><td>('2163491', 'Kazuya Ueki', 'kazuya ueki')<br/>('1853974', 'Yasuyuki Ihara', 'yasuyuki ihara')<br/>('1719221', 'Masashi Sugiyama', 'masashi sugiyama')</td><td></td></tr><tr><td>302c9c105d49c1348b8f1d8cc47bead70e2acf08</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE +</td><td>('2163491', 'Kazuya Ueki', 'kazuya ueki')<br/>('1853974', 'Yasuyuki Ihara', 'yasuyuki ihara')<br/>('1719221', 'Masashi Sugiyama', 'masashi sugiyama')</td><td></td></tr><tr><td>30cbd41e997445745b6edd31f2ebcc7533453b61</td><td>What Makes a Video a Video: Analyzing Temporal Information in Video +<br/>Understanding Models and Datasets +<br/><b>Stanford University, 2Facebook, 3Dartmouth College</b></td><td>('38485317', 'De-An Huang', 'de-an huang')<br/>('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')<br/>('49274550', 'Dhruv Mahajan', 'dhruv mahajan')<br/>('1732879', 'Lorenzo Torresani', 'lorenzo torresani')<br/>('2210374', 'Manohar Paluri', 'manohar paluri')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')<br/>('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')</td><td></td></tr><tr><td>302c9c105d49c1348b8f1d8cc47bead70e2acf08</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE <br/>Transactions on Circuits and Systems for Video Technology <br/>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY <br/>Unconstrained Face Recognition Using A Set-to-Set @@ -23034,11 +28742,14 @@ <br/><b>Queensland University of Technology(QUT</b></td><td>('2256817', 'Fahimeh Rezazadegan', 'fahimeh rezazadegan')<br/>('34686772', 'Sareh Shirazi', 'sareh shirazi')<br/>('1771913', 'Niko Sünderhauf', 'niko sünderhauf')<br/>('1809144', 'Michael Milford', 'michael milford')<br/>('1803115', 'Ben Upcroft', 'ben upcroft')</td><td>fahimeh.rezazadegan@qut.edu.au </td></tr><tr><td>5e59193a0fc22a0c37301fb05b198dd96df94266</td><td>Example-Based Modeling of Facial Texture from Deficient Data <br/>1 IMB / LaBRI, Universit´e de Bordeaux, France -<br/><b>University of York, UK</b></td><td>('34895713', 'Arnaud Dessein', 'arnaud dessein')<br/>('1679753', 'Edwin R. Hancock', 'edwin r. hancock')<br/>('1687021', 'William A. P. Smith', 'william a. p. smith')<br/>('1718243', 'Richard C. Wilson', 'richard c. wilson')</td><td></td></tr><tr><td>5e0eb34aeb2b58000726540336771053ecd335fc</td><td>Low-Quality Video Face Recognition with Deep +<br/><b>University of York, UK</b></td><td>('34895713', 'Arnaud Dessein', 'arnaud dessein')<br/>('1679753', 'Edwin R. Hancock', 'edwin r. hancock')<br/>('1687021', 'William A. P. Smith', 'william a. p. smith')<br/>('1718243', 'Richard C. Wilson', 'richard c. wilson')</td><td></td></tr><tr><td>5e6f546a50ed97658be9310d5e0a67891fe8a102</td><td>Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? +<br/><b>National Institute of Advanced Industrial Science and Technology (AIST</b><br/>Tsukuba, Ibaraki, Japan +</td><td>('2199251', 'Kensho Hara', 'kensho hara')<br/>('1730200', 'Hirokatsu Kataoka', 'hirokatsu kataoka')<br/>('1732705', 'Yutaka Satoh', 'yutaka satoh')</td><td>{kensho.hara, hirokatsu.kataoka, yu.satou}@aist.go.jp +</td></tr><tr><td>5e0eb34aeb2b58000726540336771053ecd335fc</td><td>Low-Quality Video Face Recognition with Deep <br/>Networks and Polygonal Chain Distance <br/><b>Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany</b><br/>†Fraunhofer IOSB, Karlsruhe, Germany </td><td>('37646107', 'Christian Herrmann', 'christian herrmann')<br/>('1783486', 'Dieter Willersinn', 'dieter willersinn')</td><td>{christian.herrmann|dieter.willersinn|juergen.beyerer}@iosb.fraunhofer.de -</td></tr><tr><td>5e28673a930131b1ee50d11f69573c17db8fff3e</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +</td></tr><tr><td>5e7e055ef9ba6e8566a400a8b1c6d8f827099553</td><td></td><td></td><td>Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreadingprocess.Copyright © 2018 the authorsThis Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.Research Articles: Behavioral/CognitiveOn the role of cortex-basal ganglia interactions for category learning: Aneuro-computational approachFrancesc Villagrasa1, Javier Baladron1, Julien Vitay1, Henning Schroll1, Evan G. Antzoulatos2, Earl K.Miller3 and Fred H. Hamker11Chemnitz University of Technology, Department of Computer Science, 09107 Chemnitz, Germany2UC Davis Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, Davis, CA95616, United States3The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences,Massachusetts Institute of Technology, Cambridge, MA 02139, United StatesDOI: 10.1523/JNEUROSCI.0874-18.2018Received: 5 April 2018Revised: 7 August 2018Accepted: 28 August 2018Published: 18 September 2018Author contributions: F.V., J.V., E.G.A., and F.H.H. performed research; F.V., J.B., J.V., H.S., E.G.A., andE.K.M. analyzed data; F.V. wrote the first draft of the paper; J.B. and F.H.H. designed research; J.B., J.V., H.S.,E.G.A., E.K.M., and F.H.H. edited the paper; F.H.H. wrote the paper.Conflict of Interest: The authors declare no competing financial interests.This work has been supported by the German Research Foundation (DFG, grant agreements no. HA2630/4-2and HA2630/8-1), the European Social Fund and the Free State of Saxony (ESF, grant agreement no.ESF-100269974), the NIMH R01MH065252, and the MIT Picower Institute Innovation Fund.Corresponding author: Fred H. Hamker, fred.hamker@informatik.tu-chemnitz.de, 09107 Chemnitz, GermanyCite as: J. Neurosci ; 10.1523/JNEUROSCI.0874-18.2018Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formattedversion of this article is published.</td></tr><tr><td>5e28673a930131b1ee50d11f69573c17db8fff3e</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France <br/>(2008)" </td><td></td><td></td></tr><tr><td>5ea9063b44b56d9c1942b8484572790dff82731e</td><td>MULTICLASS SUPPORT VECTOR MACHINES AND METRIC MULTIDIMENSIONAL <br/>SCALING FOR FACIAL EXPRESSION RECOGNITION @@ -23126,7 +28837,12 @@ </td><td>('7484236', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')</td><td></td></tr><tr><td>5b7cb9b97c425b52b2e6f41ba8028836029c4432</td><td>Smooth Representation Clustering <br/>1State Key Laboratory on Intelligent Technology and Systems, TNList <br/><b>Tsinghua University</b><br/><b>Key Lab. of Machine Perception, School of EECS, Peking University</b></td><td>('40234323', 'Han Hu', 'han hu')<br/>('33383055', 'Zhouchen Lin', 'zhouchen lin')<br/>('2632601', 'Jianjiang Feng', 'jianjiang feng')<br/>('39491387', 'Jie Zhou', 'jie zhou')</td><td>huh04@mails.thu.edu.cn, zlin@pku.edu.cn, {jfeng,jzhou}@tsinghua.edu.cn -</td></tr><tr><td>5b6f0a508c1f4097dd8dced751df46230450b01a</td><td>Finding Lost Children +</td></tr><tr><td>5ba7882700718e996d576b58528f1838e5559225</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE +<br/>Transactions on Affective Computing +<br/>IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016 +<br/>Predicting Personalized Image Emotion +<br/>Perceptions in Social Networks +</td><td>('1755487', 'Sicheng Zhao', 'sicheng zhao')<br/>('1720100', 'Hongxun Yao', 'hongxun yao')<br/>('33375873', 'Yue Gao', 'yue gao')<br/>('38329336', 'Guiguang Ding', 'guiguang ding')<br/>('1684968', 'Tat-Seng Chua', 'tat-seng chua')</td><td></td></tr><tr><td>5b6f0a508c1f4097dd8dced751df46230450b01a</td><td>Finding Lost Children <br/>Ashley Michelle Eden <br/>Electrical Engineering and Computer Sciences <br/><b>University of California at Berkeley</b><br/>Technical Report No. UCB/EECS-2010-174 @@ -23161,7 +28877,28 @@ <br/>Dean, Graduate School </td><td></td><td></td></tr><tr><td>5bae9822d703c585a61575dced83fa2f4dea1c6d</td><td>MOTChallenge 2015: <br/>Towards a Benchmark for Multi-Target Tracking -</td><td>('34761498', 'Anton Milan', 'anton milan')<br/>('34493380', 'Stefan Roth', 'stefan roth')<br/>('1803034', 'Konrad Schindler', 'konrad schindler')</td><td></td></tr><tr><td>5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f</td><td>Targeting Ultimate Accuracy: Face Recognition via Deep Embedding +</td><td>('34761498', 'Anton Milan', 'anton milan')<br/>('34493380', 'Stefan Roth', 'stefan roth')<br/>('1803034', 'Konrad Schindler', 'konrad schindler')</td><td></td></tr><tr><td>5b0008ba87667085912ea474025d2323a14bfc90</td><td>SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace +<br/>Clustering Algorithms∗ +<br/>Electrical and Computer Engineering +<br/><b>Northeastern University, Boston, MA</b></td><td>('1687866', 'Mario Sznaier', 'mario sznaier')</td><td>{msznaier,camps}@coe.neu.edu +</td></tr><tr><td>5b97e997b9b654373bd129b3baf5b82c2def13d1</td><td>3D Face Tracking and Texture Fusion in the Wild +<br/>Centre for Vision, Speech and Signal Processing +<br/>Image Understanding and Interactive Robotics +<br/><b>University of Surrey</b><br/>Guildford, GU2 7XH, United Kingdom +<br/>Contact: http://www.patrikhuber.ch +<br/><b>Reutlingen University</b><br/>D-72762 Reutlingen, Germany +</td><td>('39976184', 'Patrik Huber', 'patrik huber')<br/>('1748684', 'Josef Kittler', 'josef kittler')<br/>('49330989', 'Philipp Kopp', 'philipp kopp')</td><td></td></tr><tr><td>5bd3d08335bb4e444a86200c5e9f57fd9d719e14</td><td>3D Face Morphable Models “In-the-Wild” +<br/>,∗ +<br/>Stefanos Zafeiriou1 +<br/><b>Imperial College London, UK</b><br/>2Amazon, Berlin, Germany +<br/><b>University of Oulu, Finland</b></td><td>('47456731', 'James Booth', 'james booth')<br/>('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')<br/>('2015036', 'Stylianos Ploumpis', 'stylianos ploumpis')<br/>('2814229', 'George Trigeorgis', 'george trigeorgis')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')</td><td>1{james.booth,s.ploumpis,g.trigeorgis,i.panagakis,s.zafeiriou}@imperial.ac.uk +<br/>2antonak@amazon.com +</td></tr><tr><td>5babbad3daac5c26503088782fd5b62067b94fa5</td><td>Are You Sure You Want To Do That? +<br/>Classification with Verification +</td><td>('31920847', 'Harris Chan', 'harris chan')<br/>('36964031', 'Atef Chaudhury', 'atef chaudhury')<br/>('50715871', 'Kevin Shen', 'kevin shen')</td><td>hchan@cs.toronto.edu +<br/>atef@cs.toronto.edu +<br/>shenkev@cs.toronto.edu +</td></tr><tr><td>5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f</td><td>Targeting Ultimate Accuracy: Face Recognition via Deep Embedding <br/><b>Baidu Research Institute of Deep Learning</b></td><td>('2272123', 'Jingtuo Liu', 'jingtuo liu')</td><td></td></tr><tr><td>5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65</td><td>Evolving Systems. manuscript No. <br/>(will be inserted by the editor) <br/>An evolving spatio-temporal approach for gender and age @@ -23174,7 +28911,7 @@ <br/>IIIT-Delhi, New Delhi, India <br/>Article history: <br/>Received 29 March 2017 -</td><td>('40639989', 'Akshay Sethi', 'akshay sethi')<br/>('2220719', 'Maneet Singh', 'maneet singh')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td></td></tr><tr><td>5b01d4338734aefb16ee82c4c59763d3abc008e6</td><td>A Robust Face Recognition Algorithm Based on Kernel Regularized +</td><td>('40639989', 'Akshay Sethi', 'akshay sethi')<br/>('2220719', 'Maneet Singh', 'maneet singh')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td></td></tr><tr><td>5b2cfee6e81ef36507ebf3c305e84e9e0473575a</td><td></td><td></td><td></td></tr><tr><td>5b01d4338734aefb16ee82c4c59763d3abc008e6</td><td>A Robust Face Recognition Algorithm Based on Kernel Regularized <br/>Relevance-Weighted Discriminant Analysis <br/> <br/><b>Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China</b><br/><b>College of Electrical and Information Engineering</b><br/>or @@ -23186,7 +28923,18 @@ <br/>from <br/>this paper, we propose an effective </td><td>('38296532', 'Di WU', 'di wu')<br/>('38296532', 'Di WU', 'di wu')</td><td> [e-mail: wudi6152007@163.com] -</td></tr><tr><td>5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79</td><td>Improving 3D Face Details based on Normal Map of Hetero-source Images +</td></tr><tr><td>5b721f86f4a394f05350641e639a9d6cb2046c45</td><td>A short version of this paper is accepted to ACM Asia Conference on Computer and Communications Security (ASIACCS) 2018 +<br/>Detection under Privileged Information (Full Paper)∗ +<br/><b>Pennsylvania State University</b><br/>Patrick McDaniel +<br/><b>Pennsylvania State University</b><br/>Vencore Labs +<br/><b>Pennsylvania State University</b><br/><b>Army Research Laboratory</b></td><td>('2950892', 'Z. Berkay Celik', 'z. berkay celik')<br/>('1804289', 'Rauf Izmailov', 'rauf izmailov')<br/>('1967156', 'Nicolas Papernot', 'nicolas papernot')<br/>('9541640', 'Ryan Sheatsley', 'ryan sheatsley')<br/>('30792942', 'Raquel Alvarez', 'raquel alvarez')<br/>('1703726', 'Ananthram Swami', 'ananthram swami')</td><td>zbc102@cse.psu.edu +<br/>mcdaniel@cse.psu.edu +<br/>rizmailov@appcomsci.com +<br/>{ngp5056,rms5643,rva5120}@cse.psu.edu +<br/>ananthram.swami.civ@mail.mil +</td></tr><tr><td>5b4b84ce3518c8a14f57f5f95a1d07fb60e58223</td><td>Diagnosing Error in Object Detectors +<br/>Department of Computer Science +<br/><b>University of Illinois at Urbana-Champaign</b></td><td>('2433269', 'Derek Hoiem', 'derek hoiem')<br/>('2918391', 'Yodsawalai Chodpathumwan', 'yodsawalai chodpathumwan')<br/>('2279233', 'Qieyun Dai', 'qieyun dai')</td><td></td></tr><tr><td>5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79</td><td>Improving 3D Face Details based on Normal Map of Hetero-source Images <br/><b>Tsinghua University</b><br/>Beijing, 100084, China </td><td>('8100333', 'Chang Yang', 'chang yang')<br/>('1752427', 'Jiansheng Chen', 'jiansheng chen')<br/>('1949216', 'Nan Su', 'nan su')<br/>('7284296', 'Guangda Su', 'guangda su')</td><td>yangchang11@mails.tsinghua.edu.cn, jschenthu@tsinghua.edu.cn <br/>v377026@sina.com, susu@tsinghua.edu.cn @@ -23383,6 +29131,14 @@ </td></tr><tr><td>37619564574856c6184005830deda4310d3ca580</td><td>A Deep Pyramid Deformable Part Model for Face Detection <br/>Center for Automation Research <br/><b>University of Maryland, College Park, MD</b></td><td>('26988560', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{rranjan1, pvishalm, rama}@umiacs.umd.edu +</td></tr><tr><td>372fb32569ced35eaf3740a29890bec2be1869fa</td><td>Running head: MU RHYTHM MODULATION BY CLASSIFICATION OF EMOTION 1 +<br/>Mu rhythm suppression is associated with the classification of emotion in faces +<br/><b>University of Otago, Dunedin, New Zealand</b><br/>Corresponding authors: +<br/>Phone: +64 (3) 479 5269; Fax: +64 (3) 479 8335 +<br/>Department of Psychology +<br/><b>University of Otago</b><br/>PO Box 56 +<br/>Dunedin, New Zealand +</td><td>('2187036', 'Elizabeth A. Franz', 'elizabeth a. franz')</td><td>Matthew Moore (matthew.moore@otago.ac.nz) & Liz Franz (lfranz@psy.otago.ac.nz) </td></tr><tr><td>37ce1d3a6415d6fc1760964e2a04174c24208173</td><td>Pose-Invariant 3D Face Alignment <br/>Department of Computer Science and Engineering <br/><b>Michigan State University, East Lansing MI</b></td><td>('2357264', 'Amin Jourabloo', 'amin jourabloo')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td>{jourablo, liuxm}@msu.edu @@ -23447,7 +29203,15 @@ <br/>Approach <br/>Anonymous WACV submission <br/>Paper ID 394 -</td><td></td><td></td></tr><tr><td>37278ffce3a0fe2c2bbf6232e805dd3f5267eba3</td><td>Can we still avoid automatic face detection? +</td><td></td><td></td></tr><tr><td>3795974e24296185d9b64454cde6f796ca235387</td><td>Finding your Lookalike: +<br/>Measuring Face Similarity Rather than Face Identity +<br/><b>Lafayette College</b><br/>Easton, PA +<br/>Andrew Gallagher +<br/>Google Research +<br/>Mountain View, CA +</td><td>('1803066', 'Amir Sadovnik', 'amir sadovnik')<br/>('50977255', 'Wassim Gharbi', 'wassim gharbi')<br/>('2197717', 'Thanh Vu', 'thanh vu')</td><td>{sadovnia,gharbiw,vut}@lafayette.edu +<br/>agallagher@google.com +</td></tr><tr><td>37278ffce3a0fe2c2bbf6232e805dd3f5267eba3</td><td>Can we still avoid automatic face detection? <br/>Serge Belongie1,2 <br/><b>Cornell University 2 Cornell Tech</b></td><td>('3035230', 'Michael J. Wilber', 'michael j. wilber')<br/>('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')</td><td></td></tr><tr><td>377a1be5113f38297716c4bb951ebef7a93f949a</td><td>Dear Faculty, IGERT Fellows, IGERT Associates and Students, <br/>You are cordially invited to attend a Seminar presented by Albert Cruz. Please @@ -23485,12 +29249,36 @@ </td><td>('40564016', 'Dragomir Dimitrov', 'dragomir dimitrov')<br/>('1736011', 'Stefano Lonardi', 'stefano lonardi')</td><td></td></tr><tr><td>37eb666b7eb225ffdafc6f318639bea7f0ba9a24</td><td>MSU Technical Report (2014): MSU-CSE-14-5 <br/>Age, Gender and Race Estimation from <br/>Unconstrained Face Images -</td><td>('34393045', 'Hu Han', 'hu han')<br/>('40437942', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>375435fb0da220a65ac9e82275a880e1b9f0a557</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +</td><td>('34393045', 'Hu Han', 'hu han')<br/>('40437942', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>377f2b65e6a9300448bdccf678cde59449ecd337</td><td>Pushing the Limits of Unconstrained Face Detection: +<br/>a Challenge Dataset and Baseline Results +<br/>1Fujitsu Laboratories Ltd., Kanagawa, Japan +<br/><b>Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA</b><br/><b>Rutgers University, 94 Brett Rd, Piscataway Township, NJ 08854, USA</b></td><td>('41018586', 'Hajime Nada', 'hajime nada')<br/>('2577847', 'Vishwanath A. Sindagi', 'vishwanath a. sindagi')<br/>('46197381', 'He Zhang', 'he zhang')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')</td><td>nada.hajime@jp.fujitsu.com, vishwanath.sindagi@gmail.com, he.zhang92@rutgers.edu, +<br/>vpatel36@jhu.edu +</td></tr><tr><td>375435fb0da220a65ac9e82275a880e1b9f0a557</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI <br/>From Pixels to Response Maps: Discriminative Image <br/>Filtering for Face Alignment in the Wild -</td><td>('3183108', 'Akshay Asthana', 'akshay asthana')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('1902288', 'Shiyang Cheng', 'shiyang cheng')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>37b6d6577541ed991435eaf899a2f82fdd72c790</td><td>Vision-based Human Gender Recognition: A Survey +</td><td>('3183108', 'Akshay Asthana', 'akshay asthana')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('1902288', 'Shiyang Cheng', 'shiyang cheng')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>370b6b83c7512419188f5373a962dd3175a56a9b</td><td>Face Alignment Refinement via Exploiting +<br/>Low-Rank property and Temporal Stability +<br/>Shuang LIU +<br/><b>Bournemouth University</b><br/><b>Bournemouth University</b><br/>Wenyu HU +<br/><b>Gannan Normal University</b><br/>Xiaosong YANG +<br/>Ruofeng TONG +<br/><b>Zhejiang University</b><br/>Jian J. ZHANG +<br/><b>Bournemouth University</b><br/><b>Bournemouth University</b><br/>face +<br/>and +<br/>alignment +</td><td>('48708691', 'Zhao Wang', 'zhao wang')</td><td>zwang@bournemouth.ac.uk +<br/>sliu@bournemouth.ac.uk +<br/>wenyu.huu@gmail.com +<br/>trf@zju.edu.cn +<br/>xyang@bournemouth.ac.uk +<br/>jzhang@bournemouth.ac.uk +</td></tr><tr><td>37b6d6577541ed991435eaf899a2f82fdd72c790</td><td>Vision-based Human Gender Recognition: A Survey <br/>Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia. </td><td>('32877936', 'Choon Boon Ng', 'choon boon ng')<br/>('9201065', 'Yong Haur Tay', 'yong haur tay')</td><td>{ngcb,tayyh,goibm}@utar.edu.my +</td></tr><tr><td>372a8bf0ef757c08551d41e40cb7a485527b6cd7</td><td>Unsupervised Video Hashing by Exploiting +<br/>Spatio-Temporal Feature +<br/><b>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong</b><br/><b>University, Shanghai, China</b></td><td>('46194894', 'Chao Ma', 'chao ma')<br/>('46964428', 'Yun Gu', 'yun gu')<br/>('46641573', 'Wei Liu', 'wei liu')<br/>('39264954', 'Jie Yang', 'jie yang')</td><td>{sjtu_machao,geron762,liuwei.1989,jieyang}@sjtu.edu.cn </td></tr><tr><td>37ef18d71c1ca71c0a33fc625ef439391926bfbb</td><td>Extraction of Subject-Specific Facial Expression <br/>Categories and Generation of Facial Expression <br/>Feature Space using Self-Mapping @@ -23646,7 +29434,17 @@ <br/>sagepub.co.uk/journalsPermissions.nav <br/>DOI: 10.1177/ToBeAssigned <br/>www.sagepub.com/ -</td><td>('3280554', 'Jawad Tayyub', 'jawad tayyub')<br/>('2762811', 'Majd Hawasly', 'majd hawasly')<br/>('1967104', 'David C. Hogg', 'david c. hogg')<br/>('1703235', 'Anthony G. Cohn', 'anthony g. cohn')</td><td></td></tr><tr><td>08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d</td><td>BERG, BELHUMEUR: TOM-VS-PETE CLASSIFIERS AND IDENTITY-PRESERVING ALIGNMENT +</td><td>('3280554', 'Jawad Tayyub', 'jawad tayyub')<br/>('2762811', 'Majd Hawasly', 'majd hawasly')<br/>('1967104', 'David C. Hogg', 'david c. hogg')<br/>('1703235', 'Anthony G. Cohn', 'anthony g. cohn')</td><td></td></tr><tr><td>08f4832507259ded9700de81f5fd462caf0d5be8</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 118 – No.14, May 2015 +<br/>Geometric Approach for Human Emotion +<br/>Recognition using Facial Expression +<br/>S. S. Bavkar +<br/>Assistant Professor +<br/>J. S. Rangole +<br/>Assistant Professor +<br/>V. U. Deshmukh +<br/>Assistant Professor +</td><td></td><td></td></tr><tr><td>08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d</td><td>BERG, BELHUMEUR: TOM-VS-PETE CLASSIFIERS AND IDENTITY-PRESERVING ALIGNMENT <br/>Tom-vs-Pete Classifiers and Identity-Preserving <br/>Alignment for Face Verification <br/><b>Columbia University</b><br/>New York, NY @@ -23665,7 +29463,8 @@ <br/>Images for Multimodal Pain Level <br/>Recognition <br/><b>Visual Analysis of People Lab, Aalborg University, Denmark</b><br/>Computer Vision Center, UAB, Barcelona, Spain -<br/><b>Aalborg University, Denmark</b></td><td>('37541412', 'Ramin Irani', 'ramin irani')<br/>('1803459', 'Kamal Nasrollahi', 'kamal nasrollahi')<br/>('3321700', 'Ciprian A. Corneanu', 'ciprian a. corneanu')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')<br/>('40526933', 'Tanja L. Pedersen', 'tanja l. pedersen')<br/>('31627926', 'Maria-Louise Klitgaard', 'maria-louise klitgaard')<br/>('35675498', 'Laura Petrini', 'laura petrini')</td><td></td></tr><tr><td>08cb294a08365e36dd7ed4167b1fd04f847651a9</td><td>EXAMINING VISIBLE ARTICULATORY FEATURES IN CLEAR AND +<br/><b>Aalborg University, Denmark</b></td><td>('37541412', 'Ramin Irani', 'ramin irani')<br/>('1803459', 'Kamal Nasrollahi', 'kamal nasrollahi')<br/>('3321700', 'Ciprian A. Corneanu', 'ciprian a. corneanu')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')<br/>('40526933', 'Tanja L. Pedersen', 'tanja l. pedersen')<br/>('31627926', 'Maria-Louise Klitgaard', 'maria-louise klitgaard')<br/>('35675498', 'Laura Petrini', 'laura petrini')</td><td></td></tr><tr><td>08903bf161a1e8dec29250a752ce9e2a508a711c</td><td>Joint Dimensionality Reduction and Metric Learning: A Geometric Take +</td><td>('2862871', 'Mathieu Salzmann', 'mathieu salzmann')</td><td></td></tr><tr><td>08cb294a08365e36dd7ed4167b1fd04f847651a9</td><td>EXAMINING VISIBLE ARTICULATORY FEATURES IN CLEAR AND <br/>CONVERSATIONAL SPEECH <br/><b>Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada</b><br/><b>Language and Brain Lab, Simon Fraser University, Canada</b><br/><b>KU Phonetics and Psycholinguistics Lab, University of Kansas</b></td><td>('2664514', 'Lisa Tang', 'lisa tang')<br/>('26839551', 'Beverly Hannah', 'beverly hannah')<br/>('3200950', 'Allard Jongman', 'allard jongman')<br/>('1723309', 'Yue Wang', 'yue wang')<br/>('3049056', 'Ghassan Hamarneh', 'ghassan hamarneh')</td><td> lisat@sfu.ca, beverlyw@sfu.ca, jongman@ku.edu, sereno@ku.edu, yuew@sfu.ca, hamarneh@sfu.ca </td></tr><tr><td>081286ede247c5789081502a700b378b6223f94b</td><td>ORIGINAL RESEARCH @@ -23761,13 +29560,35 @@ </td></tr><tr><td>081fb4e97d6bb357506d1b125153111b673cc128</td><td></td><td></td><td></td></tr><tr><td>08a98822739bb8e6b1388c266938e10eaa01d903</td><td>SensorSift: Balancing Sensor Data Privacy and Utility in <br/>Automated Face Understanding <br/><b>University of Washington</b><br/>**Microsoft Research, Redmond WA -</td><td>('3299424', 'Miro Enev', 'miro enev')<br/>('33481800', 'Jaeyeon Jung', 'jaeyeon jung')<br/>('1766509', 'Liefeng Bo', 'liefeng bo')<br/>('1728501', 'Xiaofeng Ren', 'xiaofeng ren')<br/>('1769675', 'Tadayoshi Kohno', 'tadayoshi kohno')</td><td></td></tr><tr><td>08f1e9e14775757298afd9039f46ec56e80677f9</td><td>Attentional Push: Augmenting Salience with +</td><td>('3299424', 'Miro Enev', 'miro enev')<br/>('33481800', 'Jaeyeon Jung', 'jaeyeon jung')<br/>('1766509', 'Liefeng Bo', 'liefeng bo')<br/>('1728501', 'Xiaofeng Ren', 'xiaofeng ren')<br/>('1769675', 'Tadayoshi Kohno', 'tadayoshi kohno')</td><td></td></tr><tr><td>084bebc5c98872e9307cd8e7f571d39ef9c1b81e</td><td>A Discriminative Feature Learning Approach +<br/>for Deep Face Recognition +<br/>1 Shenzhen Key Lab of Computer Vision and Pattern Recognition, +<br/><b>Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China</b><br/><b>The Chinese University of Hong Kong, Sha Tin, Hong Kong</b></td><td>('2512949', 'Yandong Wen', 'yandong wen')<br/>('3393556', 'Kaipeng Zhang', 'kaipeng zhang')<br/>('1911510', 'Zhifeng Li', 'zhifeng li')<br/>('33427555', 'Yu Qiao', 'yu qiao')</td><td>yandongw@andrew.cmu.edu, {kp.zhang,zhifeng.li,yu.qiao}@siat.ac.cn +</td></tr><tr><td>0857281a3b6a5faba1405e2c11f4e17191d3824d</td><td>Chude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102 +<br/>http://asp.eurasipjournals.com/content/2014/1/102 +<br/>R ES EAR CH +<br/>Face recognition via edge-based Gabor feature +<br/>representation for plastic surgery-altered images +<br/>Open Access +</td><td>('2529988', 'Ghazali Sulong', 'ghazali sulong')</td><td></td></tr><tr><td>08f1e9e14775757298afd9039f46ec56e80677f9</td><td>Attentional Push: Augmenting Salience with <br/>Shared Attention Modeling <br/>Centre for Intelligent Machines, Department of Electrical and Computer Engineering, <br/><b>McGill University</b><br/>Montreal, Quebec, Canada </td><td>('38111179', 'Siavash Gorji', 'siavash gorji')<br/>('1713608', 'James J. Clark', 'james j. clark')</td><td>siagorji@cim.mcgill.ca clark@cim.mcgill.ca -</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>Understanding Kin Relationships in a Photo -</td><td>('2025056', 'Ming Shao', 'ming shao')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')<br/>('1708679', 'Yun Fu', 'yun fu')</td><td></td></tr><tr><td>082ad50ac59fc694ba4369d0f9b87430553b11db</td><td></td><td></td><td></td></tr><tr><td>6dd052df6b0e89d394192f7f2af4a3e3b8f89875</td><td>International Journal of Engineering and Advanced Technology (IJEAT) +</td></tr><tr><td>08d41d2f68a2bf0091dc373573ca379de9b16385</td><td>Recursive Chaining of Reversible Image-to-Image +<br/>Translators for Face Aging +<br/><b>Aalto University, Espoo, Finland</b><br/>1 GenMind Ltd, Finland +<br/>{ari.heljakka,arno.solin,juho.kannala}aalto.fi +</td><td>('2622083', 'Ari Heljakka', 'ari heljakka')<br/>('1768402', 'Arno Solin', 'arno solin')<br/>('1776374', 'Juho Kannala', 'juho kannala')</td><td></td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>Understanding Kin Relationships in a Photo +</td><td>('2025056', 'Ming Shao', 'ming shao')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')<br/>('1708679', 'Yun Fu', 'yun fu')</td><td></td></tr><tr><td>082ad50ac59fc694ba4369d0f9b87430553b11db</td><td></td><td></td><td></td></tr><tr><td>6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d</td><td>Robust Deep Appearance Models +<br/><b>Concordia University, Montreal, Quebec, Canada</b><br/>2 CyLab Biometrics Center and the Department of Electrical and Computer Engineering, +<br/><b>Carnegie Mellon University, Pittsburgh, PA, USA</b><br/>face images. In this approach, +</td><td>('2687827', 'Kha Gia Quach', 'kha gia quach')<br/>('1876581', 'Chi Nhan Duong', 'chi nhan duong')<br/>('1769788', 'Khoa Luu', 'khoa luu')<br/>('1699922', 'Tien D. Bui', 'tien d. bui')</td><td>Email: {k q, c duon, bui}@encs.concordia.ca +<br/>Email: kluu@andrew.cmu.edu +</td></tr><tr><td>6dbdb07ce2991db0f64c785ad31196dfd4dae721</td><td>Seeing Small Faces from Robust Anchor’s Perspective +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Avenue, Pittsburgh, PA 15213, USA +</td><td>('47894545', 'Chenchen Zhu', 'chenchen zhu')<br/>('1794486', 'Marios Savvides', 'marios savvides')<br/>('47599820', 'Ran Tao', 'ran tao')<br/>('1769788', 'Khoa Luu', 'khoa luu')</td><td>{chenchez, rant, kluu, marioss}@andrew.cmu.edu +</td></tr><tr><td>6dd052df6b0e89d394192f7f2af4a3e3b8f89875</td><td>International Journal of Engineering and Advanced Technology (IJEAT) <br/>ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 <br/>A literature survey on Facial Expression <br/>Recognition using Global Features @@ -23793,7 +29614,10 @@ <br/>and sent to Mechanical Turk for subjective feedback. The objective feedback is then combined with subjective feedback that is <br/>scored based on helpfulness, under which the sentiment is then classified. </td><td>('1825866', 'Michelle Fung', 'michelle fung')<br/>('2961433', 'Yina Jin', 'yina jin')<br/>('2171034', 'RuJie Zhao', 'rujie zhao')</td><td>{mfung, yjin18, rzhao2, mehoque}@cs.rochester.edu -</td></tr><tr><td>6de18708218988b0558f6c2f27050bb4659155e4</td><td></td><td></td><td></td></tr><tr><td>6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1</td><td>Semi-Supervised Learning for Facial Expression +</td></tr><tr><td>6dddf1440617bf7acda40d4d75c7fb4bf9517dbb</td><td>JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY +<br/>Beyond Counting: Comparisons of Density Maps for Crowd +<br/>Analysis Tasks - Counting, Detection, and Tracking +</td><td>('41201301', 'Di Kang', 'di kang')<br/>('1730232', 'Zheng Ma', 'zheng ma')<br/>('3651407', 'Antoni B. Chan', 'antoni b. chan')</td><td></td></tr><tr><td>6de18708218988b0558f6c2f27050bb4659155e4</td><td></td><td></td><td></td></tr><tr><td>6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1</td><td>Semi-Supervised Learning for Facial Expression <br/>Recognition <br/>1HP Labs, Palo Alto, CA, USA <br/><b>Faculty of Science, University of Amsterdam, The Netherlands</b><br/>3Escola Polit´ecnica, Universidade de S˜ao Paulo, Brazil @@ -23801,7 +29625,12 @@ <br/>nicu@science.uva.nl <br/>fgcozman@usp.br <br/>huang@ifp.uiuc.edu -</td></tr><tr><td>6d91da37627c05150cb40cac323ca12a91965759</td><td></td><td></td><td></td></tr><tr><td>6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf</td><td>Webly-supervised Video Recognition by Mutually +</td></tr><tr><td>6d91da37627c05150cb40cac323ca12a91965759</td><td></td><td></td><td></td></tr><tr><td>6d07e176c754ac42773690d4b4919a39df85d7ec</td><td>Face Attribute Prediction Using Off-The-Shelf Deep +<br/>Learning Networks +<br/>Computer Science and Communication +<br/><b>KTH Royal Institute of Technology</b><br/>100 44 Stockholm, Sweden +</td><td>('50262049', 'Yang Zhong', 'yang zhong')<br/>('1736906', 'Josephine Sullivan', 'josephine sullivan')<br/>('40565290', 'Haibo Li', 'haibo li')</td><td>{yzhong, sullivan, haiboli}@kth.se +</td></tr><tr><td>6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf</td><td>Webly-supervised Video Recognition by Mutually <br/>Voting for Relevant Web Images and Web Video Frames <br/><b>IIIS, Tsinghua University</b><br/>2Google Research <br/>3Amazon @@ -23813,11 +29642,19 @@ <br/><b>G.H.Raisoni College of Engg. and Mgmt., Pune, India</b><br/><b>G.H.Raisoni College of Engg. and Mgmt., Pune, India</b><br/><b>G.H.Raisoni College of Engg. and Mgmt., Pune, India</b></td><td>('2671016', 'Snehal M. Gaikwad', 'snehal m. gaikwad')<br/>('40050646', 'Snehal S. Pathare', 'snehal s. pathare')</td><td>*gaikwad.snehal99@gmail.com <br/>*snehalpathare4@gmail.com <br/>*truptijachak311991@gmail.com +</td></tr><tr><td>6d8c9a1759e7204eacb4eeb06567ad0ef4229f93</td><td>Face Alignment Robust to Pose, Expressions and +<br/>Occlusions +</td><td>('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')<br/>('1767616', 'Myung-Cheol Roh', 'myung-cheol roh')<br/>('2526145', 'Jongju Shin', 'jongju shin')<br/>('3149566', 'Takaharu Oguri', 'takaharu oguri')<br/>('1733113', 'Takeo Kanade', 'takeo kanade')</td><td></td></tr><tr><td>6dc1f94b852538d572e4919238ddb10e2ee449a4</td><td>Objects as context for detecting their semantic parts +<br/><b>University of Edinburgh</b></td><td>('20758701', 'Abel Gonzalez-Garcia', 'abel gonzalez-garcia')<br/>('1996209', 'Davide Modolo', 'davide modolo')<br/>('1749692', 'Vittorio Ferrari', 'vittorio ferrari')</td><td>a.gonzalez-garcia@sms.ed.ac.uk +<br/>davide.modolo@gmail.com +<br/>vferrari@staffmail.ed.ac.uk </td></tr><tr><td>6d4e3616d0b27957c4107ae877dc0dd4504b69ab</td><td>Shuffle and Learn: Unsupervised Learning using <br/>Temporal Order Verification <br/><b>The Robotics Institute, Carnegie Mellon University</b><br/>2 Facebook AI Research </td><td>('1806773', 'Ishan Misra', 'ishan misra')<br/>('1699161', 'C. Lawrence Zitnick', 'c. lawrence zitnick')<br/>('1709305', 'Martial Hebert', 'martial hebert')</td><td>{imisra, hebert}@cs.cmu.edu, zitnick@fb.com -</td></tr><tr><td>6d8e3f3a83514381f890ab7cd2a1f1c5be597b69</td><td><b>University of Massachusetts - Amherst</b><br/>Doctoral Dissertations 2014-current +</td></tr><tr><td>6d5125c9407c7762620eeea7570af1a8ee7d76f3</td><td>Video Frame Interpolation by Plug-and-Play +<br/>Deep Locally Linear Embedding +<br/><b>Yonsei University</b></td><td>('1886286', 'Anh-Duc Nguyen', 'anh-duc nguyen')<br/>('47902684', 'Woojae Kim', 'woojae kim')<br/>('2078790', 'Jongyoo Kim', 'jongyoo kim')<br/>('39200200', 'Sanghoon Lee', 'sanghoon lee')</td><td></td></tr><tr><td>6d8e3f3a83514381f890ab7cd2a1f1c5be597b69</td><td><b>University of Massachusetts - Amherst</b><br/>Doctoral Dissertations 2014-current <br/>Dissertations and Theses <br/>2014 <br/>Improving Text Recognition in Images of Natural @@ -24082,11 +29919,18 @@ <br/>SIMPLEX SUBSPACES <br/><b>Aristotle University of Thessaloniki</b><br/>Box 451, Thessaloniki 541 24, Greece </td><td>('1736143', 'Constantine Kotropoulos', 'constantine kotropoulos')<br/>('1762248', 'Vassiliki Moschou', 'vassiliki moschou')</td><td>E-mail: {costas, vmoshou}@aiia.csd.auth.gr -</td></tr><tr><td>017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637</td><td>FACE RECOGNITION WITH HARMONIC DE-LIGHTING +</td></tr><tr><td>01c4cf9c7c08f0ad3f386d88725da564f3c54679</td><td>Interpretability Beyond Feature Attribution: +<br/>Quantitative Testing with Concept Activation Vectors (TCAV) +</td><td>('3351164', 'Been Kim', 'been kim')<br/>('2217654', 'Rory Sayres', 'rory sayres')</td><td></td></tr><tr><td>017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637</td><td>FACE RECOGNITION WITH HARMONIC DE-LIGHTING <br/>2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 <br/>1Graduate School, CAS, Beijing, China, 100080 <br/>Emails: {lyqing, sgshan, wgao}jdl.ac.cn -</td><td>('2343895', 'Laiyun Qing', 'laiyun qing')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('40049005', 'Wen Gao', 'wen gao')</td><td></td></tr><tr><td>01125e3c68edb420b8d884ff53fb38d9fbe4f2b8</td><td>Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric +</td><td>('2343895', 'Laiyun Qing', 'laiyun qing')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('40049005', 'Wen Gao', 'wen gao')</td><td></td></tr><tr><td>014e3d0fa5248e6f4634dc237e2398160294edce</td><td>Int J Comput Vis manuscript No. +<br/>(will be inserted by the editor) +<br/>What does 2D geometric information really tell us about +<br/>3D face shape? +<br/>Received: date / Accepted: date +</td><td>('39180407', 'Anil Bas', 'anil bas')</td><td></td></tr><tr><td>01125e3c68edb420b8d884ff53fb38d9fbe4f2b8</td><td>Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric <br/>CNN Regression <br/><b>The University of Nottingham, UK</b><br/><b>Kingston University, UK</b><br/><b>Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions</b></td><td>('34596685', 'Aaron S. Jackson', 'aaron s. jackson')<br/>('3458121', 'Adrian Bulat', 'adrian bulat')<br/>('1689047', 'Vasileios Argyriou', 'vasileios argyriou')<br/>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td>1{aaron.jackson, adrian.bulat, yorgos.tzimiropoulos}@nottingham.ac.uk <br/>2 vasileios.argyriou@kingston.ac.uk @@ -24156,7 +30000,13 @@ <br/>{ryanlei, yanying}@cmlab.csie.ntu.edu.tw, </td></tr><tr><td>0697bd81844d54064d992d3229162fe8afcd82cb</td><td>User-driven mobile robot storyboarding: Learning image interest and <br/>saliency from pairwise image comparisons -</td><td>('1699287', 'Michael Burke', 'michael burke')</td><td></td></tr><tr><td>06f8aa1f436a33014e9883153b93581eea8c5c70</td><td>Leaving Some Stones Unturned: +</td><td>('1699287', 'Michael Burke', 'michael burke')</td><td></td></tr><tr><td>06262d6beeccf2784e4e36a995d5ee2ff73c8d11</td><td>Recognize Actions by Disentangling Components of Dynamics +<br/><b>CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition</b></td><td>('47827548', 'Yue Zhao', 'yue zhao')<br/>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('1807606', 'Dahua Lin', 'dahua lin')</td><td>{zy317,dhlin}@ie.cuhk.edu.hk {yuanjx}@amazon.com +</td></tr><tr><td>06f585a3a05dd3371cd600a40dc35500e2f82f9b</td><td>Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning +<br/>Tasks via Graph Distillation for Video Classification +<br/><b>Institute of Computer Science and Technology, Peking University</b><br/>Beijing 100871, China +</td><td>('2439211', 'Chenrui Zhang', 'chenrui zhang')<br/>('1704081', 'Yuxin Peng', 'yuxin peng')</td><td>pengyuxin@pku.edu.cn +</td></tr><tr><td>06f8aa1f436a33014e9883153b93581eea8c5c70</td><td>Leaving Some Stones Unturned: <br/>Dynamic Feature Prioritization <br/>for Activity Detection in Streaming Video <br/><b>The University of Texas at Austin</b><br/>Current approaches for activity recognition often ignore con- @@ -24410,6 +30260,14 @@ <br/>(cid:6)(cid:11)(cid:1) </td><td></td><td>(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:10)(cid:4)(cid:4)(cid:12)(cid:1) (cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)?(cid:1) (cid:11))(cid:27)(cid:16)(cid:1) (cid:8)(cid:11)(cid:1) (cid:9)!(cid:1) <+=(cid:14)(cid:1) (cid:23)(cid:9)(cid:13)7(cid:9)(cid:1) <@=(cid:14)(cid:1) <br/>(cid:27)(cid:15)(cid:20)(cid:20)(cid:4)(cid:11)((cid:15)(cid:12)(cid:18)(cid:6)(cid:12)-(cid:1) (cid:24)(cid:15)(cid:1) +(cid:2)+(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)9(cid:11)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:11)(cid:1) 4>0@(cid:1) (cid:17)(cid:4)(cid:12)(cid:14)(cid:1) (cid:2)/B(cid:1) .(cid:15)(cid:17)(cid:4)(cid:12)5(cid:21)(cid:1) +</td></tr><tr><td>06560d5721ecc487a4d70905a485e22c9542a522</td><td>SUN, YU: DEEP FACIAL ATTRIBUTE DETECTION IN THE WILD +<br/>Deep Facial Attribute Detection in the Wild: +<br/>From General to Specific +<br/>Department of Automation +<br/><b>University of Science and Technology</b><br/>of China +<br/>Hefei, China +</td><td>('4364455', 'Yuechuan Sun', 'yuechuan sun')<br/>('1720236', 'Jun Yu', 'jun yu')</td><td>ycsun@mail.ustc.edu.cn +<br/>harryjun@ustc.edu.cn </td></tr><tr><td>06526c52a999fdb0a9fd76e84f9795a69480cecf</td><td></td><td></td><td></td></tr><tr><td>06bad0cdda63e3fd054e7b334a5d8a46d8542817</td><td>Sharing Features Between Objects and Their Attributes <br/>1Department of Computer Science <br/><b>University of Texas at Austin</b><br/>2Computer Science Department @@ -24434,6 +30292,9 @@ <br/>Brno, Czech Republic </td><td>('1785162', 'Adam Herout', 'adam herout')</td><td>Graph@FIT, Brno University of Technology <br/>ijuranek,herout,idubska,zemcik@fit.vutbr.cz +</td></tr><tr><td>062c41dad67bb68fefd9ff0c5c4d296e796004dc</td><td>Temporal Generative Adversarial Nets with Singular Value Clipping +<br/>Preferred Networks inc., Japan +</td><td>('49160719', 'Masaki Saito', 'masaki saito')<br/>('8252749', 'Eiichi Matsumoto', 'eiichi matsumoto')<br/>('3083107', 'Shunta Saito', 'shunta saito')</td><td>{msaito, matsumoto, shunta}@preferred.jp </td></tr><tr><td>06400a24526dd9d131dfc1459fce5e5189b7baec</td><td>Event Recognition in Photo Collections with a Stopwatch HMM <br/>1Computer Vision Lab <br/>ETH Z¨urich, Switzerland @@ -24444,6 +30305,19 @@ </td></tr><tr><td>062d67af7677db086ef35186dc936b4511f155d7</td><td>They Are Not Equally Reliable: Semantic Event Search <br/>using Differentiated Concept Classifiers <br/><b>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</b><br/><b>Carnegie Mellon University</b></td><td>('1729163', 'Xiaojun Chang', 'xiaojun chang')<br/>('1698559', 'Yi Yang', 'yi yang')<br/>('1752601', 'Eric P. Xing', 'eric p. xing')</td><td>cxj273@gmail.com, yaoliang@cs.cmu.edu, yi.yang@uts.edu.au, epxing@cs.cmu.edu +</td></tr><tr><td>06c2086f7f72536bf970ca629151b16927104df3</td><td>PALMERO ET AL.: MULTI-MODAL RECURRENT CNN FOR 3D GAZE ESTIMATION +<br/>Recurrent CNN for 3D Gaze Estimation +<br/>using Appearance and Shape Cues +<br/>1 Dept. Mathematics and Informatics +<br/>Universitat de Barcelona, Spain +<br/>2 Computer Vision Center +<br/>Campus UAB, Bellaterra, Spain +<br/>3 Dept. Electrical and Computer Eng. +<br/><b>University of Calgary, Canada</b><br/>4 Dept. Engineering +<br/><b>University of Larestan, Iran</b></td><td>('3413560', 'Cristina Palmero', 'cristina palmero')<br/>('38081877', 'Javier Selva', 'javier selva')<br/>('1921285', 'Mohammad Ali Bagheri', 'mohammad ali bagheri')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')</td><td>crpalmec7@alumnes.ub.edu +<br/>javier.selva.castello@est.fib.upc.edu +<br/>mohammadali.bagheri@ucalgary.ca +<br/>sergio@maia.ub.es </td></tr><tr><td>0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0</td><td>Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information <br/>in Extreme Learning Machine. Paper presented at International Joint <br/>Conference on Computational Intelligence (IJCCI), Rome, Italy. @@ -24582,14 +30456,40 @@ <br/><b>Systems and Telematics - Neurolab</b><br/>Via Opera Pia, 13 – I-16145 – Genoa - Italy </td><td>('2231336', 'José Hiroki Saito', 'josé hiroki saito')<br/>('3261775', 'Marcelo Hirakuri', 'marcelo hirakuri')<br/>('2558289', 'André Saunite', 'andré saunite')<br/>('36243877', 'Alessandro Noriaki Ide', 'alessandro noriaki ide')<br/>('40209065', 'Sandra Abib', 'sandra abib')</td><td>{saito,hirakuri,sabib}@dc.ufscar.br, tiagocarvalho@uol.com.br, saunite@fai.com.br <br/>noriaki@dist.unige.it +</td></tr><tr><td>6c66ae815e7e508e852ecb122fb796abbcda16a8</td><td>International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.5, October 2015 +<br/>A SURVEY OF THE TRENDS IN FACIAL AND +<br/>EXPRESSION RECOGNITION DATABASES AND +<br/>METHODS +<br/><b>University of Washington, Bothell, USA</b></td><td>('2971095', 'Sohini Roychowdhury', 'sohini roychowdhury')<br/>('33073434', 'Michelle Emmons', 'michelle emmons')</td><td></td></tr><tr><td>6ca2c5ff41e91c34696f84291a458d1312d15bf2</td><td>LIPNET: SENTENCE-LEVEL LIPREADING +<br/><b>University of Oxford, Oxford, UK</b><br/>Google DeepMind, London, UK 2 +<br/>CIFAR, Canada 3 +<br/>{yannis.assael,brendan.shillingford, +</td><td>('3365565', 'Yannis M. Assael', 'yannis m. assael')<br/>('3144580', 'Brendan Shillingford', 'brendan shillingford')<br/>('1766767', 'Shimon Whiteson', 'shimon whiteson')</td><td>shimon.whiteson,nando.de.freitas}@cs.ox.ac.uk </td></tr><tr><td>6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365</td><td>Privacy-Preserving Deep Inference for Rich User <br/>Data on The Cloud <br/><b>Sharif University of Technology</b><br/><b>Queen Mary University of London</b><br/><b>Nokia Bell Labs and University of Oxford</b></td><td>('9920557', 'Ali Shahin Shamsabadi', 'ali shahin shamsabadi')<br/>('2251846', 'Ali Taheri', 'ali taheri')<br/>('2226725', 'Kleomenis Katevas', 'kleomenis katevas')<br/>('1688652', 'Hamid R. Rabiee', 'hamid r. rabiee')<br/>('2772904', 'Nicholas D. Lane', 'nicholas d. lane')<br/>('1763096', 'Hamed Haddadi', 'hamed haddadi')</td><td></td></tr><tr><td>6c690af9701f35cd3c2f6c8d160b8891ad85822a</td><td>Multi-Task Learning with Low Rank Attribute Embedding for Person <br/>Re-identification -<br/><b>Peking University</b><br/><b>University of Maryland College Park</b><br/><b>University of Texas at San Antonio</b></td><td>('20798990', 'Chi Su', 'chi su')<br/>('1752128', 'Fan Yang', 'fan yang')<br/>('1776581', 'Shiliang Zhang', 'shiliang zhang')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td></td></tr><tr><td>6ce23cf4f440021b7b05aa3c1c2700cc7560b557</td><td>Learning Local Convolutional Features for Face +<br/><b>Peking University</b><br/><b>University of Maryland College Park</b><br/><b>University of Texas at San Antonio</b></td><td>('20798990', 'Chi Su', 'chi su')<br/>('1752128', 'Fan Yang', 'fan yang')<br/>('1776581', 'Shiliang Zhang', 'shiliang zhang')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td></td></tr><tr><td>6c5fbf156ef9fc782be0089309074cc52617b868</td><td>Controllable Video Generation with Sparse Trajectories +<br/><b>Cornell University</b></td><td>('19235216', 'Zekun Hao', 'zekun hao')<br/>('47932904', 'Xun Huang', 'xun huang')<br/>('50172592', 'Serge Belongie', 'serge belongie')</td><td>{hz472,xh258,sjb344}@cornell.edu +</td></tr><tr><td>6c304f3b9c3a711a0cca5c62ce221fb098dccff0</td><td>Attentive Semantic Video Generation using Captions +<br/>IIT Hyderabad +<br/>IIT Hyderabad +</td><td>('8268761', 'Tanya Marwah', 'tanya marwah')<br/>('47351893', 'Gaurav Mittal', 'gaurav mittal')<br/>('1699429', 'Vineeth N. Balasubramanian', 'vineeth n. balasubramanian')</td><td>ee13b1044@iith.ac.in +<br/>gaurav.mittal.191013@gmail.com +<br/>vineethnb@iith.ac.in +</td></tr><tr><td>6ce23cf4f440021b7b05aa3c1c2700cc7560b557</td><td>Learning Local Convolutional Features for Face <br/>Recognition with 2D-Warping <br/>Human Language Technology and Pattern Recognition Group, <br/><b>RWTH Aachen University</b></td><td>('1804963', 'Harald Hanselmann', 'harald hanselmann')<br/>('1685956', 'Hermann Ney', 'hermann ney')</td><td>surname@cs.rwth-aachen.de +</td></tr><tr><td>6c80c834d426f0bc4acd6355b1946b71b50cbc0b</td><td>Pose-Based Two-Stream Relational Networks for +<br/>Action Recognition in Videos +<br/>1Center for Research on Intelligent Perception and Computing (CRIPAC), +<br/>National Laboratory of Pattern Recognition (NLPR) +<br/>2Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), +<br/><b>Institute of Automation, Chinese Academy of Sciences (CASIA</b><br/><b>University of Chinese Academy of Sciences (UCAS</b></td><td>('47824598', 'Wei Wang', 'wei wang')<br/>('47539600', 'Jinjin Zhang', 'jinjin zhang')<br/>('39927579', 'Chenyang Si', 'chenyang si')<br/>('1693997', 'Liang Wang', 'liang wang')</td><td>{wangwei, wangliang}@nlpr.ia.ac.cn, {jinjin.zhang, +<br/>chenyang.si}@cripac.ia.ac.cn +</td></tr><tr><td>6cb7648465ba7757ecc9c222ac1ab6402933d983</td><td>Visual Forecasting by Imitating Dynamics in Natural Sequences +<br/><b>Stanford University National Tsing Hua University</b></td><td>('32970572', 'Kuo-Hao Zeng', 'kuo-hao zeng')</td><td>{khzeng, bshen88, dahuang, jniebles}@cs.stanford.edu sunmin@ee.nthu.edu.tw </td></tr><tr><td>6c2b392b32b2fd0fe364b20c496fcf869eac0a98</td><td>DOI 10.1007/s00138-012-0423-7 <br/>ORIGINAL PAPER <br/>Fully automatic face recognition framework based @@ -24616,7 +30516,26 @@ <br/>vpradeep@microsoft.com </td></tr><tr><td>6cddc7e24c0581c50adef92d01bb3c73d8b80b41</td><td>Face Verification Using the LARK <br/>Representation -</td><td>('3326805', 'Hae Jong Seo', 'hae jong seo')<br/>('1718280', 'Peyman Milanfar', 'peyman milanfar')</td><td></td></tr><tr><td>6cd96f2b63c6b6f33f15c0ea366e6003f512a951</td><td>A New Approach in Solving Illumination and Facial Expression Problems +</td><td>('3326805', 'Hae Jong Seo', 'hae jong seo')<br/>('1718280', 'Peyman Milanfar', 'peyman milanfar')</td><td></td></tr><tr><td>6cfc337069868568148f65732c52cbcef963f79d</td><td>Audio-Visual Speaker Localization via Weighted +<br/>Clustering +<br/>To cite this version: +<br/>Localization via Weighted Clustering. IEEE Workshop on Machine Learning for Signal Processing, +<br/>Sep 2014, Reims, France. pp.1-6, 2014, <10.1109/MLSP.2014.6958874>. <hal-01053732> +<br/>HAL Id: hal-01053732 +<br/>https://hal.archives-ouvertes.fr/hal-01053732 +<br/>Submitted on 11 Aug 2014 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')<br/>('1794229', 'Radu Horaud', 'radu horaud')<br/>('1785817', 'Florence Forbes', 'florence forbes')<br/>('1780201', 'Xavier Alameda-Pineda', 'xavier alameda-pineda')<br/>('1794229', 'Radu Horaud', 'radu horaud')<br/>('1785817', 'Florence Forbes', 'florence forbes')</td><td></td></tr><tr><td>6cd96f2b63c6b6f33f15c0ea366e6003f512a951</td><td>A New Approach in Solving Illumination and Facial Expression Problems <br/>for Face Recognition <br/><b>a The University of Nottingham Malaysia Campus</b><br/>Tel : 03-89248358, Fax : 03-89248017 <br/>Jalan Broga @@ -24637,7 +30556,10 @@ <br/>Fu-lai Chung (cskchung@comp.polyu.edu.hk) </td></tr><tr><td>390f3d7cdf1ce127ecca65afa2e24c563e9db93b</td><td>Learning Deep Representation for Face <br/>Alignment with Auxiliary Attributes -</td><td>('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')<br/>('1693209', 'Ping Luo', 'ping luo')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>3918b425bb9259ddff9eca33e5d47bde46bd40aa</td><td>Copyright +</td><td>('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')<br/>('1693209', 'Ping Luo', 'ping luo')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>39ed31ced75e6151dde41944a47b4bdf324f922b</td><td>Pose-Guided Photorealistic Face Rotation +<br/><b>CRIPAC and NLPR and CEBSIT, CASIA 2University of Chinese Academy of Sciences</b><br/>3Noah’s Ark Laboratory, Huawei Technologies Co., Ltd. +</td><td>('49995036', 'Yibo Hu', 'yibo hu')<br/>('47150161', 'Xiang Wu', 'xiang wu')<br/>('46806278', 'Bing Yu', 'bing yu')<br/>('50361927', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>{yibo.hu, xiang.wu}@cripac.ia.ac.cn, yubing5@huawei.com, {rhe, znsun}@nlpr.ia.ac.cn +</td></tr><tr><td>3918b425bb9259ddff9eca33e5d47bde46bd40aa</td><td>Copyright <br/>by <br/>David Lieh-Chiang Chen <br/>2012 @@ -24667,7 +30589,8 @@ </td><td>('1898210', 'Golnaz Ghiasi', 'golnaz ghiasi')<br/>('3157443', 'Charless C. Fowlkes', 'charless c. fowlkes')</td><td>gghiasi@ics.uci.edu <br/>fowlkes@ics.uci.edu </td></tr><tr><td>39c48309b930396a5a8903fdfe781d3e40d415d0</td><td>Learning Spatial and Temporal Cues for Multi-label Facial Action Unit Detection -<br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh PA</b><br/><b>University of Pittsburgh, Pittsburgh PA</b></td><td>('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td></td></tr><tr><td>3986161c20c08fb4b9b791b57198b012519ea58b</td><td>International Journal of Soft Computing and Engineering (IJSCE) +<br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh PA</b><br/><b>University of Pittsburgh, Pittsburgh PA</b></td><td>('39336289', 'Wen-Sheng Chu', 'wen-sheng chu')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td></td></tr><tr><td>39c8b34c1b678235b60b648d0b11d241a34c8e32</td><td>Learning to Deblur Images with Exemplars +</td><td>('9416825', 'Jinshan Pan', 'jinshan pan')<br/>('2776845', 'Wenqi Ren', 'wenqi ren')<br/>('1786024', 'Zhe Hu', 'zhe hu')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>3986161c20c08fb4b9b791b57198b012519ea58b</td><td>International Journal of Soft Computing and Engineering (IJSCE) <br/>ISSN: 2231-2307, Volume-4 Issue-4, September 2014 <br/>An Efficient Method for Face Recognition based on <br/>Fusion of Global and Local Feature Extraction @@ -24695,13 +30618,17 @@ <br/><b>Sabanci University</b><br/>Faculty of <br/>Engineering and Natural Sciences <br/>Orhanli, Istanbul -</td><td>('40322754', 'Esra Vural', 'esra vural')<br/>('21691177', 'Mujdat Cetin', 'mujdat cetin')<br/>('31849282', 'Aytul Ercil', 'aytul ercil')<br/>('2724380', 'Gwen Littlewort', 'gwen littlewort')<br/>('1858421', 'Marian Bartlett', 'marian bartlett')<br/>('29794862', 'Javier Movellan', 'javier movellan')</td><td></td></tr><tr><td>39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc</td><td>Simultaneous Local Binary Feature Learning and Encoding for Face Recognition +</td><td>('40322754', 'Esra Vural', 'esra vural')<br/>('21691177', 'Mujdat Cetin', 'mujdat cetin')<br/>('31849282', 'Aytul Ercil', 'aytul ercil')<br/>('2724380', 'Gwen Littlewort', 'gwen littlewort')<br/>('1858421', 'Marian Bartlett', 'marian bartlett')<br/>('29794862', 'Javier Movellan', 'javier movellan')</td><td></td></tr><tr><td>3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1</td><td></td><td></td><td></td></tr><tr><td>3965d61c4f3b72044f43609c808f8760af8781a2</td><td></td><td></td><td></td></tr><tr><td>39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc</td><td>Simultaneous Local Binary Feature Learning and Encoding for Face Recognition <br/><b>Tsinghua University, Beijing, China</b><br/>2Rapid-Rich Object Search (ROSE) Lab, Interdisciplinary Graduate School, <br/><b>Nanyang Technological University, Singapore</b></td><td>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('1754854', 'Venice Erin Liong', 'venice erin liong')<br/>('39491387', 'Jie Zhou', 'jie zhou')</td><td>elujiwen@gmail.com; veniceer001@e.ntu.edu.sg; jzhou@tsinghua.edu.cn -</td></tr><tr><td>3983637022992a329f1d721bed246ae76bc934f7</td><td>Wide-Baseline Stereo for Face Recognition with Large Pose Variation +</td></tr><tr><td>395bf182983e0917f33b9701e385290b64e22f9a</td><td></td><td></td><td></td></tr><tr><td>3983637022992a329f1d721bed246ae76bc934f7</td><td>Wide-Baseline Stereo for Face Recognition with Large Pose Variation <br/>Computer Science Department <br/><b>University of Maryland, College Park</b></td><td>('38171682', 'Carlos D. Castillo', 'carlos d. castillo')<br/>('34734622', 'David W. Jacobs', 'david w. jacobs')</td><td>{carlos,djacobs}@cs.umd.edu -</td></tr><tr><td>3958db5769c927cfc2a9e4d1ee33ecfba86fe054</td><td>Describable Visual Attributes for +</td></tr><tr><td>3933e323653ff27e68c3458d245b47e3e37f52fd</td><td>Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +<br/>Computational Biomedicine Lab +<br/>4800 Calhoun Rd. Houston, TX, USA +</td><td>('26401746', 'Ha A. Le', 'ha a. le')<br/>('39634395', 'Pengfei Dou', 'pengfei dou')<br/>('2461369', 'Yuhang Wu', 'yuhang wu')<br/>('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')</td><td>{xxu18, hale4, pdou, ywu35, ikakadia}@central.uh.edu +</td></tr><tr><td>39b452453bea9ce398613d8dd627984fd3a0d53c</td><td></td><td></td><td></td></tr><tr><td>3958db5769c927cfc2a9e4d1ee33ecfba86fe054</td><td>Describable Visual Attributes for <br/>Face Verification and Image Search </td><td>('40631426', 'Neeraj Kumar', 'neeraj kumar')<br/>('39668247', 'Alexander C. Berg', 'alexander c. berg')<br/>('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')<br/>('1750470', 'Shree K. Nayar', 'shree k. nayar')</td><td></td></tr><tr><td>39ecdbad173e45964ffe589b9ced9f1ebfe2d44e</td><td>Automatic Recognition of Lower Facial Action Units <br/>Joint Research Group on Audio Visual Signal Processing (AVSP), @@ -24716,7 +30643,22 @@ <br/>with Convolutional Neural Networks <br/><b>National Research University Higher School of Economics, Nizhny Novgorod, Russian</b><br/>Federation </td><td>('26376584', 'Anastasiia D. Sokolova', 'anastasiia d. sokolova')<br/>('26427828', 'Angelina S. Kharchevnikova', 'angelina s. kharchevnikova')<br/>('35153729', 'Andrey V. Savchenko', 'andrey v. savchenko')</td><td>adsokolova96@mail.ru -</td></tr><tr><td>9949ac42f39aeb7534b3478a21a31bc37fe2ffe3</td><td>Parametric Stereo for Multi-Pose Face Recognition and +</td></tr><tr><td>994f7c469219ccce59c89badf93c0661aae34264</td><td>1 +<br/>Model Based Face Recognition Across Facial +<br/>Expressions +<br/> +<br/>screens, embedded into mobiles and installed into everyday +<br/>living and working environments they become valuable tools +<br/>for human system interaction. A particular important aspect of +<br/>this interaction is detection and recognition of faces and +<br/>interpretation of facial expressions. These capabilities are +<br/>deeply rooted in the human visual system and a crucial +<br/>building block for social interaction. Consequently, these +<br/>capabilities are an important step towards the acceptance of +<br/>many technical systems. +<br/>trees as a classifier +<br/>lies not only +</td><td>('1725709', 'Zahid Riaz', 'zahid riaz')<br/>('50565622', 'Christoph Mayer', 'christoph mayer')<br/>('32131501', 'Matthias Wimmer', 'matthias wimmer')<br/>('1699132', 'Bernd Radig', 'bernd radig')<br/>('31311898', 'Senior Member', 'senior member')</td><td></td></tr><tr><td>9949ac42f39aeb7534b3478a21a31bc37fe2ffe3</td><td>Parametric Stereo for Multi-Pose Face Recognition and <br/>3D-Face Modeling <br/>PSI ESAT-KUL <br/>Leuven, Belgium @@ -24742,7 +30684,10 @@ <br/>BURLA, ODISHA, INDIA </td><td></td><td>alpesh.d123@gmail.com <br/>nilamanib@gmail.com -</td></tr><tr><td>9931c6b050e723f5b2a189dd38c81322ac0511de</td><td></td><td></td><td></td></tr><tr><td>994b52bf884c71a28b4f5be4eda6baaacad1beee</td><td>Categorizing Big Video Data on the Web: +</td></tr><tr><td>993d189548e8702b1cb0b02603ef02656802c92b</td><td>Highly-Economized Multi-View Binary +<br/>Compression for Scalable Image Clustering +<br/><b>Harbin Institute of Technology (Shenzhen), China</b><br/><b>The University of Queensland, Australia</b><br/><b>Inception Institute of Arti cial Intelligence, UAE</b><br/>4 Computer Vision Laboratory, ETH Zurich, Switzerland +<br/><b>University of Electronic Science and Technology of China, China</b></td><td>('38448016', 'Zheng Zhang', 'zheng zhang')<br/>('40241836', 'Li Liu', 'li liu')<br/>('1747229', 'Jie Qin', 'jie qin')<br/>('39986542', 'Fan Zhu', 'fan zhu')<br/>('2731972', 'Fumin Shen', 'fumin shen')<br/>('1725160', 'Yong Xu', 'yong xu')<br/>('40799321', 'Ling Shao', 'ling shao')<br/>('1724393', 'Heng Tao Shen', 'heng tao shen')</td><td></td></tr><tr><td>9931c6b050e723f5b2a189dd38c81322ac0511de</td><td></td><td></td><td></td></tr><tr><td>994b52bf884c71a28b4f5be4eda6baaacad1beee</td><td>Categorizing Big Video Data on the Web: <br/>Challenges and Opportunities <br/>School of Computer Science <br/><b>Fudan University</b><br/>Shanghai, China @@ -24757,7 +30702,10 @@ <br/>A Simple, Fast and Highly-Accurate Algorithm to <br/>Recover 3D Shape from 2D Landmarks on a Single <br/>Image -</td><td>('39071836', 'Ruiqi Zhao', 'ruiqi zhao')<br/>('1678691', 'Yan Wang', 'yan wang')</td><td></td></tr><tr><td>992ebd81eb448d1eef846bfc416fc929beb7d28b</td><td>Exemplar-Based Face Parsing +</td><td>('39071836', 'Ruiqi Zhao', 'ruiqi zhao')<br/>('1678691', 'Yan Wang', 'yan wang')</td><td></td></tr><tr><td>9901f473aeea177a55e58bac8fd4f1b086e575a4</td><td>Human and Sheep Facial Landmarks Localisation +<br/>by Triplet Interpolated Features +<br/><b>University of Cambridge</b></td><td>('2966679', 'Heng Yang', 'heng yang')<br/>('2271111', 'Renqiao Zhang', 'renqiao zhang')<br/>('39626495', 'Peter Robinson', 'peter robinson')</td><td>hy306, rz264, pr10@cam.ac.uk +</td></tr><tr><td>992ebd81eb448d1eef846bfc416fc929beb7d28b</td><td>Exemplar-Based Face Parsing <br/>Supplementary Material <br/><b>University of Wisconsin Madison</b><br/>Adobe Research <br/>http://www.cs.wisc.edu/~lizhang/projects/face-parsing/ @@ -24780,7 +30728,21 @@ <br/>References <br/>[1] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. Interactive facial feature localization. In ECCV, 2012. <br/>[2] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. In PAMI, December 2011. -</td><td>('2721523', 'Brandon M. Smith', 'brandon m. smith')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')</td><td></td></tr><tr><td>9990e0b05f34b586ffccdc89de2f8b0e5d427067</td><td>International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 +</td><td>('2721523', 'Brandon M. Smith', 'brandon m. smith')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')</td><td></td></tr><tr><td>99c20eb5433ed27e70881d026d1dbe378a12b342</td><td>ISCA Archive +<br/>http://www.isca-speech.org/archive +<br/>First Workshop on Speech, Language +<br/>and Audio in Multimedia +<br/>Marseille, France +<br/>August 22-23, 2013 +<br/>Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013. +<br/>78 +</td><td></td><td></td></tr><tr><td>99facca6fc50cc30f13b7b6dd49ace24bc94f702</td><td>Front.Comput.Sci. +<br/>DOI +<br/>RESEARCH ARTICLE +<br/>VIPLFaceNet: An Open Source Deep Face Recognition SDK +<br/>1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +<br/><b>Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing 100049, China</b><br/>c(cid:13) Higher Education Press and Springer-Verlag Berlin Heidelberg 2016 +</td><td>('46522348', 'Xin Liu', 'xin liu')<br/>('1693589', 'Meina Kan', 'meina kan')<br/>('3468240', 'Wanglong Wu', 'wanglong wu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td></td></tr><tr><td>9990e0b05f34b586ffccdc89de2f8b0e5d427067</td><td>International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 <br/>Auto-Optimized Multimodal Expression Recognition <br/>Framework Using 3D Kinect Data for ASD Therapeutic <br/>Aid @@ -24790,7 +30752,10 @@ <br/>and <br/>to <br/>recognize -</td><td>('25833279', 'Amira E. Youssef', 'amira e. youssef')<br/>('1720250', 'Ahmed S. Ibrahim', 'ahmed s. ibrahim')<br/>('1731164', 'A. Lynn Abbott', 'a. lynn abbott')</td><td></td></tr><tr><td>52012b4ecb78f6b4b9ea496be98bcfe0944353cd</td><td> +</td><td>('25833279', 'Amira E. Youssef', 'amira e. youssef')<br/>('1720250', 'Ahmed S. Ibrahim', 'ahmed s. ibrahim')<br/>('1731164', 'A. Lynn Abbott', 'a. lynn abbott')</td><td></td></tr><tr><td>99d7678039ad96ee29ab520ff114bb8021222a91</td><td>Political image analysis with deep neural +<br/>networks +<br/>November 28, 2017 +</td><td>('41096358', 'L. Jason Anastasopoulos', 'l. jason anastasopoulos')<br/>('2361255', 'Shiry Ginosar', 'shiry ginosar')<br/>('2007721', 'Dhruvil Badani', 'dhruvil badani')<br/>('2459453', 'Jake Ryland Williams', 'jake ryland williams')<br/>('50521070', 'Crystal Lee', 'crystal lee')</td><td></td></tr><tr><td>52012b4ecb78f6b4b9ea496be98bcfe0944353cd</td><td> <br/> JOURNAL OF COMPUTATION IN BIOSCIENCES AND ENGINEERING <br/> <br/> Journal homepage: http://scienceq.org/Journals/JCLS.php @@ -24802,6 +30767,14 @@ <br/><b>Federal University Technology Akure, PMB 704, Akure, Nigeria</b><br/>2. Department of computer science, Kwara state polytechnic Ilorin, Kwara-State, Nigeria. <br/> Received: September 22, 2015, Accepted: December 14, 2015, Published: December 14, 2015. </td><td>('10698338', 'Alese Boniface Kayode', 'alese boniface kayode')</td><td>. *Corresponding author: Ayeni Olaniyi Abiodun Mail Id: oaayeni@futa.edu.ng +</td></tr><tr><td>523854a7d8755e944bd50217c14481fe1329a969</td><td>A Differentially Private Kernel Two-Sample Test +<br/>MPI-IS +<br/><b>University Of Oxford</b><br/><b>University Of Oxford</b><br/>MPI-IS +<br/>April 17, 2018 +</td><td>('39565862', 'Anant Raj', 'anant raj')<br/>('35142231', 'Ho Chung Leon Law', 'ho chung leon law')<br/>('1698032', 'Dino Sejdinovic', 'dino sejdinovic')<br/>('37292171', 'Mijung Park', 'mijung park')</td><td>anant.raj@tuebingen.mpg.de +<br/>ho.law@stats.ox.ac.uk +<br/>dino.sejdinovic@stats.ox.ac.uk +<br/>mijung.park@tuebingen.mpg.de </td></tr><tr><td>521cfbc1949289a7ffc3ff90af7c55adeb43db2a</td><td>Action Recognition with Coarse-to-Fine Deep Feature Integration and <br/>Asynchronous Fusion <br/><b>Shanghai Jiao Tong University, China</b><br/><b>National Key Laboratory for Novel Software Technology, Nanjing University, China</b><br/><b>University of Chinese Academy of Sciences, China</b></td><td>('8131625', 'Weiyao Lin', 'weiyao lin')<br/>('1926641', 'Yang Mi', 'yang mi')<br/>('1808816', 'Jianxin Wu', 'jianxin wu')<br/>('1875882', 'Ke Lu', 'ke lu')<br/>('37028145', 'Hongkai Xiong', 'hongkai xiong')</td><td>{wylin, deyangmiyang, xionghongkai}@sjtu.edu.cn, wujx2001@nju.edu.cn, luk@ucas.ac.cn @@ -24862,6 +30835,10 @@ <br/>Department of Electronic and Computer Engineering <br/><b>The Hong Kong University of Science and Technology</b><br/>HKSAR, China </td><td>('1698743', 'Yuqian Zhou', 'yuqian zhou')</td><td>yzhouas@ust.hk, eebert@ust.hk +</td></tr><tr><td>52472ec859131844f38fc7d57944778f01d109ac</td><td>Improving speaker turn embedding by +<br/>crossmodal transfer learning from face embedding +<br/><b>Idiap Research Institute, Martigny, Switzerland</b><br/>2 ´Ecole Polytechnique F´ed´eral de Lausanne, Switzerland +</td><td>('39560344', 'Nam Le', 'nam le')<br/>('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')</td><td>{nle, odobez}@idiap.ch </td></tr><tr><td>5287d8fef49b80b8d500583c07e935c7f9798933</td><td>Generative Adversarial Text to Image Synthesis <br/><b>University of Michigan, Ann Arbor, MI, USA (UMICH.EDU</b><br/><b>Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE</b><br/>REEDSCOT1, AKATA2, XCYAN1, LLAJAN1 <br/>HONGLAK1, SCHIELE2 @@ -24903,14 +30880,44 @@ <br/>April 2, 2008 <br/>DRAFT </td><td>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td>email: pitas@zeus.csd.auth.gr -</td></tr><tr><td>52f23e1a386c87b0dab8bfdf9694c781cd0a3984</td><td></td><td></td><td></td></tr><tr><td>528069963f0bd0861f380f53270c96c269a3ea1c</td><td><b>Cardi University</b><br/>School of Computer Science and Informatics +</td></tr><tr><td>52f23e1a386c87b0dab8bfdf9694c781cd0a3984</td><td></td><td></td><td></td></tr><tr><td>52d7eb0fbc3522434c13cc247549f74bb9609c5d</td><td>WIDER FACE: A Face Detection Benchmark +<br/><b>The Chinese University of Hong Kong</b></td><td>('1692609', 'Shuo Yang', 'shuo yang')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>{ys014, pluo, ccloy, xtang}@ie.cuhk,edu.hk +</td></tr><tr><td>528069963f0bd0861f380f53270c96c269a3ea1c</td><td><b>Cardi University</b><br/>School of Computer Science and Informatics <br/>Visual Computing Group <br/>4D (3D Dynamic) Statistical Models of <br/>Conversational Expressions and the <br/>Synthesis of Highly-Realistic 4D Facial <br/>Expression Sequences <br/>Submitted in part fulfilment of the requirements for the degree of -<br/><b>Doctor of Philosophy in Computer Science at Cardi University, July 24th</b></td><td>('1812779', 'Jason Vandeventer', 'jason vandeventer')</td><td></td></tr><tr><td>5239001571bc64de3e61be0be8985860f08d7e7e</td><td>SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 +<br/><b>Doctor of Philosophy in Computer Science at Cardi University, July 24th</b></td><td>('1812779', 'Jason Vandeventer', 'jason vandeventer')</td><td></td></tr><tr><td>529baf1a79cca813f8c9966ceaa9b3e42748c058</td><td>Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image +<br/> +<br/>{tag} {/tag} +<br/> +<br/> International Journal of Computer Applications +<br/> +<br/> © 2014 by IJCA Journal +<br/> Volume 87 - Number 6 +<br/> +<br/> Year of Publication: 2014 +<br/> +<br/> +<br/> +<br/> Authors: +<br/> +<br/>Bhogeswar Borah +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> 10.5120/15209-3714 +<br/> {bibtex}pxc3893714.bib{/bibtex} +</td><td></td><td></td></tr><tr><td>5239001571bc64de3e61be0be8985860f08d7e7e</td><td>SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 <br/>Deep Appearance Models: A Deep Boltzmann <br/>Machine Approach for Face Modeling </td><td>('1876581', 'Chi Nhan Duong', 'chi nhan duong')<br/>('1769788', 'Khoa Luu', 'khoa luu')<br/>('2687827', 'Kha Gia Quach', 'kha gia quach')<br/>('1699922', 'Tien D. Bui', 'tien d. bui')</td><td></td></tr><tr><td>556b9aaf1bc15c928718bc46322d70c691111158</td><td>Exploiting Qualitative Domain Knowledge for Learning Bayesian @@ -24918,11 +30925,15 @@ <br/>Thomson-Reuters Corporation <br/><b>Rensselaer Polytechnic Institute</b></td><td>('2460793', 'Wenhui Liao', 'wenhui liao')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>wenhui.liao@thomsonreuters.com <br/>qji@ecse.rpi.edu -</td></tr><tr><td>550858b7f5efaca2ebed8f3969cb89017bdb739f</td><td></td><td></td><td></td></tr><tr><td>554b9478fd285f2317214396e0ccd81309963efd</td><td>Spatio-Temporal Action Localization For Human Action +</td></tr><tr><td>55ea0c775b25d9d04b5886e322db852e86a556cd</td><td>DOCK: Detecting Objects +<br/>by transferring Common-sense Knowledge +<br/><b>University of California, Davis 2University of Washington 3Allen Institute for AI</b><br/>https://dock-project.github.io +</td><td>('2270286', 'Ali Farhadi', 'ali farhadi')<br/>('19553871', 'Krishna Kumar Singh', 'krishna kumar singh')<br/>('1883898', 'Yong Jae Lee', 'yong jae lee')</td><td></td></tr><tr><td>550858b7f5efaca2ebed8f3969cb89017bdb739f</td><td></td><td></td><td></td></tr><tr><td>554b9478fd285f2317214396e0ccd81309963efd</td><td>Spatio-Temporal Action Localization For Human Action <br/>Recognition in Large Dataset <br/>1L2TI, Institut Galil´ee, Universit´e Paris 13, France; <br/>2SERCOM, Ecole Polytechnique de Tunisie -</td><td>('3240115', 'Sameh MEGRHI', 'sameh megrhi')<br/>('2504338', 'Marwa JMAL', 'marwa jmal')<br/>('1731553', 'Azeddine BEGHDADI', 'azeddine beghdadi')<br/>('14521102', 'Wided Mseddi', 'wided mseddi')</td><td></td></tr><tr><td>558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f</td><td>DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE +</td><td>('3240115', 'Sameh MEGRHI', 'sameh megrhi')<br/>('2504338', 'Marwa JMAL', 'marwa jmal')<br/>('1731553', 'Azeddine BEGHDADI', 'azeddine beghdadi')<br/>('14521102', 'Wided Mseddi', 'wided mseddi')</td><td></td></tr><tr><td>55c68c1237166679d2cb65f266f496d1ecd4bec6</td><td>Learning to Score Figure Skating Sport Videos +</td><td>('2708397', 'Chengming Xu', 'chengming xu')<br/>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('10110775', 'Zitian Chen', 'zitian chen')<br/>('40379722', 'Bing Zhang', 'bing zhang')<br/>('1717861', 'Yu-Gang Jiang', 'yu-gang jiang')<br/>('1713721', 'Xiangyang Xue', 'xiangyang xue')</td><td></td></tr><tr><td>558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f</td><td>DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE <br/>ICT International Doctoral School <br/>Efficient and Effective Solutions <br/>for Video Classification @@ -24961,7 +30972,12 @@ <br/><b>Massachusetts Institute of Technology</b><br/>Figure 1: Automated facial gesture recognition is a fundamental problem in human computer interaction. While tackling real world tasks of <br/>expression recognition sudden changes in illumination from multiple sources can be expected. We show how to build a robust system to detect <br/>human emotions while showing invariance to illumination. -</td><td>('37381309', 'Otkrist Gupta', 'otkrist gupta')<br/>('2283049', 'Dan Raviv', 'dan raviv')<br/>('1717566', 'Ramesh Raskar', 'ramesh raskar')</td><td></td></tr><tr><td>55c81f15c89dc8f6eedab124ba4ccab18cf38327</td><td></td><td></td><td></td></tr><tr><td>55bc7abcef8266d76667896bbc652d081d00f797</td><td>Impact of Facial Cosmetics on Automatic Gender and Age Estimation +</td><td>('37381309', 'Otkrist Gupta', 'otkrist gupta')<br/>('2283049', 'Dan Raviv', 'dan raviv')<br/>('1717566', 'Ramesh Raskar', 'ramesh raskar')</td><td></td></tr><tr><td>55c81f15c89dc8f6eedab124ba4ccab18cf38327</td><td></td><td></td><td></td></tr><tr><td>5550a6df1b118a80c00a2459bae216a7e8e3966c</td><td>ISSN: 0974-2115 +<br/>www.jchps.com Journal of Chemical and Pharmaceutical Sciences +<br/>A perusal on Facial Emotion Recognition System (FERS) +<br/><b>School of Information Technology and Engineering, VIT University, Vellore, 632014, India</b></td><td></td><td>*Corresponding author: E-Mail: krithika.lb@vit.ac.in +</td></tr><tr><td>55e87050b998eb0a8f0b16163ef5a28f984b01fa</td><td>CAN YOU FIND A FACE IN A HEVC BITSTREAM? +<br/><b>School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada</b></td><td>('3393216', 'Saeed Ranjbar Alvar', 'saeed ranjbar alvar')<br/>('3320198', 'Hyomin Choi', 'hyomin choi')</td><td></td></tr><tr><td>55bc7abcef8266d76667896bbc652d081d00f797</td><td>Impact of Facial Cosmetics on Automatic Gender and Age Estimation <br/>Algorithms <br/><b>Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA</b><br/><b>Computer Science and Engineering, Michigan State University, East Lansing, USA</b><br/>Keywords: <br/>Biometrics, Face Recognition, Facial Cosmetics, Makeup, Gender Spoofing, Age Alteration, Automatic @@ -24992,7 +31008,40 @@ <br/>The Color of the Cat is Gray: <br/><b>The University of Tokyo</b><br/>7 Chome-3-1 Hongo, Bunkyo <br/>Tokyo 113-8654, Japan -</td><td>('2518695', 'Andrew Shin', 'andrew shin')<br/>('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')<br/>('1790553', 'Tatsuya Harada', 'tatsuya harada')</td><td></td></tr><tr><td>973e3d9bc0879210c9fad145a902afca07370b86</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, +</td><td>('2518695', 'Andrew Shin', 'andrew shin')<br/>('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')<br/>('1790553', 'Tatsuya Harada', 'tatsuya harada')</td><td></td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation +<br/>{tag} {/tag} +<br/> International Journal of Computer Applications +<br/> +<br/> Foundation of Computer Science (FCS), NY, USA +<br/> +<br/> +<br/>Volume 126 +<br/>- +<br/>Number 5 +<br/> +<br/> +<br/> Year of Publication: 2015 +<br/> +<br/> +<br/> +<br/> +<br/> Authors: +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> 10.5120/ijca2015906055 +<br/> {bibtex}2015906055.bib{/bibtex} +</td><td>('2029759', 'Reecha Sharma', 'reecha sharma')</td><td></td></tr><tr><td>9788b491ddc188941dadf441fc143a4075bff764</td><td>LOGAN: Membership Inference Attacks Against Generative Models∗ +<br/><b>University College London</b></td><td>('9200194', 'Jamie Hayes', 'jamie hayes')<br/>('2008164', 'Luca Melis', 'luca melis')<br/>('1722262', 'George Danezis', 'george danezis')<br/>('1728207', 'Emiliano De Cristofaro', 'emiliano de cristofaro')</td><td>{j.hayes, l.melis, g.danezis, e.decristofaro}@cs.ucl.ac.uk +</td></tr><tr><td>973e3d9bc0879210c9fad145a902afca07370b86</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, <br/>Vol. 7, No. 7, 2016 <br/>From Emotion Recognition to Website <br/>Customizations @@ -25015,7 +31064,17 @@ <br/><b>M.P.M. College, Bhopal, India</b></td><td>('37930830', 'Vijay Shinde', 'vijay shinde')<br/>('9345591', 'Prakash Tanwar', 'prakash tanwar')</td><td></td></tr><tr><td>97032b13f1371c8a813802ade7558e816d25c73f</td><td>Total Recall Final Report <br/>Supervisor: Professor Duncan Gillies <br/>January 11, 2006 -</td><td>('2561350', 'Peter Collingbourne', 'peter collingbourne')<br/>('3036326', 'Khilan Gudka', 'khilan gudka')<br/>('15490561', 'Steve Lovegrove', 'steve lovegrove')<br/>('35260800', 'Jiefei Ma', 'jiefei ma')</td><td></td></tr><tr><td>978a219e07daa046244821b341631c41f91daccd</td><td>Emotional Intelligence: Giving Computers +</td><td>('2561350', 'Peter Collingbourne', 'peter collingbourne')<br/>('3036326', 'Khilan Gudka', 'khilan gudka')<br/>('15490561', 'Steve Lovegrove', 'steve lovegrove')<br/>('35260800', 'Jiefei Ma', 'jiefei ma')</td><td></td></tr><tr><td>97137d5154a9f22a5d9ecc32e8e2b95d07a5a571</td><td>The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3418-y +<br/>Facial Expression Recognition based on Local Region +<br/>Specific Features and Support Vector Machines +<br/>Park1 +<br/><b>Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of Korea; E</b><br/><b>Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do</b><br/>Tel.: +82-63-270-2406; Fax: +82-63-270-2394. +</td><td>('32322842', 'Deepak Ghimire', 'deepak ghimire')<br/>('31984909', 'SungHwan Jeong', 'sunghwan jeong')<br/>('2034182', 'Joonwhoan Lee', 'joonwhoan lee')</td><td>Mails: (deepak, shjeong, shpark)@keti.re.kr +<br/>756, Rep. of Korea; E-Mail: chlee@jbnu.ac.kr +<br/>♣ Corresponding Author; E-Mail: chlee@jbnu.ac.kr; +</td></tr><tr><td>9730b9cd998c0a549601c554221a596deda8af5b</td><td>Spatio-temporal Person Retrieval via Natural Language Queries +<br/><b>Graduate School of Information Science and Technology, The University of Tokyo</b></td><td>('3369734', 'Masataka Yamaguchi', 'masataka yamaguchi')<br/>('8915348', 'Kuniaki Saito', 'kuniaki saito')<br/>('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')<br/>('1790553', 'Tatsuya Harada', 'tatsuya harada')</td><td>{yamaguchi, ksaito, ushiku, harada}@mi.t.u-tokyo.ac.jp +</td></tr><tr><td>978a219e07daa046244821b341631c41f91daccd</td><td>Emotional Intelligence: Giving Computers <br/>Effective Emotional Skills to Aid Interaction <br/><b>School of Computer Science, University of Birmingham, UK</b><br/>1 Introduction <br/>Why do computers need emotional intelligence? Science fiction often por- @@ -25063,7 +31122,12 @@ <br/><b>Carnegie Mellon University</b></td><td>('2232940', 'Vishnu Naresh Boddeti', 'vishnu naresh boddeti')<br/>('1733113', 'Takeo Kanade', 'takeo kanade')</td><td>naresh@cmu.edu <br/>tk@cs.cmu.edu <br/>kumar@ece.cmu.edu -</td></tr><tr><td>97d1d561362a8b6beb0fdbee28f3862fb48f1380</td><td>1955 +</td></tr><tr><td>97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5</td><td>manuscript No. +<br/>(will be inserted by the editor) +<br/>Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, +<br/>Deep Architectures, and Beyond +<br/>Zafeiriou4 +</td><td>('1811396', 'Dimitrios Kollias', 'dimitrios kollias')<br/>('1757287', 'Guoying Zhao', 'guoying zhao')</td><td></td></tr><tr><td>97d1d561362a8b6beb0fdbee28f3862fb48f1380</td><td>1955 <br/>Age Synthesis and Estimation via Faces: <br/>A Survey </td><td>('1708679', 'Yun Fu', 'yun fu')<br/>('1822413', 'Guodong Guo', 'guodong guo')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td></td></tr><tr><td>97540905e4a9fdf425989a794f024776f28a3fa9</td><td></td><td></td><td></td></tr><tr><td>97865d31b5e771cf4162bc9eae7de6991ceb8bbf</td><td>Face and Gender Classification in Crowd Video @@ -25076,7 +31140,23 @@ <br/>for the Degree of M.Tech. in Computer Science <br/>c(cid:13) Verma, 2015 <br/>Keywords : Face Recognition, Gender Classification, Crowd database -</td><td>('2578160', 'Priyanka Verma', 'priyanka verma')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td></td></tr><tr><td>9755554b13103df634f9b1ef50a147dd02eab02f</td><td>How Transferable are CNN-based Features for +</td><td>('2578160', 'Priyanka Verma', 'priyanka verma')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td></td></tr><tr><td>975978ee6a32383d6f4f026b944099e7739e5890</td><td>Privacy-Preserving Age Estimation +<br/>for Content Rating +<br/>Binglin Li∗ +<br/><b>University of Manitoba</b><br/><b>Simon Fraser University</b><br/>Winnipeg, Canada +<br/>Burnaby, Canada +<br/>Noman Mohammed +<br/><b>University of Manitoba</b><br/>Winnipeg, Canada +<br/>Yang Wang +<br/>Jie Liang +<br/><b>University of Manitoba</b><br/><b>Simon Fraser University</b><br/>Winnipeg, Canada +<br/>Burnaby, Canada +</td><td>('2373631', 'Linwei Ye', 'linwei ye')</td><td>yel3@cs.umanitoba.ca +<br/>binglinl@sfu.ca +<br/>noman@cs.umanitoba.ca +<br/>ywang@cs.umanitoba.ca +<br/>jiel@sfu.ca +</td></tr><tr><td>9755554b13103df634f9b1ef50a147dd02eab02f</td><td>How Transferable are CNN-based Features for <br/>Age and Gender Classification? <br/> 1 </td><td>('2850086', 'Gökhan Özbulak', 'gökhan özbulak')<br/>('3152281', 'Yusuf Aytar', 'yusuf aytar')</td><td></td></tr><tr><td>635158d2da146e9de559d2742a2fa234e06b52db</td><td></td><td></td><td></td></tr><tr><td>63d8110ac76f57b3ba8a5947bc6bdbb86f25a342</td><td>On Modeling Variations for Face Authentication @@ -25085,7 +31165,10 @@ <br/>Classification in Standard <br/>and Generalized <br/>Dissimilarity Spaces -</td><td></td><td></td></tr><tr><td>6324fada2fb00bd55e7ff594cf1c41c918813030</td><td>Uncertainty Reduction For Active Image Clustering +</td><td></td><td></td></tr><tr><td>632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c</td><td>Real-Time Facial Segmentation +<br/>and Performance Capture from RGB Input +<br/>Pinscreen +<br/><b>University of Southern California</b></td><td>('2059597', 'Shunsuke Saito', 'shunsuke saito')<br/>('50290121', 'Tianye Li', 'tianye li')<br/>('1706574', 'Hao Li', 'hao li')</td><td></td></tr><tr><td>6324fada2fb00bd55e7ff594cf1c41c918813030</td><td>Uncertainty Reduction For Active Image Clustering <br/>via a Hybrid Global-Local Uncertainty Model <br/><b>State University of New York at Buffalo</b><br/>Department of Computer Science and Engineering <br/>338 Davis Hall, Buffalo, NY, 14260-2500 @@ -25110,6 +31193,15 @@ <br/><b>Xi an Jiaotong University, China</b><br/><b>University of Tsukuba, Japan</b></td><td>('6916241', 'Xi Li', 'xi li')<br/>('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')<br/>('1715389', 'Nanning Zheng', 'nanning zheng')</td><td>lxaccv09@yahoo.com, <br/>znn@xjtu.edu.cn <br/>kf@cs.tsukuba.ac.jp +</td></tr><tr><td>631483c15641c3652377f66c8380ff684f3e365c</td><td>Sync-DRAW: Automatic Video Generation using Deep Recurrent +<br/>A(cid:130)entive Architectures +<br/>Gaurav Mi(cid:138)al∗ +<br/>IIT Hyderabad +<br/>Vineeth N Balasubramanian +<br/>IIT Hyderabad +</td><td>('8268761', 'Tanya Marwah', 'tanya marwah')</td><td>gaurav.mi(cid:138)al.191013@gmail.com +<br/>ee13b1044@iith.ac.in +<br/>vineethnb@iith.ac.in </td></tr><tr><td>63a6c256ec2cf2e0e0c9a43a085f5bc94af84265</td><td>Complexity of Multiverse Networks and <br/>their Multilayer Generalization <br/>The Blavatnik School of Computer Science @@ -25118,10 +31210,26 @@ <br/>3INRIA <br/>http://rohitgirdhar.github.io/ActionVLAD </td><td>('3102850', 'Rohit Girdhar', 'rohit girdhar')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')<br/>('1782755', 'Josef Sivic', 'josef sivic')<br/>('2015670', 'Bryan Russell', 'bryan russell')</td><td></td></tr><tr><td>630d1728435a529d0b0bfecb0e7e335f8ea2596d</td><td>Facial Action Unit Detection by Cascade of Tasks -<br/><b>School of Information Science and Engineering, Southeast University, Nanjing, China</b><br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh, PA</b><br/><b>University of Pittsburgh, Pittsburgh, PA</b></td><td>('2499751', 'Xiaoyu Ding', 'xiaoyu ding')<br/>('18870591', 'Qiao Wang', 'qiao wang')</td><td></td></tr><tr><td>63eefc775bcd8ccad343433fc7a1dd8e1e5ee796</td><td></td><td></td><td></td></tr><tr><td>63340c00896d76f4b728dbef85674d7ea8d5ab26</td><td>1732 +<br/><b>School of Information Science and Engineering, Southeast University, Nanjing, China</b><br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh, PA</b><br/><b>University of Pittsburgh, Pittsburgh, PA</b></td><td>('2499751', 'Xiaoyu Ding', 'xiaoyu ding')<br/>('18870591', 'Qiao Wang', 'qiao wang')</td><td></td></tr><tr><td>63eefc775bcd8ccad343433fc7a1dd8e1e5ee796</td><td></td><td></td><td></td></tr><tr><td>632fa986bed53862d83918c2b71ab953fd70d6cc</td><td>GÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT +<br/>What Face and Body Shapes Can Tell +<br/>About Height +<br/>CVLab +<br/>EPFL, +<br/>Lausanne, Switzerland +</td><td>('46211822', 'Semih Günel', 'semih günel')<br/>('2933543', 'Helge Rhodin', 'helge rhodin')<br/>('1717736', 'Pascal Fua', 'pascal fua')</td><td>semih.gunel@epfl.ch +<br/>helge.rhodin@epfl.ch +<br/>pascal.fua@epfl.ch +</td></tr><tr><td>63340c00896d76f4b728dbef85674d7ea8d5ab26</td><td>1732 <br/>Discriminant Subspace Analysis: <br/>A Fukunaga-Koontz Approach -</td><td>('40404906', 'Sheng Zhang', 'sheng zhang')<br/>('1715286', 'Terence Sim', 'terence sim')</td><td></td></tr><tr><td>63a2e2155193dc2da9764ae7380cdbd044ff2b94</td><td>A Dense SURF and Triangulation based +</td><td>('40404906', 'Sheng Zhang', 'sheng zhang')<br/>('1715286', 'Terence Sim', 'terence sim')</td><td></td></tr><tr><td>633101e794d7b80f55f466fd2941ea24595e10e6</td><td>In submission to IEEE conference +<br/>Face Attribute Prediction with classification CNN +<br/>FACE ATTRIBUTE PREDICTION WITH +<br/>CLASSIFICATION CNN +<br/>Computer Science and Communication +<br/><b>KTH Royal Institute of Technology</b><br/>100 44 Stockholm, Sweden +</td><td>('50262049', 'Yang Zhong', 'yang zhong')<br/>('1736906', 'Josephine Sullivan', 'josephine sullivan')<br/>('40565290', 'Haibo Li', 'haibo li')</td><td>{yzhong, sullivan, haiboli}@kth.se +</td></tr><tr><td>63a2e2155193dc2da9764ae7380cdbd044ff2b94</td><td>A Dense SURF and Triangulation based <br/>Spatio-Temporal Feature for Action Recognition <br/><b>The University of Electro-Communications</b><br/>Chofu, Tokyo 182-8585 JAPAN </td><td>('2274625', 'Do Hang Nga', 'do hang nga')<br/>('1681659', 'Keiji Yanai', 'keiji yanai')</td><td>fdohang,yanaig@mm.cs.uec.ac.jp @@ -25493,7 +31601,27 @@ <br/><b>Rensselaer Polytechnic Institute</b><br/>Troy, NY 12180 </td><td>('1713712', 'Jixu Chen', 'jixu chen')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>chenj4@rpi.edu <br/>qji@ecse.rpi.edu -</td></tr><tr><td>0faeec0d1c51623a511adb779dabb1e721a6309b</td><td>Seeing is Worse than Believing: Reading +</td></tr><tr><td>0f21a39fa4c0a19c4a5b4733579e393cb1d04f71</td><td>Evaluation of optimization +<br/>components of a 3D to 2D +<br/>landmark fitting algorithm for +<br/>head pose estimation +<br/>11029668 +<br/>Bachelor thesis +<br/>Credits: 18 EC +<br/>Bachelor Opleiding Kunstmatige Intelligentie +<br/><b>University of Amsterdam</b><br/>Faculty of Science +<br/>Science Park 904 +<br/>1098 XH Amsterdam +<br/>Supervisors +<br/>dr. Sezer Karaoglu +<br/>MSc. Minh Ngo +<br/><b>Informatics Institute</b><br/>Faculty of Science +<br/><b>University of Amsterdam</b><br/>Science Park 904 +<br/>1090 GH Amsterdam +<br/>June 29th, 2018 +</td><td></td><td></td></tr><tr><td>0fd1bffb171699a968c700f206665b2f8837d953</td><td>Weakly Supervised Object Localization with +<br/>Multi-fold Multiple Instance Learning +</td><td>('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')<br/>('34602236', 'Jakob Verbeek', 'jakob verbeek')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>0faeec0d1c51623a511adb779dabb1e721a6309b</td><td>Seeing is Worse than Believing: Reading <br/>People’s Minds Better than Computer-Vision <br/>Methods Recognize Actions <br/>1 MIT, Cambridge, MA, USA @@ -25522,7 +31650,14 @@ </td></tr><tr><td>0a64f4fec592662316764283575d05913eb2135b</td><td>Joint Pixel and Feature-level Domain Adaptation in the Wild <br/><b>Michigan State University</b><br/>2NEC Labs America <br/>3UC San Diego -</td><td>('1849929', 'Luan Tran', 'luan tran')</td><td></td></tr><tr><td>0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112</td><td>Patch-based Models For Visual Object Classes +</td><td>('1849929', 'Luan Tran', 'luan tran')</td><td></td></tr><tr><td>0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Learning Invariant Deep Representation +<br/>for NIR-VIS Face Recognition +<br/>National Laboratory of Pattern Recognition, CASIA +<br/>Center for Research on Intelligent Perception and Computing, CASIA +<br/>Center for Excellence in Brain Science and Intelligence Technology, CAS +<br/><b>University of Chinese Academy of Sciences, Beijing 100190, China</b></td><td>('1705643', 'Ran He', 'ran he')<br/>('2225749', 'Xiang Wu', 'xiang wu')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')<br/>('1688870', 'Tieniu Tan', 'tieniu tan')</td><td>{rhe,znsun,tnt}@nlpr.ia.ac.cn, alfredxiangwu@gmail.com +</td></tr><tr><td>0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112</td><td>Patch-based Models For Visual Object Classes <br/>A dissertation submitted in partial fulfilment <br/>of the requirements for the degree of <br/>Doctor of Philosophy @@ -25563,12 +31698,23 @@ </td><td>('2527457', 'Maxime Sangnier', 'maxime sangnier')<br/>('1792962', 'Alain Rakotomamonjy', 'alain rakotomamonjy')</td><td>MAXIME.SANGNIER@TELECOM-PARISTECH.FR <br/>JEROME.GAUTHIER@CEA.FR <br/>ALAIN.RAKOTO@INSA-ROUEN.FR +</td></tr><tr><td>0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f</td><td>Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016 +<br/>c(cid:13) Copyright by Springer. The final publication will be available at link.springer.com +<br/>A. Freytag, E. Rodner, M. Simon, A. Loos, H. K¨uhl and J. Denzler +<br/>Chimpanzee Faces in the Wild: +<br/>Log-Euclidean CNNs for Predicting Identities +<br/>and Attributes of Primates +<br/><b>Computer Vision Group, Friedrich Schiller University Jena, Germany</b><br/>2Michael Stifel Center Jena, Germany +<br/><b>Fraunhofer Institute for Digital Media Technology, Germany</b><br/><b>Max Planck Institute for Evolutionary Anthropology, Germany</b><br/>5German Centre for Integrative Biodiversity Research (iDiv), Germany +</td><td>('1720839', 'Alexander Freytag', 'alexander freytag')<br/>('1679449', 'Erik Rodner', 'erik rodner')<br/>('49675890', 'Marcel Simon', 'marcel simon')<br/>('4572597', 'Alexander Loos', 'alexander loos')<br/>('1728382', 'Joachim Denzler', 'joachim denzler')</td><td></td></tr><tr><td>0a34fe39e9938ae8c813a81ae6d2d3a325600e5c</td><td>FacePoseNet: Making a Case for Landmark-Free Face Alignment +<br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b><br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b></td><td>('1752756', 'Feng-Ju Chang', 'feng-ju chang')<br/>('46634688', 'Anh Tuan Tran', 'anh tuan tran')<br/>('1756099', 'Tal Hassner', 'tal hassner')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')</td><td>{fengjuch,anhttran,iacopoma,nevatia,medioni}@usc.edu, hassner@isi.edu </td></tr><tr><td>0ad8149318912b5449085187eb3521786a37bc78</td><td>CP-mtML: Coupled Projection multi-task Metric Learning <br/>for Large Scale Face Retrieval <br/>Frederic Jurie1,∗ <br/><b>University of Caen, France</b><br/>2MPI for Informatics, Germany <br/>3IIT Kanpur, India -</td><td>('2078892', 'Binod Bhattarai', 'binod bhattarai')<br/>('2515597', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7</td><td><b>Imperial College of Science, Technology and Medicine</b><br/>Department of Computing +</td><td>('2078892', 'Binod Bhattarai', 'binod bhattarai')<br/>('2515597', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>0a9d204db13d395f024067cf70ac19c2eeb5f942</td><td>Viewpoint-aware Video Summarization +<br/><b>The University of Tokyo, 2RIKEN, 3ETH Z urich, 4KU Leuven</b></td><td>('2551640', 'Atsushi Kanehira', 'atsushi kanehira')<br/>('1681236', 'Luc Van Gool', 'luc van gool')<br/>('3250559', 'Yoshitaka Ushiku', 'yoshitaka ushiku')<br/>('1790553', 'Tatsuya Harada', 'tatsuya harada')</td><td></td></tr><tr><td>0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7</td><td><b>Imperial College of Science, Technology and Medicine</b><br/>Department of Computing <br/>Timing is everything <br/>A spatio-temporal approach to the analysis of facial <br/>actions @@ -25591,6 +31737,100 @@ <br/><b>University of Missouri, Columbia, MO</b></td><td>('2741325', 'K. Stone', 'k. stone')<br/>('9187168', 'J. M. Keller', 'j. m. keller')</td><td></td></tr><tr><td>0ad90118b4c91637ee165f53d557da7141c3fde0</td><td></td><td></td><td></td></tr><tr><td>0a82860d11fcbf12628724333f1e7ada8f3cd255</td><td>Action Temporal Localization in Untrimmed Videos via Multi-stage CNNs <br/><b>Columbia University</b><br/>New York, NY, USA </td><td>('2195345', 'Zheng Shou', 'zheng shou')<br/>('2704179', 'Dongang Wang', 'dongang wang')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td>{zs2262,dw2648,sc250}@columbia.edu +</td></tr><tr><td>0a4fc9016aacae9cdf40663a75045b71e64a70c9</td><td>JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (201X) +<br/> Illumination Normalization Based on +<br/>Homomorphic Wavelet Filtering for Face Recognition +<br/>1School of Electronic and Information Engineering +<br/><b>Beijing Jiaotong University</b><br/>No.3 Shang Yuan Cun,Hai Dian District +<br/>Beijing 100044,China +<br/>2School of Physics Electrical Information Engineering +<br/><b>Ningxia University</b><br/>Yinchuan Ningxia 750021,China +<br/>Phone number: 086-010-51688165 +<br/>The performance of face recognition techniques is greatly challenged by the pose, +<br/>expression and illumination of the image. For most existing systems, the recognition rate +<br/>will decrease due to changes in environmental illumination. In this paper, a +<br/>Homomorphic Wavelet-based Illumination Normalization (HWIN) method is proposed. +<br/>The purpose of this method is to normalize the uneven illumination of the facial image. +<br/>The image is analyzed in the logarithm domain with wavelet transform, the +<br/>approximation coefficients of the image are mapped according to the reference +<br/>illumination map in order to normalize the distribution of illumination energy resulting +<br/>from different lighting effects, and the detail components are enhanced to achieve detail +<br/>information emphasis. Then, a Difference of Gaussian (DoG) filter is also applied to +<br/>reduce the noise resulting from different lighting effects, which exists on detail +<br/>components. The proposed methods are implemented on Yale B and Extended Yale B +<br/>facial databases. The experimental results show that the methods described in this study +<br/>are capable of effectively eliminating the effects of uneven illumination and of greatly +<br/>improving the recognition rate, and are therefore more effective than other popular +<br/>methods. +<br/>Keywords: face recognition; homomorphic filtering; wavelet transfer; illumination +<br/>mapping +<br/>1. INTRODUCTION +<br/>Automatic face recognition has received significant attention over the past several +<br/>decades due to its numerous potential applications, such as human-computer interfaces, +<br/>access control, security and surveillance, e-commerce, entertainment, and so on. Related +<br/>research performed in recent years has made great progress, and a number of face +<br/>recognition systems have achieved strong results, as shown in the latest report of Face +<br/>Recognition Vendor Test (FRVT, 2006). Despite this remarkable progress, face +<br/>recognition still faces a challenging problem, which is its sensitivity to the dramatic +<br/>variations among images of the same face. For example, facial expression, pose, ageing, +<br/>make-up, background and illumination variations are all factors which may result in +<br/>significant variations [1-26]. +<br/>Illumination variation is one of the most significant factors limiting the performance +<br/>of face recognition. Since several images of the same person appear to be dramatically +<br/>1 +</td><td>('2613621', 'Xue Yuan', 'xue yuan')<br/>('47884608', 'Yifei Meng', 'yifei meng')</td><td>E-mail: 10111045@bjtu.edu.cn +</td></tr><tr><td>0a85afebaa19c80fddb660110a4352fd22eb2801</td><td>Neural Animation and Reenactment of Human Actor Videos +<br/>Fig. 1. We propose a novel learning-based approach for the animation and reenactment of human actor videos. The top row shows some frames of the video +<br/>We propose a method for generating (near) video-realistic animations of +<br/>real humans under user control. In contrast to conventional human char- +<br/>acter rendering, we do not require the availability of a production-quality +<br/>photo-realistic 3D model of the human, but instead rely on a video sequence +<br/>in conjunction with a (medium-quality) controllable 3D template model +<br/>of the person. With that, our approach significantly reduces production +<br/>cost compared to conventional rendering approaches based on production- +<br/>quality 3D models, and can also be used to realistically edit existing videos. +<br/>Technically, this is achieved by training a neural network that translates +<br/>simple synthetic images of a human character into realistic imagery. For +<br/>training our networks, we first track the 3D motion of the person in the +<br/>video using the template model, and subsequently generate a synthetically +<br/><b>mpg.de, Max Planck Institute for Informatics</b><br/>Permission to make digital or hard copies of part or all of this work for personal or +<br/>classroom use is granted without fee provided that copies are not made or distributed +<br/>for profit or commercial advantage and that copies bear this notice and the full citation +<br/>on the first page. Copyrights for third-party components of this work must be honored. +<br/>For all other uses, contact the owner/author(s). +<br/>© 2018 Copyright held by the owner/author(s). +<br/>XXXX-XXXX/2018/9-ART282 +<br/>https://doi.org/10.475/123_4 +<br/>rendered version of the video. These images are then used to train a con- +<br/>ditional generative adversarial network that translates synthetic images of +<br/>the 3D model into realistic imagery of the human. We evaluate our method +<br/>for the reenactment of another person that is tracked in order to obtain the +<br/>motion data, and show video results generated from artist-designed skeleton +<br/>motion. Our results outperform the state-of-the-art in learning-based human +<br/>image synthesis. +<br/>CCS Concepts: • Computing methodologies → Computer graphics; +<br/>Neural networks; Appearance and texture representations; Animation; Ren- +<br/>dering; +<br/>Additional Key Words and Phrases: Video-based Characters, Deep Learning, +<br/>Conditional GAN, Rendering-to-Video Translation +<br/>ACM Reference Format: +<br/>Animation and Reenactment of Human Actor Videos. 1, 1, Article 282 +<br/>(September 2018), 13 pages. https://doi.org/10.475/123_4 +<br/>INTRODUCTION +<br/>The creation of realistically rendered and controllable animations +<br/>of human characters is a crucial task in many computer graphics +<br/>applications. Virtual actors play a key role in games and visual ef- +<br/>fects, in telepresence, or in virtual and augmented reality. Today, the +<br/>plausible rendition of video-realistic characters—i.e., animations in- +<br/>distinguishable from a video of a human—under user control is also +<br/>Submission ID: 282. 2018-09-12 00:32. Page 1 of 1–13. +<br/>, Vol. 1, No. 1, Article 282. Publication date: September 2018. +</td><td>('46458089', 'Lingjie Liu', 'lingjie liu')<br/>('9765909', 'Weipeng Xu', 'weipeng xu')<br/>('1699058', 'Michael Zollhöfer', 'michael zollhöfer')<br/>('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')<br/>('39600032', 'Florian Bernard', 'florian bernard')<br/>('14210288', 'Marc Habermann', 'marc habermann')<br/>('1698520', 'Wenping Wang', 'wenping wang')<br/>('1680185', 'Christian Theobalt', 'christian theobalt')<br/>('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')<br/>('46458089', 'Lingjie Liu', 'lingjie liu')<br/>('9765909', 'Weipeng Xu', 'weipeng xu')<br/>('1699058', 'Michael Zollhöfer', 'michael zollhöfer')<br/>('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')<br/>('39600032', 'Florian Bernard', 'florian bernard')<br/>('14210288', 'Marc Habermann', 'marc habermann')<br/>('1698520', 'Wenping Wang', 'wenping wang')<br/>('1680185', 'Christian Theobalt', 'christian theobalt')</td><td>Authors’ addresses: Lingjie Liu, liulingjie0206@gmail.com, University of Hong Kong, +<br/>Max Planck Institute for Informatics; Weipeng Xu, wxu@mpi-inf.mpg.de, Max Planck +<br/>Institute for Informatics; Michael Zollhöfer, zollhoefer@cs.stanford.edu, Stanford +<br/>kim@mpi-inf.mpg.de; Florian Bernard, fbernard@mpi-inf.mpg.de; Marc Habermann, +<br/>mhaberma@mpi-inf.mpg.de, Max Planck Institute for Informatics; Wenping Wang, +<br/>wenping@cs.hku.hk, University of Hong Kong; Christian Theobalt, theobalt@mpi-inf. </td></tr><tr><td>0ac442bb570b086d04c4d51a8410fcbfd0b1779d</td><td>WarpNet: Weakly Supervised Matching for Single-view Reconstruction <br/><b>University of Maryland, College Park</b><br/>Manmohan Chandraker <br/>NEC Labs America @@ -25762,7 +32002,12 @@ <br/>AT <br/><b>CARNEGIE MELLON UNIVERSITY</b><br/>5000 FORBES AVENUE PITTSBURGH PA 15213-3890 <br/>MAY 2004 -</td><td>('3039721', 'Avinash B. Baliga', 'avinash b. baliga')<br/>('3039721', 'Avinash B. Baliga', 'avinash b. baliga')</td><td></td></tr><tr><td>0a11b82aa207d43d1b4c0452007e9388a786be12</td><td>Feature Level Multiple Model Fusion Using Multilinear +</td><td>('3039721', 'Avinash B. Baliga', 'avinash b. baliga')<br/>('3039721', 'Avinash B. Baliga', 'avinash b. baliga')</td><td></td></tr><tr><td>0a7309147d777c2f20f780a696efe743520aa2db</td><td>Stories for Images-in-Sequence by using Visual +<br/>and Narrative Components (cid:63) +<br/><b>Ss. Cyril and Methodius University, Skopje, Macedonia</b><br/>2 Pendulibrium, Skopje, Macedonia +<br/>3 Elevate Global, Skopje, Macedonia +</td><td>('46205557', 'Marko Smilevski', 'marko smilevski')<br/>('46242132', 'Ilija Lalkovski', 'ilija lalkovski')</td><td>{marko.smilevski,ilija}@webfactory.mk, gjorgji.madjarov@finki.ukim.mk +</td></tr><tr><td>0a11b82aa207d43d1b4c0452007e9388a786be12</td><td>Feature Level Multiple Model Fusion Using Multilinear <br/>Subspace Analysis with Incomplete Training Set <br/>and Its Application to Face Image Analysis <br/><b>School of IoT Engineering, Jiangnan University, Wuxi, 214122, China</b><br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH</b><br/>United Kingdom @@ -25772,7 +32017,7 @@ <br/>The final version of record is available at <br/> http://dx.doi.org/10.1109/TIP.2016.2539502 <br/>Discriminant Incoherent Component Analysis -</td><td>('2812961', 'Christos Georgakis', 'christos georgakis')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7</td><td>Noname manuscript No. +</td><td>('2812961', 'Christos Georgakis', 'christos georgakis')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a</td><td></td><td>('1802883', 'Soufiane Belharbi', 'soufiane belharbi')</td><td></td></tr><tr><td>0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>Multi-task, multi-label and multi-domain learning with <br/>residual convolutional networks for emotion recognition @@ -25824,7 +32069,26 @@ <br/>1Department of Creative IT Engineering, POSTECH, Korea <br/>2Department of Computer Science and Engineering, POSTECH, Korea </td><td>('2794366', 'Bong-Nam Kang', 'bong-nam kang')<br/>('1804861', 'Yonghyun Kim', 'yonghyun kim')<br/>('1695669', 'Daijin Kim', 'daijin kim')</td><td>{bnkang, gkyh0805, dkim}@postech.ac.kr -</td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Learning Finite Beta-Liouville Mixture Models via +</td></tr><tr><td>641f0989b87bf7db67a64900dcc9568767b7b50f</td><td>Reconstructing Faces from their Signatures using RBF +<br/>Regression +<br/>To cite this version: +<br/>sion. British Machine Vision Conference 2013, Sep 2013, Bristol, United Kingdom. pp.103.1– +<br/>103.12, 2013, <10.5244/C.27.103>. <hal-00943426> +<br/>HAL Id: hal-00943426 +<br/>https://hal.archives-ouvertes.fr/hal-00943426 +<br/>Submitted on 13 Feb 2014 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destin´ee au d´epˆot et `a la diffusion de documents +<br/>scientifiques de niveau recherche, publi´es ou non, +<br/>´emanant des ´etablissements d’enseignement et de +<br/>recherche fran¸cais ou ´etrangers, des laboratoires +<br/>publics ou priv´es. +</td><td>('34723309', 'Alexis Mignon', 'alexis mignon')<br/>('34723309', 'Alexis Mignon', 'alexis mignon')</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Learning Finite Beta-Liouville Mixture Models via <br/>Variational Bayes for Proportional Data Clustering <br/>Electrical and Computer Engineering <br/><b>Institute for Information Systems Engineering</b><br/><b>Concordia University, Canada</b><br/><b>Concordia University, Canada</b></td><td>('2038786', 'Wentao Fan', 'wentao fan')<br/>('1729109', 'Nizar Bouguila', 'nizar bouguila')</td><td>wenta fa@encs.concordia.ca @@ -25833,7 +32097,11 @@ <br/>Faces using Eigenfaces <br/>Department of Informatics <br/><b>Technical University of Munich, Germany</b></td><td>('1725709', 'Zahid Riaz', 'zahid riaz')<br/>('1746229', 'Michael Beetz', 'michael beetz')<br/>('1699132', 'Bernd Radig', 'bernd radig')</td><td>{riaz,beetz,radig}@in.tum.de -</td></tr><tr><td>649eb674fc963ce25e4e8ce53ac7ee20500fb0e3</td><td></td><td></td><td></td></tr><tr><td>642c66df8d0085d97dc5179f735eed82abf110d0</td><td></td><td></td><td></td></tr><tr><td>6459f1e67e1ea701b8f96177214583b0349ed964</td><td>GENERALIZED SUBSPACE BASED HIGH DIMENSIONAL DENSITY ESTIMATION +</td></tr><tr><td>649eb674fc963ce25e4e8ce53ac7ee20500fb0e3</td><td></td><td></td><td></td></tr><tr><td>64ec0c53dd1aa51eb15e8c2a577701e165b8517b</td><td>Online Regression with Feature Selection in +<br/>Stochastic Data Streams +<br/><b>Florida State University</b><br/><b>Florida State University</b></td><td>('5517409', 'Lizhe Sun', 'lizhe sun')<br/>('2455529', 'Adrian Barbu', 'adrian barbu')</td><td>lizhe.sun@stat.fsu.edu +<br/>abarbu@stat.fsu.edu +</td></tr><tr><td>642c66df8d0085d97dc5179f735eed82abf110d0</td><td></td><td></td><td></td></tr><tr><td>6459f1e67e1ea701b8f96177214583b0349ed964</td><td>GENERALIZED SUBSPACE BASED HIGH DIMENSIONAL DENSITY ESTIMATION <br/><b>University of California Santa Barbara</b><br/><b>University of California Santa Barbara</b></td><td>('3231876', 'Karthikeyan Shanmuga Vadivel', 'karthikeyan shanmuga vadivel')</td><td>(cid:63){karthikeyan,msargin,sjoshi,manj}@ece.ucsb.edu <br/>†grafton@psych.ucsb.edu </td></tr><tr><td>64cf86ba3b23d3074961b485c16ecb99584401de</td><td>Single Image 3D Interpreter Network @@ -25902,13 +32170,28 @@ <br/>Program (Grant No. YB20081000401) and the Fundamental Research Funds for the Central Universities <br/>(Grant No. 2011JBM022). <br/>1 -</td><td>('1701978', 'Song Guo', 'song guo')<br/>('1738408', 'Qiuqi Ruan', 'qiuqi ruan')<br/>('1718667', 'Zhan Wang', 'zhan wang')<br/>('1702894', 'Shuai Liu', 'shuai liu')</td><td></td></tr><tr><td>6462ef39ca88f538405616239471a8ea17d76259</td><td></td><td></td><td></td></tr><tr><td>64d5772f44efe32eb24c9968a3085bc0786bfca7</td><td>Morphable Displacement Field Based Image +</td><td>('1701978', 'Song Guo', 'song guo')<br/>('1738408', 'Qiuqi Ruan', 'qiuqi ruan')<br/>('1718667', 'Zhan Wang', 'zhan wang')<br/>('1702894', 'Shuai Liu', 'shuai liu')</td><td></td></tr><tr><td>645de797f936cb19c1b8dba3b862543645510544</td><td>Deep Temporal Linear Encoding Networks +<br/>1ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich +</td><td>('3310120', 'Ali Diba', 'ali diba')<br/>('50633941', 'Vivek Sharma', 'vivek sharma')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>{firstname.lastname}@esat.kuleuven.be +</td></tr><tr><td>6462ef39ca88f538405616239471a8ea17d76259</td><td></td><td></td><td></td></tr><tr><td>64d5772f44efe32eb24c9968a3085bc0786bfca7</td><td>Morphable Displacement Field Based Image <br/>Matching for Face Recognition across Pose <br/>1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences <br/><b>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</b><br/><b>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</b><br/>3 Omron Social Solutions Co., LTD., Kyoto, Japan </td><td>('1688086', 'Shaoxin Li', 'shaoxin li')<br/>('1731144', 'Xin Liu', 'xin liu')<br/>('1695600', 'Xiujuan Chai', 'xiujuan chai')<br/>('1705483', 'Haihong Zhang', 'haihong zhang')<br/>('1710195', 'Shihong Lao', 'shihong lao')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')</td><td>{shaoxin.li,xiujuan.chai,xin.liu,shiguang.shan}@vipl.ict.ac.cn, <br/>lao@ari.ncl.omron.co.jp, angelazhang@ssb.kusatsu.omron.co.jp -</td></tr><tr><td>90d735cffd84e8f2ae4d0c9493590f3a7d99daf1</td><td>Original Research Paper +</td></tr><tr><td>64d7e62f46813b5ad08289aed5dc4825d7ec5cff</td><td>YAMAGUCHI et al.: MIX AND MATCH +<br/>Mix and Match: Joint Model for Clothing and +<br/>Attribute Recognition +<br/>http://vision.is.tohoku.ac.jp/~kyamagu +<br/><b>Tohoku University</b><br/>Sendai, Japan +<br/>2 NTT +<br/>Yokosuka, Japan +<br/><b>Tokyo University of Science</b><br/>Tokyo, Japan +</td><td>('1721910', 'Kota Yamaguchi', 'kota yamaguchi')<br/>('1718872', 'Takayuki Okatani', 'takayuki okatani')<br/>('1745497', 'Kyoko Sudo', 'kyoko sudo')<br/>('2023568', 'Kazuhiko Murasaki', 'kazuhiko murasaki')<br/>('2113938', 'Yukinobu Taniguchi', 'yukinobu taniguchi')</td><td>okatani@vision.is.tohoku.ac.jp +<br/>sudo.kyoko@lab.ntt.co.jp +<br/>murasaki.kazuhiko@lab.ntt.co.jp +<br/>ytaniguti@ms.kagu.tus.ac.jp +</td></tr><tr><td>90ac0f32c0c29aa4545ed3d5070af17f195d015f</td><td></td><td></td><td></td></tr><tr><td>90d735cffd84e8f2ae4d0c9493590f3a7d99daf1</td><td>Original Research Paper <br/>American Journal of Engineering and Applied Sciences <br/>Recognition of Faces using Efficient Multiscale Local Binary <br/>Pattern and Kernel Discriminant Analysis in Varying @@ -25937,7 +32220,14 @@ <br/>of <br/>Doctor of Philosophy <br/>June 2014 -</td><td></td><td></td></tr><tr><td>90fb58eeb32f15f795030c112f5a9b1655ba3624</td><td>INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS +</td><td></td><td></td></tr><tr><td>90498b95fe8b299ce65d5cafaef942aa58bd68b7</td><td>Face Recognition: Primates in the Wild∗ +<br/><b>Michigan State University, East Lansing, MI, USA</b><br/><b>University of Chester, UK, 3Conservation Biologist</b></td><td>('32623642', 'Debayan Deb', 'debayan deb')<br/>('46516859', 'Susan Wiper', 'susan wiper')<br/>('9658130', 'Sixue Gong', 'sixue gong')<br/>('9644181', 'Yichun Shi', 'yichun shi')<br/>('41022894', 'Cori Tymoszek', 'cori tymoszek')</td><td>E-mail: 1{debdebay, gongsixu, shiyichu, tymoszek, jain}@cse.msu.edu, +<br/>2s.wiper@chester.ac.uk, 3alexandra.h.russo@gmail.com +</td></tr><tr><td>90cc2f08a6c2f0c41a9dd1786bae097f9292105e</td><td>Top-down Attention Recurrent VLAD Encoding +<br/>for Action Recognition in Videos +<br/>1 Fondazione Bruno Kessler, Trento, Italy +<br/><b>University of Trento, Trento, Italy</b></td><td>('1756362', 'Swathikiran Sudhakaran', 'swathikiran sudhakaran')<br/>('1717522', 'Oswald Lanz', 'oswald lanz')</td><td>{sudhakaran,lanz}@fbk.eu +</td></tr><tr><td>90fb58eeb32f15f795030c112f5a9b1655ba3624</td><td>INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS <br/> www.ijrcar.com <br/>Vol.4 Issue 6, Pg.: 12-27 <br/>June 2016 @@ -26035,6 +32325,17 @@ <br/>Frontiers in Robotics and AI | www.frontiersin.org <br/>November 2015 | Volume 2 | Article 28 </td><td>('2045915', 'Michalis Vrigkas', 'michalis vrigkas')<br/>('1727495', 'Christophoros Nikou', 'christophoros nikou')<br/>('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')<br/>('1727495', 'Christophoros Nikou', 'christophoros nikou')</td><td>cnikou@cs.uoi.gr +</td></tr><tr><td>90d9209d5dd679b159051a8315423a7f796d704d</td><td>Temporal Sequence Distillation: Towards Few-Frame Action +<br/>Recognition in Videos +<br/><b>Wuhan University</b><br/>SenseTime Research +<br/>SenseTime Research +<br/><b>The Chinese University of Hong Kong</b><br/>SenseTime Research +<br/>SenseTime Research +</td><td>('40192003', 'Zhaoyang Zhang', 'zhaoyang zhang')<br/>('1874900', 'Zhanghui Kuang', 'zhanghui kuang')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('1739512', 'Litong Feng', 'litong feng')<br/>('1726357', 'Wei Zhang', 'wei zhang')</td><td>zhangzhaoyang@whu.edu.cn +<br/>kuangzhanghui@sensetime.com +<br/>pluo@ie.cuhk.edu.hk +<br/>fenglitong@sensetime.com +<br/>wayne.zhang@sensetime.com </td></tr><tr><td>90dd2a53236b058c79763459b9d8a7ba5e58c4f1</td><td>Capturing Correlations Among Facial Parts for <br/>Facial Expression Analysis <br/>Department of Computer Science @@ -26078,7 +32379,87 @@ <br/>Image processing and computer vision, segmentation, edge detection, facial landmark localization, facial <br/>expressions, action units. </td><td>('2935367', 'Yulia Gizatdinova', 'yulia gizatdinova')<br/>('1718377', 'Veikko Surakka', 'veikko surakka')</td><td>{yulia.gizatdinova, veikko.surakka}@cs.uta.fi -</td></tr><tr><td>bf1e0279a13903e1d43f8562aaf41444afca4fdc</td><td> International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +</td></tr><tr><td>bf961e4a57a8f7e9d792e6c2513ee1fb293658e9</td><td>EURASIP Journal on Applied Signal Processing 2004:16, 2533–2543 +<br/>c(cid:1) 2004 Hindawi Publishing Corporation +<br/>Robust Face Image Matching under +<br/>Illumination Variations +<br/><b>National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan</b><br/><b>National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan</b><br/><b>National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan</b><br/>Received 1 September 2003; Revised 21 September 2004 +<br/>Face image matching is an essential step for face recognition and face verification. It is difficult to achieve robust face matching +<br/>under various image acquisition conditions. In this paper, a novel face image matching algorithm robust against illumination +<br/>variations is proposed. The proposed image matching algorithm is motivated by the characteristics of high image gradient along +<br/>the face contours. We define a new consistency measure as the inner product between two normalized gradient vectors at the +<br/>corresponding locations in two images. The normalized gradient is obtained by dividing the computed gradient vector by the +<br/>corresponding locally maximal gradient magnitude. Then we compute the average consistency measures for all pairs of the corre- +<br/>sponding face contour pixels to be the robust matching measure between two face images. To alleviate the problem due to shadow +<br/>and intensity saturation, we introduce an intensity weighting function for each individual consistency measure to form a weighted +<br/>average of the consistency measure. This robust consistency measure is further extended to integrate multiple face images of the +<br/>same person captured under different illumination conditions, thus making our robust face matching algorithm. Experimental +<br/>results of applying the proposed face image matching algorithm on some well-known face datasets are given in comparison with +<br/>some existing face recognition methods. The results show that the proposed algorithm consistently outperforms other methods +<br/>and achieves higher than 93% recognition rate with three reference images for different datasets under different lighting condi- +<br/>tions. +<br/>Keywords and phrases: robust image matching, face recognition, illumination variations, normalized gradient. +<br/>INTRODUCTION +<br/>1. +<br/>Face recognition has attracted the attention of a number +<br/>of researchers from academia and industry because of its +<br/>challenges and related applications, such as security access +<br/>control, personal ID verification, e-commerce, video surveil- +<br/>lance, and so forth. The details of these applications are re- +<br/>ferred to in the surveys [1, 2, 3]. Face matching is the most +<br/>important and crucial component in face recognition. Al- +<br/>though there have been many efforts in previous works to +<br/>achieve robust face matching under a wide variety of dif- +<br/>ferent image capturing conditions, such as lighting changes, +<br/>head pose or view angle variations, expression variations, +<br/>and so forth, these problems are still difficult to overcome. +<br/>It is a great challenge to achieve robust face matching under +<br/>all kinds of different face imaging variations. A practical face +<br/>recognition system needs to work under different imaging +<br/>conditions, such as different face poses, or different illumi- +<br/>nation conditions. Therefore, a robust face matching method +<br/>is essential to the development of an illumination-insensitive +<br/>face recognition system. In this paper, we particularly focus +<br/>on robust face matching under different illumination condi- +<br/>tions. +<br/>Many researchers have proposed face recognition meth- +<br/>ods or face verification systems under different illumination +<br/>conditions. Some of these methods extracted representative +<br/>features from face images to compute the distance between +<br/>these features. In general, these methods can be categorized +<br/>into the feature-based approach [4, 5, 6, 7, 8, 9, 10, 11], the +<br/>appearance-based approach [12, 13, 14, 15, 16, 17, 18, 19, 20, +<br/>21, 22, 23], and the hybrid approach [22, 24]. +</td><td>('2393568', 'Chyuan-Huei Thomas Yang', 'chyuan-huei thomas yang')<br/>('1696527', 'Shang-Hong Lai', 'shang-hong lai')<br/>('39505245', 'Long-Wen Chang', 'long-wen chang')</td><td>Email: chyang@cs.nthu.edu.tw +<br/>Email: lai@cs.nthu.edu.tw +<br/>Email: lchang@cs.nthu.edu.tw +</td></tr><tr><td>bf54b5586cdb0b32f6eed35798ff91592b03fbc4</td><td>Journal of Signal and Information Processing, 2017, 8, 78-98 +<br/>http://www.scirp.org/journal/jsip +<br/>ISSN Online: 2159-4481 +<br/>ISSN Print: 2159-4465 +<br/>Methodical Analysis of Western-Caucasian and +<br/>East-Asian Basic Facial Expressions of Emotions +<br/>Based on Specific Facial Regions +<br/><b>The University of Electro-Communications, Tokyo, Japan</b><br/>How to cite this paper: Benitez-Garcia, G., +<br/>Nakamura, T. and Kaneko, M. (2017) Me- +<br/>thodical Analysis of Western-Caucasian and +<br/>East-Asian Basic Facial Expressions of Emo- +<br/>tions Based on Specific Facial Regions. Jour- +<br/>nal of Signal and Information Processing, 8, +<br/>78-98. +<br/>https://doi.org/10.4236/jsip.2017.82006 +<br/>Received: March 30, 2017 +<br/>Accepted: May 15, 2017 +<br/>Published: May 18, 2017 +<br/>Copyright © 2017 by authors and +<br/>Scientific Research Publishing Inc. +<br/>This work is licensed under the Creative +<br/>Commons Attribution International +<br/>License (CC BY 4.0). +<br/>http://creativecommons.org/licenses/by/4.0/ +<br/> +<br/>Open Access +</td><td>('2567776', 'Gibran Benitez-Garcia', 'gibran benitez-garcia')<br/>('1693821', 'Tomoaki Nakamura', 'tomoaki nakamura')<br/>('49061848', 'Masahide Kaneko', 'masahide kaneko')</td><td></td></tr><tr><td>bf1e0279a13903e1d43f8562aaf41444afca4fdc</td><td> International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 <br/> Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 <br/>Different Viewpoints of Recognizing Fleeting Facial Expressions with <br/>DWT @@ -26122,7 +32503,11 @@ <br/>maziyang08@gmail.com <br/>dcszj@mail.tsinghua.edu.cn <br/>leojia@cse.cuhk.edu.hk -</td></tr><tr><td>bfb98423941e51e3cd067cb085ebfa3087f3bfbe</td><td>Sparseness helps: Sparsity Augmented +</td></tr><tr><td>bf5940d57f97ed20c50278a81e901ae4656f0f2c</td><td>Query-free Clothing Retrieval via Implicit +<br/>Relevance Feedback +</td><td>('26331884', 'Zhuoxiang Chen', 'zhuoxiang chen')<br/>('1691461', 'Zhe Xu', 'zhe xu')<br/>('48380192', 'Ya Zhang', 'ya zhang')<br/>('48531192', 'Xiao Gu', 'xiao gu')</td><td></td></tr><tr><td>bff567c58db554858c7f39870cff7c306523dfee</td><td>Neural Task Graphs: Generalizing to Unseen +<br/>Tasks from a Single Video Demonstration +<br/><b>Stanford University</b></td><td>('38485317', 'De-An Huang', 'de-an huang')<br/>('4734949', 'Suraj Nair', 'suraj nair')<br/>('2068265', 'Danfei Xu', 'danfei xu')<br/>('2117748', 'Yuke Zhu', 'yuke zhu')<br/>('1873736', 'Animesh Garg', 'animesh garg')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')<br/>('1702137', 'Silvio Savarese', 'silvio savarese')<br/>('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')</td><td></td></tr><tr><td>bfb98423941e51e3cd067cb085ebfa3087f3bfbe</td><td>Sparseness helps: Sparsity Augmented <br/>Collaborative Representation for Classification </td><td>('2941543', 'Naveed Akhtar', 'naveed akhtar')<br/>('1688013', 'Faisal Shafait', 'faisal shafait')</td><td></td></tr><tr><td>bffbd04ee5c837cd919b946fecf01897b2d2d432</td><td><b>Boston University Computer Science Technical Report No</b><br/>Facial Feature Tracking and Occlusion <br/>Recovery in American Sign Language @@ -26153,7 +32538,24 @@ <br/>1 The word “Deaf” is capitalized to designate those individuals who are linguisti- <br/>cally and culturally deaf and who use ASL as their primary language, whereas <br/>“deaf” refers to the status of those who cannot hear [25]. -</td><td>('2313369', 'Thomas J. Castelli', 'thomas j. castelli')<br/>('1723703', 'Margrit Betke', 'margrit betke')<br/>('1732359', 'Carol Neidle', 'carol neidle')</td><td></td></tr><tr><td>d3424761e06a8f5f3c1f042f1f1163a469872129</td><td>Pose-invariant, model-based object +</td><td>('2313369', 'Thomas J. Castelli', 'thomas j. castelli')<br/>('1723703', 'Margrit Betke', 'margrit betke')<br/>('1732359', 'Carol Neidle', 'carol neidle')</td><td></td></tr><tr><td>d35534f3f59631951011539da2fe83f2844ca245</td><td>Published as a conference paper at ICLR 2018 +<br/>SEMANTICALLY DECOMPOSING THE LATENT SPACES +<br/>OF GENERATIVE ADVERSARIAL NETWORKS +<br/>Department of Music +<br/><b>University of California, San Diego</b><br/>Department of Genetics +<br/><b>Stanford University</b><br/>Zachary C. Lipton +<br/><b>Carnegie Mellon University</b><br/>Amazon AI +<br/>Department of Computer Science +<br/><b>University of California, San Diego</b></td><td>('1872307', 'Chris Donahue', 'chris donahue')<br/>('1693411', 'Akshay Balsubramani', 'akshay balsubramani')<br/>('1814008', 'Julian McAuley', 'julian mcauley')</td><td>cdonahue@ucsd.edu +<br/>abalsubr@stanford.edu +<br/>zlipton@cmu.edu +<br/>jmcauley@eng.ucsd.edu +</td></tr><tr><td>d3edbfe18610ce63f83db83f7fbc7634dde1eb40</td><td>Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) +<br/>Large Graph Hashing with Spectral Rotation +<br/>School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), +<br/><b>Northwestern Polytechnical University</b><br/>Xi’an 710072, Shaanxi, P. R. China +</td><td>('1720243', 'Xuelong Li', 'xuelong li')<br/>('48080389', 'Di Hu', 'di hu')<br/>('1688370', 'Feiping Nie', 'feiping nie')</td><td>xuelong li@opt.ac.cn, hdui831@mail.nwpu.edu.cn, feipingnie@gmail.com +</td></tr><tr><td>d3424761e06a8f5f3c1f042f1f1163a469872129</td><td>Pose-invariant, model-based object <br/>recognition, using linear combination of views <br/>and Bayesian statistics. <br/>A dissertation submitted in partial fulfillment @@ -26178,6 +32580,14 @@ <br/>2Universiti Sains Malaysia, Malaysia, heikal@usm.my <br/>3Universiti Sains Malaysia, Malaysia, zarulfitri@usm.my <br/>4Universiti Sains Malaysia, Malaysia, azam@usm.my +</td></tr><tr><td>d3d5d86afec84c0713ec868cf5ed41661fc96edc</td><td>A Comprehensive Analysis of Deep Learning Based Representation +<br/>for Face Recognition +<br/>Mostafa Mehdipour Ghazi +<br/>Faculty of Engineering and Natural Sciences +<br/><b>Sabanci University, Istanbul, Turkey</b><br/>Hazım Kemal Ekenel +<br/>Department of Computer Engineering +<br/><b>Istanbul Technical University, Istanbul, Turkey</b></td><td></td><td>mehdipour@sabanciuniv.edu +<br/>ekenel@itu.edu.tr </td></tr><tr><td>d3e04963ff42284c721f2bc6a90b7a9e20f0242f</td><td>On Forensic Use of Biometrics <br/><b>University of Southampton, UK, 2University of Warwick, UK</b><br/>This chapter discusses the use of biometrics techniques within forensic science. It outlines the <br/>historic connections between the subjects and then examines face and ear biometrics as two @@ -26219,24 +32629,133 @@ <br/>Faculty of Engineering and Physical Sciences <br/><b>University of Surrey</b><br/>Guildford, Surrey GU2 7XH, U.K. <br/>August 2016 -</td><td>('39222045', 'Charles Gray', 'charles gray')<br/>('39222045', 'Charles Gray', 'charles gray')</td><td></td></tr><tr><td>d394bd9fbaad1f421df8a49347d4b3fca307db83</td><td>Recognizing Facial Expressions at Low Resolution +</td><td>('39222045', 'Charles Gray', 'charles gray')<br/>('39222045', 'Charles Gray', 'charles gray')</td><td></td></tr><tr><td>d3b18ba0d9b247bfa2fb95543d172ef888dfff95</td><td>Learning and Using the Arrow of Time +<br/><b>Harvard University 2University of Southern California</b><br/><b>University of Oxford 4Massachusetts Institute of Technology 5Google Research</b><br/>(a) +<br/>(c) +<br/>(b) +<br/>(d) +<br/>Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer +<br/>below1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level +<br/>reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn +<br/>and exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on +<br/>large-scale video datasets. +</td><td>('1766333', 'Donglai Wei', 'donglai wei')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')<br/>('1768236', 'William T. Freeman', 'william t. freeman')</td><td>donglai@seas.harvard.edu, limjj@usc.edu, az@robots.ox.ac.uk, billf@mit.edu +</td></tr><tr><td>d309e414f0d6e56e7ba45736d28ee58ae2bad478</td><td>Efficient Two-Stream Motion and Appearance 3D CNNs for +<br/>Video Classification +<br/>Ali Diba +<br/>ESAT-KU Leuven +<br/>Ali Pazandeh +<br/>Sharif UTech +<br/>Luc Van Gool +<br/>ESAT-KU Leuven, ETH Zurich +</td><td></td><td>ali.diba@esat.kuleuven.be +<br/>pazandeh@ee.sharif.ir +<br/>luc.vangool@esat.kuleuven.be +</td></tr><tr><td>d394bd9fbaad1f421df8a49347d4b3fca307db83</td><td>Recognizing Facial Expressions at Low Resolution <br/><b>Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK</b></td><td>('10795229', 'Caifeng Shan', 'caifeng shan')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('2803283', 'Peter W. McOwan', 'peter w. mcowan')</td><td>{cfshan, sgg, pmco}@dcs.qmul.ac.uk -</td></tr><tr><td>d3b550e587379c481392fb07f2cbbe11728cf7a6</td><td>Small Sample Size Face Recognition using Random Quad-Tree based +</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td></td><td></td><td></td></tr><tr><td>d3b550e587379c481392fb07f2cbbe11728cf7a6</td><td>Small Sample Size Face Recognition using Random Quad-Tree based <br/>Ensemble Algorithm <br/><b>Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan</b></td><td>('7923772', 'Cuicui Zhang', 'cuicui zhang')<br/>('2735528', 'Xuefeng Liang', 'xuefeng liang')<br/>('1731351', 'Takashi Matsuyama', 'takashi matsuyama')</td><td>zhang@vision.kuee.kyoto-u.ac.jp, fxliang, tmg@i.kyoto-u.ac.jp -</td></tr><tr><td>d30050cfd16b29e43ed2024ae74787ac0bbcf2f7</td><td>Facial Expression Classification Using +</td></tr><tr><td>d307a766cc9c728a24422313d4c3dcfdb0d16dd5</td><td>Deep Keyframe Detection in Human Action Videos +<br/><b>School of Physics and Optoelectronic Engineering, Xidian University, China</b><br/><b>School of Computer Science and Software Engineering, University of Western Australia</b><br/><b>College of Electrical and Information Engineering, Hunan University, China</b><br/><b>School of Software, Xidian University, China</b></td><td>('46580760', 'Xiang Yan', 'xiang yan')<br/>('1746166', 'Syed Zulqarnain Gilani', 'syed zulqarnain gilani')<br/>('2404621', 'Hanlin Qin', 'hanlin qin')<br/>('3446916', 'Mingtao Feng', 'mingtao feng')<br/>('48570713', 'Liang Zhang', 'liang zhang')<br/>('46332747', 'Ajmal Mian', 'ajmal mian')</td><td>xyan@stu.xidian.edu.cn, hlqin@mail.xidian.edu.cn +<br/>{zulqarnain.gilani, ajmal.mian}@uwa.edu.au +<br/>mintfeng@hnu.edu.cn +<br/>liangzhang@xidian.edu.cn +</td></tr><tr><td>d31af74425719a3840b496b7932e0887b35e9e0d</td><td>Article +<br/>A Multimodal Deep Log-Based User Experience (UX) +<br/>Platform for UX Evaluation +<br/><b>Ubiquitous Computing Lab, Kyung Hee University</b><br/><b>College of Electronics and Information Engineering, Sejong University</b><br/>Received: 16 March 2018; Accepted: 15 May 2018; Published: 18 May 2018 +</td><td>('33081617', 'Jamil Hussain', 'jamil hussain')<br/>('2794241', 'Wajahat Ali Khan', 'wajahat ali khan')<br/>('27531310', 'Anees Ul Hassan', 'anees ul hassan')<br/>('1765947', 'Muhammad Afzal', 'muhammad afzal')<br/>('1700806', 'Sungyoung Lee', 'sungyoung lee')</td><td>Giheung-gu, Yongin-si, Gyeonggi-do, Seoul 446-701, Korea; jamil@oslab.khu.ac.kr (J.H.); +<br/>wajahat.alikhan@oslab.khu.ac.kr (W.A.K.); hth@oslab.khu.ac.kr (T.H.); bilalrizvi@oslab.khu.ac.kr (H.S.M.B.); +<br/>jhb@oslab.khu.ac.kr (J.B.); anees@oslab.khu.ac.kr (A.U.H.) +<br/>Seoul 05006, Korea; mafzal@sejong.ac.kr +<br/>* Correspondence: sylee@oslab.khu.ac.kr; Tel.: +82-31-201-2514 +</td></tr><tr><td>d3b0839324d0091e70ce34f44c979b9366547327</td><td>Precise Box Score: Extract More Information from Datasets to Improve the +<br/>Performance of Face Detection +<br/>1School of Information and Communication Engineering +<br/>2Beijing Key Laboratory of Network System and Network Culture +<br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b></td><td>('49712251', 'Ce Qi', 'ce qi')<br/>('1684263', 'Fei Su', 'fei su')<br/>('8120542', 'Pingyu Wang', 'pingyu wang')</td><td></td></tr><tr><td>d30050cfd16b29e43ed2024ae74787ac0bbcf2f7</td><td>Facial Expression Classification Using <br/>Convolutional Neural Network and Support Vector <br/>Machine <br/>Graduate Program in Electrical and Computer Engineering <br/><b>Federal University of Technology - Paran a</b><br/>Department of Electrical and Computer Engineering <br/><b>Opus College of Engineering</b><br/><b>Marquette University</b></td><td>('11857183', 'Cristian Bortolini', 'cristian bortolini')<br/>('2357308', 'Humberto R. Gamba', 'humberto r. gamba')<br/>('2432946', 'Gustavo Benvenutti Borba', 'gustavo benvenutti borba')<br/>('2767912', 'Henry Medeiros', 'henry medeiros')</td><td>Email: vpillajr@mail.com -</td></tr><tr><td>d3c004125c71942846a9b32ae565c5216c068d1e</td><td>RESEARCH ARTICLE +</td></tr><tr><td>d3faed04712b4634b47e1de0340070653546deb2</td><td>Neural Best-Buddies: Sparse Cross-Domain Correspondence +<br/>Fig. 1. Top 5 Neural Best-Buddies for two cross-domain image pairs. Using deep features of a pre-trained neural network, our coarse-to-fine sparse +<br/>correspondence algorithm first finds high-level, low resolution, semantically matching areas (indicated by the large blue circles), then narrows down the search +<br/>area to intermediate levels (middle green circles), until precise localization on well-defined edges in the pixel space (colored in corresponding unique colors). +<br/>Correspondence between images is a fundamental problem in computer +<br/>vision, with a variety of graphics applications. This paper presents a novel +<br/>method for sparse cross-domain correspondence. Our method is designed for +<br/>pairs of images where the main objects of interest may belong to different +<br/>semantic categories and differ drastically in shape and appearance, yet still +<br/>contain semantically related or geometrically similar parts. Our approach +<br/>operates on hierarchies of deep features, extracted from the input images +<br/>by a pre-trained CNN. Specifically, starting from the coarsest layer in both +<br/>hierarchies, we search for Neural Best Buddies (NBB): pairs of neurons +<br/>that are mutual nearest neighbors. The key idea is then to percolate NBBs +<br/>through the hierarchy, while narrowing down the search regions at each +<br/>level and retaining only NBBs with significant activations. Furthermore, in +<br/>order to overcome differences in appearance, each pair of search regions is +<br/>transformed into a common appearance. +<br/>We evaluate our method via a user study, in addition to comparisons +<br/>with alternative correspondence approaches. The usefulness of our method +<br/><b>is demonstrated using a variety of graphics applications, including cross</b><br/>domain image alignment, creation of hybrid images, automatic image mor- +<br/>phing, and more. +<br/>CCS Concepts: • Computing methodologies → Interest point and salient +<br/>region detections; Matching; Image manipulation; +<br/><b>University</b><br/>© 2018 Association for Computing Machinery. +<br/>This is the author’s version of the work. It is posted here for your personal use. Not for +<br/>redistribution. The definitive Version of Record was published in ACM Transactions on +<br/>Graphics, https://doi.org/10.1145/3197517.3201332. +<br/>Additional Key Words and Phrases: cross-domain correspondence, image +<br/>hybrids, image morphing +<br/>ACM Reference Format: +<br/>Cohen-Or. 2018. Neural Best-Buddies: Sparse Cross-Domain Correspon- +<br/>//doi.org/10.1145/3197517.3201332 +<br/>INTRODUCTION +<br/>Finding correspondences between a pair of images has been a long +<br/>standing problem, with a multitude of applications in computer +<br/>vision and graphics. In particular, sparse sets of corresponding point +<br/>pairs may be used for tasks such as template matching, image align- +<br/>ment, and image morphing, to name a few. Over the years, a variety +<br/>of dense and sparse correspondence methods have been developed, +<br/>most of which assume that the input images depict the same scene +<br/>or object (with differences in viewpoint, lighting, object pose, etc.), +<br/>or a pair of objects from the same class. +<br/>In this work, we are concerned with sparse cross-domain corre- +<br/>spondence: a more general and challenging version of the sparse +<br/>correspondence problem, where the object of interest in the two +<br/>input images can differ more drastically in their shape and appear- +<br/>ance, such as objects belonging to different semantic categories +<br/>(domains). It is, however, assumed that the objects contain at least +<br/>some semantically related parts or geometrically similar regions, oth- +<br/>erwise the correspondence task cannot be considered well-defined. +<br/>Two examples of cross-domain scenarios and the results of our ap- +<br/>proach are shown in Figure 1. We focus on sparse correspondence, +<br/>since in many cross-domain image pairs, dense correspondence +<br/>ACM Transactions on Graphics, Vol. 37, No. 4, Article 69. Publication date: August 2018. +</td><td>('3451442', 'Kfir Aberman', 'kfir aberman')<br/>('39768043', 'Jing Liao', 'jing liao')<br/>('5807605', 'Mingyi Shi', 'mingyi shi')<br/>('1684384', 'Dani Lischinski', 'dani lischinski')<br/>('1748939', 'Baoquan Chen', 'baoquan chen')<br/>('1701009', 'Daniel Cohen-Or', 'daniel cohen-or')<br/>('3451442', 'Kfir Aberman', 'kfir aberman')<br/>('39768043', 'Jing Liao', 'jing liao')<br/>('5807605', 'Mingyi Shi', 'mingyi shi')<br/>('1684384', 'Dani Lischinski', 'dani lischinski')<br/>('1748939', 'Baoquan Chen', 'baoquan chen')<br/>('1701009', 'Daniel Cohen-Or', 'daniel cohen-or')<br/>('3451442', 'Kfir Aberman', 'kfir aberman')<br/>('39768043', 'Jing Liao', 'jing liao')<br/>('5807605', 'Mingyi Shi', 'mingyi shi')<br/>('1684384', 'Dani Lischinski', 'dani lischinski')<br/>('1748939', 'Baoquan Chen', 'baoquan chen')</td><td></td></tr><tr><td>d3c004125c71942846a9b32ae565c5216c068d1e</td><td>RESEARCH ARTICLE <br/>Recognizing Age-Separated Face Images: <br/>Humans and Machines <br/><b>West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi</b><br/>Delhi, India </td><td>('3017294', 'Daksha Yadav', 'daksha yadav')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('2487227', 'Afzel Noore', 'afzel noore')</td><td>*mayank@iiitd.ac.in </td></tr><tr><td>d350a9390f0818703f886138da27bf8967fe8f51</td><td>LIGHTING DESIGN FOR PORTRAITS WITH A VIRTUAL LIGHT STAGE -<br/><b>Institute for Vision and Graphics, University of Siegen, Germany</b></td><td>('1967283', 'Davoud Shahlaei', 'davoud shahlaei')<br/>('2712313', 'Marcel Piotraschke', 'marcel piotraschke')<br/>('2880906', 'Volker Blanz', 'volker blanz')</td><td></td></tr><tr><td>d41c11ebcb06c82b7055e2964914b9af417abfb2</td><td>CDI-Type I: Unsupervised and Weakly-Supervised +<br/><b>Institute for Vision and Graphics, University of Siegen, Germany</b></td><td>('1967283', 'Davoud Shahlaei', 'davoud shahlaei')<br/>('2712313', 'Marcel Piotraschke', 'marcel piotraschke')<br/>('2880906', 'Volker Blanz', 'volker blanz')</td><td></td></tr><tr><td>d33fcdaf2c0bd0100ec94b2c437dccdacec66476</td><td>Neurons with Paraboloid Decision Boundaries for +<br/>Improved Neural Network Classification +<br/>Performance +</td><td>('2320550', 'Nikolaos Tsapanos', 'nikolaos tsapanos')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td></td></tr><tr><td>d4a5eaf2e9f2fd3e264940039e2cbbf08880a090</td><td>An Occluded Stacked Hourglass Approach to Facial +<br/>Landmark Localization and Occlusion Estimation +<br/><b>University of California San Diego</b></td><td>('2812409', 'Kevan Yuen', 'kevan yuen')</td><td>kcyuen@eng.ucsd.edu, mtrivedi@eng.ucsd.edu +</td></tr><tr><td>d46b790d22cb59df87f9486da28386b0f99339d3</td><td>Learning Face Deblurring Fast and Wide +<br/><b>University of Bern</b><br/>Switzerland +<br/>Amazon Research +<br/>Germany +<br/><b>University of Bern</b><br/>Switzerland +</td><td>('39866194', 'Meiguang Jin', 'meiguang jin')<br/>('36266446', 'Michael Hirsch', 'michael hirsch')<br/>('1739080', 'Paolo Favaro', 'paolo favaro')</td><td>jin@inf.unibe.ch +<br/>hirsch@amazon.com +<br/>favaro@inf.unibe.ch +</td></tr><tr><td>d41c11ebcb06c82b7055e2964914b9af417abfb2</td><td>CDI-Type I: Unsupervised and Weakly-Supervised <br/>1 Introduction <br/>Discovery of Facial Events <br/>The face is one of the most powerful channels of nonverbal communication. Facial expression has been a @@ -26276,14 +32795,29 @@ <br/>2) At present, taxonomies of facial expression are based on FACS or other observer-based schemes. <br/>Consequently, approaches to automatic facial expression recognition are dependent on access to cor- <br/>puses of FACS or similarly labeled video. In the proposed work we raise the question of whether -</td><td></td><td></td></tr><tr><td>d46fda4b49bbc219e37ef6191053d4327e66c74b</td><td>Facial Expression Recognition Based on Complexity Perception Classification +</td><td></td><td></td></tr><tr><td>d444e010049944c1b3438c9a25ae09b292b17371</td><td>Structure Preserving Video Prediction +<br/><b>Shanghai Institute for Advanced Communication and Data Science</b><br/>Shanghai Key Laboratory of Digital Media Processing and Transmission +<br/><b>Shanghai Jiao Tong University, Shanghai 200240, China</b></td><td>('47882735', 'Jingwei Xu', 'jingwei xu')<br/>('47889348', 'Shuo Cheng', 'shuo cheng')</td><td>{xjwxjw,nibingbing,Leezf,xkyang}@sjtu.edu.cn, acccheng94@gmail.com +</td></tr><tr><td>d46fda4b49bbc219e37ef6191053d4327e66c74b</td><td>Facial Expression Recognition Based on Complexity Perception Classification <br/>Algorithm <br/><b>School of Computer Science and Engineering, South China University of Technology, Guangzhou, China</b></td><td>('36047279', 'Tianyuan Chang', 'tianyuan chang')<br/>('9725901', 'Guihua Wen', 'guihua wen')<br/>('39946628', 'Yang Hu', 'yang hu')<br/>('35847383', 'JiaJiong Ma', 'jiajiong ma')</td><td>tianyuan_chang@163.com, crghwen@scut.edu.cn </td></tr><tr><td>d448d67c6371f9abf533ea0f894ef2f022b12503</td><td>Weakly Supervised Collective Feature Learning from Curated Media <br/>1. NTT Communication Science Laboratories, Japan. <br/><b>University of Cambridge, United Kingdom</b><br/><b>The University of Tokyo, Japan</b><br/><b>Technical University of Munich, Germany</b><br/>5. Uber AI Labs, USA. </td><td>('2374364', 'Yusuke Mukuta', 'yusuke mukuta')<br/>('34454585', 'Akisato Kimura', 'akisato kimura')<br/>('2584289', 'David B. Adrian', 'david b. adrian')<br/>('1983575', 'Zoubin Ghahramani', 'zoubin ghahramani')</td><td>mukuta@mi.t.u-tokyo.ac.jp, akisato@ieee.org, david.adrian@tum.de, zoubin@eng.cam.ac.uk -</td></tr><tr><td>d4c7d1a7a03adb2338704d2be7467495f2eb6c7b</td><td></td><td></td><td></td></tr><tr><td>d4001826cc6171c821281e2771af3a36dd01ffc0</td><td>Modélisation de contextes pour l’annotation sémantique +</td></tr><tr><td>d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d</td><td>Deep Cost-Sensitive and Order-Preserving Feature Learning for +<br/>Cross-Population Age Estimation +<br/><b>National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences</b><br/><b>University of Chinese Academy of Sciences</b><br/>3 KingSoft Ltd. +<br/>4 CAS Center for Excellence in Brain Science and Intelligence Technology +<br/>5 Vimicro AI Chip Technology Corporation +<br/><b>Birkbeck University of London</b></td><td>('2168945', 'Kai Li', 'kai li')<br/>('1757173', 'Junliang Xing', 'junliang xing')<br/>('49734675', 'Chi Su', 'chi su')<br/>('40506509', 'Weiming Hu', 'weiming hu')<br/>('2373307', 'Yundong Zhang', 'yundong zhang')</td><td>{kai.li,jlxing,wmhu}@nlpr.ia.ac.cn suchi@kingsoft.com raymond@vimicro.com sjmaybank@dcs.bbk.ac.uk +</td></tr><tr><td>d444368421f456baf8c3cb089244e017f8d32c41</td><td>CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR +</td><td>('3414588', 'Martin Velas', 'martin velas')<br/>('2131298', 'Michal Spanel', 'michal spanel')<br/>('1700956', 'Michal Hradis', 'michal hradis')<br/>('1785162', 'Adam Herout', 'adam herout')</td><td></td></tr><tr><td>d4885ca24189b4414031ca048a8b7eb2c9ac646c</td><td>Efficient Facial Representations for Age, Gender +<br/>and Identity Recognition in Organizing Photo +<br/>Albums using Multi-output CNN +<br/><b>Samsung-PDMI Joint AI Center</b><br/>Mathematics +<br/><b>National Research University Higher School of Economics</b><br/>Nizhny Novgorod, Russia +</td><td>('35153729', 'Andrey V. Savchenko', 'andrey v. savchenko')</td><td></td></tr><tr><td>d4c7d1a7a03adb2338704d2be7467495f2eb6c7b</td><td></td><td></td><td></td></tr><tr><td>d4001826cc6171c821281e2771af3a36dd01ffc0</td><td>Modélisation de contextes pour l’annotation sémantique <br/>de vidéos <br/>To cite this version: <br/>Ecole Nationale Supérieure des Mines de Paris, 2013. Français. <NNT : 2013ENMP0051>. <pastel- @@ -26306,18 +32840,31 @@ <br/>under Varying Illumination <br/><b>Mahanakorn University of Technology</b><br/>51 Cheum-Sampan Rd., Nong Chok, Bangkok, THAILAND 10530 </td><td>('1805935', 'Sanun Srisuk', 'sanun srisuk')<br/>('2337544', 'Amnart Petpon', 'amnart petpon')</td><td>sanun@mut.ac.th, amnartpe@dtac.co.th +</td></tr><tr><td>d458c49a5e34263c95b3393386b5d76ba770e497</td><td>Middle-East Journal of Scientific Research 20 (1): 01-13, 2014 +<br/>ISSN 1990-9233 +<br/>© IDOSI Publications, 2014 +<br/>DOI: 10.5829/idosi.mejsr.2014.20.01.11434 +<br/>A Comparative Analysis of Gender Classification Techniques +<br/><b>Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan</b></td><td>('46883468', 'Sajid Ali Khan', 'sajid ali khan')<br/>('48767110', 'Maqsood Ahmad', 'maqsood ahmad')<br/>('2521631', 'Naveed Riaz', 'naveed riaz')</td><td></td></tr><tr><td>d454ad60b061c1a1450810a0f335fafbfeceeccc</td><td>Deep Regression Forests for Age Estimation +<br/>1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, +<br/><b>Shanghai Institute for Advanced Communication and Data Science</b><br/><b>School of Communication and Information Engineering, Shanghai University</b><br/><b>Johns Hopkins University</b><br/><b>College of Computer and Control Engineering, Nankai University 4 Hikvision Research</b></td><td>('41187410', 'Wei Shen', 'wei shen')<br/>('9544564', 'Yilu Guo', 'yilu guo')<br/>('47906413', 'Yan Wang', 'yan wang')<br/>('1681247', 'Kai Zhao', 'kai zhao')<br/>('49292319', 'Bo Wang', 'bo wang')</td><td>{shenwei1231,gyl.luan0,wyanny.9,zhaok1206,wangbo.yunze,alan.l.yuille}@gmail.com </td></tr><tr><td>d40cd10f0f3e64fd9b0c2728089e10e72bea9616</td><td>Article <br/>Enhancing Face Identification Using Local Binary <br/>Patterns and K-Nearest Neighbors <br/><b>School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone</b><br/>Received: 21 March 2017; Accepted: 29 August 2017; Published: 5 September 2017 </td><td>('11249315', 'Idelette Laure Kambi Beli', 'idelette laure kambi beli')<br/>('2826297', 'Chunsheng Guo', 'chunsheng guo')</td><td>Hangzhou 310018, China; guo.chsh@gmail.com <br/>* Correspondence: kblaure@yahoo.fr -</td></tr><tr><td>d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d</td><td></td><td></td><td></td></tr><tr><td>d46e793b945c4f391031656357625e902c4405e8</td><td>Face-off: Automatic Alteration of Facial Features +</td></tr><tr><td>d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d</td><td></td><td></td><td></td></tr><tr><td>d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e</td><td>A Lightened CNN for Deep Face Representation +<br/>School of Computer and Communication Engineering +<br/><b>University of Science and Technology Beijing, Beijing, China</b><br/>National Laboratory of Pattern Recognition +<br/><b>Institute of Automation Chinese Academy of Sciences, Beijing, China</b></td><td>('2225749', 'Xiang Wu', 'xiang wu')<br/>('1705643', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>aflredxiangwu@gmail.com +<br/>{rhe, znsun}@nlpr.ia.ac.cn +</td></tr><tr><td>d46e793b945c4f391031656357625e902c4405e8</td><td>Face-off: Automatic Alteration of Facial Features <br/>Department of Information Management <br/><b>National Taiwan University of Science and Technology</b><br/>No. 43, Sec. 4, Keelung Road <br/>Taipei, 106, Taiwan, ROC </td><td>('40119465', 'Jia-Kai Chou', 'jia-kai chou')<br/>('2241272', 'Chuan-Kai Yang', 'chuan-kai yang')<br/>('2553196', 'Sing-Dong Gong', 'sing-dong gong')</td><td>A9409004@mail.ntust.edu.tw,ckyang@cs.ntust.edu.tw,hgznrn@uj.com.tw -</td></tr><tr><td>d4c2d26523f577e2d72fc80109e2540c887255c8</td><td>Face-space Action Recognition by Face-Object Interactions +</td></tr><tr><td>d44a93027208816b9e871101693b05adab576d89</td><td></td><td></td><td></td></tr><tr><td>d4c2d26523f577e2d72fc80109e2540c887255c8</td><td>Face-space Action Recognition by Face-Object Interactions <br/><b>Weizmann Institute of Science</b><br/>Rehovot, 7610001, Israel </td><td>('32928116', 'Amir Rosenfeld', 'amir rosenfeld')<br/>('1743045', 'Shimon Ullman', 'shimon ullman')</td><td>{amir.rosenfeld,shimon.ullman}@weizmann.ac.il </td></tr><tr><td>d4b88be6ce77164f5eea1ed2b16b985c0670463a</td><td>TECHNICAL REPORT JAN.15.2016 @@ -26364,7 +32911,14 @@ </td><td>('1939861', 'Jorge A. Vanegas', 'jorge a. vanegas')</td><td>fmpaezri@unal.edu.co <br/>javanegasr@unal.edu.co <br/>fagonzalezo@unal.edu.co -</td></tr><tr><td>badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e</td><td>The Application of Extended Geodesic Distance +</td></tr><tr><td>badcd992266c6813063c153c41b87babc0ba36a3</td><td>Recent Advances in Object Detection in the Age +<br/>of Deep Convolutional Neural Networks +<br/>,1,2), Fr´ed´eric Jurie(1) +<br/>(∗) equal contribution +<br/>(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS +<br/>(2)Safran Electronics and Defense +<br/>September 11, 2018 +</td><td>('51443250', 'Shivang Agarwal', 'shivang agarwal')<br/>('35527701', 'Jean Ogier Du Terrail', 'jean ogier du terrail')</td><td></td></tr><tr><td>ba788365d70fa6c907b71a01d846532ba3110e31</td><td></td><td></td><td></td></tr><tr><td>badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e</td><td>The Application of Extended Geodesic Distance <br/>in Head Poses Estimation <br/><b>Institute of Computing Technology</b><br/>Chinese Academy of Sciences, Beijing 100080, China <br/>2 Department of Computer Science and Engineering, @@ -26454,14 +33008,62 @@ <br/>Concepts in Videos <br/>Larry Davis1 <br/><b>University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre</b><br/>India -</td><td>('36861219', 'Sohil Shah', 'sohil shah')<br/>('40222634', 'Kuldeep Kulkarni', 'kuldeep kulkarni')<br/>('2221075', 'Arijit Biswas', 'arijit biswas')<br/>('2757149', 'Ankit Gandhi', 'ankit gandhi')<br/>('2116262', 'Om Deshmukh', 'om deshmukh')</td><td></td></tr><tr><td>ba29ba8ec180690fca702ad5d516c3e43a7f0bb8</td><td></td><td></td><td></td></tr><tr><td>bab88235a30e179a6804f506004468aa8c28ce4f</td><td></td><td></td><td></td></tr><tr><td>a065080353d18809b2597246bb0b48316234c29a</td><td>FHEDN: A based on context modeling Feature Hierarchy +</td><td>('36861219', 'Sohil Shah', 'sohil shah')<br/>('40222634', 'Kuldeep Kulkarni', 'kuldeep kulkarni')<br/>('2221075', 'Arijit Biswas', 'arijit biswas')<br/>('2757149', 'Ankit Gandhi', 'ankit gandhi')<br/>('2116262', 'Om Deshmukh', 'om deshmukh')</td><td></td></tr><tr><td>ba29ba8ec180690fca702ad5d516c3e43a7f0bb8</td><td></td><td></td><td></td></tr><tr><td>ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb</td><td>Natural and Effective Obfuscation by Head Inpainting +<br/><b>Max Planck Institute for Informatics, Saarland Informatics Campus</b><br/>2KU-Leuven/PSI, Toyota Motor Europe (TRACE) +<br/>3ETH Zurich +</td><td>('32222907', 'Qianru Sun', 'qianru sun')<br/>('1681236', 'Luc Van Gool', 'luc van gool')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td>{qsun, joon, schiele, mfritz}@mpi-inf.mpg.de +<br/>{liqian.ma, luc.vangool}@esat.kuleuven.be +<br/>vangool@vision.ee.ethz.ch +</td></tr><tr><td>bab88235a30e179a6804f506004468aa8c28ce4f</td><td></td><td></td><td></td></tr><tr><td>badd371a49d2c4126df95120902a34f4bee01b00</td><td>GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION +<br/>Parallel Separable 3D Convolution for Video +<br/>and Volumetric Data Understanding +<br/>Harvard John A. Paulson School of +<br/>Engineering and Applied Sciences +<br/>Camabridge MA, USA +<br/>Toufiq Parag +<br/>Hanspeter Pfister +</td><td>('49147616', 'Felix Gonda', 'felix gonda')<br/>('1766333', 'Donglai Wei', 'donglai wei')</td><td>fgonda@g.harvard.edu +<br/>donglai@seas.harvard.edu +<br/>paragt@seas.harvard.edu +<br/>pfister@g.harvard.edu +</td></tr><tr><td>a065080353d18809b2597246bb0b48316234c29a</td><td>FHEDN: A based on context modeling Feature Hierarchy <br/>Encoder-Decoder Network for face detection <br/><b>College of Computer Science, Chongqing University, Chongqing, China</b><br/><b>College of Medical Informatics, Chongqing Medical University, Chongqing, China</b><br/><b>Sichuan Fine Arts Institute, Chongqing, China</b></td><td>('6030130', 'Zexun Zhou', 'zexun zhou')<br/>('7686690', 'Zhongshi He', 'zhongshi he')<br/>('2685579', 'Ziyu Chen', 'ziyu chen')<br/>('33458882', 'Yuanyuan Jia', 'yuanyuan jia')<br/>('1768826', 'Haiyan Wang', 'haiyan wang')<br/>('8784203', 'Jinglong Du', 'jinglong du')<br/>('2961485', 'Dingding Chen', 'dingding chen')</td><td>{zexunzhou,zshe,chenziyu,yyjia,jldu,dingding}@cqu.edu.cn;{why}@scfai.edu.cn </td></tr><tr><td>a0f94e9400938cbd05c4b60b06d9ed58c3458303</td><td>1118 <br/>Value-Directed Human Behavior Analysis <br/>from Video Using Partially Observable <br/>Markov Decision Processes -</td><td>('1773895', 'Jesse Hoey', 'jesse hoey')<br/>('1710980', 'James J. Little', 'james j. little')</td><td></td></tr><tr><td>a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4</td><td>JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 819-828 (2005) +</td><td>('1773895', 'Jesse Hoey', 'jesse hoey')<br/>('1710980', 'James J. Little', 'james j. little')</td><td></td></tr><tr><td>a022eff5470c3446aca683eae9c18319fd2406d5</td><td>2017-ENST-0071 +<br/>EDITE - ED 130 +<br/>Doctorat ParisTech +<br/>T H È S E +<br/>pour obtenir le grade de docteur délivré par +<br/>TÉLÉCOM ParisTech +<br/>Spécialité « SIGNAL et IMAGES » +<br/>présentée et soutenue publiquement par +<br/>le 15 décembre 2017 +<br/>Apprentissage Profond pour la Description Sémantique des Traits +<br/>Visuels Humains +<br/>Directeur de thèse : Jean-Luc DUGELAY +<br/>Co-encadrement de la thèse : Moez BACCOUCHE +<br/>Jury +<br/>Mme Bernadette DORIZZI, PRU, Télécom SudParis +<br/>Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux +<br/>M. Christian WOLF, MC/HDR, INSA de Lyon +<br/>M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes +<br/>M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes +<br/>M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis +<br/>M. Sid-Ahmed BERRANI, Directeur de l’Innovation/HDR, Algérie Télécom +<br/>Présidente +<br/>Rapporteur +<br/>Rapporteur +<br/>Examinateur +<br/>Encadrant +<br/>Directeur de Thèse +<br/>Invité +<br/>TÉLÉCOM ParisTech +<br/>école de l’Institut Télécom - membre de ParisTech +<br/>N°: 2009 ENAM XXXX T H È S E </td><td>('3116433', 'Grigory Antipov', 'grigory antipov')</td><td></td></tr><tr><td>a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4</td><td>JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 819-828 (2005) <br/>Short Paper_________________________________________________ <br/>A New Classification Approach using <br/>Discriminant Functions @@ -26496,7 +33098,7 @@ <br/>Communicated by H. Y. Mark Liao. <br/>819 </td><td>('7605725', 'Zafer Demir', 'zafer demir')<br/>('2279264', 'Erol Emre', 'erol emre')</td><td>E-mail: {askind, zdemir, eemre}@sakarya.edu.tr -</td></tr><tr><td>a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f</td><td>Fusing with Context: a Bayesian Approach to Combining Descriptive Attributes +</td></tr><tr><td>a0c37f07710184597befaa7e6cf2f0893ff440e9</td><td></td><td></td><td></td></tr><tr><td>a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f</td><td>Fusing with Context: a Bayesian Approach to Combining Descriptive Attributes <br/><b>University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA</b><br/><b>Columbia University, New York, NY, USA</b><br/><b>University of North Carolina Wilmington, Wilmington, NC, USA</b></td><td>('2613438', 'Walter J. Scheirer', 'walter j. scheirer')<br/>('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')<br/>('1760117', 'Terrance E. Boult', 'terrance e. boult')</td><td></td></tr><tr><td>a0021e3bbf942a88e13b67d83db7cf52e013abfd</td><td>Human concerned object detecting in video <br/><b>School of Computer Science and Technology, Shandong Institute of Business and Technology</b><br/>Yantai, Shandong, 264005, China <br/><b>School of Computer Science and Technology, Shandong University</b><br/>Jinan, Shandong, 250101, China @@ -26507,7 +33109,9 @@ </td><td>('39447786', 'Dong Chen', 'dong chen')<br/>('2032273', 'Xudong Cao', 'xudong cao')<br/>('34508239', 'Liwei Wang', 'liwei wang')<br/>('1716835', 'Fang Wen', 'fang wen')<br/>('40055995', 'Jian Sun', 'jian sun')</td><td>chendong@mail.ustc.edu.cn <br/>lwwang@cse.cuhk.edu.hk <br/>{xudongca,fangwen,jiansun}@microsoft.com -</td></tr><tr><td>a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670</td><td></td><td></td><td></td></tr><tr><td>a0dfb8aae58bd757b801e2dcb717a094013bc178</td><td>Reconocimiento de expresiones faciales con base +</td></tr><tr><td>a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670</td><td></td><td></td><td></td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>Learning Deep Representation for Face +<br/>Alignment with Auxiliary Attributes +</td><td>('3152448', 'Zhanpeng Zhang', 'zhanpeng zhang')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td></td></tr><tr><td>a0dfb8aae58bd757b801e2dcb717a094013bc178</td><td>Reconocimiento de expresiones faciales con base <br/>en la din´amica de puntos de referencia faciales <br/>Instituto Nacional de Astrof´ısica ´Optica y Electr´onica, <br/>Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla, @@ -26526,6 +33130,9 @@ <br/>Facial Expressions Recognition Based on Facial <br/>Landmarks Dynamics </td><td>('40452660', 'E. Morales-Vargas', 'e. morales-vargas')<br/>('2737777', 'Hayde Peregrina-Barreto', 'hayde peregrina-barreto')</td><td>emoralesv@inaoep.mx, kargaxxi@inaoep.mx, hperegrina@inaoep.mx +</td></tr><tr><td>a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b</td><td>Cascaded Regressor based 3D Face Reconstruction +<br/>from a Single Arbitrary View Image +<br/><b>College of Computer Science, Sichuan University, Chengdu, China</b></td><td>('50207647', 'Feng Liu', 'feng liu')<br/>('39422721', 'Dan Zeng', 'dan zeng')<br/>('1723081', 'Jing Li', 'jing li')<br/>('7345195', 'Qijun Zhao', 'qijun zhao')</td><td>qjzhao@scu.edu.cn </td></tr><tr><td>a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60</td><td>Simultaneous Learning and Alignment: <br/>Multi-Instance and Multi-Pose Learning? <br/>1 Comp. Science & Eng. @@ -26540,6 +33147,14 @@ </td></tr><tr><td>a06b6d30e2b31dc600f622ab15afe5e2929581a7</td><td>Robust Joint and Individual Variance Explained <br/><b>Imperial College London, UK</b><br/>2Onfido, UK <br/><b>Middlesex University London, UK</b></td><td>('3320415', 'Christos Sagonas', 'christos sagonas')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')<br/>('28943361', 'Alina Leidinger', 'alina leidinger')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td>christos.sagonas@onfido.com, {i.panagakis, s.zafeiriou}@imperial.ac.uk +</td></tr><tr><td>a0b1990dd2b4cd87e4fd60912cc1552c34792770</td><td>Deep Constrained Local Models for Facial Landmark Detection +<br/><b>Carnegie Mellon University</b><br/>Tadas Baltruaitis +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Ave, Pittsburgh, PA 15213, USA +<br/>5000 Forbes Ave, Pittsburgh, PA 15213, USA +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Ave, Pittsburgh, PA 15213, USA +</td><td>('1783029', 'Amir Zadeh', 'amir zadeh')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')</td><td>abagherz@cs.cmu.edu +<br/>tbaltrus@cs.cmu.edu +<br/>morency@cs.cmu.edu </td></tr><tr><td>a090d61bfb2c3f380c01c0774ea17929998e0c96</td><td>On the Dimensionality of Video Bricks under Varying Illumination <br/>Beijing Lab of Intelligent Information Technology, School of Computer Science, <br/><b>Beijing Institute of Technology, Beijing 100081, PR China</b></td><td>('2852150', 'Youdong Zhao', 'youdong zhao')<br/>('38150687', 'Xi Song', 'xi song')<br/>('7415267', 'Yunde Jia', 'yunde jia')</td><td>{zyd458, songxi, jiayunde}@bit.edu.cn @@ -26665,14 +33280,19 @@ </td><td>('2794259', 'Eirikur Agustsson', 'eirikur agustsson')<br/>('1732855', 'Radu Timofte', 'radu timofte')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>aeirikur@vision.ee.ethz.ch <br/>timofter@vision.ee.ethz.ch <br/>vangool@vision.ee.ethz.ch -</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td></td><td></td><td></td></tr><tr><td>a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51</td><td>Postgraduate Annual Research Seminar 2007 (3-4 July 2007) +</td></tr><tr><td>a77e9f0bd205a7733431a6d1028f09f57f9f73b0</td><td>Multimodal feature fusion for CNN-based gait recognition: an +<br/>empirical comparison +<br/>F.M. Castroa,, M.J. Mar´ın-Jim´enezb, N. Guila, N. P´erez de la Blancac +<br/><b>University of Malaga, Spain</b><br/><b>University of Cordoba, Spain</b><br/><b>University of Granada, Spain</b></td><td></td><td></td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td></td><td></td><td></td></tr><tr><td>a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51</td><td>Postgraduate Annual Research Seminar 2007 (3-4 July 2007) <br/>A Summary of literature review : Face Recognition <br/>Faculty of Computer Science & Information System, <br/><b>University Technology of Malaysia, 81310 Skudai, Johor, Malaysia</b></td><td></td><td>kittmee@yahoo.com; dzulkifli@fsksm.utm.my </td></tr><tr><td>a70e36daf934092f40a338d61e0fe27be633f577</td><td>Enhanced Facial Feature Tracking of Spontaneous and Continuous Expressions <br/>A.Goneid and R. El Kaliouby <br/><b>The American University in Cairo, Egypt</b></td><td></td><td>goneid@aucegypt.edu, ranak@aucegypt.edu -</td></tr><tr><td>a7191958e806fce2505a057196ccb01ea763b6ea</td><td>Convolutional Neural Network based +</td></tr><tr><td>a7664247a37a89c74d0e1a1606a99119cffc41d4</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +<br/>3287 +</td><td></td><td></td></tr><tr><td>a7191958e806fce2505a057196ccb01ea763b6ea</td><td>Convolutional Neural Network based <br/>Age Estimation from Facial Image and <br/>Depth Prediction from Single Image <br/>B. Eng. (Honours) @@ -26694,7 +33314,105 @@ <br/>Corporate Research and Development Center, TOSHIBA Corporation <br/>1, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan </td><td>('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')<br/>('1708862', 'Osamu Yamaguchi', 'osamu yamaguchi')</td><td>kazuhiro.fukui@toshiba.co.jp / osamu1.yamaguchi@toshiba.co.jp -</td></tr><tr><td>a7c39a4e9977a85673892b714fc9441c959bf078</td><td>Automated Individualization of Deformable Eye Region Model and Its +</td></tr><tr><td>a758b744a6d6962f1ddce6f0d04292a0b5cf8e07</td><td> +<br/>ISSN XXXX XXXX © 2017 IJESC +<br/> +<br/> +<br/>Research Article Volume 7 Issue No.4 +<br/>Study on Human Face Recognition under Invariant Pose, Illumination +<br/>and Expression using LBP, LoG and SVM +<br/>Amrutha +<br/>Depart ment of Co mputer Science & Engineering +<br/><b>Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore, India</b><br/>INTRODUCTION +<br/>RELATED WORK +<br/>Abstrac t: +<br/>Face recognition system uses human face for the identification of the user. Face recognition is a difficu lt task there is no unique +<br/>method that provide accurate an accurate and effic ient solution in all the situations like the face image with differen t pose , +<br/>illu mination and exp ression. Local Binary Pattern (LBP) and Laplac ian of Gaussian (Lo G) operators. Support Vector Machine +<br/>classifier is used to recognize the human face. The Lo G algorith m is used to preprocess the image to detect the edges of the face +<br/>image to get the image information. The LBP operator divides the face image into several blocks to generate the features informat ion +<br/>on pixe l level by creating LBP labels for all the blocks of image is obtained by concatenating all the individual local histo grams. +<br/>Support Vector Machine classifier (SVM ) is used to classify t he image. The a lgorith m performances is verified under the constraints +<br/>like illu mination, e xp ression and pose variation +<br/>Ke ywor ds: Face Recognition, Local Binary Pattern, Laplac ian of Gaussian, histogram, illu mination, pose angle, exp ression +<br/>variations, SVM . +<br/>1. +<br/>The Technology used for recognizing the face under security +<br/>systems works on the bio metric principles. There are many +<br/>human characteristics which can be used +<br/>for biometric +<br/>identification such that palm, finger print, face, and iris etc. one +<br/>of these biometrics methods face recognition is advantageous +<br/>because of it can be detected fro m much more d istance without +<br/>need of scanning devices this provides easy observation to +<br/>identify indiv iduals in group of persons. Most of the military +<br/>application security systems, attendance systems, authentication, +<br/>criminal identity etc. are performed using this technology. The +<br/>computer uses this recognition technology to identify or to +<br/>compare the person with same person or with some other person. +<br/>The human faces are very important factor to identify who the +<br/>person is and how the people will ma ke out his/her face. The +<br/>images of faces are taken fro m the distance without having +<br/>contact with a person, capturing the face images. Verification +<br/>and Identification s teps are used for comparison. The first +<br/>method is verification wh ich co mpares the face image with +<br/>his/her image wh ich is a lready stored in database. It is one to one +<br/>matching because it tries to match individual against same +<br/>person's image stored in database. The second method is +<br/>called one to n matching because it matches individual person's +<br/>face image with every person's face images. If the face images +<br/>are effected by lightning condition, different posing angle or +<br/>diffe rent expression then it is difficult to identify the human +<br/>face. Many algorithms are used to extract features of face and to +<br/>match the face images such as Principal Co mponent Analysis +<br/>(PCA) and Independent Component Analysis (ICA) [1], Elastic +<br/>Bunch Graph Matching (EBGM) [2], K -nearest neighbor +<br/>algorith m classifier and Linear Discriminant Analysis (LDA) +<br/>[3]. Th is paper is organized as fo llo ws: Section II revie ws the +<br/>related works done on data security in cloud. Section III +<br/>describes the proposed system and assumptions. Section IV +<br/>provides the conclusion of the paper +<br/>2. +<br/>the most biometrics +<br/>Face Recognition becomes one of +<br/>authentication +<br/>the past few years. Face +<br/>recognition is an interesting and successful application of Pattern +<br/>recognition and Image analysis. It co mpares a query face image +<br/>against all image te mplates in a face database. Face recognition +<br/>is very important due to its wide range of commercia l and law +<br/>enforcement applicat ions, which include forensic identificat ion, +<br/>access control, border surveillance and human interactions and +<br/>availability of low cost recording devices. Principa l Co mponent +<br/>Analysis and Independent Component Analysis [1], Elastic +<br/>Bunch Graph Matching [2], K-nearest neighbor algorithm +<br/>classifier and Linear Discriminant Analysis [3], Loca l Derivative +<br/>pattern and Local Binary Pattern [4]. These algorithms are still +<br/>having some proble ms +<br/>the +<br/>constraints like variations in pose, expression and illu mination. +<br/>This variation in the image degrades the performance of +<br/>recognition rate. Local Binary Pattern (LBP) and Laplac ian of +<br/>Gaussian (Lo G) is used to reduce the illu mination effects by +<br/>increasing the contrast of the image which does not effect to the +<br/>original +<br/>image and diffe rential e xc itation pixe l used for +<br/>preprocessing which is to make the algorithm invariant to the +<br/>illu mination changes +<br/>[4]. The Local Direct ional Pattern +<br/>descriptor (LDP) uses the edge values of surrounding pixe l of +<br/>the center pixe l and Two Dimensional Principal Analysis (2D- +<br/>PCA) is used for feature extraction which uses Euclidean +<br/>distance to measure the simila rity between tra ining database +<br/>images and test image features. The nearest neighbor classifier is +<br/>used to classify the images [5]. To reduce the influence of +<br/>illu mination fro m an input image an adaptive homo morphic +<br/>filtering is used in adaptive homo morphic eight local d irectional +<br/>to recognize +<br/>the face under +<br/>techniques from +<br/>International Journal of Engineering Science and Computing, April 2017 10081 http://ije sc.org/ +</td><td></td><td></td></tr><tr><td>a7c39a4e9977a85673892b714fc9441c959bf078</td><td>Automated Individualization of Deformable Eye Region Model and Its <br/>Application to Eye Motion Analysis <br/>Dept. of Media and Image Technology, <br/><b>Tokyo Polytechnic University</b><br/>1583 Iiyama, Atsugi, @@ -26709,7 +33427,15 @@ <br/>Human face attributes prediction with Deep <br/>Learning </td><td></td><td>moaah@kth.se -</td></tr><tr><td>a703d51c200724517f099ee10885286ddbd8b587</td><td>Fuzzy Neural Networks(FNN)-based Approach for +</td></tr><tr><td>a775da3e6e6ea64bffab7f9baf665528644c7ed3</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 142 – No.9, May 2016 +<br/>Human Face Pose Estimation based on Feature +<br/>Extraction Points +<br/>Research scholar, +<br/> Department of ECE +<br/>SBSSTC, Moga Road, +<br/> Ferozepur, Punjab, India +</td><td></td><td></td></tr><tr><td>a703d51c200724517f099ee10885286ddbd8b587</td><td>Fuzzy Neural Networks(FNN)-based Approach for <br/>Personalized Facial Expression Recognition with <br/>Novel Feature Selection Method <br/>Div. of EE, Dept. of EECS, KAIST @@ -26723,7 +33449,13 @@ </td></tr><tr><td>b871d1b8495025ff8a6255514ed39f7765415935</td><td>Application of Completed Local Binary Pattern for Facial Expression <br/>Recognition on Gabor Filtered Facial Images <br/><b>University of Ulsan, Ulsan, Republic of Korea</b></td><td>('2288674', 'Tanveer Ahsan', 'tanveer ahsan')</td><td>1tanveerahsan@gmail.com, 2rsbdce@yahoo.com, *3upchong@ulsan.ac.kr -</td></tr><tr><td>b88d5e12089f6f598b8c72ebeffefc102cad1fc0</td><td>Robust 2DPCA and Its Application +</td></tr><tr><td>b8375ff50b8a6f1a10dd809129a18df96888ac8b</td><td>Published as a conference paper at ICLR 2017 +<br/>DECOMPOSING MOTION AND CONTENT FOR +<br/>NATURAL VIDEO SEQUENCE PREDICTION +<br/><b>University of Michigan, Ann Arbor, USA</b><br/>2Adobe Research, San Jose, CA 95110 +<br/>3POSTECH, Pohang, Korea +<br/><b>Beihang University, Beijing, China</b><br/>5Google Brain, Mountain View, CA 94043 +</td><td>('2241528', 'Seunghoon Hong', 'seunghoon hong')<br/>('10668384', 'Xunyu Lin', 'xunyu lin')<br/>('1697141', 'Honglak Lee', 'honglak lee')<br/>('1768964', 'Jimei Yang', 'jimei yang')<br/>('1711926', 'Ruben Villegas', 'ruben villegas')</td><td></td></tr><tr><td>b88d5e12089f6f598b8c72ebeffefc102cad1fc0</td><td>Robust 2DPCA and Its Application <br/><b>Xidian University</b><br/>Xi’an China <br/><b>Xidian University</b><br/>Xi’an China </td><td>('40326660', 'Qianqian Wang', 'qianqian wang')<br/>('38469552', 'Quanxue Gao', 'quanxue gao')</td><td>610887187@qq.com @@ -26754,7 +33486,12 @@ <br/>xgwang@ee.cuhk.edu.hk <br/>liangding@sensetime.com <br/>xtang@ie.cuhk.edu.hk -</td></tr><tr><td>b8378ab83bc165bc0e3692f2ce593dcc713df34a</td><td></td><td></td><td></td></tr><tr><td>b85580ff2d8d8be0a2c40863f04269df4cd766d9</td><td>HCMUS team at the Multimodal Person Discovery in +</td></tr><tr><td>b8378ab83bc165bc0e3692f2ce593dcc713df34a</td><td></td><td></td><td></td></tr><tr><td>b8f3f6d8f188f65ca8ea2725b248397c7d1e662d</td><td>Selfie Detection by Synergy-Constriant Based +<br/>Convolutional Neural Network +<br/>Electrical and Electronics Engineering, NITK-Surathkal, India. +</td><td>('7245071', 'Yashas Annadani', 'yashas annadani')<br/>('8341302', 'Akshay Kumar Jagadish', 'akshay kumar jagadish')<br/>('2139966', 'Krishnan Chemmangat', 'krishnan chemmangat')</td><td></td></tr><tr><td>b8ebda42e272d3617375118542d4675a0c0e501d</td><td>Deep Hashing Network for Unsupervised Domain Adaptation +<br/><b>Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA</b></td><td>('3151995', 'Hemanth Venkateswara', 'hemanth venkateswara')<br/>('30443430', 'Jose Eusebio', 'jose eusebio')<br/>('2471253', 'Shayok Chakraborty', 'shayok chakraborty')<br/>('1743991', 'Sethuraman Panchanathan', 'sethuraman panchanathan')</td><td>{hemanthv, jeusebio, shayok.chakraborty, panch}@asu.edu +</td></tr><tr><td>b85580ff2d8d8be0a2c40863f04269df4cd766d9</td><td>HCMUS team at the Multimodal Person Discovery in <br/>Broadcast TV Task of MediaEval 2016 <br/>Faculty of Information Technology <br/><b>University of Science, Vietnam National University-Ho Chi Minh city</b></td><td>('34453615', 'Vinh-Tiep Nguyen', 'vinh-tiep nguyen')<br/>('30097677', 'Manh-Tien H. Nguyen', 'manh-tien h. nguyen')<br/>('8176737', 'Quoc-Huu Che', 'quoc-huu che')<br/>('7736164', 'Van-Tu Ninh', 'van-tu ninh')<br/>('38994364', 'Tu-Khiem Le', 'tu-khiem le')<br/>('7213584', 'Thanh-An Nguyen', 'thanh-an nguyen')<br/>('1780348', 'Minh-Triet Tran', 'minh-triet tran')</td><td>nvtiep@fit.hcmus.edu.vn, {nhmtien, cqhuu, nvtu, ltkhiem}@apcs.vn, @@ -26772,7 +33509,10 @@ </td><td>('2811524', 'Md. Kamrul Hasan', 'md. kamrul hasan')</td><td></td></tr><tr><td>b8a829b30381106b806066d40dd372045d49178d</td><td>1872 <br/>A Probabilistic Framework for Joint Pedestrian Head <br/>and Body Orientation Estimation -</td><td>('2869660', 'Fabian Flohr', 'fabian flohr')<br/>('1898318', 'Madalin Dumitru-Guzu', 'madalin dumitru-guzu')<br/>('34846285', 'Julian F. P. Kooij', 'julian f. p. kooij')</td><td></td></tr><tr><td>b191aa2c5b8ece06c221c3a4a0914e8157a16129</td><td>: DEEP SPATIO-TEMPORAL MANIFOLD NETWORK FOR ACTION RECOGNITION +</td><td>('2869660', 'Fabian Flohr', 'fabian flohr')<br/>('1898318', 'Madalin Dumitru-Guzu', 'madalin dumitru-guzu')<br/>('34846285', 'Julian F. P. Kooij', 'julian f. p. kooij')</td><td></td></tr><tr><td>b1d89015f9b16515735d4140c84b0bacbbef19ac</td><td>Too Far to See? Not Really! +<br/>— Pedestrian Detection with Scale-aware +<br/>Localization Policy +</td><td>('47957574', 'Xiaowei Zhang', 'xiaowei zhang')<br/>('50791064', 'Li Cheng', 'li cheng')<br/>('49729740', 'Bo Li', 'bo li')<br/>('2938403', 'Hai-Miao Hu', 'hai-miao hu')</td><td></td></tr><tr><td>b191aa2c5b8ece06c221c3a4a0914e8157a16129</td><td>: DEEP SPATIO-TEMPORAL MANIFOLD NETWORK FOR ACTION RECOGNITION <br/>Deep Spatio-temporal Manifold Network for <br/>Action Recognition <br/>Department of Computer Science @@ -26810,7 +33550,7 @@ <br/>Shaohua K. Zhou <br/>Siemens Research <br/>Princeton, NJ 08540 -</td><td>('9215658', 'Rama Chellappa', 'rama chellappa')<br/>('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')</td><td></td></tr><tr><td>b1665e1ddf9253dcaebecb48ac09a7ab4095a83e</td><td>EMOTION RECOGNITION USING FACIAL EXPRESSIONS WITH ACTIVE +</td><td>('9215658', 'Rama Chellappa', 'rama chellappa')<br/>('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')</td><td></td></tr><tr><td>b14b672e09b5b2d984295dfafb05604492bfaec5</td><td>LearningImageClassificationandRetrievalModelsThomasMensink</td><td></td><td></td></tr><tr><td>b1665e1ddf9253dcaebecb48ac09a7ab4095a83e</td><td>EMOTION RECOGNITION USING FACIAL EXPRESSIONS WITH ACTIVE <br/>APPEARANCE MODELS <br/>Department of Computer Science <br/><b>University of North Carolina Wilmington</b><br/><b>South College Road</b><br/>Wilmington, NC, USA @@ -26824,6 +33564,9 @@ <br/><b>RWTH Aachen University, Aachen, Germany</b><br/>2 Robert Bosch GmbH, Hildesheim, Germany </td><td>('1804963', 'Harald Hanselmann', 'harald hanselmann')<br/>('1685956', 'Hermann Ney', 'hermann ney')<br/>('1967060', 'Philippe Dreuw', 'philippe dreuw')</td><td><surname>@cs.rwth-aachen.de <br/>philippe.dreuw@de.bosch.com +</td></tr><tr><td>b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000</td><td>Deep Variation-structured Reinforcement Learning for Visual Relationship and +<br/>Attribute Detection +<br/><b>School of Computer Science, Carnegie Mellon University</b></td><td>('40250403', 'Xiaodan Liang', 'xiaodan liang')<br/>('1752601', 'Eric P. Xing', 'eric p. xing')<br/>('49441821', 'Lisa Lee', 'lisa lee')</td><td>{xiaodan1,lslee,epxing}@cs.cmu.edu </td></tr><tr><td>b11bb6bd63ee6f246d278dd4edccfbe470263803</td><td>Joint Voxel and Coordinate Regression for Accurate <br/>3D Facial Landmark Localization <br/>†Center for Research on Intelligent Perception and Computing (CRIPAC) @@ -26835,7 +33578,45 @@ <br/>JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 <br/>Automatic Analysis of Facial Actions: A Survey <br/>and Maja Pantic, Fellow, IEEE -</td><td>('1680608', 'Brais Martinez', 'brais martinez')<br/>('1795528', 'Michel F. Valstar', 'michel f. valstar')<br/>('39532631', 'Bihan Jiang', 'bihan jiang')</td><td></td></tr><tr><td>b1301c722886b6028d11e4c2084ee96466218be4</td><td></td><td></td><td></td></tr><tr><td>b1c5581f631dba78927aae4f86a839f43646220c</td><td></td><td></td><td></td></tr><tr><td>b18858ad6ec88d8b443dffd3e944e653178bc28b</td><td><b>Purdue University</b><br/>Purdue e-Pubs +</td><td>('1680608', 'Brais Martinez', 'brais martinez')<br/>('1795528', 'Michel F. Valstar', 'michel f. valstar')<br/>('39532631', 'Bihan Jiang', 'bihan jiang')</td><td></td></tr><tr><td>b166ce267ddb705e6ed855c6b679ec699d62e9cb</td><td>Turk J Elec Eng & Comp Sci +<br/>(2017) 25: 4421 { 4430 +<br/>c⃝ T (cid:127)UB_ITAK +<br/>doi:10.3906/elk-1702-49 +<br/>Sample group and misplaced atom dictionary learning for face recognition +<br/><b>Faculty of Electronics and Communication, Yanshan University</b><br/><b>Faculty of Electronics and Communication, Taishan University</b><br/>Qinhuangdao, P.R. China +<br/>Tai’an, P.R. China +<br/>Received: 04.02.2017 +<br/>(cid:15) +<br/>Accepted/Published Online: 01.06.2017 +<br/>(cid:15) +<br/>Final Version: 05.10.2017 +</td><td>('39980529', 'Meng Wang', 'meng wang')<br/>('49576759', 'Zhe Sun', 'zhe sun')<br/>('6410069', 'Mei Zhu', 'mei zhu')<br/>('49632877', 'Mei Sun', 'mei sun')</td><td></td></tr><tr><td>b13e2e43672e66ba45d1b852a34737e4ce04226b</td><td>CROWLEY, PARKHI, ZISSERMAN: FACE PAINTING +<br/>Face Painting: querying art with photos +<br/>Elliot J. Crowley +<br/>Visual Geometry Group +<br/>Department of Engineering Science +<br/><b>University of Oxford</b></td><td>('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>elliot@robots.ox.ac.uk +<br/>omkar@robots.ox.ac.uk +<br/>az@robots.ox.ac.uk +</td></tr><tr><td>b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c</td><td>RESEARCH ARTICLE +<br/>Conveying facial expressions to blind and +<br/>visually impaired persons through a wearable +<br/>vibrotactile device +<br/><b>MIRA Institute, University of Twente, Enschede, The</b><br/><b>Netherlands, Donders Institute, Radboud University, Nijmegen, The</b><br/>Netherlands, 3 VicarVision, Amsterdam, The Netherlands, 4 Department of Media, Communication, & +<br/><b>Organization, University of Twente, Enschede, The Netherlands, HAN</b><br/><b>University of Applied Sciences, Arnhem, The Netherlands</b></td><td>('1950480', 'Hendrik P. Buimer', 'hendrik p. buimer')<br/>('25188062', 'Marian Bittner', 'marian bittner')<br/>('3427220', 'Tjerk Kostelijk', 'tjerk kostelijk')<br/>('49432294', 'Abdellatif Nemri', 'abdellatif nemri')<br/>('2968885', 'Richard J. A. van Wezel', 'richard j. a. van wezel')</td><td>* h.buimer@donders.ru.nl +</td></tr><tr><td>b1301c722886b6028d11e4c2084ee96466218be4</td><td></td><td></td><td></td></tr><tr><td>b15a06d701f0a7f508e3355a09d0016de3d92a6d</td><td>Running head: FACIAL CONTRAST LOOKS HEALTHY +<br/>1 +<br/>Facial contrast is a cue for perceiving health from the face +<br/>Mauger2, Frederique Morizot2 +<br/><b>Gettysburg College, Gettysburg, PA, USA</b><br/>2 CHANEL Recherche et Technologie, Chanel PB +<br/>3 Université Grenoble Alpes +<br/>Author Note +<br/>Psychologie et NeuroCognition, Université Grenoble Alpes. +<br/>This is a prepublication copy. This article may not exactly replicate the authoritative document +<br/>published in the APA journal. It is not the copy of record. The authoritative document can be +<br/>found through this DOI: http://psycnet.apa.org/doi/10.1037/xhp0000219 +</td><td>('40482411', 'Richard Russell', 'richard russell')<br/>('4556101', 'Aurélie Porcheron', 'aurélie porcheron')<br/>('40482411', 'Richard Russell', 'richard russell')<br/>('4556101', 'Aurélie Porcheron', 'aurélie porcheron')<br/>('6258499', 'Emmanuelle Mauger', 'emmanuelle mauger')<br/>('4556101', 'Aurélie Porcheron', 'aurélie porcheron')<br/>('40482411', 'Richard Russell', 'richard russell')</td><td>College, Gettysburg, PA 17325, USA. Email: rrussell@gettysburg.edu +</td></tr><tr><td>b1c5581f631dba78927aae4f86a839f43646220c</td><td></td><td></td><td></td></tr><tr><td>b18858ad6ec88d8b443dffd3e944e653178bc28b</td><td><b>Purdue University</b><br/>Purdue e-Pubs <br/>Department of Computer Science Technical <br/>Reports <br/>Department of Computer Science @@ -26861,7 +33642,9 @@ <br/><b>Graduate School of System Informatics, Kobe University</b><br/><b>Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT</b><br/><b>Pattern Recognition Group, University of Siegen</b></td><td>('2240008', 'Zhenying He', 'zhenying he')<br/>('8183718', 'Takashi Shinozaki', 'takashi shinozaki')<br/>('1707938', 'Kimiaki Shirahama', 'kimiaki shirahama')<br/>('1727057', 'Marcin Grzegorzek', 'marcin grzegorzek')<br/>('1711781', 'Kuniaki Uehara', 'kuniaki uehara')</td><td>jennyhe@ai.cs.kobe-u.ac.jp, uehara@kobe-u.ac.jp <br/>tshino@nict.go.jp <br/>kimiaki.shirahama@uni-siegen.de, marcin.grzegorzek@uni-siegen.de -</td></tr><tr><td>b1df214e0f1c5065f53054195cd15012e660490a</td><td>Supplementary Material to Sparse Coding and Dictionary Learning with Linear +</td></tr><tr><td>b1451721864e836069fa299a64595d1655793757</td><td>Criteria Sliders: Learning Continuous +<br/>Database Criteria via Interactive Ranking +<br/><b>Brown University 2University of Bath</b><br/><b>Harvard University 4Max Planck Institute for Informatics</b></td><td>('1854493', 'James Tompkin', 'james tompkin')<br/>('1808255', 'Kwang In Kim', 'kwang in kim')<br/>('1680185', 'Christian Theobalt', 'christian theobalt')</td><td></td></tr><tr><td>b1df214e0f1c5065f53054195cd15012e660490a</td><td>Supplementary Material to Sparse Coding and Dictionary Learning with Linear <br/>Dynamical Systems∗ <br/><b>Tsinghua University, State Key Lab. of Intelligent</b><br/>Technology and Systems, Tsinghua National Lab. for Information Science and Technology (TNList); <br/><b>Australian National University and NICTA, Australia</b><br/>In this supplementary material, we present the proofs of Theorems (1-3), the algorithm for learning the transition matrix @@ -26937,12 +33720,31 @@ </td><td>('37287044', 'Anirban Chakraborty', 'anirban chakraborty')<br/>('1709001', 'Bappaditya Mandal', 'bappaditya mandal')<br/>('2860592', 'Hamed Kiani Galoogahi', 'hamed kiani galoogahi')</td><td>a.chakraborty@ntu.edu.sg <br/>bmandal@i2r.a-star.edu.sg <br/>kiani.galoogahi@iit.it +</td></tr><tr><td>b1fdd4ae17d82612cefd4e78b690847b071379d3</td><td>Supervised Descent Method +<br/>CMU-RI-TR-15-28 +<br/>September 2015 +<br/><b>The Robotics Institute</b><br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA 15213 +<br/>Thesis Committee: +<br/>Fernando De la Torre, Chair +<br/>Srinivasa Narasimhan +<br/>Kris Kitani +<br/>Aleix Martinez +<br/>Submitted in partial fulfillment of the requirements +<br/>for the degree of Doctor of Philosophy in Robotics. +</td><td>('3182065', 'Xuehan Xiong', 'xuehan xiong')<br/>('3182065', 'Xuehan Xiong', 'xuehan xiong')</td><td></td></tr><tr><td>dde5125baefa1141f1ed50479a3fd67c528a965f</td><td>Synthesizing Normalized Faces from Facial Identity Features +<br/><b>Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL</b></td><td>('39578349', 'Forrester Cole', 'forrester cole')<br/>('1707347', 'Dilip Krishnan', 'dilip krishnan')</td><td>{fcole, dbelanger, dilipkay, sarna, inbarm, wfreeman}@google.com +</td></tr><tr><td>dd8084b2878ca95d8f14bae73e1072922f0cc5da</td><td>Model Distillation with Knowledge Transfer from +<br/>Face Classification to Alignment and Verification +<br/>Beijing Orion Star Technology Co., Ltd. Beijing, China +</td><td>('1747751', 'Chong Wang', 'chong wang')<br/>('26403761', 'Xipeng Lan', 'xipeng lan')</td><td>{chongwang.nlpr, xipeng.lan, caveman1984}@gmail.com </td></tr><tr><td>ddf55fc9cf57dabf4eccbf9daab52108df5b69aa</td><td>International Journal of Grid and Distributed Computing <br/>Vol. 4, No. 3, September, 2011 <br/>Methodology and Performance Analysis of 3-D Facial Expression <br/>Recognition Using Statistical Shape Representation <br/><b>ADSIP Research Centre, University of Central Lancashire</b><br/><b>School of Psychology, University of Central Lancashire</b></td><td>('2343120', 'Wei Quan', 'wei quan')<br/>('2647218', 'Bogdan J. Matuszewski', 'bogdan j. matuszewski')<br/>('2550166', 'Lik-Kwan Shark', 'lik-kwan shark')<br/>('2942330', 'Charlie Frowd', 'charlie frowd')</td><td>{WQuan, BMatuszewski1, LShark}@uclan.ac.uk <br/>CFrowd@uclan.ac.uk +</td></tr><tr><td>dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335</td><td>Unsupervised Learning and Segmentation of Complex Activities from Video +<br/><b>University of Bonn, Germany</b></td><td>('34678431', 'Fadime Sener', 'fadime sener')<br/>('2569989', 'Angela Yao', 'angela yao')</td><td>{sener,yao}@cs.uni-bonn.de </td></tr><tr><td>dda35768681f74dafd02a667dac2e6101926a279</td><td>MULTI-LAYER TEMPORAL GRAPHICAL MODEL <br/>FOR HEAD POSE ESTIMATION IN REAL-WORLD VIDEOS <br/><b>McGill University</b><br/>Centre for Intelligent Machines, @@ -26953,7 +33755,11 @@ <br/>Facial Expression Recognition Using New Feature Extraction <br/>Algorithm <br/><b>National Cheng Kung University, Tainan, Taiwan</b><br/> Received 10th Oct. 2011; accepted 5th Sep. 2012 -</td><td>('2499819', 'Hung-Fu Huang', 'hung-fu huang')<br/>('1751725', 'Shen-Chuan Tai', 'shen-chuan tai')</td><td></td></tr><tr><td>ddf099f0e0631da4a6396a17829160301796151c</td><td>IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY +</td><td>('2499819', 'Hung-Fu Huang', 'hung-fu huang')<br/>('1751725', 'Shen-Chuan Tai', 'shen-chuan tai')</td><td></td></tr><tr><td>ddbd24a73ba3d74028596f393bb07a6b87a469c0</td><td>Multi-region two-stream R-CNN +<br/>for action detection +<br/>Inria(cid:63) +</td><td>('1766837', 'Xiaojiang Peng', 'xiaojiang peng')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td>{xiaojiang.peng,cordelia.schmid}@inria.fr +</td></tr><tr><td>ddf099f0e0631da4a6396a17829160301796151c</td><td>IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY <br/>Learning Face Image Quality from <br/>Human Assessments </td><td>('2180413', 'Lacey Best-Rowden', 'lacey best-rowden')<br/>('40217643', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>dd0a334b767e0065c730873a95312a89ef7d1c03</td><td>Eigenexpressions: Emotion Recognition using Multiple @@ -26972,7 +33778,21 @@ </td><td>('2606260', 'Pascal Mettes', 'pascal mettes')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td></td></tr><tr><td>dd8d53e67668067fd290eb500d7dfab5b6f730dd</td><td>69 <br/>A Parameter-Free Framework for General <br/>Supervised Subspace Learning -</td><td>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('7137861', 'Jianzhuang Liu', 'jianzhuang liu')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td></td></tr><tr><td>dd600e7d6e4443ebe87ab864d62e2f4316431293</td><td></td><td></td><td></td></tr><tr><td>dcb44fc19c1949b1eda9abe998935d567498467d</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +</td><td>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('7137861', 'Jianzhuang Liu', 'jianzhuang liu')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td></td></tr><tr><td>ddbb6e0913ac127004be73e2d4097513a8f02d37</td><td>264 +<br/>IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999 +<br/>Face Detection Using Quantized Skin Color +<br/>Regions Merging and Wavelet Packet Analysis +</td><td>('34798028', 'Christophe Garcia', 'christophe garcia')<br/>('2441655', 'Georgios Tziritas', 'georgios tziritas')</td><td></td></tr><tr><td>dd600e7d6e4443ebe87ab864d62e2f4316431293</td><td></td><td></td><td></td></tr><tr><td>dc550f361ae82ec6e1a0cf67edf6a0138163382e</td><td> +<br/>ISSN XXXX XXXX © 2018 IJESC +<br/> +<br/> +<br/>Research Article Volume 8 Issue No.3 +<br/>Emotion Based Music Player +<br/>Professor1, UG Student2, 3, 4, 5, 6 +<br/>Department of Electronics Engineering +<br/><b>K.D.K. College of Engineering Nagpur, India</b></td><td>('9217928', 'Vijay Chakole', 'vijay chakole')<br/>('48228560', 'Kalyani Trivedi', 'kalyani trivedi')</td><td></td></tr><tr><td>dcf71245addaf66a868221041aabe23c0a074312</td><td>S3FD: Single Shot Scale-invariant Face Detector +<br/><b>CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, China</b></td><td>('3220556', 'Shifeng Zhang', 'shifeng zhang')</td><td>{shifeng.zhang,xiangyu.zhu,zlei,hailin.shi,xiaobo.wang,szli}@nlpr.ia.ac.cn +</td></tr><tr><td>dcb44fc19c1949b1eda9abe998935d567498467d</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>1916 </td><td></td><td></td></tr><tr><td>dcc38db6c885444694f515d683bbb50521ff3990</td><td>Learning to hallucinate face images via Component Generation and Enhancement <br/><b>City University of Hong Kong</b><br/><b>South China University of Technology</b><br/>3Tencent AI Lab @@ -27004,13 +33824,27 @@ <br/><b>Kwangwoon University, 447-1 Wolge-dong, Nowon-Gu, Seoul 139-701, Korea</b></td><td>('1727735', 'Changhan Park', 'changhan park')<br/>('1722181', 'Myungseok Ki', 'myungseok ki')<br/>('1723542', 'Jaechan Namkung', 'jaechan namkung')<br/>('1684329', 'Joonki Paik', 'joonki paik')</td><td>initialchp@wm.cau.ac.kr, http://ipis.cau.ac.kr, <br/>kkim@etri.re.kr, http://www.etri.re.kr, <br/>namjc@daisy.kw.ac.kr, http://vision.kw.ac.kr. +</td></tr><tr><td>dce5e0a1f2cdc3d4e0e7ca0507592860599b0454</td><td>Facelet-Bank for Fast Portrait Manipulation +<br/><b>The Chinese University of Hong Kong</b><br/>2Tencent Youtu Lab +<br/><b>Johns Hopkins University</b></td><td>('2070527', 'Ying-Cong Chen', 'ying-cong chen')<br/>('40898180', 'Yangang Ye', 'yangang ye')<br/>('1729056', 'Jiaya Jia', 'jiaya jia')</td><td>{ycchen, linhj, ryli, xtao}@cse.cuhk.edu.hk +<br/>goodshenxy@gmail.com +<br/>Mshu1@jhu.edu +<br/>yangangye@tecent.com +<br/>leojia9@gmail.com +</td></tr><tr><td>dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd</td><td>Learning with Confident Examples: +<br/>Rank Pruning for Robust Classification with Noisy Labels +<br/><b>Massachusetts Institute of Technology</b><br/>Cambridge, MA 02139 +</td><td>('39972987', 'Curtis G. Northcutt', 'curtis g. northcutt')<br/>('3716141', 'Tailin Wu', 'tailin wu')<br/>('1706040', 'Isaac L. Chuang', 'isaac l. chuang')</td><td>{cgn, tailin, ichuang}@mit.edu </td></tr><tr><td>dcce3d7e8d59041e84fcdf4418702fb0f8e35043</td><td>Probabilistic Identity Characterization for Face Recognition∗ <br/>Center for Automation Research (CfAR) and <br/>Department of Electrical and Computer Engineering <br/><b>University of Maryland, College Park, MD</b></td><td>('1682187', 'Shaohua Kevin Zhou', 'shaohua kevin zhou')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{shaohua, rama}@cfar.umd.edu </td></tr><tr><td>dce3dff9216d63c4a77a2fcb0ec1adf6d2489394</td><td>Manifold Learning for Gender Classification <br/>from Face Sequences -<br/><b>Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland</b></td><td>('1751372', 'Abdenour Hadid', 'abdenour hadid')</td><td></td></tr><tr><td>b6f758be954d34817d4ebaa22b30c63a4b8ddb35</td><td>A Proximity-Aware Hierarchical Clustering of Faces +<br/><b>Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland</b></td><td>('1751372', 'Abdenour Hadid', 'abdenour hadid')</td><td></td></tr><tr><td>dc974c31201b6da32f48ef81ae5a9042512705fe</td><td>Am I done? Predicting Action Progress in Video +<br/>1 Media Integration and Communication Center, Univ. of Florence, Italy +<br/>2 Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy +</td><td>('41172759', 'Federico Becattini', 'federico becattini')<br/>('1789269', 'Tiberio Uricchio', 'tiberio uricchio')<br/>('2831602', 'Lorenzo Seidenari', 'lorenzo seidenari')<br/>('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')<br/>('1795847', 'Lamberto Ballan', 'lamberto ballan')</td><td></td></tr><tr><td>b6f758be954d34817d4ebaa22b30c63a4b8ddb35</td><td>A Proximity-Aware Hierarchical Clustering of Faces <br/><b>University of Maryland, College Park</b></td><td>('3329881', 'Wei-An Lin', 'wei-an lin')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>walin@terpmail.umd.edu, pullpull@cs.umd.edu, rama@umiacs.umd.edu </td></tr><tr><td>b62571691a23836b35719fc457e093b0db187956</td><td> Volume 3, Issue 5, May 2013 ISSN: 2277 128X <br/>International Journal of Advanced Research in @@ -27036,7 +33870,26 @@ <br/>Face Recognition Using the Discrete Cosine Transform <br/><b>Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A</b></td><td>('1693521', 'Ziad M. Hafed', 'ziad m. hafed')<br/>('3631473', 'Martin D. Levine', 'martin d. levine')</td><td>zhafed@cim.mcgill.ca <br/>levine@cim.mcgill.ca -</td></tr><tr><td>b6c53891dff24caa1f2e690552a1a5921554f994</td><td></td><td></td><td></td></tr><tr><td>b613b30a7cbe76700855479a8d25164fa7b6b9f1</td><td>1 +</td></tr><tr><td>b6c53891dff24caa1f2e690552a1a5921554f994</td><td></td><td></td><td></td></tr><tr><td>b6ef158d95042f39765df04373c01546524c9ccd</td><td>Im2vid: Future Video Prediction for Static Image Action +<br/>Recognition +<br/>Badour Ahmad AlBahar +<br/>Thesis submitted to the Faculty of the +<br/><b>Virginia Polytechnic Institute and State University</b><br/>in partial fulfillment of the requirements for the degree of +<br/>Master of Science +<br/>in +<br/>Computer Engineering +<br/>Jia-Bin Huang, Chair +<br/>A. Lynn Abbott +<br/>Pratap Tokekar +<br/>May 9, 2018 +<br/>Blacksburg, Virginia +<br/>Keywords: Human Action Recognition, Static Image Action Recognition, Video Action +<br/>Recognition, Future Video Prediction. +<br/>Copyright 2018, Badour Ahmad AlBahar +</td><td></td><td></td></tr><tr><td>b68150bfdec373ed8e025f448b7a3485c16e3201</td><td>Adversarial Image Perturbation for Privacy Protection +<br/>A Game Theory Perspective +<br/><b>Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbr cken, Germany</b></td><td>('2390510', 'Seong Joon Oh', 'seong joon oh')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td>{joon,mfritz,schiele}@mpi-inf.mpg.de +</td></tr><tr><td>b613b30a7cbe76700855479a8d25164fa7b6b9f1</td><td>1 <br/>Identifying User-Specific Facial Affects from <br/>Spontaneous Expressions with Minimal Annotation </td><td>('23417737', 'Michael Xuelin Huang', 'michael xuelin huang')<br/>('1706729', 'Grace Ngai', 'grace ngai')<br/>('1730455', 'Kien A. Hua', 'kien a. hua')<br/>('1714454', 'Hong Va Leong', 'hong va leong')</td><td></td></tr><tr><td>b64cfb39840969b1c769e336a05a30e7f9efcd61</td><td>ORIGINAL RESEARCH @@ -27104,7 +33957,8 @@ <br/>Frontiers in ICT | www.frontiersin.org <br/>June 2016 | Volume 3 | Article 9 </td><td>('14556501', 'Paul Gay', 'paul gay')<br/>('2446815', 'Sylvain Meignier', 'sylvain meignier')<br/>('1682046', 'Paul Deléglise', 'paul deléglise')<br/>('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')<br/>('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')</td><td>odobez@idiap.ch -</td></tr><tr><td>b689d344502419f656d482bd186a5ee6b0140891</td><td>2009, Vol. 9, No. 2, 260 –264 +</td></tr><tr><td>b6f682648418422e992e3ef78a6965773550d36b</td><td>February 8, 2017 +</td><td></td><td></td></tr><tr><td>b689d344502419f656d482bd186a5ee6b0140891</td><td>2009, Vol. 9, No. 2, 260 –264 <br/>© 2009 American Psychological Association <br/>1528-3542/09/$12.00 DOI: 10.1037/a0014681 <br/>CORRECTED JULY 1, 2009; SEE LAST PAGE @@ -27160,6 +34014,15 @@ <br/>dominance and the lower on affiliation (Montepare & Dobish, <br/>2003). One interpretation of these findings is that people misat- </td><td>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('2913698', 'Alexander Todorov', 'alexander todorov')<br/>('2913698', 'Alexander Todorov', 'alexander todorov')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')</td><td>csaid@princeton.edu +</td></tr><tr><td>b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3</td><td>Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks ∗ +<br/><b>University of Science and Technology of China, Hefei, China</b><br/>‡ Microsoft Research, Beijing, China +</td><td>('3430743', 'Zhaofan Qiu', 'zhaofan qiu')<br/>('2053452', 'Ting Yao', 'ting yao')<br/>('1724211', 'Tao Mei', 'tao mei')</td><td>zhaofanqiu@gmail.com, {tiyao, tmei}@microsoft.com +</td></tr><tr><td>b6d0e461535116a675a0354e7da65b2c1d2958d4</td><td>Deep Directional Statistics: +<br/>Pose Estimation with +<br/>Uncertainty Quantification +<br/><b>Max Planck Institute for Intelligent Systems, T ubingen, Germany</b><br/>2 Amazon, T¨ubingen, Germany +<br/>3 Microsoft Research, Cambridge, UK +</td><td>('15968671', 'Sergey Prokudin', 'sergey prokudin')<br/>('2388416', 'Sebastian Nowozin', 'sebastian nowozin')</td><td>sergey.prokudin@tuebingen.mpg.de </td></tr><tr><td>b656abc4d1e9c8dc699906b70d6fcd609fae8182</td><td></td><td></td><td></td></tr><tr><td>b6a01cd4572b5f2f3a82732ef07d7296ab0161d3</td><td>Kernel-Based Supervised Discrete Hashing for <br/>Image Retrieval <br/><b>University of Florida, Gainesville, FL, 32611, USA</b></td><td>('2766473', 'Xiaoshuang Shi', 'xiaoshuang shi')<br/>('2082604', 'Fuyong Xing', 'fuyong xing')<br/>('3457945', 'Jinzheng Cai', 'jinzheng cai')<br/>('2476328', 'Zizhao Zhang', 'zizhao zhang')<br/>('1877955', 'Yuanpu Xie', 'yuanpu xie')<br/>('1705066', 'Lin Yang', 'lin yang')</td><td>xsshi2015@ufl.edu @@ -27202,6 +34065,10 @@ <br/>Electrical and Computer Engineering Department <br/><b>ShahidBeheshti University</b><br/>Tehran, Iran </td><td></td><td>J_Mazloum@sbu.ac.ir, A_Jalali@sbu.ac.ir, Amiryan.j@robocyrus.ir +</td></tr><tr><td>a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f</td><td></td><td></td><td></td></tr><tr><td>a98316980b126f90514f33214dde51813693fe0d</td><td>Collaborations on YouTube: From Unsupervised Detection to the +<br/>Impact on Video and Channel Popularity +<br/>Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany +</td><td>('49495293', 'Christian Koch', 'christian koch')<br/>('46203604', 'Moritz Lode', 'moritz lode')<br/>('2214486', 'Denny Stohr', 'denny stohr')<br/>('2869441', 'Amr Rizk', 'amr rizk')<br/>('1725298', 'Ralf Steinmetz', 'ralf steinmetz')</td><td>E-Mail: {Christian.Koch | Denny.Stohr | Amr.Rizk | Ralf.Steinmetz}@kom.tu-darmstadt.de </td></tr><tr><td>a93781e6db8c03668f277676d901905ef44ae49f</td><td>Recent Datasets on Object Manipulation: A Survey </td><td>('3112203', 'Yongqiang Huang', 'yongqiang huang')<br/>('39545911', 'Matteo Bianchi', 'matteo bianchi')<br/>('2646612', 'Minas Liarokapis', 'minas liarokapis')<br/>('1681376', 'Yu Sun', 'yu sun')</td><td></td></tr><tr><td>a9fc23d612e848250d5b675e064dba98f05ad0d9</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, <br/>Vol. 9, No. 2, 2018 @@ -27253,12 +34120,19 @@ </td></tr><tr><td>a967426ec9b761a989997d6a213d890fc34c5fe3</td><td>Relative Ranking of Facial Attractiveness <br/>Department of Computer Science and Engineering <br/><b>University of California, San Diego</b></td><td>('3079766', 'Hani Altwaijry', 'hani altwaijry')</td><td>{haltwaij,sjb}@cs.ucsd.edu -</td></tr><tr><td>a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6</td><td>Learning to Succeed while Teaching to Fail: +</td></tr><tr><td>a95dc0c4a9d882a903ce8c70e80399f38d2dcc89</td><td> TR-IIS-14-003 +<br/>Review and Implementation of +<br/>High-Dimensional Local Binary +<br/>Patterns and Its Application to +<br/>Face Recognition +<br/>July. 24, 2014 || Technical Report No. TR-IIS-14-003 +<br/>http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html +</td><td>('33970300', 'Bor-Chun Chen', 'bor-chun chen')<br/>('1720473', 'Chu-Song Chen', 'chu-song chen')</td><td></td></tr><tr><td>a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6</td><td>Learning to Succeed while Teaching to Fail: <br/>Privacy in Closed Machine Learning Systems </td><td>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('4838771', 'Miguel R. D. Rodrigues', 'miguel r. d. rodrigues')<br/>('1699339', 'Guillermo Sapiro', 'guillermo sapiro')</td><td></td></tr><tr><td>a949b8700ca6ba96ee40f75dfee1410c5bbdb3db</td><td>Instance-weighted Transfer Learning of Active Appearance Models <br/><b>Computer Vision Group, Friedrich Schiller University of Jena, Germany</b><br/>Ernst-Abbe-Platz 2-4, 07743 Jena, Germany </td><td>('1708249', 'Daniel Haase', 'daniel haase')<br/>('1679449', 'Erik Rodner', 'erik rodner')<br/>('1728382', 'Joachim Denzler', 'joachim denzler')</td><td>{daniel.haase,erik.rodner,joachim.denzler}@uni-jena.de -</td></tr><tr><td>a9be20954e9177d8b2bc39747acdea4f5496f394</td><td>Event-specific Image Importance +</td></tr><tr><td>a92b5234b8b73e06709dd48ec5f0ec357c1aabed</td><td></td><td></td><td></td></tr><tr><td>a9be20954e9177d8b2bc39747acdea4f5496f394</td><td>Event-specific Image Importance <br/><b>University of California, San Diego</b><br/>2Adobe Research </td><td>('35259685', 'Yufei Wang', 'yufei wang')</td><td>{yuw176, gary}@ucsd.edu <br/>{zlin, xshen, rmech, gmiller}@adobe.com @@ -27278,6 +34152,16 @@ </td></tr><tr><td>d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12</td><td>Manifold Ranking-Based Locality Preserving Projections <br/><b>School of Computer Science and Engineering, South China University of Technology</b><br/>Guangzhou 510006, Guangdong, China </td><td>('2132230', 'Jia Wei', 'jia wei')<br/>('3231018', 'Zewei Chen', 'zewei chen')<br/>('1837988', 'Pingyang Niu', 'pingyang niu')<br/>('2524825', 'Yishun Chen', 'yishun chen')<br/>('7307608', 'Wenhui Chen', 'wenhui chen')</td><td>csjwei@scut.edu.cn +</td></tr><tr><td>d5d7e89e6210fcbaa52dc277c1e307632cd91dab</td><td>DOTA: A Large-scale Dataset for Object Detection in Aerial Images∗ +<br/><b>State Key Lab. LIESMARS, Wuhan University, China</b><br/>2EIS, Huazhong Univ. Sci. and Tech., China +<br/><b>Computer Science Depart., Cornell University, USA</b><br/><b>Computer Science Depart., Rochester University, USA</b><br/>5German Aerospace Center (DLR), Germany +<br/><b>DAIS, University of Venice, Italy</b><br/>January 30, 2018 +</td><td>('39943835', 'Gui-Song Xia', 'gui-song xia')<br/>('1686737', 'Xiang Bai', 'xiang bai')<br/>('1749386', 'Jian Ding', 'jian ding')<br/>('48148046', 'Zhen Zhu', 'zhen zhu')<br/>('33642939', 'Jiebo Luo', 'jiebo luo')<br/>('1777167', 'Mihai Datcu', 'mihai datcu')<br/>('8111020', 'Marcello Pelillo', 'marcello pelillo')<br/>('1733213', 'Liangpei Zhang', 'liangpei zhang')</td><td>{guisong.xia, jding, zlp62}@whu.edu.cn +<br/>{xbai, zzhu}@hust.edu.cn +<br/>sjb344@cornell.edu +<br/>jiebo.luo@gmail.com +<br/>mihai.datcu@dlr.de +<br/>pelillo@dsi.unive.it </td></tr><tr><td>d50c6d22449cc9170ab868b42f8c72f8d31f9b6c</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>1668 </td><td></td><td></td></tr><tr><td>d522c162bd03e935b1417f2e564d1357e98826d2</td><td>He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19 @@ -27366,7 +34250,12 @@ <br/>in <br/>illumination based <br/>is developed with the objective to -</td><td>('1968167', 'Yee Wan Wong', 'yee wan wong')</td><td></td></tr><tr><td>d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e</td><td>World Journal of Computer Application and Technology 2(7): 133-138, 2014 +</td><td>('1968167', 'Yee Wan Wong', 'yee wan wong')</td><td></td></tr><tr><td>d5444f9475253bbcfef85c351ea9dab56793b9ea</td><td>IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS +<br/>BoxCars: Improving Fine-Grained Recognition +<br/>of Vehicles using 3D Bounding Boxes +<br/>in Traffic Surveillance +<br/>in contrast +</td><td>('34891870', 'Jakub Sochor', 'jakub sochor')<br/>('1785162', 'Adam Herout', 'adam herout')</td><td></td></tr><tr><td>d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e</td><td>World Journal of Computer Application and Technology 2(7): 133-138, 2014 <br/>DOI: 10.13189/wjcat.2014.020701 <br/>http://www.hrpub.org <br/>Optimized Structure for Facial Action Unit Relationship @@ -27392,7 +34281,9 @@ </td></tr><tr><td>d56fe69cbfd08525f20679ffc50707b738b88031</td><td>Training of multiple classifier systems utilizing <br/>partially labelled sequences <br/><b></b><br/>89069 Ulm - Germany -</td><td>('3037635', 'Martin Schels', 'martin schels')<br/>('2307794', 'Patrick Schillinger', 'patrick schillinger')<br/>('1685857', 'Friedhelm Schwenker', 'friedhelm schwenker')</td><td></td></tr><tr><td>d50751da2997e7ebc89244c88a4d0d18405e8507</td><td></td><td></td><td></td></tr><tr><td>d511e903a882658c9f6f930d6dd183007f508eda</td><td></td><td></td><td></td></tr><tr><td>d50a40f2d24363809a9ac57cf7fbb630644af0e5</td><td>END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE +</td><td>('3037635', 'Martin Schels', 'martin schels')<br/>('2307794', 'Patrick Schillinger', 'patrick schillinger')<br/>('1685857', 'Friedhelm Schwenker', 'friedhelm schwenker')</td><td></td></tr><tr><td>d5de42d37ee84c86b8f9a054f90ddb4566990ec0</td><td>Asynchronous Temporal Fields for Action Recognition +<br/><b>Carnegie Mellon University 2University of Washington 3Allen Institute for Arti cial Intelligence</b><br/>github.com/gsig/temporal-fields/ +</td><td>('34280810', 'Gunnar A. Sigurdsson', 'gunnar a. sigurdsson')<br/>('2270286', 'Ali Farhadi', 'ali farhadi')<br/>('1737809', 'Abhinav Gupta', 'abhinav gupta')</td><td></td></tr><tr><td>d50751da2997e7ebc89244c88a4d0d18405e8507</td><td></td><td></td><td></td></tr><tr><td>d511e903a882658c9f6f930d6dd183007f508eda</td><td></td><td></td><td></td></tr><tr><td>d50a40f2d24363809a9ac57cf7fbb630644af0e5</td><td>END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE <br/>STEGANOGRAPHY <br/><b>National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan</b><br/>Reveal.ai (Recognition, Vision & Learning) Lab </td><td>('9205693', 'Atique ur Rehman', 'atique ur rehman')<br/>('2695106', 'Sibt ul Hussain', 'sibt ul hussain')</td><td></td></tr><tr><td>d5b5c63c5611d7b911bc1f7e161a0863a34d44ea</td><td>Extracting Scene-dependent Discriminant @@ -27434,7 +34325,16 @@ <br/>local <br/>INTRODUCTION <br/> -</td><td>('2890210', 'Ramchand Hablani', 'ramchand hablani')</td><td></td></tr><tr><td>d24dafe10ec43ac8fb98715b0e0bd8e479985260</td><td>J Nonverbal Behav (2018) 42:81–99 +</td><td>('2890210', 'Ramchand Hablani', 'ramchand hablani')</td><td></td></tr><tr><td>d2eb1079552fb736e3ba5e494543e67620832c52</td><td>ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1 +<br/>DeSTNet: Densely Fused Spatial +<br/>Transformer Networks1 +<br/>Onfido Research +<br/>3 Finsbury Avenue +<br/>London, UK +</td><td>('31336510', 'Roberto Annunziata', 'roberto annunziata')<br/>('3320415', 'Christos Sagonas', 'christos sagonas')<br/>('1997807', 'Jacques Calì', 'jacques calì')</td><td>roberto.annunziata@onfido.com +<br/>christos.sagonas@onfido.com +<br/>jacques.cali@onfido.com +</td></tr><tr><td>d24dafe10ec43ac8fb98715b0e0bd8e479985260</td><td>J Nonverbal Behav (2018) 42:81–99 <br/>https://doi.org/10.1007/s10919-017-0266-z <br/>O R I G I N A L P A P E R <br/>Effects of Social Anxiety on Emotional Mimicry @@ -27448,7 +34348,42 @@ <br/><b>Michigan State University, NEC Laboratories America</b></td><td>('39708770', 'Xi Yin', 'xi yin')<br/>('15644381', 'Xiang Yu', 'xiang yu')<br/>('1729571', 'Kihyuk Sohn', 'kihyuk sohn')<br/>('40022363', 'Xiaoming Liu', 'xiaoming liu')<br/>('2099305', 'Manmohan Chandraker', 'manmohan chandraker')</td><td>{yinxi1,liuxm}@cse.msu.edu,{xiangyu,ksohn,manu}@nec-labs.com </td></tr><tr><td>d280bcbb387b1d548173917ae82cb6944e3ceca6</td><td>FACIAL GRID TRANSFORMATION: A NOVEL FACE REGISTRATION APPROACH FOR <br/>IMPROVING FACIAL ACTION UNIT RECOGNITION -<br/><b>University of South Carolina, Columbia, USA</b></td><td>('3225915', 'Shizhong Han', 'shizhong han')<br/>('3091647', 'Zibo Meng', 'zibo meng')<br/>('40205868', 'Ping Liu', 'ping liu')<br/>('1686235', 'Yan Tong', 'yan tong')</td><td></td></tr><tr><td>d2cd9a7f19600370bce3ea29aba97d949fe0ceb9</td><td>Separability Oriented Preprocessing for +<br/><b>University of South Carolina, Columbia, USA</b></td><td>('3225915', 'Shizhong Han', 'shizhong han')<br/>('3091647', 'Zibo Meng', 'zibo meng')<br/>('40205868', 'Ping Liu', 'ping liu')<br/>('1686235', 'Yan Tong', 'yan tong')</td><td></td></tr><tr><td>d278e020be85a1ccd90aa366b70c43884dd3f798</td><td>Learning From Less Data: Diversified Subset Selection and +<br/>Active Learning in Image Classification Tasks +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>AITOE Labs +<br/>Mumbai, Maharashtra, India +<br/>AITOE Labs +<br/>Mumbai, Maharashtra, India +<br/>Rishabh Iyer +<br/>AITOE Labs +<br/>Seattle, Washington, USA +<br/>AITOE Labs +<br/>Seattle, Washington, USA +<br/>Narsimha Raju +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>May 30, 2018 +</td><td>('3333118', 'Vishal Kaushal', 'vishal kaushal')<br/>('40224337', 'Khoshrav Doctor', 'khoshrav doctor')<br/>('33911191', 'Suyash Shetty', 'suyash shetty')<br/>('10710354', 'Anurag Sahoo', 'anurag sahoo')<br/>('49613683', 'Pankaj Singh', 'pankaj singh')<br/>('1697088', 'Ganesh Ramakrishnan', 'ganesh ramakrishnan')</td><td>vkaushal@cse.iitb.ac.in +<br/>khoshrav@gmail.com +<br/>suyashshetty29@gmail.com +<br/>rishabh@aitoelabs.com +<br/>anurag@aitoelabs.com +<br/>uavnraju@cse.iitb.ac.in +<br/>pr.pankajsingh@gmail.com +<br/>ganesh@cse.iitb.ac.in +</td></tr><tr><td>d26b443f87df76034ff0fa9c5de9779152753f0c</td><td>A GPU-Oriented Algorithm Design for +<br/>Secant-Based Dimensionality Reduction +<br/>Department of Mathematics +<br/><b>Colorado State University</b><br/>Fort Collins, CO 80523-1874 +<br/>tool +<br/>for extracting useful +</td><td>('51042250', 'Henry Kvinge', 'henry kvinge')<br/>('51121534', 'Elin Farnell', 'elin farnell')<br/>('41211081', 'Michael Kirby', 'michael kirby')<br/>('30383278', 'Chris Peterson', 'chris peterson')</td><td></td></tr><tr><td>d2cd9a7f19600370bce3ea29aba97d949fe0ceb9</td><td>Separability Oriented Preprocessing for <br/>Illumination-Insensitive Face Recognition <br/>1 Key Lab of Intelligent Information Processing <br/>of Chinese Academy of Sciences (CAS), @@ -27475,10 +34410,20 @@ <br/>Visual Geometry Group <br/>Department of Engineering Science <br/><b>University of Oxford</b><br/><b>Wolfson College</b><br/>April 2015 -</td><td></td><td></td></tr><tr><td>aafb271684a52a0b23debb3a5793eb618940c5dd</td><td></td><td></td><td></td></tr><tr><td>aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52</td><td>Improved Face Tracking Thanks to Local Features +</td><td></td><td></td></tr><tr><td>aafb271684a52a0b23debb3a5793eb618940c5dd</td><td></td><td></td><td></td></tr><tr><td>aae742779e8b754da7973949992d258d6ca26216</td><td>Robust Facial Expression Classification Using Shape +<br/>and Appearance Features +<br/>Department of Electrical Engineering, +<br/><b>Indian Institute of Technology Kharagpur, India</b></td><td>('2680543', 'Aurobinda Routray', 'aurobinda routray')</td><td></td></tr><tr><td>aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52</td><td>Improved Face Tracking Thanks to Local Features <br/>Correspondence <br/>Department of Information Engineering -<br/><b>University of Brescia</b></td><td>('3134795', 'Alberto Piacenza', 'alberto piacenza')<br/>('1806359', 'Fabrizio Guerrini', 'fabrizio guerrini')<br/>('1741369', 'Riccardo Leonardi', 'riccardo leonardi')</td><td></td></tr><tr><td>aa912375eaf50439bec23de615aa8a31a3395ad3</td><td>International Journal on Cryptography and Information Security(IJCIS),Vol.2, No.2, June 2012 +<br/><b>University of Brescia</b></td><td>('3134795', 'Alberto Piacenza', 'alberto piacenza')<br/>('1806359', 'Fabrizio Guerrini', 'fabrizio guerrini')<br/>('1741369', 'Riccardo Leonardi', 'riccardo leonardi')</td><td></td></tr><tr><td>aab3561acbd19f7397cbae39dd34b3be33220309</td><td>Quantization Mimic: Towards Very Tiny CNN +<br/>for Object Detection +<br/><b>Tsinghua University, Beijing, China</b><br/><b>The Chinese University of Hong Kong, Hong Kong, China</b><br/>3SenseTime, Beijing, China +<br/><b>The University of Sydney, SenseTime Computer Vision Research Group, Sydney</b><br/>New South Wales, Australia +</td><td>('49019561', 'Yi Wei', 'yi wei')<br/>('7418754', 'Xinyu Pan', 'xinyu pan')<br/>('46636770', 'Hongwei Qin', 'hongwei qin')<br/>('1721677', 'Junjie Yan', 'junjie yan')</td><td>wei-y15@mails.tsinghua.edu.cn,THUSEpxy@gmail.com +<br/>qinhongwei@sensetime.com,wanli.ouyang@sydney.edu.au +<br/>yanjunjie@sensetime.com +</td></tr><tr><td>aa912375eaf50439bec23de615aa8a31a3395ad3</td><td>International Journal on Cryptography and Information Security(IJCIS),Vol.2, No.2, June 2012 <br/>Implementation of a New Methodology to Reduce <br/>the Effects of Changes of Illumination in Face <br/>Recognition-based Authentication @@ -27499,9 +34444,18 @@ <br/>International Journal of Computational Engineering Research (IJCER) <br/>Facial Expression Recognition System: A Digital Printing <br/>Application -<br/><b>Jadavpur University, India</b><br/><b>Jadavpur University, India</b></td><td>('2226316', 'Somnath Banerjee', 'somnath banerjee')</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>DYNAMIC PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS FOR VIDEO +<br/><b>Jadavpur University, India</b><br/><b>Jadavpur University, India</b></td><td>('2226316', 'Somnath Banerjee', 'somnath banerjee')</td><td></td></tr><tr><td>aafb8dc8fda3b13a64ec3f1ca7911df01707c453</td><td>Excitation Backprop for RNNs +<br/><b>Boston University 2Pattern Analysis and Computer Vision (PAVIS</b><br/>Istituto Italiano di Tecnologia 3Adobe Research 4Computer Science Department, Universit`a di Verona +<br/>Figure 1: Our proposed framework spatiotemporally highlights/grounds the evidence that an RNN model used in producing a class label +<br/>or caption for a given input video. In this example, by using our proposed back-propagation method, the evidence for the activity class +<br/>CliffDiving is highlighted in a video that contains CliffDiving and HorseRiding. Our model employs a single backward pass to produce +<br/>saliency maps that highlight the evidence that a given RNN used in generating its outputs. +</td><td>('3298267', 'Sarah Adel Bargal', 'sarah adel bargal')<br/>('40063519', 'Andrea Zunino', 'andrea zunino')<br/>('40622560', 'Donghyun Kim', 'donghyun kim')<br/>('1701293', 'Jianming Zhang', 'jianming zhang')<br/>('1727204', 'Vittorio Murino', 'vittorio murino')<br/>('1749590', 'Stan Sclaroff', 'stan sclaroff')</td><td>{sbargal,donhk,sclaroff}@bu.edu, {andrea.zunino,vittorio.murino}@iit.it, jianmzha@adobe.com +</td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>DYNAMIC PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS FOR VIDEO <br/>CLASSIFICATION -<br/><b>Deparment of Computing, Imperial College London, UK</b><br/><b>Deparment of Computing, Goldsmiths, University of London, UK</b><br/><b>Middlesex University London, 4International Hellenic University</b><br/><b>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</b></td><td>('35340264', 'Alessandro Fabris', 'alessandro fabris')<br/>('1752913', 'Mihalis A. Nicolaou', 'mihalis a. nicolaou')<br/>('1754270', 'Irene Kotsia', 'irene kotsia')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td></td></tr><tr><td>aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5</td><td>Biometrics in Ambient Intelligence +<br/><b>Deparment of Computing, Imperial College London, UK</b><br/><b>Deparment of Computing, Goldsmiths, University of London, UK</b><br/><b>Middlesex University London, 4International Hellenic University</b><br/><b>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</b></td><td>('35340264', 'Alessandro Fabris', 'alessandro fabris')<br/>('1752913', 'Mihalis A. Nicolaou', 'mihalis a. nicolaou')<br/>('1754270', 'Irene Kotsia', 'irene kotsia')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td></td></tr><tr><td>aadfcaf601630bdc2af11c00eb34220da59b7559</td><td>Multi-view Hybrid Embedding: +<br/>A Divide-and-Conquer Approach +</td><td>('30443690', 'Jiamiao Xu', 'jiamiao xu')<br/>('2462771', 'Shujian Yu', 'shujian yu')<br/>('1744228', 'Xinge You', 'xinge you')<br/>('3381421', 'Mengjun Leng', 'mengjun leng')<br/>('15132338', 'Xiao-Yuan Jing', 'xiao-yuan jing')<br/>('1697202', 'C. L. Philip Chen', 'c. l. philip chen')</td><td></td></tr><tr><td>aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5</td><td>Biometrics in Ambient Intelligence </td><td>('1725688', 'Massimo Tistarelli', 'massimo tistarelli')</td><td></td></tr><tr><td>aac934f2eed758d4a27562dae4e9c5415ff4cdb7</td><td>TS-LSTM and Temporal-Inception: <br/>Exploiting Spatiotemporal Dynamics for Activity Recognition <br/><b>Georgia Institute of Technology</b><br/>2Georgia Tech Research Institution @@ -27521,6 +34475,10 @@ <br/>iamdh@kaist.ac.kr <br/>minerrba@kaist.ac.kr <br/>cdyoo@ee.kaist.ac.kr +</td></tr><tr><td>aa3c9de34ef140ec812be85bb8844922c35eba47</td><td>Reducing Gender Bias Amplification using Corpus-level Constraints +<br/>Men Also Like Shopping: +<br/><b>University of Virginia</b><br/><b>University of Washington</b></td><td>('3456473', 'Tianlu Wang', 'tianlu wang')<br/>('2064210', 'Mark Yatskar', 'mark yatskar')<br/>('33524946', 'Jieyu Zhao', 'jieyu zhao')<br/>('2782886', 'Kai-Wei Chang', 'kai-wei chang')<br/>('2004053', 'Vicente Ordonez', 'vicente ordonez')</td><td>{jz4fu, tw8cb, vicente, kc2wc}@virginia.edu +<br/>my89@cs.washington.edu </td></tr><tr><td>aa94f214bb3e14842e4056fdef834a51aecef39c</td><td>Reconhecimento de padrões faciais: Um estudo <br/>Universidade Federal <br/>Rural do Semi-Árido @@ -27618,7 +34576,10 @@ <br/>at <br/><b>University College London</b><br/>Department of Computer Science <br/><b>University College London</b><br/>May 26, 2015 -</td><td>('38098063', 'Yun Fu', 'yun fu')</td><td></td></tr><tr><td>af13c355a2a14bb74847aedeafe990db3fc9cbd4</td><td>Happy and Agreeable? Multi-Label Classification of +</td><td>('38098063', 'Yun Fu', 'yun fu')</td><td></td></tr><tr><td>aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a</td><td>Attributes in Multiple Facial Images +<br/><b>West Virginia University, Morgantown</b><br/>WV 26506, USA +</td><td>('1767347', 'Xudong Liu', 'xudong liu')<br/>('1822413', 'Guodong Guo', 'guodong guo')</td><td>xdliu@mix.wvu.edu, guodong.guo@mail.wvu.edu +</td></tr><tr><td>af13c355a2a14bb74847aedeafe990db3fc9cbd4</td><td>Happy and Agreeable? Multi-Label Classification of <br/>Impressions in Social Video <br/><b>Idiap Research Institute</b><br/>Switzerland <br/>Instituto Potosino de @@ -27631,7 +34592,7 @@ </td><td>('2389354', 'Gilberto Chávez-Martínez', 'gilberto chávez-martínez')<br/>('1934619', 'Salvador Ruiz-Correa', 'salvador ruiz-correa')<br/>('1698682', 'Daniel Gatica-Perez', 'daniel gatica-perez')</td><td>gchavez@idiap.ch <br/>src@cmls.pw <br/>gatica@idiap.ch -</td></tr><tr><td>af62621816fbbe7582a7d237ebae1a4d68fcf97d</td><td>International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +</td></tr><tr><td>af6cae71f24ea8f457e581bfe1240d5fa63faaf7</td><td></td><td></td><td></td></tr><tr><td>af62621816fbbe7582a7d237ebae1a4d68fcf97d</td><td>International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 <br/>International Conference on Humming Bird ( 01st March 2014) <br/>RESEARCH ARTICLE <br/> OPEN ACCESS @@ -27639,19 +34600,56 @@ <br/>AncyRija V , Gayathri. S2 <br/><b>AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of</b><br/>Engineering, <br/><b>Gayathri.S, M.E., Vins Christian college of Engineering</b></td><td></td><td>e-mail: ancyrija@gmail.com. -</td></tr><tr><td>af54dd5da722e104740f9b6f261df9d4688a9712</td><td></td><td></td><td></td></tr><tr><td>afe9cfba90d4b1dbd7db1cf60faf91f24d12b286</td><td>Principal Directions of Synthetic Exact Filters +</td></tr><tr><td>afdf9a3464c3b015f040982750f6b41c048706f5</td><td>A Recurrent Encoder-Decoder Network for Sequential Face Alignment +<br/><b>Rutgers University</b><br/>Rogerio Feris +<br/>IBM T. J. Watson +<br/>Snapchat Research +<br/>Dimitris Metaxas +<br/><b>Rutgers University</b></td><td>('4340744', 'Xi Peng', 'xi peng')<br/>('48631738', 'Xiaoyu Wang', 'xiaoyu wang')</td><td>xipeng.cs@rutgers.edu +<br/>rsferis@us.ibm.com +<br/>fanghuaxue@gmail.com +<br/>dnm@cs.rutgers.edu +</td></tr><tr><td>af54dd5da722e104740f9b6f261df9d4688a9712</td><td></td><td></td><td></td></tr><tr><td>afa57e50570a6599508ee2d50a7b8ca6be04834a</td><td>Motion in action : optical flow estimation and action +<br/>localization in videos +<br/>To cite this version: +<br/>Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. <NNT : +<br/>2016GREAM013>. <tel-01407258> +<br/>HAL Id: tel-01407258 +<br/>https://tel.archives-ouvertes.fr/tel-01407258 +<br/>Submitted on 1 Dec 2016 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')<br/>('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')</td><td></td></tr><tr><td>afe9cfba90d4b1dbd7db1cf60faf91f24d12b286</td><td>Principal Directions of Synthetic Exact Filters <br/>for Robust Real-Time Eye Localization <br/>Vitomir ˇStruc1;2, Jerneja ˇZganec Gros1, and Nikola Paveˇsi´c2 <br/>1 Alpineon Ltd, Ulica Iga Grudna 15, SI-1000 Ljubljana, Slovenia, <br/><b>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta</b><br/>SI-1000 Ljubljana, Slovenia, </td><td></td><td>fvitomir.struc, jerneja.grosg@alpineon.com, <br/>fvitomir.struc, nikola.pavesicg@fe.uni-lj.si +</td></tr><tr><td>afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3</td><td>Two-stream Flow-guided Convolutional Attention Networks for Action +<br/>Recognition +<br/><b>National University of Singapore</b><br/>Loong-Fah Cheong +</td><td>('25205026', 'An Tran', 'an tran')</td><td>an.tran@u.nus.edu +<br/>eleclf@nus.edu.sg </td></tr><tr><td>af278274e4bda66f38fd296cfa5c07804fbc26ee</td><td>RESEARCH ARTICLE <br/>A Novel Maximum Entropy Markov Model for <br/>Human Facial Expression Recognition <br/><b>College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi</b><br/><b>do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea</b><br/><b>Innopolis University, Kazan, Russia</b><br/>a11111 <br/>☯ These authors contributed equally to this work. </td><td>('1711083', 'Muhammad Hameed Siddiqi', 'muhammad hameed siddiqi')<br/>('2401685', 'Md. Golam Rabiul Alam', 'md. golam rabiul alam')<br/>('1683244', 'Choong Seon Hong', 'choong seon hong')<br/>('1734679', 'Hyunseung Choo', 'hyunseung choo')</td><td>* choo@skku.edu +</td></tr><tr><td>af654a7ec15168b16382bd604889ea07a967dac6</td><td>FACE RECOGNITION COMMITTEE MACHINE +<br/>Department of Computer Science and Engineering +<br/><b>The Chinese University of Hong Kong</b><br/>Shatin, Hong Kong +</td><td>('2899702', 'Ho-Man Tang', 'ho-man tang')<br/>('1681775', 'Michael R. Lyu', 'michael r. lyu')<br/>('1706259', 'Irwin King', 'irwin king')</td><td> </td></tr><tr><td>afc7092987f0d05f5685e9332d83c4b27612f964</td><td>Person-Independent Facial Expression Detection using Constrained <br/>Local Models </td><td>('1713496', 'Patrick Lucey', 'patrick lucey')<br/>('1820249', 'Simon Lucey', 'simon lucey')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')<br/>('1729760', 'Sridha Sridharan', 'sridha sridharan')</td><td></td></tr><tr><td>b730908bc1f80b711c031f3ea459e4de09a3d324</td><td>2024 @@ -27717,6 +34715,25 @@ <br/>ities that involve two or more persons and objects. The <br/>additional person or object is an important characteristic of </td><td>('7671146', 'Shugang Zhang', 'shugang zhang')<br/>('39868595', 'Zhiqiang Wei', 'zhiqiang wei')<br/>('2896895', 'Jie Nie', 'jie nie')<br/>('40284611', 'Lei Huang', 'lei huang')<br/>('40658604', 'Shuang Wang', 'shuang wang')<br/>('40166799', 'Zhen Li', 'zhen li')<br/>('7671146', 'Shugang Zhang', 'shugang zhang')</td><td>Correspondence should be addressed to Zhen Li; lizhen0130@gmail.com +</td></tr><tr><td>b73795963dc623a634d218d29e4a5b74dfbc79f1</td><td>ZHAO, YANG: IDENTITY PRESERVING FACE COMPLETION FOR LARGE OCULAR RO +<br/>Identity Preserving Face Completion for +<br/>Large Ocular Region Occlusion +<br/>1 Computer Science Department +<br/><b>University of Kentucky</b><br/>Lexington, KY, USA +<br/><b>Institute for Creative Technologies</b><br/><b>University of Southern California</b><br/>Playa Vista, California, USA +<br/>3 School of Computer Science and +<br/>Technology +<br/><b>Harbin Institute of Technology</b><br/>Harbin, China +<br/><b>Hangzhou Institute of Service</b><br/>Engineering +<br/><b>Hangzhou Normal University</b><br/>Hangzhou, China +</td><td>('2613340', 'Yajie Zhao', 'yajie zhao')<br/>('47483055', 'Weikai Chen', 'weikai chen')<br/>('1780032', 'Jun Xing', 'jun xing')<br/>('21515518', 'Xiaoming Li', 'xiaoming li')<br/>('3408065', 'Zach Bessinger', 'zach bessinger')<br/>('1752129', 'Fuchang Liu', 'fuchang liu')<br/>('1724520', 'Wangmeng Zuo', 'wangmeng zuo')<br/>('38958903', 'Ruigang Yang', 'ruigang yang')</td><td>yajie.zhao@uky.edu +<br/>wechen@ict.usc.edu +<br/>junxnui@gmail.com +<br/>hit.xmshr@gmail.com +<br/>zach.bessinger@gmail.com +<br/>20140022@hznu.edu.cn +<br/>cswmzuo@gmail.com +<br/>ryang@cs.uky.edu </td></tr><tr><td>b7cf7bb574b2369f4d7ebc3866b461634147041a</td><td>Neural Comput & Applic (2012) 21:1575–1583 <br/>DOI 10.1007/s00521-011-0728-x <br/>O R I G I N A L A R T I C L E @@ -27724,12 +34741,36 @@ <br/>Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011 <br/>Ó Springer-Verlag London Limited 2011 </td><td>('1692984', 'Jun Yin', 'jun yin')</td><td></td></tr><tr><td>b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24</td><td>Unified Solution to Nonnegative Data Factorization Problems -<br/><b>Huazhong University of Science and Technology, Wuhan, China</b><br/><b>National University of Singapore, Singapore</b></td><td>('1817910', 'Xiaobai Liu', 'xiaobai liu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('2156156', 'Hai Jin', 'hai jin')</td><td></td></tr><tr><td>b7eead8586ffe069edd190956bd338d82c69f880</td><td>A VIDEO DATABASE FOR FACIAL +<br/><b>Huazhong University of Science and Technology, Wuhan, China</b><br/><b>National University of Singapore, Singapore</b></td><td>('1817910', 'Xiaobai Liu', 'xiaobai liu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('2156156', 'Hai Jin', 'hai jin')</td><td></td></tr><tr><td>b7894c1f805ffd90ab4ab06002c70de68d6982ab</td><td>Biomedical Research 2017; Special Issue: S610-S618 +<br/>ISSN 0970-938X +<br/>www.biomedres.info +<br/>A comprehensive age estimation on face images using hybrid filter based +<br/>feature extraction. +<br/>Karthikeyan D1*, Balakrishnan G2 +<br/><b>Srinivasan Engineering College, Perambalur, India</b><br/><b>Indra Ganesan College of Engineering, Trichy, India</b></td><td></td><td></td></tr><tr><td>b7eead8586ffe069edd190956bd338d82c69f880</td><td>A VIDEO DATABASE FOR FACIAL <br/>BEHAVIOR UNDERSTANDING <br/>D. Freire-Obreg´on and M. Castrill´on-Santana. <br/>SIANI, Universidad de Las Palmas de Gran Canaria, Spain </td><td></td><td>dfreire@iusiani.ulpgc.es, mcastrillon@iusiani.ulpgc.es -</td></tr><tr><td>b75cee96293c11fe77ab733fc1147950abbe16f9</td><td></td><td></td><td></td></tr><tr><td>b7f05d0771da64192f73bdb2535925b0e238d233</td><td> MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +</td></tr><tr><td>b75cee96293c11fe77ab733fc1147950abbe16f9</td><td></td><td></td><td></td></tr><tr><td>b7774c096dc18bb0be2acef07ff5887a22c2a848</td><td>Distance metric learning for image and webpage +<br/>comparison +<br/>To cite this version: +<br/>versité Pierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066019>. <tel-01135698v2> +<br/>HAL Id: tel-01135698 +<br/>https://tel.archives-ouvertes.fr/tel-01135698v2 +<br/>Submitted on 18 Mar 2015 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('32868306', 'Marc Teva Law', 'marc teva law')<br/>('32868306', 'Marc Teva Law', 'marc teva law')</td><td></td></tr><tr><td>b7f05d0771da64192f73bdb2535925b0e238d233</td><td> MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan <br/>4-3 <br/>Robust Active Shape Model using AdaBoosted Histogram Classifiers <br/>W ataru Ito @@ -27744,6 +34785,9 @@ <br/>aDept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea <br/>bDept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824 </td><td>('2429013', 'Hyunju Maeng', 'hyunju maeng')<br/>('2131755', 'Hyun-Cheol Choi', 'hyun-cheol choi')<br/>('2222919', 'Unsang Park', 'unsang park')<br/>('1703007', 'Seong-Whan Lee', 'seong-whan lee')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td>{hjmaeng, hcchoi}@korea.ac.kr, parkunsa@cse.msu.edu, swlee@image.korea.ac.kr , jain@cse.msu.edu +</td></tr><tr><td>b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89</td><td>Visual Data Synthesis via GAN for Zero-Shot Video Classification +<br/><b>Institute of Computer Science and Technology, Peking University</b><br/>Beijing 100871, China +</td><td>('2439211', 'Chenrui Zhang', 'chenrui zhang')<br/>('1704081', 'Yuxin Peng', 'yuxin peng')</td><td>pengyuxin@pku.edu.cn </td></tr><tr><td>b7b461f82c911f2596b310e2b18dd0da1d5d4491</td><td>2961 <br/>2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) <br/>978-1-4799-2893-4/14/$31.00 ©2014 IEEE @@ -27756,7 +34800,8 @@ <br/>(cid:2) <br/>(cid:3) <br/>(cid:4) -</td><td>('3149531', 'Arthur Szlam', 'arthur szlam')</td><td></td></tr><tr><td>b73fdae232270404f96754329a1a18768974d3f6</td><td></td><td></td><td></td></tr><tr><td>b7c5f885114186284c51e863b58292583047a8b4</td><td>GAdaBoost: Accelerating Adaboost Feature Selection with Genetic +</td><td>('3149531', 'Arthur Szlam', 'arthur szlam')</td><td></td></tr><tr><td>b73fdae232270404f96754329a1a18768974d3f6</td><td></td><td></td><td></td></tr><tr><td>b76af8fcf9a3ebc421b075b689defb6dc4282670</td><td>Face Mask Extraction in Video Sequence +</td><td>('2563750', 'Yujiang Wang', 'yujiang wang')</td><td></td></tr><tr><td>b7c5f885114186284c51e863b58292583047a8b4</td><td>GAdaBoost: Accelerating Adaboost Feature Selection with Genetic <br/>Algorithms <br/><b>The American University In Cairo, Road 90, New Cairo, Cairo, Egypt</b><br/>Keywords: <br/>Object Detection, Genetic Algorithms, Haar Features, Adaboost, Face Detection. @@ -27782,7 +34827,11 @@ <br/>Handling missing weak classifiers in boosted <br/>cascade: application to multiview and <br/>occluded face detection -</td><td>('3212236', 'Pierre Bouges', 'pierre bouges')<br/>('1865978', 'Thierry Chateau', 'thierry chateau')<br/>('32323470', 'Christophe Blanc', 'christophe blanc')<br/>('1685767', 'Gaëlle Loosli', 'gaëlle loosli')</td><td></td></tr><tr><td>db1f48a7e11174d4a724a4edb3a0f1571d649670</td><td>Joint Constrained Clustering and Feature +</td><td>('3212236', 'Pierre Bouges', 'pierre bouges')<br/>('1865978', 'Thierry Chateau', 'thierry chateau')<br/>('32323470', 'Christophe Blanc', 'christophe blanc')<br/>('1685767', 'Gaëlle Loosli', 'gaëlle loosli')</td><td></td></tr><tr><td>db848c3c32464d12da33b2f4c3a29fe293fc35d1</td><td>Pose Guided Human Video Generation +<br/>1 CUHK-SenseTime Joint Lab, CUHK, Hong Kong S.A.R. +<br/>2 SenseTime Research, Beijing, China +<br/><b>Carnegie Mellon University</b></td><td>('49984891', 'Ceyuan Yang', 'ceyuan yang')<br/>('1915826', 'Zhe Wang', 'zhe wang')<br/>('22689408', 'Xinge Zhu', 'xinge zhu')<br/>('2000034', 'Chen Huang', 'chen huang')<br/>('1788070', 'Jianping Shi', 'jianping shi')<br/>('1807606', 'Dahua Lin', 'dahua lin')</td><td>yangceyuan@sensetime.com +</td></tr><tr><td>db1f48a7e11174d4a724a4edb3a0f1571d649670</td><td>Joint Constrained Clustering and Feature <br/>Learning based on Deep Neural Networks <br/>by <br/><b>B.Sc., University of Science and Technology of China</b><br/>Thesis Submitted in Partial Fulfillment of the @@ -27803,13 +34852,48 @@ <br/>Volume 4, Issue 6 (June 2015), PP.169-169-174 <br/>Characteristic Based Image Search using Re-Ranking method <br/>1Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar -<br/><b></b></td><td></td><td></td></tr><tr><td>dbaf89ca98dda2c99157c46abd136ace5bdc33b3</td><td>Nonlinear Cross-View Sample Enrichment for +<br/><b></b></td><td></td><td></td></tr><tr><td>dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a</td><td>PARKHI et al.: DEEP FACE RECOGNITION +<br/>Deep Face Recognition +<br/>Visual Geometry Group +<br/>Department of Engineering Science +<br/><b>University of Oxford</b></td><td>('3188342', 'Omkar M. Parkhi', 'omkar m. parkhi')<br/>('1687524', 'Andrea Vedaldi', 'andrea vedaldi')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>omkar@robots.ox.ac.uk +<br/>vedaldi@robots.ox.ac.uk +<br/>az@robots.ox.ac.uk +</td></tr><tr><td>dbaf89ca98dda2c99157c46abd136ace5bdc33b3</td><td>Nonlinear Cross-View Sample Enrichment for <br/>Action Recognition <br/>Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI -</td><td>('1695223', 'Ling Wang', 'ling wang')<br/>('1692389', 'Hichem Sahbi', 'hichem sahbi')</td><td></td></tr><tr><td>dbab6ac1a9516c360cdbfd5f3239a351a64adde7</td><td></td><td></td><td></td></tr><tr><td>dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8</td><td>Chapter 7 +</td><td>('1695223', 'Ling Wang', 'ling wang')<br/>('1692389', 'Hichem Sahbi', 'hichem sahbi')</td><td></td></tr><tr><td>dbab6ac1a9516c360cdbfd5f3239a351a64adde7</td><td></td><td></td><td></td></tr><tr><td>dbe255d3d2a5d960daaaba71cb0da292e0af36a7</td><td>Evolutionary Cost-sensitive Extreme Learning +<br/>Machine +<br/>1 +</td><td>('36904370', 'Lei Zhang', 'lei zhang')</td><td></td></tr><tr><td>dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8</td><td>Chapter 7 <br/>Machine Learning Techniques <br/>for Face Analysis -</td><td>('9301018', 'Roberto Valenti', 'roberto valenti')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')<br/>('1774778', 'Ira Cohen', 'ira cohen')</td><td></td></tr><tr><td>dba493caf6647214c8c58967a8251641c2bda4c2</td><td>Automatic 3D Facial Expression Editing in Videos +</td><td>('9301018', 'Roberto Valenti', 'roberto valenti')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')<br/>('1774778', 'Ira Cohen', 'ira cohen')</td><td></td></tr><tr><td>db5a00984fa54b9d2a1caad0067a9ff0d0489517</td><td>Multi-Task Adversarial Network for Disentangled Feature Learning +<br/>Ian Wassell1 +<br/><b>University of Cambridge</b><br/>2Adobe Research +</td><td>('49421489', 'Yang Liu', 'yang liu')<br/>('48707577', 'Zhaowen Wang', 'zhaowen wang')</td><td>1{yl504,ijw24}@cam.ac.uk +<br/>2{zhawang,hljin}@adobe.com +</td></tr><tr><td>dbd958ffedc3eae8032be67599ec281310c05630</td><td>Automated Restyling of Human Portrait Based on Facial Expression Recognition +<br/>and 3D Reconstruction +<br/><b>Stanford University</b><br/>350 Serra Mall, Stanford, CA 94305, USA +</td><td>('46740443', 'Cheng-Han Wu', 'cheng-han wu')</td><td>1chw0208@stanford.edu +<br/>2hsinc@stanford.edu +</td></tr><tr><td>dbed26cc6d818b3679e46677abc9fa8e04e8c6a6</td><td>A Hierarchical Generative Model for Eye Image Synthesis and Eye Gaze +<br/>Estimation +<br/><b>ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA</b></td><td>('1771700', 'Kang Wang', 'kang wang')<br/>('49832825', 'Rui Zhao', 'rui zhao')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>{wangk10, zhaor, jiq}@rpi.edu +</td></tr><tr><td>db3545a983ffd24c97c18bf7f068783102548ad7</td><td>Enriching the Student Model in an +<br/>Intelligent Tutoring System +<br/>Submitted in partial fulfillment of the requirements for the degree +<br/>of Doctor of Philosophy +<br/>of the +<br/><b>Indian Institute of Technology, Bombay, India</b><br/>and +<br/><b>Monash University, Australia</b><br/>by +<br/>Supervisors: +<br/>The course of study for this award was developed jointly by +<br/><b>the Indian Institute of Technology, Bombay and Monash University, Australia</b><br/>and given academic recognition by each of them. +<br/>The programme was administered by The IITB-Monash Research Academy. +<br/>2014 +</td><td>('2844237', 'Ramkumar Rajendran', 'ramkumar rajendran')<br/>('1946438', 'Sridhar Iyer', 'sridhar iyer')<br/>('1791910', 'Sahana Murthy', 'sahana murthy')<br/>('38751653', 'Campbell Wilson', 'campbell wilson')<br/>('1727078', 'Judithe Sheard', 'judithe sheard')</td><td></td></tr><tr><td>dba493caf6647214c8c58967a8251641c2bda4c2</td><td>Automatic 3D Facial Expression Editing in Videos <br/><b>University of California, Santa Barbara</b><br/>2IMPA – Instituto de Matematica Pura e Aplicada </td><td>('13303219', 'Ya Chang', 'ya chang')<br/>('2428542', 'Marcelo Vieira', 'marcelo vieira')<br/>('1752714', 'Matthew Turk', 'matthew turk')<br/>('1705620', 'Luiz Velho', 'luiz velho')</td><td></td></tr><tr><td>dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57</td><td>Face Image Analysis With <br/>Convolutional Neural Networks @@ -27842,16 +34926,24 @@ <br/><b>UniversityofMaryland</b><br/>Princeton,NJ <br/><b>CollegePark, MD</b></td><td></td><td>Email:wzhao@sarno(cid:11).com <br/>Email:rama@cfar.umd.edu -</td></tr><tr><td>db82f9101f64d396a86fc2bd05b352e433d88d02</td><td>A Spatio-Temporal Probabilistic Framework for +</td></tr><tr><td>db67edbaeb78e1dd734784cfaaa720ba86ceb6d2</td><td>SPECFACE - A Dataset of Human Faces Wearing Spectacles +<br/><b>Indian Institute of Technology Kharagpur</b><br/>India +</td><td>('30654921', 'Anirban Dasgupta', 'anirban dasgupta')<br/>('30572870', 'Shubhobrata Bhattacharya', 'shubhobrata bhattacharya')<br/>('2680543', 'Aurobinda Routray', 'aurobinda routray')</td><td></td></tr><tr><td>db82f9101f64d396a86fc2bd05b352e433d88d02</td><td>A Spatio-Temporal Probabilistic Framework for <br/>Dividing and Predicting Facial Action Units <br/><b>Electrical and Computer Engineering, The University of Memphis</b></td><td>('2497319', 'Md. Iftekhar Tanveer', 'md. iftekhar tanveer')<br/>('1828610', 'Mohammed Yeasin', 'mohammed yeasin')</td><td></td></tr><tr><td>db428d03e3dfd98624c23e0462817ad17ef14493</td><td>Oxford TRECVID 2006 – Notebook paper <br/>Department of Engineering Science <br/><b>University of Oxford</b><br/>United Kingdom </td><td>('2276542', 'James Philbin', 'james philbin')<br/>('8873555', 'Anna Bosch', 'anna bosch')<br/>('1720149', 'Jan-Mark Geusebroek', 'jan-mark geusebroek')<br/>('1782755', 'Josef Sivic', 'josef sivic')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td></td></tr><tr><td>a83fc450c124b7e640adc762e95e3bb6b423b310</td><td>Deep Face Feature for Face Alignment -</td><td>('15679675', 'Boyi Jiang', 'boyi jiang')<br/>('2938279', 'Juyong Zhang', 'juyong zhang')<br/>('2964129', 'Bailin Deng', 'bailin deng')<br/>('8280113', 'Yudong Guo', 'yudong guo')<br/>('1724542', 'Ligang Liu', 'ligang liu')</td><td></td></tr><tr><td>a8117a4733cce9148c35fb6888962f665ae65b1e</td><td>IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X +</td><td>('15679675', 'Boyi Jiang', 'boyi jiang')<br/>('2938279', 'Juyong Zhang', 'juyong zhang')<br/>('2964129', 'Bailin Deng', 'bailin deng')<br/>('8280113', 'Yudong Guo', 'yudong guo')<br/>('1724542', 'Ligang Liu', 'ligang liu')</td><td></td></tr><tr><td>a85e9e11db5665c89b057a124547377d3e1c27ef</td><td>Dynamics of Driver’s Gaze: Explorations in +<br/>Behavior Modeling & Maneuver Prediction +</td><td>('1841835', 'Sujitha Martin', 'sujitha martin')<br/>('22254044', 'Sourabh Vora', 'sourabh vora')<br/>('2812409', 'Kevan Yuen', 'kevan yuen')</td><td></td></tr><tr><td>a8117a4733cce9148c35fb6888962f665ae65b1e</td><td>IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X <br/>A Good Practice Towards Top Performance of Face <br/>Recognition: Transferred Deep Feature Fusion -</td><td>('33419682', 'Lin Xiong', 'lin xiong')<br/>('1785111', 'Jayashree Karlekar', 'jayashree karlekar')<br/>('2052311', 'Jian Zhao', 'jian zhao')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('2668358', 'Sugiri Pranata', 'sugiri pranata')<br/>('3493398', 'Shengmei Shen', 'shengmei shen')</td><td></td></tr><tr><td>a820941eaf03077d68536732a4d5f28d94b5864a</td><td>Leveraging Datasets with Varying Annotations for Face Alignment +</td><td>('33419682', 'Lin Xiong', 'lin xiong')<br/>('1785111', 'Jayashree Karlekar', 'jayashree karlekar')<br/>('2052311', 'Jian Zhao', 'jian zhao')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('2668358', 'Sugiri Pranata', 'sugiri pranata')<br/>('3493398', 'Shengmei Shen', 'shengmei shen')</td><td></td></tr><tr><td>a87ab836771164adb95d6744027e62e05f47fd96</td><td>Understanding human-human interactions: a survey +<br/><b>Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands</b><br/><b>Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands</b></td><td>('26936326', 'Alexandros Stergiou', 'alexandros stergiou')<br/>('1754666', 'Ronald Poppe', 'ronald poppe')</td><td></td></tr><tr><td>a896ddeb0d253739c9aaef7fc1f170a2ba8407d3</td><td>SSH: Single Stage Headless Face Detector +<br/><b>University of Maryland</b></td><td>('40465379', 'Mahyar Najibi', 'mahyar najibi')<br/>('3383048', 'Pouya Samangouei', 'pouya samangouei')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td>{pouya,rama,lsd}@umiacs.umd.edu +<br/>najibi@cs.umd.edu +</td></tr><tr><td>a820941eaf03077d68536732a4d5f28d94b5864a</td><td>Leveraging Datasets with Varying Annotations for Face Alignment <br/>via Deep Regression Network <br/>1Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), <br/><b>Institute of Computing Technology, CAS, Beijing 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing 100049, China</b><br/>3CAS Center for Excellence in Brain Science and Intelligence Technology @@ -27909,7 +35001,31 @@ <br/>Simultaneously Learning Neighborship and <br/>Projection Matrix for Supervised <br/>Dimensionality Reduction -</td><td>('34116743', 'Yanwei Pang', 'yanwei pang')<br/>('2521321', 'Bo Zhou', 'bo zhou')<br/>('1688370', 'Feiping Nie', 'feiping nie')</td><td></td></tr><tr><td>a8638a07465fe388ae5da0e8a68e62a4ee322d68</td><td>How to predict the global instantaneous feeling induced +</td><td>('34116743', 'Yanwei Pang', 'yanwei pang')<br/>('2521321', 'Bo Zhou', 'bo zhou')<br/>('1688370', 'Feiping Nie', 'feiping nie')</td><td></td></tr><tr><td>a803453edd2b4a85b29da74dcc551b3c53ff17f9</td><td>Pose Invariant Face Recognition Under Arbitrary +<br/>Illumination Based on 3D Face Reconstruction +<br/><b>School of Computer Science and Technology, Harbin Institute of Technology</b><br/>150001 Harbin, China +<br/>2 ICT-ISVISION Joint R&D Lab for Face Recognition, ICT, CAS, 100080 Beijing, China +</td><td>('1695600', 'Xiujuan Chai', 'xiujuan chai')<br/>('2343895', 'Laiyun Qing', 'laiyun qing')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')<br/>('1698902', 'Wen Gao', 'wen gao')</td><td>{xjchai,xlchen,wgao}@jdl.ac.cn +<br/>{lyqing,sgshan}@jdl.ac.cn +</td></tr><tr><td>a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8</td><td>This is a repository copy of Modelling of Orthogonal Craniofacial Profiles. +<br/>White Rose Research Online URL for this paper: +<br/>http://eprints.whiterose.ac.uk/131767/ +<br/>Version: Published Version +<br/>Article: +<br/>Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian +<br/>(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X +<br/>https://doi.org/10.3390/jimaging3040055 +<br/>Reuse +<br/>This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +<br/>allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +<br/>authors for the original work. More information and the full terms of the licence here: +<br/>https://creativecommons.org/licenses/ +<br/>Takedown +<br/>If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +<br/>https://eprints.whiterose.ac.uk/ +</td><td></td><td>emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. +<br/>eprints@whiterose.ac.uk +</td></tr><tr><td>a8638a07465fe388ae5da0e8a68e62a4ee322d68</td><td>How to predict the global instantaneous feeling induced <br/>by a facial picture? <br/>To cite this version: <br/>feeling induced by a facial picture?. Signal Processing: Image Communication, Elsevier, 2015, @@ -27930,7 +35046,9 @@ <br/>publics ou priv´es. </td><td>('25030249', 'Arnaud Lienhard', 'arnaud lienhard')<br/>('2216412', 'Patricia Ladret', 'patricia ladret')<br/>('1788869', 'Alice Caplier', 'alice caplier')<br/>('25030249', 'Arnaud Lienhard', 'arnaud lienhard')<br/>('2216412', 'Patricia Ladret', 'patricia ladret')<br/>('1788869', 'Alice Caplier', 'alice caplier')</td><td></td></tr><tr><td>a8e75978a5335fd3deb04572bb6ca43dbfad4738</td><td>Sparse Graphical Representation based Discriminant <br/>Analysis for Heterogeneous Face Recognition -</td><td>('2299758', 'Chunlei Peng', 'chunlei peng')<br/>('10699750', 'Xinbo Gao', 'xinbo gao')<br/>('2870173', 'Nannan Wang', 'nannan wang')<br/>('38158055', 'Jie Li', 'jie li')</td><td></td></tr><tr><td>a8583e80a455507a0f146143abeb35e769d25e4e</td><td>A DISTANCE-ACCURACY HYBRID WEIGHTED VOTING SCHEME +</td><td>('2299758', 'Chunlei Peng', 'chunlei peng')<br/>('10699750', 'Xinbo Gao', 'xinbo gao')<br/>('2870173', 'Nannan Wang', 'nannan wang')<br/>('38158055', 'Jie Li', 'jie li')</td><td></td></tr><tr><td>a8d52265649c16f95af71d6f548c15afc85ac905</td><td>Situation Recognition with Graph Neural Networks +<br/><b>The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent</b><br/><b>Uber Advanced Technologies Group, 5Vector Institute</b></td><td>('8139953', 'Ruiyu Li', 'ruiyu li')<br/>('2103464', 'Makarand Tapaswi', 'makarand tapaswi')<br/>('2246396', 'Renjie Liao', 'renjie liao')<br/>('1729056', 'Jiaya Jia', 'jiaya jia')<br/>('2422559', 'Raquel Urtasun', 'raquel urtasun')<br/>('37895334', 'Sanja Fidler', 'sanja fidler')</td><td>ryli@cse.cuhk.edu.hk, {makarand,rjliao,urtasun,fidler}@cs.toronto.edu, leojia9@gmail.com +</td></tr><tr><td>a8583e80a455507a0f146143abeb35e769d25e4e</td><td>A DISTANCE-ACCURACY HYBRID WEIGHTED VOTING SCHEME <br/>FOR PARTIAL FACE RECOGNITION <br/>1Dept. of Information Engineering and Computer Science, <br/><b>Feng Chia University, Taichung, Taiwan</b><br/>2Department of Photonics, @@ -27960,6 +35078,34 @@ <br/>heesung.kwon.civ@mail.mil <br/>nasser.nasrabadi@mail.wvu.edu <br/>rama@umiacs.umd.edu +</td></tr><tr><td>a8a61badec9b8bc01f002a06e1426a623456d121</td><td>JOINT SPATIO-TEMPORAL ACTION LOCALIZATION +<br/>IN UNTRIMMED VIDEOS WITH PER-FRAME SEGMENTATION +<br/><b>Xi an Jiaotong University</b><br/>2HERE Technologies +<br/>3Alibaba Group +<br/>4Microsoft Research +</td><td>('46809347', 'Xuhuan Duan', 'xuhuan duan')<br/>('40367806', 'Le Wang', 'le wang')<br/>('51262903', 'Changbo Zhai', 'changbo zhai')<br/>('46324995', 'Qilin Zhang', 'qilin zhang')<br/>('1786361', 'Zhenxing Niu', 'zhenxing niu')<br/>('1715389', 'Nanning Zheng', 'nanning zheng')<br/>('1745420', 'Gang Hua', 'gang hua')</td><td></td></tr><tr><td>a8154d043f187c6640cb6aedeaa8385a323e46cf</td><td>MURRUGARRA, KOVASHKA: IMAGE RETRIEVAL WITH MIXED INITIATIVE +<br/>Image Retrieval with Mixed Initiative and +<br/>Multimodal Feedback +<br/>Department of Computer Science +<br/><b>University of Pittsburgh</b><br/>Pittsburgh, PA, USA +</td><td>('1916866', 'Nils Murrugarra-Llerena', 'nils murrugarra-llerena')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td>nineil@cs.pitt.edu +<br/>kovashka@cs.pitt.edu +</td></tr><tr><td>a812368fe1d4a186322bf72a6d07e1cf60067234</td><td><b>Imperial College London</b><br/>Department of Computing +<br/>Gaussian Processes +<br/>for Modeling of Facial Expressions +<br/>September, 2016 +<br/>Supervised by Prof. Maja Pantic +<br/>Submitted in part fulfilment of the requirements for the degree of PhD in Computing and +<br/><b>the Diploma of Imperial College London. This thesis is entirely my own work, and, except</b><br/>where otherwise indicated, describes my own research. +</td><td>('2308430', 'Stefanos Eleftheriadis', 'stefanos eleftheriadis')</td><td></td></tr><tr><td>de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0</td><td>Merge or Not? Learning to Group Faces via Imitation Learning +<br/>SenseTime +<br/>SenseTime +<br/>SenseTime +<br/>Chen Chang Loy +<br/><b>The Chinese University of Hong Kong</b></td><td>('49990550', 'Yue He', 'yue he')<br/>('9963152', 'Kaidi Cao', 'kaidi cao')<br/>('46651787', 'Cheng Li', 'cheng li')</td><td>heyue@sensetime.com +<br/>caokaidi@sensetime.com +<br/>chengli@sensetime.com +<br/>ccloy@ie.cuhk.edu.hk </td></tr><tr><td>de8381903c579a4fed609dff3e52a1dc51154951</td><td><b>Graz University of Technology</b><br/><b>Institute for Computer Graphics and Vision</b><br/>Dissertation <br/>Shape and Appearance Based Analysis <br/>of Facial Images for Assessing ICAO @@ -27968,7 +35114,22 @@ <br/>Thesis supervisors <br/>Prof. Dr. Horst Bischof <br/>Prof. Dr. Fernando De la Torre -</td><td>('3464430', 'Markus Storer', 'markus storer')</td><td></td></tr><tr><td>de15af84b1257211a11889b6c2adf0a2bcf59b42</td><td>Anomaly Detection in Non-Stationary and +</td><td>('3464430', 'Markus Storer', 'markus storer')</td><td></td></tr><tr><td>ded968b97bd59465d5ccda4f1e441f24bac7ede5</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Large scale 3D Morphable Models +<br/>Zafeiriou +<br/>Received: date / Accepted: date +</td><td>('47456731', 'James Booth', 'james booth')</td><td></td></tr><tr><td>de0eb358b890d92e8f67592c6e23f0e3b2ba3f66</td><td>ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL. +<br/>Inference-Based Similarity Search in +<br/>Randomized Montgomery Domains for +<br/>Privacy-Preserving Biometric Identification +</td><td>('46393453', 'Yi Wang', 'yi wang')<br/>('2087574', 'Jianwu Wan', 'jianwu wan')<br/>('39954962', 'Jun Guo', 'jun guo')<br/>('32840387', 'Yiu-ming Cheung', 'yiu-ming cheung')</td><td></td></tr><tr><td>def569db592ed1715ae509644444c3feda06a536</td><td>Discovery and usage of joint attention in images +<br/><b>Weizmann Institute of Science, Rehovot, Israel</b><br/><b>The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA</b><br/><b>Massachusetts Institute of Technology, Cambridge, MA USA</b><br/><b>Weizmann Institute of Science, Rehovot, Israel</b></td><td></td><td>Daniel Harari (hararid@weizmann.ac.il) +<br/>Joshua B. Tenenbaum (jbt@mit.edu) +<br/>Shimon Ullman (shimon.ullman@weizmann.ac.il) +</td></tr><tr><td>dee406a7aaa0f4c9d64b7550e633d81bc66ff451</td><td>Content-Adaptive Sketch Portrait Generation by +<br/>Decompositional Representation Learning +</td><td>('8335563', 'Dongyu Zhang', 'dongyu zhang')<br/>('1737218', 'Liang Lin', 'liang lin')<br/>('1765674', 'Tianshui Chen', 'tianshui chen')<br/>('1738906', 'Xian Wu', 'xian wu')<br/>('1989769', 'Wenwei Tan', 'wenwei tan')<br/>('1732655', 'Ebroul Izquierdo', 'ebroul izquierdo')</td><td></td></tr><tr><td>de15af84b1257211a11889b6c2adf0a2bcf59b42</td><td>Anomaly Detection in Non-Stationary and <br/>Distributed Environments <br/>Colin O’Reilly <br/>Submitted for the Degree of @@ -27978,18 +35139,112 @@ <br/><b>University of Surrey</b><br/>Guildford, Surrey GU2 7XH, U.K. <br/>November 2014 <br/>© Colin O’Reilly 2014 -</td><td></td><td></td></tr><tr><td>dedabf9afe2ae4a1ace1279150e5f1d495e565da</td><td>3294 +</td><td></td><td></td></tr><tr><td>de3285da34df0262a4548574c2383c51387a24bf</td><td>Two-Stream Convolutional Networks for Dynamic Texture Synthesis +<br/>Department of Electrical Engineering and Computer Science +<br/><b>York University, Toronto</b></td><td>('19251410', 'Matthew Tesfaldet', 'matthew tesfaldet')</td><td>{mtesfald,mab}@eecs.yorku.ca +</td></tr><tr><td>dedabf9afe2ae4a1ace1279150e5f1d495e565da</td><td>3294 <br/>Robust Face Recognition With Structurally <br/>Incoherent Low-Rank Matrix Decomposition -</td><td>('2017922', 'Chia-Po Wei', 'chia-po wei')<br/>('2624492', 'Chih-Fan Chen', 'chih-fan chen')<br/>('2733735', 'Yu-Chiang Frank Wang', 'yu-chiang frank wang')</td><td></td></tr><tr><td>de398bd8b7b57a3362c0c677ba8bf9f1d8ade583</td><td>Hierarchical Bayesian Theme Models for +</td><td>('2017922', 'Chia-Po Wei', 'chia-po wei')<br/>('2624492', 'Chih-Fan Chen', 'chih-fan chen')<br/>('2733735', 'Yu-Chiang Frank Wang', 'yu-chiang frank wang')</td><td></td></tr><tr><td>dec0c26855da90876c405e9fd42830c3051c2f5f</td><td>Supplementary Material: Learning Compositional Visual Concepts with Mutual +<br/>Consistency +<br/><b>School of Electrical and Computer Engineering, Cornell University, Ithaca NY</b><br/>3Siemens Corporate Technology, Princeton NJ +<br/>Contents +<br/>1. Objective functions +<br/>1.1. Adversarial loss +<br/>1.2. Extended cycle-consistency loss . +<br/>1.3. Commutative loss +<br/>. . . +<br/>. . . +<br/>. . . +<br/>2. Additional implementation details +<br/>3. Additional results +<br/>4. Discussion +<br/>5. Generalizing ConceptGAN +<br/>5.1. Assumption: Concepts have distinct states . . +<br/>5.2. Assumption: Concepts are mutually compatible +<br/>5.3. Generalization . +<br/>. . . +<br/>1. Objective functions +<br/>In this section, we provide complete mathematical +<br/>expressions for each of the three terms in our loss func- +<br/>tion, following the notation defined in Section 3 of the main +<br/>paper and the assumption that no training data is available +<br/>in subdomain Σ11. +<br/>1.1. Adversarial loss +<br/>For generator G1 and discriminator D10, for example, +<br/>the adversarial loss is expressed as: +<br/>Ladv(G1, D10, Σ00, Σ10) = Eσ10∼P10 [log D10(σ10)] +<br/>+Eσ00∼P00[log(1 − D10(G1(σ00)))] +<br/>(1) +<br/>where the generator G1 and discriminator D10 are +<br/>learned to optimize a minimax objective such that +<br/>G∗ +<br/>1 = arg min +<br/>G1 +<br/>max +<br/>D10 +<br/>Ladv(G1, D10, Σ00, Σ10) +<br/>(2) +<br/>For generator G2 and discriminator D01, the adversarial +<br/>loss is expressed as: +<br/>Ladv(G2, D01, Σ00, Σ01) = Eσ01∼P01 [log D01(σ01)] +<br/>+Eσ00∼P00[log(1 − D01(G2(σ00)))] +<br/>For generator F1 and discriminator D00, the adversarial +<br/>loss is expressed as: +<br/>Ladv(F1, D00, Σ10, Σ00) = Eσ00∼P00 [log D00(σ00)] +<br/>+Eσ10∼P10 [log(1 − D00(F1(σ10)))] +<br/>For generator F2 and discriminator D00, the adversarial +<br/>loss is expressed as: +<br/>Ladv(F2, D00, Σ01, Σ00) = Eσ00∼P00 [log D00(σ00)] +<br/>+Eσ01∼P01 [log(1 − D00(F2(σ01)))] +<br/>(5) +<br/>The overall adversarial loss LADV is the sum of these four +<br/>terms. +<br/>(3) +<br/>(4) +<br/>(6) +<br/>LADV =Ladv(G1, D10, Σ00, Σ10) +<br/>+ Ladv(G2, D01, Σ00, Σ01) +<br/>+ Ladv(F1, D00, Σ10, Σ00) +<br/>+ Ladv(F2, D00, Σ01, Σ00) +<br/>1.2. Extended cycle-consistency loss +<br/>Following our discussion in Section 3.2 of the main +<br/>paper, for any data sample σ00 in subdomain Σ00, a +<br/>distance-4 cycle consistency constraint is defined in the +<br/>clockwise direction (F2 ◦ F1 ◦ G2 ◦ G1)(σ00) ≈ σ00 and in +<br/>the counterclockwise direction (F1 ◦ F2 ◦ G1 ◦ G2)(σ00) ≈ +<br/>σ00. Such constraints are implemented by the penalty func- +<br/>tion: +<br/>Lcyc4(G, F, Σ00) +<br/>= Eσ00∼P00[(cid:107)(F2 ◦ F1 ◦ G2 ◦ G1)(σ00) − σ00(cid:107)1] +<br/>+ Eσ00∼P00[(cid:107)(F1 ◦ F2 ◦ G1 ◦ G2)(σ00) − σ00(cid:107)1]. +<br/>(7) +</td><td>('3303727', 'Yunye Gong', 'yunye gong')<br/>('1976152', 'Srikrishna Karanam', 'srikrishna karanam')<br/>('3311781', 'Ziyan Wu', 'ziyan wu')<br/>('2692770', 'Kuan-Chuan Peng', 'kuan-chuan peng')<br/>('39497207', 'Jan Ernst', 'jan ernst')<br/>('1767099', 'Peter C. Doerschuk', 'peter c. doerschuk')</td><td>{yg326,pd83}@cornell.edu,{first.last}@siemens.com +</td></tr><tr><td>de398bd8b7b57a3362c0c677ba8bf9f1d8ade583</td><td>Hierarchical Bayesian Theme Models for <br/>Multi-pose Facial Expression Recognition </td><td>('3069077', 'Qirong Mao', 'qirong mao')<br/>('1851510', 'Qiyu Rao', 'qiyu rao')<br/>('1770550', 'Yongbin Yu', 'yongbin yu')<br/>('1710341', 'Ming Dong', 'ming dong')</td><td></td></tr><tr><td>ded41c9b027c8a7f4800e61b7cfb793edaeb2817</td><td></td><td></td><td></td></tr><tr><td>defa8774d3c6ad46d4db4959d8510b44751361d8</td><td>FEBEI - Face Expression Based Emoticon Identification <br/>CS - B657 Computer Vision <br/>Robert J Henderson - rojahend -</td><td>('1854614', 'Nethra Chandrasekaran', 'nethra chandrasekaran')<br/>('1830695', 'Prashanth Kumar Murali', 'prashanth kumar murali')</td><td></td></tr><tr><td>b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89</td><td>Deep Alternative Neural Network: Exploring +</td><td>('1854614', 'Nethra Chandrasekaran', 'nethra chandrasekaran')<br/>('1830695', 'Prashanth Kumar Murali', 'prashanth kumar murali')</td><td></td></tr><tr><td>b0c512fcfb7bd6c500429cbda963e28850f2e948</td><td></td><td></td><td></td></tr><tr><td>b08203fca1af7b95fda8aa3d29dcacd182375385</td><td>OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY RECOGNITION +<br/><b>U.S. Army Research Laboratory, Adelphi, MD, USA</b><br/>§Booz Allen Hamilton Inc., McLean, VA, USA +</td><td>('3090299', 'Sungmin Eum', 'sungmin eum')<br/>('39412489', 'Christopher Reale', 'christopher reale')<br/>('1688527', 'Heesung Kwon', 'heesung kwon')<br/>('3202888', 'Claire Bonial', 'claire bonial')</td><td></td></tr><tr><td>b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89</td><td>Deep Alternative Neural Network: Exploring <br/>Contexts as Early as Possible for Action Recognition <br/><b>School of Electronics Engineering and Computer Science, Peking University</b><br/><b>School of Electronics and Computer Engineering, Peking University</b></td><td>('3258842', 'Jinzhuo Wang', 'jinzhuo wang')<br/>('1788029', 'Wenmin Wang', 'wenmin wang')<br/>('8082703', 'Xiongtao Chen', 'xiongtao chen')<br/>('1702330', 'Ronggang Wang', 'ronggang wang')<br/>('1698902', 'Wen Gao', 'wen gao')</td><td>jzwang@pku.edu.cn, wangwm@ece.pku.edu.cn <br/>cxt@pku.edu.cn, rgwang@ece.pku.edu.cn, wgao@pku.edu.cn +</td></tr><tr><td>b09b693708f412823053508578df289b8403100a</td><td>WANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS +<br/>Two-Stream SR-CNNs for Action +<br/>Recognition in Videos +<br/>1 Advanced Interactive Technologies Lab +<br/>ETH Zurich +<br/>Zurich, Switzerland +<br/>2 Computer Vision Lab +<br/>ETH Zurich +<br/>Zurich, Switzerland +</td><td>('46394691', 'Yifan Wang', 'yifan wang')<br/>('40403685', 'Jie Song', 'jie song')<br/>('33345248', 'Limin Wang', 'limin wang')<br/>('1681236', 'Luc Van Gool', 'luc van gool')<br/>('2531379', 'Otmar Hilliges', 'otmar hilliges')</td><td>yifan.wang@student.ethz.ch +<br/>jsong@inf.ethz.ch +<br/>07wanglimin@gmail.com +<br/>vangool@vision.ee.ethz.ch +<br/>otmar.hilliges@inf.ethz.ch </td></tr><tr><td>b013cce42dd769db754a57351d49b7410b8e82ad</td><td>Automatic Point-based Facial Trait Judgments Evaluation <br/>1Computer Vision Center, Edifici O, Campus UAB, Spain <br/>2Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018, Barcelona, Spain @@ -28003,7 +35258,14 @@ <br/>Combination of Local and Global Kernels <br/><b>The University of Electro-Communications</b><br/>1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, JAPAN </td><td>('2510362', 'Kazuhiro HOTTA', 'kazuhiro hotta')</td><td>hotta@ice.uec.ac.jp, -</td></tr><tr><td>b03d6e268cde7380e090ddaea889c75f64560891</td><td></td><td></td><td></td></tr><tr><td>b03446a2de01126e6a06eb5d526df277fa36099f</td><td>A Torch Library for Action Recognition and Detection Using CNNs and LSTMs +</td></tr><tr><td>b03d6e268cde7380e090ddaea889c75f64560891</td><td></td><td></td><td></td></tr><tr><td>b084683e5bab9b2bc327788e7b9a8e049d5fff8f</td><td>Using LIP to Gloss Over Faces in Single-Stage Face Detection +<br/>Networks +<br/><b>The University of Queensland, School of ITEE, QLD 4072, Australia</b></td><td>('1973322', 'Siqi Yang', 'siqi yang')<br/>('2331880', 'Arnold Wiliem', 'arnold wiliem')<br/>('3104113', 'Shaokang Chen', 'shaokang chen')<br/>('2270092', 'Brian C. Lovell', 'brian c. lovell')</td><td>{siqi.yang, a.wiliem, s.chen2}@uq.edu.au, lovell@itee.uq.edu.au +</td></tr><tr><td>b0c1615ebcad516b5a26d45be58068673e2ff217</td><td>How Image Degradations Affect Deep CNN-based Face +<br/>Recognition? +<br/>S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1 +<br/>G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2 +</td><td></td><td></td></tr><tr><td>b03446a2de01126e6a06eb5d526df277fa36099f</td><td>A Torch Library for Action Recognition and Detection Using CNNs and LSTMs <br/><b>Stanford University</b></td><td>('4910251', 'Helen Jiang', 'helen jiang')</td><td>{gthung, helennn}@stanford.edu </td></tr><tr><td>b0de0892d2092c8c70aa22500fed31aa7eb4dd3f</td><td>(will be inserted by the editor) <br/>A robust and efficient video representation for action recognition @@ -28064,7 +35326,11 @@ <br/><b>Computational Biomedicine Lab, University of Houston, TX, USA</b></td><td>('39634395', 'Pengfei Dou', 'pengfei dou')<br/>('2461369', 'Yuhang Wu', 'yuhang wu')<br/>('2700399', 'Shishir K. Shah', 'shishir k. shah')<br/>('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')</td><td>{pengfei,yuhang}@cbl.uh.edu, {sshah,IKakadia}@central.uh.edu </td></tr><tr><td>a608c5f8fd42af6e9bd332ab516c8c2af7063c61</td><td>2408 <br/>Age Estimation via Grouping and Decision Fusion -</td><td>('3006921', 'Kuan-Hsien Liu', 'kuan-hsien liu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')</td><td></td></tr><tr><td>a6ffe238eaf8632b4a8a6f718c8917e7f3261546</td><td> Australasian Medical Journal [AMJ 2011, 4, 10, 555-562] +</td><td>('3006921', 'Kuan-Hsien Liu', 'kuan-hsien liu')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')<br/>('9363144', 'C.-C. Jay Kuo', 'c.-c. jay kuo')</td><td></td></tr><tr><td>a6e8a8bb99e30a9e80dbf80c46495cf798066105</td><td>Ranking Generative Adversarial Networks: +<br/>Subjective Control over Semantic Image Attributes +<br/><b>University of Bath</b></td><td>('41020280', 'Yassir Saquil', 'yassir saquil')<br/>('1808255', 'Kwang In Kim', 'kwang in kim')</td><td></td></tr><tr><td>a6eb6ad9142130406fb4ffd4d60e8348c2442c29</td><td>Video Description: A Survey of Methods, +<br/>Datasets and Evaluation Metrics +</td><td>('50978260', 'Nayyer Aafaq', 'nayyer aafaq')<br/>('1746166', 'Syed Zulqarnain Gilani', 'syed zulqarnain gilani')<br/>('46641573', 'Wei Liu', 'wei liu')<br/>('46332747', 'Ajmal Mian', 'ajmal mian')</td><td></td></tr><tr><td>a6ffe238eaf8632b4a8a6f718c8917e7f3261546</td><td> Australasian Medical Journal [AMJ 2011, 4, 10, 555-562] <br/>Dynamic Facial Prosthetics for Sufferers of Facial Paralysis <br/><b>Nottingham Trent University, Nottingham, UK</b><br/><b>Nottingham University Hospital, Nottingham, UK</b><br/> RESEARCH <br/> @@ -28103,10 +35369,29 @@ <br/><b>The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel</b></td><td>('3294355', 'Orit Kliper-Gross', 'orit kliper-gross')<br/>('1756099', 'Tal Hassner', 'tal hassner')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td>orit.kliper@weizmann.ac.il <br/>hassner@openu.ac.il <br/>wolf@cs.tau.ac.il -</td></tr><tr><td>a694180a683f7f4361042c61648aa97d222602db</td><td>Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations +</td></tr><tr><td>a6590c49e44aa4975b2b0152ee21ac8af3097d80</td><td>https://doi.org/10.1007/s11263-018-1074-6 +<br/>3D Interpreter Networks for Viewer-Centered Wireframe Modeling +<br/>Received: date / Accepted: date +</td><td>('3045089', 'Jiajun Wu', 'jiajun wu')<br/>('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')</td><td></td></tr><tr><td>a694180a683f7f4361042c61648aa97d222602db</td><td>Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations <br/>IIIT-Delhi India </td><td>('2503967', 'Prateekshit Pandey', 'prateekshit pandey')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td>fprateekshit12078, rsingh, mayankg@iiitd.ac.in -</td></tr><tr><td>a6db73f10084ce6a4186363ea9d7475a9a658a11</td><td></td><td></td><td></td></tr><tr><td>a6634ff2f9c480e94ed8c01d64c9eb70e0d98487</td><td></td><td></td><td></td></tr><tr><td>a6b1d79bc334c74cde199e26a7ef4c189e9acd46</td><td>bioRxiv preprint first posted online Aug. 17, 2017; +</td></tr><tr><td>a6db73f10084ce6a4186363ea9d7475a9a658a11</td><td></td><td></td><td></td></tr><tr><td>a6e25cab2251a8ded43c44b28a87f4c62e3a548a</td><td>Let’s Dance: Learning From Online Dance Videos +<br/><b>Georgia Institute of Technology</b><br/>Irfan Essa +</td><td>('40333356', 'Daniel Castro', 'daniel castro')<br/>('2935619', 'Steven Hickson', 'steven hickson')<br/>('3430745', 'Patsorn Sangkloy', 'patsorn sangkloy')<br/>('40506496', 'Bhavishya Mittal', 'bhavishya mittal')<br/>('35459529', 'Sean Dai', 'sean dai')<br/>('1945508', 'James Hays', 'james hays')</td><td>shickson@gatech.edu +<br/>patsorn sangkloy@gatech.edu +<br/>dcastro9@gatech.edu +<br/>bmittal6@gatech.edu +<br/>sdai@gatech.edu +<br/>hays@gatech.edu +<br/>irfan@gatech.edu +</td></tr><tr><td>a6634ff2f9c480e94ed8c01d64c9eb70e0d98487</td><td></td><td></td><td></td></tr><tr><td>a6270914cf5f60627a1332bcc3f5951c9eea3be0</td><td>Joint Attention in Driver-Pedestrian Interaction: from +<br/>Theory to Practice +<br/>Department of Electrical Engineering and Computer Science +<br/><b>York University, Toronto, ON, Canada</b><br/>March 28, 2018 +</td><td>('26902477', 'Amir Rasouli', 'amir rasouli')<br/>('1727853', 'John K. Tsotsos', 'john k. tsotsos')</td><td>{aras,tsotsos}@eecs.yorku.ca +</td></tr><tr><td>a6ce2f0795839d9c2543d64a08e043695887e0eb</td><td>Driver Gaze Region Estimation +<br/>Without Using Eye Movement +<br/><b>Massachusetts Institute of Technology (MIT</b></td><td>('49925254', 'Philipp Langhans', 'philipp langhans')<br/>('7137846', 'Joonbum Lee', 'joonbum lee')<br/>('1901227', 'Bryan Reimer', 'bryan reimer')</td><td></td></tr><tr><td>a6b1d79bc334c74cde199e26a7ef4c189e9acd46</td><td>bioRxiv preprint first posted online Aug. 17, 2017; <br/>doi: <br/>http://dx.doi.org/10.1101/177196 <br/>. @@ -28132,9 +35417,90 @@ </td><td>('13403748', 'Md. Abdul Mannan', 'md. abdul mannan')<br/>('34949901', 'Antony Lam', 'antony lam')<br/>('2367471', 'Yoshinori Kobayashi', 'yoshinori kobayashi')<br/>('1737913', 'Yoshinori Kuno', 'yoshinori kuno')</td><td></td></tr><tr><td>a6e21438695dbc3a184d33b6cf5064ddf655a9ba</td><td>PKU-MMD: A Large Scale Benchmark for Continuous Multi-Modal Human <br/>Action Understanding <br/><b>Institiude of Computer Science and Technology, Peking University</b></td><td>('2994549', 'Jiaying Liu', 'jiaying liu')<br/>('1708754', 'Chunhui Liu', 'chunhui liu')</td><td>{liuchunhui, huyy, lyttonhao, ssj940929, liujiaying}@pku.edu.cn -</td></tr><tr><td>b9cad920a00fc0e997fc24396872e03f13c0bb9c</td><td>FACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS +</td></tr><tr><td>b9081856963ceb78dcb44ac410c6fca0533676a3</td><td>UntrimmedNets for Weakly Supervised Action Recognition and Detection +<br/>1Computer Vision Laboratory, ETH Zurich, Switzerland +<br/><b>The Chinese University of Hong Kong, Hong Kong</b></td><td>('33345248', 'Limin Wang', 'limin wang')<br/>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('1807606', 'Dahua Lin', 'dahua lin')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td></td></tr><tr><td>b97f694c2a111b5b1724eefd63c8d64c8e19f6c9</td><td>Group Affect Prediction Using Multimodal Distributions +<br/>Aspiring Minds +<br/>Univeristy of Massachusetts, Amherst +<br/><b>Johns Hopkins University</b></td><td>('40997180', 'Saqib Nizam Shamsi', 'saqib nizam shamsi')<br/>('47679973', 'Bhanu Pratap Singh', 'bhanu pratap singh')<br/>('7341605', 'Manya Wadhwa', 'manya wadhwa')</td><td>shamsi.saqib@gmail.com +<br/>bhanupratap.mnit@gmail.com +<br/>mwadhwa1@jhu.edu +</td></tr><tr><td>b9d0774b0321a5cfc75471b62c8c5ef6c15527f5</td><td>Fishy Faces: Crafting Adversarial Images to Poison Face Authentication +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +</td><td>('4412412', 'Giuseppe Garofalo', 'giuseppe garofalo')<br/>('23974422', 'Vera Rimmer', 'vera rimmer')<br/>('19243432', 'Tim Van hamme', 'tim van hamme')<br/>('1722184', 'Davy Preuveneers', 'davy preuveneers')<br/>('1752104', 'Wouter Joosen', 'wouter joosen')</td><td></td></tr><tr><td>b9cad920a00fc0e997fc24396872e03f13c0bb9c</td><td>FACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS <br/><b>University of Campinas (Unicamp</b><br/>Campinas, SP, Brazil -</td><td>('2826093', 'Bruno Peixoto', 'bruno peixoto')<br/>('34629204', 'Carolina Michelassi', 'carolina michelassi')<br/>('2145405', 'Anderson Rocha', 'anderson rocha')</td><td></td></tr><tr><td>b9c9c7ef82f31614c4b9226e92ab45de4394c5f6</td><td>11 +</td><td>('2826093', 'Bruno Peixoto', 'bruno peixoto')<br/>('34629204', 'Carolina Michelassi', 'carolina michelassi')<br/>('2145405', 'Anderson Rocha', 'anderson rocha')</td><td></td></tr><tr><td>b908edadad58c604a1e4b431f69ac8ded350589a</td><td>Deep Face Feature for Face Alignment +</td><td>('15679675', 'Boyi Jiang', 'boyi jiang')<br/>('2938279', 'Juyong Zhang', 'juyong zhang')<br/>('2964129', 'Bailin Deng', 'bailin deng')<br/>('8280113', 'Yudong Guo', 'yudong guo')<br/>('47968194', 'Ligang Liu', 'ligang liu')</td><td></td></tr><tr><td>b93bf0a7e449cfd0db91a83284d9eba25a6094d8</td><td>Supplementary Material for: Active Pictorial Structures +<br/>Epameinondas Antonakos +<br/>Joan Alabort-i-Medina +<br/>Stefanos Zafeiriou +<br/><b>Imperial College London</b><br/>180 Queens Gate, SW7 2AZ, London, U.K. +<br/>In the following sections, we provide additional material for the paper “Active Pictorial Structures”. Section 1 explains in +<br/>more detail the differences between the proposed Active Pictorial Structures (APS) and Pictorial Structures (PS). Section 2 +<br/>presents the proofs about the structure of the precision matrices of the Gaussian Markov Random Filed (GMRF) (Eqs. 10 +<br/>and 12 of the main paper). Section 3 gives an analysis about the forward Gauss-Newton optimization of APS and shows that +<br/>the inverse technique with fixed Jacobian and Hessian, which is used in the main paper, is much faster. Finally, Sec. 4 shows +<br/>additional experimental results and conducts new experiments on different objects (human eyes and cars). An open-source +<br/>implementation of APS is available within the Menpo Project [1] in http://www.menpo.org/. +<br/>1. Differences between Active Pictorial Structures and Pictorial Structures +<br/>As explained in the main paper, the proposed model is partially motivated by PS [4, 8]. In the original formulation of PS, +<br/>the cost function to be optimized has the form +<br/>(cid:88) +<br/>n(cid:88) +<br/>n(cid:88) +<br/>i=1 +<br/>arg min +<br/>= arg min +<br/>i=1 +<br/>mi((cid:96)i) + +<br/>dij((cid:96)i, (cid:96)j) = +<br/>i,j:(vi,vj )∈E +<br/>[A((cid:96)i) − µa +<br/>i ]T (Σa +<br/>i )−1[A((cid:96)i) − µa +<br/>i ] + +<br/>(cid:88) +<br/>i,j:(vi,vj )∈E +<br/>[(cid:96)i − (cid:96)j − µd +<br/>ij]T (Σd +<br/>ij)−1[(cid:96)i − (cid:96)j − µd +<br/>ij] +<br/>(1) +<br/>1 , . . . , (cid:96)T +<br/>n ]T is the vector of landmark coordinates ((cid:96)i = [xi, yi]T , ∀i = 1, . . . , n), A((cid:96)i) is a feature vector +<br/>where s = [(cid:96)T +<br/>ij} denote the mean +<br/>extracted from the image location (cid:96)i and we have assumed a tree G = (V, E). {µa +<br/>and covariances of the appearance and deformation respectively. In Eq. 1, mi((cid:96)i) is a function measuring the degree of +<br/>mismatch when part vi is placed at location (cid:96)i in the image. Moreover, dij((cid:96)i, (cid:96)j) denotes a function measuring the degree +<br/>of deformation of the model when part vi is placed at location (cid:96)i and part vj is placed at location (cid:96)j. The authors show +<br/>an inference algorithm based on distance transform [3] that can find a global minimum of Eq. 1 without any initialization. +<br/>However, this algorithm imposes two important restrictions: (1) appearance of each part is independent of the rest of them +<br/>and (2) G must always be acyclic (a tree). Additionally, the computation of mi((cid:96)i) for all parts (i = 1, . . . , n) and all possible +<br/>image locations (response maps) has a high computational cost, which makes the algorithm very slow. Finally, in [8], the +<br/>authors only use a diagonal covariance for the relative locations (deformation) of each edge of the graph, which restricts the +<br/>flexibility of the model. +<br/>i } and {µd +<br/>ij, Σd +<br/>i , Σa +<br/>In the proposed APS, we aim to minimize the cost function (Eq. 19 of the main paper) +<br/>(cid:107)A(S(¯s, p)) − ¯a(cid:107)2 +<br/>[A(S(¯s, p)) − ¯a]T Qa[A(S(¯s, p)) − ¯a] + [S(¯s, p) − ¯s]T Qd[S(¯s, p) − ¯s] +<br/>Qa + (cid:107)S(¯s, p) − ¯s(cid:107)2 +<br/>Qd = +<br/>arg min +<br/>= arg min +<br/>(2) +<br/>There are two main differences between APS and PS: (1) we employ a statistical shape model and optimize with respect +<br/>to its parameters and (2) we use the efficient Gauss-Newton optimization technique. However, these differences introduce +<br/>some important advantages, as also mentioned in the main paper. The proposed formulation allows to define a graph (not +<br/>only tree) between the object’s parts. This means that we can assume dependencies between any pair of landmarks for both +</td><td></td><td>{e.antonakos, ja310, s.zafeiriou}@imperial.ac.uk +</td></tr><tr><td>b9c9c7ef82f31614c4b9226e92ab45de4394c5f6</td><td>11 <br/>Face Recognition under Varying Illumination <br/><b>Nanyang Technological University</b><br/>Singapore <br/>1. Introduction @@ -28179,7 +35545,17 @@ </td></tr><tr><td>b9cedd1960d5c025be55ade0a0aa81b75a6efa61</td><td>INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE <br/>MATRIX EXPONENTIAL EIGENPROBLEM FROM <br/>DIMENSIONALITY REDUCTION -</td><td>('1685951', 'Gang Wu', 'gang wu')<br/>('7139289', 'Ting-ting Feng', 'ting-ting feng')<br/>('9472022', 'Li-jia Zhang', 'li-jia zhang')<br/>('5828998', 'Meng Yang', 'meng yang')</td><td></td></tr><tr><td>a1dd806b8f4f418d01960e22fb950fe7a56c18f1</td><td>Interactively Building a Discriminative Vocabulary of Nameable Attributes +</td><td>('1685951', 'Gang Wu', 'gang wu')<br/>('7139289', 'Ting-ting Feng', 'ting-ting feng')<br/>('9472022', 'Li-jia Zhang', 'li-jia zhang')<br/>('5828998', 'Meng Yang', 'meng yang')</td><td></td></tr><tr><td>b971266b29fcecf1d5efe1c4dcdc2355cb188ab0</td><td>MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES +<br/>On the Reconstruction of Face Images from +<br/>Deep Face Templates +</td><td>('3391550', 'Guangcan Mai', 'guangcan mai')<br/>('1684684', 'Kai Cao', 'kai cao')<br/>('1768574', 'Pong C. Yuen', 'pong c. yuen')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>a1af7ec84472afba0451b431dfdb59be323e35b7</td><td>LikeNet: A Siamese Motion Estimation +<br/>Network Trained in an Unsupervised Way +<br/>Multimedia and Vision Research Group +<br/><b>Queen Mary University of London</b><br/>London, UK +</td><td>('49505678', 'Aria Ahmadi', 'aria ahmadi')<br/>('2000297', 'Ioannis Marras', 'ioannis marras')<br/>('1744405', 'Ioannis Patras', 'ioannis patras')<br/>('49505678', 'Aria Ahmadi', 'aria ahmadi')<br/>('2000297', 'Ioannis Marras', 'ioannis marras')<br/>('1744405', 'Ioannis Patras', 'ioannis patras')</td><td>a.ahmadi@qmul.ac.uk +<br/>i.marras@qmul.ac.uk +<br/>i.patras@qmul.ac.uk +</td></tr><tr><td>a1dd806b8f4f418d01960e22fb950fe7a56c18f1</td><td>Interactively Building a Discriminative Vocabulary of Nameable Attributes <br/><b>Toyota Technological Institute, Chicago (TTIC</b><br/><b>University of Texas at Austin</b></td><td>('1713589', 'Devi Parikh', 'devi parikh')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>dparikh@ttic.edu <br/>grauman@cs.utexas.edu </td></tr><tr><td>a158c1e2993ac90a90326881dd5cb0996c20d4f3</td><td>OPEN ACCESS @@ -28245,7 +35621,52 @@ <br/>duplicate detection, data deduplication, con- <br/>densation, consolidation <br/>image clustering, -</td><td></td><td></td></tr><tr><td>a125bc55bdf4bec7484111eea9ae537be314ec62</td><td>Real-time Facial Expression Recognition in Image +</td><td></td><td></td></tr><tr><td>a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1</td><td>Longitudinal Study of Child Face Recognition +<br/><b>Michigan State University</b><br/>East Lansing, MI, USA +<br/><b>Malaviya National Institute of Technology</b><br/>Jaipur, India +<br/><b>Michigan State University</b><br/>East Lansing, MI, USA +</td><td>('32623642', 'Debayan Deb', 'debayan deb')<br/>('2117075', 'Neeta Nain', 'neeta nain')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td>debdebay@msu.edu +<br/>nnain.cse@mnit.ac.in +<br/>jain@cse.msu.edu +</td></tr><tr><td>a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca</td><td>Attentional Pooling for Action Recognition +<br/><b>The Robotics Institute, Carnegie Mellon University</b><br/>http://rohitgirdhar.github.io/AttentionalPoolingAction +</td><td>('3102850', 'Rohit Girdhar', 'rohit girdhar')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td></td></tr><tr><td>a1132e2638a8abd08bdf7fc4884804dd6654fa63</td><td>6 +<br/>Real-Time Video Face Recognition +<br/>for Embedded Devices +<br/>Tessera, Galway, +<br/>Ireland +<br/>1. Introduction +<br/>This chapter will address the challenges of real-time video face recognition systems +<br/>implemented in embedded devices. Topics to be covered include: the importance and +<br/>challenges of video face recognition in real life scenarios, describing a general architecture of +<br/>a generic video face recognition system and a working solution suitable for recognizing +<br/>faces in real-time using low complexity devices. Each component of the system will be +<br/>described together with the system’s performance on a database of video samples that +<br/>resembles real life conditions. +<br/>2. Video face recognition +<br/>Face recognition remains a very active topic in computer vision and receives attention from +<br/>a large community of researchers in that discipline. Many reasons feed this interest; the +<br/>main being the wide range of commercial, law enforcement and security applications that +<br/>require authentication. The progress made in recent years on the methods and algorithms +<br/>for data processing as well as the availability of new technologies makes it easier to study +<br/>these algorithms and turn them into commercially viable product. Biometric based security +<br/>systems are becoming more popular due to their non-invasive nature and their increasing +<br/>reliability. Surveillance applications based on face recognition are gaining increasing +<br/>attention after the United States’ 9/11 events and with the ongoing security threats. The +<br/>Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) includes video face recognition +<br/>testing starting with the 2002 series of tests. +<br/>Recently, face recognition technology was deployed in consumer applications such as +<br/>organizing a collection of images using the faces present in the images (Picassa; Corcoran & +<br/>Costache, 2005), prioritizing family members for best capturing conditions when taking +<br/>pictures, or directly annotating the images as they are captured (Costache et al., 2006). +<br/>Video face recognition, compared with more traditional still face recognition, has the main +<br/>advantage of using multiple instances of the same individual in sequential frames for +<br/>recognition to occur. In still recognition case, the system has only one input image to make +<br/>the decision if the person is or is not in the database. If the image is not suitable for +<br/>recognition (due to face orientation, expression, quality or facial occlusions) the recognition +<br/>result will most likely be incorrect. In the video image there are multiple frames which can +<br/>www.intechopen.com +</td><td>('1706790', 'Petronel Bigioi', 'petronel bigioi')<br/>('1734172', 'Peter Corcoran', 'peter corcoran')</td><td></td></tr><tr><td>a125bc55bdf4bec7484111eea9ae537be314ec62</td><td>Real-time Facial Expression Recognition in Image <br/>Sequences Using an AdaBoost-based Multi-classifier <br/><b>National Taiwan University of Science and Technology, Taipei 10607, Taiwan</b><br/><b>National Taiwan University of Science and Technology, Taipei 10607, Taiwan</b><br/><b>National Taiwan University of Science and Technology, Taipei 10607, Taiwan</b><br/> To surmount the shortcomings as stated above, we <br/>attempt to develop an automatic facial expression recognition @@ -28297,7 +35718,10 @@ <br/>E-mail: D9515011@mail.ntust.edu.tw Tel: +886-02-2733-3141 ext.7425 </td></tr><tr><td>a14ae81609d09fed217aa12a4df9466553db4859</td><td>REVISED VERSION, JUNE 2011 <br/>Face Identification Using Large Feature Sets -</td><td>('1679142', 'William Robson Schwartz', 'william robson schwartz')<br/>('2723427', 'Huimin Guo', 'huimin guo')<br/>('3826759', 'Jonghyun Choi', 'jonghyun choi')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td></td></tr><tr><td>a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a</td><td>Affective recommender systems: the role of emotions in +</td><td>('1679142', 'William Robson Schwartz', 'william robson schwartz')<br/>('2723427', 'Huimin Guo', 'huimin guo')<br/>('3826759', 'Jonghyun Choi', 'jonghyun choi')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td></td></tr><tr><td>a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892</td><td>Latent Embeddings for Zero-shot Classification +<br/>1MPI for Informatics +<br/>2IIT Kanpur +<br/><b>Saarland University</b></td><td>('3370667', 'Yongqin Xian', 'yongqin xian')<br/>('2893664', 'Zeynep Akata', 'zeynep akata')<br/>('2515597', 'Gaurav Sharma', 'gaurav sharma')<br/>('33460941', 'Matthias Hein', 'matthias hein')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td></td></tr><tr><td>a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a</td><td>Affective recommender systems: the role of emotions in <br/>recommender systems <br/>Jurij Tasiˇc <br/><b>University of Ljubljana Faculty</b><br/><b>University of Ljubljana Faculty</b><br/><b>University of Ljubljana Faculty</b><br/>of electrical engineering @@ -28312,12 +35736,125 @@ </td><td>('1717186', 'Andrej Košir', 'andrej košir')</td><td>marko.tkalcic@fe.uni-lj.si <br/>andrej.kosir@fe.uni-lj.si <br/>jurij.tasic@fe.uni-lj.si +</td></tr><tr><td>a1dd9038b1e1e59c9d564e252d3e14705872fdec</td><td>Attributes as Operators: +<br/>Factorizing Unseen Attribute-Object Compositions +<br/><b>The University of Texas at Austin</b><br/>2 Facebook AI Research +</td><td>('38661780', 'Tushar Nagarajan', 'tushar nagarajan')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>tushar@cs.utexas.edu, grauman@fb.com∗ </td></tr><tr><td>a1e97c4043d5cc9896dc60ae7ca135782d89e5fc</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE <br/>Re-identification of Humans in Crowds using <br/>Personal, Social and Environmental Constraints -</td><td>('2963501', 'Shayan Modiri Assari', 'shayan modiri assari')<br/>('1803711', 'Haroon Idrees', 'haroon idrees')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td></td></tr><tr><td>efd308393b573e5410455960fe551160e1525f49</td><td>Tracking Persons-of-Interest via +</td><td>('2963501', 'Shayan Modiri Assari', 'shayan modiri assari')<br/>('1803711', 'Haroon Idrees', 'haroon idrees')<br/>('1745480', 'Mubarak Shah', 'mubarak shah')</td><td></td></tr><tr><td>a16fb74ea66025d1f346045fda00bd287c20af0e</td><td>A Coupled Evolutionary Network for Age Estimation +<br/>National Laboratory of Pattern Recognition, CASIA, Beijing, China 100190 +<br/>Center for Research on Intelligent Perception and Computing, CASIA, Beijing, China 100190 +<br/><b>University of Chinese Academy of Sciences, Beijing, China</b></td><td>('2112221', 'Peipei Li', 'peipei li')<br/>('49995036', 'Yibo Hu', 'yibo hu')<br/>('1705643', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>Email: {peipei.li, yibo.hu}@cripac.ia.ac.cn, {rhe, znsun}@nlpr.ia.ac.cn +</td></tr><tr><td>ef940b76e40e18f329c43a3f545dc41080f68748</td><td> +<br/> +<br/>Research Article Volume 7 Issue No.3 +<br/>ISSN XXXX XXXX © 2017 IJESC +<br/> +<br/>A Face Recognition and Spoofing Detection Adapted to Visually- +<br/>Impaired People +<br/><b>K.K Wagh Institute of Engineering and Education Research, Nashik, India</b><br/>Depart ment of Co mputer Engineering +<br/>Abstrac t: +<br/>According to estimates by the world Health organization, about 285 million people suffer fro m so me kind of v isual disabilit ies of +<br/>which 39 million are blind, resulting in 0.7 of the word population. As many v isual impaired peoples in the word they are unable +<br/>to recognize the people who is standing in front of them and some peoples who have problem to re me mbe r na me of the person. +<br/>They can easily recognize the person using this system. A co mputer vision technique and image ana lysis can help v isually +<br/>the home using face identification and spoofing detection system. This system also provide feature to add newly known people +<br/>and keep records of all peoples visiting their ho me. +<br/>Ke ywor ds: face-recognition, spoofing detection, visually-impaired, system architecture. +<br/>I. +<br/> INTRODUCTION +<br/>The facia l ana lysis can be used to e xtract very useful and +<br/>relevant information in order to help people with visual +<br/>impairment in several of its tasks daily providing them with a +<br/>greater degree of autonomy and security. Facia l recognition +<br/>has received many improve ments recent years and today is +<br/>approaching perfection. The advances in facia l recognition +<br/>have not been outside the People with disab ilities. For +<br/>e xa mple , recently it has an intelligent walking stick for the +<br/>blind that uses facial recognition [5]. The cane co mes +<br/>equipped with a fac ial recognition system, GPS and Bluetooth. +<br/>at the sight the face of any acquaintance or friend whose +<br/>picture is stored on the SD card stick, this will v ibrate and give +<br/>to Bluetooth headset through a necessary instructions to reach +<br/>this person. The system works with anyone who is at 10 +<br/>meters or less. And thanks to the GPS, the user will rece ive +<br/>instructions for reach wherever, as with any GPS navigator. +<br/>However, in addition to the task of recognition today have +<br/>biometric systems to deal with other problems, such as +<br/>spoofing. In network security terms, this term re fers to Using +<br/>techniques through which an attacker, usually with malic ious +<br/>use, it is passed by a other than through the falsification of +<br/>data entity in a co mmun ication. Motivation of the p roject is to +<br/>propose, build and validate an architecture based on face +<br/>recognition and anti-spoofing system that both can be +<br/>integrated in a video entry as a mobile app. In this way, we +<br/>want to give the blind and visually impaired an instrument or +<br/>tool to allo w an ult imate goal to improve the quality of life +<br/>and increase both safety and the feel of it in your ho me or +<br/>when you +<br/>interact with other people. The p roposed +<br/>architecture has been validated with rea l users and a real +<br/>environment simulating the same conditions as could give +<br/>both the images captured by a video portero as images taken +<br/>by a person visually impa ired through their mobile device. +<br/>Contributions are d iscussed below: First an algorith m is +<br/>proposed for the normalization face robust user as to rotations +<br/>and misalignments in the face detection algorith m. It is shown +<br/>that a robust norma lizat ion algorithm you can significantly +<br/>increase the rate of success in a face detection algorithm +<br/>The organizat ion of this document is as follo ws. In Section 2 +<br/>gives literature survey, Section 3 gives details of system +<br/>architecture. In Section 4 gives imp le mentation details. +<br/>Section 5 presents research findings and your analysis of those +<br/>findings. Section 6 concludes the paper. +<br/>II. LITERATURE S URVEY +<br/>A. Facial Rec ognition oriente d visual i mpair ment +<br/>The proble m of face recognition adapted to visually impaired +<br/>people has been investigated in their d ifferent ways. Belo w are +<br/>summarized the work impo rtant, indicating for each the most +<br/>important features that have been motivating development of +<br/>the architecture proposed here. In [6] fac ia l recognition system +<br/>is presented in mobile devices for the visually impaired, but +<br/>meet ings main ly focused on what aspects as visual fie ld +<br/>captured by the mobile focus much of the subject. In [7] +<br/>system developed facial recognition based on Local Binary +<br/>Pattern (LBP) [8]. They co mpared this with other a lternatives +<br/>descriptor (Local Te rnary Pattern [9] or Histogram of +<br/>Gradients [10]) and arrived It concluded that the performance +<br/>is slightly LBP superior, its computational cost is lower and +<br/>representation information is more co mpact. As has been +<br/>mentioned above, in [5] it has developed a system fac ial +<br/>recognition integrated into a cane. In none of these methods is +<br/>carried out detection spoofing, making the system has a +<br/>vulnerability high against such attacks. We believe it is a point +<br/>very important especially in people with visual d isabilities. +<br/>Moreover, none of the alternatives above mentioned is video +<br/>porters oriented. +<br/>B. De tection S poofing +<br/>As none of the above has been studied spoofing detection to +<br/>help people with visual impairment, we will discuss the +<br/>results more significant as +<br/>refers. There are many different methods +<br/>for detecting +<br/>spoofing. However, one o f the key factors in an application +<br/>that must run in rea l time and in a device Embedded is what +<br/>the method be co mputationally lightweight. Most algorith ms +<br/>or proposed are very comple x and are therefo re unfit for rea l, +<br/>far as detecting spoofing +<br/>International Journal of Engineering Science and Computing, March 2017 6051 http://ijesc.org/ +</td><td></td><td></td></tr><tr><td>efd308393b573e5410455960fe551160e1525f49</td><td>Tracking Persons-of-Interest via <br/>Unsupervised Representation Adaptation -</td><td>('2481388', 'Shun Zhang', 'shun zhang')<br/>('3068086', 'Jia-Bin Huang', 'jia-bin huang')<br/>('33047058', 'Jongwoo Lim', 'jongwoo lim')<br/>('1698965', 'Yihong Gong', 'yihong gong')<br/>('32014778', 'Jinjun Wang', 'jinjun wang')<br/>('1752333', 'Narendra Ahuja', 'narendra ahuja')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>efd28eabebb9815e34031316624e7f095c7dfcfe</td><td>A. Uhl and P. Wild. Combining Face with Face-Part Detectors under Gaussian Assumption. In A. Campilho and M. Kamel, +</td><td>('2481388', 'Shun Zhang', 'shun zhang')<br/>('3068086', 'Jia-Bin Huang', 'jia-bin huang')<br/>('33047058', 'Jongwoo Lim', 'jongwoo lim')<br/>('1698965', 'Yihong Gong', 'yihong gong')<br/>('32014778', 'Jinjun Wang', 'jinjun wang')<br/>('1752333', 'Narendra Ahuja', 'narendra ahuja')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>ef230e3df720abf2983ba6b347c9d46283e4b690</td><td>Page 1 of 20 +<br/>QUIS-CAMPI: An Annotated Multi-biometrics Data Feed From +<br/>Surveillance Scenarios +<br/><b>IT - Instituto de Telecomunica es, University of Beira Interior</b><br/><b>University of Beira Interior</b><br/><b>IT - Instituto de Telecomunica es, University of Beira Interior</b></td><td>('1712429', 'Hugo Proença', 'hugo proença')</td><td>*jcneves@ubi.pt +</td></tr><tr><td>ef4ecb76413a05c96eac4c743d2c2a3886f2ae07</td><td>Modeling the Importance of Faces in Natural Images +<br/>Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a +<br/>aEPFL, Lausanne, Switzerland; +<br/>bOc´e, Paris, France +</td><td></td><td></td></tr><tr><td>efd28eabebb9815e34031316624e7f095c7dfcfe</td><td>A. Uhl and P. Wild. Combining Face with Face-Part Detectors under Gaussian Assumption. In A. Campilho and M. Kamel, <br/>editors, Proceedings of the 9th International Conference on Image Analysis and Recognition (ICIAR’12), volume 7325 of <br/>LNCS, pages 80{89, Aveiro, Portugal, June 25{27, 2012. c⃝ Springer. doi: 10.1007/978-3-642-31298-4 10. The original <br/>publication is available at www.springerlink.com. @@ -28327,12 +35864,63 @@ <br/><b>University of Salzburg, Austria</b></td><td>('1689850', 'Andreas Uhl', 'andreas uhl')<br/>('2242291', 'Peter Wild', 'peter wild')</td><td>fuhl,pwildg@cosy.sbg.ac.at </td></tr><tr><td>eff87ecafed67cc6fc4f661cb077fed5440994bb</td><td>Evaluation of Expression Recognition <br/>Techniques -<br/><b>Beckman Institute, University of Illinois at Urbana-Champaign, USA</b><br/><b>Faculty of Science, University of Amsterdam, The Netherlands</b><br/><b>Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands</b></td><td>('1774778', 'Ira Cohen', 'ira cohen')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1840164', 'Yafei Sun', 'yafei sun')<br/>('1731570', 'Michael S. Lew', 'michael s. lew')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td></td></tr><tr><td>ef2a5a26448636570986d5cda8376da83d96ef87</td><td>Recurrent Neural Networks and Transfer Learning for Action Recognition +<br/><b>Beckman Institute, University of Illinois at Urbana-Champaign, USA</b><br/><b>Faculty of Science, University of Amsterdam, The Netherlands</b><br/><b>Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands</b></td><td>('1774778', 'Ira Cohen', 'ira cohen')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1840164', 'Yafei Sun', 'yafei sun')<br/>('1731570', 'Michael S. Lew', 'michael s. lew')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td></td></tr><tr><td>ef458499c3856a6e9cd4738b3e97bef010786adb</td><td>Learning Type-Aware Embeddings for Fashion +<br/>Compatibility +<br/>Department of Computer Science, +<br/><b>University of Illinois at Urbana-Champaign</b></td><td>('47087718', 'Mariya I. Vasileva', 'mariya i. vasileva')<br/>('2856622', 'Bryan A. Plummer', 'bryan a. plummer')<br/>('40895028', 'Krishna Dusad', 'krishna dusad')<br/>('9560882', 'Shreya Rajpal', 'shreya rajpal')<br/>('40439276', 'Ranjitha Kumar', 'ranjitha kumar')</td><td>{mvasile2,bplumme2,dusad2,srajpal2,ranjitha,daf}@illnois.edu +</td></tr><tr><td>ef032afa4bdb18b328ffcc60e2dc5229cc1939bc</td><td>Fang and Yuan EURASIP Journal on Image and Video +<br/>Processing (2018) 2018:44 +<br/>https://doi.org/10.1186/s13640-018-0282-x +<br/>EURASIP Journal on Image +<br/>and Video Processing +<br/>RESEARCH +<br/>Open Access +<br/>Attribute-enhanced metric learning for +<br/>face retrieval +</td><td>('8589942', 'Yuchun Fang', 'yuchun fang')<br/>('30438417', 'Qiulong Yuan', 'qiulong yuan')</td><td></td></tr><tr><td>ef2a5a26448636570986d5cda8376da83d96ef87</td><td>Recurrent Neural Networks and Transfer Learning for Action Recognition <br/><b>Stanford University</b><br/><b>Stanford University</b></td><td>('11647121', 'Andrew Giel', 'andrew giel')<br/>('32426361', 'Ryan Diaz', 'ryan diaz')</td><td>agiel@stanford.edu <br/>ryandiaz@stanford.edu -</td></tr><tr><td>c32fb755856c21a238857b77d7548f18e05f482d</td><td>Multimodal Emotion Recognition for Human- +</td></tr><tr><td>ef5531711a69ed687637c48930261769465457f0</td><td>Studio2Shop: from studio photo shoots to fashion articles +<br/>Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany +<br/>Keywords: +<br/>computer vision, deep learning, fashion, item recognition, street-to-shop +</td><td>('46928510', 'Julia Lasserre', 'julia lasserre')<br/>('1724791', 'Katharina Rasch', 'katharina rasch')<br/>('2742129', 'Roland Vollgraf', 'roland vollgraf')</td><td>julia.lasserre@zalando.de +</td></tr><tr><td>ef559d5f02e43534168fbec86707915a70cd73a0</td><td>DING, HUO, HU, LU: DEEPINSIGHT +<br/>DeepInsight: Multi-Task Multi-Scale Deep +<br/>Learning for Mental Disorder Diagnosis +<br/>1 School of Information +<br/><b>Renmin University of China</b><br/>Beijing, 100872, China +<br/>2 Beijing Key Laboratory +<br/>of Big Data Management +<br/>and Analysis Methods +<br/>Beijing, 100872, China +</td><td>('5535865', 'Mingyu Ding', 'mingyu ding')<br/>('4140493', 'Yuqi Huo', 'yuqi huo')<br/>('1745787', 'Jun Hu', 'jun hu')<br/>('1776220', 'Zhiwu Lu', 'zhiwu lu')</td><td>d130143597@163.com +<br/>bnhony@163.com +<br/>junhu@ruc.edu.cn +<br/>luzhiwu@ruc.edu.cn +</td></tr><tr><td>efa08283656714911acff2d5022f26904e451113</td><td>Active Object Localization in Visual Situations +</td><td>('3438473', 'Max H. Quinn', 'max h. quinn')<br/>('13739397', 'Anthony D. Rhodes', 'anthony d. rhodes')<br/>('4421478', 'Melanie Mitchell', 'melanie mitchell')</td><td></td></tr><tr><td>ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98</td><td>Fine-grained Activity Recognition +<br/>with Holistic and Pose based Features +<br/><b>Max Planck Institute for Informatics, Germany</b><br/><b>Stanford University, USA</b></td><td>('2299109', 'Leonid Pishchulin', 'leonid pishchulin')<br/>('1906895', 'Mykhaylo Andriluka', 'mykhaylo andriluka')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')</td><td></td></tr><tr><td>ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d</td><td>Calhoun: The NPS Institutional Archive +<br/>DSpace Repository +<br/>Theses and Dissertations +<br/>1. Thesis and Dissertation Collection, all items +<br/>2017-12 +<br/>Improving face verification in photo albums by +<br/>combining facial recognition and metadata +<br/>with cross-matching +<br/>Monterey, California: Naval Postgraduate School +<br/>http://hdl.handle.net/10945/56868 +<br/>Downloaded from NPS Archive: Calhoun +</td><td></td><td></td></tr><tr><td>c32fb755856c21a238857b77d7548f18e05f482d</td><td>Multimodal Emotion Recognition for Human- <br/>Computer Interaction: A Survey -<br/><b>School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China</b></td><td>('10692633', 'Michele Mukeshimana', 'michele mukeshimana')<br/>('1714904', 'Xiaojuan Ban', 'xiaojuan ban')<br/>('17056027', 'Nelson Karani', 'nelson karani')<br/>('7247643', 'Ruoyi Liu', 'ruoyi liu')</td><td></td></tr><tr><td>c3b3636080b9931ac802e2dd28b7b684d6cf4f8b</td><td>International Journal of Security and Its Applications +<br/><b>School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China</b></td><td>('10692633', 'Michele Mukeshimana', 'michele mukeshimana')<br/>('1714904', 'Xiaojuan Ban', 'xiaojuan ban')<br/>('17056027', 'Nelson Karani', 'nelson karani')<br/>('7247643', 'Ruoyi Liu', 'ruoyi liu')</td><td></td></tr><tr><td>c3beae515f38daf4bd8053a7d72f6d2ed3b05d88</td><td></td><td></td><td></td></tr><tr><td>c3dc4f414f5233df96a9661609557e341b71670d</td><td>Tao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4 +<br/>http://asp.eurasipjournals.com/content/2011/1/4 +<br/>RESEARCH +<br/>Utterance independent bimodal emotion +<br/>recognition in spontaneous communication +<br/>Open Access +</td><td>('37670752', 'Jianhua Tao', 'jianhua tao')<br/>('48027528', 'Shifeng Pan', 'shifeng pan')<br/>('2740129', 'Minghao Yang', 'minghao yang')<br/>('3295988', 'Kaihui Mu', 'kaihui mu')<br/>('2253805', 'Jianfeng Che', 'jianfeng che')</td><td></td></tr><tr><td>c3b3636080b9931ac802e2dd28b7b684d6cf4f8b</td><td>International Journal of Security and Its Applications <br/>Vol. 7, No. 2, March, 2013 <br/>Face Recognition via Local Directional Pattern <br/><b>Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology</b><br/>50-1, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, Korea. @@ -28340,7 +35928,7 @@ </td></tr><tr><td>c398684270543e97e3194674d9cce20acaef3db3</td><td>Chapter 2 <br/>Comparative Face Soft Biometrics for <br/>Human Identification -</td><td>('19249411', 'Nawaf Yousef Almudhahka', 'nawaf yousef almudhahka')<br/>('1727698', 'Mark S. Nixon', 'mark s. nixon')<br/>('31534955', 'Jonathon S. Hare', 'jonathon s. hare')</td><td></td></tr><tr><td>c3418f866a86dfd947c2b548cbdeac8ca5783c15</td><td></td><td></td><td></td></tr><tr><td>c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0</td><td>MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +</td><td>('19249411', 'Nawaf Yousef Almudhahka', 'nawaf yousef almudhahka')<br/>('1727698', 'Mark S. Nixon', 'mark s. nixon')<br/>('31534955', 'Jonathon S. Hare', 'jonathon s. hare')</td><td></td></tr><tr><td>c3285a1d6ec6972156fea9e6dc9a8d88cd001617</td><td></td><td></td><td></td></tr><tr><td>c3418f866a86dfd947c2b548cbdeac8ca5783c15</td><td></td><td></td><td></td></tr><tr><td>c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0</td><td>MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan <br/>8-10 <br/>A New Scheme for Image Recognition Using Higher-Order Local <br/>Autocorrelation and Factor Analysis @@ -28348,6 +35936,16 @@ <br/>yyyAIST <br/>Tukuba, Japan </td><td>('29737626', 'Naoyuki Nomoto', 'naoyuki nomoto')<br/>('2163494', 'Yusuke Shinohara', 'yusuke shinohara')<br/>('2981587', 'Takayoshi Shiraki', 'takayoshi shiraki')<br/>('1800592', 'Takumi Kobayashi', 'takumi kobayashi')<br/>('1809629', 'Nobuyuki Otsu', 'nobuyuki otsu')</td><td>f shiraki, takumi, otsug @isi.imi.i.u-tokyo.ac.jp +</td></tr><tr><td>c34532fe6bfbd1e6df477c9ffdbb043b77e7804d</td><td>A 3D Morphable Eye Region Model +<br/>for Gaze Estimation +<br/><b>University of Cambridge, Cambridge, UK</b><br/><b>Carnegie Mellon University, Pittsburgh, USA</b><br/><b>Max Planck Institute for Informatics, Saarbr ucken, Germany</b></td><td>('34399452', 'Erroll Wood', 'erroll wood')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')<br/>('39626495', 'Peter Robinson', 'peter robinson')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')</td><td>{eww23,pr10}@cl.cam.ac.uk +<br/>{tbaltrus,morency}@cs.cmu.edu +<br/>bulling@mpi-inf.mpg.de +</td></tr><tr><td>c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0</td><td>Person Reidentification and Recognition in +<br/>Video +<br/>Computer Science and Engineering, +<br/><b>University of South Florida, Tampa, Florida, USA</b><br/>http://figment.csee.usf.edu/ +</td><td>('3110392', 'Rangachar Kasturi', 'rangachar kasturi')</td><td>R1K@cse.usf.edu,rajmadhan@mail.usf.edu </td></tr><tr><td>c32383330df27625592134edd72d69bb6b5cff5c</td><td>422 <br/>IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012 <br/>Intrinsic Illumination Subspace for Lighting @@ -28362,6 +35960,9 @@ <br/>Using an Ensemble of Exemplars <br/><b>University City Blvd., Charlotte, NC</b><br/>Department of Computer Science <br/><b>University of North Carolina at Charlotte</b></td><td>('1715594', 'Scott Spurlock', 'scott spurlock')<br/>('2549750', 'Peter Malmgren', 'peter malmgren')<br/>('1873911', 'Hui Wu', 'hui wu')<br/>('1690110', 'Richard Souvenir', 'richard souvenir')</td><td>{sspurloc, ptmalmyr, hwu13, souvenir}@uncc.edu +</td></tr><tr><td>c39ffc56a41d436748b9b57bdabd8248b2d28a32</td><td>Residual Attention Network for Image Classification +<br/><b>SenseTime Group Limited, 2Tsinghua University</b><br/><b>The Chinese University of Hong Kong, 4Beijing University of Posts and Telecommunications</b></td><td>('1682816', 'Fei Wang', 'fei wang')<br/>('9563639', 'Mengqing Jiang', 'mengqing jiang')<br/>('40110742', 'Chen Qian', 'chen qian')<br/>('1692609', 'Shuo Yang', 'shuo yang')<br/>('49672774', 'Cheng Li', 'cheng li')<br/>('1720776', 'Honggang Zhang', 'honggang zhang')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>1{wangfei, qianchen, chengli}@sensetime.com, 2jmq14@mails.tsinghua.edu.cn +<br/>3{ys014, xtang}@ie.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, 4zhhg@bupt.edu.cn </td></tr><tr><td>c32cd207855e301e6d1d9ddd3633c949630c793a</td><td>On the Effect of Illumination and Face Recognition <br/>Jeffrey Ho <br/>Department of CISE @@ -28370,7 +35971,56 @@ <br/><b>University of California at San Diego</b><br/>La Jolla, CA 92093 </td><td>('38998440', 'David Kriegman', 'david kriegman')</td><td>Email: jho@cise.ufl.edu <br/>Email: kriegman@cs.ucsd.edu -</td></tr><tr><td>c37a971f7a57f7345fdc479fa329d9b425ee02be</td><td>A Novice Guide towards Human Motion Analysis and Understanding +</td></tr><tr><td>c317181fa1de2260e956f05cd655642607520a4f</td><td>Research Article +<br/>Research +<br/>Article for submission to journal +<br/>Subject Areas: +<br/>computer vision, pattern recognition, +<br/>feature descriptor +<br/>Keywords: +<br/>micro-facial expression, expression +<br/>recognition, action unit +<br/>Objective Classes for +<br/>Micro-Facial Expression +<br/>Recognition +<br/><b>Centre for Imaging Sciences, University of</b><br/>Manchester, Manchester, United Kingdom +<br/><b>Sudan University of Science and Technology</b><br/>Khartoum, Sudan +<br/>3School of Computing, Mathematics and Digital +<br/><b>Technology, Manchester Metropolitan University</b><br/>Manchester, United Kingdom +<br/>instead of predicted emotion, +<br/>Micro-expressions are brief spontaneous facial expressions +<br/>that appear on a face when a person conceals an emotion, +<br/>making them different +<br/>to normal facial expressions in +<br/>subtlety and duration. Currently, emotion classes within +<br/>the CASME II dataset are based on Action Units and +<br/>self-reports, creating conflicts during machine learning +<br/>training. We will show that classifying expressions using +<br/>Action Units, +<br/>removes +<br/>the potential bias of human reporting. The proposed +<br/>classes are tested using LBP-TOP, HOOF and HOG 3D +<br/>feature descriptors. The experiments are evaluated on +<br/>two benchmark FACS coded datasets: CASME II and +<br/>SAMM. The best result achieves 86.35% accuracy when +<br/>classifying the proposed 5 classes on CASME II using +<br/>HOG 3D, outperforming the result of the state-of-the- +<br/>art 5-class emotional-based classification in CASME II. +<br/>Results indicate that classification based on Action Units +<br/>provides an objective method to improve micro-expression +<br/>recognition. +<br/>1. Introduction +<br/>A micro-facial expression is revealed when someone attempts +<br/>to conceal their true emotion [1,2]. When they consciously +<br/>realise that a facial expression is occurring, the person may try +<br/>to suppress the facial expression because showing the emotion +<br/>may not be appropriate [3]. Once the suppression has occurred, +<br/>the person may mask over the original facial expression and +<br/>cause a micro-facial expression. In a high-stakes environment, +<br/>these expressions tend to become more likely as there is more +<br/>risk to showing the emotion. +</td><td>('3125772', 'Moi Hoon Yap', 'moi hoon yap')<br/>('36059631', 'Adrian K. Davison', 'adrian k. davison')<br/>('23986818', 'Walied Merghani', 'walied merghani')<br/>('3125772', 'Moi Hoon Yap', 'moi hoon yap')</td><td>e-mail: M.Yap@mmu.ac.uk +</td></tr><tr><td>c30e4e4994b76605dcb2071954eaaea471307d80</td><td></td><td></td><td></td></tr><tr><td>c37a971f7a57f7345fdc479fa329d9b425ee02be</td><td>A Novice Guide towards Human Motion Analysis and Understanding </td><td>('40360970', 'Ahmed Nabil Mohamed', 'ahmed nabil mohamed')</td><td>dr.ahmed.mohamed@ieee.org </td></tr><tr><td>c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af</td><td></td><td></td><td></td></tr><tr><td>c32c8bfadda8f44d40c6cd9058a4016ab1c27499</td><td>Unconstrained Face Recognition From a Single <br/>Image @@ -28404,9 +36054,22 @@ <br/>2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) <br/>978-1-4799-2893-4/14/$31.00 ©2014 IEEE <br/>1. INTRODUCTION -</td><td></td><td></td></tr><tr><td>c418a3441f992fea523926f837f4bfb742548c16</td><td>A Computer Approach for Face Aging Problems +</td><td></td><td></td></tr><tr><td>c37de914c6e9b743d90e2566723d0062bedc9e6a</td><td>©2016 Society for Imaging Science and Technology +<br/>DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455 +<br/>Joint and Discriminative Dictionary Learning +<br/>Expression Recognition +<br/>for Facial +</td><td>('38611433', 'Sriram Kumar', 'sriram kumar')<br/>('3168309', 'Behnaz Ghoraani', 'behnaz ghoraani')<br/>('32219349', 'Andreas Savakis', 'andreas savakis')</td><td></td></tr><tr><td>c418a3441f992fea523926f837f4bfb742548c16</td><td>A Computer Approach for Face Aging Problems <br/>Centre for Pattern Recognition and Machine Intelligence, <br/><b>Concordia University, Canada</b></td><td>('1769788', 'Khoa Luu', 'khoa luu')</td><td>kh_lu@cenparmi.concordia.ca +</td></tr><tr><td>c4fb2de4a5dc28710d9880aece321acf68338fde</td><td>Interactive Generative Adversarial Networks for Facial Expression Generation +<br/>in Dyadic Interactions +<br/><b>University of Central Florida</b><br/>Educational Testing Service +<br/>Saad Khan +<br/>Educational Testing Service +</td><td>('2974242', 'Behnaz Nojavanasghari', 'behnaz nojavanasghari')<br/>('2224875', 'Yuchi Huang', 'yuchi huang')</td><td>behnaz@eecs.ucf.edu +<br/>yhuang001@ets.org +<br/>skhan002@ets.org </td></tr><tr><td>c44c84540db1c38ace232ef34b03bda1c81ba039</td><td>Cross-Age Reference Coding for Age-Invariant <br/>Face Recognition and Retrieval <br/><b>Institute of Information Science, Academia Sinica, Taipei, Taiwan</b><br/><b>National Taiwan University, Taipei, Taiwan</b></td><td>('33970300', 'Bor-Chun Chen', 'bor-chun chen')<br/>('1720473', 'Chu-Song Chen', 'chu-song chen')<br/>('1716836', 'Winston H. Hsu', 'winston h. hsu')</td><td></td></tr><tr><td>c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4</td><td>Int J Comput Vis (2014) 108:3–29 @@ -28418,7 +36081,8 @@ </td><td>('3251767', 'Steve Branson', 'steve branson')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td></td></tr><tr><td>c46a4db7247d26aceafed3e4f38ce52d54361817</td><td>A CNN Cascade for Landmark Guided Semantic <br/>Part Segmentation <br/><b>School of Computer Science, The University of Nottingham, Nottingham, UK</b></td><td>('34596685', 'Aaron S. Jackson', 'aaron s. jackson')<br/>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td>{aaron.jackson, michel.valstar, yorgos.tzimiropoulos}@nottingham.ac.uk -</td></tr><tr><td>c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad</td><td> Understanding Activity: Learning the Language of Action +</td></tr><tr><td>c43862db5eb7e43e3ef45b5eac4ab30e318f2002</td><td>Provable Self-Representation Based Outlier Detection in a Union of Subspaces +<br/><b>Johns Hopkins University, Baltimore, MD, 21218, USA</b></td><td>('1878841', 'Chong You', 'chong you')<br/>('1780452', 'Daniel P. Robinson', 'daniel p. robinson')</td><td></td></tr><tr><td>c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad</td><td> Understanding Activity: Learning the Language of Action <br/> Univ. of Rochester and Maryland <br/>1.1 Overview <br/>Understanding observed activity is an important @@ -28507,7 +36171,31 @@ <br/>Using A Single 3D Reference Model <br/><b>National Taiwan University of Science and Technology</b><br/>No. 43, Sec.4, Keelung Rd., Taipei, 106, Taiwan </td><td>('38801529', 'Gee-Sern Hsu', 'gee-sern hsu')<br/>('3329222', 'Hsiao-Chia Peng', 'hsiao-chia peng')</td><td>*jison@mail.ntust.edu.tw -</td></tr><tr><td>eacba5e8fbafb1302866c0860fc260a2bdfff232</td><td>VOS-GAN: Adversarial Learning of Visual-Temporal +</td></tr><tr><td>ea46951b070f37ad95ea4ed08c7c2a71be2daedc</td><td>Using phase instead of optical flow +<br/>for action recognition +<br/><b>Computer Vision Lab, Delft University of Technology, Netherlands</b><br/><b>Intelligent Sensory Interactive Systems, University of Amsterdam, Netherlands</b></td><td>('9179750', 'Omar Hommos', 'omar hommos')<br/>('37041694', 'Silvia L. Pintea', 'silvia l. pintea')<br/>('1738975', 'Jan C. van Gemert', 'jan c. van gemert')</td><td></td></tr><tr><td>eac6aee477446a67d491ef7c95abb21867cf71fc</td><td>JOURNAL +<br/>A survey of sparse representation: algorithms and +<br/>applications +</td><td>('38448016', 'Zheng Zhang', 'zheng zhang')<br/>('38649019', 'Yong Xu', 'yong xu')<br/>('37081450', 'Jian Yang', 'jian yang')<br/>('1720243', 'Xuelong Li', 'xuelong li')<br/>('1698371', 'David Zhang', 'david zhang')</td><td></td></tr><tr><td>ea079334121a0ba89452036e5d7f8e18f6851519</td><td>UNSUPERVISED INCREMENTAL LEARNING OF DEEP DESCRIPTORS +<br/>FROM VIDEO STREAMS +<br/><b>MICC University of Florence</b></td><td>('2619131', 'Federico Pernici', 'federico pernici')<br/>('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')</td><td>federico.pernici@unifi.it, alberto.delbimbo@unifi.it +</td></tr><tr><td>eac1b644492c10546a50f3e125a1f790ec46365f</td><td>Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for +<br/>Action Classification and Detection +<br/><b>University of Freiburg</b><br/>Freiburg im Breisgau, Germany +</td><td>('2890820', 'Mohammadreza Zolfaghari', 'mohammadreza zolfaghari')<br/>('2371771', 'Gabriel L. Oliveira', 'gabriel l. oliveira')<br/>('31656404', 'Nima Sedaghat', 'nima sedaghat')<br/>('1710872', 'Thomas Brox', 'thomas brox')</td><td>{zolfagha,oliveira,nima,brox}@cs.uni-freiburg.de +</td></tr><tr><td>ea80a050d20c0e24e0625a92e5c03e5c8db3e786</td><td>Face Verification and Face Image Synthesis +<br/>under Illumination Changes +<br/>using Neural Networks +<br/>by +<br/>Under the supervision of +<br/>Prof. Daphna Weinshall +<br/>School of Computer Science and Engineering +<br/><b>The Hebrew University of Jerusalem</b><br/>Israel +<br/>Submitted in partial fulfillment of the +<br/>requirements of the degree of +<br/>Master of Science +<br/>December, 2017 +</td><td></td><td></td></tr><tr><td>eacba5e8fbafb1302866c0860fc260a2bdfff232</td><td>VOS-GAN: Adversarial Learning of Visual-Temporal <br/>Dynamics for Unsupervised Dense Prediction in Videos <br/>∗ Pattern Recognition and Computer Vision (PeRCeiVe) Lab <br/><b>University of Catania, Italy</b><br/>www.perceivelab.com @@ -28529,7 +36217,68 @@ <br/>Tunis, Tunisia, <br/>Tel: 9419010363; </td><td>('9304667', 'Hédi Trabelsi', 'hédi trabelsi')<br/>('2281259', 'Ines Malek', 'ines malek')<br/>('31649078', 'Imed Jabri', 'imed jabri')</td><td>E-mail: rabelg@live.fr -</td></tr><tr><td>ea85378a6549bb9eb9bcc13e31aa6a61b655a9af</td><td>Diplomarbeit +</td></tr><tr><td>eafda8a94e410f1ad53b3e193ec124e80d57d095</td><td>Jeffrey F. Cohn +<br/>13 +<br/>Observer-Based Measurement of Facial Expression +<br/>With the Facial Action Coding System +<br/>Facial expression has been a focus of emotion research for over +<br/>a hundred years (Darwin, 1872/1998). It is central to several +<br/>leading theories of emotion (Ekman, 1992; Izard, 1977; +<br/>Tomkins, 1962) and has been the focus of at times heated +<br/>debate about issues in emotion science (Ekman, 1973, 1993; +<br/>Fridlund, 1992; Russell, 1994). Facial expression figures +<br/>prominently in research on almost every aspect of emotion, +<br/>including psychophysiology (Levenson, Ekman, & Friesen, +<br/>1990), neural bases (Calder et al., 1996; Davidson, Ekman, +<br/>Saron, Senulis, & Friesen, 1990), development (Malatesta, +<br/>Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993), +<br/>perception (Ambadar, Schooler, & Cohn, 2005), social pro- +<br/>cesses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac, +<br/>2000), and emotion disorder (Kaiser, 2002; Sloan, Straussa, +<br/>Quirka, & Sajatovic, 1997), to name a few. +<br/>Because of its importance to the study of emotion, a num- +<br/>ber of observer-based systems of facial expression measure- +<br/>ment have been developed (Ekman & Friesen, 1978, 1982; +<br/>Ekman, Friesen, & Tomkins, 1971; Izard, 1979, 1983; Izard +<br/>& Dougherty, 1981; Kring & Sloan, 1991; Tronick, Als, & +<br/>Brazelton, 1980). Of these various systems for describing +<br/>facial expression, the Facial Action Coding System (FACS; +<br/>Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) is +<br/>the most comprehensive, psychometrically rigorous, and +<br/>widely used (Cohn & Ekman, 2005; Ekman & Rosenberg, +<br/>2005). Using FACS and viewing video-recorded facial behav- +<br/>ior at frame rate and slow motion, coders can manually code +<br/>nearly all possible facial expressions, which are decomposed +<br/>into action units (AUs). Action units, with some qualifica- +<br/>tions, are the smallest visually discriminable facial move- +<br/>ments. By comparison, other systems are less thorough +<br/>(Malatesta et al., 1989), fail to differentiate between some +<br/>anatomically distinct movements (Oster, Hegley, & Nagel, +<br/>1992), consider movements that are not anatomically dis- +<br/>tinct as separable (Oster et al., 1992), and often assume a one- +<br/>to-one mapping between facial expression and emotion (for +<br/>a review of these systems, see Cohn & Ekman, in press). +<br/>Unlike systems that use emotion labels to describe ex- +<br/>pression, FACS explicitly distinguishes between facial actions +<br/>and inferences about what they mean. FACS itself is descrip- +<br/>tive and includes no emotion-specified descriptors. Hypoth- +<br/>eses and inferences about the emotional meaning of facial +<br/>actions are extrinsic to FACS. If one wishes to make emo- +<br/>tion-based inferences from FACS codes, a variety of related +<br/>resources exist. These include the FACS Investigators’ Guide +<br/>(Ekman et al., 2002), the FACS interpretive database (Ekman, +<br/>Rosenberg, & Hager, 1998), and a large body of empirical +<br/>research.(Ekman & Rosenberg, 2005). These resources sug- +<br/>gest combination rules for defining emotion-specified expres- +<br/>sions from FACS action units, but this inferential step remains +<br/>extrinsic to FACS. Because of its descriptive power, FACS +<br/>is regarded by many as the standard measure for facial be- +<br/>havior and is used widely in diverse fields. Beyond emo- +<br/>tion science, these include facial neuromuscular disorders +<br/>(Van Swearingen & Cohn, 2005), neuroscience (Bruce & +<br/>Young, 1998; Rinn, 1984, 1991), computer vision (Bartlett, +<br/>203 +<br/>UNPROOFED PAGES</td><td>('2059653', 'Zara Ambadar', 'zara ambadar')<br/>('21451088', 'Paul Ekman', 'paul ekman')</td><td></td></tr><tr><td>ea85378a6549bb9eb9bcc13e31aa6a61b655a9af</td><td>Diplomarbeit <br/>Template Protection for PCA-LDA-based 3D <br/>Face Recognition System <br/>von @@ -28544,13 +36293,130 @@ <br/>Edif. Central del Parque Cient´ıfico Tecnol´ogico <br/>Universidad de Las Palmas de Gran Canaria <br/>35017 - Spain -</td><td>('4643134', 'Javier Lorenzo-Navarro', 'javier lorenzo-navarro')</td><td></td></tr><tr><td>ea218cebea2228b360680cb85ca133e8c2972e56</td><td>Recover Canonical-View Faces in the 明Tild with Deep +</td><td>('4643134', 'Javier Lorenzo-Navarro', 'javier lorenzo-navarro')</td><td></td></tr><tr><td>ea890846912f16a0f3a860fce289596a7dac575f</td><td>ORIGINAL RESEARCH ARTICLE +<br/>published: 09 October 2014 +<br/>doi: 10.3389/fpsyg.2014.01154 +<br/>Benefits of social vs. non-social feedback on learning and +<br/>generosity. Results from theTipping Game +<br/><b>Tilburg Center for Logic, General Ethics, and Philosophy of Science, Tilburg University, Tilburg, Netherlands</b><br/><b>Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK</b><br/>Edited by: +<br/><b>Giulia Andrighetto, Institute of</b><br/>Cognitive Science and Technologies – +<br/>National Research Council, Italy +<br/>Reviewed by: +<br/><b>David R. Simmons, University of</b><br/>Glasgow, UK +<br/><b>Aron Szekely, University of Oxford, UK</b><br/>*Correspondence: +<br/>Logic, General Ethics, and Philosophy +<br/><b>of Science, Tilburg University</b><br/>P. O. Box 90153, 5000 LE +<br/>Tilburg, Netherlands +<br/>Stankevicius have contributed equally +<br/>to this work. +<br/>Although much work has recently been directed at understanding social decision-making, +<br/>relatively little is known about how different types of feedback impact adaptive changes +<br/>in social behavior. To address this issue quantitatively, we designed a novel associative +<br/>learning task called the “Tipping Game,” in which participants had to learn a social norm +<br/>of tipping in restaurants. Participants were found to make more generous decisions +<br/>from feedback in the form of facial expressions, +<br/>in comparison to feedback in the +<br/>form of symbols such as ticks and crosses. Furthermore, more participants displayed +<br/>learning in the condition where they received social feedback than participants in the non- +<br/>social condition. Modeling results showed that the pattern of performance displayed by +<br/>participants receiving social feedback could be explained by a lower sensitivity to economic +<br/>costs. +<br/>Keywords: social/non-social feedback, facial expressions, social norms, tipping behavior, associative learning +<br/>INTRODUCTION +<br/>Several behavioral, neurobiological and theoretical studies have +<br/>shown that social norm compliance, and more generally adap- +<br/>tive changes in social behavior, often require the effective use and +<br/><b>weighing of different types of information, including expected</b><br/>economic costs and benefits, the potential impact of our behavior +<br/>on the welfare of others and our own reputation, as well as feed- +<br/>back information (Bicchieri, 2006; Adolphs, 2009; Frith and Frith, +<br/>2012). Relatively little attention has been paid to how different +<br/>types of feedback (or reward) may impact the way social norms +<br/>are learned. The present study addresses this issue with behavioral +<br/>and modeling results from a novel associative learning task called +<br/>the “Tipping Game.” We take the example of tipping and ask: how +<br/>do social feedback in the form of facial expressions, as opposed +<br/>to non-social feedback in the form of such conventional signs as +<br/>ticks and crosses, affect the way participants learn a social norm +<br/>of tipping? +<br/>Recent findings indicate that people’s decision-making is often +<br/>biased by social stimuli. For example, images of a pair of eyes can +<br/>significantly increase pro-social behavior in laboratory conditions +<br/>as well as in real-world contexts (Haley and Fessler, 2005; Bateson +<br/>et al., 2006; Rigdon et al., 2009; Ernest-Jones et al., 2011). Fur- +<br/>thermore, decision-making can be systematically biased by facial +<br/>emotional expressions used as predictors of monetary reward +<br/>(Averbeck and Duchaine, 2009; Evans et al., 2011; Shore and +<br/>Heerey, 2011). Facial expressions of happiness elicit approach- +<br/>ing behavior, whereas angry faces elicit avoidance (Seidel et al., +<br/>2010; for a review seeBlair, 2003). Because they can function as +<br/>signals to others, eliciting specific behavioral responses, emotional +<br/>facial expressions play a major role in socialization practices that +<br/>help individuals to adapt to the norms and values of their culture +<br/>(Keltner and Haidt, 1999; Frith, 2009). +<br/>Despite this body of findings, the literature does not pro- +<br/>vide an unambiguous answer to the question of how learning +<br/>performance is affected by social stimuli in comparison to differ- +<br/>ent types of non-social stimuli used as feedback about previous +<br/>decisions in a learning task (Ruff and Fehr, 2014). Consistent +<br/>with the view that social reinforcement is a powerful facili- +<br/>tator of human learning (Zajonc, 1965; Bandura, 1977), one +<br/>recent study using a feedback-guided item-category association +<br/>task found that learning performance in control groups was +<br/>improved when social (smiling or angry faces) instead of non- +<br/>social (green or red lights) reinforcement was used (Hurlemann +<br/>et al., 2010). +<br/>However, the paradigm used in this study did not distin- +<br/>guish between two conditions in which social-facilitative effects +<br/>on learning performance have been observed: first, a condition +<br/>characterized by the mere presence of others (Allport, 1920); and +<br/>second, a condition where others provide reinforcing feedback +<br/>(Zajonc, 1965). In the task used by Hurlemann et al. (2010), faces +<br/>were present onscreen throughout each trial, changing from a +<br/>neutral to a happy expression for correct responses or angry for +<br/>incorrect responses. So, this study could not identify the specific +<br/>effect of social feedback on learning. +<br/>Consistent with the assumption oft made in economics and +<br/>psychology that optimal decisions and learning are based on an +<br/>assessment of the evidence that is unbiased by the social or non- +<br/>social nature of the evidence itself (Becker, 1976; Oaksford and +<br/>Chater, 2007), Lin et al. (2012a) found that, instead of boosting +<br/>learning performance, social reward (smiling or angry faces) made +<br/>www.frontiersin.org +<br/>October 2014 | Volume 5 | Article 1154 | 1 +</td><td>('37157064', 'Matteo Colombo', 'matteo colombo')<br/>('25749361', 'Aistis Stankevicius', 'aistis stankevicius')<br/>('2771872', 'Peggy Seriès', 'peggy seriès')<br/>('37157064', 'Matteo Colombo', 'matteo colombo')<br/>('37157064', 'Matteo Colombo', 'matteo colombo')</td><td>e-mail: m.colombo@uvt.nl +</td></tr><tr><td>eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf</td><td><b>VICTORIA UNIVERSITY OF WELLINGTON</b><br/>Te Whare Wananga o te Upoko o te Ika a Maui +<br/>School of Mathematics, Statistics and Computer Science +<br/>Computer Science +<br/>Algebraic Simplification of Genetic +<br/>Programs during Evolution +<br/>Technical Report CS-TR-06/7 +<br/>February 2006 +<br/>School of Mathematics, Statistics and Computer Science +<br/><b>Victoria University</b><br/>PO Box 600, Wellington +<br/>New Zealand +<br/>Tel: +64 4 463 5341 +<br/>Fax: +64 4 463 5045 +<br/>http://www.mcs.vuw.ac.nz/research +</td><td>('1679067', 'Mengjie Zhang', 'mengjie zhang')</td><td>Email: Tech.Reports@mcs.vuw.ac.nz +</td></tr><tr><td>ea218cebea2228b360680cb85ca133e8c2972e56</td><td>Recover Canonical-View Faces in the 明Tild with Deep <br/>Neural Networks <br/><b>Departm nt of Information Engin ering Th Chines University of Hong Kong</b><br/><b>The Chinese University ofHong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b><br/>zz 012 日 ie . cuh k. edu . h k </td><td>('2042558', 'Zhenyao Zhu', 'zhenyao zhu')<br/>('1693209', 'Ping Luo', 'ping luo')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>xgwang@ee . cuhk . edu . hk <br/>p 1 uo .1 h 工 @gm a i l . com <br/>xtang@ i e . cuhk. edu . hk -</td></tr><tr><td>ea96bc017fb56593a59149e10d5f14011a3744a0</td><td></td><td></td><td></td></tr><tr><td>e10a257f1daf279e55f17f273a1b557141953ce2</td><td></td><td></td><td></td></tr><tr><td>e171fba00d88710e78e181c3e807c2fdffc6798a</td><td></td><td></td><td></td></tr><tr><td>e1c59e00458b4dee3f0e683ed265735f33187f77</td><td>Spectral Rotation versus K-Means in Spectral Clustering +</td></tr><tr><td>ea96bc017fb56593a59149e10d5f14011a3744a0</td><td></td><td></td><td></td></tr><tr><td>e1630014a5ae3d2fb7ff6618f1470a567f4d90f5</td><td>Look, Listen and Learn - A Multimodal LSTM for Speaker Identification +<br/>SenseTime Group Limited1 +<br/><b>The University of Hong Kong</b><br/>Project page: http://www.deeplearning.cc/mmlstm +</td><td>('46972608', 'Yongtao Hu', 'yongtao hu')</td><td>{rensijie, yuwing, xuli, sunwenxiu, yanqiong}@sensetime.com +<br/>{herohuyongtao, wangchuan2400}@gmail.com +</td></tr><tr><td>e19fb22b35c352f57f520f593d748096b41a4a7b</td><td>Modeling Context for Image +<br/>Understanding: +<br/>When, For What, and How? +<br/>Department of Electrical and Computer Engineering, +<br/><b>Carnegie Mellon University</b><br/>A thesis submitted for the degree of +<br/>Doctor of Philosophy +<br/>April 3, 2009 +</td><td>('1713589', 'Devi Parikh', 'devi parikh')</td><td></td></tr><tr><td>e10a257f1daf279e55f17f273a1b557141953ce2</td><td></td><td></td><td></td></tr><tr><td>e171fba00d88710e78e181c3e807c2fdffc6798a</td><td></td><td></td><td></td></tr><tr><td>e1c59e00458b4dee3f0e683ed265735f33187f77</td><td>Spectral Rotation versus K-Means in Spectral Clustering <br/>Computer Science and Engineering Department <br/><b>University of Texas at Arlington</b><br/>Arlington,TX,76019 </td><td>('39122448', 'Jin Huang', 'jin huang')<br/>('1688370', 'Feiping Nie', 'feiping nie')<br/>('1748032', 'Heng Huang', 'heng huang')</td><td>huangjinsuzhou@gmail.com, feipingnie@gmail.com, heng@uta.edu @@ -28575,7 +36441,9 @@ <br/>r.hofmann@campus.tu-berlin.de <br/>ahmmed@campus.tu-berlin.de <br/>kashefy@ni.tu-berlin.de -</td></tr><tr><td>e16efd2ae73a325b7571a456618bfa682b51aef8</td><td></td><td></td><td></td></tr><tr><td>e13360cda1ebd6fa5c3f3386c0862f292e4dbee4</td><td></td><td></td><td></td></tr><tr><td>e1f6e2651b7294951b5eab5d2322336af1f676dc</td><td>Appl. Math. Inf. Sci. 9, No. 2L, 461-469 (2015) +</td></tr><tr><td>e16efd2ae73a325b7571a456618bfa682b51aef8</td><td></td><td></td><td></td></tr><tr><td>e19ebad4739d59f999d192bac7d596b20b887f78</td><td>Learning Gating ConvNet for Two-Stream based Methods in Action +<br/>Recognition +</td><td>('1696573', 'Jiagang Zhu', 'jiagang zhu')<br/>('1726367', 'Wei Zou', 'wei zou')<br/>('48147901', 'Zheng Zhu', 'zheng zhu')</td><td></td></tr><tr><td>e13360cda1ebd6fa5c3f3386c0862f292e4dbee4</td><td></td><td></td><td></td></tr><tr><td>e1f6e2651b7294951b5eab5d2322336af1f676dc</td><td>Appl. Math. Inf. Sci. 9, No. 2L, 461-469 (2015) <br/>461 <br/>Applied Mathematics & Information Sciences <br/>An International Journal @@ -28584,7 +36452,19 @@ <br/>Animation based on Facial Expression Analysis <br/><b>Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea</b><br/>Received: 22 May 2014, Revised: 23 Jul. 2014, Accepted: 24 Jul. 2014 <br/>Published online: 1 Apr. 2015 -</td><td>('2137943', 'Taehoon Cho', 'taehoon cho')<br/>('4027010', 'Jin-Ho Choi', 'jin-ho choi')<br/>('2849238', 'Hyeon-Joong Kim', 'hyeon-joong kim')<br/>('7236280', 'Soo-Mi Choi', 'soo-mi choi')</td><td></td></tr><tr><td>e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2</td><td>TSINGHUA SCIENCE AND TECHNOLOGY +</td><td>('2137943', 'Taehoon Cho', 'taehoon cho')<br/>('4027010', 'Jin-Ho Choi', 'jin-ho choi')<br/>('2849238', 'Hyeon-Joong Kim', 'hyeon-joong kim')<br/>('7236280', 'Soo-Mi Choi', 'soo-mi choi')</td><td></td></tr><tr><td>e1d726d812554f2b2b92cac3a4d2bec678969368</td><td>J Electr Eng Technol.2015; 10(?): 30-40 +<br/>http://dx.doi.org/10.5370/JEET.2015.10.2.030 +<br/>ISSN(Print) +<br/>1975-0102 +<br/>ISSN(Online) 2093-7423 +<br/>Human Action Recognition Bases on Local Action Attributes +<br/>and Mohan S Kankanhalli** +</td><td>('3132751', 'Weizhi Nie', 'weizhi nie')<br/>('3026404', 'Yongkang Wong', 'yongkang wong')</td><td></td></tr><tr><td>e1256ff535bf4c024dd62faeb2418d48674ddfa2</td><td>Towards Open-Set Identity Preserving Face Synthesis +<br/><b>University of Science and Technology of China</b><br/>2Microsoft Research +</td><td>('3093568', 'Jianmin Bao', 'jianmin bao')<br/>('39447786', 'Dong Chen', 'dong chen')<br/>('1716835', 'Fang Wen', 'fang wen')<br/>('7179232', 'Houqiang Li', 'houqiang li')<br/>('1745420', 'Gang Hua', 'gang hua')</td><td>{doch, fangwen, ganghua}@microsoft.com +<br/>lihq@ustc.edu.cn +<br/>jmbao@mail.ustc.edu.cn +</td></tr><tr><td>e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2</td><td>TSINGHUA SCIENCE AND TECHNOLOGY <br/>ISSNll1007-0214 <br/>0?/?? pp???–??? <br/>DOI: 10.26599/TST.2018.9010000 @@ -28593,7 +36473,46 @@ </td><td>('39021559', 'Muge Li', 'muge li')<br/>('2897748', 'Liangyue Li', 'liangyue li')<br/>('1688370', 'Feiping Nie', 'feiping nie')</td><td></td></tr><tr><td>cd9666858f6c211e13aa80589d75373fd06f6246</td><td>A Novel Time Series Kernel for <br/>Sequences Generated by LTI Systems <br/>V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy -</td><td>('1711610', 'Liliana Lo Presti', 'liliana lo presti')<br/>('9127836', 'Marco La Cascia', 'marco la cascia')</td><td></td></tr><tr><td>cd4c047f4d4df7937aff8fc76f4bae7718004f40</td><td></td><td></td><td></td></tr><tr><td>cd596a2682d74bdfa7b7160dd070b598975e89d9</td><td>Mood Detection: Implementing a facial +</td><td>('1711610', 'Liliana Lo Presti', 'liliana lo presti')<br/>('9127836', 'Marco La Cascia', 'marco la cascia')</td><td></td></tr><tr><td>cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66</td><td>What Makes a Video a Video: Analyzing Temporal Information in Video +<br/>Understanding Models and Datasets +<br/><b>Stanford University, 2Facebook, 3Dartmouth College</b></td><td>('38485317', 'De-An Huang', 'de-an huang')<br/>('34066479', 'Vignesh Ramanathan', 'vignesh ramanathan')<br/>('49274550', 'Dhruv Mahajan', 'dhruv mahajan')<br/>('1732879', 'Lorenzo Torresani', 'lorenzo torresani')<br/>('2210374', 'Manohar Paluri', 'manohar paluri')<br/>('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')</td><td></td></tr><tr><td>cd4941cbef1e27d7afdc41b48c1aff5338aacf06</td><td>MovieGraphs: Towards Understanding Human-Centric Situations from Videos +<br/><b>University of Toronto</b><br/><b>Vector Institute</b><br/>Lluís Castrejón3 +<br/><b>Montreal Institute for Learning Algorithms</b><br/>http://moviegraphs.cs.toronto.edu +<br/>Figure 1: An example from the MovieGraphs dataset. Each of the 7637 video clips is annotated with: 1) a graph that captures the characters +<br/>in the scene and their attributes, interactions (with topics and reasons), relationships, and time stamps; 2) a situation label that captures the +<br/>overarching theme of the interactions; 3) a scene label showing where the action takes place; and 4) a natural language description of the +<br/>clip. The graphs at the bottom show situations that occur before and after the one depicted in the main panel. +</td><td>('2039154', 'Paul Vicol', 'paul vicol')<br/>('2103464', 'Makarand Tapaswi', 'makarand tapaswi')<br/>('37895334', 'Sanja Fidler', 'sanja fidler')</td><td>{pvicol, makarand, fidler}@cs.toronto.edu, lluis.enric.castrejon.subira@umontreal.ca +</td></tr><tr><td>cd4c047f4d4df7937aff8fc76f4bae7718004f40</td><td></td><td></td><td></td></tr><tr><td>cdef0eaff4a3c168290d238999fc066ebc3a93e8</td><td>CONTRASTIVE-CENTER LOSS FOR DEEP NEURAL NETWORKS +<br/>1School of Information and Communication Engineering +<br/>2Beijing Key Laboratory of Network System and Network Culture +<br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b></td><td>('49712251', 'Ce Qi', 'ce qi')<br/>('1684263', 'Fei Su', 'fei su')</td><td></td></tr><tr><td>cd444ee7f165032b97ee76b21b9ff58c10750570</td><td><b>UNIVERSITY OF CALIFORNIA</b><br/>IRVINE +<br/>Relational Models for Human-Object Interactions and Object Affordances +<br/>DISSERTATION +<br/>submitted in partial satisfaction of the requirements +<br/>for the degree of +<br/>DOCTOR OF PHILOSOPHY +<br/>in Computer Science +<br/>by +<br/>Dissertation Committee: +<br/>Professor Deva Ramanan, Chair +<br/>Professor Charless Fowlkes +<br/>Professor Padhraic Smyth +<br/>Professor Serge Belongie +<br/>2013 +</td><td>('40277674', 'Chaitanya Desai', 'chaitanya desai')</td><td></td></tr><tr><td>cd23dc3227ee2a3ab0f4de1817d03ca771267aeb</td><td>WU, KAMATA, BRECKON: FACE RECOGNITION VIA DSGNN +<br/>Face Recognition via Deep Sparse Graph +<br/>Neural Networks +<br/>Renjie WU1 +<br/>Toby Breckon2 +<br/>1 Graduate School of Information, +<br/>Production and Systems +<br/><b>Waseda University</b><br/>Kitakyushu-shi, Japan +<br/>2 Engineering and Computing Sciences +<br/><b>Durham University, Durham, UK</b></td><td>('35222422', 'Sei-ichiro Kamata', 'sei-ichiro kamata')</td><td>wurj-sjtu-waseda@ruri.waseda.jp +<br/>kam@waseda.jp +<br/>toby.breckon@durham.ac.uk +</td></tr><tr><td>cd596a2682d74bdfa7b7160dd070b598975e89d9</td><td>Mood Detection: Implementing a facial <br/>expression recognition system <br/>1. Introduction <br/>Facial expressions play a significant role in human dialogue. As a result, there has been @@ -28640,6 +36559,29 @@ <br/>Privileged Information for Visual Recognition <br/>Lane Department of Computer Science and Electrical Engineering <br/><b>West Virginia University</b></td><td>('2897426', 'Saeid Motiian', 'saeid motiian')<br/>('1736352', 'Gianfranco Doretto', 'gianfranco doretto')</td><td>{samotiian,gidoretto}@mix.wvu.edu +</td></tr><tr><td>cd2c54705c455a4379f45eefdf32d8d10087e521</td><td>A Hybrid Model for Identity Obfuscation by +<br/>Face Replacement +<br/><b>Max Planck Institute for Informatics, Saarland Informatics Campus</b></td><td>('32222907', 'Qianru Sun', 'qianru sun')<br/>('1739548', 'Mario Fritz', 'mario fritz')</td><td>{qsun, atewari, wxu, mfritz, theobalt, schiele}@mpi-inf.mpg.de +</td></tr><tr><td>cd7a7be3804fd217e9f10682e0c0bfd9583a08db</td><td>Women also Snowboard: +<br/>Overcoming Bias in Captioning Models +</td><td>('40895688', 'Kaylee Burns', 'kaylee burns')</td><td></td></tr><tr><td>cd023d2d067365c83d8e27431e83e7e66082f718</td><td>Real-Time Rotation-Invariant Face Detection with +<br/>Progressive Calibration Networks +<br/>1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), +<br/><b>Institute of Computing Technology, CAS, Beijing 100190, China</b><br/><b>University of Chinese Academy of Sciences, Beijing 100049, China</b><br/>3 CAS Center for Excellence in Brain Science and Intelligence Technology +</td><td>('41017549', 'Xuepeng Shi', 'xuepeng shi')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1693589', 'Meina Kan', 'meina kan')<br/>('3126238', 'Shuzhe Wu', 'shuzhe wu')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td>{xuepeng.shi, shiguang.shan, meina.kan, shuzhe.wu, xilin.chen}@vipl.ict.ac.cn +</td></tr><tr><td>cca9ae621e8228cfa787ec7954bb375536160e0d</td><td>Learning to Collaborate for User-Controlled Privacy +<br/>Martin Bertran 1† +<br/>Natalia Martinez 1†* +<br/>Afroditi Papadaki 2 +<br/>Miguel Rodrigues 2 +<br/><b>Duke University, Durham, NC, USA</b><br/><b>University College London, London, UK</b><br/>†These authors contributed equally to this work. +<br/>Privacy is a human right. Tim Cook, Apple CEO. +</td><td>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('1699339', 'Guillermo Sapiro', 'guillermo sapiro')</td><td>martin.bertran@duke.edu +<br/>natalia.martinez@duke.edu +<br/>a.papadaki.17@ucl.ac.uk +<br/>qiuqiang@gmail.com +<br/>m.rodrigues@ucl.ac.uk +<br/>guillermo.sapiro@duke.edu </td></tr><tr><td>cc589c499dcf323fe4a143bbef0074c3e31f9b60</td><td>A 3D Facial Expression Database For Facial Behavior Research <br/><b>State University of New York at Binghamton</b></td><td>('8072251', 'Lijun Yin', 'lijun yin')</td><td></td></tr><tr><td>ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011 <br/>A Dynamic Appearance Descriptor Approach to @@ -28710,13 +36652,29 @@ <br/>Cinema and other aspects of film and video creation. <br/>PROJECT DATE 2014 <br/>URL http://misharabinovich.com/soyummy.html -</td><td>('40462877', 'MISHA RABINOVICH', 'misha rabinovich')<br/>('1679896', 'Yogesh Girdhar', 'yogesh girdhar')</td><td></td></tr><tr><td>ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b</td><td>American Journal of Food Science and Health +</td><td>('40462877', 'MISHA RABINOVICH', 'misha rabinovich')<br/>('1679896', 'Yogesh Girdhar', 'yogesh girdhar')</td><td></td></tr><tr><td>cc8e378fd05152a81c2810f682a78c5057c8a735</td><td>International Journal of Computer Sciences and Engineering Open Access +<br/> Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693 +<br/>Expression Invariant Face Recognition System based on Topographic +<br/>Independent Component Analysis and Inner Product Classifier +<br/> +<br/>Department of Electrical Engineering, IIT Delhi, New Delhi, India +<br/>Available online at: www.ijcseonline.org +<br/>Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017 +</td><td>('40258123', 'Aruna Bhat', 'aruna bhat')</td><td>*Corresponding Author: abigit06@yahoo.com +</td></tr><tr><td>ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b</td><td>American Journal of Food Science and Health <br/>Vol. 2, No. 2, 2016, pp. 7-17 <br/>http://www.aiscience.org/journal/ajfsh <br/>ISSN: 2381-7216 (Print); ISSN: 2381-7224 (Online) <br/>Nutraceuticals and Cosmeceuticals for Human <br/>Beings–An Overview -<br/><b>Narayana Pharmacy College, Nellore, India</b></td><td>('40179150', 'R. Ramasubramania Raja', 'r. ramasubramania raja')</td><td></td></tr><tr><td>cc8bf03b3f5800ac23e1a833447c421440d92197</td><td></td><td></td><td></td></tr><tr><td>cc91001f9d299ad70deb6453d55b2c0b967f8c0d</td><td>OPEN ACCESS +<br/><b>Narayana Pharmacy College, Nellore, India</b></td><td>('40179150', 'R. Ramasubramania Raja', 'r. ramasubramania raja')</td><td></td></tr><tr><td>cc31db984282bb70946f6881bab741aa841d3a7c</td><td>ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV +<br/>Learning Grimaces by Watching TV +<br/>http://www.robots.ox.ac.uk/~albanie +<br/>http://www.robots.ox.ac.uk/~vedaldi +<br/>Engineering Science Department +<br/>Univeristy of Oxford +<br/>Oxford, UK +</td><td>('7641268', 'Samuel Albanie', 'samuel albanie')<br/>('1687524', 'Andrea Vedaldi', 'andrea vedaldi')</td><td></td></tr><tr><td>cc8bf03b3f5800ac23e1a833447c421440d92197</td><td></td><td></td><td></td></tr><tr><td>cc91001f9d299ad70deb6453d55b2c0b967f8c0d</td><td>OPEN ACCESS <br/>ISSN 2073-8994 <br/>Article <br/>Performance Enhancement of Face Recognition in Smart TV @@ -28741,6 +36699,9 @@ </td></tr><tr><td>cc9057d2762e077c53e381f90884595677eceafa</td><td>On the Exploration of Joint Attribute Learning <br/>for Person Re-identification <br/><b>Michigan State University</b></td><td>('38993748', 'Joseph Roth', 'joseph roth')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td>{rothjos1,liuxm}@cse.msu.edu +</td></tr><tr><td>ccf16bcf458e4d7a37643b8364594656287f5bfc</td><td>A CNN Cascade for Landmark Guided Semantic +<br/>Part Segmentation +<br/><b>School of Computer Science, The University of Nottingham, Nottingham, UK</b></td><td>('34596685', 'Aaron S. Jackson', 'aaron s. jackson')<br/>('46637307', 'Michel Valstar', 'michel valstar')<br/>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td>{aaron.jackson, michel.valstar, yorgos.tzimiropoulos}@nottingham.ac.uk </td></tr><tr><td>e64b683e32525643a9ddb6b6af8b0472ef5b6a37</td><td>Face Recognition and Retrieval in Video </td><td>('10795229', 'Caifeng Shan', 'caifeng shan')</td><td></td></tr><tr><td>e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef</td><td>Research Article <br/>Addressing the illumination challenge in two- @@ -28754,6 +36715,11 @@ <br/><b>Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA</b><br/>2Department of Computer Science, Cybersecurity Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, <br/>NL 64840, Mexico </td><td>('2899018', 'Miguel A. Ochoa-Villegas', 'miguel a. ochoa-villegas')<br/>('1905427', 'Olivia Barron-Cano', 'olivia barron-cano')<br/>('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')</td><td>✉ E-mail: ioannisk@uh.edu +</td></tr><tr><td>e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227</td><td>Pairwise Relational Networks for Face +<br/>Recognition +<br/>1 Department of Creative IT Engineering, POSTECH, Korea +<br/>2 Department of Computer Science and Engineering, POSTECH, Korea +</td><td>('2794366', 'Bong-Nam Kang', 'bong-nam kang')<br/>('50682377', 'Yonghyun Kim', 'yonghyun kim')<br/>('1695669', 'Daijin Kim', 'daijin kim')</td><td>{bnkang,gkyh0805,dkim}@postech.ac.kr </td></tr><tr><td>e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec</td><td>Chapter 15. The critical role of the <br/>cold-start problem and incentive systems <br/>in emotional Web 2.0 services @@ -28771,7 +36737,19 @@ </td><td>('1688370', 'Feiping Nie', 'feiping nie')<br/>('1714390', 'Dong Xu', 'dong xu')<br/>('1700883', 'Changshui Zhang', 'changshui zhang')</td><td></td></tr><tr><td>e6f20e7431172c68f7fce0d4595100445a06c117</td><td>Searching Action Proposals via Spatial <br/>Actionness Estimation and Temporal Path <br/>Inference and Tracking -<br/><b>cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China</b><br/><b>DISI, University of Trento, Trento, Italy</b></td><td>('40147776', 'Dan Xu', 'dan xu')<br/>('3238696', 'Zhihao Li', 'zhihao li')<br/>('1684933', 'Ge Li', 'ge li')</td><td></td></tr><tr><td>e6540d70e5ffeed9f447602ea3455c7f0b38113e</td><td></td><td></td><td></td></tr><tr><td>e6ee36444038de5885473693fb206f49c1369138</td><td></td><td></td><td></td></tr><tr><td>e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5</td><td>Improving Facial Landmark Detection via a +<br/><b>cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China</b><br/><b>DISI, University of Trento, Trento, Italy</b></td><td>('40147776', 'Dan Xu', 'dan xu')<br/>('3238696', 'Zhihao Li', 'zhihao li')<br/>('1684933', 'Ge Li', 'ge li')</td><td></td></tr><tr><td>e6e5a6090016810fb902b51d5baa2469ae28b8a1</td><td>Title +<br/>Energy-Efficient Deep In-memory Architecture for NAND +<br/>Flash Memories +<br/>Archived version +<br/>Accepted manuscript: the content is same as the published +<br/>paper but without the final typesetting by the publisher +<br/>Published version +<br/>DOI +<br/>Published paper +<br/>URL +<br/>Authors (contact) +<br/>10.1109/ISCAS.2018.8351458 +</td><td></td><td></td></tr><tr><td>e6540d70e5ffeed9f447602ea3455c7f0b38113e</td><td></td><td></td><td></td></tr><tr><td>e6ee36444038de5885473693fb206f49c1369138</td><td></td><td></td><td></td></tr><tr><td>e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5</td><td>Improving Facial Landmark Detection via a <br/>Super-Resolution Inception Network <br/><b>Institute for Human-Machine Communication</b><br/><b>Technical University of Munich, Germany</b></td><td>('38746426', 'Martin Knoche', 'martin knoche')<br/>('3044182', 'Daniel Merget', 'daniel merget')<br/>('1705843', 'Gerhard Rigoll', 'gerhard rigoll')</td><td></td></tr><tr><td>f913bb65b62b0a6391ffa8f59b1d5527b7eba948</td><td></td><td></td><td></td></tr><tr><td>f9784db8ff805439f0a6b6e15aeaf892dba47ca0</td><td>Comparing the performance of Emotion-Recognition Implementations <br/>in OpenCV, Cognitive Services, and Google Vision APIs @@ -28877,7 +36855,10 @@ <br/>for the degree of <br/>Computer Science– Doctor of Philosophy <br/>2013 -</td><td>('31508481', 'Alessandra Aparecida Paulino', 'alessandra aparecida paulino')</td><td></td></tr><tr><td>f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1</td><td></td><td></td><td></td></tr><tr><td>f93606d362fcbe62550d0bf1b3edeb7be684b000</td><td>The Computer Journal Advance Access published February 1, 2012 +</td><td>('31508481', 'Alessandra Aparecida Paulino', 'alessandra aparecida paulino')</td><td></td></tr><tr><td>f92ade569cbe54344ffd3bb25efd366dcd8ad659</td><td>EFFECT OF SUPER RESOLUTION ON HIGH DIMENSIONAL FEATURES FOR +<br/>UNSUPERVISED FACE RECOGNITION IN THE WILD +<br/><b>University of Bridgeport, Bridgeport, CT 06604, USA</b></td><td>('40373065', 'Ahmed ElSayed', 'ahmed elsayed')<br/>('37374395', 'Ausif Mahmood', 'ausif mahmood')</td><td>Emails: aelsayed@my.bridgeport.edu, {mahmood,sobh}@bridgeport.edu +</td></tr><tr><td>f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1</td><td></td><td></td><td></td></tr><tr><td>f93606d362fcbe62550d0bf1b3edeb7be684b000</td><td>The Computer Journal Advance Access published February 1, 2012 <br/><b>The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved</b><br/>doi:10.1093/comjnl/bxs001 <br/>Nearest Neighbor Classifier Based <br/>on Nearest Feature Decisions @@ -28942,6 +36923,19 @@ <br/>The Computer Journal, 2012 </td><td>('1744784', 'Alex Pappachen James', 'alex pappachen james')<br/>('1697594', 'Sima Dimitrijev', 'sima dimitrijev')</td><td>For Permissions, please email: journals.permissions@oup.com <br/>Corresponding author: apj@ieee.org +</td></tr><tr><td>f94f366ce14555cf0d5d34248f9467c18241c3ee</td><td>Deep Convolutional Neural Network in +<br/>Deformable Part Models for Face Detection +<br/><b>University of Science, Vietnam National University, HCMC</b><br/><b>School of Information Science, Japan Advanced Institute of Science and Technology</b></td><td>('2187730', 'Dinh-Luan Nguyen', 'dinh-luan nguyen')<br/>('34453615', 'Vinh-Tiep Nguyen', 'vinh-tiep nguyen')<br/>('1780348', 'Minh-Triet Tran', 'minh-triet tran')<br/>('2854896', 'Atsuo Yoshitaka', 'atsuo yoshitaka')</td><td>1212223@student.hcmus.edu.vn +<br/>{nvtiep,tmtriet}@fit.hcmus.edu.vn +<br/>ayoshi@jaist.ac.jp +</td></tr><tr><td>f997a71f1e54d044184240b38d9dc680b3bbbbc0</td><td>Deep Cross Modal Learning for Caricature Verification and +<br/>Identification(CaVINet) +<br/>https://lsaiml.github.io/CaVINet/ +<br/><b>Indian Institute of Technology Ropar</b><br/><b>Indian Institute of Technology Ropar</b><br/><b>Indian Institute of Technology Ropar</b><br/>Narayanan C Krishnan +<br/><b>Indian Institute of Technology Ropar</b></td><td>('6220011', 'Jatin Garg', 'jatin garg')<br/>('51152207', 'Himanshu Tolani', 'himanshu tolani')<br/>('41021778', 'Skand Vishwanath Peri', 'skand vishwanath peri')</td><td>2014csb1017@iitrpr.ac.in +<br/>2014csb1015@iitrpr.ac.in +<br/>pvskand@gmail.com +<br/>ckn@iitrpr.ac.in </td></tr><tr><td>f909d04c809013b930bafca12c0f9a8192df9d92</td><td>Single Image Subspace for Face Recognition <br/><b>Nanjing University of Aeronautics and Astronautics, China</b><br/>1 Department of Computer Science and Engineering, <br/>2 National Key Laboratory for Novel Software Technology, @@ -28954,8 +36948,21 @@ <br/>information using depth sensors <br/><b>Kingston University London, University of Westminster London</b><br/><b>Imperial College London</b></td><td>('1686887', 'Juan Manuel Fernandez Montenegro', 'juan manuel fernandez montenegro')<br/>('2866802', 'Barbara Villarini', 'barbara villarini')<br/>('2140622', 'Athanasios Gkelias', 'athanasios gkelias')<br/>('1689047', 'Vasileios Argyriou', 'vasileios argyriou')</td><td>Juan.Fernandez@kingston.ac.uk,B.Villarini@westminster.ac.uk,A.Gkelias@ <br/>imperial.ac.uk,Vasileios.Argyriou@kingston.ac.uk +</td></tr><tr><td>f08e425c2fce277aedb51d93757839900d591008</td><td>Neural Motifs: Scene Graph Parsing with Global Context +<br/><b>Paul G. Allen School of Computer Science and Engineering, University of Washington</b><br/><b>Allen Institute for Arti cial Intelligence</b><br/><b>School of Computer Science, Carnegie Mellon University</b><br/>https://rowanzellers.com/neuralmotifs +</td><td>('2545335', 'Rowan Zellers', 'rowan zellers')<br/>('38094552', 'Sam Thomson', 'sam thomson')</td><td>{rowanz, my89, yejin}@cs.washington.edu, sthomson@cs.cmu.edu </td></tr><tr><td>f02f0f6fcd56a9b1407045de6634df15c60a85cd</td><td>Learning Low-shot facial representations via 2D warping <br/><b>RWTH Aachen University</b></td><td>('35362682', 'Shen Yan', 'shen yan')</td><td>shen.yan@rwth-aachen.de +</td></tr><tr><td>f0cee87e9ecedeb927664b8da44b8649050e1c86</td><td></td><td></td><td></td></tr><tr><td>f0f4f16d5b5f9efe304369120651fa688a03d495</td><td>Temporal Generative Adversarial Nets +<br/>Preferred Networks inc., Japan +</td><td>('49160719', 'Masaki Saito', 'masaki saito')<br/>('8252749', 'Eiichi Matsumoto', 'eiichi matsumoto')</td><td>{msaito, matsumoto}@preferred.jp +</td></tr><tr><td>f0ca31fd5cad07e84b47d50dc07db9fc53482a46</td><td>Advances in Pure Mathematics, 2012, 2, 226-242 +<br/>http://dx.doi.org/10.4236/apm.2012.24033 Published Online July 2012 (http://www.SciRP.org/journal/apm) +<br/>Feature Patch Illumination Spaces and Karcher +<br/>Compression for Face Recognition via +<br/>Grassmannians +<br/><b>California State University, Long Beach, USA</b><br/><b>Colorado State University, Fort Collins, USA</b><br/>Received January 7, 2012; revised February 20, 2012; accepted February 27, 2012 +</td><td>('2640182', 'Jen-Mei Chang', 'jen-mei chang')<br/>('30383278', 'Chris Peterson', 'chris peterson')<br/>('41211081', 'Michael Kirby', 'michael kirby')</td><td>Email: jen-mei.chang@csulb.edu, {peterson, Kirby}@math.colostate.edu </td></tr><tr><td>f0ae807627f81acb63eb5837c75a1e895a92c376</td><td>International Journal of Emerging Engineering Research and Technology <br/>Volume 3, Issue 12, December 2015, PP 128-133 <br/>ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) @@ -28972,6 +36979,10 @@ </td><td>('1710408', 'Xin Fan', 'xin fan')<br/>('7864960', 'Zhongxuan Luo', 'zhongxuan luo')<br/>('1732068', 'Jielin Zhang', 'jielin zhang')<br/>('2758604', 'Xinchen Zhou', 'xinchen zhou')<br/>('2235253', 'Qi Jia', 'qi jia')<br/>('3136305', 'Daiyun Luo', 'daiyun luo')</td><td>E-Mails: xin.fan@ieee.org (X.F.); jiaqi7166@gmail.com (Q.J.) <br/>China; E-Mails: jielinzh@dlut.edu.cn (J.Z.); dasazxc@gmail.com (X.Z.); 419524597@qq.com (D.L.) <br/>* Author to whom correspondence should be addressed; E-Mail: zxluo@dlut.edu.cn; +</td></tr><tr><td>f0a4a3fb6997334511d7b8fc090f9ce894679faf</td><td>Generative Face Completion +<br/><b>University of California, Merced</b><br/>2Adobe Research +</td><td>('1754382', 'Yijun Li', 'yijun li')<br/>('2391885', 'Sifei Liu', 'sifei liu')<br/>('1768964', 'Jimei Yang', 'jimei yang')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td>{yli62,sliu32,mhyang}@ucmerced.edu +<br/>jimyang@adobe.com </td></tr><tr><td>f0681fc08f4d7198dcde803d69ca62f09f3db6c5</td><td>Spatiotemporal Features for Effective Facial <br/>Expression Recognition <br/>Hatice C¸ ınar Akakın and B¨ulent Sankur @@ -29000,18 +37011,56 @@ <br/><b>UNIVERSITY OF OULU GRADUATE SCHOOL</b><br/><b>UNIVERSITY OF OULU</b><br/>FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING, <br/>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING; <br/>INFOTECH OULU -</td><td>('6433503', 'Santeri Palviainen', 'santeri palviainen')<br/>('3797304', 'Sanna Taskila', 'sanna taskila')<br/>('5451992', 'Olli Vuolteenaho', 'olli vuolteenaho')<br/>('6238085', 'Sinikka Eskelinen', 'sinikka eskelinen')<br/>('2165962', 'Jari Juga', 'jari juga')<br/>('5451992', 'Olli Vuolteenaho', 'olli vuolteenaho')<br/>('35709493', 'Jukka Komulainen', 'jukka komulainen')</td><td></td></tr><tr><td>f06b015bb19bd3c39ac5b1e4320566f8d83a0c84</td><td></td><td></td><td></td></tr><tr><td>f0a3f12469fa55ad0d40c21212d18c02be0d1264</td><td>Sparsity Sharing Embedding for Face +</td><td>('6433503', 'Santeri Palviainen', 'santeri palviainen')<br/>('3797304', 'Sanna Taskila', 'sanna taskila')<br/>('5451992', 'Olli Vuolteenaho', 'olli vuolteenaho')<br/>('6238085', 'Sinikka Eskelinen', 'sinikka eskelinen')<br/>('2165962', 'Jari Juga', 'jari juga')<br/>('5451992', 'Olli Vuolteenaho', 'olli vuolteenaho')<br/>('35709493', 'Jukka Komulainen', 'jukka komulainen')</td><td></td></tr><tr><td>f0398ee5291b153b716411c146a17d4af9cb0edc</td><td>LEARNING OPTICAL FLOW VIA DILATED NETWORKS AND OCCLUSION REASONING +<br/><b>University of California, Merced</b><br/>5200 N Lake Rd, Merced, CA, US +</td><td>('1749901', 'Yi Zhu', 'yi zhu')</td><td>{yzhu25, snewsam}@ucmerced.edu +</td></tr><tr><td>f0f0e94d333b4923ae42ee195df17c0df62ea0b1</td><td>Scaling Manifold Ranking Based Image Retrieval +<br/>†NTT Software Innovation Center, 3-9-11 Midori-cho Musashino-shi, Tokyo, Japan +<br/>‡NTT Service Evolution Laboratories, 1-1 Hikarinooka Yokosuka-shi, Kanagawa, Japan +<br/><b>California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA</b><br/><b>Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan</b></td><td>('32130106', 'Yasuhiro Fujiwara', 'yasuhiro fujiwara')<br/>('32285163', 'Go Irie', 'go irie')<br/>('46593534', 'Shari Kuroyama', 'shari kuroyama')<br/>('48075831', 'Makoto Onizuka', 'makoto onizuka')</td><td>{fujiwara.yasuhiro, irie.go}@lab.ntt.co.jp, kuroyama@caltech.edu, oni@acm.org +</td></tr><tr><td>f06b015bb19bd3c39ac5b1e4320566f8d83a0c84</td><td></td><td></td><td></td></tr><tr><td>f0a3f12469fa55ad0d40c21212d18c02be0d1264</td><td>Sparsity Sharing Embedding for Face <br/>Verification <br/>Department of Electrical Engineering, KAIST, Daejeon, Korea </td><td>('2350325', 'Donghoon Lee', 'donghoon lee')<br/>('2857402', 'Hyunsin Park', 'hyunsin park')<br/>('8270717', 'Junyoung Chung', 'junyoung chung')<br/>('2126465', 'Youngook Song', 'youngook song')</td><td></td></tr><tr><td>f05ad40246656a977cf321c8299158435e3f3b61</td><td>Face Recognition Using Face Patch Networks <br/><b>The Chinese University of Hong Kong</b></td><td>('2312486', 'Chaochao Lu', 'chaochao lu')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')<br/>('1678783', 'Deli Zhao', 'deli zhao')</td><td>{cclu,dlzhao,xtang}@ie.cuhk.edu.hk -</td></tr><tr><td>f781e50caa43be13c5ceb13f4ccc2abc7d1507c5</td><td>MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +</td></tr><tr><td>f02a6bccdaee14ab55ad94263539f4f33f1b15bb</td><td>Article +<br/>Segment-Tube: Spatio-Temporal Action Localization +<br/>in Untrimmed Videos with Per-Frame Segmentation +<br/><b>Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an, Shannxi 710049, China</b><br/>Received: 23 April 2018; Accepted: 16 May 2018; Published: 22 May 2018 +</td><td>('40367806', 'Le Wang', 'le wang')<br/>('46809347', 'Xuhuan Duan', 'xuhuan duan')<br/>('46324995', 'Qilin Zhang', 'qilin zhang')<br/>('1786361', 'Zhenxing Niu', 'zhenxing niu')<br/>('1745420', 'Gang Hua', 'gang hua')<br/>('1715389', 'Nanning Zheng', 'nanning zheng')</td><td>duanxuhuan0123@stu.xjtu.edu.cn (X.D.); nnzheng@xjtu.edu.cn (N.Z.) +<br/>2 HERE Technologies, Chicago, IL 60606, USA; qilin.zhang@here.com +<br/>3 Alibaba Group, Hangzhou 311121, China; zhenxing.nzx@alibaba-inc.com +<br/>4 Microsoft Research, Redmond, WA 98052, USA; ganghua@microsoft.com +<br/>* Correspondence: lewang@xjtu.edu.cn; Tel.: +86-29-8266-8672 +</td></tr><tr><td>f7dea4454c2de0b96ab5cf95008ce7144292e52a</td><td></td><td></td><td></td></tr><tr><td>f781e50caa43be13c5ceb13f4ccc2abc7d1507c5</td><td>MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan <br/>12-1 <br/>Towards Flexible and Intelligent Vision Systems <br/>– From Thresholding to CHLAC – <br/><b>University of Tokyo</b><br/>AISTy <br/><b>y National Institute of Advanced Industrial Science and Technology</b><br/>Umezono 1-1-1, Tsukuba-shi, Ibaraki-ken, 305-8568 Japan </td><td>('1809629', 'Nobuyuki Otsu', 'nobuyuki otsu')</td><td>Email: otsu.n@aist.go.jp +</td></tr><tr><td>f7b4bc4ef14349a6e66829a0101d5b21129dcf55</td><td>LONG ET AL.: TOWARDS LIGHT-WEIGHT ANNOTATIONS: FIR FOR ZSL +<br/>Towards Light-weight Annotations: Fuzzy +<br/>Interpolative Reasoning for Zero-shot Image +<br/>Classification +<br/>1 Open Lab, School of Computing +<br/><b>Newcastle University, UK</b><br/>2 Department of Computer Science and +<br/>Digital Technologies, Northumbria Uni- +<br/>versity, UK +<br/><b>Inception Institute of Arti cial</b><br/>gence, UAE +<br/>Intelli- +</td><td>('50363618', 'Yang Long', 'yang long')<br/>('48272923', 'Yao Tan', 'yao tan')<br/>('34975328', 'Daniel Organisciak', 'daniel organisciak')<br/>('1706028', 'Longzhi Yang', 'longzhi yang')<br/>('40799321', 'Ling Shao', 'ling shao')</td><td>yang.long@ieee.org +<br/>yao.tan@northumbria.ac.uk +<br/>d.organisciak@gmail.com +<br/>longzhi.yang@northumbria.ac.uk +<br/>ling.shao@ieee.org +</td></tr><tr><td>f7b422df567ce9813926461251517761e3e6cda0</td><td>FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS +<br/>(cid:63) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +<br/>† Eurecom, 450 route des Chappes, 06410 Biot, France +</td><td>('3116433', 'Grigory Antipov', 'grigory antipov')<br/>('2341854', 'Moez Baccouche', 'moez baccouche')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')</td><td></td></tr><tr><td>f7824758800a7b1a386db5bd35f84c81454d017a</td><td>KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by +<br/>Learning Efficient H-CNN Regressors +<br/>Department of Electrical and Computer Engineering, CFAR and UMIACS +<br/><b>University of Maryland-College Park, USA</b></td><td>('50333013', 'Amit Kumar', 'amit kumar')<br/>('2943431', 'Azadeh Alavi', 'azadeh alavi')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{akumar14,azadeh,rama}@umiacs.umd.edu </td></tr><tr><td>f74917fc0e55f4f5682909dcf6929abd19d33e2e</td><td>Workshop track - ICLR 2018 <br/>GAN QUALITY INDEX (GQI) BY GAN-INDUCED <br/>CLASSIFIER @@ -29027,11 +37076,140 @@ <br/><b>Kong Polytechnic University, Kowloon, Hong Kong</b><br/><b>b Computer Science, School of Electrical and Data Engineering, University of Technology, Sydney</b><br/>Australia </td><td>('13671251', 'Cigdem Turan', 'cigdem turan')<br/>('1703078', 'Kin-Man Lam', 'kin-man lam')<br/>('1706670', 'Xiangjian He', 'xiangjian he')</td><td>E-mail addresses: cigdem.turan@connect.polyu.hk (C. Turan), enkmlam@polyu.edu.hk (K.-M. Lam), <br/>xiangjian.he@uts.edu.au (X. He) -</td></tr><tr><td>f7452a12f9bd927398e036ea6ede02da79097e6e</td><td></td><td></td><td></td></tr><tr><td>f7093b138fd31956e30d411a7043741dcb8ca4aa</td><td>Hierarchical Clustering in Face Similarity Score +</td></tr><tr><td>f78fe101b21be36e98cd3da010051bb9b9829a1e</td><td>Hindawi +<br/>Computational Intelligence and Neuroscience +<br/>Volume 2018, Article ID 7208794, 10 pages +<br/>https://doi.org/10.1155/2018/7208794 +<br/>Research Article +<br/>Unsupervised Domain Adaptation for Facial Expression +<br/>Recognition Using Generative Adversarial Networks +<br/>1,2 +<br/><b>State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China</b><br/><b>Key Laboratory of MOEMS of the Ministry of Education, Tianjin University, 300072, China</b><br/>Received 14 April 2018; Accepted 19 June 2018; Published 9 July 2018 +<br/>Academic Editor: Ant´onio D. P. Correia +<br/>which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +<br/>In the facial expression recognition task, a good-performing convolutional neural network (CNN) model trained on one dataset +<br/>(source dataset) usually performs poorly on another dataset (target dataset). This is because the feature distribution of the same +<br/>emotion varies in different datasets. To improve the cross-dataset accuracy of the CNN model, we introduce an unsupervised +<br/>domain adaptation method, which is especially suitable for unlabelled small target dataset. In order to solve the problem of lack of +<br/>samples from the target dataset, we train a generative adversarial network (GAN) on the target dataset and use the GAN generated +<br/>samples to fine-tune the model pretrained on the source dataset. In the process of fine-tuning, we give the unlabelled GAN generated +<br/>samples distributed pseudolabels dynamically according to the current prediction probabilities. Our method can be easily applied +<br/>to any existing convolutional neural networks (CNN). We demonstrate the effectiveness of our method on four facial expression +<br/>recognition datasets with two CNN structures and obtain inspiring results. +<br/>1. Introduction +<br/>Facial expressions recognition (FER) has a wide spectrum of +<br/>application potentials in human-computer interaction, cog- +<br/>nitive psychology, computational neuroscience, and medical +<br/>healthcare. In recent years, convolutional neural networks +<br/>(CNN) have achieved many exciting results in artificial +<br/>intelligent and pattern recognition and have been successfully +<br/>used in facial expression recognition [1]. Jaiswal et al. [2] +<br/>present a novel approach to facial action unit detection +<br/>using a combination of Convolutional and Bidirectional +<br/>Long Short-Term Memory Neural Networks (CNN-BLSTM), +<br/>which jointly learns shape, appearance, and dynamics in a +<br/>deep learning manner. You et al. [3] introduce a new data +<br/>set, which contains more than 3 million weakly labelled +<br/>images of different emotions. Esser et al. [4] develop a model +<br/>for efficient neuromorphic computing using the Deep CNN +<br/>technique. H-W.Ng et al. [5] develop a cascading fine-tuning +<br/>approach for emotion recognition. Neagoe et al. [6] propose +<br/>a model for subject independent emotion recognition from +<br/>facial expressions using combined CNN and DBN. However, +<br/>these CNN models are often trained and tested on the +<br/>same dataset, whereas the cross-dataset performance is less +<br/>concerned. Although the basic emotions defined by Ekman +<br/>and Friesen [7], anger, disgust, fear, happy, sadness, and +<br/>surprise, are believed to be universal, the way of expressing +<br/>these emotions can be quite diverse across different cultures, +<br/>ages, and genders [8]. As a result, a well-trained CNN model, +<br/>having high recognition accuracy on the training dataset, +<br/>usually performs poorly on other datasets. In order to make +<br/>the facial expression recognition system more practical, it +<br/>is necessary to improve the generalization ability of the +<br/>recognition model. +<br/>In this paper, we aim at improving the cross-dataset +<br/>accuracy of a CNN model on facial expression recognition. +<br/>One way to solve this problem is to rebuild models from +<br/>scratch using large-scale newly collected samples. Large +<br/>amounts of training samples, such as the dataset ImageNet [9] +<br/>containing over 15 million images, can reduce the overfitting +<br/>problem and help to train a reliable model. However, for +<br/>facial expression recognition, +<br/>it is expensive and some- +<br/>times even impossible to get enough labelled training data. +<br/>Therefore, we proposed an unsupervised domain adaptation +<br/>method, which is especially suitable for unlabelled small +</td><td>('47119020', 'Xiaoqing Wang', 'xiaoqing wang')<br/>('36142058', 'Xiangjun Wang', 'xiangjun wang')<br/>('3332231', 'Yubo Ni', 'yubo ni')<br/>('47119020', 'Xiaoqing Wang', 'xiaoqing wang')</td><td>Correspondence should be addressed to Xiangjun Wang; tjuxjw@126.com +</td></tr><tr><td>f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f</td><td>Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +<br/>version when available. +<br/>Title +<br/>On color texture normalization for active appearance models +<br/>Author(s) +<br/>Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +<br/>Publication +<br/>Date +<br/>2009-05-12 +<br/>Publication +<br/>Information +<br/>Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +<br/>Texture Normalization for Active Appearance Models. Image +<br/>Processing, IEEE Transactions on, 18(6), 1372-1378. +<br/>Publisher +<br/>IEEE +<br/>Link to +<br/>publisher's +<br/>version +<br/>http://dx.doi.org/10.1109/TIP.2009.2017163 +<br/>Item record +<br/>http://hdl.handle.net/10379/1350 +<br/>Some rights reserved. For more information, please see the item record link above. +<br/>Downloaded 2017-06-17T22:38:27Z +</td><td></td><td></td></tr><tr><td>f7452a12f9bd927398e036ea6ede02da79097e6e</td><td></td><td></td><td></td></tr><tr><td>f7a271acccf9ec66c9b114d36eec284fbb89c7ef</td><td>Open Access +<br/>Research +<br/>Does attractiveness influence condom +<br/>use intentions in heterosexual men? +<br/>An experimental study +<br/>To cite: Eleftheriou A, +<br/>Bullock S, Graham CA, et al. +<br/>Does attractiveness influence +<br/>condom use intentions in +<br/>heterosexual men? +<br/>An experimental study. BMJ +<br/>Open 2016;6:e010883. +<br/>doi:10.1136/bmjopen-2015- +<br/>010883 +<br/>▸ Prepublication history for +<br/>this paper is available online. +<br/>To view these files please +<br/>visit the journal online +<br/>(http://dx.doi.org/10.1136/ +<br/>bmjopen-2015-010883). +<br/>Received 17 December 2015 +<br/>Revised 1 March 2016 +<br/>Accepted 7 April 2016 +<br/>1Department of Electronics +<br/>and Computer Science, +<br/><b>University of Southampton</b><br/>Southampton, UK +<br/><b>Institute for Complex</b><br/>Systems Simulation, +<br/><b>University of Southampton</b><br/>Southampton, UK +<br/>3Department of Computer +<br/><b>Science, University of Bristol</b><br/>Bristol, UK +<br/>4Centre for Sexual Health +<br/>Research, Department of +<br/><b>Psychology, University of</b><br/>Southampton, Southampton, +<br/>UK +<br/>Correspondence to +</td><td>('6093065', 'Anastasia Eleftheriou', 'anastasia eleftheriou')<br/>('1733871', 'Seth Bullock', 'seth bullock')<br/>('4712904', 'Cynthia A Graham', 'cynthia a graham')<br/>('48479171', 'Nicole Stone', 'nicole stone')<br/>('50227141', 'Roger Ingham', 'roger ingham')<br/>('6093065', 'Anastasia Eleftheriou', 'anastasia eleftheriou')</td><td>ae2n12@soton.ac.uk +</td></tr><tr><td>f7093b138fd31956e30d411a7043741dcb8ca4aa</td><td>Hierarchical Clustering in Face Similarity Score <br/>Space <br/>Jason Grant and Patrick Flynn <br/>Department of Computer Science and Engineering <br/><b>University of Notre Dame</b><br/>Notre Dame, IN 46556 +</td><td></td><td></td></tr><tr><td>f7dcadc5288653ec6764600c7c1e2b49c305dfaa</td><td>Copyright +<br/>by +<br/>Adriana Ivanova Kovashka +<br/>2014 </td><td></td><td></td></tr><tr><td>f7de943aa75406fe5568fdbb08133ce0f9a765d4</td><td>Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross <br/>Project 1.5 <br/>Biometric Identification and Surveillance1 @@ -29095,7 +37273,11 @@ <br/><b>School of EEE, Nanyang Technological University, Singapore</b><br/>2Advanced Digital Sciences Center, Singapore </td><td>('34651153', 'Junlin Hu', 'junlin hu')<br/>('1697700', 'Jiwen Lu', 'jiwen lu')<br/>('34316743', 'Junsong Yuan', 'junsong yuan')<br/>('1689805', 'Yap-Peng Tan', 'yap-peng tan')</td><td></td></tr><tr><td>f78863f4e7c4c57744715abe524ae4256be884a9</td><td></td><td></td><td></td></tr><tr><td>f77c9bf5beec7c975584e8087aae8d679664a1eb</td><td>Local Deep Neural Networks for Age and Gender Classification <br/>March 27, 2017 -</td><td>('9949538', 'Zukang Liao', 'zukang liao')<br/>('2403354', 'Stavros Petridis', 'stavros petridis')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>e8686663aec64f4414eba6a0f821ab9eb9f93e38</td><td>IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED +</td><td>('9949538', 'Zukang Liao', 'zukang liao')<br/>('2403354', 'Stavros Petridis', 'stavros petridis')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a</td><td>This is a pre-print of the original paper accepted at the International Joint Conference on Biometrics (IJCB) 2017. +<br/>LOTS about Attacking Deep Features +<br/>Vision and Security Technology (VAST) Lab +<br/><b>University of Colorado, Colorado Springs, USA</b></td><td>('2974221', 'Andras Rozsa', 'andras rozsa')<br/>('1760117', 'Terrance E. Boult', 'terrance e. boult')</td><td>{arozsa,mgunther,tboult}@vast.uccs.edu +</td></tr><tr><td>e8686663aec64f4414eba6a0f821ab9eb9f93e38</td><td>IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED <br/>DISCRIMINANT HAUSDORFF DISTANCE <br/>J.L. Alba <br/>, A. Pujol @@ -29118,13 +37300,49 @@ <br/>Supervisor: <br/>Instructor: <br/>Professor Erkki Oja -</td><td>('1700492', 'Jing Wu', 'jing wu')<br/>('1758971', 'Markus Koskela', 'markus koskela')</td><td></td></tr><tr><td>e8410c4cd1689829c15bd1f34995eb3bd4321069</td><td></td><td></td><td></td></tr><tr><td>e8f0f9b74db6794830baa2cab48d99d8724e8cb6</td><td>Active Image Labeling and Its Application to +</td><td>('1700492', 'Jing Wu', 'jing wu')<br/>('1758971', 'Markus Koskela', 'markus koskela')</td><td></td></tr><tr><td>e8410c4cd1689829c15bd1f34995eb3bd4321069</td><td></td><td></td><td></td></tr><tr><td>e8fdacbd708feb60fd6e7843b048bf3c4387c6db</td><td>Deep Learning +<br/>Hinnerup Net A/S +<br/>www.hinnerup.net +<br/>July 4, 2014 +<br/>Introduction +<br/>Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively +<br/>new research area although based on the popular artificial neural networks (supposedly +<br/>mirroring brain function). With the development of the perceptron in the 1950s and +<br/>1960s by Frank RosenBlatt, research began on artificial neural networks. To further +<br/>mimic the architectural depth of the brain, researchers wanted to train a deep multi- +<br/>layer neural network – this, however, did not happen until Geoffrey Hinton in 2006 +<br/>introduced Deep Belief Networks [1]. +<br/>Recently, the topic of deep learning has gained public interest. Large web companies such +<br/>as Google and Facebook have a focused research on AI and an ever increasing amount +<br/>of compute power, which has led to researchers finally being able to produce results +<br/>that are of interest to the general public. In July 2012 Google trained a deep learning +<br/>network on YouTube videos with the remarkable result that the network learned to +<br/>recognize humans as well as cats [6], and in January this year Google successfully used +<br/>deep learning on Street View images to automatically recognize house numbers with +<br/>an accuracy comparable to that of a human operator [5]. In March this year Facebook +<br/>announced their DeepFace algorithm that is able to match faces in photos with Facebook +<br/>users almost as accurately as a human can do [9]. +<br/>Deep learning and other AI are here to stay and will become more and more present in +<br/>our daily lives, so we had better make ourselves acquainted with the technology. Let’s +<br/>dive into the deep water and try not to drown! +<br/>Data Representations +<br/>Before presenting data to an AI algorithm, we would normally prepare the data to make +<br/>it feasible to work with. For instance, if the data consists of images, we would take each +</td><td></td><td></td></tr><tr><td>e8f0f9b74db6794830baa2cab48d99d8724e8cb6</td><td>Active Image Labeling and Its Application to <br/>Facial Action Labeling <br/><b>Electrical, Computer, Rensselaer Polytechnic Institute</b><br/><b>Visualization and Computer Vision Lab, GE Global Research Center</b></td><td>('40396543', 'Lei Zhang', 'lei zhang')<br/>('1686235', 'Yan Tong', 'yan tong')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>zhangl2@rpi.edu,tongyan@research.ge.com,qji@ecse.rpi.edu </td></tr><tr><td>e8b2a98f87b7b2593b4a046464c1ec63bfd13b51</td><td>CMS-RCNN: Contextual Multi-Scale <br/>Region-based CNN for Unconstrained Face <br/>Detection -</td><td>('3117715', 'Chenchen Zhu', 'chenchen zhu')<br/>('3049981', 'Yutong Zheng', 'yutong zheng')<br/>('1769788', 'Khoa Luu', 'khoa luu')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td></td></tr><tr><td>e8c9dcbf56714db53063b9c367e3e44300141ff6</td><td>Automated FACS face analysis benefits from the addition of velocity +</td><td>('3117715', 'Chenchen Zhu', 'chenchen zhu')<br/>('3049981', 'Yutong Zheng', 'yutong zheng')<br/>('1769788', 'Khoa Luu', 'khoa luu')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td></td></tr><tr><td>e87d6c284cdd6828dfe7c092087fbd9ff5091ee4</td><td>Unsupervised Creation of Parameterized Avatars +<br/>1Facebook AI Research +<br/><b>School of Computer Science, Tel Aviv University</b></td><td>('1776343', 'Lior Wolf', 'lior wolf')<br/>('2188620', 'Yaniv Taigman', 'yaniv taigman')<br/>('33964593', 'Adam Polyak', 'adam polyak')</td><td></td></tr><tr><td>e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7</td><td>Towards End-to-End Face Recognition through Alignment Learning +<br/><b>Tsinghua University</b><br/>Beijing, China, 100084 +</td><td>('8802368', 'Yuanyi Zhong', 'yuanyi zhong')<br/>('1752427', 'Jiansheng Chen', 'jiansheng chen')<br/>('39071060', 'Bo Huang', 'bo huang')</td><td>zhongyy13@mails.tsinghua.edu.cn, jschenthu@mail.tsinghua.edu.cn, huangb14@mails.tsinghua.edu.cn +</td></tr><tr><td>e85a255a970ee4c1eecc3e3d110e157f3e0a4629</td><td>Fusing Hierarchical Convolutional Features for Human Body Segmentation and +<br/>Clothing Fashion Classification +<br/><b>School of Computer Science, Wuhan University, P.R. China</b></td><td>('47294008', 'Zheng Zhang', 'zheng zhang')<br/>('3127916', 'Chengfang Song', 'chengfang song')<br/>('4793870', 'Qin Zou', 'qin zou')</td><td>E-mails: {zhangzheng, songchf, qzou}@whu.edu.cn +</td></tr><tr><td>e8c9dcbf56714db53063b9c367e3e44300141ff6</td><td>Automated FACS face analysis benefits from the addition of velocity <br/>Get The FACS Fast: <br/>Timothy R. Brick <br/><b>University of Virginia</b><br/>Charlottesville, VA 22904 @@ -29135,6 +37353,43 @@ </td><td></td><td>tbrick@virginia.edu <br/>mhunter@virginia.edu <br/>jeffcohn@cs.cmu.edu +</td></tr><tr><td>e8d1b134d48eb0928bc999923a4e092537e106f6</td><td>WEIGHTED MULTI-REGION CONVOLUTIONAL NEURAL NETWORK FOR ACTION +<br/>RECOGNITION WITH LOW-LATENCY ONLINE PREDICTION +<br/><b>cid:63)University of Science and Technology of China, Hefei, Anhui, China</b><br/>†HERE Technologies, Chicago, Illinois, USA +</td><td>('49417387', 'Yunfeng Wang', 'yunfeng wang')<br/>('38272296', 'Wengang Zhou', 'wengang zhou')<br/>('46324995', 'Qilin Zhang', 'qilin zhang')<br/>('49897466', 'Xiaotian Zhu', 'xiaotian zhu')<br/>('7179232', 'Houqiang Li', 'houqiang li')</td><td></td></tr><tr><td>e8c6c3fc9b52dffb15fe115702c6f159d955d308</td><td>13 +<br/>Linear Subspace Learning for +<br/>Facial Expression Analysis +<br/>Philips Research +<br/>The Netherlands +<br/>1. Introduction +<br/>Facial expression, resulting from movements of the facial muscles, is one of the most +<br/>powerful, natural, and immediate means for human beings to communicate their emotions +<br/>and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was +<br/>the first to describe in detail the specific facial expressions associated with emotions in +<br/>animals and humans; he argued that all mammals show emotions reliably in their faces. +<br/>Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial +<br/>expressions, with other non-verbal cues, play a major and fundamental role in face-to-face +<br/>communication. +<br/>Fig. 1. Facial expressions of George W. Bush. +<br/>Machine analysis of facial expressions, enabling computers to analyze and interpret facial +<br/>expressions as humans do, has many important applications including intelligent human- +<br/>computer interaction, computer animation, surveillance and security, medical diagnosis, +<br/>law enforcement, and awareness system (Shan, 2007). Driven by its potential applications +<br/>and theoretical interests of cognitive and psychological scientists, automatic facial +<br/>expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz, +<br/>2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in +<br/>multiple disciplines such as psychology, cognitive science, computer vision, pattern +<br/>Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira, +<br/> ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria +<br/>www.intechopen.com +</td><td>('10795229', 'Caifeng Shan', 'caifeng shan')</td><td></td></tr><tr><td>e8b3a257a0a44d2859862cdec91c8841dc69144d</td><td>Liquid Pouring Monitoring via +<br/>Rich Sensory Inputs +<br/><b>National Tsing Hua University, Taiwan</b><br/><b>Stanford University, USA</b></td><td>('27555915', 'Tz-Ying Wu', 'tz-ying wu')<br/>('9618379', 'Juan-Ting Lin', 'juan-ting lin')<br/>('27538483', 'Chan-Wei Hu', 'chan-wei hu')<br/>('9200530', 'Juan Carlos Niebles', 'juan carlos niebles')<br/>('46611107', 'Min Sun', 'min sun')</td><td>{gina9726, brade31919, johnsonwang0810, huchanwei1204}@gmail.com, +<br/>sunmin@ee.nthu.edu.tw +<br/>jniebles@cs.stanford.edu +</td></tr><tr><td>fa90b825346a51562d42f6b59a343b98ea2e501a</td><td>Modeling Naive Psychology of Characters in Simple Commonsense Stories +<br/><b>Paul G. Allen School of Computer Science and Engineering, University of Washington</b><br/><b>Allen Institute for Arti cial Intelligence</b><br/><b>Information Sciences Institute and Computer Science, University of Southern California</b></td><td>('2516777', 'Hannah Rashkin', 'hannah rashkin')<br/>('2691021', 'Antoine Bosselut', 'antoine bosselut')<br/>('2729164', 'Maarten Sap', 'maarten sap')<br/>('1710034', 'Kevin Knight', 'kevin knight')<br/>('1699545', 'Yejin Choi', 'yejin choi')</td><td>{hrashkin,msap,antoineb,yejin}@cs.washington.edu +<br/>knight@isi.edu </td></tr><tr><td>fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6</td><td>Draft: Evaluation Guidelines for Gender <br/>Classification and Age Estimation <br/>July 1, 2011 @@ -29229,6 +37484,9 @@ <br/>Frontiers in Robotics and AI | www.frontiersin.org <br/>November 2017 | Volume 4 | Article 61 </td><td>('7149684', 'Martin Cooney', 'martin cooney')<br/>('5058247', 'Josef Bigun', 'josef bigun')<br/>('7149684', 'Martin Cooney', 'martin cooney')</td><td>martin.daniel.cooney@gmail.com +</td></tr><tr><td>fa4f59397f964a23e3c10335c67d9a24ef532d5c</td><td>DAP3D-Net: Where, What and How Actions Occur in Videos? +<br/>Department of Computer Science and Digital Technologies +<br/><b>Northumbria University, Newcastle upon Tyne, NE1 8ST, UK</b></td><td>('40241836', 'Li Liu', 'li liu')<br/>('47942896', 'Yi Zhou', 'yi zhou')<br/>('40799321', 'Ling Shao', 'ling shao')</td><td>li2.liu@northumbria.ac.uk, m.y.yu@ieee.org, ling.shao@ieee.org </td></tr><tr><td>fa08a4da5f2fa39632d90ce3a2e1688d147ece61</td><td>Supplementary material for <br/>“Unsupervised Creation of Parameterized Avatars” <br/>1 Summary of Notations @@ -29282,6 +37540,33 @@ </td><td>('2742026', 'Kostiantyn Antoniuk', 'kostiantyn antoniuk')</td><td>antonkos@cmp.felk.cvut.cz <br/>xfrancv@cmp.felk.cvut.cz <br/>hlavac@fel.cvut.cz +</td></tr><tr><td>fac8cff9052fc5fab7d5ef114d1342daba5e4b82</td><td>(CV last updated Oct. 5th, 2009.) +<br/>www.stat.cmu.edu/~abrock +<br/>1-412-478-3609 +<br/>Citizenship: U.S., Australia (dual) +<br/>Education +<br/>1994-1998 +<br/>: Ph.D., Department of Statistics and Department of of Electrical Engineering at +<br/><b>Melbourne University, Advisors: K. Borovkov, R. Evans</b><br/>1993 +<br/>: Honours Science Degree (in the Department of Statistics) completed at Melbourne +<br/><b>University (H</b><br/>1988-92 +<br/>: Bachelor of Science and Bachelor of Engineering with Honours completed at Mel- +<br/><b>bourne University</b><br/>Employment +<br/>2007+ +<br/><b>Carnegie Mellon University</b><br/>2007-2009 +<br/>: Senior Analyst, Horton Point LLC (Hedge Fund Management Company) +<br/>2006-2007 +<br/>: Associate Professor, Department of Statistics, Carnegie Mellon Uniuversity +<br/>2005-2007 +<br/>: Affiliated faculty member, Machine Learning Department (formerly known as the +<br/><b>Center for Automated Learning and Discovery), Carnegie Mellon University</b><br/>2003-2007 +<br/><b>Faculty member, Parallel Data Lab (PDL), Carnegie Mellon University</b><br/>2002-2005 +<br/><b>Carnegie Mellon University</b><br/>1999-2002 +<br/><b>Carnegie Mellon University</b><br/>1998-1999 +<br/>: Research Fellow, Department of Electrical and Electronic Engineering, The Univer- +<br/>sity of Melbourne +<br/>1993-1995 +<br/><b>Sessional Tutor, The University of Melbourne</b></td><td>('1680307', 'Anthony Brockwell', 'anthony brockwell')</td><td>anthony.brockwell@gmail.com </td></tr><tr><td>faa29975169ba3bbb954e518bc9814a5819876f6</td><td>Evolution-Preserving Dense Trajectory Descriptors <br/><b>Stony Brook University, Stony Brook, NY 11794, USA</b></td><td>('2295608', 'Yang Wang', 'yang wang')<br/>('3482497', 'Vinh Tran', 'vinh tran')<br/>('2356016', 'Minh Hoai', 'minh hoai')</td><td>{wang33, tquangvinh, minhhoai}@cs.stonybrook.edu </td></tr><tr><td>fafe69a00565895c7d57ad09ef44ce9ddd5a6caa</td><td>Applied Mathematics, 2012, 3, 2071-2079 @@ -29290,13 +37575,30 @@ <br/>under Illumination Variations <br/><b>Mihaylo College of Business and Economics</b><br/><b>California State University, Fullerton, USA</b><br/>Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012 </td><td>('2046854', 'Sinjini Mitra', 'sinjini mitra')</td><td>Email: smitra@fullerton.edu -</td></tr><tr><td>faca1c97ac2df9d972c0766a296efcf101aaf969</td><td>Sympathy for the Details: Dense Trajectories and Hybrid +</td></tr><tr><td>faf5583063682e70dedc4466ac0f74eeb63169e7</td><td></td><td></td><td>HolisticPersonProcessing:FacesWithBodiesTelltheWholeStoryHillelAviezerPrincetonUniversityandNewYorkUniversityYaacovTropeNewYorkUniversityAlexanderTodorovPrincetonUniversityFacesandbodiesaretypicallyencounteredsimultaneously,yetlittleresearchhasexploredthevisualprocessingofthefullperson.Specifically,itisunknownwhetherthefaceandbodyareperceivedasdistinctcomponentsorasanintegrated,gestalt-likeunit.Toexaminethisquestion,weinvestigatedwhetheremotionalface–bodycompositesareprocessedinaholistic-likemannerbyusingavariantofthecompositefacetask,ameasureofholisticprocessing.Participantsjudgedfacialexpressionscombinedwithemotionallycongruentorincongruentbodiesthathavebeenshowntoinfluencetherecognitionofemotionfromtheface.Critically,thefaceswereeitheralignedwiththebodyinanaturalpositionormisalignedinamannerthatbreakstheecologicalpersonform.Convergingdatafrom3experimentsconfirmthatbreakingthepersonformreducesthefacilitatinginfluenceofcongruentbodycontextaswellastheimpedinginfluenceofincongruentbodycontextontherecognitionofemotionfromtheface.Theseresultsshowthatfacesandbodiesareprocessedasasingleunitandsupportthenotionofacompositepersoneffectanalogoustotheclassiceffectdescribedforfaces.Keywords:emotionperception,contexteffects,facialandbodyexpressions,holisticperception,com-positeeffectAglanceisusuallysufficientforextractingagreatdealofsocialinformationfromotherpeople(Adolphs,2002).Perceptualcuestocharacteristicssuchasgender,sexualorientation,emotionalex-pression,attractiveness,andpersonalitytraitscanbefoundinboththefaceandthebody(e.g.,facecues,Adolphs,2003;Calder&Young,2005;Ekman,1993;Elfenbein&Ambady,2002;Haxby,Hoffman,&Gobbini,2000;Rule,Ambady,&Hallett,2009;Thornhill&Gangestad,1999;Todorov&Duchaine,2008;Todo-rov,Pakrashi,&Oosterhof,2009;Willis&Todorov,2006;Ze-browitz,Hall,Murphy,&Rhodes,2002;Zebrowitz&Montepare,2008;bodycues,deGelderetal.,2006;Johnson,Gill,Reichman,&Tassinary,2007;Peelen&Downing,2005;Stevenage,Nixon,&Vince,1999;Wallbott,1998).Todate,mostresearchershaveinvestigatedthefaceandthebodyasdiscreteperceptualunits,focusingontheprocessingofeachsourceinisolation.Althoughthisapproachhasprovedex-tremelyfruitfulforcharacterizingtheuniqueperceptualcontribu-tionsofthefaceandbody,surprisinglylittleisknownabouttheprocessingofbothsourcescombined.Theaimofthecurrentstudywastoshedlightontheperceptualprocessingofthefullpersonbyexaminingwhetherthefaceandbodyinconjunctionareprocessedasaholistic“personunit.”Onthebasisofpreviousaccounts,onemaypredictthatfacesandbodiesareprocessedastwovisualcomponentsofsocialinformation(Wallbott,1998).Theseviewsarguethatfacesandbodiesmaydifferinvalue,intensity,andclarity,andconsequentlytheinformationfromeachmustbeweightedandcombinedbythecognitivesysteminordertoreachaconclusionaboutthetarget(Ekman,Friesen,&Ellsworth,1982;Ellison&Massaro,1997;Trope,1986;Wallbott,1998).Accordingtothisapproach,thefaceandbodymayinfluenceeachother.However,theinfluenceisnotsynergistic,andtheperceptionofthefaceandbodyisequaltotheweightedsumoftheirparts(Wallbott,1998).Bycontrast,thehypothesisofferedhereisthatthefaceandbodyaresubcomponentsofalargerperceptualpersonunit.Fromanecologicalperspectivethisseemslikelybecauseundernaturalconditions,thevisualsystemrarelyencountersisolatedfacesandbodies(McArthur&Baron,1983;Russell,1997).Accordingtothisview,thefaceandbodyformaunitaryperceptthatmayencompassdifferentpropertiesthanthetwosourcesofinformationseparately.Inotherwords,theinformationreadoutfromthefullpersonmaybemorethanthesumofthefaceandbodyalone.HolisticProcessingandtheCompositeEffectPastresearchonsocialperceptionexaminingunitizedgestaltprocessinghasfocusedprimarilyontheface.Indeed,ahallmarkoffaceperceptionisholisticprocessingbywhichindividualfacialcomponentsbecomeintegratedintoawhole-faceunit(Farah,Wilson,Drain,&Tanaka,1995;Tanaka&Farah,1993).Althoughisolatedfacialcomponentsdobearspecificinformation(Smith,Cottrell,Gosselin,&Schyns,2005;Whalenetal.,2004),theirarrangementinthenaturalfaceconfigurationresultsinaninte-ThisarticlewaspublishedOnlineFirstFebruary20,2012.HillelAviezer,DepartmentofPsychology,PrincetonUniversity,andDepartmentofPsychology,NewYorkUniversity;YaacovTrope,Depart-mentofPsychology,NewYorkUniversity;AlexanderTodorov,Depart-mentofPsychology,PrincetonUniversity.CorrespondenceconcerningthisarticleshouldbeaddressedtoHillelAviezer,DepartmentofPsychology,PrincetonUniversity,Princeton,NJ08540-1010.E-mail:haviezer@princeton.eduJournalofPersonalityandSocialPsychology©2012AmericanPsychologicalAssociation2012,Vol.103,No.1,20–370022-3514/12/$12.00DOI:10.1037/a002741120</td></tr><tr><td>faca1c97ac2df9d972c0766a296efcf101aaf969</td><td>Sympathy for the Details: Dense Trajectories and Hybrid <br/>Classification Architectures for Action Recognition <br/><b>Computer Vision Group, Xerox Research Center Europe, Meylan, France</b><br/>2Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain <br/>3German Aerospace Center, Wessling, Germany </td><td>('1799820', 'Adrien Gaidon', 'adrien gaidon')<br/>('2286630', 'Eleonora Vig', 'eleonora vig')</td><td>{cesar.desouza, adrien.gaidon}@xrce.xerox.com, <br/>eleonora.vig@dlr.de, antonio@cvc.uab.es -</td></tr><tr><td>fae83b145e5eeda8327de9f19df286edfaf5e60c</td><td>Readings in Technology and Education: Proceedings of ICICTE 2010 +</td></tr><tr><td>fab60b3db164327be8588bce6ce5e45d5b882db6</td><td>Maximum A Posteriori Estimation of Distances +<br/>Between Deep Features in Still-to-Video Face +<br/>Recognition +<br/><b>National Research University Higher School of Economics</b><br/>Laboratory of Algorithms and Technologies for Network Analysis, +<br/>36 Rodionova St., Nizhny Novgorod, Russia +<br/><b>National Research University Higher School of Economics</b><br/>20 Myasnitskaya St., Moscow, Russia +<br/>September 2, 2018 +</td><td>('35153729', 'Andrey V. Savchenko', 'andrey v. savchenko')<br/>('2080292', 'Natalya S. Belova', 'natalya s. belova')</td><td>avsavchenko@hse.ru +<br/>nbelova@hse.ru +</td></tr><tr><td>fad895771260048f58d12158a4d4d6d0623f4158</td><td>Audio-Visual Emotion +<br/>Recognition For Natural +<br/>Human-Robot Interaction +<br/>Dissertation zur Erlangung des akademischen Grades +<br/>Doktor der Ingenieurwissenschaften (Dr.-Ing.) +<br/>vorgelegt von +<br/>an der Technischen Fakultät der Universität Bielefeld +<br/>15. März 2010 +</td><td>('32382494', 'Ahmad Rabie', 'ahmad rabie')</td><td></td></tr><tr><td>fae83b145e5eeda8327de9f19df286edfaf5e60c</td><td>Readings in Technology and Education: Proceedings of ICICTE 2010 <br/>367 <br/>TOWARDS AN INTERACTIVE E-LEARNING SYSTEM BASED ON <br/>EMOTIONS AND AFFECTIVE COGNITION @@ -29306,7 +37608,11 @@ <br/>Konstantinos Ch. Drossos <br/>Department of Audiovisual Arts <br/><b>Ionian University</b><br/>Greece -</td><td>('25189167', 'Panagiotis Vlamos', 'panagiotis vlamos')<br/>('2284118', 'Andreas Floros', 'andreas floros')<br/>('1761403', 'Michail N. Giannakos', 'michail n. giannakos')</td><td></td></tr><tr><td>ff8315c1a0587563510195356c9153729b533c5b</td><td>432 +</td><td>('25189167', 'Panagiotis Vlamos', 'panagiotis vlamos')<br/>('2284118', 'Andreas Floros', 'andreas floros')<br/>('1761403', 'Michail N. Giannakos', 'michail n. giannakos')</td><td></td></tr><tr><td>ffea8775fc9c32f573d1251e177cd283b4fe09c9</td><td>Accepted to be Published in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME) 2018, San Diego, USA +<br/>TRANSFORMATION ON COMPUTER–GENERATED FACIAL IMAGE TO AVOID DETECTION +<br/>BY SPOOFING DETECTOR +<br/><b>Graduate University for Advanced Studies, Kanagawa, Japan</b><br/><b>National Institute of Informatics, Tokyo, Japan</b><br/><b>The University of Edinburgh, Edinburgh, UK</b></td><td>('47321045', 'Huy H. Nguyen', 'huy h. nguyen')<br/>('9328269', 'Ngoc-Dung T. Tieu', 'ngoc-dung t. tieu')<br/>('2912817', 'Hoang-Quoc Nguyen-Son', 'hoang-quoc nguyen-son')<br/>('1716857', 'Junichi Yamagishi', 'junichi yamagishi')<br/>('1678602', 'Isao Echizen', 'isao echizen')</td><td>{nhhuy, dungtieu, nshquoc, jyamagishi, iechizen}@nii.ac.jp +</td></tr><tr><td>ff8315c1a0587563510195356c9153729b533c5b</td><td>432 <br/>Zapping Index:Using Smile to Measure <br/>Advertisement Zapping Likelihood </td><td>('1803478', 'Songfan Yang', 'songfan yang')<br/>('1784929', 'Mehran Kafai', 'mehran kafai')<br/>('39776603', 'Le An', 'le an')<br/>('1707159', 'Bir Bhanu', 'bir bhanu')</td><td></td></tr><tr><td>ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a</td><td>Towards Video Captioning with Naming: a @@ -29314,7 +37620,9 @@ <br/>Dipartimento di Ingegneria “Enzo Ferrari” <br/>Universit`a degli Studi di Modena e Reggio Emilia </td><td>('2035969', 'Stefano Pini', 'stefano pini')<br/>('3468983', 'Marcella Cornia', 'marcella cornia')<br/>('1843795', 'Lorenzo Baraldi', 'lorenzo baraldi')<br/>('1741922', 'Rita Cucchiara', 'rita cucchiara')</td><td>{name.surname}@unimore.it -</td></tr><tr><td>ff398e7b6584d9a692e70c2170b4eecaddd78357</td><td></td><td></td><td></td></tr><tr><td>ffc5a9610df0341369aa75c0331ef021de0a02a9</td><td>Transferred Dimensionality Reduction +</td></tr><tr><td>fffefc1fb840da63e17428fd5de6e79feb726894</td><td>Fine-Grained Age Estimation in the wild with +<br/>Attention LSTM Networks +</td><td>('47969038', 'Ke Zhang', 'ke zhang')<br/>('49229283', 'Na Liu', 'na liu')<br/>('3451660', 'Xingfang Yuan', 'xingfang yuan')<br/>('46910049', 'Xinyao Guo', 'xinyao guo')<br/>('35038034', 'Ce Gao', 'ce gao')<br/>('2626320', 'Zhenbing Zhao', 'zhenbing zhao')</td><td></td></tr><tr><td>ff398e7b6584d9a692e70c2170b4eecaddd78357</td><td></td><td></td><td></td></tr><tr><td>ffc5a9610df0341369aa75c0331ef021de0a02a9</td><td>Transferred Dimensionality Reduction <br/>State Key Laboratory on Intelligent Technology and Systems <br/>Tsinghua National Laboratory for Information Science and Technology (TNList) <br/><b>Tsinghua University, Beijing 100084, China</b></td><td>('39747687', 'Zheng Wang', 'zheng wang')<br/>('1809614', 'Yangqiu Song', 'yangqiu song')<br/>('1700883', 'Changshui Zhang', 'changshui zhang')</td><td></td></tr><tr><td>ffd81d784549ee51a9b0b7b8aaf20d5581031b74</td><td>Performance Analysis of Retina and DoG @@ -29354,11 +37662,92 @@ <br/>Department of Engineering Science, <br/><b>University of Oxford, UK</b></td><td>('19263506', 'Arsha Nagrani', 'arsha nagrani')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>arsha@robots.ox.ac.uk/ <br/>az@robots.ox.ac.uk/ -</td></tr><tr><td>ff60d4601adabe04214c67e12253ea3359f4e082</td><td></td><td></td><td></td></tr><tr><td>ffc9d6a5f353e5aec3116a10cf685294979c63d9</td><td>Eigenphase-based face recognition: a comparison of phase- +</td></tr><tr><td>ff60d4601adabe04214c67e12253ea3359f4e082</td><td></td><td></td><td></td></tr><tr><td>ffe4bb47ec15f768e1744bdf530d5796ba56cfc1</td><td>AFIF4: Deep Gender Classification based on +<br/>AdaBoost-based Fusion of Isolated Facial Features and +<br/>Foggy Faces +<br/>aDepartment of Electrical Engineering and Computer Science, Lassonde School of +<br/><b>Engineering, York University, Canada</b><br/><b>bFaculty of Computers and Information, Assiut University, Egypt</b></td><td>('40239027', 'Abdelrahman Abdelhamed', 'abdelrahman abdelhamed')</td><td></td></tr><tr><td>ffc9d6a5f353e5aec3116a10cf685294979c63d9</td><td>Eigenphase-based face recognition: a comparison of phase- <br/>information extraction methods <br/>Faculty of Electrical Engineering and Computing, <br/><b>University of Zagreb, Unska 3, 10 000 Zagreb</b></td><td>('35675021', 'Slobodan Ribarić', 'slobodan ribarić')<br/>('3069572', 'Marijo Maračić', 'marijo maračić')</td><td>E-mail: slobodan.ribaric@fer.hr -</td></tr><tr><td>ffaad0204f4af763e3390a2f6053c0e9875376be</td><td>Article +</td></tr><tr><td>ff8ef43168b9c8dd467208a0b1b02e223b731254</td><td>BreakingNews: Article Annotation by +<br/>Image and Text Processing +</td><td>('1780343', 'Arnau Ramisa', 'arnau ramisa')<br/>('47242882', 'Fei Yan', 'fei yan')<br/>('1994318', 'Francesc Moreno-Noguer', 'francesc moreno-noguer')<br/>('1712041', 'Krystian Mikolajczyk', 'krystian mikolajczyk')</td><td></td></tr><tr><td>ff9195f99a1a28ced431362f5363c9a5da47a37b</td><td>Journal of Vision (2016) 16(15):28, 1–8 +<br/>Serial dependence in the perception of attractiveness +<br/><b>University of California</b><br/>Berkeley, CA, USA +<br/><b>University of California</b><br/>Berkeley, CA, USA +<br/>David Whitney +<br/><b>University of California</b><br/>Berkeley, CA, USA +<br/><b>Helen Wills Neuroscience Institute, University of</b><br/>California, Berkeley, CA, USA +<br/><b>Vision Science Group, University of California</b><br/>Berkeley, CA, USA +<br/>The perception of attractiveness is essential for choices +<br/>of food, object, and mate preference. Like perception of +<br/>other visual features, perception of attractiveness is +<br/>stable despite constant changes of image properties due +<br/>to factors like occlusion, visual noise, and eye +<br/>movements. Recent results demonstrate that perception +<br/>of low-level stimulus features and even more complex +<br/>attributes like human identity are biased towards recent +<br/>percepts. This effect is often called serial dependence. +<br/>Some recent studies have suggested that serial +<br/>dependence also exists for perceived facial +<br/>attractiveness, though there is also concern that the +<br/>reported effects are due to response bias. Here we used +<br/>an attractiveness-rating task to test the existence of +<br/>serial dependence in perceived facial attractiveness. Our +<br/>results demonstrate that perceived face attractiveness +<br/>was pulled by the attractiveness level of facial images +<br/>encountered up to 6 s prior. This effect was not due to +<br/>response bias and did not rely on the previous motor +<br/>response. This perceptual pull increased as the difference +<br/>in attractiveness between previous and current stimuli +<br/>increased. Our results reconcile previously conflicting +<br/>findings and extend previous work, demonstrating that +<br/>sequential dependence in perception operates across +<br/>different levels of visual analysis, even at the highest +<br/>levels of perceptual interpretation. +<br/>Introduction +<br/>Humans make aesthetic judgments all the time about +<br/>the attractiveness or desirability of objects and scenes. +<br/>Aesthetic judgments are not merely about judging +<br/>works of art; they are constantly involved in our daily +<br/>activity, influencing or determining our choices of food, +<br/>object (Creusen & Schoormans, 2005), and mate +<br/>preference (Rhodes, Simmons, & Peters, 2005). +<br/>Aesthetic judgments are based on perceptual pro- +<br/>cessing (Arnheim, 1954; Livingstone & Hubel, 2002; +<br/>Solso, 1996). These judgments, like other perceptual +<br/>experiences, are thought to be relatively stable in spite +<br/>of fluctuations in the raw visual input we receive due to +<br/>factors like occlusion, visual noise, and eye movements. +<br/>One mechanism that allows the visual system to achieve +<br/>this stability is serial dependence. Recent results have +<br/>revealed that the perception of visual features such as +<br/>orientation (Fischer & Whitney, 2014), numerosity +<br/>(Cicchini, Anobile, & Burr, 2014), and facial identity +<br/>(Liberman, Fischer, & Whitney, 2014) are systemati- +<br/>cally assimilated toward visual input from the recent +<br/>past. This perceptual pull has been distinguished from +<br/>hysteresis in motor responses or decision processes, and +<br/>has been shown to be tuned by the magnitude of the +<br/>difference between previous and current visual inputs +<br/>(Fischer & Whitney, 2014; Liberman, Fischer, & +<br/>Whitney, 2014). +<br/>Is aesthetics perception similarly stable like feature +<br/>perception? Some previous studies have suggested that +<br/>the answer is yes. It has been shown that there is a +<br/>positive correlation between observers’ successive +<br/>attractiveness ratings of facial images (Kondo, Taka- +<br/>hashi, & Watanabe, 2012; Taubert, Van der Burg, & +<br/>Alais, 2016). This suggests that there is an assimilative +<br/>sequential dependence in attractiveness judgments. +<br/>Citation: Xia, Y., Leib, A. Y., & Whitney, D. (2016). Serial dependence in the perception of attractiveness. Journal of Vision, +<br/>16(15):28, 1–8, doi:10.1167/16.15.28. +<br/>doi: 10 .116 7 /1 6. 15 . 28 +<br/>Received July 13, 2016; published December 22, 2016 +<br/>ISSN 1534-7362 +<br/>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. +</td><td>('27678837', 'Ye Xia', 'ye xia')<br/>('6931574', 'Allison Yamanashi Leib', 'allison yamanashi leib')</td><td></td></tr><tr><td>ffaad0204f4af763e3390a2f6053c0e9875376be</td><td>Article <br/>Non-Convex Sparse and Low-Rank Based Robust <br/>Subspace Segmentation for Data Mining <br/><b>School of Information Science and Technology, Donghua University, Shanghai 200051, China</b><br/><b>City University of Hong Kong, Kowloon 999077, Hong Kong, China</b><br/><b>School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA</b><br/>Received: 16 June 2017; Accepted: 10 July 2017; Published: 15 July 2017 @@ -29387,7 +37776,10 @@ </td><td>('9401261', 'Ziaul Haque Choudhury', 'ziaul haque choudhury')<br/>('9401261', 'Ziaul Haque Choudhury', 'ziaul haque choudhury')</td><td></td></tr><tr><td>c5468665d98ce7349d38afb620adbf51757ab86f</td><td>Pose-Encoded Spherical Harmonics for Robust Face <br/>Recognition Using a Single Image <br/><b>Center for Automation Research, University of Maryland, College Park, MD 20742, USA</b><br/>2 Vision Technologies Lab, Sarnoff Corporation, Princeton, NJ 08873, USA -</td><td>('39265975', 'Zhanfeng Yue', 'zhanfeng yue')<br/>('38480590', 'Wenyi Zhao', 'wenyi zhao')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>c5d13e42071813a0a9dd809d54268712eba7883f</td><td>Face Recognition Robust to Head Pose Changes Based on the RGB-D Sensor +</td><td>('39265975', 'Zhanfeng Yue', 'zhanfeng yue')<br/>('38480590', 'Wenyi Zhao', 'wenyi zhao')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>c588c89a72f89eed29d42f34bfa5d4cffa530732</td><td>Attributes2Classname: A discriminative model for attribute-based +<br/>unsupervised zero-shot learning +<br/><b>HAVELSAN Inc., 2Bilkent University, 3Hacettepe University</b></td><td>('9424554', 'Berkan Demirel', 'berkan demirel')<br/>('1939006', 'Ramazan Gokberk Cinbis', 'ramazan gokberk cinbis')<br/>('2011587', 'Nazli Ikizler-Cinbis', 'nazli ikizler-cinbis')</td><td>bdemirel@havelsan.com.tr, gcinbis@cs.bilkent.edu.tr, nazli@cs.hacettepe.edu.tr +</td></tr><tr><td>c5d13e42071813a0a9dd809d54268712eba7883f</td><td>Face Recognition Robust to Head Pose Changes Based on the RGB-D Sensor <br/><b>West Virginia University, Morgantown, WV</b></td><td>('2997432', 'Cesare Ciaccio', 'cesare ciaccio')<br/>('2671284', 'Lingyun Wen', 'lingyun wen')<br/>('1822413', 'Guodong Guo', 'guodong guo')</td><td>cciaccio@mix.wvu.edu, lwen@mix.wvu.edu, guodong.guo@mail.wvu.edu </td></tr><tr><td>c50d73557be96907f88b59cfbd1ab1b2fd696d41</td><td>JournalofElectronicImaging13(3),474–485(July2004). <br/>Semiconductor sidewall shape estimation @@ -29415,7 +37807,15 @@ <br/>CHINA </td><td>('1695589', 'SHIQING ZHANG', 'shiqing zhang')<br/>('1730594', 'XIAOMING ZHAO', 'xiaoming zhao')<br/>('38909691', 'BICHENG LEI', 'bicheng lei')</td><td>tzczsq@163.com, leibicheng@163.com <br/>tzxyzxm@163.com -</td></tr><tr><td>c5935b92bd23fd25cae20222c7c2abc9f4caa770</td><td>Spatiotemporal Multiplier Networks for Video Action Recognition +</td></tr><tr><td>c5ea084531212284ce3f1ca86a6209f0001de9d1</td><td>Audio-Visual Speech Processing for +<br/>Multimedia Localisation +<br/>by +<br/>Matthew Aaron Benatan +<br/>Submitted in accordance with the requirements +<br/>for the degree of Doctor of Philosophy +<br/><b>The University of Leeds</b><br/>School of Computing +<br/>September 2016 +</td><td></td><td></td></tr><tr><td>c5935b92bd23fd25cae20222c7c2abc9f4caa770</td><td>Spatiotemporal Multiplier Networks for Video Action Recognition <br/><b>Graz University of Technology</b><br/><b>Graz University of Technology</b><br/><b>York University, Toronto</b></td><td>('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')<br/>('1718587', 'Axel Pinz', 'axel pinz')<br/>('1709096', 'Richard P. Wildes', 'richard p. wildes')</td><td>feichtenhofer@tugraz.at <br/>axel.pinz@tugraz.at <br/>wildes@cse.yorku.ca @@ -29501,7 +37901,9 @@ </td></tr><tr><td>c220f457ad0b28886f8b3ef41f012dd0236cd91a</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 <br/>Crystal Loss and Quality Pooling for <br/>Unconstrained Face Verification and Recognition -</td><td>('40497884', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('2068427', 'Ankan Bansal', 'ankan bansal')<br/>('2680836', 'Hongyu Xu', 'hongyu xu')<br/>('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>c2e03efd8c5217188ab685e73cc2e52c54835d1a</td><td>Deep Tree-structured Face: A Unified Representation for Multi-task Facial +</td><td>('40497884', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('2068427', 'Ankan Bansal', 'ankan bansal')<br/>('2680836', 'Hongyu Xu', 'hongyu xu')<br/>('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>c254b4c0f6d5a5a45680eb3742907ec93c3a222b</td><td>A Fusion-based Gender Recognition Method +<br/>Using Facial Images +</td><td>('24033665', 'Benyamin Ghojogh', 'benyamin ghojogh')<br/>('1779028', 'Saeed Bagheri Shouraki', 'saeed bagheri shouraki')<br/>('1782221', 'Hoda Mohammadzade', 'hoda mohammadzade')<br/>('22395643', 'Ensieh Iranmehr', 'ensieh iranmehr')</td><td></td></tr><tr><td>c2e03efd8c5217188ab685e73cc2e52c54835d1a</td><td>Deep Tree-structured Face: A Unified Representation for Multi-task Facial <br/>Biometrics <br/>Department of Electrical Engineering and Computer Science <br/><b>University of Tennessee, Knoxville</b></td><td>('1691576', 'Rui Guo', 'rui guo')<br/>('9120475', 'Liu Liu', 'liu liu')<br/>('40560485', 'Wei Wang', 'wei wang')<br/>('2885826', 'Ali Taalimi', 'ali taalimi')<br/>('1690083', 'Chi Zhang', 'chi zhang')<br/>('1698645', 'Hairong Qi', 'hairong qi')</td><td>{rguo1, lliu25, wwang34, ataalimi, czhang24, hqi} @utk.edu @@ -29516,7 +37918,23 @@ <br/>MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN <br/>Efficient Measuring of Facial Action Unit Activation Intensities <br/>using Active Appearance Models -<br/><b>Computer Vision Group, Friedrich Schiller University of Jena, Germany</b><br/><b>University Hospital Jena, Germany</b></td><td>('1708249', 'Daniel Haase', 'daniel haase')<br/>('8993584', 'Michael Kemmler', 'michael kemmler')<br/>('1814631', 'Orlando Guntinas-Lichius', 'orlando guntinas-lichius')<br/>('1728382', 'Joachim Denzler', 'joachim denzler')</td><td></td></tr><tr><td>f6742010372210d06e531e7df7df9c01a185e241</td><td>Dimensional Affect and Expression in +<br/><b>Computer Vision Group, Friedrich Schiller University of Jena, Germany</b><br/><b>University Hospital Jena, Germany</b></td><td>('1708249', 'Daniel Haase', 'daniel haase')<br/>('8993584', 'Michael Kemmler', 'michael kemmler')<br/>('1814631', 'Orlando Guntinas-Lichius', 'orlando guntinas-lichius')<br/>('1728382', 'Joachim Denzler', 'joachim denzler')</td><td></td></tr><tr><td>f60a85bd35fa85739d712f4c93ea80d31aa7de07</td><td>VisDA: The Visual Domain Adaptation Challenge +<br/><b>Boston University</b><br/><b>EECS, University of California Berkeley</b></td><td>('2960713', 'Xingchao Peng', 'xingchao peng')<br/>('39058756', 'Ben Usman', 'ben usman')<br/>('34836903', 'Neela Kaushik', 'neela kaushik')<br/>('50196944', 'Judy Hoffman', 'judy hoffman')<br/>('2774612', 'Dequan Wang', 'dequan wang')<br/>('2903226', 'Kate Saenko', 'kate saenko')</td><td>xpeng,usmn,nkaushik,saenko@bu.edu, jhoffman,dqwang@eecs.berkeley.edu +</td></tr><tr><td>f6f06be05981689b94809130e251f9e4bf932660</td><td>An Approach to Illumination and Expression Invariant +<br/>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 91 – No.15, April 2014 +<br/>Multiple Classifier Face Recognition +<br/>Dalton Meitei Thounaojam +<br/><b>National Institute of Technology</b><br/>Silchar +<br/>Assam: 788010 +<br/>India +<br/><b>National Institute of Technology</b><br/>Silchar +<br/>Assam: 788010 +<br/>India +<br/>Romesh Laishram +<br/><b>Manipur Institute of Technology</b><br/>Imphal West: 795001 +<br/>India +</td><td></td><td></td></tr><tr><td>f68ed499e9d41f9c3d16d843db75dc12833d988d</td><td></td><td></td><td></td></tr><tr><td>f6742010372210d06e531e7df7df9c01a185e241</td><td>Dimensional Affect and Expression in <br/>Natural and Mediated Interaction <br/><b>Ritsumeikan, University</b><br/>Kyoto, Japan <br/>October, 2007 @@ -29542,7 +37960,9 @@ <br/>HUMAN AGE USING DWT AND SAMMON MAP <br/><b>Sathyabama University, Chennai, India</b><br/>2Department of Electronics Engineering, NITTTR, Chennai, India <br/>Received 2014-05-08; Revised 2014-05-23; Accepted 2014-11-28 -</td><td>('9513864', 'J. Nithyashri', 'j. nithyashri')<br/>('5014650', 'G. Kulanthaivel', 'g. kulanthaivel')</td><td></td></tr><tr><td>f6c70635241968a6d5fd5e03cde6907022091d64</td><td></td><td></td><td></td></tr><tr><td>f66f3d1e6e33cb9e9b3315d3374cd5f121144213</td><td>The Journal of Neuroscience, October 30, 2013 • 33(44):17435–17443 • 17435 +</td><td>('9513864', 'J. Nithyashri', 'j. nithyashri')<br/>('5014650', 'G. Kulanthaivel', 'g. kulanthaivel')</td><td></td></tr><tr><td>f6c70635241968a6d5fd5e03cde6907022091d64</td><td></td><td></td><td></td></tr><tr><td>f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a</td><td>Syn2Real: A New Benchmark for +<br/>Synthetic-to-Real Visual Domain Adaptation +<br/><b>Boston University1, University of Tokyo</b><br/><b>University of California Berkeley</b></td><td>('2960713', 'Xingchao Peng', 'xingchao peng')<br/>('39058756', 'Ben Usman', 'ben usman')<br/>('8915348', 'Kuniaki Saito', 'kuniaki saito')<br/>('34836903', 'Neela Kaushik', 'neela kaushik')<br/>('2903226', 'Kate Saenko', 'kate saenko')</td><td></td></tr><tr><td>f66f3d1e6e33cb9e9b3315d3374cd5f121144213</td><td>The Journal of Neuroscience, October 30, 2013 • 33(44):17435–17443 • 17435 <br/>Behavioral/Cognitive <br/>Top-Down Control of Visual Responses to Fear by the <br/>Amygdala @@ -29624,7 +38044,19 @@ <br/>therefore may control how behaviorally relevant information is <br/>visually coded in a context-sensitive fashion. </td><td>('3162581', 'Nicholas Furl', 'nicholas furl')<br/>('3162581', 'Nicholas Furl', 'nicholas furl')</td><td>Unit, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom. E-mail: nick.furl@mrc-cbu.cam.ac.uk. -</td></tr><tr><td>f6abecc1f48f6ec6eede4143af33cc936f14d0d0</td><td></td><td></td><td></td></tr><tr><td>f6fa97fbfa07691bc9ff28caf93d0998a767a5c1</td><td>k2-means for fast and accurate large scale clustering +</td></tr><tr><td>f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca</td><td>Cross-label Suppression: A Discriminative and Fast +<br/>Dictionary Learning with Group Regularization +<br/>April 24, 2017 +</td><td>('9293691', 'Xiudong Wang', 'xiudong wang')<br/>('2080215', 'Yuantao Gu', 'yuantao gu')</td><td></td></tr><tr><td>f6abecc1f48f6ec6eede4143af33cc936f14d0d0</td><td></td><td></td><td></td></tr><tr><td>f61d5f2a082c65d5330f21b6f36312cc4fab8a3b</td><td>Multi-Level Variational Autoencoder: +<br/>Learning Disentangled Representations from +<br/>Grouped Observations +<br/>OVAL Group +<br/><b>University of Oxford</b><br/>Machine Intelligence and Perception Group +<br/>Microsoft Research +<br/>Cambridge, UK +</td><td>('3365029', 'Diane Bouchacourt', 'diane bouchacourt')<br/>('2870603', 'Ryota Tomioka', 'ryota tomioka')<br/>('2388416', 'Sebastian Nowozin', 'sebastian nowozin')</td><td>diane@robots.ox.ac.uk +<br/>{ryoto,Sebastian.Nowozin}@microsoft.com +</td></tr><tr><td>f6fa97fbfa07691bc9ff28caf93d0998a767a5c1</td><td>k2-means for fast and accurate large scale clustering <br/>Computer Vision Lab <br/>D-ITET <br/>ETH Zurich @@ -29636,6 +38068,9 @@ </td><td>('2794259', 'Eirikur Agustsson', 'eirikur agustsson')<br/>('1732855', 'Radu Timofte', 'radu timofte')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>aeirikur@vision.ee.ethz.ch <br/>timofter@vision.ee.ethz.ch <br/>vangool@vision.ee.ethz.ch +</td></tr><tr><td>f6cf2108ec9d0f59124454d88045173aa328bd2e</td><td>Robust user identification based on facial action units +<br/>unaffected by users’ emotions +<br/><b>Aalen University, Germany</b></td><td>('3114281', 'Ricardo Buettner', 'ricardo buettner')</td><td>ricardo.buettner@hs-aalen.de </td></tr><tr><td>f68f20868a6c46c2150ca70f412dc4b53e6a03c2</td><td>157 <br/>Differential Evolution to Optimize <br/>Hidden Markov Models Training: @@ -29707,12 +38142,35 @@ <br/>can be used. <br/>The presented work in this paper is a part of <br/>a project which aims to construct “An Optimal -</td><td>('2654160', 'Khadoudja Ghanem', 'khadoudja ghanem')<br/>('1749675', 'Amer Draa', 'amer draa')<br/>('2483552', 'Elvis Vyumvuhore', 'elvis vyumvuhore')</td><td></td></tr><tr><td>e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66</td><td>International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 +</td><td>('2654160', 'Khadoudja Ghanem', 'khadoudja ghanem')<br/>('1749675', 'Amer Draa', 'amer draa')<br/>('2483552', 'Elvis Vyumvuhore', 'elvis vyumvuhore')</td><td></td></tr><tr><td>f6e00d6430cbbaa64789d826d093f7f3e323b082</td><td>Visual Object Recognition +<br/><b>University of Texas at Austin</b><br/><b>RWTH Aachen University</b><br/>SYNTHESIS LECTURES ON COMPUTER +<br/>VISION # 1 +</td><td>('1794409', 'Kristen Grauman', 'kristen grauman')<br/>('1789756', 'Bastian Leibe', 'bastian leibe')</td><td></td></tr><tr><td>e9a5a38e7da3f0aa5d21499149536199f2e0e1f7</td><td>Article +<br/>A Bayesian Scene-Prior-Based Deep Network Model +<br/>for Face Verification +<br/><b>North China University of Technology</b><br/><b>Curtin University, Perth, WA 6102, Australia</b><br/>† These authors contributed equally to this work. +<br/>Received: 12 May 2018; Accepted: 8 June 2018 ; Published: 11 June 2018 +</td><td>('2104779', 'Huafeng Wang', 'huafeng wang')<br/>('2239474', 'Haixia Pan', 'haixia pan')<br/>('3229158', 'Wenfeng Song', 'wenfeng song')<br/>('1713220', 'Wanquan Liu', 'wanquan liu')<br/>('47311804', 'Ning Song', 'ning song')<br/>('2361868', 'Yuehai Wang', 'yuehai wang')</td><td>Beijing 100144, China; wangyuehai@ncut.edu.cn +<br/>2 Department of Software, Beihang University, Beijing 100191, China; swfbuaa@163.com +<br/>* Correspondence: wanghuafeng@ncut.edu.cn (H.W.); W.Liu@curtin.edu.au (W.L.); zy1621125@buaa.edu.cn +<br/>(N.S.); haixiapan@buaa.edu.cn (H.P.); Tel.: +86-189-1192-4121 (H.W.) +</td></tr><tr><td>e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66</td><td>International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 <br/>Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com <br/>Cognitive Learning for Social Robot through <br/>Facial Expression from Video Input <br/>1Department of Automation & Robotics, 2Department of Computer Science & Engg. -</td><td>('26944751', 'Neeraj Rai', 'neeraj rai')<br/>('2586264', 'Deepak Rai', 'deepak rai')<br/>('26477055', 'Ajay Kumar Garg', 'ajay kumar garg')</td><td></td></tr><tr><td>e9e40e588f8e6510fa5537e0c9e083ceed5d07ad</td><td>Fast Face Detection Using Graphics Processor +</td><td>('26944751', 'Neeraj Rai', 'neeraj rai')<br/>('2586264', 'Deepak Rai', 'deepak rai')<br/>('26477055', 'Ajay Kumar Garg', 'ajay kumar garg')</td><td></td></tr><tr><td>e988be047b28ba3b2f1e4cdba3e8c94026139fcf</td><td>Multi-Task Convolutional Neural Network for +<br/>Pose-Invariant Face Recognition +</td><td>('2399004', 'Xi Yin', 'xi yin')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td></td></tr><tr><td>e9d43231a403b4409633594fa6ccc518f035a135</td><td>Deformable Part Models with CNN Features +<br/>Kokkinos1,2 +<br/>1 Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63) +</td><td>('2381485', 'Stavros Tsogkas', 'stavros tsogkas')<br/>('2776496', 'George Papandreou', 'george papandreou')</td><td></td></tr><tr><td>e90e12e77cab78ba8f8f657db2bf4ae3dabd5166</td><td>Nonconvex Sparse Spectral Clustering by Alternating Direction Method of +<br/>Multipliers and Its Convergence Analysis +<br/><b>National University of Singapore</b><br/><b>Key Laboratory of Machine Perception (MOE), School of EECS, Peking University</b><br/><b>Cooperative Medianet Innovation Center, Shanghai Jiao Tong University</b><br/><b>AI Institute</b></td><td>('33224509', 'Canyi Lu', 'canyi lu')<br/>('33221685', 'Jiashi Feng', 'jiashi feng')<br/>('33383055', 'Zhouchen Lin', 'zhouchen lin')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td>canyilu@gmail.com, elefjia@nus.edu.sg, zlin@pku.edu.cn, eleyans@nus.edu.sg +</td></tr><tr><td>e9c008d31da38d9eef67a28d2c77cb7daec941fb</td><td>Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing +<br/>the Early Softmax Saturation +<br/><b>School of Information and Communication Engineering, Beijing University of Posts and Telecommunications</b><br/><b>School of Computer Science, Beijing University of Posts and Telecommunications, Beijing China</b></td><td>('3450321', 'Binghui Chen', 'binghui chen')<br/>('1774956', 'Weihong Deng', 'weihong deng')<br/>('8491162', 'Junping Du', 'junping du')</td><td>chenbinghui@bupt.edu.cn, whdeng@bupt.edu.cn, junpingd@bupt.edu.cn +</td></tr><tr><td>e9e40e588f8e6510fa5537e0c9e083ceed5d07ad</td><td>Fast Face Detection Using Graphics Processor <br/><b>National Institute of Technology Karnataka</b><br/>Surathkal, India </td><td>('36598334', 'K.Vinay Kumar', 'k.vinay kumar')</td><td></td></tr><tr><td>e9bb045e702ee38e566ce46cc1312ed25cb59ea7</td><td>Integrating Geometric and Textural Features for <br/>Facial Emotion Classification using SVM @@ -29735,12 +38193,39 @@ <br/>Electrical and Computer Engineering <br/><b>University of Memphis</b><br/>Memphis, TN 38152, USA </td><td>('2497319', 'M. Iftekhar Tanveer', 'm. iftekhar tanveer')<br/>('2464507', 'Sreya Ghosh', 'sreya ghosh')<br/>('33019079', 'A.K.M. Mahbubur Rahman', 'a.k.m. mahbubur rahman')<br/>('1828610', 'Mohammed Yeasin', 'mohammed yeasin')</td><td>{mtanveer,aanam,sghosh,arahman,myeasin}@memphis.edu +</td></tr><tr><td>e9363f4368b04aeaa6d6617db0a574844fc59338</td><td>BENCHIP: Benchmarking Intelligence +<br/>Processors +<br/>1ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group +<br/>4IFLYTEK,5JD,6RDA Microelectronics,7AMD +</td><td>('2631042', 'Jinhua Tao', 'jinhua tao')<br/>('1678776', 'Zidong Du', 'zidong du')<br/>('50770616', 'Qi Guo', 'qi guo')<br/>('4304175', 'Huiying Lan', 'huiying lan')<br/>('48571185', 'Lei Zhang', 'lei zhang')<br/>('7523063', 'Shengyuan Zhou', 'shengyuan zhou')<br/>('49046597', 'Cong Liu', 'cong liu')<br/>('49343896', 'Shan Tang', 'shan tang')<br/>('38253244', 'Allen Rush', 'allen rush')<br/>('47482936', 'Willian Chen', 'willian chen')<br/>('39419985', 'Shaoli Liu', 'shaoli liu')<br/>('7377735', 'Yunji Chen', 'yunji chen')<br/>('7934735', 'Tianshi Chen', 'tianshi chen')</td><td></td></tr><tr><td>f1250900074689061196d876f551ba590fc0a064</td><td>Learning to Recognize Actions from Limited Training +<br/>Examples Using a Recurrent Spiking Neural Model +<br/><b>School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA</b><br/>2Intel Labs, Hillsboro, OR, USA 97124 +</td><td>('9352814', 'Priyadarshini Panda', 'priyadarshini panda')<br/>('1753812', 'Narayan Srinivasa', 'narayan srinivasa')</td><td>*Correspondence: narayan.srinivasa@intel.com +</td></tr><tr><td>f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53</td><td>Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network +<br/>Approach in Unconstrained Poses +<br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA +</td><td>('47894545', 'Chenchen Zhu', 'chenchen zhu')<br/>('1769788', 'Khoa Luu', 'khoa luu')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td>cbhagava@andrew.cmu.edu, zcckernel@cmu.edu, kluu@andrew.cmu.edu, msavvid@ri.cmu.edu </td></tr><tr><td>f16a605abb5857c39a10709bd9f9d14cdaa7918f</td><td>Fast greyscale road sign model matching <br/>and recognition <br/>Centre de Visió per Computador <br/>Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain </td><td>('7855312', 'Sergio Escalera', 'sergio escalera')<br/>('1724155', 'Petia Radeva', 'petia radeva')</td><td>{sescalera,petia}@cvc.uab.es -</td></tr><tr><td>f1748303cc02424704b3a35595610890229567f9</td><td></td><td></td><td></td></tr><tr><td>f1d090fcea63d9f9e835c49352a3cd576ec899c1</td><td>Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward +</td></tr><tr><td>f1aa120fb720f6cfaab13aea4b8379275e6d40a2</td><td>InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image +<br/><b>Max-Planck-Institute for Informatics</b><br/><b>University of Erlangen-Nuremberg 3 University of Bath</b><br/>Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate +<br/>from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to +<br/>right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]. +</td><td>('3022958', 'Hyeongwoo Kim', 'hyeongwoo kim')<br/>('34105638', 'Justus Thies', 'justus thies')<br/>('1699058', 'Michael Zollhöfer', 'michael zollhöfer')<br/>('1819028', 'Christian Richardt', 'christian richardt')<br/>('1680185', 'Christian Theobalt', 'christian theobalt')<br/>('9102722', 'Ayush Tewari', 'ayush tewari')</td><td></td></tr><tr><td>f1748303cc02424704b3a35595610890229567f9</td><td></td><td></td><td></td></tr><tr><td>f1ba2fe3491c715ded9677862fea966b32ca81f0</td><td>ISSN: 2321-7782 (Online) +<br/>Volume 1, Issue 7, December 2013 +<br/>International Journal of Advance Research in +<br/>Computer Science and Management Studies +<br/>Research Paper +<br/>Available online at: www.ijarcsms.com +<br/>Face Tracking and Recognition in Videos: +<br/>HMM Vs KNN +<br/>Assistant Professor +<br/>Department of Computer Engineering +<br/><b>MIT College of Engineering (Pune University</b><br/>Pune - India +</td><td></td><td></td></tr><tr><td>f1d090fcea63d9f9e835c49352a3cd576ec899c1</td><td>Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward <br/>Neual Network Training Using Class Geometric Information. In . J. J. <br/>Computational Intelligence: International Joint Conference, IJCCI 2014 <br/>Rome, Italy, October 22-24, 2014 Revised Selected Papers. (Vol. III, pp. @@ -29755,7 +38240,14 @@ <br/>This document is made available in accordance with publisher policies. Please cite only the published <br/>version using the reference above. Full terms of use are available: <br/>http://www.bristol.ac.uk/pure/about/ebr-terms.html -<br/> </td><td>('1685469', 'A. Rosa', 'a. rosa')<br/>('9246794', 'J. M. Cadenas', 'j. m. cadenas')<br/>('2092535', 'A. Dourado', 'a. dourado')<br/>('39545211', 'K. Madani', 'k. madani')</td><td></td></tr><tr><td>f19777e37321f79e34462fc4c416bd56772031bf</td><td>International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 +<br/> </td><td>('1685469', 'A. Rosa', 'a. rosa')<br/>('9246794', 'J. M. Cadenas', 'j. m. cadenas')<br/>('2092535', 'A. Dourado', 'a. dourado')<br/>('39545211', 'K. Madani', 'k. madani')</td><td></td></tr><tr><td>f113aed343bcac1021dc3e57ba6cc0647a8f5ce1</td><td>International Journal of Science and Research (IJSR) +<br/>ISSN (Online): 2319-7064 +<br/>Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +<br/>A Survey on Mining of Weakly Labeled Web Facial +<br/>Images and Annotation +<br/><b>Pune Institute of Computer Technology, Pune, India</b><br/><b>Pune Institute of Computer Technology, Pune, India</b><br/>the +<br/>the proposed system which +</td><td></td><td></td></tr><tr><td>f19777e37321f79e34462fc4c416bd56772031bf</td><td>International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 <br/>ISSN 2229-5518 <br/>Literature Review of Image Compression Algorithm <br/> Dr. B. Chandrasekhar @@ -29779,7 +38271,13 @@ <br/>Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge- <br/>reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009 <br/>angenommen. -</td><td></td><td></td></tr><tr><td>e76798bddd0f12ae03de26b7c7743c008d505215</td><td></td><td></td><td></td></tr><tr><td>e793f8644c94b81b7a0f89395937a7f8ad428a89</td><td>LPM for Action Recognition in Temporally +</td><td></td><td></td></tr><tr><td>e76798bddd0f12ae03de26b7c7743c008d505215</td><td></td><td></td><td></td></tr><tr><td>e7cac91da51b78eb4a28e194d3f599f95742e2a2</td><td>RESEARCH ARTICLE +<br/>Positive Feeling, Negative Meaning: +<br/>Visualizing the Mental Representations of In- +<br/>Group and Out-Group Smiles +<br/><b>Saarland University, Saarbr cken, Germany, 2 Utrecht University, Utrecht, the Netherlands</b><br/><b>Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands</b><br/>☯ These authors contributed equally to this work. +</td><td>('34533048', 'Andrea Paulus', 'andrea paulus')<br/>('40358273', 'Michaela Rohr', 'michaela rohr')<br/>('2365875', 'Ron Dotsch', 'ron dotsch')<br/>('3905267', 'Dirk Wentura', 'dirk wentura')</td><td>* a.paulus@mx.uni-saarland.de +</td></tr><tr><td>e793f8644c94b81b7a0f89395937a7f8ad428a89</td><td>LPM for Action Recognition in Temporally <br/>Untrimmed Videos <br/>School of Electrical Engineering and Computer Scinece <br/><b>University of Ottawa, Ottawa, On, Canada</b></td><td>('36047295', 'Feng Shi', 'feng shi')<br/>('1745632', 'Emil Petriu', 'emil petriu')</td><td>{fshi098, laganier, petriu}@site.uottawa.ca @@ -29867,6 +38365,9 @@ </td><td>('1731883', 'Alexander M. Bronstein', 'alexander m. bronstein')<br/>('1732570', 'Michael M. Bronstein', 'michael m. bronstein')<br/>('1692832', 'Ron Kimmel', 'ron kimmel')</td><td>Email: alexbron@ieee.org <br/>bronstein@ieee.org <br/>ron@cs.technion.ac.il +</td></tr><tr><td>e7b2b0538731adaacb2255235e0a07d5ccf09189</td><td>Learning Deep Representations with +<br/>Probabilistic Knowledge Transfer +<br/><b>Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece</b></td><td>('3200630', 'Nikolaos Passalis', 'nikolaos passalis')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')</td><td>passalis@csd.auth.gr, tefas@aiia.csd.auth.gr </td></tr><tr><td>e726acda15d41b992b5a41feabd43617fab6dc23</td><td></td><td></td><td></td></tr><tr><td>e74816bc0803460e20edbd30a44ab857b06e288e</td><td>Semi-Automated Annotation of Discrete States <br/>in Large Video Datasets <br/>Lex Fridman @@ -29879,7 +38380,19 @@ <br/>RECOGNITION OF IDENTICAL TWINS <br/>1Department of Electrical,Computer and Biomedical Engineering, Qazvin branch, Islamic <br/><b>Amirkabir University of Technology, Tehran</b><br/><b>Azad University, Qazvin, Iran</b><br/>Iran -</td><td>('1692435', 'Karim Faez', 'karim faez')</td><td></td></tr><tr><td>cbcf5da9f09b12f53d656446fd43bc6df4b2fa48</td><td>ISSN: 2277-3754 +</td><td>('1692435', 'Karim Faez', 'karim faez')</td><td></td></tr><tr><td>cbca355c5467f501d37b919d8b2a17dcb39d3ef9</td><td>CANSIZOGLU, JONES: SUPER-RESOLUTION OF VERY LR FACES FROM VIDEOS +<br/>Super-resolution of Very Low-Resolution +<br/>Faces from Videos +<br/>Esra Ataer-Cansizoglu +<br/><b>Mitsubishi Electric Research Labs</b><br/>(MERL) +<br/>Cambridge, MA, USA +</td><td>('1961683', 'Michael Jones', 'michael jones')</td><td>cansizoglu@merl.com +<br/>mjones@merl.com +</td></tr><tr><td>cbbd13c29d042743f0139f1e044b6bca731886d0</td><td>Not-So-CLEVR: learning same–different relations strains +<br/>feedforward neural networks +<br/>†equal contributions +<br/>Department of Cognitive, Linguistic & Psychological Sciences +<br/><b>Carney Institute for Brain Science</b><br/><b>Brown University, Providence, RI 02912, USA</b></td><td>('5546699', 'Junkyung Kim', 'junkyung kim')</td><td></td></tr><tr><td>cbcf5da9f09b12f53d656446fd43bc6df4b2fa48</td><td>ISSN: 2277-3754 <br/>ISO 9001:2008 Certified <br/>International Journal of Engineering and Innovative Technology (IJEIT) <br/>Volume 2, Issue 6, December 2012 @@ -29891,7 +38404,26 @@ <br/><b>Stanford University</b><br/>B.S. Computer Science <br/><b>Stanford University</b></td><td></td><td>tanner12@stanford.edu <br/>bakis@stanford.edu -</td></tr><tr><td>cb9092fe74ea6a5b2bb56e9226f1c88f96094388</td><td></td><td></td><td></td></tr><tr><td>cb08f679f2cb29c7aa972d66fe9e9996c8dfae00</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +</td></tr><tr><td>cb004e9706f12d1de83b88c209ac948b137caae0</td><td>Face Aging Effect Simulation using Hidden Factor +<br/>Analysis Joint Sparse Representation +</td><td>('1787137', 'Hongyu Yang', 'hongyu yang')<br/>('31454775', 'Di Huang', 'di huang')<br/>('40013375', 'Yunhong Wang', 'yunhong wang')<br/>('46506697', 'Heng Wang', 'heng wang')<br/>('2289713', 'Yuanyan Tang', 'yuanyan tang')</td><td></td></tr><tr><td>cb2917413c9b36c3bb9739bce6c03a1a6eb619b3</td><td>MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition +<br/><b>University of Science and Technology of China</b><br/>2Microsoft Research Asia +</td><td>('49455479', 'Yizhou Zhou', 'yizhou zhou')<br/>('48305246', 'Xiaoyan Sun', 'xiaoyan sun')<br/>('2057216', 'Zheng-Jun Zha', 'zheng-jun zha')<br/>('8434337', 'Wenjun Zeng', 'wenjun zeng')</td><td>zyz0205@mail.ustc.edu.cn, zhazj@ustc.edu.cn +<br/>{xysun,wezeng}@microsoft.com +</td></tr><tr><td>cb9092fe74ea6a5b2bb56e9226f1c88f96094388</td><td></td><td></td><td></td></tr><tr><td>cb13e29fb8af6cfca568c6dc523da04d1db1fff5</td><td>Paper accepted to Frontiers in Psychology +<br/>Received: 02 Dec 2017 +<br/>Accepted: 12 June 2018 +<br/>DOI: 10.3389/fpsyg.2018.01128 +<br/>A Survey of Automatic Facial +<br/>Micro-expression Analysis: +<br/>Databases, Methods and Challenges +<br/><b>Multimedia University, Faculty of Engineering, Cyberjaya, 63100 Selangor, Malaysia</b><br/><b>Multimedia University, Faculty of Computing and Informatics, Cyberjaya</b><br/>Selangor, Malaysia +<br/><b>University of Nottingham, School of Psychology, University Park, Nottingham NG</b><br/>2RD, United Kingdom +<br/><b>Multimedia University, Research Institute for Digital Security, Cyberjaya</b><br/>Selangor, Malaysia +<br/><b>Monash University Malaysia, School of Information Technology, Sunway</b><br/>Selangor, Malaysia +<br/>Correspondence*: +</td><td>('2154760', 'Yee-Hui Oh', 'yee-hui oh')<br/>('2339975', 'John See', 'john see')<br/>('35256518', 'Anh Cat Le Ngo', 'anh cat le ngo')<br/>('6633183', 'Raphael C.-W. Phan', 'raphael c.-w. phan')<br/>('34287833', 'Vishnu Monn Baskaran', 'vishnu monn baskaran')<br/>('2339975', 'John See', 'john see')</td><td>johnsee@mmu.edu.my +</td></tr><tr><td>cb08f679f2cb29c7aa972d66fe9e9996c8dfae00</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 <br/>Action Understanding <br/>with Multiple Classes of Actors </td><td>('2026123', 'Chenliang Xu', 'chenliang xu')<br/>('2228109', 'Caiming Xiong', 'caiming xiong')<br/>('3587688', 'Jason J. Corso', 'jason j. corso')</td><td></td></tr><tr><td>cb84229e005645e8623a866d3d7956c197f85e11</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X @@ -29901,6 +38433,22 @@ <br/><b>University of Florida</b><br/>Electrical & Computer Engineering </td><td>('3445153', 'Nima Karimian', 'nima karimian')<br/>('2171076', 'Damon L. Woodard', 'damon l. woodard')<br/>('2925373', 'Domenic Forte', 'domenic forte')</td><td>nima@engr.uconn.edu <br/>dwoodard, dforte@ece.ufl.edu +</td></tr><tr><td>cbb27980eb04f68d9f10067d3d3c114efa9d0054</td><td>An Attention Model for group-level emotion recognition +<br/><b>Indian Institute of Technology</b><br/>Roorkee +<br/>Roorkee, India +<br/><b>Indian Institute of Technology</b><br/>Roorkee +<br/>Roorkee, India +<br/><b>Indian Institute of Technology</b><br/>Roorkee +<br/>Roorkee, India +<br/>École de Technologie Supérieure +<br/>Montreal, Canada +<br/>École de Technologie Supérieure +<br/>Montreal, Canada +</td><td>('51127375', 'Aarush Gupta', 'aarush gupta')<br/>('51134535', 'Dakshit Agrawal', 'dakshit agrawal')<br/>('51118849', 'Hardik Chauhan', 'hardik chauhan')<br/>('3055538', 'Jose Dolz', 'jose dolz')<br/>('3048367', 'Marco Pedersoli', 'marco pedersoli')</td><td>agupta1@cs.iitr.ac.in +<br/>dagrawal@cs.iitr.ac.in +<br/>haroi.uee2014@iitr.ac.in +<br/>jose.dolz@livia.etsmtl.ca +<br/>Marco.Pedersoli@etsmtl.ca </td></tr><tr><td>cbe859d151466315a050a6925d54a8d3dbad591f</td><td>GAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING <br/>Dipartimento di Scienze dell’Informazione <br/>Universit´a di Milano @@ -29925,7 +38473,12 @@ <br/>Alexander G. Hauptmann, Chair <br/>Submitted in partial fulfillment of the requirements <br/>for the degree of Doctor of Philosophy. -</td><td>('34692532', 'Zhenzhong Lan', 'zhenzhong lan')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')<br/>('14517812', 'Leonid Sigal', 'leonid sigal')<br/>('34692532', 'Zhenzhong Lan', 'zhenzhong lan')</td><td></td></tr><tr><td>f83dd9ff002a40228bbe3427419b272ab9d5c9e4</td><td>Facial Features Matching using a Virtual Structuring Element +</td><td>('34692532', 'Zhenzhong Lan', 'zhenzhong lan')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')<br/>('14517812', 'Leonid Sigal', 'leonid sigal')<br/>('34692532', 'Zhenzhong Lan', 'zhenzhong lan')</td><td></td></tr><tr><td>f842b13bd494be1bbc1161dc6df244340b28a47f</td><td>An Improved Face Recognition Technique Based +<br/>on Modular Multi-directional Two-dimensional +<br/>Principle Component Analysis Approach +<br/><b>Hanshan Normal University, Chaozhou, 521041, China</b><br/><b>Hanshan Normal University, Chaozhou, 521041, China</b></td><td>('48477766', 'Xiaoqing Dong', 'xiaoqing dong')<br/>('2747115', 'Hongcai Chen', 'hongcai chen')</td><td>Email: dxqzq110@163.com +<br/>Email: czhschc@126.com +</td></tr><tr><td>f83dd9ff002a40228bbe3427419b272ab9d5c9e4</td><td>Facial Features Matching using a Virtual Structuring Element <br/>Intelligent Systems Lab Amsterdam, <br/><b>University of Amsterdam</b><br/>Kruislaan 403, 1098 SJ Amsterdam, The Netherlands </td><td>('9301018', 'Roberto Valenti', 'roberto valenti')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')<br/>('1695527', 'Theo Gevers', 'theo gevers')</td><td></td></tr><tr><td>f8c94afd478821681a1565d463fc305337b02779</td><td> @@ -29959,6 +38512,12 @@ <br/>ISSN 2229-5518 <br/>Artificial Neural Network Design and Parameter <br/>Optimization for Facial Expressions Recognition +</td><td></td><td></td></tr><tr><td>f8f872044be2918de442ba26a30336d80d200c42</td><td>IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613 +<br/>Facial Emotion Recognition Techniques: A Survey +<br/>1,2Department of Computer Science and Engineering +<br/><b>Dr C V Raman Institute of Science and Technology</b><br/>defense +<br/>systems, +<br/>surveillance </td><td></td><td></td></tr><tr><td>f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464</td><td>ORIGINAL RESEARCH <br/>published: 19 December 2017 <br/>doi: 10.3389/fpsyg.2017.02181 @@ -30030,6 +38589,14 @@ <br/>Frontiers in Psychology | www.frontiersin.org <br/>December 2017 | Volume 8 | Article 2181 </td><td>('28239829', 'Margarida V. Garrido', 'margarida v. garrido')<br/>('38831356', 'Marília Prada', 'marília prada')<br/>('28239829', 'Margarida V. Garrido', 'margarida v. garrido')</td><td>margarida.garrido@iscte-iul.pt +</td></tr><tr><td>f87b22e7f0c66225824a99cada71f9b3e66b5742</td><td>Robust Emotion Recognition from Low Quality and Low Bit Rate Video: +<br/>A Deep Learning Approach +<br/><b>Beckman Institute, University of Illinois at Urbana-Champaign</b><br/><b>Texas AandM University</b><br/><b>University of Missouri, Kansas City</b><br/>§ Snap Inc, USA +<br/><b>University of Washington</b></td><td>('50563570', 'Bowen Cheng', 'bowen cheng')<br/>('2969311', 'Zhangyang Wang', 'zhangyang wang')<br/>('4622305', 'Zhaobin Zhang', 'zhaobin zhang')<br/>('49970050', 'Zhu Li', 'zhu li')<br/>('1771885', 'Ding Liu', 'ding liu')<br/>('1706007', 'Jianchao Yang', 'jianchao yang')<br/>('47156875', 'Shuai Huang', 'shuai huang')<br/>('1739208', 'Thomas S. Huang', 'thomas s. huang')</td><td>{bcheng9, dingliu2, t-huang1}@illinois.edu +<br/>atlaswang@tamu.edu +<br/>{zzktb@mail., lizhu@}umkc.edu +<br/>jianchao.yang@snap.com +<br/>shuaih@uw.edu </td></tr><tr><td>cef841f27535c0865278ee9a4bc8ee113b4fb9f3</td><td></td><td></td><td></td></tr><tr><td>ce6d60b69eb95477596535227958109e07c61e1e</td><td>Unconstrained Face Verification Using Fisher Vectors <br/>Computed From Frontalized Faces <br/>Center for Automation Research @@ -30124,13 +38691,35 @@ <br/><b>University College London</b><br/>Department of Computer Science <br/><b>University College London</b><br/>Supervisor: Prof. Bernard F. Buxton <br/>February 2016 -</td><td>('2768033', 'Houari Abdallahi', 'houari abdallahi')</td><td></td></tr><tr><td>ce691a37060944c136d2795e10ed7ba751cd8394</td><td></td><td></td><td></td></tr><tr><td>ce3f3088d0c0bf236638014a299a28e492069753</td><td></td><td></td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>Face Alignment by Local Deep Descriptor Regression +</td><td>('2768033', 'Houari Abdallahi', 'houari abdallahi')</td><td></td></tr><tr><td>ce691a37060944c136d2795e10ed7ba751cd8394</td><td></td><td></td><td></td></tr><tr><td>ce3f3088d0c0bf236638014a299a28e492069753</td><td></td><td></td><td></td></tr><tr><td>ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6</td><td>UC San Diego +<br/>UC San Diego Electronic Theses and Dissertations +<br/>Title +<br/>Inhibitions of ascorbate fatty acid derivatives on three rabbit muscle glycolytic enzymes +<br/>Permalink +<br/>https://escholarship.org/uc/item/8x33n1gj +<br/>Author +<br/>Pham, Duyen-Anh +<br/>Publication Date +<br/>2011-01-01 +<br/>Peer reviewed|Thesis/dissertation +<br/>eScholarship.org +<br/>Powered by the California Digital Library +<br/><b>University of California</b></td><td></td><td></td></tr><tr><td>ce450e4849490924488664b44769b4ca57f1bc1a</td><td>Procedural Generation of Videos to Train Deep Action Recognition Networks +<br/>1Computer Vision Group, NAVER LABS Europe, Meylan, France +<br/>2Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain +<br/><b>Toyota Research Institute, Los Altos, CA, USA</b></td><td>('1799820', 'Adrien Gaidon', 'adrien gaidon')<br/>('3407519', 'Yohann Cabon', 'yohann cabon')</td><td>{cesar.desouza, yohann.cabon}@europe.naverlabs.com, adrien.gaidon@tri.global, antonio@cvc.uab.es +</td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>Face Alignment by Local Deep Descriptor Regression <br/><b>University of Maryland</b><br/><b>College Park, MD</b><br/><b>University of Maryland</b><br/><b>College Park, MD</b><br/><b>University of Maryland</b><br/><b>College Park, MD</b><br/><b>Rutgers University</b><br/>New Brunswick, NJ 08901 </td><td>('40080979', 'Amit Kumar', 'amit kumar')<br/>('26988560', 'Rajeev Ranjan', 'rajeev ranjan')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')</td><td>akumar14@umd.edu <br/>rranjan1@umd.edu <br/>rama@umiacs.umd.edu <br/>vishal.m.patel@rutgers.edu -</td></tr><tr><td>ce9a61bcba6decba72f91497085807bface02daf</td><td>Eigen-Harmonics Faces: Face Recognition under Generic Lighting +</td></tr><tr><td>ce032dae834f383125cdd852e7c1bc793d4c3ba3</td><td>Motion Interchange Patterns for Action +<br/>Recognition in Unconstrained Videos +<br/><b>The Weizmann Institute of Science, Israel</b><br/><b>Tel-Aviv University, Israel</b><br/><b>The Open University, Israel</b></td><td>('3294355', 'Orit Kliper-Gross', 'orit kliper-gross')<br/>('2916582', 'Yaron Gurovich', 'yaron gurovich')<br/>('1756099', 'Tal Hassner', 'tal hassner')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td></td></tr><tr><td>ce9e1dfa7705623bb67df3a91052062a0a0ca456</td><td>Deep Feature Interpolation for Image Content Changes +<br/>Kilian Weinberger1 +<br/><b>Cornell University</b><br/><b>George Washington University</b><br/>*Authors contributed equally +</td><td>('3222840', 'Paul Upchurch', 'paul upchurch')<br/>('1791337', 'Kavita Bala', 'kavita bala')</td><td></td></tr><tr><td>ce9a61bcba6decba72f91497085807bface02daf</td><td>Eigen-Harmonics Faces: Face Recognition under Generic Lighting <br/>1Graduate School, CAS, Beijing, China, 100080 <br/>2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 <br/>Emails: {lyqing, sgshan, wgao}jdl.ac.cn @@ -30165,7 +38754,33 @@ <br/><b>Engineering, G.H.Raisoni College of Engineering</b><br/>Technology for Women, Nagpur, Maharashtra, India. </td><td>('2776196', 'Deepti Yadav', 'deepti yadav')</td><td></td></tr><tr><td>ce933821661a0139a329e6c8243e335bfa1022b1</td><td>Temporal Modeling Approaches for Large-scale <br/>Youtube-8M Video Understanding -<br/><b>Baidu IDL and Tsinghua University</b></td><td>('9921390', 'Fu Li', 'fu li')<br/>('2551285', 'Chuang Gan', 'chuang gan')<br/>('3025977', 'Xiao Liu', 'xiao liu')<br/>('38812373', 'Yunlong Bian', 'yunlong bian')<br/>('1716690', 'Xiang Long', 'xiang long')<br/>('2653177', 'Yandong Li', 'yandong li')<br/>('2027571', 'Zhichao Li', 'zhichao li')<br/>('1743129', 'Jie Zhou', 'jie zhou')<br/>('35247507', 'Shilei Wen', 'shilei wen')</td><td></td></tr><tr><td>e0dedb6fc4d370f4399bf7d67e234dc44deb4333</td><td>Supplementary Material: Multi-Task Video Captioning with Video and +<br/><b>Baidu IDL and Tsinghua University</b></td><td>('9921390', 'Fu Li', 'fu li')<br/>('2551285', 'Chuang Gan', 'chuang gan')<br/>('3025977', 'Xiao Liu', 'xiao liu')<br/>('38812373', 'Yunlong Bian', 'yunlong bian')<br/>('1716690', 'Xiang Long', 'xiang long')<br/>('2653177', 'Yandong Li', 'yandong li')<br/>('2027571', 'Zhichao Li', 'zhichao li')<br/>('1743129', 'Jie Zhou', 'jie zhou')<br/>('35247507', 'Shilei Wen', 'shilei wen')</td><td></td></tr><tr><td>e03bda45248b4169e2a20cb9124ae60440cad2de</td><td>Learning a Dictionary of Shape-Components in Visual Cortex: +<br/>Comparison with Neurons, Humans and Machines +<br/>by +<br/>Ing´enieur de l’Ecole Nationale Sup´erieure +<br/>des T´el´ecommunications de Bretagne, 2000 +<br/>and +<br/>MS, Universit´e de Rennes, 2000 +<br/>Submitted to the Department of Brain and Cognitive Sciences +<br/>in partial fulfillment of the requirements for the degree of +<br/>Doctor of Philosophy +<br/>at the +<br/><b>MASSACHUSETTS INSTITUTE OF TECHNOLOGY</b><br/>June 2006 +<br/><b>c(cid:13) Massachusetts Institute of Technology 2006. All rights reserved</b><br/>Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +<br/>Department of Brain and Cognitive Sciences +<br/>April 24, 2006 +<br/>Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +<br/>Tomaso Poggio +<br/>Eugene McDermott Professor in the Brain Sciences and Human Behavior +<br/>Thesis Supervisor +<br/>Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +<br/>Matt Wilson +<br/>Professor of Neurobiology and +<br/>Chairman, Department Graduate Committee +</td><td>('1981539', 'Thomas Serre', 'thomas serre')</td><td></td></tr><tr><td>e03e86ac61cfac9148b371d75ce81a55e8b332ca</td><td>Unsupervised Learning using Sequential +<br/>Verification for Action Recognition +<br/><b>cid:63)The Robotics Institute, Carnegie Mellon University</b><br/>†Facebook AI Research +</td><td>('1806773', 'Ishan Misra', 'ishan misra')<br/>('1709305', 'Martial Hebert', 'martial hebert')<br/>('1699161', 'C. Lawrence Zitnick', 'c. lawrence zitnick')</td><td></td></tr><tr><td>e0dedb6fc4d370f4399bf7d67e234dc44deb4333</td><td>Supplementary Material: Multi-Task Video Captioning with Video and <br/>Entailment Generation <br/>UNC Chapel Hill <br/>1 Experimental Setup @@ -30250,7 +38865,13 @@ <br/>to lower case and tokenize the sentences and <br/>remove punctuations. </td><td>('10721120', 'Ramakanth Pasunuru', 'ramakanth pasunuru')<br/>('7736730', 'Mohit Bansal', 'mohit bansal')</td><td>{ram, mbansal}@cs.unc.edu -</td></tr><tr><td>e0638e0628021712ac76e3472663ccc17bd8838c</td><td> VOL. 9, NO. 2, FEBRUARY 2014 ISSN 1819-6608 +</td></tr><tr><td>e096b11b3988441c0995c13742ad188a80f2b461</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>DeepProposals: Hunting Objects and Actions by Cascading +<br/>Deep Convolutional Layers +<br/>Van Gool +<br/>Received: date / Accepted: date +</td><td>('3060081', 'Amir Ghodrati', 'amir ghodrati')</td><td></td></tr><tr><td>e0638e0628021712ac76e3472663ccc17bd8838c</td><td> VOL. 9, NO. 2, FEBRUARY 2014 ISSN 1819-6608 <br/>ARPN Journal of Engineering and Applied Sciences <br/>©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. <br/>www.arpnjournals.com @@ -30273,18 +38894,221 @@ <br/>YangY1503@163.com (Y.Y.); wangy_neu@163.com (Y.W.) <br/>2 New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China; wz723@nyu.edu <br/>* Correspondence: wangqimath@mail.neu.edu.cn; Tel.: +86-024-8368-7680 -</td></tr><tr><td>e0bfcf965b402f3f209f26ae20ee88bc4d0002ab</td><td>AI Thinking for Cloud Education Platform with Personalized Learning +</td></tr><tr><td>e01bb53b611c679141494f3ffe6f0b91953af658</td><td>FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors +<br/><b>Nanjing University of Science and Technology</b><br/>2Youtu Lab, Tencent +<br/><b>Michigan State University</b><br/><b>University of Adelaide</b><br/>Figure 1: Visual results of different super-resolution methods on scale factor 8. +</td><td>('50579509', 'Yu Chen', 'yu chen')<br/>('49499405', 'Jian Yang', 'jian yang')</td><td></td></tr><tr><td>e0bfcf965b402f3f209f26ae20ee88bc4d0002ab</td><td>AI Thinking for Cloud Education Platform with Personalized Learning <br/><b>University of Texas at San Antonio</b><br/><b>University of Texas at San Antonio</b><br/><b>University of Texas at San Antonio</b><br/><b>University of Texas at San Antonio</b><br/><b>University of Texas at San Antonio</b></td><td>('2055316', 'Paul Rad', 'paul rad')<br/>('2918902', 'Mehdi Roopaei', 'mehdi roopaei')<br/>('1716725', 'Nicole Beebe', 'nicole beebe')<br/>('9324267', 'Mehdi Shadaram', 'mehdi shadaram')<br/>('1839489', 'Yoris A. Au', 'yoris a. au')</td><td>Paul.rad@utsa.edu <br/> Mehdi.roopaei@utsa.edu <br/>Nicole.beebe@utsa.edu <br/>Mehdi.shadaram@utsa.edu <br/>Yoris.au@utsa.edu -</td></tr><tr><td>e0ed0e2d189ff73701ec72e167d44df4eb6e864d</td><td>Recognition of static and dynamic facial expressions: a study review +</td></tr><tr><td>e0939b4518a5ad649ba04194f74f3413c793f28e</td><td>Technical Report +<br/>UCAM-CL-TR-636 +<br/>ISSN 1476-2986 +<br/>Number 636 +<br/>Computer Laboratory +<br/>Mind-reading machines: +<br/>automated inference +<br/>of complex mental states +<br/>July 2005 +<br/>15 JJ Thomson Avenue +<br/>Cambridge CB3 0FD +<br/>United Kingdom +<br/>phone +44 1223 763500 +<br/>http://www.cl.cam.ac.uk/ +</td><td></td><td></td></tr><tr><td>e0ed0e2d189ff73701ec72e167d44df4eb6e864d</td><td>Recognition of static and dynamic facial expressions: a study review <br/>Estudos de Psicologia, 18(1), janeiro-março/2013, 125-130 -<br/><b>Federal University of Para ba</b></td><td>('39169435', 'Nelson Torro Alves', 'nelson torro alves')</td><td></td></tr><tr><td>e0765de5cabe7e287582532456d7f4815acd74c1</td><td></td><td></td><td></td></tr><tr><td>e013c650c7c6b480a1b692bedb663947cd9d260f</td><td>860 +<br/><b>Federal University of Para ba</b></td><td>('39169435', 'Nelson Torro Alves', 'nelson torro alves')</td><td></td></tr><tr><td>e00d391d7943561f5c7b772ab68e2bb6a85e64c4</td><td>Robust continuous clustering +<br/><b>University of Maryland, College Park, MD 20740; and bIntel Labs, Santa Clara, CA</b><br/><b>Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 7, 2017 (received for review January</b><br/>Clustering is a fundamental procedure in the analysis of scientific +<br/>data. It is used ubiquitously across the sciences. Despite decades +<br/>of research, existing clustering algorithms have limited effective- +<br/>ness in high dimensions and often require tuning parameters for +<br/>different domains and datasets. We present a clustering algo- +<br/>rithm that achieves high accuracy across multiple domains and +<br/>scales efficiently to high dimensions and large datasets. The pre- +<br/>sented algorithm optimizes a smooth continuous objective, which +<br/>is based on robust statistics and allows heavily mixed clusters to +<br/>be untangled. The continuous nature of the objective also allows +<br/>clustering to be integrated as a module in end-to-end feature +<br/>learning pipelines. We demonstrate this by extending the algo- +<br/>rithm to perform joint clustering and dimensionality reduction +<br/>by efficiently optimizing a continuous global objective. The pre- +<br/>sented approach is evaluated on large datasets of faces, hand- +<br/>written digits, objects, newswire articles, sensor readings from +<br/>the Space Shuttle, and protein expression levels. Our method +<br/>achieves high accuracy across all datasets, outperforming the best +<br/>prior algorithm by a factor of 3 in average rank. +<br/>clustering | data analysis | unsupervised learning +<br/>Clustering is one of the fundamental experimental procedures +<br/>in data analysis. It is used in virtually all natural and social +<br/>sciences and has played a central role in biology, astronomy, +<br/>psychology, medicine, and chemistry. Data-clustering algorithms +<br/>have been developed for more than half a century (1). Significant +<br/>advances in the last two decades include spectral clustering (2–4), +<br/>generalizations of classic center-based methods (5, 6), mixture +<br/>models (7, 8), mean shift (9), affinity propagation (10), subspace +<br/>clustering (11–13), nonparametric methods (14, 15), and feature +<br/>selection (16–20). +<br/>Despite these developments, no single algorithm has emerged +<br/>to displace the k-means scheme and its variants (21). This +<br/>is despite the known drawbacks of such center-based meth- +<br/><b>ods, including sensitivity to initialization, limited effectiveness in</b><br/>high-dimensional spaces, and the requirement that the number +<br/>of clusters be set in advance. The endurance of these methods +<br/>is in part due to their simplicity and in part due to difficulties +<br/>associated with some of the new techniques, such as additional +<br/>hyperparameters that need to be tuned, high computational cost, +<br/>and varying effectiveness across domains. Consequently, scien- +<br/>tists who analyze large high-dimensional datasets with unknown +<br/>distribution must maintain and apply multiple different cluster- +<br/>ing algorithms in the hope that one will succeed. Books have +<br/>been written to guide practitioners through the landscape of +<br/>data-clustering techniques (22). +<br/>We present a clustering algorithm that is fast, easy to use, and +<br/>effective in high dimensions. The algorithm optimizes a clear +<br/>continuous objective, using standard numerical methods that +<br/>scale to massive datasets. The number of clusters need not be +<br/>known in advance. +<br/>The operation of the algorithm can be understood by contrast- +<br/>ing it with other popular clustering techniques. In center-based +<br/>algorithms such as k-means (1, 24), a small set of putative cluster +<br/>centers is initialized from the data and then iteratively refined. In +<br/>affinity propagation (10), data points communicate over a graph +<br/>structure to elect a subset of the points as representatives. In the +<br/>presented algorithm, each data point has a dedicated representa- +<br/>tive, initially located at the data point. Over the course of the algo- +<br/>rithm, the representatives move and coalesce into easily separable +<br/>clusters. The progress of the algorithm is visualized in Fig. 1. +<br/>Our formulation is based on recent convex relaxations for clus- +<br/>tering (25, 26). However, our objective is deliberately not convex. +<br/>We use redescending robust estimators that allow even heavily +<br/>mixed clusters to be untangled by optimizing a single contin- +<br/>uous objective. Despite the nonconvexity of the objective, the +<br/>optimization can still be performed using standard linear least- +<br/>squares solvers, which are highly efficient and scalable. Since the +<br/>algorithm expresses clustering as optimization of a continuous +<br/>objective based on robust estimation, we call it robust continu- +<br/>ous clustering (RCC). +<br/>One of the characteristics of the presented formulation is that +<br/>clustering is reduced to optimization of a continuous objective. +<br/>This enables the integration of clustering in end-to-end fea- +<br/>ture learning pipelines. We demonstrate this by extending RCC +<br/>to perform joint clustering and dimensionality reduction. The +<br/>extended algorithm, called RCC-DR, learns an embedding of +<br/>the data into a low-dimensional space in which it is clustered. +<br/>Embedding and clustering are performed jointly, by an algorithm +<br/>that optimizes a clear global objective. +<br/>We evaluate RCC and RCC-DR on a large number of datasets +<br/>from a variety of domains. These include image datasets, docu- +<br/>ment datasets, a dataset of sensor readings from the Space Shut- +<br/>tle, and a dataset of protein expression levels in mice. Exper- +<br/>iments demonstrate that our method significantly outperforms +<br/>prior state-of-the-art techniques. RCC-DR is particularly robust +<br/>across datasets from different domains, outperforming the best +<br/>prior algorithm by a factor of 3 in average rank. +<br/>Formulation +<br/>We consider the problem of clustering a set of n data points. +<br/>The input is denoted by X = [x1, x2, . . . , xn ], where xi ∈ RD. +<br/>Our approach operates on a set of representatives U = +<br/>[u1, u2, . . . , un ], where ui ∈ RD. The representatives U are ini- +<br/>tialized at the corresponding data points X. The optimization +<br/>operates on the representation U, which coalesces to reveal the +<br/>cluster structure latent in the data. Thus, the number of clusters +<br/>Significance +<br/>Clustering is a fundamental experimental procedure in data +<br/>analysis. It is used in virtually all natural and social sciences +<br/>and has played a central role in biology, astronomy, psychol- +<br/>ogy, medicine, and chemistry. Despite the importance and +<br/>ubiquity of clustering, existing algorithms suffer from a vari- +<br/>ety of drawbacks and no universal solution has emerged. We +<br/>present a clustering algorithm that reliably achieves high accu- +<br/>racy across domains, handles high data dimensionality, and +<br/>scales to large datasets. The algorithm optimizes a smooth +<br/>global objective, using efficient numerical methods. Experi- +<br/>ments demonstrate that our method outperforms state-of- +<br/>the-art clustering algorithms by significant factors in multiple +<br/>domains. +<br/>Author contributions: S.A.S. and V.K. designed research, performed research, analyzed +<br/>data, and wrote the paper. +<br/>The authors declare no conflict of interest. +<br/>This article is a PNAS Direct Submission. +<br/>Freely available online through the PNAS open access option. +<br/>This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. +<br/>1073/pnas.1700770114/-/DCSupplemental. +<br/>9814–9819 | PNAS | September 12, 2017 | vol. 114 | no. 37 +<br/>www.pnas.org/cgi/doi/10.1073/pnas.1700770114 +</td><td>('49485254', 'Sohil Atul Shah', 'sohil atul shah')<br/>('1770944', 'Vladlen Koltun', 'vladlen koltun')</td><td>1To whom correspondence should be addressed. Email: sohilas@umd.edu. +</td></tr><tr><td>e0765de5cabe7e287582532456d7f4815acd74c1</td><td></td><td></td><td></td></tr><tr><td>e065a2cb4534492ccf46d0afc81b9ad8b420c5ec</td><td>SFace: An Efficient Network for Face Detection +<br/>in Large Scale Variations +<br/><b>College of Software, Beihang University</b><br/>Megvii Inc. (Face++)† +</td><td>('38504661', 'Jianfeng Wang', 'jianfeng wang')<br/>('48009795', 'Ye Yuan', 'ye yuan')<br/>('2789329', 'Boxun Li', 'boxun li')<br/>('2352391', 'Gang Yu', 'gang yu')<br/>('2017810', 'Sun Jian', 'sun jian')</td><td>{wjfwzzc}@buaa.edu.cn, {yuanye,liboxun,yugang,sunjian}@megvii.com +</td></tr><tr><td>e00241f00fb31c660df6c6f129ca38370e6eadb3</td><td>What have we learned from deep representations for action recognition? +<br/>TU Graz +<br/>TU Graz +<br/><b>York University, Toronto</b><br/><b>University of Oxford</b></td><td>('2322150', 'Christoph Feichtenhofer', 'christoph feichtenhofer')<br/>('1718587', 'Axel Pinz', 'axel pinz')<br/>('1709096', 'Richard P. Wildes', 'richard p. wildes')<br/>('1688869', 'Andrew Zisserman', 'andrew zisserman')</td><td>feichtenhofer@tugraz.at +<br/>axel.pinz@tugraz.at +<br/>wildes@cse.yorku.ca +<br/>az@robots.ox.ac.uk +</td></tr><tr><td>e013c650c7c6b480a1b692bedb663947cd9d260f</td><td>860 <br/>Robust Image Analysis With Sparse Representation <br/>on Quantized Visual Features -</td><td>('8180253', 'Bing-Kun Bao', 'bing-kun bao')<br/>('36601906', 'Guangyu Zhu', 'guangyu zhu')<br/>('38203359', 'Jialie Shen', 'jialie shen')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>e0dc6f1b740479098c1d397a7bc0962991b5e294</td><td>快速人脸检测技术综述 +</td><td>('8180253', 'Bing-Kun Bao', 'bing-kun bao')<br/>('36601906', 'Guangyu Zhu', 'guangyu zhu')<br/>('38203359', 'Jialie Shen', 'jialie shen')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>e0244a8356b57a5721c101ead351924bcfb2eef4</td><td>Journal of Experimental Psychology: General +<br/>2017, Vol. 146, No. 10, 1379 –1401 +<br/>0096-3445/17/$12.00 +<br/>© 2017 American Psychological Association +<br/>http://dx.doi.org/10.1037/xge0000292 +<br/>Power as an Emotional Liability: Implications for Perceived Authenticity +<br/>and Trust After a Transgression +<br/><b>University of Southern California</b><br/><b>Webster University</b><br/><b>University of Haifa</b><br/>Alexandra Mislin +<br/><b>American University</b><br/><b>University of Washington, Seattle</b><br/>Gerben A. van Kleef +<br/><b>University of Amsterdam</b><br/>People may express a variety of emotions after committing a transgression. Through 6 empirical studies and +<br/>a meta-analysis, we investigate how the perceived authenticity of such emotional displays and resulting levels +<br/>of trust are shaped by the transgressor’s power. Past findings suggest that individuals with power tend to be +<br/>more authentic because they have more freedom to act on the basis of their own personal inclinations. Yet, +<br/>our findings reveal that (a) a transgressor’s display of emotion is perceived to be less authentic when that +<br/>party’s power is high rather than low; (b) this perception of emotional authenticity, in turn, directly influences +<br/>(and mediates) the level of trust in that party; and (c) perceivers ultimately exert less effort when asked to make +<br/>a case for leniency toward high rather than low-power transgressors. This tendency to discount the emotional +<br/>authenticity of the powerful was found to arise from power increasing the transgressor’s perceived level of +<br/>emotional control and strategic motivation, rather than a host of alternative mechanisms. These results were +<br/>also found across different types of emotions (sadness, anger, fear, happiness, and neutral), expressive +<br/>modalities, operationalizations of the transgression, and participant populations. Altogether, our findings +<br/>demonstrate that besides the wealth of benefits power can afford, it also comes with a notable downside. The +<br/>findings, furthermore, extend past research on perceived emotional authenticity, which has focused on how +<br/>and when specific emotions are expressed, by revealing how this perception can depend on considerations that +<br/>have nothing to do with the expression itself. +<br/>Keywords: trust, emotion, power, authenticity, perception +<br/>Supplemental materials: http://dx.doi.org/10.1037/xge0000292.supp +<br/>Research suggests that those who attain positions of power tend +<br/>to be more emotionally skilled (Côté, Lopes, Salovey, & Miners, +<br/>2010; George, 2000). Indeed, it is the very possession of such +<br/>skills that has been suggested to help these parties attain and +<br/>succeed in leadership positions (e.g., Lewis, 2000; Rubin, Munz, +<br/><b>School of Business, University of Southern California; Alexandra Mislin</b><br/>Department of Management, Kogod School of Business, American Uni- +<br/><b>chael G. Foster School of Business, University of Washington, Seattle</b><br/><b>A. van Kleef, University of Amsterdam</b><br/>This research was supported in part by a faculty research grant from +<br/><b>Webster University</b><br/>Correspondence concerning this article should be addressed to Peter H. +<br/>Kim, Marshall School of Business, Department of Management and Or- +<br/><b>ganization, University of Southern California, Hoffman Hall 515, Los</b><br/>1379 +<br/>& Bommer, 2005). Yet, this tendency for the powerful to be +<br/>emotionally skilled may not necessarily prove beneficial, to the +<br/>extent that those evaluating such powerful individuals subscribe to +<br/>this notion as well, and may even undermine the effectiveness of +<br/>high-power parties’ emotional expressions when they might need +<br/>them most. In particular, through six empirical studies and a +<br/>meta-analysis, we investigate the possibility that perceivers’ gen- +<br/>eral beliefs about the powerful as emotionally skilled would lead +<br/>perceivers to discount the authenticity of the emotions the power- +<br/>ful express, and that this would ultimately impair the effectiveness +<br/>of those emotional displays for addressing a transgression. +<br/>Theoretical Background +<br/>Power, which has been defined as an individual’s capacity to +<br/>modify others’ states by providing or withholding resources or +<br/>administering punishments (Keltner, Gruenfeld, & Anderson, +<br/>2003), has been widely recognized to offer numerous benefits to +<br/><b>those who possess it, including the ability to act based on one s</b><br/>own inclinations, perceive greater choice, and obtain greater ben- +<br/>efits from both work and nonwork interactions (e.g., Galinsky, +</td><td>('34770901', 'Peter H. Kim', 'peter h. kim')<br/>('47847686', 'Ece Tuncel', 'ece tuncel')<br/>('3198839', 'Arik Cheshin', 'arik cheshin')<br/>('50222018', 'Ryan Fehr', 'ryan fehr')<br/>('34770901', 'Peter H. Kim', 'peter h. kim')<br/>('47847686', 'Ece Tuncel', 'ece tuncel')<br/>('50222018', 'Ryan Fehr', 'ryan fehr')<br/>('3198839', 'Arik Cheshin', 'arik cheshin')</td><td>Angeles, CA 90089-1421. E-mail: kimpeter@usc.edu +</td></tr><tr><td>e0dc6f1b740479098c1d397a7bc0962991b5e294</td><td>快速人脸检测技术综述 <br/>李月敏 1 陈杰 2 高文 1,2,3 尹宝才 1 <br/>1(北京工业大学计算机学院多媒体与智能软件技术实验室 北京 100022) <br/>2(哈尔滨工业大学计算机科学与技术学院 哈尔滨 150001) @@ -30344,7 +39168,10 @@ <br/><b>University of Pennsylvania</b><br/>Philadelphia, PA 19104 </td><td>('2720935', 'Jihun Ham', 'jihun ham')<br/>('1732066', 'Daniel D. Lee', 'daniel d. lee')</td><td>jhham@seas.upenn.edu <br/>ddlee@seas.upenn.edu -</td></tr><tr><td>46e86cdb674440f61b6658ef3e84fea95ea51fb4</td><td></td><td></td><td></td></tr><tr><td>46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4</td><td>3D FACIAL GEOMETRIC FEATURES FOR CONSTRAINED LOCAL MODEL +</td></tr><tr><td>46e86cdb674440f61b6658ef3e84fea95ea51fb4</td><td></td><td></td><td></td></tr><tr><td>46f2611dc4a9302e0ac00a79456fa162461a8c80</td><td>for Action Classification +<br/><b>ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai</b></td><td>('3310120', 'Ali Diba', 'ali diba')<br/>('3169187', 'Mohsen Fayyaz', 'mohsen fayyaz')<br/>('50633941', 'Vivek Sharma', 'vivek sharma')<br/>('2946643', 'Juergen Gall', 'juergen gall')<br/>('1681236', 'Luc Van Gool', 'luc van gool')</td><td>1{firstname.lastname}@kuleuven.be, 2{firstname.lastname}@kit.edu, +<br/>3{lastname}@iai.uni-bonn.de, 4{firstname.lastname}@sensifai.com +</td></tr><tr><td>46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4</td><td>3D FACIAL GEOMETRIC FEATURES FOR CONSTRAINED LOCAL MODEL <br/><b>cid:2) Imperial College London, United Kingdom</b><br/><b>University of Twente, EEMCS, Netherlands</b></td><td>('1694605', 'Maja Pantic', 'maja pantic')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('3183108', 'Akshay Asthana', 'akshay asthana')<br/>('1902288', 'Shiyang Cheng', 'shiyang cheng')</td><td>{shiyang.cheng11, s.zafeiriou, a.asthana, m.pantic}@imperial.ac.uk </td></tr><tr><td>46ae4d593d89b72e1a479a91806c39095cd96615</td><td>A CONDITIONAL RANDOM FIELD APPROACH FOR FACE IDENTIFICATION IN <br/>BROADCAST NEWS USING OVERLAID TEXT @@ -30389,7 +39216,10 @@ <br/>{mtsezgin|oaltiok15|ysahillioglu}@ku.edu.tr </td></tr><tr><td>46c87fded035c97f35bb991fdec45634d15f9df2</td><td>Spatial-Aware Object Embeddings for Zero-Shot Localization <br/>and Classification of Actions -<br/><b>University of Amsterdam</b></td><td>('2606260', 'Pascal Mettes', 'pascal mettes')</td><td></td></tr><tr><td>46f32991ebb6235509a6d297928947a8c483f29e</td><td>In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Madison (WI), June 2003 +<br/><b>University of Amsterdam</b></td><td>('2606260', 'Pascal Mettes', 'pascal mettes')</td><td></td></tr><tr><td>46e72046a9bb2d4982d60bcf5c63dbc622717f0f</td><td>Learning Discriminative Features with Class Encoder +<br/>Center for Biometrics and Security Research & National Laboratory of Pattern Recognition +<br/><b>Institute of Automation, Chinese Academy of Sciences</b><br/><b>University of Chinese Academy of Science</b></td><td>('1704812', 'Hailin Shi', 'hailin shi')<br/>('8362374', 'Xiangyu Zhu', 'xiangyu zhu')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('40397682', 'Shengcai Liao', 'shengcai liao')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td>{hailin.shi, xiangyu.zhu, zlei, scliao, szli}@nlpr.ia.ac.cn +</td></tr><tr><td>46f32991ebb6235509a6d297928947a8c483f29e</td><td>In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Madison (WI), June 2003 <br/>Recognizing Expression Variant Faces <br/>from a Single Sample Image per Class <br/>Aleix M. Mart(cid:19)(cid:16)nez @@ -30402,7 +39232,18 @@ <br/>1P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. <br/>2Associate Professor, Department of Computer Engineering, <br/>MCERC, Nashik (M.S.), India -</td><td>('40075681', 'Shraddha S. Shinde', 'shraddha s. shinde')<br/>('2590072', 'Anagha P. Khedkar', 'anagha p. khedkar')</td><td></td></tr><tr><td>469ee1b00f7bbfe17c698ccded6f48be398f2a44</td><td>MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88 +</td><td>('40075681', 'Shraddha S. Shinde', 'shraddha s. shinde')<br/>('2590072', 'Anagha P. Khedkar', 'anagha p. khedkar')</td><td></td></tr><tr><td>4641986af5fc8836b2c883ea1a65278d58fe4577</td><td>Scene Graph Generation by Iterative Message Passing +<br/><b>Stanford University</b><br/><b>Stanford University</b></td><td>('2068265', 'Danfei Xu', 'danfei xu')</td><td>{danfei, yukez, chrischoy, feifeili}@cs.stanford.edu +</td></tr><tr><td>464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a</td><td>Deep Adaptive Temporal Pooling for Activity Recognition +<br/><b>Singapore University of Technology and Design</b><br/><b>Singapore University of Technology and Design</b><br/>Singapore, Singapore +<br/>Singapore, Singapore +<br/><b>Institute for Infocomm Research</b><br/>Singapore, Singapore +<br/><b>Keele University</b><br/>Keele, Staffordshire, United Kingdom +</td><td>('1729827', 'Ngai-Man Cheung', 'ngai-man cheung')<br/>('2527741', 'Sibo Song', 'sibo song')<br/>('1802086', 'Vijay Chandrasekhar', 'vijay chandrasekhar')<br/>('1709001', 'Bappaditya Mandal', 'bappaditya mandal')</td><td>ngaiman_cheung@sutd.edu.sg +<br/>sibo_song@mymail.sutd.edu.sg +<br/>vijay@i2r.a-star.edu.sg +<br/>b.mandal@keele.ac.uk +</td></tr><tr><td>469ee1b00f7bbfe17c698ccded6f48be398f2a44</td><td>MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88 <br/>ISSN 2230-7621©MIT Publications <br/>82 <br/>SURVEy: Techniques for @@ -30448,6 +39289,9 @@ </td><td>('40557104', 'Lu Xu', 'lu xu')<br/>('2697879', 'Jinhai Xiang', 'jinhai xiang')<br/>('1982703', 'Xiaohui Yuan', 'xiaohui yuan')</td><td>Email: xulu coi@webmail.hzau.edu.cn <br/>Email: jimmy xiang@mail.hzau.edu.cn <br/>Email: Xiaohui.Yuan@unt.edu +</td></tr><tr><td>2c424f21607ff6c92e640bfe3da9ff105c08fac4</td><td>Learning Structured Output Representation +<br/>using Deep Conditional Generative Models +<br/><b>NEC Laboratories America, Inc</b><br/><b>University of Michigan, Ann Arbor</b></td><td>('1729571', 'Kihyuk Sohn', 'kihyuk sohn')<br/>('3084614', 'Xinchen Yan', 'xinchen yan')<br/>('1697141', 'Honglak Lee', 'honglak lee')</td><td>ksohn@nec-labs.com, {xcyan,honglak}@umich.edu </td></tr><tr><td>2c258eec8e4da9e65018f116b237f7e2e0b2ad17</td><td>Deep Quantization: Encoding Convolutional Activations <br/>with Deep Generative Model ∗ <br/><b>University of Science and Technology of China, Hefei, China</b><br/>Microsoft Research, Beijing, China @@ -30456,7 +39300,12 @@ <br/>Seattle, Washington, May 26-30, 2015 <br/>978-1-4799-6922-7/15/$31.00 ©2015 IEEE <br/>3039 -</td><td></td><td></td></tr><tr><td>2c61a9e26557dd0fe824909adeadf22a6a0d86b0</td><td></td><td></td><td></td></tr><tr><td>2c34bf897bad780e124d5539099405c28f3279ac</td><td>Robust Face Recognition via Block Sparse Bayesian Learning +</td><td></td><td></td></tr><tr><td>2c61a9e26557dd0fe824909adeadf22a6a0d86b0</td><td></td><td></td><td></td></tr><tr><td>2c93c8da5dfe5c50119949881f90ac5a0a4f39fe</td><td>Advanced local motion patterns for macro and micro facial +<br/>expression recognition +<br/>B. Allaerta,∗, IM. Bilascoa, C. Djerabaa +<br/>aUniv. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - +<br/>Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +</td><td></td><td></td></tr><tr><td>2c34bf897bad780e124d5539099405c28f3279ac</td><td>Robust Face Recognition via Block Sparse Bayesian Learning <br/><b>School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu</b><br/>China <br/><b>Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China</b><br/><b>University of California at San Diego, La Jolla, CA</b><br/>USA <br/><b>Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA</b></td><td>('2775350', 'Taiyong Li', 'taiyong li')<br/>('1791667', 'Zhilin Zhang', 'zhilin zhang')</td><td></td></tr><tr><td>2c203050a6cca0a0bff80e574bda16a8c46fe9c2</td><td>Discriminative Deep Hashing for Scalable Face Image Retrieval @@ -30502,6 +39351,12 @@ </td><td>('1727735', 'Changhan Park', 'changhan park')<br/>('1684329', 'Joonki Paik', 'joonki paik')</td><td></td></tr><tr><td>2c3430e0cbe6c8d7be3316a88a5c13a50e90021d</td><td>Multi-feature Spectral Clustering with Minimax Optimization <br/>School of Electrical and Electronic Engineering <br/><b>Nanyang Technological University, Singapore</b></td><td>('19172541', 'Hongxing Wang', 'hongxing wang')<br/>('1764228', 'Chaoqun Weng', 'chaoqun weng')<br/>('34316743', 'Junsong Yuan', 'junsong yuan')</td><td>{hwang8, weng0018}@e.ntu.edu.sg, jsyuan@ntu.edu.sg +</td></tr><tr><td>2cac8ab4088e2bdd32dcb276b86459427355085c</td><td>A Face-to-Face Neural Conversation Model +<br/>Hang Chu1 +<br/><b>University of Toronto 2Vector Institute</b></td><td>('46598920', 'Daiqing Li', 'daiqing li')</td><td>{chuhang1122, daiqing, fidler}@cs.toronto.edu +</td></tr><tr><td>2cde051e04569496fb525d7f1b1e5ce6364c8b21</td><td>Sparse 3D convolutional neural networks +<br/><b>University of Warwick</b><br/>August 26, 2015 +</td><td>('39294240', 'Ben Graham', 'ben graham')</td><td>b.graham@warwick.ac.uk </td></tr><tr><td>2c2786ea6386f2d611fc9dbf209362699b104f83</td><td></td><td>('31914125', 'Mohammad Shahidul Islam', 'mohammad shahidul islam')</td><td></td></tr><tr><td>2c92839418a64728438c351a42f6dc5ad0c6e686</td><td>Pose-Aware Face Recognition in the Wild <br/>Prem Natarajan2 <br/><b>USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA</b><br/>G´erard Medioni1 @@ -30564,7 +39419,11 @@ <br/>redistribution to servers or lists, or to reuse any copyrighted <br/>component of this work in other works must be obtained from <br/>the IEEE. -</td><td></td><td></td></tr><tr><td>2cdc40f20b70ca44d9fd8e7716080ee05ca7924a</td><td>Real-time Convolutional Neural Networks for +</td><td></td><td></td></tr><tr><td>2c1ffb0feea5f707c890347d2c2882be0494a67a</td><td>Learning to learn high capacity generative models from few examples +<br/>The Variational Homoencoder: +<br/>Tommi Jaakkola1 +<br/><b>Massachusetts Institute of Technology</b><br/>2MIT-IBM Watson AI Lab +</td><td>('51152627', 'Luke B. Hewitt', 'luke b. hewitt')<br/>('51150953', 'Maxwell I. Nye', 'maxwell i. nye')<br/>('3071104', 'Andreea Gane', 'andreea gane')<br/>('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')</td><td></td></tr><tr><td>2cdc40f20b70ca44d9fd8e7716080ee05ca7924a</td><td>Real-time Convolutional Neural Networks for <br/>Emotion and Gender Classification <br/>Hochschule Bonn-Rhein-Sieg <br/>Sankt Augustin Germany @@ -30710,10 +39569,23 @@ <br/>was used as the distance measure. <br/>Texture information should be used to achieve state <br/>of the art recognition results. -<br/>FaceCamera1Camera2SamplePoint</td><td>('1994157', 'Brian Amberg', 'brian amberg')<br/>('1745076', 'Andrew Blake', 'andrew blake')<br/>('3293655', 'Sami Romdhani', 'sami romdhani')<br/>('1687079', 'Thomas Vetter', 'thomas vetter')</td><td></td></tr><tr><td>2c8f24f859bbbc4193d4d83645ef467bcf25adc2</td><td>845 +<br/>FaceCamera1Camera2SamplePoint</td><td>('1994157', 'Brian Amberg', 'brian amberg')<br/>('1745076', 'Andrew Blake', 'andrew blake')<br/>('3293655', 'Sami Romdhani', 'sami romdhani')<br/>('1687079', 'Thomas Vetter', 'thomas vetter')</td><td></td></tr><tr><td>2c5d1e0719f3ad7f66e1763685ae536806f0c23b</td><td>AENet: Learning Deep Audio Features for Video +<br/>Analysis +</td><td>('47893464', 'Naoya Takahashi', 'naoya takahashi')<br/>('3037160', 'Michael Gygli', 'michael gygli')<br/>('7329802', 'Luc van Gool', 'luc van gool')</td><td></td></tr><tr><td>2c8f24f859bbbc4193d4d83645ef467bcf25adc2</td><td>845 <br/>Classification in the Presence of <br/>Label Noise: a Survey -</td><td>('1786603', 'Benoît Frénay', 'benoît frénay')<br/>('1782629', 'Michel Verleysen', 'michel verleysen')</td><td></td></tr><tr><td>2ca43325a5dbde91af90bf850b83b0984587b3cc</td><td>For Your Eyes Only – Biometric Protection of PDF Documents +</td><td>('1786603', 'Benoît Frénay', 'benoît frénay')<br/>('1782629', 'Michel Verleysen', 'michel verleysen')</td><td></td></tr><tr><td>2c1f8ddbfbb224271253a27fed0c2425599dfe47</td><td>Understanding and Comparing Deep Neural Networks +<br/>for Age and Gender Classification +<br/><b>Fraunhofer Heinrich Hertz Institute</b><br/><b>Singapore University of Technology and Design</b><br/>10587 Berlin, Germany +<br/>Klaus-Robert M¨uller +<br/><b>Berlin Institute of Technology</b><br/>10623 Berlin, Germany +<br/>Singapore 487372, Singapore +<br/><b>Fraunhofer Heinrich Hertz Institute</b><br/>10587 Berlin, Germany +</td><td>('3633358', 'Sebastian Lapuschkin', 'sebastian lapuschkin')<br/>('40344011', 'Alexander Binder', 'alexander binder')<br/>('1699054', 'Wojciech Samek', 'wojciech samek')</td><td>sebastian.lapuschkin@hhi.fraunhofer.de +<br/>alexander binder@sutd.edu.sg +<br/>klaus-robert.mueller@tu-berlin.de +<br/>wojciech.samek@hhi.fraunhofer.de +</td></tr><tr><td>2ca43325a5dbde91af90bf850b83b0984587b3cc</td><td>For Your Eyes Only – Biometric Protection of PDF Documents <br/><b>Faculty of ETI, Gdansk University of Technology, Gdansk, Poland</b></td><td>('2026734', 'J. Siciarek', 'j. siciarek')</td><td></td></tr><tr><td>2cfc28a96b57e0817cc9624a5d553b3aafba56f3</td><td>P2F2: Privacy-Preserving Face Finder <br/><b>New Jersey Institute of Technology</b></td><td>('9037517', 'Nora Almalki', 'nora almalki')<br/>('1692516', 'Reza Curtmola', 'reza curtmola')<br/>('34645435', 'Xiaoning Ding', 'xiaoning ding')<br/>('1690806', 'Cristian Borcea', 'cristian borcea')</td><td>Email: {naa34, crix, xiaoning.ding, narain.gehani, borcea}@njit.edu </td></tr><tr><td>2cdd5b50a67e4615cb0892beaac12664ec53b81f</td><td>To appear in ACM TOG 33(6). @@ -30735,9 +39607,14 @@ </td></tr><tr><td>2cdde47c27a8ecd391cbb6b2dea64b73282c7491</td><td>ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION <br/>Order-aware Convolutional Pooling for Video Based <br/>Action Recognition -</td><td>('1722767', 'Peng Wang', 'peng wang')<br/>('2161037', 'Lingqiao Liu', 'lingqiao liu')<br/>('1780381', 'Chunhua Shen', 'chunhua shen')<br/>('1724393', 'Heng Tao Shen', 'heng tao shen')</td><td></td></tr><tr><td>2c7c3a74da960cc76c00965bd3e343958464da45</td><td></td><td></td><td></td></tr><tr><td>2cf5f2091f9c2d9ab97086756c47cd11522a6ef3</td><td>MPIIGaze: Real-World Dataset and Deep +</td><td>('1722767', 'Peng Wang', 'peng wang')<br/>('2161037', 'Lingqiao Liu', 'lingqiao liu')<br/>('1780381', 'Chunhua Shen', 'chunhua shen')<br/>('1724393', 'Heng Tao Shen', 'heng tao shen')</td><td></td></tr><tr><td>2c62b9e64aeddf12f9d399b43baaefbca8e11148</td><td>Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild +<br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</b><br/><b>Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK</b><br/><b>School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China</b><br/><b>Biometrics Research Lab, College of Computer Science, Sichuan University, Chengdu 610065, China</b><br/><b>Image Understanding and Interactive Robotics, Reutlingen University, 72762 Reutlingen, Germany</b></td><td>('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')<br/>('1748684', 'Josef Kittler', 'josef kittler')<br/>('7345195', 'Qijun Zhao', 'qijun zhao')</td><td>{z.feng, j.kittler, p.koppen}@surrey.ac.uk, patrikhuber@gmail.com, +<br/>wu_xiaojun@jiangnan.edu.cn, p.j.b.hancock@stir.ac.uk, qjzhao@scu.edu.cn +</td></tr><tr><td>2c7c3a74da960cc76c00965bd3e343958464da45</td><td></td><td></td><td></td></tr><tr><td>2cf5f2091f9c2d9ab97086756c47cd11522a6ef3</td><td>MPIIGaze: Real-World Dataset and Deep <br/>Appearance-Based Gaze Estimation -</td><td>('2520795', 'Xucong Zhang', 'xucong zhang')<br/>('1751242', 'Yusuke Sugano', 'yusuke sugano')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')</td><td></td></tr><tr><td>2c17d36bab56083293456fe14ceff5497cc97d75</td><td>Unconstrained Face Alignment via Cascaded Compositional Learning +</td><td>('2520795', 'Xucong Zhang', 'xucong zhang')<br/>('1751242', 'Yusuke Sugano', 'yusuke sugano')<br/>('1739548', 'Mario Fritz', 'mario fritz')<br/>('3194727', 'Andreas Bulling', 'andreas bulling')</td><td></td></tr><tr><td>2c19d3d35ef7062061b9e16d040cebd7e45f281d</td><td>End-to-end Video-level Representation Learning for Action Recognition +<br/><b>Institute of Automation, Chinese Academy of Sciences (CASIA</b><br/><b>University of Chinese Academy of Sciences (UCAS</b></td><td>('1696573', 'Jiagang Zhu', 'jiagang zhu')<br/>('1726367', 'Wei Zou', 'wei zou')<br/>('48147901', 'Zheng Zhu', 'zheng zhu')</td><td>{zhujiagang2015, wei.zou}@ia.ac.cn, zhuzheng14@mails.ucas.ac.cn +</td></tr><tr><td>2c17d36bab56083293456fe14ceff5497cc97d75</td><td>Unconstrained Face Alignment via Cascaded Compositional Learning <br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b><br/>2SenseTime Group Limited </td><td>('2226254', 'Shizhan Zhu', 'shizhan zhu')<br/>('40475617', 'Cheng Li', 'cheng li')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>zs014@ie.cuhk.edu.hk, chengli@sensetime.com, ccloy@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk </td></tr><tr><td>2c4b96f6c1a520e75eb37c6ee8b844332bc0435c</td><td>Automatic Emotion Recognition in Robot-Children Interaction for ASD @@ -30769,7 +39646,14 @@ </td><td>('3190846', 'Arnaud Dapogny', 'arnaud dapogny')<br/>('2521061', 'Kevin Bailly', 'kevin bailly')<br/>('1701986', 'Séverine Dubuisson', 'séverine dubuisson')</td><td>arnaud.dapogny@isir.upmc.fr <br/>kevin.bailly@isir.upmc.fr <br/>severine.dubuisson@isir.upmc.fr -</td></tr><tr><td>795ea140df2c3d29753f40ccc4952ef24f46576c</td><td></td><td></td><td></td></tr><tr><td>79b669abf65c2ca323098cf3f19fa7bdd837ff31</td><td> Deakin Research Online +</td></tr><tr><td>79f6a8f777a11fd626185ab549079236629431ac</td><td>Copyright +<br/>by +<br/>2013 +</td><td>('35788904', 'Sung Ju Hwang', 'sung ju hwang')</td><td></td></tr><tr><td>795ea140df2c3d29753f40ccc4952ef24f46576c</td><td></td><td></td><td></td></tr><tr><td>79dc84a3bf76f1cb983902e2591d913cee5bdb0e</td><td></td><td></td><td></td></tr><tr><td>79744fc71bea58d2e1918c9e254b10047472bd76</td><td>Disentangling 3D Pose in A Dendritic CNN +<br/>for Unconstrained 2D Face Alignment +<br/>Department of Electrical and Computer Engineering, CFAR and UMIACS +<br/><b>University of Maryland-College Park, USA</b></td><td>('50333013', 'Amit Kumar', 'amit kumar')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>akumar14@umiacs.umd.edu, rama@umiacs.umd.edu +</td></tr><tr><td>79b669abf65c2ca323098cf3f19fa7bdd837ff31</td><td> Deakin Research Online <br/>This is the published version: <br/>Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor <br/>based face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on @@ -30787,9 +39671,10 @@ <br/>Improving visual recognition with games <br/>Preece <br/>School of Information -<br/><b>University of Maryland</b><br/><b>College Park, United States</b></td><td>('6519022', 'Darcy Lewis', 'darcy lewis')<br/>('2662457', 'Dana Rotman', 'dana rotman')</td><td></td></tr><tr><td>79dd787b2877cf9ce08762d702589543bda373be</td><td>Face Detection Using SURF Cascade +<br/><b>University of Maryland</b><br/><b>College Park, United States</b></td><td>('6519022', 'Darcy Lewis', 'darcy lewis')<br/>('2662457', 'Dana Rotman', 'dana rotman')</td><td></td></tr><tr><td>79c3a7131c6c176b02b97d368cd0cd0bc713ff7e</td><td></td><td></td><td></td></tr><tr><td>79dd787b2877cf9ce08762d702589543bda373be</td><td>Face Detection Using SURF Cascade <br/>Intel Labs China -</td><td>('35423937', 'Jianguo Li', 'jianguo li')<br/>('40279370', 'Tao Wang', 'tao wang')<br/>('2470865', 'Yimin Zhang', 'yimin zhang')</td><td></td></tr><tr><td>7966146d72f9953330556baa04be746d18702047</td><td>Harnessing Human Manipulation +</td><td>('35423937', 'Jianguo Li', 'jianguo li')<br/>('40279370', 'Tao Wang', 'tao wang')<br/>('2470865', 'Yimin Zhang', 'yimin zhang')</td><td></td></tr><tr><td>799c02a3cde2c0805ea728eb778161499017396b</td><td>PersonRank: Detecting Important People in Images +<br/><b>School of Electronics and Information Technology, Sun Yat-Sen University, GuangZhou, China</b><br/><b>School of Data and Computer Science, Sun Yat-Sen University, GuangZhou, China</b></td><td>('9186191', 'Benchao Li', 'benchao li')<br/>('3333315', 'Wei-Shi Zheng', 'wei-shi zheng')</td><td></td></tr><tr><td>7966146d72f9953330556baa04be746d18702047</td><td>Harnessing Human Manipulation <br/>NSF/ARL Workshop on Cloud Robotics: Challenges and Opportunities <br/>February 27-28, 2013 <br/><b>The Robotics Institute Carnegie Mellon University</b><br/><b>Georgia Institute of Technology</b></td><td>('1781040', 'Matthew T. Mason', 'matthew t. mason')<br/>('1735665', 'Nancy Pollard', 'nancy pollard')<br/>('1760708', 'Alberto Rodriguez', 'alberto rodriguez')<br/>('38637733', 'Ryan Kerwin', 'ryan kerwin')</td><td><matt.mason, nsp, albertor>@cs.cmu.edu @@ -30804,7 +39689,13 @@ </td><td>('2086289', 'Hong Liu', 'hong liu')<br/>('1687248', 'Hongbin Zha', 'hongbin zha')<br/>('2976781', 'Yuwen Wu', 'yuwen wu')</td><td>wuyw@cis.pku.edu.cn <br/>liuhong@cis.pku.edu.cn <br/>zha@cis.pku.edu.cn -</td></tr><tr><td>793e7f1ba18848908da30cbad14323b0389fd2a8</td><td></td><td></td><td></td></tr><tr><td>2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359</td><td>Discriminative Dictionary Learning with +</td></tr><tr><td>793e7f1ba18848908da30cbad14323b0389fd2a8</td><td></td><td></td><td></td></tr><tr><td>79db191ca1268dc88271abef3179c4fe4ee92aed</td><td>Facial Expression Based Automatic Album +<br/>Creation +<br/><b>School of Computer Science, CECS, Australian National University, Canberra</b><br/><b>School of Engineering, CECS, Australian National University, Canberra, Australia</b><br/>3 Vision & Sensing, Faculty of Information Sciences and Engineering, +<br/>Australia +<br/><b>University of Canberra, Australia</b></td><td>('1735697', 'Abhinav Dhall', 'abhinav dhall')<br/>('3183108', 'Akshay Asthana', 'akshay asthana')<br/>('1717204', 'Roland Goecke', 'roland goecke')</td><td>abhinav.dhall@anu.edu.au, aasthana@rsise.anu.edu.au, +<br/>roland.goecke@ieee.org +</td></tr><tr><td>2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359</td><td>Discriminative Dictionary Learning with <br/>Pairwise Constraints <br/><b>University of Maryland, College Park, MD</b></td><td>('2723427', 'Huimin Guo', 'huimin guo')<br/>('34145947', 'Zhuolin Jiang', 'zhuolin jiang')<br/>('1693428', 'Larry S. Davis', 'larry s. davis')</td><td>{hmguo,zhuolin,lsd}@umiacs.umd.edu </td></tr><tr><td>2d25045ec63f9132371841c0beccd801d3733908</td><td>Sensors 2015, 15, 6719-6739; doi:10.3390/s150306719 @@ -30830,11 +39721,18 @@ <br/><b>State Key Laboratory for Novel Software Technology, Nanjing University, China</b><br/><b>University of Michigan, Ann Arbor</b></td><td>('40188401', 'Jonathan C. Stroud', 'jonathan c. stroud')<br/>('2285916', 'Tong Lu', 'tong lu')<br/>('8342699', 'Jia Deng', 'jia deng')</td><td></td></tr><tr><td>2d294c58b2afb529b26c49d3c92293431f5f98d0</td><td>4413 <br/>Maximum Margin Projection Subspace Learning <br/>for Visual Data Analysis -</td><td>('1793625', 'Symeon Nikitidis', 'symeon nikitidis')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td></td></tr><tr><td>2d1f86e2c7ba81392c8914edbc079ac64d29b666</td><td></td><td></td><td></td></tr><tr><td>2d164f88a579ba53e06b601d39959aaaae9016b7</td><td>Dynamic Facial Expression Recognition Using +</td><td>('1793625', 'Symeon Nikitidis', 'symeon nikitidis')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')<br/>('1698588', 'Ioannis Pitas', 'ioannis pitas')</td><td></td></tr><tr><td>2d1f86e2c7ba81392c8914edbc079ac64d29b666</td><td></td><td></td><td></td></tr><tr><td>2d9e58ea582e054e9d690afca8b6a554c3687ce6</td><td>Learning Local Feature Aggregation Functions +<br/>with Backpropagation +<br/>Multimedia Understanding Group +<br/><b>Aristotle University of Thessaloniki, Greece</b></td><td>('3493855', 'Angelos Katharopoulos', 'angelos katharopoulos')<br/>('3493472', 'Despoina Paschalidou', 'despoina paschalidou')<br/>('1789830', 'Christos Diou', 'christos diou')<br/>('1708199', 'Anastasios Delopoulos', 'anastasios delopoulos')</td><td>{katharas, pdespoin}@auth.gr; diou@mug.ee.auth.gr; adelo@eng.auth.gr +</td></tr><tr><td>2d164f88a579ba53e06b601d39959aaaae9016b7</td><td>Dynamic Facial Expression Recognition Using <br/>A Bayesian Temporal Manifold Model <br/>Department of Computer Science <br/><b>Queen Mary University of London</b><br/>Mile End Road, London E1 4NS, UK </td><td>('10795229', 'Caifeng Shan', 'caifeng shan')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('2803283', 'Peter W. McOwan', 'peter w. mcowan')</td><td>{cfshan, sgg, pmco}@dcs.qmul.ac.uk +</td></tr><tr><td>2d8001ffee6584b3f4d951d230dc00a06e8219f8</td><td>Feature Agglomeration Networks for Single Stage Face Detection +<br/><b>School of Information Systems, Singapore Management University, Singapore</b><br/><b>College of Computer Science and Technology, Zhejiang University, Hangzhou, China</b><br/>§DeepIR Inc., Beijing, China +</td><td>('1826176', 'Jialiang Zhang', 'jialiang zhang')<br/>('2791484', 'Xiongwei Wu', 'xiongwei wu')<br/>('1704030', 'Jianke Zhu', 'jianke zhu')</td><td>{chhoi,xwwu.2015@phdis}@smu.edu.sg;{zjialiang,jkzhu}@zju.edu.cn </td></tr><tr><td>2d23fa205acca9c21e3e1a04674f1e5a9528550e</td><td>The Fast and the Flexible: <br/>Extended Pseudo Two-Dimensional Warping for <br/>Face Recognition @@ -30980,6 +39878,72 @@ <br/>Machine Learning using C# </td><td></td><td>Author: Neda Firoz (nedafiroz1910@gmail.com) <br/>Advisor: Dr. Prashant Ankur Jain (prashant.jain@shiats.edu.in) +</td></tr><tr><td>2dfe0e7e81f65716b09c590652a4dd8452c10294</td><td>ORIGINAL RESEARCH +<br/>published: 06 June 2018 +<br/>doi: 10.3389/fpsyg.2018.00864 +<br/>Incongruence Between Observers’ +<br/>and Observed Facial Muscle +<br/>Activation Reduces Recognition of +<br/>Emotional Facial Expressions From +<br/>Video Stimuli +<br/><b>Centre for Applied Autism Research, University of Bath, Bath, United Kingdom, 2 Social and</b><br/><b>Cognitive Neuroscience Laboratory, Centre of Biology and Health Sciences, Mackenzie Presbyterian University, S o Paulo</b><br/><b>Brazil, University Hospital Zurich, Z rich</b><br/><b>Switzerland, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt</b><br/>Frankfurt, Germany +<br/>According to embodied cognition accounts, viewing others’ facial emotion can elicit +<br/>the respective emotion representation in observers which entails simulations of sensory, +<br/>motor, and contextual experiences. In line with that, published research found viewing +<br/>others’ +<br/>facial emotion to elicit automatic matched facial muscle activation, which +<br/>was further found to facilitate emotion recognition. Perhaps making congruent facial +<br/>muscle activity explicit produces an even greater recognition advantage. If there is +<br/><b>con icting sensory information, i.e., incongruent facial muscle activity, this might impede</b><br/>recognition. The effects of actively manipulating facial muscle activity on facial emotion +<br/>recognition from videos were investigated across three experimental conditions: (a) +<br/>explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), +<br/>(b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing +<br/>(control condition). It was hypothesised that (1) experimental condition (a) and (b) result +<br/>in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion +<br/>recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) +<br/>lowers recognition accuracy for expressions with a salient facial feature in the lower, +<br/>but not the upper face area, compared to (c). Participants (42 males, 42 females) +<br/>underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography +<br/>(EMG) was recorded from five facial muscle sites. The experimental conditions’ order +<br/>was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity +<br/>for expressions with facial feature saliency in the lower face region, which reduced +<br/>recognition of lower face region emotions. Explicit imitation caused stimulus-congruent +<br/>facial muscle activity without modulating recognition. Methodological +<br/>implications are +<br/>discussed. +<br/>Keywords: facial emotion recognition, imitation, facial muscle activity, facial EMG, embodiment, videos, dynamic +<br/>stimuli, facial expressions of emotion +<br/>Edited by: +<br/>Eva G. Krumhuber, +<br/><b>University College London</b><br/>United Kingdom +<br/>Reviewed by: +<br/>Sebastian Korb, +<br/>Universität Wien, Austria +<br/>Michal Olszanowski, +<br/><b>SWPS University of Social Sciences</b><br/>and Humanities, Poland +<br/>*Correspondence: +<br/>Tanja S. H. Wingenbach +<br/>Specialty section: +<br/>This article was submitted to +<br/>Emotion Science, +<br/>a section of the journal +<br/>Frontiers in Psychology +<br/>Received: 15 December 2017 +<br/>Accepted: 14 May 2018 +<br/>Published: 06 June 2018 +<br/>Citation: +<br/>Wingenbach TSH, Brosnan M, +<br/>Pfaltz MC, Plichta MM and Ashwin C +<br/>(2018) Incongruence Between +<br/>Observers’ and Observed Facial +<br/>Muscle Activation Reduces +<br/>Recognition of Emotional Facial +<br/>Expressions From Video Stimuli. +<br/>Front. Psychol. 9:864. +<br/>doi: 10.3389/fpsyg.2018.00864 +<br/>Frontiers in Psychology | www.frontiersin.org +<br/>June 2018 | Volume 9 | Article 864 +</td><td>('39455300', 'Mark Brosnan', 'mark brosnan')<br/>('34495803', 'Monique C. Pfaltz', 'monique c. pfaltz')<br/>('2976177', 'Michael M. Plichta', 'michael m. plichta')<br/>('2708124', 'Chris Ashwin', 'chris ashwin')</td><td>tanja.wingenbach@bath.edu </td></tr><tr><td>2d072cd43de8d17ce3198fae4469c498f97c6277</td><td>Random Cascaded-Regression Copse for Robust <br/>Facial Landmark Detection <br/>and Xiao-Jun Wu @@ -31067,7 +40031,10 @@ <br/>March 2015 <br/>Dissertation Committee: <br/>Professor Conrad Rudolph -</td><td>('11012197', 'Ramya Malur Srinivasan', 'ramya malur srinivasan')<br/>('1688416', 'Amit K Roy-Chowdhury', 'amit k roy-chowdhury')<br/>('1686303', 'Ertem Tuncel', 'ertem tuncel')<br/>('2357146', 'Tamar Shinar', 'tamar shinar')</td><td></td></tr><tr><td>2d79d338c114ece1d97cde1aa06ab4cf17d38254</td><td>iLab-20M: A large-scale controlled object dataset to investigate deep learning +</td><td>('11012197', 'Ramya Malur Srinivasan', 'ramya malur srinivasan')<br/>('1688416', 'Amit K Roy-Chowdhury', 'amit k roy-chowdhury')<br/>('1686303', 'Ertem Tuncel', 'ertem tuncel')<br/>('2357146', 'Tamar Shinar', 'tamar shinar')</td><td></td></tr><tr><td>2d8d089d368f2982748fde93a959cf5944873673</td><td>Proceedings of NAACL-HLT 2018, pages 788–794 +<br/>New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +<br/>788 +</td><td></td><td></td></tr><tr><td>2d79d338c114ece1d97cde1aa06ab4cf17d38254</td><td>iLab-20M: A large-scale controlled object dataset to investigate deep learning <br/><b>Center for Research in Computer Vision, University of Central Florida</b><br/><b>Amirkabir University of Technology, University of Southern California</b></td><td>('3177797', 'Ali Borji', 'ali borji')<br/>('2391309', 'Saeed Izadi', 'saeed izadi')<br/>('7326223', 'Laurent Itti', 'laurent itti')</td><td>aborji@crcv.ucf.edu, sizadi@aut.ac.ir, itti@usc.edu </td></tr><tr><td>2df4d05119fe3fbf1f8112b3ad901c33728b498a</td><td>Facial landmark detection using structured output deep <br/>neural networks @@ -31078,7 +40045,12 @@ <br/>September 24, 2015 </td><td></td><td></td></tr><tr><td>2d3482dcff69c7417c7b933f22de606a0e8e42d4</td><td>Labeled Faces in the Wild: Updates and <br/>New Reporting Procedures -<br/><b>University of Massachusetts, Amherst Technical Report UM-CS</b></td><td>('3219900', 'Gary B. Huang', 'gary b. huang')<br/>('1714536', 'Erik Learned-Miller', 'erik learned-miller')</td><td></td></tr><tr><td>2d748f8ee023a5b1fbd50294d176981ded4ad4ee</td><td>TRIPLET SIMILARITY EMBEDDING FOR FACE VERIFICATION +<br/><b>University of Massachusetts, Amherst Technical Report UM-CS</b></td><td>('3219900', 'Gary B. Huang', 'gary b. huang')<br/>('1714536', 'Erik Learned-Miller', 'erik learned-miller')</td><td></td></tr><tr><td>2d4a3e9361505616fa4851674eb5c8dd18e0c3cf</td><td>Towards Privacy-Preserving Visual Recognition +<br/>via Adversarial Training: A Pilot Study +<br/><b>Texas AandM University, College Station TX 77843, USA</b><br/>2 Adobe Research, San Jose CA 95110, USA +</td><td>('1733940', 'Zhenyu Wu', 'zhenyu wu')<br/>('2969311', 'Zhangyang Wang', 'zhangyang wang')<br/>('8056043', 'Zhaowen Wang', 'zhaowen wang')<br/>('39909162', 'Hailin Jin', 'hailin jin')</td><td>{wuzhenyu sjtu,atlaswang}@tamu.edu +<br/>{zhawang,hljin}@adobe.com +</td></tr><tr><td>2d748f8ee023a5b1fbd50294d176981ded4ad4ee</td><td>TRIPLET SIMILARITY EMBEDDING FOR FACE VERIFICATION <br/><b>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</b><br/>1Department of Electrical and Computer Engineering, </td><td>('2716670', 'Swami Sankaranarayanan', 'swami sankaranarayanan')<br/>('2943431', 'Azadeh Alavi', 'azadeh alavi')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{swamiviv, azadeh, rama}@umiacs.umd.edu </td></tr><tr><td>2d3c17ced03e4b6c4b014490fe3d40c62d02e914</td><td>COMPUTER ANIMATION AND VIRTUAL WORLDS @@ -31087,7 +40059,9 @@ <br/>SPECIAL ISSUE PAPER <br/>Video-driven state-aware facial animation <br/><b>State Key Lab of CADandCG, Zhejiang University, Hangzhou, Zhejiang, China</b><br/>2 Microsoft Corporation, Seattle, WA, USA -</td><td>('2894564', 'Ming Zeng', 'ming zeng')<br/>('1680293', 'Lin Liang', 'lin liang')<br/>('3227032', 'Xinguo Liu', 'xinguo liu')<br/>('1679542', 'Hujun Bao', 'hujun bao')</td><td></td></tr><tr><td>4188bd3ef976ea0dec24a2512b44d7673fd4ad26</td><td>1050 +</td><td>('2894564', 'Ming Zeng', 'ming zeng')<br/>('1680293', 'Lin Liang', 'lin liang')<br/>('3227032', 'Xinguo Liu', 'xinguo liu')<br/>('1679542', 'Hujun Bao', 'hujun bao')</td><td></td></tr><tr><td>41f26101fed63a8d149744264dd5aa79f1928265</td><td>Spot On: Action Localization from +<br/>Pointly-Supervised Proposals +<br/><b>University of Amsterdam</b><br/><b>Delft University of Technology</b></td><td>('2606260', 'Pascal Mettes', 'pascal mettes')<br/>('1738975', 'Jan C. van Gemert', 'jan c. van gemert')</td><td></td></tr><tr><td>4188bd3ef976ea0dec24a2512b44d7673fd4ad26</td><td>1050 <br/>Nonlinear Non-Negative Component <br/>Analysis Algorithms </td><td>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')<br/>('2871609', 'Maria Petrou', 'maria petrou')</td><td></td></tr><tr><td>416b559402d0f3e2b785074fcee989d44d82b8e5</td><td>Multi-View Super Vector for Action Recognition @@ -31114,7 +40088,11 @@ <br/>Framework-Based Modified Local Directional Number <br/>Pattern with Various Classifiers for Face Recognition <br/><b>St. Xavier s Catholic College of Engineering, Nagercoil, India</b><br/><b>VelTech Dr. R.R. and Dr. S.R. Technical University, Chennai</b><br/><b>Manonmaniam Sundaranar University, Tirunelveli</b><br/>India. -</td><td>('9375880', 'R. Reena Rose', 'r. reena rose')</td><td></td></tr><tr><td>4140498e96a5ff3ba816d13daf148fffb9a2be3f</td><td>2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition +</td><td>('9375880', 'R. Reena Rose', 'r. reena rose')</td><td></td></tr><tr><td>411318684bd2d42e4b663a37dcf0532a48f0146d</td><td>Improved Face Verification with Simple +<br/>Weighted Feature Combination +<br/><b>College of Electronics and Information Engineering, Tongji University</b><br/>4800 Cao’an Highway, Shanghai 201804, People’s Republic of China +</td><td>('1775391', 'Xinyu Zhang', 'xinyu zhang')<br/>('48566761', 'Jiang Zhu', 'jiang zhu')<br/>('34647494', 'Mingyu You', 'mingyu you')</td><td>{1510464,zhujiang,myyou}@tongji.edu.cn +</td></tr><tr><td>4140498e96a5ff3ba816d13daf148fffb9a2be3f</td><td>2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition <br/>2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition <br/>2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition <br/>2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition @@ -31126,7 +40104,10 @@ <br/><b>Northwestern University</b><br/>Evanston, IL 60208-3118 </td><td>('2563314', 'Derek J. Shiell', 'derek j. shiell')<br/>('3271105', 'Louis H. Terry', 'louis h. terry')<br/>('2691927', 'Petar S. Aleksic', 'petar s. aleksic')<br/>('1695338', 'Aggelos K. Katsaggelos', 'aggelos k. katsaggelos')</td><td>d-shiell@northwestern.edu, l-terry@northwestern.edu, <br/>apetar@eecs.northwestern.edu, aggk@eecs.northwestern.edu -</td></tr><tr><td>41aa8c1c90d74f2653ef4b3a2e02ac473af61e47</td><td>Compositional Structure Learning for Action Understanding +</td></tr><tr><td>414715421e01e8c8b5743c5330e6d2553a08c16d</td><td>PoTion: Pose MoTion Representation for Action Recognition +<br/>1Inria∗ +<br/>2NAVER LABS Europe +</td><td>('2492127', 'Philippe Weinzaepfel', 'philippe weinzaepfel')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>41aa8c1c90d74f2653ef4b3a2e02ac473af61e47</td><td>Compositional Structure Learning for Action Understanding <br/>1Department of Computer Science and Engineering, SUNY at Buffalo <br/>2Department of Statistics, UCLA <br/><b>University of Michigan</b><br/>October 23, 2014 @@ -31343,7 +40324,27 @@ </td></tr><tr><td>83ca4cca9b28ae58f461b5a192e08dffdc1c76f3</td><td>DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY <br/>Signal Processing Laboratory (LTS5), <br/>´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland -</td><td>('1697965', 'Hua Gao', 'hua gao')<br/>('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')</td><td></td></tr><tr><td>831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9</td><td></td><td></td><td></td></tr><tr><td>832e1d128059dd5ed5fa5a0b0f021a025903f9d5</td><td>Pairwise Conditional Random Forests for Facial Expression Recognition +</td><td>('1697965', 'Hua Gao', 'hua gao')<br/>('1710257', 'Jean-Philippe Thiran', 'jean-philippe thiran')</td><td></td></tr><tr><td>8356832f883207187437872742d6b7dc95b51fde</td><td>Adversarial Perturbations Against Real-Time Video +<br/>Classification Systems +<br/><b>University of California, Riverside</b><br/><b>University of California, Riverside</b><br/><b>University of California, Riverside</b><br/>Riverside, California +<br/>Riverside, California +<br/><b>University of California, Riverside</b><br/>Riverside, California +<br/>Riverside, California +<br/><b>University of California, Riverside</b><br/>Riverside, California +<br/>Amit K. Roy Chowdhury +<br/><b>University of California, Riverside</b><br/>Riverside, California +<br/>United States Army Research +<br/>Laboratory +</td><td>('26576993', 'Shasha Li', 'shasha li')<br/>('2252367', 'Chengyu Song', 'chengyu song')<br/>('1718484', 'Ajaya Neupane', 'ajaya neupane')<br/>('49616225', 'Sujoy Paul', 'sujoy paul')<br/>('38774813', 'Srikanth V. Krishnamurthy', 'srikanth v. krishnamurthy')<br/>('1703726', 'Ananthram Swami', 'ananthram swami')</td><td>sli057@ucr.edu +<br/>csong@cs.ucr.edu +<br/>ajaya@ucr.edu +<br/>spaul003@ucr.edu +<br/>krish@cs.ucr.edu +<br/>amitrc@ece.ucr.edu +<br/>ananthram.swami.civ@mail.mil +</td></tr><tr><td>831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9</td><td></td><td></td><td></td></tr><tr><td>835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd</td><td>Unsupervised Learning of Sequence Representations by +<br/>Autoencoders +<br/><b>aPattern Recognition Laboratory, Delft University of Technology</b></td><td>('1678473', 'Wenjie Pei', 'wenjie pei')</td><td></td></tr><tr><td>832e1d128059dd5ed5fa5a0b0f021a025903f9d5</td><td>Pairwise Conditional Random Forests for Facial Expression Recognition <br/>S´everine Dubuisson1 <br/>1 Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris </td><td>('3190846', 'Arnaud Dapogny', 'arnaud dapogny')<br/>('2521061', 'Kevin Bailly', 'kevin bailly')</td><td>arnaud.dapogny@isir.upmc.fr @@ -31361,6 +40362,14 @@ </td></tr><tr><td>83b4899d2899dd6a8d956eda3c4b89f27f1cd308</td><td>1-4244-1437-7/07/$20.00 ©2007 IEEE <br/>I - 377 <br/>ICIP 2007 +</td><td></td><td></td></tr><tr><td>83295bce2340cb87901499cff492ae6ff3365475</td><td>Deep Multi-Center Learning for Face Alignment +<br/><b>Shanghai Jiao Tong University, China</b><br/><b>School of Computer Science and Software Engineering, East China Normal University, China</b></td><td>('3403352', 'Zhiwen Shao', 'zhiwen shao')<br/>('7296339', 'Hengliang Zhu', 'hengliang zhu')<br/>('1767677', 'Xin Tan', 'xin tan')<br/>('2107352', 'Yangyang Hao', 'yangyang hao')<br/>('8452947', 'Lizhuang Ma', 'lizhuang ma')</td><td>{shaozhiwen, hengliang zhu, tanxin2017, haoyangyang2014}@sjtu.edu.cn, ma-lz@cs.sjtu.edu.cn +</td></tr><tr><td>83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05</td><td>ARANDJELOVI´C:RECOGNITIONFROMAPPEARANCESUBSPACESACROSSSCALE +<br/>Recognition from Appearance Subspaces +<br/>Across Image Sets of Variable Scale +<br/>Ognjen Arandjelovi´c +<br/>http://mi.eng.cam.ac.uk/~oa214 +<br/><b>Trinity College</b><br/><b>University of Cambridge</b><br/>CB2 1TQ, UK </td><td></td><td></td></tr><tr><td>830e5b1043227fe189b3f93619ef4c58868758a7</td><td></td><td></td><td></td></tr><tr><td>8323af714efe9a3cadb31b309fcc2c36c8acba8f</td><td>Automatic Real-Time <br/>Facial Expression Recognition <br/>for Signed Language Translation @@ -31457,20 +40466,60 @@ </td></tr><tr><td>8320dbdd3e4712cca813451cd94a909527652d63</td><td>EAR BIOMETRICS <br/>and Wilhelm Burger <br/><b>Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) -</td><td>('12811570', 'Mark Burge', 'mark burge')</td><td></td></tr><tr><td>834b15762f97b4da11a2d851840123dbeee51d33</td><td>Landmark-free smile intensity estimation +</td><td>('12811570', 'Mark Burge', 'mark burge')</td><td></td></tr><tr><td>837e99301e00c2244023a8a48ff98d7b521c93ac</td><td>Local Feature Evaluation for a Constrained +<br/>Local Model Framework +<br/><b>Graduate School of Engineering, Tottori University</b><br/>101 Minami 4-chome, Koyama-cho, Tottori 680-8550, Japan +</td><td>('1770332', 'Maiya Hori', 'maiya hori')<br/>('48532779', 'Shogo Kawai', 'shogo kawai')<br/>('2020088', 'Hiroki Yoshimura', 'hiroki yoshimura')<br/>('1679437', 'Yoshio Iwai', 'yoshio iwai')</td><td>hori@ike.tottori-u.ac.jp +</td></tr><tr><td>834b15762f97b4da11a2d851840123dbeee51d33</td><td>Landmark-free smile intensity estimation <br/>IMAGO Research Group - Universidade Federal do Paran´a <br/>Fig. 1. Overview of our method for smile intensity estimation </td><td>('1800955', 'Olga R. P. Bellon', 'olga r. p. bellon')</td><td>{julio.batista,olga,luciano}@ufpr.br </td></tr><tr><td>833f6ab858f26b848f0d747de502127406f06417</td><td>978-1-4244-5654-3/09/$26.00 ©2009 IEEE <br/>61 <br/>ICIP 2009 -</td><td></td><td></td></tr><tr><td>8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff</td><td>Generic versus Salient Region-based Partitioning +</td><td></td><td></td></tr><tr><td>8334da483f1986aea87b62028672836cb3dc6205</td><td>Fully Associative Patch-based 1-to-N Matcher for Face Recognition +<br/>Computational Biomedicine Lab +<br/><b>University of Houston</b></td><td>('39089616', 'Lingfeng Zhang', 'lingfeng zhang')<br/>('1706204', 'Ioannis A. Kakadiaris', 'ioannis a. kakadiaris')</td><td>{lzhang34, ioannisk}@uh.edu +</td></tr><tr><td>831b4d8b0c0173b0bac0e328e844a0fbafae6639</td><td>Consensus-Driven Propagation in +<br/>Massive Unlabeled Data for Face Recognition +<br/><b>CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong</b><br/>2 SenseTime Group Limited +<br/><b>Nanyang Technological University</b></td><td>('31818765', 'Xiaohang Zhan', 'xiaohang zhan')<br/>('3243969', 'Ziwei Liu', 'ziwei liu')<br/>('1721677', 'Junjie Yan', 'junjie yan')<br/>('1807606', 'Dahua Lin', 'dahua lin')<br/>('1717179', 'Chen Change Loy', 'chen change loy')</td><td>{zx017, zwliu, dhlin}@ie.cuhk.edu.hk +<br/>yanjunjie@sensetime.com +<br/>ccloy@ieee.org +</td></tr><tr><td>8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff</td><td>Generic versus Salient Region-based Partitioning <br/>for Local Appearance Face Recognition <br/>Computer Science Depatment, Universit¨at Karlsruhe (TH) <br/>Am Fasanengarten 5, Karlsruhe 76131, Germany <br/>http://isl.ira.uka.de/cvhci </td><td>('1742325', 'Rainer Stiefelhagen', 'rainer stiefelhagen')</td><td>{ekenel,stiefel}@ira.uka.de -</td></tr><tr><td>1b635f494eff2e5501607ebe55eda7bdfa8263b8</td><td>USC at THUMOS 2014 +</td></tr><tr><td>1b02b9413b730b96b91d16dcd61b2420aef97414</td><td>Détection de marqueurs affectifs et attentionnels de +<br/>personnes âgées en interaction avec un robot +<br/>To cite this version: +<br/>avec un robot. +<br/>Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. <NNT : +<br/>2015SACLS081>. <tel-01280505> +<br/>HAL Id: tel-01280505 +<br/>https://tel.archives-ouvertes.fr/tel-01280505 +<br/>Submitted on 29 Feb 2016 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('47829802', 'Fan Yang', 'fan yang')<br/>('47829802', 'Fan Yang', 'fan yang')</td><td></td></tr><tr><td>1b55c4e804d1298cbbb9c507497177014a923d22</td><td>Incremental Class Representation +<br/>Learning for Face Recognition +<br/>Degree’s Thesis +<br/>Audiovisual Systems Engineering +<br/>Author: +<br/>Universitat Politècnica de Catalunya (UPC) +<br/>2016 - 2017 +</td><td>('2470219', 'Elisa Sayrol', 'elisa sayrol')<br/>('2585946', 'Josep Ramon Morros', 'josep ramon morros')</td><td></td></tr><tr><td>1b635f494eff2e5501607ebe55eda7bdfa8263b8</td><td>USC at THUMOS 2014 <br/><b>University of Southern California, Institute for Robotics and Intelligent Systems</b><br/>Los Angeles, CA 90089, USA </td><td>('1726241', 'Chen Sun', 'chen sun')<br/>('27735100', 'Ram Nevatia', 'ram nevatia')</td><td></td></tr><tr><td>1b6394178dbc31d0867f0b44686d224a19d61cf4</td><td>EPML: Expanded Parts based Metric Learning for <br/>Occlusion Robust Face Verification @@ -31491,13 +40540,42 @@ <br/>´emanant des ´etablissements d’enseignement et de <br/>recherche fran¸cais ou ´etrangers, des laboratoires <br/>publics ou priv´es. -</td><td>('2515597', 'Gaurav Sharma', 'gaurav sharma')<br/>('2515597', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>1bd50926079e68a6e32dc4412e9d5abe331daefb</td><td></td><td></td><td></td></tr><tr><td>1b150248d856f95da8316da868532a4286b9d58e</td><td>Analyzing 3D Objects in Cluttered Images +</td><td>('2515597', 'Gaurav Sharma', 'gaurav sharma')<br/>('2515597', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>1bd50926079e68a6e32dc4412e9d5abe331daefb</td><td></td><td></td><td></td></tr><tr><td>1bdef21f093c41df2682a07f05f3548717c7a3d1</td><td>Towards Automated Classification of Emotional Facial Expressions +<br/>1Department of Mathematics and Computer Science, 2Department of Psychology +<br/><b>Rutgers University Newark, 101 Warren St., Newark, NJ, 07102 USA</b></td><td></td><td>Lewis J. Baker (lewis.j.baker@rutgers.edu)1, Vanessa LoBue (vlobue@rutgers.edu)2, +<br/>Elizabeth Bonawitz (elizabeth.bonawitz@rutgers.edu)2, & Patrick Shafto (patrick.shafto@gmail.com)1 +</td></tr><tr><td>1b150248d856f95da8316da868532a4286b9d58e</td><td>Analyzing 3D Objects in Cluttered Images <br/>UC Irvine <br/>UC Irvine </td><td>('1888731', 'Mohsen Hejrati', 'mohsen hejrati')<br/>('1770537', 'Deva Ramanan', 'deva ramanan')</td><td>shejrati@ics.uci.edu <br/>dramanan@ics.uci.edu </td></tr><tr><td>1be498d4bbc30c3bfd0029114c784bc2114d67c0</td><td>Age and Gender Estimation of Unfiltered Faces -</td><td>('2037829', 'Eran Eidinger', 'eran eidinger')<br/>('1792038', 'Roee Enbar', 'roee enbar')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>1b5875dbebc76fec87e72cee7a5263d325a77376</td><td>Learnt Quasi-Transitive Similarity for Retrieval from Large Collections of Faces +</td><td>('2037829', 'Eran Eidinger', 'eran eidinger')<br/>('1792038', 'Roee Enbar', 'roee enbar')<br/>('1756099', 'Tal Hassner', 'tal hassner')</td><td></td></tr><tr><td>1bbec7190ac3ba34ca91d28f145e356a11418b67</td><td>Action Recognition with Dynamic Image Networks +<br/>Citation for published version: +<br/>Bilen, H, Fernando, B, Gravves, E & Vedaldi, A 2017, 'Action Recognition with Dynamic Image Networks' +<br/>IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2769085 +<br/>Digital Object Identifier (DOI): +<br/>10.1109/TPAMI.2017.2769085 +<br/>Link: +<br/>Link to publication record in Edinburgh Research Explorer +<br/>Document Version: +<br/>Peer reviewed version +<br/>Published In: +<br/>IEEE Transactions on Pattern Analysis and Machine Intelligence +<br/>General rights +<br/>Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) +<br/>and / or other copyright owners and it is a condition of accessing these publications that users recognise and +<br/>abide by the legal requirements associated with these rights. +<br/>Take down policy +<br/><b>The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer</b><br/>content complies with UK legislation. If you believe that the public display of this file breaches copyright please +<br/>investigate your claim. +<br/>Download date: 25. Dec. 2017 +<br/> Edinburgh Research Explorer </td><td></td><td>contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and +</td></tr><tr><td>1b3587363d37dd197b6adbcfa79d49b5486f27d8</td><td>Multimodal Grounding for Language Processing +<br/><b>Language Technology Lab, University of Duisburg-Essen</b><br/>(cid:52) Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES +<br/>Department of Computer Science, Technische Universit¨at Darmstadt +<br/>www.ukp.tu-darmstadt.de +</td><td>('2752573', 'Lisa Beinborn', 'lisa beinborn')<br/>('25080314', 'Teresa Botschen', 'teresa botschen')<br/>('1730400', 'Iryna Gurevych', 'iryna gurevych')</td><td></td></tr><tr><td>1b5875dbebc76fec87e72cee7a5263d325a77376</td><td>Learnt Quasi-Transitive Similarity for Retrieval from Large Collections of Faces <br/>Ognjen Arandjelovi´c <br/><b>University of St Andrews, United Kingdom</b></td><td></td><td>ognjen.arandjelovic@gmail.com </td></tr><tr><td>1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9</td><td>Groupwise Constrained Reconstruction for Subspace Clustering @@ -31619,7 +40697,11 @@ <br/>System Using Independent Component Analysis <br/><b>Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</b><br/><b>Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</b><br/><b>Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</b><br/>---------------------------------------------------------------------***--------------------------------------------------------------------- <br/>cards, tokens and keys. Biometric based methods examine -</td><td>('32330340', 'Manimala Mahato', 'manimala mahato')</td><td></td></tr><tr><td>1bc23c771688109bed9fd295ce82d7e702726327</td><td></td><td>('1706007', 'Jianchao Yang', 'jianchao yang')</td><td></td></tr><tr><td>1bad8a9640cdbc4fe7de12685651f44c4cff35ce</td><td>THETIS: THree Dimensional Tennis Shots +</td><td>('32330340', 'Manimala Mahato', 'manimala mahato')</td><td></td></tr><tr><td>1b71d3f30238cb6621021a95543cce3aab96a21b</td><td>Fine-grained Video Classification and Captioning +<br/><b>University of Toronto1, Twenty Billion Neurons</b></td><td>('2454800', 'Farzaneh Mahdisoltani', 'farzaneh mahdisoltani')<br/>('40586522', 'Guillaume Berger', 'guillaume berger')<br/>('3462264', 'Waseem Gharbieh', 'waseem gharbieh')<br/>('1710604', 'Roland Memisevic', 'roland memisevic')</td><td>1 {farzaneh, fleet}@cs.toronto.edu, {firstname.lastname}@twentybn.com +</td></tr><tr><td>1b4f6f73c70353869026e5eec1dd903f9e26d43f</td><td>Robust Subjective Visual Property Prediction +<br/>from Crowdsourced Pairwise Labels +</td><td>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('1697755', 'Timothy M. Hospedales', 'timothy m. hospedales')<br/>('1700927', 'Tao Xiang', 'tao xiang')<br/>('3081531', 'Jiechao Xiong', 'jiechao xiong')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('1717863', 'Yizhou Wang', 'yizhou wang')<br/>('1746280', 'Yuan Yao', 'yuan yao')</td><td></td></tr><tr><td>1bc23c771688109bed9fd295ce82d7e702726327</td><td></td><td>('1706007', 'Jianchao Yang', 'jianchao yang')</td><td></td></tr><tr><td>1bad8a9640cdbc4fe7de12685651f44c4cff35ce</td><td>THETIS: THree Dimensional Tennis Shots <br/>A human action dataset <br/>Sofia Gourgari <br/>Konstantinos Karpouzis @@ -31641,7 +40723,12 @@ </td><td>('1715001', 'Jun Wang', 'jun wang')<br/>('1791319', 'Shangfei Wang', 'shangfei wang')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>junwong@mail.ustc.edu.cn <br/>sfwang@ustc.edu.cn <br/>qji@ecse.rpi.edu -</td></tr><tr><td>1b27ca161d2e1d4dd7d22b1247acee5c53db5104</td><td></td><td></td><td></td></tr><tr><td>7711a7404f1f1ac3a0107203936e6332f50ac30c</td><td>Action Classification and Highlighting in Videos +</td></tr><tr><td>1b27ca161d2e1d4dd7d22b1247acee5c53db5104</td><td></td><td></td><td></td></tr><tr><td>1badfeece64d1bf43aa55c141afe61c74d0bd25e</td><td>OL ´E: Orthogonal Low-rank Embedding, +<br/>A Plug and Play Geometric Loss for Deep Learning +<br/>1Universidad de la Rep´ublica +<br/>Uruguay +<br/><b>Duke University</b><br/>USA +</td><td>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('1699339', 'Guillermo Sapiro', 'guillermo sapiro')</td><td></td></tr><tr><td>7711a7404f1f1ac3a0107203936e6332f50ac30c</td><td>Action Classification and Highlighting in Videos <br/>Disney Research Pittsburgh <br/>Disney Research Pittsburgh </td><td>('1730844', 'Atousa Torabi', 'atousa torabi')<br/>('14517812', 'Leonid Sigal', 'leonid sigal')</td><td>atousa.torabi@disneyresearch.com @@ -31661,7 +40748,10 @@ <br/>Presented for the <br/>Doctor of Philosophy Degree <br/><b>The University of Tennessee, Knoxville</b><br/>December 2008 -</td><td>('21051127', 'Hong Chang', 'hong chang')</td><td></td></tr><tr><td>77b1db2281292372c38926cc4aca32ef056011dc</td><td>451492 EMR0010.1177/1754073912451492Widen Children’s Interpretation of Facial ExpressionsEmotion Review +</td><td>('21051127', 'Hong Chang', 'hong chang')</td><td></td></tr><tr><td>7789a5d87884f8bafec8a82085292e87d4e2866f</td><td>A Unified Tensor-based Active Appearance Face +<br/>Model +<br/>Member, IEEE +</td><td>('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td></td></tr><tr><td>77b1db2281292372c38926cc4aca32ef056011dc</td><td>451492 EMR0010.1177/1754073912451492Widen Children’s Interpretation of Facial ExpressionsEmotion Review <br/>2012 <br/>SPECIAL SECTION: FACIAL EXPRESSIONS <br/>Children’s Interpretation of Facial Expressions: @@ -31710,7 +40800,14 @@ <br/>sjb@cs.ucsd.edu </td></tr><tr><td>7754b708d6258fb8279aa5667ce805e9f925dfd0</td><td>Facial Action Unit Recognition by Exploiting <br/>Their Dynamic and Semantic Relationships -</td><td>('1686235', 'Yan Tong', 'yan tong')<br/>('2460793', 'Wenhui Liao', 'wenhui liao')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td></td></tr><tr><td>77037a22c9b8169930d74d2ce6f50f1a999c1221</td><td>Robust Face Recognition With Kernelized +</td><td>('1686235', 'Yan Tong', 'yan tong')<br/>('2460793', 'Wenhui Liao', 'wenhui liao')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td></td></tr><tr><td>77db171a523fc3d08c91cea94c9562f3edce56e1</td><td>Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17 +<br/>http://jivp.eurasipjournals.com/content/2012/1/17 +<br/>R ES EAR CH +<br/>Open Access +<br/>Gauss–Laguerre wavelet textural feature fusion +<br/>with geometrical information for facial expression +<br/>identification +</td><td>('1786383', 'Ahmad Poursaberi', 'ahmad poursaberi')<br/>('1870195', 'Hossein Ahmadi', 'hossein ahmadi')</td><td></td></tr><tr><td>77037a22c9b8169930d74d2ce6f50f1a999c1221</td><td>Robust Face Recognition With Kernelized <br/>Locality-Sensitive Group Sparsity Representation </td><td>('1907978', 'Shoubiao Tan', 'shoubiao tan')<br/>('2796142', 'Xi Sun', 'xi sun')<br/>('2710497', 'Wentao Chan', 'wentao chan')<br/>('33306018', 'Lei Qu', 'lei qu')</td><td></td></tr><tr><td>779ad364cae60ca57af593c83851360c0f52c7bf</td><td>Steerable Pyramids Feature Based Classification Using Fisher <br/>Linear Discriminant for Face Recognition @@ -31720,6 +40817,15 @@ </td></tr><tr><td>7792fbc59f3eafc709323cdb63852c5d3a4b23e9</td><td>Pose from Action: Unsupervised Learning of <br/>Pose Features based on Motion <br/><b>Robotics Institute</b><br/><b>Carnegie Mellon University</b></td><td>('3234247', 'Senthil Purushwalkam', 'senthil purushwalkam')<br/>('1737809', 'Abhinav Gupta', 'abhinav gupta')</td><td>{spurushw@andrew,abhinavg@cs}.cmu.edu +</td></tr><tr><td>77fbbf0c5729f97fcdbfdc507deee3d388cd4889</td><td>SMITH & DYER: 3D FACIAL LANDMARK ESTIMATION +<br/>Pose-Robust 3D Facial Landmark Estimation +<br/>from a Single 2D Image +<br/>http://www.cs.wisc.edu/~bmsmith +<br/>http://www.cs.wisc.edu/~dyer +<br/>Department of Computer Sciences +<br/><b>University of Wisconsin-Madison</b><br/>Madison, WI USA +</td><td>('2721523', 'Brandon M. Smith', 'brandon m. smith')<br/>('1724754', 'Charles R. Dyer', 'charles r. dyer')</td><td></td></tr><tr><td>776362314f1479f5319aaf989624ac604ba42c65</td><td>Attribute learning in large-scale datasets +<br/><b>Stanford University</b></td><td>('2192178', 'Olga Russakovsky', 'olga russakovsky')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td>{olga,feifeili}@cs.stanford.edu </td></tr><tr><td>77d31d2ec25df44781d999d6ff980183093fb3de</td><td>The Multiverse Loss for Robust Transfer Learning <br/>Supplementary <br/>1. Omitted proofs @@ -31880,7 +40986,18 @@ </td><td>('3295771', 'Hamid Sadeghi', 'hamid sadeghi')<br/>('1697809', 'Mohammad-Reza Mohammadi', 'mohammad-reza mohammadi')</td><td>hamid.sadeghi@aut.ac.ir <br/>raie@aut.ac.ir <br/>mrmohammadi@ee.sharif.edu -</td></tr><tr><td>486a82f50835ea888fbc5c6babf3cf8e8b9807bc</td><td>MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 +</td></tr><tr><td>48186494fc7c0cc664edec16ce582b3fcb5249c0</td><td>P-CNN: Pose-based CNN Features for Action Recognition +<br/>Guilhem Ch´eron∗ † +<br/>INRIA +</td><td>('1785596', 'Ivan Laptev', 'ivan laptev')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>48499deeaa1e31ac22c901d115b8b9867f89f952</td><td>Interim Report of Final Year Project +<br/>HKU-Face: A Large Scale Dataset for +<br/>Deep Face Recognition +<br/>3035140108 +<br/>Haoyu Li +<br/>3035141841 +<br/>COMP4801 Final Year Project +<br/>Project Code: 17007 +</td><td>('3347561', 'Haicheng Wang', 'haicheng wang')</td><td></td></tr><tr><td>486a82f50835ea888fbc5c6babf3cf8e8b9807bc</td><td>MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 <br/>Face Search at Scale: 80 Million Gallery </td><td>('7496032', 'Dayong Wang', 'dayong wang')<br/>('40653304', 'Charles Otto', 'charles otto')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>48fea82b247641c79e1994f4ac24cad6b6275972</td><td>Mining Discriminative Components With Low-Rank And <br/>Sparsity Constraints for Face Recognition @@ -31894,6 +41011,9 @@ </td></tr><tr><td>48a417cfeba06feb4c7ab30f06c57ffbc288d0b5</td><td>Robust Dictionary Learning by Error Source Decomposition <br/><b>Northwestern University</b><br/>2145 Sheridan Road, Evanston, IL 60208 </td><td>('2240134', 'Zhuoyuan Chen', 'zhuoyuan chen')<br/>('39955137', 'Ying Wu', 'ying wu')</td><td>zhuoyuanchen2014@u.northwestern.edu,yingwu@eecs.northwestern.edu +</td></tr><tr><td>4850af6b54391fc33c8028a0b7fafe05855a96ff</td><td>Discovering Useful Parts for Pose Estimation in Sparsely Annotated Datasets +<br/>1Department of Computer Science and 2Department of Biology +<br/><b>Boston University and 2University of North Carolina</b></td><td>('2025025', 'Mikhail Breslav', 'mikhail breslav')<br/>('1711465', 'Tyson L. Hedrick', 'tyson l. hedrick')<br/>('1749590', 'Stan Sclaroff', 'stan sclaroff')<br/>('1723703', 'Margrit Betke', 'margrit betke')</td><td>breslav@bu.edu, thedrick@bio.unc.edu, sclaroff@bu.edu, betke@bu.edu </td></tr><tr><td>48c41ffab7ff19d24e8df3092f0b5812c1d3fb6e</td><td>Multi-Modal Embedding for Main Product Detection in Fashion <br/>1Institut de Robtica i Informtica Industrial (CSIC-UPC) <br/>2Wide Eyes Technologies @@ -31919,11 +41039,35 @@ <br/>South Africa </td><td>('3122515', 'Hima Vadapalli', 'hima vadapalli')</td><td></td></tr><tr><td>48729e4de8aa478ee5eeeb08a72a446b0f5367d5</td><td>COMPRESSED FACE HALLUCINATION <br/>Electrical Engineering and Computer Science -<br/><b>University of California, Merced, CA 95344, USA</b></td><td>('2391885', 'Sifei Liu', 'sifei liu')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>48174c414cfce7f1d71c4401d2b3d49ba91c5338</td><td>Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes +<br/><b>University of California, Merced, CA 95344, USA</b></td><td>('2391885', 'Sifei Liu', 'sifei liu')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>48e6c6d981efe2c2fb0ae9287376fcae59da9878</td><td>Sidekick Policy Learning +<br/>for Active Visual Exploration +<br/><b>The University of Texas at Austin, Austin, TX</b><br/>2 Facebook AI Research, 300 W. Sixth St. Austin, TX 78701 +</td><td>('21810992', 'Santhosh K. Ramakrishnan', 'santhosh k. ramakrishnan')<br/>('1794409', 'Kristen Grauman', 'kristen grauman')</td><td>srama@cs.utexas.edu, grauman@fb.com(cid:63) +</td></tr><tr><td>48174c414cfce7f1d71c4401d2b3d49ba91c5338</td><td>Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes <br/><b>Rutgers University, USA</b><br/><b>Hong Kong Polytechnic University, Hong Kong</b><br/><b>School of Computer Engineering, Nanyang Technological University, Singapore</b></td><td>('1965812', 'Chongyu Chen', 'chongyu chen')<br/>('40643777', 'Luc N. Dao', 'luc n. dao')<br/>('1736042', 'Vladimir Pavlovic', 'vladimir pavlovic')<br/>('1688642', 'Jianfei Cai', 'jianfei cai')<br/>('1775268', 'Tat-Jen Cham', 'tat-jen cham')</td><td>{hxp1,vladimir}@cs.rutgers.edu <br/>{nldao,asjfcai,astfcham}@ntu.edu.sg <br/>cscychen@comp.polyu.edu.hk -</td></tr><tr><td>488375ae857a424febed7c0347cc9590989f01f7</td><td>Convolutional neural networks for the analysis of broadcasted +</td></tr><tr><td>48a5b6ee60475b18411a910c6084b3a32147b8cd</td><td>Pedestrian attribute recognition with part-based CNN +<br/>and combined feature representations +<br/>Baskurt +<br/>To cite this version: +<br/>recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018, +<br/>Funchal, Portugal. <hal-01625470> +<br/>HAL Id: hal-01625470 +<br/>https://hal.archives-ouvertes.fr/hal-01625470 +<br/>Submitted on 21 Jun 2018 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destinée au dépôt et à la diffusion de documents +<br/>scientifiques de niveau recherche, publiés ou non, +<br/>émanant des établissements d’enseignement et de +<br/>recherche français ou étrangers, des laboratoires +<br/>publics ou privés. +</td><td>('1705461', 'Yiqiang Chen', 'yiqiang chen')<br/>('1762557', 'Stefan Duffner', 'stefan duffner')<br/>('10469201', 'Andrei Stoian', 'andrei stoian')<br/>('1733569', 'Jean-Yves Dufour', 'jean-yves dufour')<br/>('1705461', 'Yiqiang Chen', 'yiqiang chen')<br/>('1762557', 'Stefan Duffner', 'stefan duffner')<br/>('10469201', 'Andrei Stoian', 'andrei stoian')<br/>('1733569', 'Jean-Yves Dufour', 'jean-yves dufour')<br/>('1739898', 'Atilla Baskurt', 'atilla baskurt')</td><td></td></tr><tr><td>488375ae857a424febed7c0347cc9590989f01f7</td><td>Convolutional neural networks for the analysis of broadcasted <br/>tennis games <br/><b>Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece</b><br/>(cid:63) NantVision Inc., Culver City, CA, 90230, USA. <br/><b>University of Crete, Crete, 73100, Greece</b></td><td>('2272443', 'Grigorios Tsagkatakis', 'grigorios tsagkatakis')<br/>('40495798', 'Mustafa Jaber', 'mustafa jaber')<br/>('1694755', 'Panagiotis Tsakalides', 'panagiotis tsakalides')</td><td></td></tr><tr><td>4836b084a583d2e794eb6a94982ea30d7990f663</td><td>Cascaded Face Alignment via Intimacy Definition Feature @@ -31991,6 +41135,9 @@ </td><td>('1913846', 'Abdullah Gubbi', 'abdullah gubbi')<br/>('2093112', 'Mohammad Fazle Azeem', 'mohammad fazle azeem')</td><td>Nadupadavu, Mangalore, India, Contact: abdullahgubbi@yahoo.com <br/>University, India, Contact: mf.azeem@gmail.com <br/>Mangalore, India. Contact: sharmilabp@gmail.com +</td></tr><tr><td>4896909796f9bd2f70a2cb24bf18daacd6a12128</td><td>Spatial Bag of Features Learning for Large Scale +<br/>Face Image Retrieval +<br/><b>Aristotle University of Thessaloniki, Thessaloniki, Greece</b></td><td>('3200630', 'Nikolaos Passalis', 'nikolaos passalis')<br/>('1737071', 'Anastasios Tefas', 'anastasios tefas')</td><td>passalis@csd.auth.gr, tefas@aiia.csd.auth.gr </td></tr><tr><td>48cfc5789c246c6ad88ff841701204fc9d6577ed</td><td>J Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016 <br/> <br/> @@ -32008,7 +41155,15 @@ <br/><b>Shaheed Zulfikar Ali Bhutto Institute of</b><br/>Science and Technology, Plot # 67, Street # 9, H/8-4 Islamabad, 44000, Pakistan <br/>isb.edu.pk </td><td>('35332495', 'Sajid Ali Khan', 'sajid ali khan')<br/>('1723986', 'Muhammad Nazir', 'muhammad nazir')<br/>('2521631', 'Naveed Riaz', 'naveed riaz')</td><td>sajid.ali@szabist-isb.edu.pk, nazir@szabist-isb.edu.pk, n.r.ansari@szabist- -</td></tr><tr><td>703890b7a50d6535900a5883e8d2a6813ead3a03</td><td></td><td></td><td></td></tr><tr><td>70db3a0d2ca8a797153cc68506b8650908cb0ada</td><td>An Overview of Research Activities in Facial +</td></tr><tr><td>70109c670471db2e0ede3842cbb58ba6be804561</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Zero-Shot Visual Recognition via Bidirectional Latent Embedding +<br/>Received: date / Accepted: date +</td><td>('47599321', 'Qian Wang', 'qian wang')</td><td></td></tr><tr><td>703890b7a50d6535900a5883e8d2a6813ead3a03</td><td></td><td></td><td></td></tr><tr><td>703dc33736939f88625227e38367cfb2a65319fe</td><td>Labeling Temporal Bounds for Object Interactions in Egocentric Video +<br/>Trespassing the Boundaries: +<br/><b>University of Bristol, United Kingdom</b><br/>Walterio Mayol-Cuevas +</td><td>('3420479', 'Davide Moltisanti', 'davide moltisanti')<br/>('2052236', 'Michael Wray', 'michael wray')<br/>('1728459', 'Dima Damen', 'dima damen')</td><td><FirstName>.<LastName>@bristol.ac.uk +</td></tr><tr><td>70db3a0d2ca8a797153cc68506b8650908cb0ada</td><td>An Overview of Research Activities in Facial <br/>Age Estimation Using the FG-NET Aging <br/>Database <br/>Visual Media Computing Lab, @@ -32028,6 +41183,10 @@ </td><td>('1801452', 'Daniel McDuff', 'daniel mcduff')<br/>('1754451', 'Rana El Kaliouby', 'rana el kaliouby')</td><td>djmcduff@media.mit.edu <br/>kaliouby@media.mit.edu <br/>picard@media.mit.edu +</td></tr><tr><td>701f56f0eac9f88387de1f556acef78016b05d52</td><td>Direct Shape Regression Networks for End-to-End Face Alignment +<br/>1 ∗ +<br/><b>University of Texas at Arlington, TX, USA, 2Beihang University, Beijing, China</b><br/><b>Xidian University, Xi an, China, 4 University of Pittsburgh, PA, USA</b></td><td>('6050999', 'Xin Miao', 'xin miao')<br/>('34798935', 'Xiantong Zhen', 'xiantong zhen')<br/>('1720747', 'Vassilis Athitsos', 'vassilis athitsos')<br/>('6820648', 'Xianglong Liu', 'xianglong liu')<br/>('1748032', 'Heng Huang', 'heng huang')<br/>('50542664', 'Cheng Deng', 'cheng deng')</td><td>xin.miao@mavs.uta.edu, zhenxt@gmail.com, xlliu@nlsde.edu.cn, chdeng.xd@gmail.com +<br/>athitsos@uta.edu, heng.huang@pitt.edu </td></tr><tr><td>7002d6fc3e0453320da5c863a70dbb598415e7aa</td><td>Electrical Engineering <br/><b>University of California, Riverside</b><br/>Date: Friday, October 21, 2011 <br/>Location: EBU2 Room 205/206 @@ -32037,12 +41196,23 @@ <br/>Avatar Image </td><td>('1803478', 'Songfan Yang', 'songfan yang')</td><td></td></tr><tr><td>7071cd1ee46db4bc1824c4fd62d36f6d13cad08a</td><td>Face Detection through Scale-Friendly Deep Convolutional Networks <br/><b>The Chinese University of Hong Kong</b></td><td>('1692609', 'Shuo Yang', 'shuo yang')<br/>('3331521', 'Yuanjun Xiong', 'yuanjun xiong')<br/>('1717179', 'Chen Change Loy', 'chen change loy')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>{ys014, yjxiong, ccloy, xtang}@ie.cuhk,edu.hk +</td></tr><tr><td>706b9767a444de4fe153b2f3bff29df7674c3161</td><td>Fast Metric Learning For Deep Neural Networks +<br/><b>University of Waikato, Hamilton, New Zealand</b><br/><b>School of Engineering, University of Waikato, Hamilton, New Zealand</b></td><td>('2319565', 'Henry Gouk', 'henry gouk')<br/>('1737420', 'Bernhard Pfahringer', 'bernhard pfahringer')</td><td>hgrg1@students.waikato.ac.nz, bernhard@waikato.ac.nz +<br/>cree@waikato.ac.nz +</td></tr><tr><td>70c58700eb89368e66a8f0d3fc54f32f69d423e1</td><td>INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE +<br/>LEARNING +<br/><b>University of California, Riverside, CA</b></td><td>('49616225', 'Sujoy Paul', 'sujoy paul')<br/>('2177805', 'Sourya Roy', 'sourya roy')<br/>('1688416', 'Amit K. Roy-Chowdhury', 'amit k. roy-chowdhury')</td><td></td></tr><tr><td>707a542c580bcbf3a5a75cce2df80d75990853cc</td><td>Disentangled Variational Representation for Heterogeneous Face Recognition +<br/>1 Center for Research on Intelligent Perception and Computing (CRIPAC), CASIA, Beijing, China +<br/>2 National Laboratory of Pattern Recognition (NLPR), CASIA, Beijing, China +<br/><b>School of Arti cial Intelligence, University of Chinese Academy of Sciences, Beijing, China</b><br/><b>Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA</b></td><td>('2225749', 'Xiang Wu', 'xiang wu')<br/>('32885778', 'Huaibo Huang', 'huaibo huang')<br/>('1741177', 'Vishal M. Patel', 'vishal m. patel')<br/>('1705643', 'Ran He', 'ran he')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>alfredxiangwu@gmail.com, huaibo.huang@cripac.ia.ac.cn, +<br/>vpatel36@jhu.edu, {rhe, znsun}@nlpr.ia.ac.cn </td></tr><tr><td>70569810e46f476515fce80a602a210f8d9a2b95</td><td>Apparent Age Estimation from Face Images Combining General and <br/>Children-Specialized Deep Learning Models <br/>1Orange Labs – France Telecom, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France <br/>2Eurecom, 450 route des Chappes, 06410 Biot, France </td><td>('3116433', 'Grigory Antipov', 'grigory antipov')<br/>('2341854', 'Moez Baccouche', 'moez baccouche')<br/>('1708844', 'Sid-Ahmed Berrani', 'sid-ahmed berrani')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')</td><td>{grigory.antipov,moez.baccouche,sidahmed.berrani}@orange.com, jean-luc.dugelay@eurecom.fr -</td></tr><tr><td>70e79d7b64f5540d309465620b0dab19d9520df1</td><td>International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 +</td></tr><tr><td>704d88168bdfabe31b6ff484507f4a2244b8c52b</td><td>MLtuner: System Support for Automatic Machine Learning Tuning +<br/><b>Carnegie Mellon University</b></td><td>('1874200', 'Henggang Cui', 'henggang cui')<br/>('1707164', 'Gregory R. Ganger', 'gregory r. ganger')<br/>('1974678', 'Phillip B. Gibbons', 'phillip b. gibbons')</td><td></td></tr><tr><td>70e79d7b64f5540d309465620b0dab19d9520df1</td><td>International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 <br/>ISSN 2229-5518 <br/>Facial Expression Recognition System <br/>Using Extreme Learning Machine @@ -32068,7 +41238,14 @@ <br/>Department of Intelligent Systems <br/>TU Delft <br/>Delft, The Netherlands -</td><td>('3137870', 'Christina Katsimerou', 'christina katsimerou')<br/>('1728396', 'Ingrid Heynderickx', 'ingrid heynderickx')</td><td></td></tr><tr><td>1e5ca4183929929a4e6f09b1e1d54823b8217b8e</td><td>Classification in the Presence of Heavy +</td><td>('3137870', 'Christina Katsimerou', 'christina katsimerou')<br/>('1728396', 'Ingrid Heynderickx', 'ingrid heynderickx')</td><td></td></tr><tr><td>70c9d11cad12dc1692a4507a97f50311f1689dbf</td><td>Video Frame Synthesis using Deep Voxel Flow +<br/><b>The Chinese University of Hong Kong</b><br/>3Pony.AI Inc. +<br/><b>University of Illinois at Urbana-Champaign</b><br/>4Google Inc. +</td><td>('3243969', 'Ziwei Liu', 'ziwei liu')</td><td>{lz013,xtang}@ie.cuhk.edu.hk +<br/>yiming@pony.ai +<br/>yeh17@illinois.edu +<br/>aseemaa@google.com +</td></tr><tr><td>1e5ca4183929929a4e6f09b1e1d54823b8217b8e</td><td>Classification in the Presence of Heavy <br/>Label Noise: A Markov Chain Sampling <br/>Framework <br/>by @@ -32115,7 +41292,15 @@ </td></tr><tr><td>1e8eee51fd3bf7a9570d6ee6aa9a09454254689d</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE <br/>Transactions on Pattern Analysis and Machine Intelligence <br/>Face Search at Scale -</td><td>('7496032', 'Dayong Wang', 'dayong wang')<br/>('40653304', 'Charles Otto', 'charles otto')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>1ea8085fe1c79d12adffb02bd157b54d799568e4</td><td></td><td></td><td></td></tr><tr><td>1ebdfceebad642299e573a8995bc5ed1fad173e3</td><td></td><td></td><td></td></tr><tr><td>1eec03527703114d15e98ef9e55bee5d6eeba736</td><td>UNIVERSITÄT KARLSRUHE (TH) +</td><td>('7496032', 'Dayong Wang', 'dayong wang')<br/>('40653304', 'Charles Otto', 'charles otto')<br/>('6680444', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>1ea8085fe1c79d12adffb02bd157b54d799568e4</td><td></td><td></td><td></td></tr><tr><td>1ea74780d529a458123a08250d8fa6ef1da47a25</td><td>Videos from the 2013 Boston Marathon: +<br/>An Event Reconstruction Dataset for +<br/>Synchronization and Localization +<br/>CMU-LTI-018 +<br/><b>Language Technologies Institute</b><br/>School of Computer Science +<br/><b>Carnegie Mellon University</b><br/>5000 Forbes Ave., Pittsburgh, PA 15213 +<br/>www.lti.cs.cmu.edu +<br/>© October 1, 2016 +</td><td>('49252656', 'Jia Chen', 'jia chen')<br/>('1915796', 'Junwei Liang', 'junwei liang')<br/>('47896638', 'Han Lu', 'han lu')<br/>('2927024', 'Shoou-I Yu', 'shoou-i yu')<br/>('7661726', 'Alexander G. Hauptmann', 'alexander g. hauptmann')</td><td></td></tr><tr><td>1ebdfceebad642299e573a8995bc5ed1fad173e3</td><td></td><td></td><td></td></tr><tr><td>1eec03527703114d15e98ef9e55bee5d6eeba736</td><td>UNIVERSITÄT KARLSRUHE (TH) <br/>FAKULTÄT FÜR INFORMATIK <br/>INTERACTIVE SYSTEMS LABS <br/>DIPLOMA THESIS @@ -32142,6 +41327,14 @@ <br/>Department of Statistics <br/><b>Florida State University</b><br/><b>National Institutes of Health</b></td><td>('2455529', 'Adrian Barbu', 'adrian barbu')<br/>('2230628', 'Nathan Lay', 'nathan lay')</td><td>abarbu@stat.fsu.edu <br/>nathan.lay@nih.gov +</td></tr><tr><td>1efacaa0eaa7e16146c34cd20814d1411b35538e</td><td>HEIDARIVINCHEHET AL: ACTIONCOMPLETION:A TEMPORALMODEL.. +<br/>Action Completion: +<br/>A Temporal Model for Moment Detection +<br/>Department of Computer Science +<br/><b>University of Bristol</b><br/>Bristol, UK +</td><td>('10007321', 'Farnoosh Heidarivincheh', 'farnoosh heidarivincheh')<br/>('1728108', 'Majid Mirmehdi', 'majid mirmehdi')<br/>('1728459', 'Dima Damen', 'dima damen')</td><td>Farnoosh.Heidarivincheh@bristol.ac.uk +<br/>M.Mirmehdi@bristol.ac.uk +<br/>Dima.Damen@bristol.ac.uk </td></tr><tr><td>1eba6fc35a027134aa8997413647b49685f6fbd1</td><td>Superpower Glass: Delivering <br/>Unobtrusive Real-time Social Cues <br/>in Wearable Systems @@ -32174,6 +41367,15 @@ </td><td>('3131569', 'Haoxiang Li', 'haoxiang li')<br/>('1721019', 'Jonathan Brandt', 'jonathan brandt')<br/>('1720987', 'Xiaohui Shen', 'xiaohui shen')<br/>('1745420', 'Gang Hua', 'gang hua')</td><td>†hli18@stevens.edu <br/>‡{jbrandt, zlin, xshen}@adobe.com <br/>(cid:92)ganghua@microsoft.com +</td></tr><tr><td>1ef1f33c48bc159881c5c8536cbbd533d31b0e9a</td><td>Z. ZHANG ET AL.: ADVERSARIAL TRAINING FOR ACTION UNIT RECOGNITION +<br/>Identity-based Adversarial Training of Deep +<br/>CNNs for Facial Action Unit Recognition +<br/>Department of Computer Science +<br/><b>State University of New York at</b><br/>Binghamton +<br/>NY, USA. +</td><td>('47294008', 'Zheng Zhang', 'zheng zhang')<br/>('2443456', 'Shuangfei Zhai', 'shuangfei zhai')<br/>('8072251', 'Lijun Yin', 'lijun yin')</td><td>zzhang27@cs.binghamton.edu +<br/>szhai2@cs.binghamton.edu +<br/>lijun@cs.binghamton.edu </td></tr><tr><td>1ef5ce743a44d8a454dbfc2657e1e2e2d025e366</td><td>Global Journal of Computer Science & Technology <br/>Volume 11 Issue Version 1.0 April 2011 <br/>Type: Double Blind Peer Reviewed International Research Journal @@ -32302,7 +41504,12 @@ <br/>EXPRESSION RECOGNITION <br/>USING C-SUPPORT VECTOR <br/>CLASSIFICATION -</td><td>('19172816', 'Christer Loob', 'christer loob')<br/>('2303909', 'Pejman Rasti', 'pejman rasti')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')<br/>('2531522', 'Tomasz Sapinski', 'tomasz sapinski')<br/>('34969391', 'Dorota Kaminska', 'dorota kaminska')<br/>('3087532', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')</td><td></td></tr><tr><td>1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9</td><td>Entropy Regularization +</td><td>('19172816', 'Christer Loob', 'christer loob')<br/>('2303909', 'Pejman Rasti', 'pejman rasti')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')<br/>('2531522', 'Tomasz Sapinski', 'tomasz sapinski')<br/>('34969391', 'Dorota Kaminska', 'dorota kaminska')<br/>('3087532', 'Gholamreza Anbarjafari', 'gholamreza anbarjafari')</td><td></td></tr><tr><td>1e21b925b65303ef0299af65e018ec1e1b9b8d60</td><td>Under review as a conference paper at ICLR 2017 +<br/>UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION +<br/>Facebook AI Research +<br/>Tel-Aviv, Israel +</td><td>('2188620', 'Yaniv Taigman', 'yaniv taigman')<br/>('33964593', 'Adam Polyak', 'adam polyak')</td><td>{yaniv,adampolyak,wolf}@fb.com +</td></tr><tr><td>1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9</td><td>Entropy Regularization <br/>The problem of semi-supervised induction consists in learning a decision rule from <br/>labeled and unlabeled data. This task can be undertaken by discriminative methods, <br/>provided that learning criteria are adapted consequently. In this chapter, we moti- @@ -32330,7 +41537,27 @@ <br/>examples. The problem di(cid:11)ers in the respect that the supervisor’s responses are <br/>missing for some training examples. This characteristic is shared with transduction, <br/>which has however a di(cid:11)erent goal, that is, of predicting labels on a set of prede(cid:12)ned -</td><td>('1802711', 'Yves Grandvalet', 'yves grandvalet')<br/>('1751762', 'Yoshua Bengio', 'yoshua bengio')</td><td></td></tr><tr><td>1e41a3fdaac9f306c0ef0a978ae050d884d77d2a</td><td>411 +</td><td>('1802711', 'Yves Grandvalet', 'yves grandvalet')<br/>('1751762', 'Yoshua Bengio', 'yoshua bengio')</td><td></td></tr><tr><td>1ee3b4ba04e54bfbacba94d54bf8d05fd202931d</td><td>Indonesian Journal of Electrical Engineering and Computer Science +<br/>Vol. 12, No. 2, November 2018, pp. 476~481 +<br/>ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481 +<br/> 476 +<br/>Celebrity Face Recognition using Deep Learning +<br/>1,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +<br/>4Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +<br/> Shah Alam, Selangor, Malaysia +<br/>Campus Jasin, Melaka, Malaysia +<br/>Article Info +<br/>Article history: +<br/>Received May 29, 2018 +<br/>Revised Jul 30, 2018 +<br/>Accepted Aug 3, 2018 +<br/>Keywords: +<br/>AlexNet +<br/>Convolutional neural network +<br/>Deep learning +<br/>Face recognition +<br/>GoogLeNet +</td><td>('2743254', 'Zaidah Ibrahim', 'zaidah ibrahim')</td><td></td></tr><tr><td>1e41a3fdaac9f306c0ef0a978ae050d884d77d2a</td><td>411 <br/>Robust Object Recognition with <br/>Cortex-Like Mechanisms <br/>Tomaso Poggio, Member, IEEE @@ -32340,7 +41567,10 @@ <br/>VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan <br/>Keywords: </td><td>('2163491', 'Kazuya Ueki', 'kazuya ueki')<br/>('1719221', 'Masashi Sugiyama', 'masashi sugiyama')</td><td>ueki@mxf.nes.nec.co.jp -</td></tr><tr><td>1e8eec6fc0e4538e21909ab6037c228547a678ba</td><td><b>IMPERIAL COLLEGE</b><br/><b>University of London</b><br/>enVisage : Face Recognition in +</td></tr><tr><td>1efaa128378f988965841eb3f49d1319a102dc36</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>Hierarchical binary CNNs for landmark +<br/>localization with limited resources +</td><td>('3458121', 'Adrian Bulat', 'adrian bulat')<br/>('2610880', 'Georgios Tzimiropoulos', 'georgios tzimiropoulos')</td><td></td></tr><tr><td>1e8eec6fc0e4538e21909ab6037c228547a678ba</td><td><b>IMPERIAL COLLEGE</b><br/><b>University of London</b><br/>enVisage : Face Recognition in <br/>Videos <br/>Supervisor : Dr. Stefan Rüeger <br/>June 14, 2006 @@ -32348,7 +41578,30 @@ </td></tr><tr><td>1e6ed6ca8209340573a5e907a6e2e546a3bf2d28</td><td>Pooling Faces: Template based Face Recognition with Pooled Face Images <br/>Prem Natarajan1 <br/>Gérard Medioni3 -<br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b><br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b></td><td>('1756099', 'Tal Hassner', 'tal hassner')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')<br/>('5911467', 'Jungyeon Kim', 'jungyeon kim')<br/>('1689391', 'Jongmoo Choi', 'jongmoo choi')<br/>('35840854', 'Shai Harel', 'shai harel')</td><td></td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td></td><td></td><td></td></tr><tr><td>84e4b7469f9c4b6c9e73733fa28788730fd30379</td><td>Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 +<br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b><br/><b>Institute for Robotics and Intelligent Systems, USC, CA, USA</b></td><td>('1756099', 'Tal Hassner', 'tal hassner')<br/>('11269472', 'Iacopo Masi', 'iacopo masi')<br/>('5911467', 'Jungyeon Kim', 'jungyeon kim')<br/>('1689391', 'Jongmoo Choi', 'jongmoo choi')<br/>('35840854', 'Shai Harel', 'shai harel')</td><td></td></tr><tr><td>8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2</td><td>Consensual and Privacy-Preserving Sharing of +<br/>Multi-Subject and Interdependent Data +<br/>EPFL, UNIL–HEC Lausanne +<br/>K´evin Huguenin +<br/>UNIL–HEC Lausanne +<br/>EPFL +<br/>EPFL +</td><td>('1862343', 'Alexandra-Mihaela Olteanu', 'alexandra-mihaela olteanu')<br/>('2461431', 'Italo Dacosta', 'italo dacosta')<br/>('1757221', 'Jean-Pierre Hubaux', 'jean-pierre hubaux')</td><td>alexandramihaela.olteanu@epfl.ch +<br/>kevin.huguenin@unil.ch +<br/>italo.dacosta@epfl.ch +<br/>jean-pierre.hubaux@epfl.ch +</td></tr><tr><td>841855205818d3a6d6f85ec17a22515f4f062882</td><td>Low Resolution Face Recognition in the Wild +<br/>Patrick Flynn1 +<br/>1Department of Computer Science and Engineering +<br/><b>University of Notre Dame</b><br/>2Department of Computer Science +<br/>Pontificia Universidad Cat´olica de Chile +</td><td>('50492554', 'Pei Li', 'pei li')<br/>('47522390', 'Loreto Prieto', 'loreto prieto')<br/>('1797475', 'Domingo Mery', 'domingo mery')</td><td></td></tr><tr><td>84c0f814951b80c3b2e39caf3925b56a9b2e1733</td><td>Manifesto from Dagstuhl Perspectives Workshop 12382 +<br/>Computation and Palaeography: Potentials and Limits∗ +<br/>Edited by +<br/><b>The Open University of</b><br/><b>University of Nebraska Lincoln, USA</b><br/><b>King s College London, UK</b><br/><b>The Blavatnik School of Computer Science, Tel Aviv University, IL</b></td><td>('1756099', 'Tal Hassner', 'tal hassner')<br/>('34564710', 'Malte Rehbein', 'malte rehbein')<br/>('34876976', 'Peter A. Stokes', 'peter a. stokes')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td>Israel, IL, hassner@openu.ac.il +<br/>malte.rehbein@unl.edu +<br/>peter.stokes@kcl.ac.uk +<br/>wolf@cs.tau.ac.il +</td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td></td><td></td><td></td></tr><tr><td>84e4b7469f9c4b6c9e73733fa28788730fd30379</td><td>Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 <br/>DOI 10.1186/s13634-017-0521-9 <br/>EURASIP Journal on Advances <br/>in Signal Processing @@ -32367,6 +41620,13 @@ <br/>Usage of affective computing in recommender systems <br/>Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc <br/><b>University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia</b></td><td></td><td>E-mail: marko.tkalcic@fe.uni-lj.si +</td></tr><tr><td>84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1</td><td>Improved Boosting Performance by Explicit +<br/>Handling of Ambiguous Positive Examples +</td><td>('1750517', 'Miroslav Kobetski', 'miroslav kobetski')<br/>('1736906', 'Josephine Sullivan', 'josephine sullivan')</td><td></td></tr><tr><td>84508e846af3ac509f7e1d74b37709107ba48bde</td><td>Use of the Septum as a Reference Point in a Neurophysiologic Approach to +<br/>Facial Expression Recognition +<br/>Department of Computer Engineering, Faculty of Engineering, +<br/><b>Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand</b><br/>Telephone: (66)080-7045015, (66)074-287-357 +</td><td>('38928684', 'Igor Stankovic', 'igor stankovic')<br/>('2799130', 'Montri Karnjanadecha', 'montri karnjanadecha')</td><td>E-mail: bizmut@neobee.net, montri@coe.psu.ac.th </td></tr><tr><td>841a5de1d71a0b51957d9be9d9bebed33fb5d9fa</td><td>5017 <br/>PCANet: A Simple Deep Learning Baseline for <br/>Image Classification? @@ -32411,6 +41671,10 @@ </td><td>('30834050', 'Prutha Date', 'prutha date')<br/>('2116290', 'Ashwinkumar Ganesan', 'ashwinkumar ganesan')<br/>('1756624', 'Tim Oates', 'tim oates')</td><td>dprutha1@umbc.edu <br/>gashwin1@umbc.edu <br/>oates@cs.umbc.edu +</td></tr><tr><td>849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b</td><td>Detecting Faces Using Region-based Fully +<br/>Convolutional Networks +<br/>Tencent AI Lab, China +</td><td>('1996677', 'Yitong Wang', 'yitong wang')</td><td>{yitongwang,denisji,encorezhou,hawelwang,michaelzfli}@tencent.com </td></tr><tr><td>846c028643e60fefc86bae13bebd27341b87c4d1</td><td>Face Recognition Under Varying Illumination <br/>Based on MAP Estimation Incorporating <br/>Correlation Between Surface Points @@ -32444,10 +41708,20 @@ <br/>Thesis supervisors <br/>Prof. Dr. Horst Bischof <br/>Prof. Dr. Fernando De la Torre -</td><td>('1993853', 'Martin Köstinger', 'martin köstinger')</td><td></td></tr><tr><td>4a484d97e402ed0365d6cf162f5a60a4d8000ea0</td><td>A Crowdsourcing Approach for Finding Misidentifications of Bibliographic Records +</td><td>('1993853', 'Martin Köstinger', 'martin köstinger')</td><td></td></tr><tr><td>4ab84f203b0e752be83f7f213d7495b04b1c4c79</td><td>CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING +<br/><b>University of S ao Paulo</b><br/><b>Institute of Mathematics and Statistics</b><br/>Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil +<br/>Universit´e de Rouen Normandie +<br/>LITIS EA 4108 +<br/>76800 Saint- ´Etienne-du-Rouvray, France +</td><td>('30146203', 'Rafael Will M. de Araujo', 'rafael will m. de araujo')<br/>('1792962', 'Alain Rakotomamonjy', 'alain rakotomamonjy')</td><td></td></tr><tr><td>4a484d97e402ed0365d6cf162f5a60a4d8000ea0</td><td>A Crowdsourcing Approach for Finding Misidentifications of Bibliographic Records <br/><b>University of Tsukuba</b><br/>2 National Diet Library <br/>3 Doshisha Univeristy -</td><td>('34573158', 'Atsuyuki Morishima', 'atsuyuki morishima')<br/>('32857584', 'Takanori Kawashima', 'takanori kawashima')<br/>('23161591', 'Takashi Harada', 'takashi harada')<br/>('2406721', 'Sho Sato', 'sho sato')</td><td></td></tr><tr><td>4a4da3d1bbf10f15b448577e75112bac4861620a</td><td>FACE, EXPRESSION, AND IRIS RECOGNITION +</td><td>('34573158', 'Atsuyuki Morishima', 'atsuyuki morishima')<br/>('32857584', 'Takanori Kawashima', 'takanori kawashima')<br/>('23161591', 'Takashi Harada', 'takashi harada')<br/>('2406721', 'Sho Sato', 'sho sato')</td><td></td></tr><tr><td>4a3758f283b7c484d3f164528d73bc8667eb1591</td><td>Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial +<br/>Networks +<br/>Center for Research on Intelligent Perception and Computing, CASIA +<br/>National Laboratory of Pattern Recognition, CASIA +</td><td>('1860829', 'Yunfan Liu', 'yunfan liu')<br/>('1682467', 'Qi Li', 'qi li')<br/>('1757186', 'Zhenan Sun', 'zhenan sun')</td><td>yunfan,liu@cripac.ia.ac.cn, {qli, znsun}@nlpr.ia.ac.cn +</td></tr><tr><td>4a4da3d1bbf10f15b448577e75112bac4861620a</td><td>FACE, EXPRESSION, AND IRIS RECOGNITION <br/>USING LEARNING-BASED APPROACHES <br/>by <br/>A dissertation submitted in partial fulfillment of @@ -32458,7 +41732,13 @@ <br/><b>UNIVERSITY OF WISCONSIN MADISON</b><br/>2006 </td><td>('1822413', 'Guodong Guo', 'guodong guo')</td><td></td></tr><tr><td>4abd49538d04ea5c7e6d31701b57ea17bc349412</td><td>Recognizing Fine-Grained and Composite Activities <br/>using Hand-Centric Features and Script Data -</td><td>('34849128', 'Marcus Rohrbach', 'marcus rohrbach')<br/>('40404576', 'Sikandar Amin', 'sikandar amin')</td><td></td></tr><tr><td>4a0f98d7dbc31497106d4f652968c708f7da6692</td><td>Real-time Eye Gaze Direction Classification Using +</td><td>('34849128', 'Marcus Rohrbach', 'marcus rohrbach')<br/>('40404576', 'Sikandar Amin', 'sikandar amin')</td><td></td></tr><tr><td>4aa093d1986b4ad9b073ac9edfb903f62c00e0b0</td><td>Facial Recognition with +<br/>Encoded Local Projections +<br/>Mechanincal and Mechatronics Engineering +<br/><b>University of Waterloo</b><br/>Waterloo, Canada +<br/>Kimia Lab +<br/><b>University of Waterloo</b><br/>Waterloo, Canada +</td><td>('34139904', 'Dhruv Sharma', 'dhruv sharma')<br/>('7641396', 'Sarim Zafar', 'sarim zafar')<br/>('38685017', 'Morteza Babaie', 'morteza babaie')</td><td></td></tr><tr><td>4a0f98d7dbc31497106d4f652968c708f7da6692</td><td>Real-time Eye Gaze Direction Classification Using <br/>Convolutional Neural Network </td><td>('3110004', 'Anjith George', 'anjith george')<br/>('2680543', 'Aurobinda Routray', 'aurobinda routray')</td><td></td></tr><tr><td>4aabd6db4594212019c9af89b3e66f39f3108aac</td><td><b>University of Colorado, Boulder</b><br/>CU Scholar <br/>Undergraduate Honors Theses @@ -32566,6 +41846,11 @@ <br/>Center for Automation Research (CfAR) <br/>Department of Electrical and Computer Engineering <br/><b>University of Maryland, College Park, MD</b></td><td>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{shaohua, rama}@cfar.umd.edu +</td></tr><tr><td>4ac3cd8b6c50f7a26f27eefc64855134932b39be</td><td>Robust Facial Landmark Detection +<br/>via a Fully-Convolutional Local-Global Context Network +<br/><b>Technical University of Munich</b></td><td>('3044182', 'Daniel Merget', 'daniel merget')<br/>('28096417', 'Matthias Rock', 'matthias rock')<br/>('46343645', 'Gerhard Rigoll', 'gerhard rigoll')</td><td>daniel.merget@tum.de +<br/>matthias.rock@tum.de +<br/>mmk@ei.tum.de </td></tr><tr><td>4abaebe5137d40c9fcb72711cdefdf13d9fc3e62</td><td>Dimension Reduction for Regression <br/>with Bottleneck Neural Networks <br/><b>BECS, Aalto University School of Science and Technology, Finland</b></td><td>('2504988', 'Elina Parviainen', 'elina parviainen')</td><td></td></tr><tr><td>4acd683b5f91589002e6f50885df51f48bc985f4</td><td>BRIDGING COMPUTER VISION AND SOCIAL SCIENCE : A MULTI-CAMERA VISION @@ -32583,7 +41868,9 @@ </td><td>('35220006', 'Claudio Ferrari', 'claudio ferrari')<br/>('2973738', 'Giuseppe Lisanti', 'giuseppe lisanti')<br/>('2507859', 'Stefano Berretti', 'stefano berretti')<br/>('8196487', 'Alberto Del Bimbo', 'alberto del bimbo')</td><td></td></tr><tr><td>4a6fcf714f663618657effc341ae5961784504c7</td><td>Scaling up Class-Specific Kernel Discriminant <br/>Analysis for large-scale Face Verification </td><td>('9219875', 'Moncef Gabbouj', 'moncef gabbouj')</td><td></td></tr><tr><td>24b37016fee57057cf403fe2fc3dda78476a8262</td><td>Automatic Recognition of Eye Blinking in Spontaneously Occurring Behavior -<br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh, PA</b><br/><b>University of Pittsburgh, Pittsburgh</b></td><td>('1683262', 'Tsuyoshi Moriyama', 'tsuyoshi moriyama')<br/>('1724419', 'Jing Xiao', 'jing xiao')</td><td></td></tr><tr><td>24c442ac3f6802296d71b1a1914b5d44e48b4f29</td><td>Pose and expression-coherent face recovery in the wild +<br/><b>Robotics Institute, Carnegie Mellon University, Pittsburgh, PA</b><br/><b>University of Pittsburgh, Pittsburgh</b></td><td>('1683262', 'Tsuyoshi Moriyama', 'tsuyoshi moriyama')<br/>('1724419', 'Jing Xiao', 'jing xiao')</td><td></td></tr><tr><td>24115d209e0733e319e39badc5411bbfd82c5133</td><td>Long-term Recurrent Convolutional Networks for +<br/>Visual Recognition and Description +</td><td>('7408951', 'Jeff Donahue', 'jeff donahue')<br/>('2234342', 'Lisa Anne Hendricks', 'lisa anne hendricks')<br/>('34849128', 'Marcus Rohrbach', 'marcus rohrbach')<br/>('1811430', 'Subhashini Venugopalan', 'subhashini venugopalan')<br/>('1687120', 'Sergio Guadarrama', 'sergio guadarrama')<br/>('2903226', 'Kate Saenko', 'kate saenko')<br/>('1753210', 'Trevor Darrell', 'trevor darrell')</td><td></td></tr><tr><td>24c442ac3f6802296d71b1a1914b5d44e48b4f29</td><td>Pose and expression-coherent face recovery in the wild <br/>Technicolor, Cesson-S´evign´e, France <br/>Franc¸ois Le Clerc <br/>Patrick P´erez @@ -32814,10 +42101,13 @@ <br/>yichenw@microsoft.com <br/>shuangliang@tongji.edu.cn <br/>pingtan@sfu.ca +</td></tr><tr><td>24f022d807352abf071880877c38e53a98254dcd</td><td>Are screening methods useful in feature selection? An +<br/>empirical study +<br/><b>Florida State University, Tallahassee, Florida, U.S.A</b></td><td>('6693611', 'Mingyuan Wang', 'mingyuan wang')<br/>('2455529', 'Adrian Barbu', 'adrian barbu')</td><td>* abarbu@stat.fsu.edu </td></tr><tr><td>241d2c517dbc0e22d7b8698e06ace67de5f26fdf</td><td>Online, Real-Time Tracking <br/>Using a Category-to-Individual Detector(cid:2) <br/><b>California Institute of Technology, USA</b></td><td>('1990633', 'David Hall', 'david hall')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td>{dhall,perona}@vision.caltech.edu -</td></tr><tr><td>24e6a28c133b7539a57896393a79d43dba46e0f6</td><td>ROBUST BAYESIAN METHOD FOR SIMULTANEOUS BLOCK SPARSE SIGNAL +</td></tr><tr><td>24869258fef8f47623b5ef43bd978a525f0af60e</td><td><b>UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur</b></td><td></td><td></td></tr><tr><td>24e6a28c133b7539a57896393a79d43dba46e0f6</td><td>ROBUST BAYESIAN METHOD FOR SIMULTANEOUS BLOCK SPARSE SIGNAL <br/>RECOVERY WITH APPLICATIONS TO FACE RECOGNITION <br/>Department of Electrical and Computer Engineering <br/><b>University of California, San Diego</b></td><td>('32352411', 'Igor Fedorov', 'igor fedorov')<br/>('3291075', 'Ritwik Giri', 'ritwik giri')<br/>('1748319', 'Bhaskar D. Rao', 'bhaskar d. rao')<br/>('1690269', 'Truong Q. Nguyen', 'truong q. nguyen')</td><td></td></tr><tr><td>248db911e3a6a63ecd5ff6b7397a5d48ac15e77a</td><td>Enriching Texture Analysis with Semantic Data @@ -32849,7 +42139,10 @@ <br/>Methods Based on SVM <br/><b>Ural Federal University (UrFU</b><br/>Yekaterinburg, Russia </td><td>('11063038', 'Daniil Belkov', 'daniil belkov')<br/>('3457868', 'Konstantin Purtov', 'konstantin purtov')</td><td>d.d.belkov, k.s.purtov@gmail.com, kublanov@mail.ru -</td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Facial Action Unit Detection: 3D versus 2D Modality +</td></tr><tr><td>24ff832171cb774087a614152c21f54589bf7523</td><td>Beat-Event Detection in Action Movie Franchises +<br/>Jerome Revaud +<br/>Zaid Harchaoui +</td><td>('2319574', 'Danila Potapov', 'danila potapov')<br/>('3271933', 'Matthijs Douze', 'matthijs douze')<br/>('2462253', 'Cordelia Schmid', 'cordelia schmid')</td><td></td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Facial Action Unit Detection: 3D versus 2D Modality <br/>Electrical and Electronics Engineering <br/><b>Bo gazic i University, Istanbul, Turkey</b><br/>B¨ulent Sankur <br/>Electrical and Electronics Engineering @@ -32879,6 +42172,8 @@ </td><td>('3033284', 'Barbara Caputo', 'barbara caputo')<br/>('1749692', 'Vittorio Ferrari', 'vittorio ferrari')</td><td>jluo@idiap.ch <br/>bcaputo@idiap.ch <br/>ferrari@vision.ee.ethz.ch +</td></tr><tr><td>23ce6f404c504592767b8bec7d844d87b462de71</td><td>A Deep Face Identification Network Enhanced by Facial Attributes Prediction +<br/><b>West Virginia University</b></td><td>('34708406', 'Fariborz Taherkhani', 'fariborz taherkhani')<br/>('8147588', 'Nasser M. Nasrabadi', 'nasser m. nasrabadi')</td><td>ft0009@mix.wvu.edu, nasser.nasrabadi@mail.wvu.edu, Jeremy.Dawson@mail.wvu.edu </td></tr><tr><td>23fd653b094c7e4591a95506416a72aeb50a32b5</td><td>Emotion Recognition using Fuzzy Rule-based System <br/>International Journal of Computer Applications (0975 – 8887) <br/>Volume 93 – No.11, May 2014 @@ -33013,7 +42308,19 @@ <br/>formulated as <br/>(x, y) = A(x, y) × L(x, y) <br/>(1) -</td><td>('1688667', 'Chuan-Xian Ren', 'chuan-xian ren')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('1726138', 'Dao-Qing Dai', 'dao-qing dai')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td></td></tr><tr><td>23e75f5ce7e73714b63f036d6247fa0172d97cb6</td><td>BioMed Central +</td><td>('1688667', 'Chuan-Xian Ren', 'chuan-xian ren')<br/>('1718623', 'Zhen Lei', 'zhen lei')<br/>('1726138', 'Dao-Qing Dai', 'dao-qing dai')<br/>('34679741', 'Stan Z. Li', 'stan z. li')</td><td></td></tr><tr><td>2322ec2f3571e0ddc593c4e2237a6a794c61251d</td><td>Jack, R. E. , Sun, W., Delis, I., Garrod, O. G. B. and Schyns, P. G. (2016) +<br/>Four not six: revealing culturally common facial expressions of +<br/>emotion.Journal of Experimental Psychology: General, 145(6), pp. 708- +<br/>730. (doi:10.1037/xge0000162) +<br/>This is the author’s final accepted version. +<br/>There may be differences between this version and the published version. +<br/>You are advised to consult the publisher’s version if you wish to cite from +<br/>it. +<br/>http://eprints.gla.ac.uk/116592/ +<br/> +<br/>Deposited on: 20 April 2016 +<br/><b>Enlighten Research publications by members of the University of Glasgow</b><br/>http://eprints.gla.ac.uk +</td><td></td><td></td></tr><tr><td>23e75f5ce7e73714b63f036d6247fa0172d97cb6</td><td>BioMed Central <br/>Research <br/>Facial expression (mood) recognition from facial images using <br/>committee neural networks @@ -33028,6 +42335,10 @@ <br/>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), <br/>which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. </td><td>('39890387', 'Saket S Kulkarni', 'saket s kulkarni')<br/>('2484370', 'Narender P Reddy', 'narender p reddy')<br/>('32173165', 'SI Hariharan', 'si hariharan')</td><td>Email: Saket S Kulkarni - saketkulkarni@gmail.com; Narender P Reddy* - npreddy@uakron.edu; SI Hariharan - hari@uakron.edu +</td></tr><tr><td>23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f</td><td>A Domain Based Approach to Social Relation Recognition +<br/><b>Max Planck Institute for Informatics, Saarland Informatics Campus</b><br/>Figure 1: We investigate the recognition of social relations in a domain-based approach. Our study is based on Bugental’s +<br/>social psychology theory [1] that partitions social life into 5 domains from which we derive 16 social relations. +</td><td>('32222907', 'Qianru Sun', 'qianru sun')<br/>('1697100', 'Bernt Schiele', 'bernt schiele')<br/>('1739548', 'Mario Fritz', 'mario fritz')</td><td>{qsun, schiele, mfritz}@mpi-inf.mpg.de </td></tr><tr><td>23aba7b878544004b5dfa64f649697d9f082b0cf</td><td>Locality-Constrained Discriminative Learning and Coding <br/>1Department of Electrical & Computer Engineering, <br/><b>College of Computer and Information Science</b><br/><b>Northeastern University, Boston, MA, USA</b></td><td>('7489165', 'Shuyang Wang', 'shuyang wang')<br/>('37771688', 'Yun Fu', 'yun fu')</td><td>{shuyangwang, yunfu}@ece.neu.edu @@ -33054,6 +42365,10 @@ <br/>the work immediately and investigate your claim. <br/>Downloaded from vbn.aau.dk on: October 11, 2016 <br/> </td><td>('7855312', 'Sergio Escalera', 'sergio escalera')</td><td>If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to +</td></tr><tr><td>2303d07d839e8b20f33d6e2ec78d1353cac256cf</td><td>Squeeze-and-Excitation on Spatial and Temporal +<br/>Deep Feature Space for Action Recognition +<br/><b>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China</b><br/>Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China +</td><td>('2896701', 'Gaoyun An', 'gaoyun an')<br/>('3027947', 'Wen Zhou', 'wen zhou')<br/>('47095962', 'Yuxuan Wu', 'yuxuan wu')<br/>('4464686', 'ZhenXing Zheng', 'zhenxing zheng')<br/>('46398737', 'Yongwen Liu', 'yongwen liu')</td><td>Email:{gyan, 16125155, 16120307, zhxzheng, 17120314}@bjtu.edu.cn </td></tr><tr><td>23d55061f7baf2ffa1c847d356d8f76d78ebc8c1</td><td>Solmaz et al. IPSJ Transactions on Computer Vision and <br/>Applications (2017) 9:22 <br/>DOI 10.1186/s41074-017-0033-4 @@ -33122,15 +42437,136 @@ <br/>layer-by-layer and normally higher layers represent higher-level concept ab- <br/>stractions. Both of the two network paths share the same architecture, e.g., <br/>the same number of convolutional filters and number of middle layers. This -</td><td>('35370244', 'Qiang Chen', 'qiang chen')<br/>('1753492', 'Junshi Huang', 'junshi huang')<br/>('2106286', 'Jian Dong', 'jian dong')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>23a8d02389805854cf41c9e5fa56c66ee4160ce3</td><td>Multimed Tools Appl +</td><td>('35370244', 'Qiang Chen', 'qiang chen')<br/>('1753492', 'Junshi Huang', 'junshi huang')<br/>('2106286', 'Jian Dong', 'jian dong')<br/>('1698982', 'Shuicheng Yan', 'shuicheng yan')</td><td></td></tr><tr><td>23dd8d17ce09c22d367e4d62c1ccf507bcbc64da</td><td>Deep Density Clustering of Unconstrained Faces +<br/>(Supplementary Material) +<br/><b>University of Maryland, College Park</b><br/>A. Mathematical Details +<br/>Let S = {i | 0 < αi < C}. We have the following results: +<br/>nV(cid:88) +<br/>nV(cid:88) +<br/>i=1 +<br/>c∗ = +<br/>w∗ = +<br/>αiΨθ(xi), +<br/>¯R∗ = (cid:107)Ψθ(xs) − c∗(cid:107)2 , +<br/>αiΨθ(xi), +<br/>ρ∗ = w∗T Ψθ(xs), +<br/>where s ∈ S. Substituting into (3) and (4), we obtain +<br/>hSVDD(x) = 2 · hOC-SVM(x) = 2 +<br/>αiK(xi, x) − ρ∗ +<br/>(cid:34) nV(cid:88) +<br/>i=1 +<br/>(1) +<br/>(2) +<br/>(5) +<br/>(6) +<br/>(cid:35) +<br/>(7) +<br/>A.2. Proof of Theorem 1 +<br/>Theorem 1. If 1/nV < ν ≤ 1 and c∗T Ψθ(xs) (cid:54)= 0 for +<br/>some support vector xs, hSVDD(x) defined in (3) is asymp- +<br/>totically a Parzen window density estimator in the feature +<br/>space with Epanechnikov kernel. +<br/>Proof. Given the condition, according to Lemma 1, +<br/>hSVDD(x) is equivalent to hOC-SVM(x) with ρ∗ (cid:54)= 0. From +<br/>the results in [10] and the fact that(cid:80) αi = 1, we obtain: +<br/>(cid:21) +<br/>(cid:20) +<br/>hOC-SVM(x) = +<br/>αi +<br/>1 − 1 +<br/>(cid:107)Ψθ(x) − Ψθ(xi)(cid:107)2 +<br/>(cid:18)(cid:107)Ψθ(x) − Ψθ(xi)(cid:107) +<br/>(cid:19) +<br/>− ρ∗ +<br/>− ρ∗ − 1, +<br/>αiKE +<br/>nV(cid:88) +<br/>nV(cid:88) +<br/>i=1 +<br/>i=1 +<br/>4 (1 − u2), |u| ≤ 1 is the Epanechnikov +<br/>where KE(u) = 3 +<br/>kernel. As a consequence of Proposition 4 in [10] and the +<br/>proof of Proposition 1 in [11], as nV → ∞, the fraction +<br/>of support vector is ν, and the fraction of points with 0 < +<br/>αi < 1/(ν · nV ) vanishes. Therefore, either αi = 0 or +<br/>αi = 1/(ν · nV ). We introduce the notation ¯S = {i | αi = +<br/>ξ(z) +<br/>i=1 +<br/>In this section, we first provide the two core mathe- +<br/>matical formulations and then present detailed proofs for +<br/>Lemma 1 and Theorem 1. +<br/>SVDD formulation: +<br/>(cid:88) +<br/>z∈V (x) +<br/>¯R + +<br/>ν · nV +<br/>min +<br/>c, ¯R, ξ +<br/>s.t. +<br/>(cid:107)Ψθ(z) − c(cid:107)2 ≤ ¯R + ξ(z), +<br/>ξ ≥ 0, ∀z ∈ V (x), +<br/>OC-SVM formulation: +<br/>(cid:88) +<br/>min +<br/>w, ρ, ξ +<br/>s.t. +<br/>(cid:107)w(cid:107)2 + +<br/>ν · nV +<br/>wT Ψθ(z) ≥ ρ − ξz, +<br/>z∈V (x) +<br/>ξz − ρ +<br/>ξz ≥ 0, ∀z ∈ V (x). +<br/>A.1. Proof of Lemma 1 +<br/>Lemma 1. If 1/nV < ν ≤ 1, the SVDD formulation in (1) +<br/>is equivalent to the OC-SVM formulation in (2) when the +<br/>evaluation functions for the two are given by +<br/>hSVDD(x) = ¯R∗ − (cid:107)Ψθ(x) − c∗(cid:107)2 , +<br/>hOC-SVM(x) = w∗T Ψθ(x) − ρ∗, +<br/>(3) +<br/>(4) +<br/>with the correspondence w∗ = c∗, and ρ∗ = c∗T Ψθ(xs), +<br/>where xs is a support vector in (1) that lies on the learned +<br/>enclosing sphere. +<br/>Proof. The condition corresponds to the case 1/nV ≤ C < +<br/>1 in [1] with C = 1/(ν · nV ). We introduce the kernel +<br/>function K(xi, xj) = Ψθ(xi)T Ψθ(xj). Since K(xi, xi) +<br/>is constant in our setting, the same dual formulation for (1) +<br/>and (2) can be written as: +<br/>(cid:88) +<br/>min +<br/>αiαjK(xi, xj) +<br/>s.t. +<br/>0 ≤ αi ≤ C, +<br/>ij +<br/>i=1 +<br/>nV(cid:88) +<br/>αi = 1. +</td><td>('3329881', 'Wei-An Lin', 'wei-an lin')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')</td><td>walin@umd.edu pullpull@cs.umd.edu carlos@cs.umd.edu rama@umiacs.umd.edu +</td></tr><tr><td>23a8d02389805854cf41c9e5fa56c66ee4160ce3</td><td>Multimed Tools Appl <br/>DOI 10.1007/s11042-013-1568-8 <br/>Influence of low resolution of images on reliability <br/>of face detection and recognition <br/>© The Author(s) 2013. This article is published with open access at SpringerLink.com -</td><td>('2553748', 'Tomasz Marciniak', 'tomasz marciniak')<br/>('2009993', 'Radoslaw Weychan', 'radoslaw weychan')<br/>('40397247', 'Adam Dabrowski', 'adam dabrowski')</td><td></td></tr><tr><td>4fd29e5f4b7186e349ba34ea30738af7860cf21f</td><td></td><td></td><td></td></tr><tr><td>4f0d9200647042e41dea71c35eb59e598e6018a7</td><td><b></b><br/>Experiments of Image Retrieval Using Weak Attributes +</td><td>('2553748', 'Tomasz Marciniak', 'tomasz marciniak')<br/>('2009993', 'Radoslaw Weychan', 'radoslaw weychan')<br/>('40397247', 'Adam Dabrowski', 'adam dabrowski')</td><td></td></tr><tr><td>23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e</td><td>Available Online at www.ijcsmc.com +<br/>International Journal of Computer Science and Mobile Computing +<br/>A Monthly Journal of Computer Science and Information Technology +<br/>ISSN 2320–088X +<br/> IJCSMC, Vol. 2, Issue. 4, April 2013, pg.646 – 649 +<br/>RESEARCH ARTICLE +<br/>Modified Approaches on Face Recognition +<br/>By using Multisensory Image +<br/><b>Bharath University, India</b><br/><b>Bharath University, India</b></td><td></td><td></td></tr><tr><td>4f9e00aaf2736b79e415f5e7c8dfebda3043a97d</td><td>Machine Audition: +<br/>Principles, Algorithms +<br/>and Systems +<br/><b>University of Surrey, UK</b><br/>InformatIon scIence reference +<br/>Hershey • New York +</td><td>('46314841', 'WenWu Wang', 'wenwu wang')</td><td></td></tr><tr><td>4fd29e5f4b7186e349ba34ea30738af7860cf21f</td><td></td><td></td><td></td></tr><tr><td>4f0d9200647042e41dea71c35eb59e598e6018a7</td><td><b></b><br/>Experiments of Image Retrieval Using Weak Attributes <br/><b>Columbia University, New York, NY</b></td><td>('1815972', 'Felix X. Yu', 'felix x. yu')<br/>('1725599', 'Rongrong Ji', 'rongrong ji')<br/>('3138710', 'Ming-Hen Tsai', 'ming-hen tsai')<br/>('35984288', 'Guangnan Ye', 'guangnan ye')<br/>('9546964', 'Shih-Fu Chang', 'shih-fu chang')</td><td>yfyuxinnan, rrji, yegng@ee.columbia.edu <br/>xfminghen, sfchangg@cs.columbia.edu -</td></tr><tr><td>4faded442b506ad0f200a608a69c039e92eaff11</td><td><b>STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY</b><br/>FACE RECOGNITION UNDER VARYING +</td></tr><tr><td>4f051022de100241e5a4ba8a7514db9167eabf6e</td><td>Face Parsing via a Fully-Convolutional Continuous +<br/>CRF Neural Network +</td><td>('48207414', 'Lei Zhou', 'lei zhou')<br/>('36300239', 'Zhi Liu', 'zhi liu')<br/>('1706670', 'Xiangjian He', 'xiangjian he')</td><td></td></tr><tr><td>4faded442b506ad0f200a608a69c039e92eaff11</td><td><b>STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY</b><br/>FACE RECOGNITION UNDER VARYING <br/>ILLUMINATION <br/>Master Thesis by <br/>Department : Computer Engineering @@ -33188,11 +42624,30 @@ <br/><b>University of Groningen, The Netherlands</b></td><td>('3405120', 'Jos van de Wolfshaar', 'jos van de wolfshaar')</td><td></td></tr><tr><td>4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7</td><td>Fashion Landmark Detection in the Wild <br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Key Lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced</b><br/>Technology, CAS, China </td><td>('3243969', 'Ziwei Liu', 'ziwei liu')<br/>('1979911', 'Sijie Yan', 'sijie yan')<br/>('1693209', 'Ping Luo', 'ping luo')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>{lz013,siyan,pluo,xtang}@ie.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk -</td></tr><tr><td>4f77a37753c03886ca9c9349723ec3bbfe4ee967</td><td>Localizing Facial Keypoints with Global Descriptor Search, +</td></tr><tr><td>4f4f920eb43399d8d05b42808e45b56bdd36a929</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 123 – No.4, August 2015 +<br/>A Novel Method for 3D Image Segmentation with Fusion +<br/>of Two Images using Color K-means Algorithm +<br/>Neelam Kushwah +<br/>Dept. of CSE +<br/>ITM Universe +<br/>Gwalior +<br/>Priusha Narwariya +<br/>Dept. of CSE +<br/>ITM Universe +<br/>Gwalior +<br/>two +</td><td></td><td></td></tr><tr><td>4f0b8f730273e9f11b2bfad2415485414b96299f</td><td>BDD100K: A Diverse Driving Video Database with +<br/>Scalable Annotation Tooling +<br/>1UC Berkeley +<br/><b>Georgia Institute of Technology</b><br/><b>Peking University</b><br/>4Uber AI Labs +</td><td>('1807197', 'Fisher Yu', 'fisher yu')<br/>('32324034', 'Fangchen Liu', 'fangchen liu')<br/>('8309711', 'Vashisht Madhavan', 'vashisht madhavan')<br/>('1753210', 'Trevor Darrell', 'trevor darrell')</td><td></td></tr><tr><td>4f77a37753c03886ca9c9349723ec3bbfe4ee967</td><td>Localizing Facial Keypoints with Global Descriptor Search, <br/>Neighbour Alignment and Locally Linear Models <br/>1 ´Ecole Polytechnique de Montr´eal, Universit´e de Montr´eal <br/><b>University of Toronto and Recognyz Systems Technologies</b><br/>also focused on emotion recognition in the wild [9]. </td><td>('1972076', 'Christopher Pal', 'christopher pal')<br/>('9422894', 'Sharon Moalem', 'sharon moalem')</td><td>md-kamrul.hasan@polymtl.ca, christohper.pal@polymtl.ca, sharon@recognyz.com +</td></tr><tr><td>4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e</td><td>Deep Density Clustering of Unconstrained Faces +<br/><b>University of Maryland, College Park</b></td><td>('3329881', 'Wei-An Lin', 'wei-an lin')<br/>('36407236', 'Jun-Cheng Chen', 'jun-cheng chen')</td><td>walin@umd.edu pullpull@cs.umd.edu carlos@cs.umd.edu rama@umiacs.umd.edu </td></tr><tr><td>4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a</td><td>DU,CHELLAPPA: VIDEO-BASED FACE RECOGNITION <br/>Video-Based Face Recognition Using the <br/>Intra/Extra-Personal Difference Dictionary @@ -33327,10 +42782,22 @@ </td><td>('7530203', 'Sneha Thakur', 'sneha thakur')</td><td></td></tr><tr><td>8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3</td><td>Cascaded Pose Regression <br/>Piotr Doll´ar <br/><b>California Institute of Technology</b></td><td>('2930640', 'Peter Welinder', 'peter welinder')<br/>('1690922', 'Pietro Perona', 'pietro perona')</td><td>{pdollar,welinder,perona}@caltech.edu -</td></tr><tr><td>8d2c0c9155a1ed49ba576ac0446ec67725468d87</td><td>A Study of Two Image Representations for Head Pose Estimation +</td></tr><tr><td>8de6deefb90fb9b3f7d451b9d8a1a3264b768482</td><td>Multibiometric Systems: Fusion Strategies and +<br/>Template Security +<br/>By +<br/>A Dissertation +<br/>Submitted to +<br/><b>Michigan State University</b><br/>in partial fulfillment of the requirements +<br/>for the degree of +<br/>Doctor of Philosophy +<br/>Department of Computer Science and Engineering +<br/>2008 +</td><td>('34633765', 'Karthik Nandakumar', 'karthik nandakumar')</td><td></td></tr><tr><td>8d2c0c9155a1ed49ba576ac0446ec67725468d87</td><td>A Study of Two Image Representations for Head Pose Estimation <br/>Dept. of Computer Science and Technology, <br/><b>Tsinghua University, Beijing, China</b></td><td>('1968464', 'Ligeng Dong', 'ligeng dong')<br/>('3265275', 'Linmi Tao', 'linmi tao')<br/>('1797002', 'Guangyou Xu', 'guangyou xu')</td><td>dongligeng99@mails.thu.edu.cn, <br/>{linmi, xgy-dcs}@tsinghua.edu.cn +</td></tr><tr><td>8d384e8c45a429f5c5f6628e8ba0d73c60a51a89</td><td>Temporal Dynamic Graph LSTM for Action-driven Video Object Detection +<br/><b>The Hong Kong University of Science and Technology 2 Carneige Mellon University</b></td><td>('38937910', 'Yuan Yuan', 'yuan yuan')</td><td>yyuanad@ust.hk, xiaodan1@cs.cmu.edu, xiaolonw@cs.cmu.edu, dyyeung@cse.ust.hk, abhinavg@cs.cmu.edu </td></tr><tr><td>8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152</td><td>Development of Optical Computer Recognition (OCR) for Monitoring Stress and Emotions in Space <br/><b>Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ</b><br/><b>USA, 2Unit for Experimental Psychiatry, University of Pennsylvania School of Medicine</b><br/>Philadelphia, PA, USA <br/>INTRODUCTION. While in space, astronauts are required to perform mission-critical tasks on very expensive @@ -33383,7 +42850,12 @@ <br/>Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <br/>Terry P. Orlando <br/>Chairman, Department Committee on Graduate Students -</td><td></td><td></td></tr><tr><td>8dbe79830713925affc48d0afa04ed567c54724b</td><td></td><td></td><td></td></tr><tr><td>8d1adf0ac74e901a94f05eca2f684528129a630a</td><td>Facial Expression Recognition Using Facial +</td><td></td><td></td></tr><tr><td>8dcc95debd07ebab1721c53fa50d846fef265022</td><td>MicroExpNet: An Extremely Small and Fast Model For Expression Recognition +<br/>From Frontal Face Images +<br/>˙Ilke C¸ u˘gu, Eren S¸ener, Emre Akbas¸ +<br/><b>Middle East Technical University</b><br/>06800 Ankara, Turkey +</td><td></td><td>{cugu.ilke, sener.eren}@metu.edu.tr, emre@ceng.metu.edu.tr +</td></tr><tr><td>8dbe79830713925affc48d0afa04ed567c54724b</td><td></td><td></td><td></td></tr><tr><td>8d1adf0ac74e901a94f05eca2f684528129a630a</td><td>Facial Expression Recognition Using Facial <br/>Movement Features </td><td></td><td></td></tr><tr><td>8d91f06af4ef65193f3943005922f25dbb483ee4</td><td>Facial Expression Classification Using Rotation <br/>Slepian-based Moment Invariants @@ -33492,7 +42964,15 @@ <br/>Finally, we visualized which features were the most <br/>important for classifying each emotion; the results can be <br/>seen in Figure 4. The figure shows the X and Y -</td><td>('39818775', 'Tom McLaughlin', 'tom mclaughlin')</td><td></td></tr><tr><td>8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff</td><td>Towards large scale multimedia indexing: +</td><td>('39818775', 'Tom McLaughlin', 'tom mclaughlin')</td><td></td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>ChaLearn Looking at People: +<br/>A Review of Events and Resources +<br/>1 Dept. Mathematics and Computer Science, UB, Spain, +<br/>2 Computer Vision Center, UAB, Barcelona, Spain, +<br/><b>EIMT, Open University of Catalonia, Barcelona, Spain</b><br/>4 ChaLearn, California, USA, 5 INAOE, Puebla, Mexico, +<br/>6 Universit´e Paris-Saclay, Paris, France, +<br/>http://chalearnlap.cvc.uab.es +</td><td>('7855312', 'Sergio Escalera', 'sergio escalera')<br/>('1742688', 'Hugo Jair Escalante', 'hugo jair escalante')<br/>('1743797', 'Isabelle Guyon', 'isabelle guyon')</td><td>sergio.escalera.guerrero@gmail.com +</td></tr><tr><td>8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff</td><td>Towards large scale multimedia indexing: <br/>A case study on person discovery in broadcast news <br/><b>Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay</b><br/>3 CNRS, Irisa & Inria Rennes, 4 PUC de Minas Gerais, Belo Horizonte, <br/><b>Universitat Polit cnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine</b></td><td>('39560344', 'Nam Le', 'nam le')<br/>('2578933', 'Hervé Bredin', 'hervé bredin')<br/>('2710421', 'Gabriel Sargent', 'gabriel sargent')<br/>('2613332', 'Miquel India', 'miquel india')<br/>('1794658', 'Paula Lopez-Otero', 'paula lopez-otero')<br/>('1802247', 'Claude Barras', 'claude barras')<br/>('1804407', 'Camille Guinaudeau', 'camille guinaudeau')<br/>('1708671', 'Guillaume Gravier', 'guillaume gravier')<br/>('23556030', 'Gabriel Barbosa da Fonseca', 'gabriel barbosa da fonseca')<br/>('32255257', 'Izabela Lyon Freire', 'izabela lyon freire')<br/>('37401316', 'Gerard Martí', 'gerard martí')<br/>('2585946', 'Josep Ramon Morros', 'josep ramon morros')<br/>('1726311', 'Javier Hernando', 'javier hernando')<br/>('2446815', 'Sylvain Meignier', 'sylvain meignier')<br/>('1719610', 'Jean-Marc Odobez', 'jean-marc odobez')</td><td>nle@idiap.ch,bredin@limsi.fr,gabriel.sargent@irisa.fr,miquel.india@tsc.upc.edu,plopez@gts.uvigo.es @@ -33572,7 +43052,9 @@ <br/>Some results are presented in Figure 1, Table 1 and 2. Figure 1 shows <br/>the improvement in both the affinity matrix and the subspace clustering us- <br/>ing S3C over SSC on a subset of face images of three subjects from the -</td><td>('9171002', 'Chun-Guang Li', 'chun-guang li')<br/>('1745721', 'René Vidal', 'rené vidal')</td><td></td></tr><tr><td>15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb</td><td>Semi-Supervised Classification Using Linear +</td><td>('9171002', 'Chun-Guang Li', 'chun-guang li')<br/>('1745721', 'René Vidal', 'rené vidal')</td><td></td></tr><tr><td>15136c2f94fd29fc1cb6bedc8c1831b7002930a6</td><td>Deep Learning Architectures for Face +<br/>Recognition in Video Surveillance +</td><td>('2805645', 'Saman Bashbaghi', 'saman bashbaghi')<br/>('1697195', 'Eric Granger', 'eric granger')<br/>('1744351', 'Robert Sabourin', 'robert sabourin')<br/>('3046171', 'Mostafa Parchami', 'mostafa parchami')</td><td></td></tr><tr><td>15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb</td><td>Semi-Supervised Classification Using Linear <br/>Neighborhood Propagation <br/><b>Tsinghua University, Beijing 100084, P.R.China</b><br/><b>The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong</b><br/>Semi-Supervised Classi(cid:12)cation <br/>A Toy Example @@ -33785,7 +43267,11 @@ <br/>(b) <br/>1.5 <br/>2.5 -</td><td>('34410258', 'Fei Wang', 'fei wang')<br/>('1688516', 'Jingdong Wang', 'jingdong wang')<br/>('1700883', 'Changshui Zhang', 'changshui zhang')<br/>('7969645', 'Helen C. Shen', 'helen c. shen')</td><td></td></tr><tr><td>159e792096756b1ec02ec7a980d5ef26b434ff78</td><td>Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence +</td><td>('34410258', 'Fei Wang', 'fei wang')<br/>('1688516', 'Jingdong Wang', 'jingdong wang')<br/>('1700883', 'Changshui Zhang', 'changshui zhang')<br/>('7969645', 'Helen C. Shen', 'helen c. shen')</td><td></td></tr><tr><td>15d653972d176963ef0ad2cc582d3b35ca542673</td><td>CSVideoNet: A Real-time End-to-end Learning Framework for +<br/>High-frame-rate Video Compressive Sensing +<br/>School of Computing, Informatics, and Decision Systems Engineering +<br/><b>Arizona State University, Tempe AZ</b></td><td>('47831601', 'Kai Xu', 'kai xu')<br/>('40615963', 'Fengbo Ren', 'fengbo ren')</td><td>{kaixu, renfengbo}@asu.edu +</td></tr><tr><td>159e792096756b1ec02ec7a980d5ef26b434ff78</td><td>Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence <br/>Signed Laplacian Embedding for Supervised Dimension Reduction <br/><b>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University</b><br/><b>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</b></td><td>('1710691', 'Chen Gong', 'chen gong')<br/>('1692693', 'Dacheng Tao', 'dacheng tao')<br/>('39264954', 'Jie Yang', 'jie yang')<br/>('1847070', 'Keren Fu', 'keren fu')</td><td>{goodgongchen, jieyang, fkrsuper}@sjtu.edu.cn <br/>dacheng.tao@uts.edu.au @@ -33840,7 +43326,21 @@ </td><td>('7513255', 'Chi Xu', 'chi xu')<br/>('1689334', 'Yasushi Makihara', 'yasushi makihara')<br/>('12881056', 'Gakuto Ogi', 'gakuto ogi')<br/>('1737850', 'Xiang Li', 'xiang li')<br/>('1715071', 'Yasushi Yagi', 'yasushi yagi')<br/>('6120396', 'Jianfeng Lu', 'jianfeng lu')</td><td></td></tr><tr><td>151481703aa8352dc78e2577f0601782b8c41b34</td><td>Appearance Manifold of Facial Expression <br/><b>Queen Mary, University of London, London E1 4NS, UK</b><br/>Department of Computer Science </td><td>('10795229', 'Caifeng Shan', 'caifeng shan')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')<br/>('2803283', 'Peter W. McOwan', 'peter w. mcowan')</td><td>{cfshan,sgg,pmco}@dcs.qmul.ac.uk -</td></tr><tr><td>1565721ebdbd2518224f54388ed4f6b21ebd26f3</td><td>Face and Landmark Detection by Using Cascade of Classifiers +</td></tr><tr><td>15aa6c457678e25f6bc0e818e5fc39e42dd8e533</td><td></td><td></td><td></td></tr><tr><td>15cf1f17aeba62cd834116b770f173b0aa614bf4</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 77 – No.5, September 2013 +<br/>Facial Expression Recognition using Neural Network with +<br/>Regularized Back-propagation Algorithm +<br/>Research Scholar +<br/>Department of ECE, +<br/><b></b><br/>Phagwara, India +<br/>Assistant Professor +<br/>Department of ECE, +<br/><b></b><br/>Phagwara, India +<br/>Research Scholar +<br/>Department of ECE, +<br/><b>Gyan Ganga Institute of</b><br/>Technology & Sciences, +<br/>Jabalpur, India +</td><td>('35358999', 'Ashish Kumar Dogra', 'ashish kumar dogra')<br/>('50227570', 'Nikesh Bajaj', 'nikesh bajaj')</td><td></td></tr><tr><td>1565721ebdbd2518224f54388ed4f6b21ebd26f3</td><td>Face and Landmark Detection by Using Cascade of Classifiers <br/><b>Eskisehir Osmangazi University</b><br/>Eskisehir, Turkey <br/>Laboratoire Jean Kuntzmann <br/>Grenoble Cedex 9, France @@ -33905,6 +43405,12 @@ <br/>jhtao@nlpr.ia.ac.cn <br/>mhyang@nlpr.ia.ac.cn <br/>yli@nlpr.ia.ac.cn +</td></tr><tr><td>121503705689f46546cade78ff62963574b4750b</td><td>We don’t need no bounding-boxes: +<br/>Training object class detectors using only human verification +<br/><b>University of Edinburgh</b></td><td>('1749373', 'Dim P. Papadopoulos', 'dim p. papadopoulos')<br/>('1823362', 'Jasper R. R. Uijlings', 'jasper r. r. uijlings')<br/>('48716849', 'Frank Keller', 'frank keller')<br/>('1749692', 'Vittorio Ferrari', 'vittorio ferrari')</td><td>dim.papadopoulos@ed.ac.uk +<br/>jrr.uijlings@ed.ac.uk +<br/>keller@inf.ed.ac.uk +<br/>vferrari@inf.ed.ac.uk </td></tr><tr><td>125d82fee1b9fbcc616622b0977f3d06771fc152</td><td>Hierarchical Face Parsing via Deep Learning <br/><b>The Chinese University of Hong Kong</b><br/><b>The Chinese University of Hong Kong</b><br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b></td><td>('1693209', 'Ping Luo', 'ping luo')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>pluo.lhi@gmail.com <br/>xgwang@ee.cuhk.edu.hk @@ -33913,6 +43419,24 @@ <br/>from Multiple Histograms of Oriented Gradients <br/><b>Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen</b><br/>Nijenborgh 9, Groningen, The Netherlands </td><td>('3351361', 'Mahir Faik Karaaba', 'mahir faik karaaba')<br/>('1728531', 'Olarik Surinta', 'olarik surinta')<br/>('1799278', 'Lambert Schomaker', 'lambert schomaker')</td><td>Email: {m.f.karaaba, o.surinta, l.r.b.schomaker, m.a.wiering}@rug.nl +</td></tr><tr><td>1275d6a800f8cf93c092603175fdad362b69c191</td><td>Deep Face Recognition: A Survey +<br/>School of Information and Communication Engineering, +<br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b><br/>still have an inevitable limitation on robustness against the +<br/>complex nonlinear facial appearance variations. +<br/>In general, traditional methods attempted to solve FR prob- +<br/>lem by one or two layer representation, such as filtering +<br/>responses or histogram of the feature codes. The research com- +<br/>munity studied intensively to separately improve the prepro- +<br/>cessing, local descriptors, and feature transformation, which +<br/>improve face recognition accuracy slowly. By the continuous +<br/>improvement of a decade, “shallow” methods only improve the +<br/>accuracy of the LFW benchmark to about 95% [26], which +<br/>indicates that “shallow” methods are insufficient to extract +<br/>stable identity feature against unconstrained facial variations. +<br/>Due to the technical insufficiency, facial recognition systems +<br/>were often reported with unstable performance or failures with +<br/>countless false alarms in real-world applications. +</td><td>('2285767', 'Mei Wang', 'mei wang')<br/>('1774956', 'Weihong Deng', 'weihong deng')</td><td>wm0245@126.com, whdeng@bupt.edu.cn </td></tr><tr><td>126535430845361cd7a3a6f317797fe6e53f5a3b</td><td>Robust Photometric Stereo via Low-Rank Matrix <br/>Completion and Recovery (cid:63) <br/><b>School of Optics and Electronics, Beijing Institute of Technology, Beijing</b><br/><b>Coordinated Science Lab, University of Illinois at Urbana-Champaign</b><br/><b>Key Laboratory of Machine Perception, Peking University, Beijing</b><br/>§Visual Computing Group, Microsoft Research Asia, Beijing @@ -33925,7 +43449,7 @@ <br/>TU M¨unchen <br/>April 5, 2007 </td><td>('2866162', 'Simon Kriegel', 'simon kriegel')</td><td>kriegel@mmer-systems.eu -</td></tr><tr><td>121fe33daf55758219e53249cf8bcb0eb2b4db4b</td><td>CHAKRABARTI et al.: EMPIRICAL CAMERA MODEL +</td></tr><tr><td>1287bfe73e381cc8042ac0cc27868ae086e1ce3b</td><td></td><td></td><td></td></tr><tr><td>121fe33daf55758219e53249cf8bcb0eb2b4db4b</td><td>CHAKRABARTI et al.: EMPIRICAL CAMERA MODEL <br/>An Empirical Camera Model <br/>for Internet Color Vision <br/>http://www.eecs.harvard.edu/~ayanc/ @@ -33937,7 +43461,9 @@ <br/>Cambridge, MA, USA 02139 <br/>2 Department of Computer Science <br/><b>Middlebury College</b><br/>Middlebury, VT, USA 05753 -</td><td>('38534744', 'Ayan Chakrabarti', 'ayan chakrabarti')<br/>('1709053', 'Daniel Scharstein', 'daniel scharstein')</td><td></td></tr><tr><td>120bcc9879d953de7b2ecfbcd301f72f3a96fb87</td><td>Report on the FG 2015 Video Person Recognition Evaluation +</td><td>('38534744', 'Ayan Chakrabarti', 'ayan chakrabarti')<br/>('1709053', 'Daniel Scharstein', 'daniel scharstein')</td><td></td></tr><tr><td>12408baf69419409d228d96c6f88b6bcde303505</td><td>Temporal Tessellation: A Unified Approach for Video Analysis +<br/><b>The Blavatnik School of Computer Science, Tel Aviv University, Israel</b><br/><b>Information Sciences Institute, USC, CA, USA</b><br/><b>The Open University of Israel, Israel</b><br/>4Facebook AI Research +</td><td>('48842639', 'Dotan Kaufman', 'dotan kaufman')<br/>('36813724', 'Gil Levi', 'gil levi')<br/>('1756099', 'Tal Hassner', 'tal hassner')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td></td></tr><tr><td>120bcc9879d953de7b2ecfbcd301f72f3a96fb87</td><td>Report on the FG 2015 Video Person Recognition Evaluation <br/>Zhenhua Feng <br/><b>Colorado State University</b><br/>Fort Collins, CO, USA <br/><b>University of Notre Dame</b><br/>Notre Dame, IN, USA @@ -33955,10 +43481,36 @@ <br/>Graduation research project, june 2012 <br/>Supervised by: Dr. Joost Broekens <br/><b></b></td><td></td><td>mail@barryborsboom.nl +</td></tr><tr><td>12095f9b35ee88272dd5abc2d942a4f55804b31e</td><td>DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild +<br/>Rıza Alp G¨uler1 +<br/>1INRIA-CentraleSup´elec, France +<br/><b>Imperial College London, UK</b><br/>Stefanos Zafeiriou2 +<br/>3Amazon, Berlin, Germany +<br/><b>University College London, UK</b></td><td>('2814229', 'George Trigeorgis', 'george trigeorgis')<br/>('2788012', 'Epameinondas Antonakos', 'epameinondas antonakos')<br/>('2796644', 'Patrick Snape', 'patrick snape')<br/>('48111527', 'Iasonas Kokkinos', 'iasonas kokkinos')</td><td>riza.guler@inria.fr +<br/>2{g.trigeorgis, p.snape, s.zafeiriou}@imperial.ac.uk +<br/>antonak@amazon.com +<br/>i.kokkinos@cs.ucl.ac.uk </td></tr><tr><td>12cd96a419b1bd14cc40942b94d9c4dffe5094d2</td><td>29 <br/>Proceedings of the 5th Workshop on Vision and Language, pages 29–38, <br/>Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics -</td><td></td><td></td></tr><tr><td>12055b8f82d5411f9ad196b60698d76fbd07ac1e</td><td>1475 +</td><td></td><td></td></tr><tr><td>1275852f2e78ed9afd189e8b845fdb5393413614</td><td>A Transfer Learning based Feature-Weak-Relevant Method for +<br/>Image Clustering +<br/><b>Dalian Maritime University</b><br/>Dalian, China +</td><td>('3852923', 'Bo Dong', 'bo dong')<br/>('2860808', 'Xinnian Wang', 'xinnian wang')</td><td>{dukedong,wxn}@dlmu.edu.cn +</td></tr><tr><td>1297ee7a41aa4e8499c7ddb3b1fed783eba19056</td><td><b>University of Nebraska - Lincoln</b><br/>US Army Research +<br/>2015 +<br/>U.S. Department of Defense +<br/>Effects of emotional expressions on persuasion +<br/>Gale Lucas +<br/><b>University of Southern California</b><br/><b>University of Southern California</b><br/><b>University of Southern California</b><br/><b>University of Southern California</b><br/>Follow this and additional works at: http://digitalcommons.unl.edu/usarmyresearch +<br/>Wang, Yuqiong; Lucas, Gale; Khooshabeh, Peter; de Melo, Celso; and Gratch, Jonathan, "Effects of emotional expressions on +<br/>persuasion" (2015). US Army Research. 340. +<br/>http://digitalcommons.unl.edu/usarmyresearch/340 +</td><td>('49416640', 'Yuqiong Wang', 'yuqiong wang')<br/>('2635945', 'Peter Khooshabeh', 'peter khooshabeh')<br/>('1977901', 'Celso de Melo', 'celso de melo')<br/>('1730824', 'Jonathan Gratch', 'jonathan gratch')</td><td>DigitalCommons@University of Nebraska - Lincoln +<br/>University of Southern California, wangyuqiong@ymail.com +<br/>This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has +<br/>been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. +</td></tr><tr><td>12055b8f82d5411f9ad196b60698d76fbd07ac1e</td><td>1475 <br/>Multiview Facial Landmark Localization in RGB-D <br/>Images via Hierarchical Regression <br/>With Binary Patterns @@ -33977,14 +43529,52 @@ <br/>{javier.cruz,thomas.robin,michel.bierlaire}@epfl.ch <br/>gan@zurich.ibm.com <br/>barbara.cerretani@gmail.com +</td></tr><tr><td>120785f9b4952734818245cc305148676563a99b</td><td>Diagnostic automatique de l’état dépressif +<br/>S. Cholet +<br/>H. Paugam-Moisy +<br/>Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540) +<br/>Université des Antilles, Campus de Fouillole - Guadeloupe +<br/>Résumé +<br/>Les troubles psychosociaux sont un problème de santé pu- +<br/>blique majeur, pouvant avoir des conséquences graves sur +<br/>le court ou le long terme, tant sur le plan professionnel que +<br/>personnel ou familial. Le diagnostic de ces troubles doit +<br/>être établi par un professionnel. Toutefois, l’IA (l’Intelli- +<br/>gence Artificielle) peut apporter une contribution en four- +<br/>nissant au praticien une aide au diagnostic, et au patient +<br/>un suivi permanent rapide et peu coûteux. Nous proposons +<br/>une approche vers une méthode de diagnostic automatique +<br/>de l’état dépressif à partir d’observations du visage en +<br/>temps réel, au moyen d’une simple webcam. A partir de +<br/>vidéos du challenge AVEC’2014, nous avons entraîné un +<br/>classifieur neuronal à extraire des prototypes de visages +<br/>selon différentes valeurs du score de dépression de Beck +<br/>(BDI-II). +</td><td></td><td>Stephane.Cholet@univ-antilles.fr </td></tr><tr><td>12692fbe915e6bb1c80733519371bbb90ae07539</td><td>Object Bank: A High-Level Image Representation for Scene <br/>Classification & Semantic Feature Sparsification -<br/><b>Stanford University</b><br/><b>Carnegie Mellon University</b></td><td>('33642044', 'Li-Jia Li', 'li-jia li')<br/>('2888806', 'Hao Su', 'hao su')<br/>('1752601', 'Eric P. Xing', 'eric p. xing')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>12ccfc188de0b40c84d6a427999239c6a379cd66</td><td>Sparse Adversarial Perturbations for Videos +<br/><b>Stanford University</b><br/><b>Carnegie Mellon University</b></td><td>('33642044', 'Li-Jia Li', 'li-jia li')<br/>('2888806', 'Hao Su', 'hao su')<br/>('1752601', 'Eric P. Xing', 'eric p. xing')<br/>('3216322', 'Li Fei-Fei', 'li fei-fei')</td><td></td></tr><tr><td>1251deae1b4a722a2155d932bdfb6fe4ae28dd22</td><td>A Large-scale Attribute Dataset for Zero-shot Learning +<br/>1 National Engineering Laboratory for Video Technology, +<br/>Key Laboratory of Machine Perception (MoE), +<br/>Cooperative Medianet Innovation Center, Shanghai, +<br/><b>School of EECS, Peking University, Beijing, 100871, China</b><br/><b>School of Data Science, Fudan University</b><br/>3 Sinovation Ventures +</td><td>('49217762', 'Bo Zhao', 'bo zhao')<br/>('35782003', 'Yanwei Fu', 'yanwei fu')<br/>('1705512', 'Rui Liang', 'rui liang')<br/>('3165417', 'Jiahong Wu', 'jiahong wu')<br/>('47904050', 'Yonggang Wang', 'yonggang wang')<br/>('36637369', 'Yizhou Wang', 'yizhou wang')</td><td>bozhao, yizhou.wang@pku.edu.cn, yanweifu@fudan.edu.cn +<br/>liangrui, wujiahong, wangyonggang@chuangxin.com +</td></tr><tr><td>12ccfc188de0b40c84d6a427999239c6a379cd66</td><td>Sparse Adversarial Perturbations for Videos <br/>1 Tsinghua National Lab for Information Science and Technology <br/>1 State Key Lab of Intelligent Technology and Systems <br/><b>Tsinghua University</b><br/>1 Center for Bio-Inspired Computing Research </td><td>('2769710', 'Xingxing Wei', 'xingxing wei')<br/>('40062221', 'Jun Zhu', 'jun zhu')<br/>('37409747', 'Hang Su', 'hang su')</td><td>{xwei11, dcszj, suhangss}@mail.tsinghua.edu.cn -</td></tr><tr><td>12c713166c46ac87f452e0ae383d04fb44fe4eb2</td><td></td><td></td><td></td></tr><tr><td>1270044a3fa1a469ec2f4f3bd364754f58a1cb56</td><td>Video-Based Face Recognition Using Probabilistic Appearance Manifolds +</td></tr><tr><td>12c713166c46ac87f452e0ae383d04fb44fe4eb2</td><td></td><td></td><td></td></tr><tr><td>12ebeb2176a5043ad57bc5f3218e48a96254e3e9</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 120 – No.24, June 2015 +<br/>Traffic Road Sign Detection and Recognition for +<br/>Automotive Vehicles +<br/>Zakir Hyder +<br/>Department of Electrical Engineering and +<br/>Department of Electrical Engineering and +<br/><b>Computer Science North South University, Dhaka</b><br/><b>Computer Science North South University, Dhaka</b><br/>Bangladesh +<br/>Bangladesh +</td><td></td><td></td></tr><tr><td>1270044a3fa1a469ec2f4f3bd364754f58a1cb56</td><td>Video-Based Face Recognition Using Probabilistic Appearance Manifolds <br/>yComputer Science <br/>Urbana, IL 61801 <br/>zComputer Science & Engineering @@ -34211,7 +43801,9 @@ <br/>Xerox Research Centre Europe </td><td>('2295553', 'Diane Larlus', 'diane larlus')<br/>('1687524', 'Andrea Vedaldi', 'andrea vedaldi')</td><td>{david,andrea}@robots.ox.ac.uk <br/>diane.larlus@xrce.xerox.com -</td></tr><tr><td>8c6b9c9c26ead75ce549a57c4fd0a12b46142848</td><td>Facial expression recognition using shape and +</td></tr><tr><td>8ccde9d80706a59e606f6e6d48d4260b60ccc736</td><td>RotDCF: Decomposition of Convolutional Filters for +<br/>Rotation-Equivariant Deep Networks +<br/><b>Duke University</b><br/><b>Duke University</b></td><td>('1823644', 'Xiuyuan Cheng', 'xiuyuan cheng')<br/>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('1699339', 'Guillermo Sapiro', 'guillermo sapiro')</td><td></td></tr><tr><td>8c6b9c9c26ead75ce549a57c4fd0a12b46142848</td><td>Facial expression recognition using shape and <br/>texture information <br/>I. Kotsia1 and I. Pitas1 <br/><b>Aristotle University of Thessaloniki</b><br/>Department of Informatics @@ -34245,6 +43837,12 @@ <br/>as the di(cid:11)erence of Candide facial model grid node coordinates between the <br/>(cid:12)rst and the last frame of a video sequence [?]. The decision made regarding </td><td></td><td>pitas@aiia.csd.auth.gr +</td></tr><tr><td>8ce9b7b52d05701d5ef4a573095db66ce60a7e1c</td><td>Structured Sparse Subspace Clustering: A Joint +<br/>Affinity Learning and Subspace Clustering +<br/>Framework +</td><td>('9171002', 'Chun-Guang Li', 'chun-guang li')<br/>('1878841', 'Chong You', 'chong you')</td><td></td></tr><tr><td>8cb6daba2cb1e208e809633133adfee0183b8dd2</td><td>Know Before You Do: Anticipating Maneuvers +<br/>via Learning Temporal Driving Models +<br/><b>Cornell University and Stanford University</b></td><td>('1726066', 'Ashesh Jain', 'ashesh jain')<br/>('3282281', 'Bharad Raghavan', 'bharad raghavan')<br/>('1681995', 'Ashutosh Saxena', 'ashutosh saxena')</td><td>{ashesh,hema,asaxena}@cs.cornell.edu {bharad,shanesoh}@stanford.edu </td></tr><tr><td>8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82</td><td>Article <br/>Gated Convolutional Neural Network for Semantic <br/>Segmentation in High-Resolution Images @@ -34281,7 +43879,20 @@ </td><td>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')<br/>('7855312', 'Sergio Escalera', 'sergio escalera')</td><td></td></tr><tr><td>85041e48b51a2c498f22850ce7228df4e2263372</td><td>Subspace Regression: Predicting <br/>a Subspace from One Sample <br/><b>Robotics Institute, Carnegie Mellon University</b><br/>‡ Electrical & Controls Integration Lab, General Motors R&D -</td><td>('34299925', 'Minyoung Kim', 'minyoung kim')</td><td></td></tr><tr><td>857ad04fca2740b016f0066b152bd1fa1171483f</td><td>Sample Images can be Independently Restored from +</td><td>('34299925', 'Minyoung Kim', 'minyoung kim')</td><td></td></tr><tr><td>85fd2bda5eb3afe68a5a78c30297064aec1361f6</td><td>702003 PSSXXX10.1177/0956797617702003Carr et al.Are You Smiling, or Have I Seen You Before? +<br/>research-article2017 +<br/>Research Article +<br/>Are You Smiling, or Have I Seen You +<br/>Before? Familiarity Makes Faces Look +<br/>Happier +<br/>2017, Vol. 28(8) 1087 –1102 +<br/>© The Author(s) 2017 +<br/>Reprints and permissions: +<br/>sagepub.com/journalsPermissions.nav +<br/>DOI: 10.1177/0956797617702003 +<br/>https://doi.org/10.1177/0956797617702003 +<br/>www.psychologicalscience.org/PS +<br/><b>Columbia Business School, University of California, San Diego</b><br/><b>Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology</b><br/><b>SWPS University of Social Sciences and Humanities</b></td><td>('5907729', 'Evan W. Carr', 'evan w. carr')<br/>('3122131', 'Piotr Winkielman', 'piotr winkielman')</td><td></td></tr><tr><td>857ad04fca2740b016f0066b152bd1fa1171483f</td><td>Sample Images can be Independently Restored from <br/> Face Recognition Templates <br/><b>School of Information Technology and Engineering, University of Ottawa, Ontario, Canada</b><br/>are being piloted or implemented at airports, for <br/>government identification systems such as passports @@ -34334,7 +43945,15 @@ <br/>ADJUSTABLE CORE SIZE </td><td>('2424633', 'BILIAN CHEN', 'bilian chen')<br/>('1792785', 'ZHENING LI', 'zhening li')<br/>('1789588', 'SHUZHONG ZHANG', 'shuzhong zhang')</td><td></td></tr><tr><td>85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : <br/>France (2008)" -</td><td></td><td></td></tr><tr><td>8518b501425f2975ea6dcbf1e693d41e73d0b0af</td><td>Relative Hidden Markov Models for Evaluating Motion Skills +</td><td></td><td></td></tr><tr><td>858b51a8a8aa082732e9c7fbbd1ea9df9c76b013</td><td>Can Computer Vision Problems Benefit from +<br/>Structured Hierarchical Classification? +<br/>Sandor Szedmak2 +<br/><b>INTELSIG, Monte ore Institute, University of Li`ege, Belgium</b><br/><b>Intelligent and Interactive Systems, Institute of Computer Science, University of</b><br/>Innsbruck, Austria +</td><td>('3104165', 'Thomas Hoyoux', 'thomas hoyoux')<br/>('1772389', 'Justus H. Piater', 'justus h. piater')</td><td></td></tr><tr><td>856317f27248cdb20226eaae599e46de628fb696</td><td>A Method Based on Convex Cone Model for +<br/>Image-Set Classification with CNN Features +<br/><b>Graduate School of Systems and Information Engineering, University of Tsukuba</b><br/>1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan +</td><td>('46230115', 'Naoya Sogi', 'naoya sogi')<br/>('2334316', 'Taku Nakayama', 'taku nakayama')<br/>('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')</td><td>Email: {sogi, nakayama}@cvlab.cs.tsukuba.ac.jp, kfukui@cs.tsukuba.ac.jp +</td></tr><tr><td>8518b501425f2975ea6dcbf1e693d41e73d0b0af</td><td>Relative Hidden Markov Models for Evaluating Motion Skills <br/>Computer Science and Engineering <br/>Arizona State Univerisity, Tempe, AZ 85281 </td><td>('1689161', 'Qiang Zhang', 'qiang zhang')<br/>('2913552', 'Baoxin Li', 'baoxin li')</td><td>qzhang53,baoxin.li@asu.edu @@ -34419,7 +44038,10 @@ <br/> Department of computer science <br/><b>Raipur institute of technology</b><br/> Raipur, India </td><td>('1977125', 'Vivek Verma', 'vivek verma')</td><td>E-mail: vivekverma.exe@gmail.com -</td></tr><tr><td>1d97735bb0f0434dde552a96e1844b064af08f62</td><td>Weber Binary Pattern and Weber Ternary Pattern +</td></tr><tr><td>1d776bfe627f1a051099997114ba04678c45f0f5</td><td>Deployment of Customized Deep Learning based +<br/>Video Analytics On Surveillance Cameras +<br/>AitoeLabs (www.aitoelabs.com) +</td><td>('46175439', 'Pratik Dubal', 'pratik dubal')<br/>('22549601', 'Rohan Mahadev', 'rohan mahadev')<br/>('9745898', 'Suraj Kothawade', 'suraj kothawade')<br/>('46208440', 'Kunal Dargan', 'kunal dargan')</td><td></td></tr><tr><td>1d97735bb0f0434dde552a96e1844b064af08f62</td><td>Weber Binary Pattern and Weber Ternary Pattern <br/>for Illumination-Robust Face Recognition <br/><b>Tsinghua University, China</b><br/>Shenzhen Key Laboratory of Information Science and Technology, Guangdong, China </td><td>('35160104', 'Zuodong Yang', 'zuodong yang')<br/>('2312541', 'Yinyan Jiang', 'yinyan jiang')<br/>('40398990', 'Yong Wu', 'yong wu')<br/>('2265693', 'Zongqing Lu', 'zongqing lu')<br/>('1718891', 'Weifeng Li', 'weifeng li')<br/>('2883861', 'Qingmin Liao', 'qingmin liao')</td><td>(cid:3) E-mail: yangzd13@mails.tsinghua.edu.cn @@ -34589,6 +44211,12 @@ </td></tr><tr><td>1de690714f143a8eb0d6be35d98390257a3f4a47</td><td>Face Detection Using Spectral Histograms and SVMs <br/><b>The Florida State University</b><br/>Tallahassee, FL 32306 </td><td>('3209925', 'Christopher A. Waring', 'christopher a. waring')<br/>('1800002', 'Xiuwen Liu', 'xiuwen liu')</td><td>chwaring@cs.fsu.edu liux@cs.fsu.edu +</td></tr><tr><td>1d7df3df839a6aa8f5392310d46b2a89080a3c25</td><td>Large-Margin Softmax Loss for Convolutional Neural Networks +<br/>Meng Yang4 +<br/><b>School of ECE, Peking University 2School of EIE, South China University of Technology</b><br/><b>Carnegie Mellon University 4College of CS and SE, Shenzhen University</b></td><td>('36326884', 'Weiyang Liu', 'weiyang liu')<br/>('2512949', 'Yandong Wen', 'yandong wen')<br/>('1751019', 'Zhiding Yu', 'zhiding yu')</td><td>WYLIU@PKU.EDU.CN +<br/>WEN.YANDONG@MAIL.SCUT.EDU.CN +<br/>YZHIDING@ANDREW.CMU.EDU +<br/>YANG.MENG@SZU.EDU.CN </td></tr><tr><td>1d6c09019149be2dc84b0c067595f782a5d17316</td><td>Encoding Video and Label Priors for Multi-label Video Classification <br/>on YouTube-8M dataset <br/><b>Seoul National University</b><br/><b>Seoul National University</b><br/><b>Seoul National University</b><br/>SK Telecom Video Tech. Lab @@ -34604,7 +44232,33 @@ <br/>INRIA & Laboratoire Jean <br/>Kuntzmann, <br/>655 avenue de l'Europe, Montbonnot 38330, France -</td><td>('2248421', 'Xiaoyang Tan', 'xiaoyang tan')<br/>('1756114', 'Bill Triggs', 'bill triggs')</td><td></td></tr><tr><td>71b376dbfa43a62d19ae614c87dd0b5f1312c966</td><td>The Temporal Connection Between Smiles and Blinks +</td><td>('2248421', 'Xiaoyang Tan', 'xiaoyang tan')<br/>('1756114', 'Bill Triggs', 'bill triggs')</td><td></td></tr><tr><td>1d729693a888a460ee855040f62bdde39ae273af</td><td>Photorealistic Face de-Identification by Aggregating +<br/>Donors’ Face Components +<br/>To cite this version: +<br/>gating Donors’ Face Components. Asian Conference on Computer Vision, Nov 2014, Singapore. +<br/>pp.1-16, 2014. <hal-01070658> +<br/>HAL Id: hal-01070658 +<br/>https://hal.archives-ouvertes.fr/hal-01070658 +<br/>Submitted on 2 Oct 2014 +<br/>HAL is a multi-disciplinary open access +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>lished or not. The documents may come from +<br/>teaching and research institutions in France or +<br/><b>abroad, or from public or private research centers</b><br/>L’archive ouverte pluridisciplinaire HAL, est +<br/>destin´ee au d´epˆot et `a la diffusion de documents +<br/>scientifiques de niveau recherche, publi´es ou non, +<br/>´emanant des ´etablissements d’enseignement et de +<br/>recherche fran¸cais ou ´etrangers, des laboratoires +<br/>publics ou priv´es. +</td><td>('3095534', 'Saleh Mosaddegh', 'saleh mosaddegh')<br/>('3095534', 'Saleh Mosaddegh', 'saleh mosaddegh')</td><td></td></tr><tr><td>1d4c25f9f8f08f5a756d6f472778ab54a7e6129d</td><td>International Journal of Science and Research (IJSR) +<br/>ISSN (Online): 2319-7064 +<br/>Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438 +<br/>An Innovative Mean Approach for Plastic Surgery +<br/>Face Recognition +<br/>1 Student of M.E., Department of Electronics & Telecommunication Engineering, +<br/><b>P. R. Patil College of Engineering, Amravati Maharashtra India</b><br/>2 Assistant Professor, Department of Electronics & Telecommunication Engineering, +<br/><b>P. R. Patil College of Engineering, Amravati Maharashtra India</b></td><td>('2936550', 'Umesh W. Hore', 'umesh w. hore')</td><td></td></tr><tr><td>71b376dbfa43a62d19ae614c87dd0b5f1312c966</td><td>The Temporal Connection Between Smiles and Blinks </td><td>('2048839', 'Laura C. Trutoiu', 'laura c. trutoiu')<br/>('1788773', 'Jessica K. Hodgins', 'jessica k. hodgins')<br/>('1737918', 'Jeffrey F. Cohn', 'jeffrey f. cohn')</td><td></td></tr><tr><td>71b07c537a9e188b850192131bfe31ef206a39a0</td><td>Image and Vision Computing 47 (2016) 3–18 <br/>Contents lists available at ScienceDirect <br/>Image and Vision Computing @@ -34680,7 +44334,13 @@ <br/>of objects from a single input image <br/>1Computer Science and Engineering and Information Technology, Shiraz <br/><b>university, Shiraz, Iran</b><br/>November 17, 2017 -</td><td>('34649340', 'Shima Kamyab', 'shima kamyab')<br/>('2014752', 'Zohreh Azimifar', 'zohreh azimifar')</td><td></td></tr><tr><td>71f36c8e17a5c080fab31fce1ffea9551fc49e47</td><td>Predicting Failures of Vision Systems +</td><td>('34649340', 'Shima Kamyab', 'shima kamyab')<br/>('2014752', 'Zohreh Azimifar', 'zohreh azimifar')</td><td></td></tr><tr><td>7142ac9e4d5498037aeb0f459f278fd28dae8048</td><td>Semi-Supervised Learning for Optical Flow +<br/>with Generative Adversarial Networks +<br/><b>University of California, Merced</b><br/>2Virginia Tech +<br/>3Nvidia Research +</td><td>('2268189', 'Wei-Sheng Lai', 'wei-sheng lai')<br/>('3068086', 'Jia-Bin Huang', 'jia-bin huang')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td>1{wlai24|mhyang}@ucmerced.edu +<br/>2jbhuang@vt.edu +</td></tr><tr><td>71f36c8e17a5c080fab31fce1ffea9551fc49e47</td><td>Predicting Failures of Vision Systems <br/>1Virginia Tech <br/>2Univ. of Texas at Austin <br/>3Univ. of Washington @@ -34688,6 +44348,11 @@ <br/>2jiuling@utexas.edu <br/>3ali@cs.uw.edu <br/>4hebert@ri.cmu.edu +</td></tr><tr><td>7117ed0be436c0291bc6fb6ea6db18de74e2464a</td><td>Under review as a conference paper at ICLR 2017 +<br/>WARPED CONVOLUTIONS: EFFICIENT INVARIANCE TO +<br/>SPATIAL TRANSFORMATIONS +<br/>Visual Geometry Group +<br/><b>University of Oxford</b></td><td>('36478254', 'João F. Henriques', 'joão f. henriques')</td><td>{joao,vedaldi}@robots.ox.ac.uk </td></tr><tr><td>71e6a46b32a8163c9eda69e1badcee6348f1f56a</td><td>Visually Interpreting Names as Demographic Attributes <br/>by Exploiting Click-Through Data <br/><b>National Taiwan University, Taipei, Taiwan</b><br/><b>FX Palo Alto Laboratory, Inc., California, USA</b></td><td>('35081710', 'Yan-Ying Chen', 'yan-ying chen')<br/>('1692811', 'Yin-Hsi Kuo', 'yin-hsi kuo')<br/>('2580465', 'Chun-Che Wu', 'chun-che wu')<br/>('1716836', 'Winston H. Hsu', 'winston h. hsu')</td><td>{yanying,kuonini,kenwu0721}@gmail.com, whsu@ntu.edu.tw @@ -34706,14 +44371,29 @@ <br/>Department of Computer <br/>Science, <br/>Lahore, Pakistan -<br/><b>University of Gujrat, Pakistan</b><br/><b>University of Gujrat, Pakistan</b></td><td>('35637737', 'Muhammad Nabeel Asim', 'muhammad nabeel asim')<br/>('3245405', 'Abdur Rehman', 'abdur rehman')<br/>('1981732', 'Umar Shoaib', 'umar shoaib')</td><td></td></tr><tr><td>716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0</td><td>SMITH & DYER: 3D FACIAL LANDMARK ESTIMATION +<br/><b>University of Gujrat, Pakistan</b><br/><b>University of Gujrat, Pakistan</b></td><td>('35637737', 'Muhammad Nabeel Asim', 'muhammad nabeel asim')<br/>('3245405', 'Abdur Rehman', 'abdur rehman')<br/>('1981732', 'Umar Shoaib', 'umar shoaib')</td><td></td></tr><tr><td>714d487571ca0d676bad75c8fa622d6f50df953b</td><td>eBear: An Expressive Bear-Like Robot +</td><td>('49470290', 'Xiao Zhang', 'xiao zhang')<br/>('2314025', 'Ali Mollahosseini', 'ali mollahosseini')<br/>('29764067', 'Evan Boucher', 'evan boucher')<br/>('1783240', 'Richard M. Voyles', 'richard m. voyles')</td><td></td></tr><tr><td>716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0</td><td>SMITH & DYER: 3D FACIAL LANDMARK ESTIMATION <br/>Pose-Robust 3D Facial Landmark Estimation <br/>from a Single 2D Image <br/>http://www.cs.wisc.edu/~bmsmith <br/>http://www.cs.wisc.edu/~dyer <br/>Department of Computer Sciences <br/><b>University of Wisconsin-Madison</b><br/>Madison, WI USA -</td><td>('2721523', 'Brandon M. Smith', 'brandon m. smith')<br/>('1724754', 'Charles R. Dyer', 'charles r. dyer')</td><td></td></tr><tr><td>71e56f2aebeb3c4bb3687b104815e09bb4364102</td><td>Video Co-segmentation for Meaningful Action Extraction +</td><td>('2721523', 'Brandon M. Smith', 'brandon m. smith')<br/>('1724754', 'Charles R. Dyer', 'charles r. dyer')</td><td></td></tr><tr><td>7143518f847b0ec57a0ff80e0304c89d7e924d9a</td><td>Speeding-up Age Estimation in Intelligent +<br/>Demographics System via Network Optimization +<br/><b>School of Computer and Information, Hefei University of Technology, Hefei, China</b><br/><b>School of Computer Science and Engineering, Nanyang Technological University, Singapore</b></td><td>('49941674', 'Zhenzhen Hu', 'zhenzhen hu')<br/>('7739626', 'Peng Sun', 'peng sun')<br/>('40096128', 'Yonggang Wen', 'yonggang wen')</td><td>huzhen.ice@gmail.com, {sunp0003, ygwen}@ntu.edu.sg +</td></tr><tr><td>710011644006c18291ad512456b7580095d628a2</td><td>Learning Residual Images for Face Attribute Manipulation +<br/>Fujitsu Research & Development Center, Beijing, China. +</td><td>('48157627', 'Wei Shen', 'wei shen')<br/>('2113095', 'Rujie Liu', 'rujie liu')</td><td>{shenwei, rjliu}@cn.fujitsu.com +</td></tr><tr><td>713db3874b77212492d75fb100a345949f3d3235</td><td>Deep Semantic Face Deblurring +<br/><b>Beijing Institute of Technology</b><br/><b>University of California, Merced</b><br/>3Nvidia +<br/>4Google Cloud +<br/>https://sites.google.com/site/ziyishenmi/cvpr18_face_deblur +</td><td>('2182388', 'Ziyi Shen', 'ziyi shen')<br/>('2268189', 'Wei-Sheng Lai', 'wei-sheng lai')<br/>('39001620', 'Tingfa Xu', 'tingfa xu')<br/>('1690538', 'Jan Kautz', 'jan kautz')<br/>('1715634', 'Ming-Hsuan Yang', 'ming-hsuan yang')</td><td></td></tr><tr><td>715b69575dadd7804b4f8ccb419a3ad8b7b7ca89</td><td>1 +<br/>Testing separability and independence of perceptual +<br/>dimensions with general recognition theory: A tutorial and +<br/>new R package (grtools)1 +<br/><b>Florida International University</b><br/><b>University of California, Santa Barbara</b><br/><b>Florida International University</b><br/><b>University of California, Santa Barbara</b></td><td>('2850756', 'Fabian A. Soto', 'fabian a. soto')<br/>('33897174', 'Johnny Fonseca', 'johnny fonseca')<br/>('5854837', 'F. Gregory Ashby', 'f. gregory ashby')</td><td></td></tr><tr><td>71e56f2aebeb3c4bb3687b104815e09bb4364102</td><td>Video Co-segmentation for Meaningful Action Extraction <br/><b>National University of Singapore, Singapore</b><br/><b>National University of Singapore Research Institute, Suzhou, China</b></td><td>('3036190', 'Jiaming Guo', 'jiaming guo')<br/>('3119455', 'Zhuwen Li', 'zhuwen li')<br/>('1809333', 'Steven Zhiying Zhou', 'steven zhiying zhou')</td><td>{guo.jiaming, lizhuwen, eleclf, elezzy}@nus.edu.sg </td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td><b>Helsinki University of Technology Laboratory of Computational Engineering Publications</b><br/>Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja <br/>Espoo 2007 @@ -34737,9 +44417,26 @@ </td><td>('1732556', 'Terry Windeatt', 'terry windeatt')</td><td></td></tr><tr><td>76673de6d81bedd6b6be68953858c5f1aa467e61</td><td>Discovering a Lexicon of Parts and Attributes <br/><b>Toyota Technological Institute at Chicago</b><br/>Chicago, IL 60637, USA </td><td>('35208858', 'Subhransu Maji', 'subhransu maji')</td><td>smaji@ttic.edu +</td></tr><tr><td>76cd5e43df44e389483f23cb578a9015d1483d70</td><td>BORGHI ET AL.: FACE VERIFICATION FROM DEPTH +<br/>Face Verification from Depth using +<br/>Privileged Information +<br/>Department of Engineering +<br/>"Enzo Ferrari" +<br/><b>University of Modena and Reggio</b><br/>Emilia +<br/>Modena, Italy +</td><td>('12010968', 'Guido Borghi', 'guido borghi')<br/>('2035969', 'Stefano Pini', 'stefano pini')<br/>('32044032', 'Filippo Grazioli', 'filippo grazioli')<br/>('1723285', 'Roberto Vezzani', 'roberto vezzani')<br/>('1741922', 'Rita Cucchiara', 'rita cucchiara')</td><td>guido.borghi@unimore.it +<br/>stefano.pini@unimore.it +<br/>filippo.grazioli@unimore.it +<br/>roberto.vezzani@unimore.it +<br/>rita.cucchiara@unimore.it </td></tr><tr><td>7643861bb492bf303b25d0306462f8fb7dc29878</td><td>Speeding up 2D-Warping for Pose-Invariant Face Recognition <br/><b>Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany</b></td><td>('1804963', 'Harald Hanselmann', 'harald hanselmann')<br/>('1685956', 'Hermann Ney', 'hermann ney')</td><td>surname@cs.rwth-aachen.de -</td></tr><tr><td>760a712f570f7a618d9385c0cee7e4d0d6a78ed2</td><td></td><td></td><td></td></tr><tr><td>76ce3d35d9370f0e2e27cfd29ea0941f1462895f</td><td>Hindawi Publishing Corporation +</td></tr><tr><td>760a712f570f7a618d9385c0cee7e4d0d6a78ed2</td><td></td><td></td><td></td></tr><tr><td>76b11c281ac47fe6d95e124673a408ee9eb568e3</td><td>International Journal of Latest Engineering and Management Research (IJLEMR) +<br/>ISSN: 2455-4847 +<br/>www.ijlemr.com || Volume 02 - Issue 03 || March 2017 || PP. 59-71 +<br/>REAL-TIME MULTI VIEW FACE DETECTION AND POSE +<br/>ESTIMATION +<br/><b>U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI</b><br/><b>ALPHA COLLEGE OF ENGINEERING, CHENNAI</b></td><td></td><td></td></tr><tr><td>76ce3d35d9370f0e2e27cfd29ea0941f1462895f</td><td>Hindawi Publishing Corporation <br/>e Scientific World Journal <br/>Volume 2014, Article ID 528080, 13 pages <br/>http://dx.doi.org/10.1155/2014/528080 @@ -34822,7 +44519,18 @@ <br/>”Doctor of Philosophy” <br/>by <br/><b>Submitted to the Senate of the Hebrew University</b><br/>August / 2013 -</td><td>('39161025', 'Alon Zweig', 'alon zweig')</td><td></td></tr><tr><td>76d939f73a327bf1087d91daa6a7824681d76ea1</td><td>A Thermal Facial Emotion Database +</td><td>('39161025', 'Alon Zweig', 'alon zweig')</td><td></td></tr><tr><td>764882e6779fbee29c3d87e00302befc52d2ea8d</td><td>Deep Approximately Orthogonal Nonnegative +<br/>Matrix Factorization for Clustering +<br/>School of Automation +<br/>School of Automation +<br/>School of Automation +<br/><b>Guangdong University of Technology</b><br/><b>Guangdong University of Technology</b><br/><b>Guangdong University of Technology</b><br/>Guangzhou, China +<br/>Guangzhou, China +<br/>Guangzhou, China +</td><td>('30185240', 'Yuning Qiu', 'yuning qiu')<br/>('1764724', 'Guoxu Zhou', 'guoxu zhou')<br/>('2454506', 'Kan Xie', 'kan xie')</td><td>yn.qiu@foxmail.com +<br/>guoxu.zhou@qq.com +<br/>kanxiegdut@gmail.com +</td></tr><tr><td>76d939f73a327bf1087d91daa6a7824681d76ea1</td><td>A Thermal Facial Emotion Database <br/>and Its Analysis <br/><b>Japan Advanced Institute of Science and Technology</b><br/>1-1 Asahidai, Nomi, Ishikawa, Japan <br/><b>University of Science, Ho Chi Minh city</b><br/>227 Nguyen Van Cu, Ho Chi Minh city, Vietnam @@ -34913,7 +44621,34 @@ <br/>EEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS-BAGGENSTOSS <br/>37 </td><td></td><td>RI, 02841, E-mail: (p.m.baggenstoss@ieee.arg). -</td></tr><tr><td>7636f94ddce79f3dea375c56fbdaaa0f4d9854aa</td><td>Appl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012) +</td></tr><tr><td>766728bac030b169fcbc2fbafe24c6e22a58ef3c</td><td>A survey of deep facial landmark detection +<br/>Yongzhe Yan1,2 +<br/>Thierry Chateau1 +<br/>1 Université Clermont Auvergne, France +<br/>2 Wisimage, France +<br/>3 Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France +<br/>Résumé +<br/>La détection de landmarks joue un rôle crucial dans de +<br/>nombreuses applications d’analyse du visage comme la +<br/>reconnaissance de l’identité, des expressions, l’animation +<br/>d’avatar, la reconstruction 3D du visage, ainsi que pour +<br/>les applications de réalité augmentée comme la pose de +<br/>masque ou de maquillage virtuel. L’avènement de l’ap- +<br/>prentissage profond a permis des progrès très importants +<br/>dans ce domaine, y compris sur les corpus non contraints +<br/>(in-the-wild). Nous présentons ici un état de l’art cen- +<br/>tré sur la détection 2D dans une image fixe, et les mé- +<br/>thodes spécifiques pour la vidéo. Nous présentons ensuite +<br/>les corpus existants pour ces trois tâches, ainsi que les mé- +<br/>triques d’évaluations associées. Nous exposons finalement +<br/>quelques résultats, ainsi que quelques pistes de recherche. +<br/>Mots Clef +<br/>Détection de landmark facial, Alignement de visage, Deep +<br/>learning +</td><td>('3015472', 'Xavier Naturel', 'xavier naturel')<br/>('50493659', 'Christophe Garcia', 'christophe garcia')<br/>('48601809', 'Christophe Blanc', 'christophe blanc')<br/>('1762557', 'Stefan Duffner', 'stefan duffner')</td><td>yongzhe.yan@etu.uca.fr +</td></tr><tr><td>7697295ee6fc817296bed816ac5cae97644c2d5b</td><td>Detecting and Recognizing Human-Object Interactions +<br/>Facebook AI Research (FAIR) +</td><td>('2082991', 'Georgia Gkioxari', 'georgia gkioxari')<br/>('39353098', 'Kaiming He', 'kaiming he')</td><td></td></tr><tr><td>7636f94ddce79f3dea375c56fbdaaa0f4d9854aa</td><td>Appl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012) <br/> An International Journal <br/>© 2012 NSP <br/>Applied Mathematics & Information Sciences @@ -34931,7 +44666,9 @@ </td><td>('2470198', 'Jiaolong Xu', 'jiaolong xu')</td><td></td></tr><tr><td>1ce3a91214c94ed05f15343490981ec7cc810016</td><td>Exploring Photobios <br/><b>University of Washington</b><br/>2Adobe Systems† <br/>3Google Inc. -</td><td>('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')<br/>('2177801', 'Eli Shechtman', 'eli shechtman')<br/>('9748713', 'Rahul Garg', 'rahul garg')<br/>('1679223', 'Steven M. Seitz', 'steven m. seitz')</td><td></td></tr><tr><td>1c2724243b27a18a2302f12dea79d9a1d4460e35</td><td>Fisher+Kernel Criterion for Discriminant Analysis* +</td><td>('2419955', 'Ira Kemelmacher-Shlizerman', 'ira kemelmacher-shlizerman')<br/>('2177801', 'Eli Shechtman', 'eli shechtman')<br/>('9748713', 'Rahul Garg', 'rahul garg')<br/>('1679223', 'Steven M. Seitz', 'steven m. seitz')</td><td></td></tr><tr><td>1c9efb6c895917174ac6ccc3bae191152f90c625</td><td>Unifying Identification and Context Learning for Person Recognition +<br/><b>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</b></td><td>('39360892', 'Qingqiu Huang', 'qingqiu huang')<br/>('50446092', 'Yu Xiong', 'yu xiong')<br/>('1807606', 'Dahua Lin', 'dahua lin')</td><td>{hq016, xy017, dhlin}@ie.cuhk.edu.hk +</td></tr><tr><td>1c2724243b27a18a2302f12dea79d9a1d4460e35</td><td>Fisher+Kernel Criterion for Discriminant Analysis* <br/><b>National Laboratory on Machine Perception, Peking University, Beijing, P.R. China</b><br/><b>the Chinese University of Hong Kong, Shatin, Hong Kong</b><br/>3 MOE-Microsoft Key Laboratory of Multimedia Computing and Communication & Department of EEIS, <br/><b>University of Science and Technology of China, Hefei, Anhui, P. R. China</b><br/>4Microsoft Research Asia, Beijing, P.R. China <br/> @@ -34997,7 +44734,11 @@ <br/>11,130 <br/>17,345 <br/>16,721 -</td><td>('1996796', 'Zaeem Hussain', 'zaeem hussain')<br/>('2365530', 'Mingda Zhang', 'mingda zhang')<br/>('3186356', 'Xiaozhong Zhang', 'xiaozhong zhang')<br/>('9085797', 'Keren Ye', 'keren ye')<br/>('40540691', 'Christopher Thomas', 'christopher thomas')<br/>('6004292', 'Zuha Agha', 'zuha agha')<br/>('34493995', 'Nathan Ong', 'nathan ong')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td></td></tr><tr><td>1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee</td><td>Deep fusion of visual signatures +</td><td>('1996796', 'Zaeem Hussain', 'zaeem hussain')<br/>('2365530', 'Mingda Zhang', 'mingda zhang')<br/>('3186356', 'Xiaozhong Zhang', 'xiaozhong zhang')<br/>('9085797', 'Keren Ye', 'keren ye')<br/>('40540691', 'Christopher Thomas', 'christopher thomas')<br/>('6004292', 'Zuha Agha', 'zuha agha')<br/>('34493995', 'Nathan Ong', 'nathan ong')<br/>('1770205', 'Adriana Kovashka', 'adriana kovashka')</td><td></td></tr><tr><td>1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc</td><td>Recognition of Facial Gestures based on Support +<br/>Vector Machines +<br/><b>Faculty of Informatics, University of Debrecen, Hungary</b><br/>H-4010 Debrecen P.O.Box 12. +</td><td>('47547897', 'Attila Fazekas', 'attila fazekas')</td><td>Attila.Fazekas@inf.unideb.hu +</td></tr><tr><td>1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee</td><td>Deep fusion of visual signatures <br/>for client-server facial analysis <br/>Normandie Univ, UNICAEN, <br/>ENSICAEN, CNRS, GREYC @@ -35266,7 +45007,14 @@ <br/>song@iis.sinica.edu.tw </td></tr><tr><td>1c93b48abdd3ef1021599095a1a5ab5e0e020dd5</td><td>JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009 <br/>A Compositional and Dynamic Model for Face Aging -</td><td>('3133970', 'Song-Chun Zhu', 'song-chun zhu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td></td></tr><tr><td>1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16</td><td>Fusion of audio-visual features using hierarchical classifier systems for +</td><td>('3133970', 'Song-Chun Zhu', 'song-chun zhu')<br/>('1685914', 'Shiguang Shan', 'shiguang shan')<br/>('1710220', 'Xilin Chen', 'xilin chen')</td><td></td></tr><tr><td>1c41965c5e1f97b1504c1bdde8037b5e0417da5e</td><td>Interaction-aware Spatio-temporal Pyramid +<br/>Attention Networks for Action Classification +<br/><b>University of Chinese Academy of Sciences</b><br/>2 CAS Center for Excellence in Brain Science and Intelligence Technology, National +<br/><b>Laboratory of Pattern Recognition, Institute of Automation, CAS</b><br/>3 Meitu, 4 National Computer network Emergency Response technical +<br/>Team/Coordination Center of China +</td><td>('1807325', 'Yang Du', 'yang du')<br/>('2034987', 'Chunfeng Yuan', 'chunfeng yuan')<br/>('46708348', 'Bing Li', 'bing li')<br/>('40027215', 'Lili Zhao', 'lili zhao')<br/>('2082374', 'Yangxi Li', 'yangxi li')<br/>('40506509', 'Weiming Hu', 'weiming hu')</td><td>duyang2014@ia.ac.cn,{cfyuan,bli,wmhu}@nlpr.ia.ac.cn, +<br/>lili.zhao@meitu.com, liyangxi@outlook.com +</td></tr><tr><td>1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16</td><td>Fusion of audio-visual features using hierarchical classifier systems for <br/>the recognition of affective states and the state of depression <br/><b>Institute of Neural Information Processing, Ulm University, Ulm, Germany</b><br/>Keywords: <br/>Emotion Recognition, Multiple Classifier Systems, Affective Computing, Information Fusion @@ -35288,7 +45036,7 @@ <br/>Distribution Learning for Age Estimation <br/>Key Lab of Computer Network and Information Integration (Ministry of Education) <br/><b>School of Computer Science and Engineering, Southeast University, Nanjing 211189, China</b></td><td>('2442058', 'Xu Yang', 'xu yang')<br/>('1735299', 'Xin Geng', 'xin geng')<br/>('1725992', 'Deyu Zhou', 'deyu zhou')</td><td>{x.yang,xgeng,d.zhou}@seu.edu.cn -</td></tr><tr><td>82f8652c2059187b944ce65e87bacb6b765521f6</td><td>Discriminative Object Categorization with +</td></tr><tr><td>1c6e22516ceb5c97c3caf07a9bd5df357988ceda</td><td></td><td></td><td></td></tr><tr><td>82f8652c2059187b944ce65e87bacb6b765521f6</td><td>Discriminative Object Categorization with <br/>External Semantic Knowledge <br/>Dissertation Proposal <br/>by @@ -35297,12 +45045,18 @@ <br/>Prof. Kristen Grauman (Advisor) <br/>Prof. Fei Sha <br/>Prof. J. K. Aggarwal -</td><td>('35788904', 'Sung Ju Hwang', 'sung ju hwang')<br/>('1797655', 'Raymond Mooney', 'raymond mooney')<br/>('2302443', 'Pradeep Ravikumar', 'pradeep ravikumar')</td><td></td></tr><tr><td>82bef8481207de9970c4dc8b1d0e17dced706352</td><td></td><td></td><td></td></tr><tr><td>82d2af2ffa106160a183371946e466021876870d</td><td>A Novel Space-Time Representation on the Positive Semidefinite Cone +</td><td>('35788904', 'Sung Ju Hwang', 'sung ju hwang')<br/>('1797655', 'Raymond Mooney', 'raymond mooney')<br/>('2302443', 'Pradeep Ravikumar', 'pradeep ravikumar')</td><td></td></tr><tr><td>82bef8481207de9970c4dc8b1d0e17dced706352</td><td></td><td></td><td></td></tr><tr><td>825f56ff489cdd3bcc41e76426d0070754eab1a8</td><td>Making Convolutional Networks Recurrent for Visual Sequence Learning +<br/>NVIDIA +</td><td>('40058797', 'Xiaodong Yang', 'xiaodong yang')</td><td>{xiaodongy,pmolchanov,jkautz}@nvidia.com +</td></tr><tr><td>82d2af2ffa106160a183371946e466021876870d</td><td>A Novel Space-Time Representation on the Positive Semidefinite Cone <br/>for Facial Expression Recognition <br/>1IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL – <br/>Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France <br/>2Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France. -</td><td>('37809060', 'Anis Kacem', 'anis kacem')<br/>('2909056', 'Mohamed Daoudi', 'mohamed daoudi')<br/>('2125606', 'Boulbaba Ben Amor', 'boulbaba ben amor')</td><td></td></tr><tr><td>82ccd62f70e669ec770daf11d9611cab0a13047e</td><td>Sparse Variation Pattern for Texture Classification +</td><td>('37809060', 'Anis Kacem', 'anis kacem')<br/>('2909056', 'Mohamed Daoudi', 'mohamed daoudi')<br/>('2125606', 'Boulbaba Ben Amor', 'boulbaba ben amor')</td><td></td></tr><tr><td>824d1db06e1c25f7681e46199fd02cb5fc343784</td><td>Representing Relative Visual Attributes +<br/>with a Reference-Point-Based Decision Model +<br/>Marc T. Law +<br/><b>University of Toronto</b><br/><b>Shanghai Jiao Tong University</b><br/><b>University of Michigan-Shanghai Jiao Tong University Joint Institute</b></td><td>('38481975', 'Paul Weng', 'paul weng')</td><td></td></tr><tr><td>82ccd62f70e669ec770daf11d9611cab0a13047e</td><td>Sparse Variation Pattern for Texture Classification <br/>Electrical Engineering Department <br/>Computer Science and Software Engineering <br/>Electrical Engineering Department @@ -35312,7 +45066,10 @@ </td><td>('2014145', 'Mohammad Tavakolian', 'mohammad tavakolian')<br/>('3046235', 'Farshid Hajati', 'farshid hajati')<br/>('1747500', 'Ajmal S. Mian', 'ajmal s. mian')<br/>('2997971', 'Soheila Gheisari', 'soheila gheisari')</td><td>m tavakolian,hajati@tafreshu.ac.ir <br/>ajmal.mian@uwa.edu.au <br/>gheisari.s@iauctb.ac.ir -</td></tr><tr><td>82c303cf4852ad18116a2eea31e2291325bc19c3</td><td>Journal of Image and Graphics, Volume 2, No.1, June, 2014 +</td></tr><tr><td>82eff71af91df2ca18aebb7f1153a7aed16ae7cc</td><td>MSU-AVIS dataset: +<br/>Fusing Face and Voice Modalities for Biometric +<br/>Recognition in Indoor Surveillance Videos +<br/><b>Michigan State University, USA</b><br/><b>Yarmouk University, Jordan</b></td><td>('39617163', 'Anurag Chowdhury', 'anurag chowdhury')<br/>('2447931', 'Yousef Atoum', 'yousef atoum')<br/>('1849929', 'Luan Tran', 'luan tran')<br/>('49543771', 'Xiaoming Liu', 'xiaoming liu')<br/>('1698707', 'Arun Ross', 'arun ross')</td><td></td></tr><tr><td>82c303cf4852ad18116a2eea31e2291325bc19c3</td><td>Journal of Image and Graphics, Volume 2, No.1, June, 2014 <br/>Fusion Based FastICA Method: Facial Expression <br/>Recognition <br/><b>Computer Science, Engineering and Mathematics School, Flinders University, Australia</b></td><td>('3105876', 'Humayra B. Ali', 'humayra b. ali')<br/>('1739260', 'David M W Powers', 'david m w powers')</td><td>Email: {ali0041, david.powers}@flinders.edu.au @@ -35322,7 +45079,26 @@ </td><td></td><td></td></tr><tr><td>82a4a35b2bae3e5c51f4d24ea5908c52973bd5be</td><td>Real-time emotion recognition for gaming using <br/>deep convolutional network features <br/>S´ebastien Ouellet -</td><td></td><td></td></tr><tr><td>82f4e8f053d20be64d9318529af9fadd2e3547ef</td><td>Technical Report: +</td><td></td><td></td></tr><tr><td>82a610a59c210ff77cfdde7fd10c98067bd142da</td><td>UC San Diego +<br/>UC San Diego Electronic Theses and Dissertations +<br/>Title +<br/>Human attention and intent analysis using robust visual cues in a Bayesian framework +<br/>Permalink +<br/>https://escholarship.org/uc/item/1cb8d7vw +<br/>Author +<br/>McCall, Joel Curtis +<br/>Publication Date +<br/>2006-01-01 +<br/>Peer reviewed|Thesis/dissertation +<br/>eScholarship.org +<br/>Powered by the California Digital Library +<br/><b>University of California</b></td><td></td><td></td></tr><tr><td>829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 57– No.20, November 2012 +<br/>A Robust Rotation Invariant Multiview Face Detection in +<br/>Erratic Illumination Condition +<br/>G.Nirmala Priya +<br/>Associate Professor, Department of ECE +<br/><b>Sona College of Technology</b></td><td>('48201570', 'Salem', 'salem')</td><td></td></tr><tr><td>82f4e8f053d20be64d9318529af9fadd2e3547ef</td><td>Technical Report: <br/>Multibiometric Cryptosystems </td><td>('2743820', 'Abhishek Nagar', 'abhishek nagar')<br/>('34633765', 'Karthik Nandakumar', 'karthik nandakumar')<br/>('40437942', 'Anil K. Jain', 'anil k. jain')</td><td></td></tr><tr><td>82b43bc9213230af9db17322301cbdf81e2ce8cc</td><td>Attention-Set based Metric Learning for Video Face Recognition <br/>Center for Research on Intelligent Perception and Computing, @@ -35358,13 +45134,21 @@ <br/>Journal Computer Vision, Vol. 25, No. 1, pp. 23-48, 1997. <br/>10. <br/>Recognition using a State-Based Model of Spatially-Localized Facial -</td><td>('1689298', 'Ahmed', 'ahmed')<br/>('1689298', 'Ahmed', 'ahmed')<br/>('29977973', 'Angle', 'angle')<br/>('20765969', 'Bolle', 'bolle')<br/>('16848439', 'Bourel', 'bourel')</td><td></td></tr><tr><td>82e66c4832386cafcec16b92ac88088ffd1a1bc9</td><td>OpenFace: A general-purpose face recognition +</td><td>('1689298', 'Ahmed', 'ahmed')<br/>('1689298', 'Ahmed', 'ahmed')<br/>('29977973', 'Angle', 'angle')<br/>('20765969', 'Bolle', 'bolle')<br/>('16848439', 'Bourel', 'bourel')</td><td></td></tr><tr><td>82417d8ec8ac6406f2d55774a35af2a1b3f4b66e</td><td>Some faces are more equal than others: +<br/>Hierarchical organization for accurate and +<br/>efficient large-scale identity-based face retrieval +<br/>GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1 +<br/>Technicolor, Rennes, France2 +</td><td>('48467774', 'Binod Bhattarai', 'binod bhattarai')<br/>('2515597', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>82e66c4832386cafcec16b92ac88088ffd1a1bc9</td><td>OpenFace: A general-purpose face recognition <br/>library with mobile applications <br/>June 2016 <br/>CMU-CS-16-118 <br/>School of Computer Science <br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA 15213 -<br/><b>Poznan University of Technology</b></td><td>('1773498', 'Brandon Amos', 'brandon amos')<br/>('1747303', 'Mahadev Satyanarayanan', 'mahadev satyanarayanan')</td><td></td></tr><tr><td>826c66bd182b54fea3617192a242de1e4f16d020</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE +<br/><b>Poznan University of Technology</b></td><td>('1773498', 'Brandon Amos', 'brandon amos')<br/>('1747303', 'Mahadev Satyanarayanan', 'mahadev satyanarayanan')</td><td></td></tr><tr><td>82eb267b8e86be0b444e841b4b4ed4814b6f1942</td><td>Single Image 3D Interpreter Network +<br/><b>Massachusetts Institute of Technology</b><br/><b>Stanford University</b><br/>3Facebook AI Research +<br/>4Google Research +</td><td>('3045089', 'Jiajun Wu', 'jiajun wu')<br/>('3222730', 'Tianfan Xue', 'tianfan xue')<br/>('35198686', 'Joseph J. Lim', 'joseph j. lim')<br/>('39402399', 'Yuandong Tian', 'yuandong tian')<br/>('1763295', 'Joshua B. Tenenbaum', 'joshua b. tenenbaum')<br/>('1690178', 'Antonio Torralba', 'antonio torralba')<br/>('1768236', 'William T. Freeman', 'william t. freeman')</td><td></td></tr><tr><td>826c66bd182b54fea3617192a242de1e4f16d020</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>1602 <br/>ICASSP 2017 </td><td></td><td></td></tr><tr><td>499f1d647d938235e9186d968b7bb2ab20f2726d</td><td>Face Recognition via Archetype Hull Ranking @@ -35392,7 +45176,12 @@ <br/><b>University of Business Agriculture and Technology, Dhaka-1230, Bangladesh</b><br/> </td><td>('2832495', 'Md. Hafizur Rahman', 'md. hafizur rahman')<br/>('2226529', 'Suman Chowdhury', 'suman chowdhury')<br/>('36231591', 'Md. Abul Bashar', 'md. abul bashar')</td><td></td></tr><tr><td>49820ae612b3c0590a8a78a725f4f378cb605cd1</td><td>Evaluation of Smile Detection Methods with <br/>Images in Real-world Scenarios -<br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b></td><td>('22550265', 'Zhoucong Cui', 'zhoucong cui')<br/>('1678529', 'Shuo Zhang', 'shuo zhang')<br/>('23224233', 'Jiani Hu', 'jiani hu')<br/>('1774956', 'Weihong Deng', 'weihong deng')</td><td></td></tr><tr><td>49dd4b359f8014e85ed7c106e7848049f852a304</td><td></td><td></td><td></td></tr><tr><td>49e85869fa2cbb31e2fd761951d0cdfa741d95f3</td><td>253 +<br/><b>Beijing University of Posts and Telecommunications, Beijing, China</b></td><td>('22550265', 'Zhoucong Cui', 'zhoucong cui')<br/>('1678529', 'Shuo Zhang', 'shuo zhang')<br/>('23224233', 'Jiani Hu', 'jiani hu')<br/>('1774956', 'Weihong Deng', 'weihong deng')</td><td></td></tr><tr><td>4972aadcce369a8c0029e6dc2f288dfd0241e144</td><td>Multi-target Unsupervised Domain Adaptation +<br/>without Exactly Shared Categories +</td><td>('2076460', 'Huanhuan Yu', 'huanhuan yu')<br/>('27096523', 'Menglei Hu', 'menglei hu')<br/>('1680768', 'Songcan Chen', 'songcan chen')</td><td></td></tr><tr><td>49dd4b359f8014e85ed7c106e7848049f852a304</td><td></td><td></td><td></td></tr><tr><td>49e975a4c60d99bcc42c921d73f8d89ec7130916</td><td>Human and computer recognition of facial expressions of emotion +<br/>J.M. Susskind a, G. Littlewort b, M.S. Bartlett b, J. Movellan b, A.K. Anderson a,c,∗ +<br/><b>b Machine Perception Laboratory, Institute of Neural Computation, University of California, San Diego, United States</b><br/><b>c Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ont. M6A 2E1, Canada</b><br/><b>University of Toronto, Canada</b><br/>Available online 12 June 2006 +</td><td></td><td></td></tr><tr><td>49e85869fa2cbb31e2fd761951d0cdfa741d95f3</td><td>253 <br/>Adaptive Manifold Learning </td><td>('2923061', 'Zhenyue Zhang', 'zhenyue zhang')<br/>('1697912', 'Jing Wang', 'jing wang')<br/>('1750350', 'Hongyuan Zha', 'hongyuan zha')</td><td></td></tr><tr><td>49659fb64b1d47fdd569e41a8a6da6aa76612903</td><td></td><td></td><td></td></tr><tr><td>490a217a4e9a30563f3a4442a7d04f0ea34442c8</td><td>International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.2, No.4, August 2013 <br/>An SOM-based Automatic Facial Expression @@ -35453,7 +45242,11 @@ <br/>Jiangjing Lv1 <br/><b>Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences</b><br/><b>University of Chinese Academy of Sciences</b><br/><b>Institute of Automation, Chinese Academy of Sciences</b></td><td>('3492237', 'Xiaohu Shao', 'xiaohu shao')<br/>('1757173', 'Junliang Xing', 'junliang xing')<br/>('2095535', 'Cheng Cheng', 'cheng cheng')<br/>('39959302', 'Xi Zhou', 'xi zhou')</td><td>{lvjiangjing,shaoxiaohu,chengcheng,zhouxi}@cigit.ac.cn <br/>jlxing@nlpr.ia.ac.cn -</td></tr><tr><td>493ec9e567c5587c4cbeb5f08ca47408ca2d6571</td><td>You et al. Complex Adapt Syst Model (2016) 4:22 +</td></tr><tr><td>49df381ea2a1e7f4059346311f1f9f45dd997164</td><td>2018 +<br/>On the Use of Client-Specific Information for Face +<br/>Presentation Attack Detection Based on Anomaly +<br/>Detection +</td><td>('1690611', 'Shervin Rahimzadeh Arashloo', 'shervin rahimzadeh arashloo')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td></td></tr><tr><td>493ec9e567c5587c4cbeb5f08ca47408ca2d6571</td><td>You et al. Complex Adapt Syst Model (2016) 4:22 <br/>DOI 10.1186/s40294‑016‑0034‑7 <br/>RESEARCH <br/>Combining graph embedding @@ -35521,7 +45314,10 @@ <br/>Aleksandar Stani´c1 <br/>Helmut B¨olcskei1 <br/>1Dept. IT & EE, ETH Zurich, Switzerland -<br/><b>University of Vienna, Austria</b></td><td>('2076040', 'Thomas Wiatowski', 'thomas wiatowski')<br/>('2208878', 'Michael Tschannen', 'michael tschannen')<br/>('1690644', 'Philipp Grohs', 'philipp grohs')</td><td></td></tr><tr><td>40ee38d7ff2871761663d8634c3a4970ed1dc058</td><td>Three-Dimensional Face Recognition: A Fishersurface +<br/><b>University of Vienna, Austria</b></td><td>('2076040', 'Thomas Wiatowski', 'thomas wiatowski')<br/>('2208878', 'Michael Tschannen', 'michael tschannen')<br/>('1690644', 'Philipp Grohs', 'philipp grohs')</td><td></td></tr><tr><td>403a108dec92363fd1f465340bd54dbfe65af870</td><td>describing images with statistics of local non-binarized pixel patterns +<br/>Local Higher-Order Statistics (LHS) +<br/>aGREYC CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France +<br/><b>bMax Planck Institute for Informatics, Germany</b></td><td>('2515597', 'Gaurav Sharma', 'gaurav sharma')</td><td></td></tr><tr><td>40ee38d7ff2871761663d8634c3a4970ed1dc058</td><td>Three-Dimensional Face Recognition: A Fishersurface <br/>Approach <br/><b>The University of York, United Kingdom</b></td><td>('2023950', 'Thomas Heseltine', 'thomas heseltine')<br/>('1737428', 'Nick Pears', 'nick pears')<br/>('2405628', 'Jim Austin', 'jim austin')</td><td></td></tr><tr><td>402f6db00251a15d1d92507887b17e1c50feebca</td><td>3D Facial Action Units Recognition for Emotional <br/>Expression @@ -35565,6 +45361,21 @@ <br/>2 Environment Perception, Group Research, Daimler AG, Ulm, Germany <br/>3 Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands </td><td>('1765022', 'Markus Enzweiler', 'markus enzweiler')</td><td>{uni-heidelberg.enzweiler,dariu.gavrila}@daimler.com +</td></tr><tr><td>40dd2b9aace337467c6e1e269d0cb813442313d7</td><td>This thesis has been submitted in fulfilment of the requirements for a postgraduate degree +<br/><b>e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following</b><br/>terms and conditions of use: +<br/>This work is protected by copyright and other intellectual property rights, which are +<br/>retained by the thesis author, unless otherwise stated. +<br/>A copy can be downloaded for personal non-commercial research or study, without +<br/>prior permission or charge. +<br/>This thesis cannot be reproduced or quoted extensively from without first obtaining +<br/>permission in writing from the author. +<br/>The content must not be changed in any way or sold commercially in any format or +<br/>medium without the formal permission of the author. +<br/>When referring to this work, full bibliographic details including the author, title, +<br/>awarding institution and date of the thesis must be given. +</td><td></td><td></td></tr><tr><td>407de9da58871cae7a6ded2f3a6162b9dc371f38</td><td>TraMNet - Transition Matrix Network for +<br/>Efficient Action Tube Proposals +<br/><b>Oxford Brookes University, UK</b></td><td>('1931660', 'Gurkirt Singh', 'gurkirt singh')<br/>('49348905', 'Suman Saha', 'suman saha')<br/>('1754181', 'Fabio Cuzzolin', 'fabio cuzzolin')</td><td>gurkirt.singh-2015@brookes.ac.uk </td></tr><tr><td>405526dfc79de98f5bf3c97bf4aa9a287700f15d</td><td>MegaFace: A Million Faces for Recognition at Scale <br/>D. Miller <br/>E. Brossard @@ -35575,7 +45386,10 @@ <br/>tification rates, and (b) rank-10. Recognition rates drop once the number of distractors increases. We also present first <br/>large-scale human recognition results (up to 10K distractors). Interestingly, Google’s deep learning based FaceNet is more <br/>robust at scale than humans. See http://megaface.cs.washington.edu to participate in the challenge. -</td><td></td><td></td></tr><tr><td>40cd062438c280c76110e7a3a0b2cf5ef675052c</td><td></td><td></td><td></td></tr><tr><td>40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d</td><td>Feedback-Controlled Sequential Lasso Screening +</td><td></td><td></td></tr><tr><td>40cd062438c280c76110e7a3a0b2cf5ef675052c</td><td></td><td></td><td></td></tr><tr><td>40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b</td><td>Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy +<br/><b>Beihang University, 2The Chinese University of Hong Kong, 3Sensetime Group Limited</b></td><td>('12920342', 'Guanglu Song', 'guanglu song')<br/>('1715752', 'Yu Liu', 'yu liu')<br/>('40452812', 'Ming Jiang', 'ming jiang')<br/>('33598672', 'Yujie Wang', 'yujie wang')<br/>('1721677', 'Junjie Yan', 'junjie yan')<br/>('2858789', 'Biao Leng', 'biao leng')</td><td>{guanglusong,jiangming1406,yujiewang,lengbiao}@buaa.edu.cn, +<br/>yuliu@ee.cuhk.edu.hk, yanjunjie@sensetime.com +</td></tr><tr><td>40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d</td><td>Feedback-Controlled Sequential Lasso Screening <br/>Department of Electrical Engineering <br/><b>Princeton University</b></td><td>('1719525', 'Yun Wang', 'yun wang')<br/>('1734498', 'Xu Chen', 'xu chen')<br/>('1693135', 'Peter J. Ramadge', 'peter j. ramadge')</td><td></td></tr><tr><td>40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a</td><td>80 </td><td></td><td></td></tr><tr><td>40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60</td><td>AUTOMATIC LIP TRACKING AND ACTION UNITS CLASSIFICATION USING @@ -35593,7 +45407,12 @@ </td><td>('3210269', 'Hadi Seyedarabi', 'hadi seyedarabi')<br/>('2488201', 'Ali Aghagolzadeh', 'ali aghagolzadeh')</td><td>email: hadis@discover.uottawa.ca <br/>email: wslee@uottawa.ca <br/>email: aghagol@tabrizu.ac.ir -</td></tr><tr><td>40389b941a6901c190fb74e95dc170166fd7639d</td><td>Automatic Facial Expression Recognition +</td></tr><tr><td>40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd</td><td>Bridging Heterogeneous Domains With Parallel Transport For Vision and +<br/>Multimedia Applications +<br/>Dept. of Video and Multimedia Technologies Research +<br/>AT&T Labs-Research +<br/>San Francisco, CA 94108 +</td><td>('33692583', 'Raghuraman Gopalan', 'raghuraman gopalan')</td><td></td></tr><tr><td>40389b941a6901c190fb74e95dc170166fd7639d</td><td>Automatic Facial Expression Recognition <br/>Emotient <br/>http://emotient.com <br/>February 12, 2014 @@ -35621,9 +45440,16 @@ <br/>detectors embedded in digital cameras [62]. Nonetheless, considerable progress has yet to be <br/>made: Methods for face detection and tracking (the first step of automated face analysis) <br/>work well for frontal views of adult Caucasian and Asian faces [50], but their performance -</td><td>('1775637', 'Jacob Whitehill', 'jacob whitehill')<br/>('40648952', 'Marian Stewart', 'marian stewart')<br/>('1741200', 'Javier R. Movellan', 'javier r. movellan')</td><td></td></tr><tr><td>40c8cffd5aac68f59324733416b6b2959cb668fd</td><td>Pooling Facial Segments to Face: The Shallow and Deep Ends +</td><td>('1775637', 'Jacob Whitehill', 'jacob whitehill')<br/>('40648952', 'Marian Stewart', 'marian stewart')<br/>('1741200', 'Javier R. Movellan', 'javier r. movellan')</td><td></td></tr><tr><td>40e1743332523b2ab5614bae5e10f7a7799161f4</td><td>Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural +<br/>Networks +<br/><b>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</b><br/><b>School of IoT Engineering, Jiangnan University, Wuxi 214122, China</b></td><td>('2976854', 'Zhen-Hua Feng', 'zhen-hua feng')<br/>('1748684', 'Josef Kittler', 'josef kittler')</td><td>{z.feng, j.kittler, m.a.rana}@surrey.ac.uk, patrikhuber@gmail.com, wu xiaojun@jiangnan.edu.cn +</td></tr><tr><td>40c8cffd5aac68f59324733416b6b2959cb668fd</td><td>Pooling Facial Segments to Face: The Shallow and Deep Ends <br/>Department of Electrical and Computer Engineering and the Center for Automation Research, <br/><b>UMIACS, University of Maryland, College Park, MD</b></td><td>('3152615', 'Upal Mahbub', 'upal mahbub')<br/>('40599829', 'Sayantan Sarkar', 'sayantan sarkar')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td>{umahbub, ssarkar2, rama}@umiacs.umd.edu +</td></tr><tr><td>40273657e6919455373455bd9a5355bb46a7d614</td><td>Anonymizing k-Facial Attributes via Adversarial Perturbations +<br/>1 IIIT Delhi, New Delhi, India +<br/>2 Ministry of Electronics and Information Technology, New Delhi, India +</td><td>('24380882', 'Saheb Chhabra', 'saheb chhabra')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')<br/>('50046315', 'Gaurav Gupta', 'gaurav gupta')</td><td>{sahebc, rsingh, mayank@iiitd.ac.in}, gauravg@gov.in </td></tr><tr><td>40b10e330a5511a6a45f42c8b86da222504c717f</td><td>Implementing the Viola-Jones <br/>Face Detection Algorithm <br/>Kongens Lyngby 2008 @@ -35663,7 +45489,11 @@ <br/><b>University of Birmingham</b><br/>August 2012 </td><td>('2801456', 'Hamimah Ujir', 'hamimah ujir')</td><td></td></tr><tr><td>40217a8c60e0a7d1735d4f631171aa6ed146e719</td><td>Part-Pair Representation for Part Localization <br/><b>Columbia University</b></td><td>('2454675', 'Jiongxin Liu', 'jiongxin liu')<br/>('3173493', 'Yinxiao Li', 'yinxiao li')<br/>('1767767', 'Peter N. Belhumeur', 'peter n. belhumeur')</td><td>{liujx09, yli, belhumeur}@cs.columbia.edu -</td></tr><tr><td>2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9</td><td></td><td></td><td></td></tr><tr><td>2eb37a3f362cffdcf5882a94a20a1212dfed25d9</td><td>4 +</td></tr><tr><td>2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9</td><td></td><td></td><td></td></tr><tr><td>2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87</td><td>International Journal of Computer Vision manuscript No. +<br/>(will be inserted by the editor) +<br/>Pointly-Supervised Action Localization +<br/>Received: date / Accepted: date +</td><td>('2606260', 'Pascal Mettes', 'pascal mettes')</td><td></td></tr><tr><td>2eb37a3f362cffdcf5882a94a20a1212dfed25d9</td><td>4 <br/>Local Feature Based Face Recognition <br/>R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded <br/>India @@ -35708,7 +45538,7 @@ <br/>Henry Schneiderman (Chair) <br/>Alexei (Alyosha) Efros <br/><b>Robotics Institute</b><br/><b>Carnegie Mellon University</b><br/>Pittsburgh, Pennsylvania 15213 -<br/><b>c(cid:13) Carnegie Mellon University</b></td><td>('2989714', 'Jiang Ni', 'jiang ni')<br/>('1709305', 'Martial Hebert', 'martial hebert')<br/>('38998440', 'David Kriegman', 'david kriegman')</td><td></td></tr><tr><td>2e091b311ac48c18aaedbb5117e94213f1dbb529</td><td>Collaborative Facial Landmark Localization +<br/><b>c(cid:13) Carnegie Mellon University</b></td><td>('2989714', 'Jiang Ni', 'jiang ni')<br/>('1709305', 'Martial Hebert', 'martial hebert')<br/>('38998440', 'David Kriegman', 'david kriegman')</td><td></td></tr><tr><td>2e5cfa97f3ecc10ae8f54c1862433285281e6a7c</td><td></td><td></td><td></td></tr><tr><td>2e091b311ac48c18aaedbb5117e94213f1dbb529</td><td>Collaborative Facial Landmark Localization <br/>for Transferring Annotations Across Datasets <br/><b>University of Wisconsin Madison</b><br/>http://www.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/ </td><td>('1893050', 'Brandon M. Smith', 'brandon m. smith')<br/>('40396555', 'Li Zhang', 'li zhang')</td><td></td></tr><tr><td>2e1415a814ae9abace5550e4893e13bd988c7ba1</td><td>International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 3 – March 2015 @@ -35725,6 +45555,10 @@ </td><td>('1856025', 'Carl Vondrick', 'carl vondrick')<br/>('2367683', 'Hamed Pirsiavash', 'hamed pirsiavash')<br/>('1690178', 'Antonio Torralba', 'antonio torralba')</td><td>vondrick@mit.edu <br/>hpirsiav@umbc.edu <br/>torralba@mit.edu +</td></tr><tr><td>2e0d56794379c436b2d1be63e71a215dd67eb2ca</td><td>Improving precision and recall of face recognition in SIPP with combination of +<br/>modified mean search and LSH +<br/>Xihua.Li +</td><td></td><td>lixihua9@126.com </td></tr><tr><td>2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd</td><td></td><td></td><td></td></tr><tr><td>2e475f1d496456831599ce86d8bbbdada8ee57ed</td><td>Groupsourcing: Team Competition Designs for <br/>Crowdsourcing <br/><b>L3S Research Center, Hannover, Germany</b></td><td>('2993225', 'Markus Rokicki', 'markus rokicki')<br/>('2553718', 'Sergej Zerr', 'sergej zerr')<br/>('1745880', 'Stefan Siersdorfer', 'stefan siersdorfer')</td><td>{rokicki,siersdorfer,zerr}@L3S.de @@ -35733,6 +45567,8 @@ <br/>Recognition <br/>face.com </td><td>('2188620', 'Yaniv Taigman', 'yaniv taigman')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td>{yaniv, wolf}@face.com +</td></tr><tr><td>2e231f1e7e641dd3619bec59e14d02e91360ac01</td><td>FUSION NETWORK FOR FACE-BASED AGE ESTIMATION +<br/><b>The University of Warwick, Coventry, UK</b><br/><b>School of Management, University of Bath, Bath, UK</b><br/><b>School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, Australia</b></td><td>('1750506', 'Haoyi Wang', 'haoyi wang')<br/>('40655450', 'Xingjie Wei', 'xingjie wei')<br/>('1901920', 'Victor Sanchez', 'victor sanchez')<br/>('1799504', 'Chang-Tsun Li', 'chang-tsun li')</td><td>{h.wang.16, vsanchez, C-T.Li}@warwick.ac.uk, x.wei@bath.ac.uk </td></tr><tr><td>2e6cfeba49d327de21ae3186532e56cadeb57c02</td><td>Real Time Eye Gaze Tracking with 3D Deformable Eye-Face Model <br/><b>Rensselaer Polytechnic Institute</b><br/>110 8th Street, Troy, NY, USA </td><td>('1771700', 'Kang Wang', 'kang wang')<br/>('1726583', 'Qiang Ji', 'qiang ji')</td><td>{wangk10, jiq}@rpi.edu @@ -35751,7 +45587,23 @@ <br/>A Study Amongst Pre-Elementary School Kids <br/><b>Carnegie Mellon University</b><br/>5000 Forbes Avenue, <br/>Pittsburgh, PA 15213 -</td><td>('29120285', 'Vivek Pai', 'vivek pai')<br/>('1760345', 'Raja Sooriamurthi', 'raja sooriamurthi')</td><td></td></tr><tr><td>2e19371a2d797ab9929b99c80d80f01a1fbf9479</td><td></td><td></td><td></td></tr><tr><td>2ebc35d196cd975e1ccbc8e98694f20d7f52faf3</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +</td><td>('29120285', 'Vivek Pai', 'vivek pai')<br/>('1760345', 'Raja Sooriamurthi', 'raja sooriamurthi')</td><td></td></tr><tr><td>2e19371a2d797ab9929b99c80d80f01a1fbf9479</td><td></td><td></td><td></td></tr><tr><td>2ed4973984b254be5cba3129371506275fe8a8eb</td><td> +<br/>THE EFFECTS OF MOOD ON +<br/>EMOTION RECOGNITION AND +<br/>ITS RELATIONSHIP WITH THE +<br/>GLOBAL VS LOCAL +<br/>INFORMATION PROCESSING +<br/>STYLES +<br/>BASIC RESEARCH PROGRAM +<br/>WORKING PAPERS +<br/>SERIES: PSYCHOLOGY +<br/>WP BRP 60/PSY/2016 +<br/>This Working Paper is an output of a research project implemented at the National Research +<br/><b>University Higher School of Economics (HSE). Any opinions or claims contained in this</b><br/>Working Paper do not necessarily reflect the views of HSE +<br/> +</td><td>('15615673', 'Victoria Ovsyannikova', 'victoria ovsyannikova')</td><td></td></tr><tr><td>2e9c780ee8145f29bd1a000585dd99b14d1f5894</td><td>Simultaneous Adversarial Training - Learn from +<br/>Others’ Mistakes +<br/><b>Lite-On Singapore Pte. Ltd, 2Imperial College London</b></td><td>('9949538', 'Zukang Liao', 'zukang liao')</td><td></td></tr><tr><td>2ebc35d196cd975e1ccbc8e98694f20d7f52faf3</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. <br/>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE <br/>Towards Wide-angle Micro Vision Sensors </td><td>('2724462', 'Sanjeev J. Koppal', 'sanjeev j. koppal')<br/>('2407724', 'Ioannis Gkioulekas', 'ioannis gkioulekas')<br/>('2140759', 'Kenneth B. Crozier', 'kenneth b. crozier')</td><td></td></tr><tr><td>2e3d081c8f0e10f138314c4d2c11064a981c1327</td><td></td><td></td><td></td></tr><tr><td>2e86402b354516d0a8392f75430156d629ca6281</td><td></td><td></td><td></td></tr><tr><td>2ea78e128bec30fb1a623c55ad5d55bb99190bd2</td><td>Residual vs. Inception vs. Classical Networks for @@ -35819,7 +45671,17 @@ <br/>from Captioned Images of Cluttered Scenes ∗ <br/><b>University of Toronto</b><br/><b>Bielefeld University</b></td><td>('37894231', 'Michael Jamieson', 'michael jamieson')<br/>('1724954', 'Sven Wachsmuth', 'sven wachsmuth')</td><td>{jamieson, afsaneh, sven, suzanne}@cs.toronto.edu <br/>swachsmu@techfak.uni-bielefeld.de -</td></tr><tr><td>2e1b1969ded4d63b69a5ec854350c0f74dc4de36</td><td></td><td></td><td></td></tr><tr><td>2be0ab87dc8f4005c37c523f712dd033c0685827</td><td>RELAXED LOCAL TERNARY PATTERN FOR FACE RECOGNITION +</td></tr><tr><td>2e1b1969ded4d63b69a5ec854350c0f74dc4de36</td><td></td><td></td><td></td></tr><tr><td>2e832d5657bf9e5678fd45b118fc74db07dac9da</td><td>Running head: RECOGNITION OF FACIAL EXPRESSIONS OF EMOTION +<br/>1 +<br/>Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative +<br/>Evaluation +<br/>Rachel Merchak +<br/><b>Wittenberg University</b><br/><b>Rachel Merchak, Wittenberg University</b><br/>Author Note +<br/>This research was conducted in collaboration with Dr. Stephanie Little, Psychology Department, +<br/><b>Wittenberg University, and Dr. Michael Anes, Wittenberg University</b><br/>Correspondence concerning this article should be addressed to Rachel Merchak, 10063 Fox +<br/>Chase Drive, Loveland, OH 45140. +</td><td></td><td>E‐mail: merchakr@wittenberg.edu +</td></tr><tr><td>2be0ab87dc8f4005c37c523f712dd033c0685827</td><td>RELAXED LOCAL TERNARY PATTERN FOR FACE RECOGNITION <br/>BeingThere Centre <br/><b>Institute of Media Innovation</b><br/><b>Nanyang Technological University</b><br/>50 Nanyang Drive, Singapore 637553. <br/>School of Electrical & Electronics Engineering @@ -35873,7 +45735,8 @@ <br/>[7] and fusion of geometric and appearance features [8], [9], [10]. Nowadays, deep <br/>1249 </td><td>('9318822', 'MAHESH GOYANI', 'mahesh goyani')<br/>('11384332', 'NARENDRA PATEL', 'narendra patel')</td><td>E-mail: mgoyani@gmail.com, nmpatel@bvmengineerring.ac.in -</td></tr><tr><td>2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f</td><td>An Effective Approach for Facial Expression Recognition with Local Binary +</td></tr><tr><td>2bb53e66aa9417b6560e588b6235e7b8ebbc294c</td><td>SEMANTIC EMBEDDING SPACE FOR ZERO-SHOT ACTION RECOGNITION +<br/><b>School of EECS, Queen Mary University of London, London, UK</b></td><td>('47158489', 'Xun Xu', 'xun xu')<br/>('2073354', 'Shaogang Gong', 'shaogang gong')</td><td></td></tr><tr><td>2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f</td><td>An Effective Approach for Facial Expression Recognition with Local Binary <br/>Pattern and Support Vector Machine </td><td>('20656805', 'Thi Nhan', 'thi nhan')<br/>('9872793', 'Il Choi', 'il choi')</td><td>*1School of Media, Soongsil University, ctnhen@yahoo.com <br/>2School of Media, Soongsil University, an_tth@yahoo.com @@ -36078,6 +45941,9 @@ <br/>d1+d2≤d </td><td></td><td>e-mail: firstname.lastname@technicolor.com <br/>e-mail: firstname.lastname@univ-poitiers.fr +</td></tr><tr><td>2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4</td><td>Ring loss: Convex Feature Normalization for Face Recognition +<br/>Department of Electrical and Computer Engineering +<br/><b>Carnegie Mellon University</b></td><td>('3049981', 'Yutong Zheng', 'yutong zheng')<br/>('2628116', 'Dipan K. Pal', 'dipan k. pal')<br/>('1794486', 'Marios Savvides', 'marios savvides')</td><td>{yutongzh, dipanp, marioss}@andrew.cmu.edu </td></tr><tr><td>2bae810500388dd595f4ebe992c36e1443b048d2</td><td>International Journal of Bioelectromagnetism <br/>Vol. 18, No. 1, pp. 13 - 18, 2016 <br/>www.ijbem.org @@ -36112,7 +45978,14 @@ <br/>Department of Electrical Engineering and Computer Science <br/><b>York University</b><br/>Toronto, Ontario <br/>Canada -</td><td>('1709096', 'Richard P. Wildes', 'richard p. wildes')</td><td></td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>Kinship Verification through Transfer Learning +</td><td>('1709096', 'Richard P. Wildes', 'richard p. wildes')</td><td></td></tr><tr><td>477236563c6a6c6db922045453b74d3f9535bfa1</td><td>International Journal of Science and Research (IJSR) +<br/>ISSN (Online): 2319-7064 +<br/>Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +<br/>Attribute Based Image Search Re-Ranking +<br/>Snehal S Patil1, Ajay Dani2 +<br/><b>Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune</b><br/><b>G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune</b><br/>integrating +<br/>images by +</td><td></td><td></td></tr><tr><td>4793f11fbca4a7dba898b9fff68f70d868e2497c</td><td>Kinship Verification through Transfer Learning <br/>Siyu Xia∗ <br/>CSE, SUNY at Buffalo, USA <br/><b>and Southeast University, China</b><br/>CSE @@ -36238,7 +46111,11 @@ <br/>Real-Time Facial Expression Recognition App Development on <br/>Smart Phones <br/><b>Florida Institute Of Technology, Melbourne Fl</b><br/>USA -</td><td>('7155812', 'Humaid Alshamsi', 'humaid alshamsi')<br/>('7155812', 'Humaid Alshamsi', 'humaid alshamsi')</td><td></td></tr><tr><td>47e3029a3d4cf0a9b0e96252c3dc1f646e750b14</td><td>International Conference on Computer Systems and Technologies - CompSysTech’07 +</td><td>('7155812', 'Humaid Alshamsi', 'humaid alshamsi')<br/>('7155812', 'Humaid Alshamsi', 'humaid alshamsi')</td><td></td></tr><tr><td>47190d213caef85e8b9dd0d271dbadc29ed0a953</td><td>The Devil of Face Recognition is in the Noise +<br/>1 SenseTime Research +<br/><b>University of California San Diego</b><br/><b>Nanyang Technological University</b></td><td>('1682816', 'Fei Wang', 'fei wang')<br/>('3203648', 'Liren Chen', 'liren chen')<br/>('46651787', 'Cheng Li', 'cheng li')<br/>('1937119', 'Shiyao Huang', 'shiyao huang')<br/>('47557603', 'Yanjie Chen', 'yanjie chen')<br/>('49215552', 'Chen Qian', 'chen qian')<br/>('1717179', 'Chen Change Loy', 'chen change loy')</td><td>{wangfei, chengli, huangshiyao, chenyanjie, qianchen}@sensetime.com, +<br/>lic002@eng.ucsd.edu, ccloy@ieee.org +</td></tr><tr><td>47e3029a3d4cf0a9b0e96252c3dc1f646e750b14</td><td>International Conference on Computer Systems and Technologies - CompSysTech’07 <br/>Facial Expression Recognition in still pictures and videos using Active <br/>Appearance Models. A comparison approach. <br/>Drago(cid:1) Datcu @@ -36276,7 +46153,7 @@ <br/>Recognition Using PCA <br/>(M.Tech. Student) <br/>Computer Science & Engineering -<br/><b>Iftm University, Moradabad-244001 U.P</b></td><td>('9247488', 'Tara Prasad Singh', 'tara prasad singh')</td><td></td></tr><tr><td>477811ff147f99b21e3c28309abff1304106dbbe</td><td></td><td></td><td></td></tr><tr><td>473cbc5ec2609175041e1410bc6602b187d03b23</td><td>Semantic Audio-Visual Data Fusion for Automatic Emotion Recognition +<br/><b>Iftm University, Moradabad-244001 U.P</b></td><td>('9247488', 'Tara Prasad Singh', 'tara prasad singh')</td><td></td></tr><tr><td>477811ff147f99b21e3c28309abff1304106dbbe</td><td></td><td></td><td></td></tr><tr><td>47e14fdc6685f0b3800f709c32e005068dfc8d47</td><td></td><td></td><td></td></tr><tr><td>473cbc5ec2609175041e1410bc6602b187d03b23</td><td>Semantic Audio-Visual Data Fusion for Automatic Emotion Recognition <br/>Man-Machine Interaction Group <br/><b>Delft University of Technology</b><br/>2628 CD, Delft, <br/>The Netherlands @@ -36286,7 +46163,7 @@ <br/>point extraction, Active Appearance Models, Support Vector <br/>Machines. </td><td>('2866326', 'Dragos Datcu', 'dragos datcu')</td><td>E-mail: {D.Datcu ; L.J.M.Rothkrantz}@tudelft.nl -</td></tr><tr><td>78a4cabf0afc94da123e299df5b32550cd638939</td><td></td><td></td><td></td></tr><tr><td>78f08cc9f845dc112f892a67e279a8366663e26d</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +</td></tr><tr><td>782188821963304fb78791e01665590f0cd869e8</td><td></td><td></td><td></td></tr><tr><td>78a4cabf0afc94da123e299df5b32550cd638939</td><td></td><td></td><td></td></tr><tr><td>78f08cc9f845dc112f892a67e279a8366663e26d</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN <br/>Lehrstuhl f¨ur Mensch-Maschine-Kommunikation <br/>Semi-Autonomous Data Enrichment and <br/>Optimisation for Intelligent Speech Analysis @@ -36383,7 +46260,7 @@ <br/><b>Tel Aviv University</b><br/>Tel Aviv, Israel </td><td>('2188620', 'Yaniv Taigman', 'yaniv taigman')<br/>('32447229', 'Ming Yang', 'ming yang')<br/>('1776343', 'Lior Wolf', 'lior wolf')</td><td>{yaniv, mingyang, ranzato}@fb.com <br/>wolf@cs.tau.ac.il -</td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Measuring and Understanding Sensory Representations within +</td></tr><tr><td>78c1ad33772237bf138084220d1ffab800e1200d</td><td><b>State Key Laboratory of Software Development Environment, Beihang University, P.R.China</b><br/><b>University of Michigan, Ann Arbor</b></td><td>('48545182', 'Lei Huang', 'lei huang')<br/>('8342699', 'Jia Deng', 'jia deng')</td><td></td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Measuring and Understanding Sensory Representations within <br/>Deep Networks Using a Numerical Optimization Framework <br/><b>Harvard University, Cambridge, MA</b><br/>USA <br/><b>Center for Brain Science, Harvard University, Cambridge, MA, USA</b><br/><b>Harvard University, Cambridge, MA, USA</b></td><td>('1739108', 'Chuan-Yung Tsai', 'chuan-yung tsai')<br/>('2042941', 'David D. Cox', 'david d. cox')</td><td>∗ E-mail: davidcox@fas.harvard.edu @@ -36401,6 +46278,22 @@ <br/> published February 28, 2015 </td><td>('37284667', 'Ju-Chin Chen', 'ju-chin chen')<br/>('36612683', 'Pei-Hsun Wu', 'pei-hsun wu')<br/>('3461535', 'Jenn-Jier James Lien', 'jenn-jier james lien')<br/>('37284667', 'Ju-Chin Chen', 'ju-chin chen')</td><td>[e-mail: jc.chen@cc.kuas.edu.tw] <br/>[e-mail: jjlien@csie.ncku.edu.tw] +</td></tr><tr><td>78598e7005f7c96d64cc47ff47e6f13ae52245b8</td><td>Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions +<br/>Synthetic Reality Lab +<br/>Department of Computer Science +<br/><b>University of Central Florida</b><br/>Orlando, Florida +<br/>Synthetic Reality Lab +<br/>Department of Computer Science +<br/><b>University of Central Florida</b><br/>Orlando, Florida +<br/>Tadas Baltruˇsaitis +<br/><b>Language Technology Institute</b><br/>School of Computer Science +<br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA +<br/><b>Language Technology Institute</b><br/>School of Computer Science +<br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA +</td><td>('2974242', 'Behnaz Nojavanasghari', 'behnaz nojavanasghari')<br/>('32827434', 'Charles E. Hughes', 'charles e. hughes')<br/>('1767184', 'Louis-Philippe Morency', 'louis-philippe morency')</td><td>Email: behnaz@eecs.ucf.edu +<br/>Email: ceh@cs.ucf.edu +<br/>Email: tbaltrus@cs.cmu.edu +<br/>Email: morency@cs.cmu.edu </td></tr><tr><td>7862f646d640cbf9f88e5ba94a7d642e2a552ec9</td><td>Being John Malkovich <br/><b>University of Washington</b><br/>2 Adobe Systems <br/>3 Google Inc. @@ -36415,7 +46308,10 @@ <br/>Cees G. M. Snoek1 <br/>Received: 25 June 2016 / Accepted: 18 May 2017 <br/>© The Author(s) 2017. This article is an open access publication -</td><td>('40027484', 'Mihir Jain', 'mihir jain')<br/>('1681054', 'Hervé Jégou', 'hervé jégou')</td><td></td></tr><tr><td>78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e</td><td>TEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION +</td><td>('40027484', 'Mihir Jain', 'mihir jain')<br/>('1681054', 'Hervé Jégou', 'hervé jégou')</td><td></td></tr><tr><td>78174c2be084e67f48f3e8ea5cb6c9968615a42c</td><td>Periocular Recognition Using CNN Features +<br/>Off-the-Shelf +<br/><b>School of Information Technology (ITE), Halmstad University, Box 823, 30118 Halmstad, Sweden</b></td><td>('51446244', 'Kevin Hernandez-Diaz', 'kevin hernandez-diaz')<br/>('2847751', 'Fernando Alonso-Fernandez', 'fernando alonso-fernandez')<br/>('5058247', 'Josef Bigun', 'josef bigun')</td><td>Email: kevin.hernandez-diaz@hh.se, feralo@hh.se, josef.bigun@hh.se +</td></tr><tr><td>78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e</td><td>TEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION <br/>Temporal Pyramid Pooling Based Convolutional <br/>Neural Network for Action Recognition </td><td>('40378631', 'Peng Wang', 'peng wang')<br/>('2572430', 'Yuanzhouhan Cao', 'yuanzhouhan cao')<br/>('40529029', 'Chunhua Shen', 'chunhua shen')<br/>('2161037', 'Lingqiao Liu', 'lingqiao liu')<br/>('1724393', 'Heng Tao Shen', 'heng tao shen')</td><td></td></tr><tr><td>780557daaa39a445b24c41f637d5fc9b216a0621</td><td>Large Video Event Ontology Browsing, Search and @@ -36436,6 +46332,19 @@ </td><td>('25087736', 'Mahek Shah', 'mahek shah')</td><td></td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>Describing People: A Poselet-Based Approach to Attribute Classification ∗ <br/>1EECS, U.C. Berkeley, Berkeley, CA 94720 <br/><b>Adobe Systems, Inc., 345 Park Ave, San Jose, CA</b></td><td>('35208858', 'Subhransu Maji', 'subhransu maji')<br/>('1689212', 'Jitendra Malik', 'jitendra malik')</td><td>{lbourdev,smaji,malik}@eecs.berkeley.edu +</td></tr><tr><td>8b2c090d9007e147b8c660f9282f357336358061</td><td><b>Lake Forest College</b><br/><b>Lake Forest College Publications</b><br/>Senior Theses +<br/>4-23-2018 +<br/>Student Publications +<br/>Emotion Classification based on Expressions and +<br/>Body Language using Convolutional Neural +<br/>Networks +<br/>Follow this and additional works at: https://publications.lakeforest.edu/seniortheses +<br/>Part of the Neuroscience and Neurobiology Commons +<br/>Recommended Citation +<br/>Tanveer, Aasimah S., "Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks" +<br/>(2018). Senior Theses. +<br/><b>This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for</b><br/><b>inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact</b></td><td></td><td>Lake Forest College, tanveeras@lakeforest.edu +<br/>levinson@lakeforest.edu. </td></tr><tr><td>8ba67f45fbb1ce47a90df38f21834db37c840079</td><td>People Search and Activity Mining in Large-Scale <br/>Community-Contributed Photos <br/><b>National Taiwan University, Taipei, Taiwan</b><br/>Winston H. Hsu, Hong-Yuan Mark Liao @@ -36447,6 +46356,26 @@ <br/>hemanta.sapkota@student.uts.edu.au <br/>daniel.j.rosser@gmail.com <br/>yusuf.pisan@gamesstudio.org +</td></tr><tr><td>8bed7ff2f75d956652320270eaf331e1f73efb35</td><td>Emotion Recognition in the Wild using +<br/>Deep Neural Networks and Bayesian Classifiers +<br/>Elena Ba(cid:138)ini S¨onmez +<br/><b>University of Calabria - DeMACS</b><br/>Via Pietro Bucci +<br/>Rende (CS), Italy +<br/><b>Plymouth University - CRNS</b><br/>Portland Square PL4 8AA +<br/>Plymouth, United Kingdom +<br/>ac.uk +<br/><b>Istanbul Bilgi University - DCE</b><br/>Eski Silahtaraa Elektrik Santral Kazm +<br/>Karabekir Cad. No: 2/13 34060 Eyp +<br/>Istanbul, Turkey +<br/><b>University of Calabria - DeMACS</b><br/>Via Pietro Bucci +<br/>Rende (CS), Italy +<br/><b>Plymouth University - CRNS</b><br/>Portland Square PL4 8AA +<br/>Plymouth, United Kingdom +</td><td>('32751441', 'Luca Surace', 'luca surace')<br/>('3366919', 'Massimiliano Patacchiola', 'massimiliano patacchiola')<br/>('3205804', 'William Spataro', 'william spataro')<br/>('1692929', 'Angelo Cangelosi', 'angelo cangelosi')</td><td>lucasurace11@gmail.com +<br/>massimiliano.patacchiola@plymouth. +<br/>ebsonmez@bilgi.edu.tr +<br/>william.spataro@unical.it +<br/>angelo.cangelosi@plymouth.ac.uk </td></tr><tr><td>8b7191a2b8ab3ba97423b979da6ffc39cb53f46b</td><td>Search Pruning in Video Surveillance Systems: Efficiency-Reliability Tradeoff <br/>EURECOM <br/>Sophia Antipolis, France @@ -36464,10 +46393,25 @@ </td><td>('17872416', 'Qiantong Xu', 'qiantong xu')<br/>('13318784', 'Ke Yan', 'ke yan')<br/>('1705972', 'Yonghong Tian', 'yonghong tian')</td><td>{xuqiantong, keyan, yhtian}@pku.edu.cn </td></tr><tr><td>8bfada57140aa1aa22a575e960c2a71140083293</td><td>Can we match Ultraviolet Face Images against their Visible <br/>Counterparts? -<br/><b>aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA</b></td><td>('33240042', 'Neeru Narang', 'neeru narang')<br/>('1731727', 'Thirimachos Bourlai', 'thirimachos bourlai')<br/>('1678573', 'Lawrence A. Hornak', 'lawrence a. hornak')<br/>('11898042', 'Paul D. Coverdell', 'paul d. coverdell')</td><td></td></tr><tr><td>8b8728edc536020bc4871dc66b26a191f6658f7c</td><td></td><td></td><td></td></tr><tr><td>8bbbdff11e88327816cad3c565f4ab1bb3ee20db</td><td>Automatic Semantic Face Recognition +<br/><b>aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA</b></td><td>('33240042', 'Neeru Narang', 'neeru narang')<br/>('1731727', 'Thirimachos Bourlai', 'thirimachos bourlai')<br/>('1678573', 'Lawrence A. Hornak', 'lawrence a. hornak')<br/>('11898042', 'Paul D. Coverdell', 'paul d. coverdell')</td><td></td></tr><tr><td>8b8728edc536020bc4871dc66b26a191f6658f7c</td><td></td><td></td><td></td></tr><tr><td>8befcd91c24038e5c26df0238d26e2311b21719a</td><td>A Joint Sequence Fusion Model for Video +<br/>Question Answering and Retrieval +<br/>Department of Computer Science and Engineering, +<br/><b>Seoul National University, Seoul, Korea</b><br/>http://vision.snu.ac.kr/projects/jsfusion/ +</td><td>('7877122', 'Youngjae Yu', 'youngjae yu')<br/>('2175130', 'Jongseok Kim', 'jongseok kim')</td><td>{yj.yu,js.kim}@vision.snu.ac.kr, gunhee@snu.ac.kr +</td></tr><tr><td>8bbbdff11e88327816cad3c565f4ab1bb3ee20db</td><td>Automatic Semantic Face Recognition <br/><b>University of Southampton</b><br/>Southampton, United Kingdom </td><td>('19249411', 'Nawaf Yousef Almudhahka', 'nawaf yousef almudhahka')<br/>('1727698', 'Mark S. Nixon', 'mark s. nixon')<br/>('31534955', 'Jonathon S. Hare', 'jonathon s. hare')</td><td>{nya1g14,msn,jsh2}@ecs.soton.ac.uk -</td></tr><tr><td>8b10383ef569ea0029a2c4a60cc2d8c87391b4db</td><td>ZHOU,MILLERANDZHANG:AGECLASSIFICATIONUSINGRADONTRANSFORM... +</td></tr><tr><td>8bdf6f03bde08c424c214188b35be8b2dec7cdea</td><td>Exploiting Unintended Feature Leakage in Collaborative Learning∗ +<br/>UCL +<br/><b>Cornell University</b><br/><b>UCL and Alan Turing Institute</b><br/>Cornell Tech +</td><td>('2008164', 'Luca Melis', 'luca melis')<br/>('3469125', 'Congzheng Song', 'congzheng song')<br/>('1728207', 'Emiliano De Cristofaro', 'emiliano de cristofaro')<br/>('1723945', 'Vitaly Shmatikov', 'vitaly shmatikov')</td><td>luca.melis.14@alumni.ucl.ac.uk +<br/>cs2296@cornell.edu +<br/>e.decristofaro@ucl.ac.uk +<br/>shmat@cs.cornell.edu +</td></tr><tr><td>8b744786137cf6be766778344d9f13abf4ec0683</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE +<br/>2697 +<br/>ICASSP 2016 +</td><td></td><td></td></tr><tr><td>8b10383ef569ea0029a2c4a60cc2d8c87391b4db</td><td>ZHOU,MILLERANDZHANG:AGECLASSIFICATIONUSINGRADONTRANSFORM... <br/>Age classification using Radon transform <br/>and entropy based scaling SVM <br/>Paul Miller1 @@ -36483,6 +46427,17 @@ <br/><b>Nanjing University, China</b><br/>2 Minieye, Youjia Innovation LLC, China </td><td>('1808816', 'Jianxin Wu', 'jianxin wu')<br/>('2226422', 'Bin-Bin Gao', 'bin-bin gao')<br/>('15527784', 'Guoqing Liu', 'guoqing liu')</td><td>∗ wujx2001@nju.edu.cn, gaobb@lamda.nju.edu.cn <br/>guoqing@minieye.cc +</td></tr><tr><td>8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8</td><td>HU, LIU, LI, LIU: TEMPORAL PERCEPTIVE NETWORK FOR ACTION RECOGNITION +<br/>Temporal Perceptive Network for +<br/>Skeleton-Based Action Recognition +<br/><b>Institute of Computer Science and</b><br/>Technology +<br/><b>Peking University</b><br/>Beijing, China +<br/>Sijie Song +</td><td>('9956463', 'Yueyu Hu', 'yueyu hu')<br/>('49046516', 'Chunhui Liu', 'chunhui liu')<br/>('3128506', 'Yanghao Li', 'yanghao li')<br/>('41127426', 'Jiaying Liu', 'jiaying liu')</td><td>huyy@pku.edu.cn +<br/>liuchunhui@pku.edu.cn +<br/>lyttonhao@pku.edu.cn +<br/>ssj940920@pku.edu.cn +<br/>liujiaying@pku.edu.cn </td></tr><tr><td>8b19efa16a9e73125ab973429eb769d0ad5a8208</td><td>SCAR: Dynamic adaptation for person detection and <br/>persistence analysis in unconstrained videos <br/>Department of Computer Science @@ -36605,6 +46560,16 @@ </td><td>('2309364', 'Oscar Koller', 'oscar koller')<br/>('1695195', 'Richard Bowden', 'richard bowden')</td><td>{n.camgoz, s.hadfield}@surrey.ac.uk <br/>koller@cs.rwth-aachen.de <br/>r.bowden@surrey.ac.uk +</td></tr><tr><td>8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259</td><td>Real-time 3D Face Fitting and Texture Fusion +<br/>on In-the-wild Videos +<br/>Centre for Vision, Speech and Signal Processing +<br/>Image Understanding and Interactive Robotics +<br/><b>University of Surrey</b><br/>Guildford, GU2 7XH, United Kingdom +<br/>Contact: http://www.patrikhuber.ch +<br/><b>Reutlingen University</b><br/>D-72762 Reutlingen, Germany +</td><td>('39976184', 'Patrik Huber', 'patrik huber')<br/>('49759031', 'William Christmas', 'william christmas')<br/>('1748684', 'Josef Kittler', 'josef kittler')<br/>('49330989', 'Philipp Kopp', 'philipp kopp')</td><td></td></tr><tr><td>134f1cee8408cca648d8b4ca44b38b0a7023af71</td><td>Partially Shared Multi-Task Convolutional Neural Network with Local +<br/>Constraint for Face Attribute Learning +<br/><b>College of Information Science and Electronic Engineering</b><br/><b>Zhejiang University, China</b></td><td>('41021477', 'Jiajiong Cao', 'jiajiong cao')<br/>('2367491', 'Yingming Li', 'yingming li')<br/>('1720488', 'Zhongfei Zhang', 'zhongfei zhang')</td><td>{jiajiong, yingming, zhongfei}@zju.edu.cn </td></tr><tr><td>13719bbb4bb8bbe0cbcdad009243a926d93be433</td><td>Deep LDA-Pruned Nets for Efficient Facial Gender Classification <br/><b>McGill University</b><br/><b>University Street, Montral, QC H3A 0E9, Canada</b></td><td>('1992537', 'Qing Tian', 'qing tian')<br/>('1699104', 'Tal Arbel', 'tal arbel')<br/>('1713608', 'James J. Clark', 'james j. clark')</td><td>{qtian,arbel,clark}@cim.mcgill.ca </td></tr><tr><td>134db6ca13f808a848321d3998e4fe4cdc52fbc2</td><td>IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 @@ -36688,7 +46653,13 @@ <br/>Processing,” Perth, Australia, November 1999. Acknowledgement also due to Mr. Der-Chen Pan at the Na- <br/><b>tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming</b><br/>Shon Chen at Ulead System Inc., Taipei, Taiwan, for his early work and assistance in this research. <br/>1033 -</td><td>('39548632', 'Daw-Tung Lin', 'daw-tung lin')</td><td></td></tr><tr><td>1394ca71fc52db972366602a6643dc3e65ee8726</td><td>See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308407783 +</td><td>('39548632', 'Daw-Tung Lin', 'daw-tung lin')</td><td></td></tr><tr><td>13604bbdb6f04a71dea4bd093794e46730b0a488</td><td>Robust Loss Functions under Label Noise for +<br/>Deep Neural Networks +<br/>Microsoft, Bangalore +<br/><b>Indian Institute of Science, Bangalore</b><br/><b>Indian Institute of Science, Bangalore</b></td><td>('3201314', 'Aritra Ghosh', 'aritra ghosh')<br/>('47602083', 'Himanshu Kumar', 'himanshu kumar')<br/>('1711348', 'P. S. Sastry', 'p. s. sastry')</td><td>arghosh@microsoft.com +<br/>himanshukr@ee.iisc.ernet.in +<br/>sastry@ee.iisc.ernet.in +</td></tr><tr><td>1394ca71fc52db972366602a6643dc3e65ee8726</td><td>See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308407783 <br/>EmoReact: A Multimodal Approach and Dataset <br/>for Recognizing Emotional Responses in Children <br/>Conference Paper · November 2016 @@ -36802,7 +46773,10 @@ <br/>Peer reviewed|Thesis/dissertation <br/>eScholarship.org <br/>Powered by the California Digital Library -<br/><b>University of California</b></td><td></td><td></td></tr><tr><td>13f6ab2f245b4a871720b95045c41a4204626814</td><td>RESEARCH ARTICLE +<br/><b>University of California</b></td><td></td><td></td></tr><tr><td>13aef395f426ca8bd93640c9c3f848398b189874</td><td>Image Preprocessing and Complete 2DPCA with Feature +<br/>Extraction for Gender Recognition +<br/>NSF REU 2017: Statistical Learning and Data Mining +<br/><b>University of North Carolina Wilmington</b></td><td></td><td></td></tr><tr><td>13f6ab2f245b4a871720b95045c41a4204626814</td><td>RESEARCH ARTICLE <br/>Cortex commands the performance of <br/>skilled movement <br/><b>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United</b><br/>States @@ -36822,7 +46796,11 @@ <br/>Learning to Locate Informative Features for Visual Identification <br/>Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007 <br/>© Springer Science+Business Media, LLC 2007 -</td><td>('3236352', 'Andras Ferencz', 'andras ferencz')<br/>('1689212', 'Jitendra Malik', 'jitendra malik')</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Accessorize to a Crime: Real and Stealthy Attacks on +</td><td>('3236352', 'Andras Ferencz', 'andras ferencz')<br/>('1689212', 'Jitendra Malik', 'jitendra malik')</td><td></td></tr><tr><td>1316296fae6485c1510f00b1b57fb171b9320ac2</td><td>FaceID-GAN: Learning a Symmetry Three-Player GAN +<br/>for Identity-Preserving Face Synthesis +<br/><b>CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong</b><br/>2SenseTime Research +<br/><b>Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences</b></td><td>('8035201', 'Yujun Shen', 'yujun shen')<br/>('47571885', 'Ping Luo', 'ping luo')<br/>('1721677', 'Junjie Yan', 'junjie yan')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>{sy116, pluo, xtang}@ie.cuhk.edu.hk, yanjunjie@sensetime.com, xgwang@ee.cuhk.edu.hk +</td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Accessorize to a Crime: Real and Stealthy Attacks on <br/>State-of-the-Art Face Recognition <br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA, USA <br/><b>Carnegie Mellon University</b><br/>Pittsburgh, PA, USA @@ -36837,7 +46815,96 @@ <br/>A Generalized Perspective <br/><b>Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China</b><br/><b>University of Chinese Academy of Sciences, Beijing, 100049, China</b><br/>3Key Laboratory of Optical-Electronics Information Processing <br/>November 20, 2017 -</td><td>('1803285', 'Tianci Liu', 'tianci liu')<br/>('2172914', 'Zelin Shi', 'zelin shi')<br/>('2556853', 'Yunpeng Liu', 'yunpeng liu')</td><td></td></tr><tr><td>7fce5769a7d9c69248178989a99d1231daa4fce9</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, +</td><td>('1803285', 'Tianci Liu', 'tianci liu')<br/>('2172914', 'Zelin Shi', 'zelin shi')<br/>('2556853', 'Yunpeng Liu', 'yunpeng liu')</td><td></td></tr><tr><td>7f511a6a2b38a26f077a5aec4baf5dffc981d881</td><td>LOW-LATENCY HUMAN ACTION RECOGNITION WITH WEIGHTED MULTI-REGION +<br/>CONVOLUTIONAL NEURAL NETWORK +<br/><b>cid:63)University of Science and Technology of China, Hefei, Anhui, China</b><br/>†HERE Technologies, Chicago, Illinois, USA +</td><td>('49417387', 'Yunfeng Wang', 'yunfeng wang')<br/>('38272296', 'Wengang Zhou', 'wengang zhou')<br/>('46324995', 'Qilin Zhang', 'qilin zhang')<br/>('49897466', 'Xiaotian Zhu', 'xiaotian zhu')<br/>('7179232', 'Houqiang Li', 'houqiang li')</td><td></td></tr><tr><td>7f21a7441c6ded38008c1fd0b91bdd54425d3f80</td><td>Real Time System for Facial Analysis +<br/><b>Tampere University of Technology, Finland</b><br/>I. +<br/>INTRODUCTION +<br/>Most signal or image processing algorithms should be +<br/>designed with real-time execution in mind. Most use cases +<br/>compute on an embedded platform while receiving streaming +<br/>data as a constant data flow. In machine learning, however, the +<br/>real time deployment and streaming data processing are less +<br/>often a design criterion. Instead, the bulk of machine learning is +<br/>executed offline on the cloud without any real time restrictions. +<br/>However, the real time use is rapidly becoming more important +<br/>as deep learning systems are appearing into, for example, +<br/>autonomous vehicles and working machines. +<br/>In this work, we describe the functionality of our demo +<br/>system integrating a number of common real time machine +<br/>learning systems together. The demo system consists of a +<br/>screen, webcam and a computer, and it estimates the age, +<br/>gender and facial expression of all faces seen by the webcam. +<br/>A picture of the system in use is shown in Figure 1. There is +<br/>also a Youtube video at https://youtu.be/Kfe5hKNwrCU and +<br/>the code is freely available at https://github.com/mahehu/TUT- +<br/>live-age-estimator. +<br/>Apart from serving as an illustrative example of modern +<br/>human level machine learning for the general public, the +<br/>system also highlights several aspects that are common in real +<br/>time machine learning systems. First, the subtasks needed to +<br/>achieve the three recognition results represent a wide variety of +<br/>machine learning problems: (1) object detection is used to find +<br/>the faces, (2) age estimation represents a regression problem +<br/>with a real-valued target output (3) gender prediction is a +<br/>binary classification problem, and (4) facial expression +<br/>prediction is a multi-class classification problem. Moreover, all +<br/>these tasks should operate in unison, such that each task will +<br/>receive enough resources from a limited pool. +<br/>In the remainder of this paper, we first describe the system +<br/>level multithreaded architecture for real time processing in +<br/>Section II. This is followed by detailed discussion individual +<br/>components of the system in Section III. Next, we report +<br/>experimental results on the accuracy of each individual +<br/>recognition component in Section IV, and finally, discuss the +<br/>benefits of demonstrating the potential of modern machine +<br/>learning to both general public and experts in the field. +<br/>II. SYSTEM LEVEL FUNCTIONALITY +<br/>The challenge in real-time operation is that there are +<br/>numerous components in the system, and each uses different +<br/>amount of execution time. The system should be designed +<br/>such that the operation appears smooth, which means that the +<br/>most visible tasks should be fast and have the priority in +<br/>scheduling. +<br/>Figure 1. Demo system recognizes the age, gender and facial +<br/>expression in real time. +<br/>The system is running in threads, as illustrated in Figure 2. +<br/>The whole system is controlled by the upper level controller +<br/>and visualization thread, which owns and starts the sub- +<br/>threads dedicated for individual tasks. The main thread holds +<br/>all data and executes the visualization loop showing the +<br/>recognition results to the user at 25 frames per second. +<br/>The recognition process starts from the grabber thread, +<br/>which is connected to a webcam. The thread requests video +<br/>frames from camera for feeding them into a FIFO buffer +<br/>located inside the controller thread. At grab time, each frame is +<br/>wrapped inside a class object, which holds the necessary meta +<br/>data related to each frame. More specifically, each frame is +<br/>linked with a timestamp and a flag indicating whether the face +<br/>detection has already been executed and +<br/>locations +<br/>(bounding boxes) of all found faces in the scene. +<br/>the +<br/>The actual face analysis consists of two parts: face +<br/>detection and face analysis. The detection is executed in the +<br/>detection thread, which operates asynchronously, requesting +<br/>new non-processed frames from the controller thread. After +<br/>face detection, the locations of found faces are sent to the +<br/>controller thread, which then matches each new face with all +<br/>face objects from the previous frames using straightforward +<br/>centroid tracking. Tracking allows us to average the estimates +<br/>for each face over a number of recent frames. +<br/>The detection thread operates on the average faster than the +<br/>frame rate, but sometimes there are delays due to high load on +<br/>the other threads. Therefore, the controller thread holds a +<br/>buffer of the most recent frames, in order to increase the +<br/>flexibility of processing time. +<br/>The recognition thread is responsible for assessing the age, +<br/>gender and facial expression of each face crop found from the +<br/>image. The thread operates also in an asynchronous mode, +<br/>requesting new non-processed (but face-detected) frames from +</td><td>('51232696', 'Janne Tommola', 'janne tommola')<br/>('51149972', 'Pedram Ghazi', 'pedram ghazi')<br/>('51131997', 'Bishwo Adhikari', 'bishwo adhikari')<br/>('1847889', 'Heikki Huttunen', 'heikki huttunen')</td><td></td></tr><tr><td>7fce5769a7d9c69248178989a99d1231daa4fce9</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, <br/>Vol. 7, No. 5, 2016 <br/>Towards Face Recognition Using Eigenface <br/>Department of Computer Engineering @@ -36849,6 +46916,9 @@ <br/>and Microphones in E-Learning <br/><b>Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of</b><br/><b>Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg</b><br/>177, 6419 AT Heerlen, The Netherlands </td><td>('2565070', 'Kiavash Bahreini', 'kiavash bahreini')<br/>('1717772', 'Rob Nadolski', 'rob nadolski')<br/>('3235367', 'Wim Westera', 'wim westera')</td><td>{kiavash.bahreini, rob.nadolski, wim.westera}@ou.nl +</td></tr><tr><td>7fb5006b6522436ece5bedf509e79bdb7b79c9a7</td><td>Multi-Task Convolutional Neural Network for Face Recognition +<br/>Department of Computer Science and Engineering +<br/><b>Michigan State University, East Lansing MI</b></td><td>('2399004', 'Xi Yin', 'xi yin')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td>{yinxi1,liuxm}@msu.edu </td></tr><tr><td>7f533bd8f32525e2934a66a5b57d9143d7a89ee1</td><td>Audio-Visual Identity Grounding for Enabling Cross Media Search <br/>Paper ID 22 </td><td>('1950685', 'Kevin Brady', 'kevin brady')</td><td></td></tr><tr><td>7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5</td><td>Int J Comput Vis (2016) 119:60–75 @@ -36856,7 +46926,18 @@ <br/>Sparse Output Coding for Scalable Visual Recognition <br/>Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015 <br/>© Springer Science+Business Media New York 2015 -</td><td>('1729034', 'Bin Zhao', 'bin zhao')</td><td></td></tr><tr><td>7f6061c83dc36633911e4d726a497cdc1f31e58a</td><td>YouTube-8M: A Large-Scale Video Classification +</td><td>('1729034', 'Bin Zhao', 'bin zhao')</td><td></td></tr><tr><td>7f4bc8883c3b9872408cc391bcd294017848d0cf</td><td> +<br/> +<br/>Computer +<br/>Sciences +<br/>Department +<br/>The Multimodal Focused Attribute Model: A Nonparametric +<br/>Bayesian Approach to Simultaneous Object Classification and +<br/>Attribute Discovery +<br/>Technical Report #1697 +<br/>January 2012 +<br/> +</td><td>('6256616', 'Jake Rosin', 'jake rosin')<br/>('1724754', 'Charles R. Dyer', 'charles r. dyer')<br/>('1832364', 'Xiaojin Zhu', 'xiaojin zhu')</td><td></td></tr><tr><td>7f6061c83dc36633911e4d726a497cdc1f31e58a</td><td>YouTube-8M: A Large-Scale Video Classification <br/>Benchmark <br/>Paul Natsev <br/>Google Research @@ -36875,6 +46956,8 @@ <br/><b>University of Michigan</b><br/>Ann Arbor, MI 48105, USA </td><td>('3084614', 'Xinchen Yan', 'xinchen yan')<br/>('34316743', 'Junsong Yuan', 'junsong yuan')<br/>('2574445', 'Hui Liang', 'hui liang')</td><td>skywalkeryxc@gmail.com <br/>jsyuan@ntu.edu.sg, hliang1@e.ntu.edu.sg +</td></tr><tr><td>7f445191fa0475ff0113577d95502a96dc702ef9</td><td>Towards an Unequivocal Representation of Actions +<br/><b>University of Bristol</b><br/><b>University of Bristol</b><br/><b>University of Bristol</b></td><td>('2052236', 'Michael Wray', 'michael wray')<br/>('3420479', 'Davide Moltisanti', 'davide moltisanti')<br/>('1728459', 'Dima Damen', 'dima damen')</td><td>firstname.surname@bristol.ac.uk </td></tr><tr><td>7f82f8a416170e259b217186c9e38a9b05cb3eb4</td><td>Multi-Attribute Robust Component Analysis for Facial UV Maps <br/><b>Imperial College London, London, UK</b><br/><b>Middlesex University London, London, UK</b><br/><b>Goldsmiths, University of London, London, UK</b></td><td>('24278037', 'Stylianos Moschoglou', 'stylianos moschoglou')<br/>('31243357', 'Evangelos Ververas', 'evangelos ververas')<br/>('1780393', 'Yannis Panagakis', 'yannis panagakis')<br/>('1776444', 'Stefanos Zafeiriou', 'stefanos zafeiriou')</td><td>{s.moschoglou, e.ververas16, i.panagakis, s.zafeiriou}@imperial.ac.uk, m.nicolaou@gold.ac.uk </td></tr><tr><td>7f36dd9ead29649ed389306790faf3b390dc0aa2</td><td>MOVEMENT DIFFERENCES BETWEEN DELIBERATE @@ -36884,7 +46967,9 @@ <br/>Features with Soft Facial Attributes <br/>L. Zhang, P. Dou, I.A. Kakadiaris <br/>Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 -</td><td></td><td></td></tr><tr><td>7f6599e674a33ed64549cd512ad75bdbd28c7f6c</td><td>Kernel Alignment Inspired +</td><td></td><td></td></tr><tr><td>7fab17ef7e25626643f1d55257a3e13348e435bd</td><td>Age Progression/Regression by Conditional Adversarial Autoencoder +<br/><b>The University of Tennessee, Knoxville, TN, USA</b></td><td>('1786391', 'Zhifei Zhang', 'zhifei zhang')<br/>('46970616', 'Yang Song', 'yang song')<br/>('1698645', 'Hairong Qi', 'hairong qi')</td><td>{zzhang61, ysong18, hqi}@utk.edu +</td></tr><tr><td>7f6599e674a33ed64549cd512ad75bdbd28c7f6c</td><td>Kernel Alignment Inspired <br/>Linear Discriminant Analysis <br/>Department of Computer Science and Engineering, <br/><b>University of Texas at Arlington, TX, USA</b></td><td>('1747268', 'Shuai Zheng', 'shuai zheng')</td><td>zhengs123@gmail.com, chqding@uta.edu @@ -37035,7 +47120,8 @@ <br/> ea whi <br/>de deve </td><td></td><td>weg@c. .ed -</td></tr><tr><td>7ae0212d6bf8a067b468f2a78054c64ea6a577ce</td><td>Human Face Processing Techniques +</td></tr><tr><td>7a81967598c2c0b3b3771c1af943efb1defd4482</td><td>Do We Need More Training Data? +</td><td>('32542103', 'Xiangxin Zhu', 'xiangxin zhu')</td><td></td></tr><tr><td>7ae0212d6bf8a067b468f2a78054c64ea6a577ce</td><td>Human Face Processing Techniques <br/>With Application To <br/>Large Scale Video Indexing <br/>DOCTOR OF @@ -37058,7 +47144,10 @@ </td><td></td><td>e-mail: [raul, marley]@ele.puc -rio.br, tuler@inf.puc-rio.br, [diogo, sam]@tecgraf.puc-rio.br </td></tr><tr><td>7ad77b6e727795a12fdacd1f328f4f904471233f</td><td>Supervised Local Descriptor Learning <br/>for Human Action Recognition -</td><td>('34798935', 'Xiantong Zhen', 'xiantong zhen')<br/>('40255667', 'Feng Zheng', 'feng zheng')<br/>('40799321', 'Ling Shao', 'ling shao')<br/>('1720247', 'Xianbin Cao', 'xianbin cao')<br/>('40147776', 'Dan Xu', 'dan xu')</td><td></td></tr><tr><td>7a7f2403e3cc7207e76475e8f27a501c21320a44</td><td>Emotion Recognition from Multi-Modal Information +</td><td>('34798935', 'Xiantong Zhen', 'xiantong zhen')<br/>('40255667', 'Feng Zheng', 'feng zheng')<br/>('40799321', 'Ling Shao', 'ling shao')<br/>('1720247', 'Xianbin Cao', 'xianbin cao')<br/>('40147776', 'Dan Xu', 'dan xu')</td><td></td></tr><tr><td>7a3d46f32f680144fd2ba261681b43b86b702b85</td><td>Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute +<br/>Classification +<br/><b>School of Information Science and Engineering, Xiamen University, Xiamen 361005, China</b><br/><b>bSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China</b><br/>aFujian Key Laboratory of Sensing and Computing for Smart City, +<br/><b>cSchool of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia</b></td><td>('41034942', 'Ni Zhuang', 'ni zhuang')<br/>('40461734', 'Yan Yan', 'yan yan')<br/>('47336404', 'Si Chen', 'si chen')<br/>('37414077', 'Hanzi Wang', 'hanzi wang')<br/>('1780381', 'Chunhua Shen', 'chunhua shen')</td><td></td></tr><tr><td>7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b</td><td></td><td></td><td></td></tr><tr><td>7a7f2403e3cc7207e76475e8f27a501c21320a44</td><td>Emotion Recognition from Multi-Modal Information <br/>Department of Computer Science and Information Engineering, <br/><b>National Cheng Kung University, Tainan, Taiwan, R.O.C</b></td><td>('1681512', 'Chung-Hsien Wu', 'chung-hsien wu')<br/>('1709777', 'Jen-Chun Lin', 'jen-chun lin')<br/>('1691390', 'Wen-Li Wei', 'wen-li wei')<br/>('2891156', 'Kuan-Chun Cheng', 'kuan-chun cheng')</td><td>E-mail: chunghsienwu@gmail.com, jenchunlin@gmail.com, lilijinjin@gmail.com, davidcheng817@gmail.com </td></tr><tr><td>7aafeb9aab48fb2c34bed4b86755ac71e3f00338</td><td>Article @@ -37086,7 +47175,13 @@ </td><td>('1736182', 'Yu Zhu', 'yu zhu')<br/>('1698571', 'Yan Li', 'yan li')<br/>('2501850', 'Guowang Mu', 'guowang mu')<br/>('1822413', 'Guodong Guo', 'guodong guo')</td><td>yzhu4@mix.wvu.edu, yan.li@vipl.ict.ac.cn, guowang.mu@mail.wvu.edu , <br/>Guodong.Guo@mail.wvu.edu (corresponding author) </td></tr><tr><td>7ad7897740e701eae455457ea74ac10f8b307bed</td><td>Random Subspace Two-dimensional LDA for Face Recognition* -</td><td>('29980351', 'Garrett Bingham', 'garrett bingham')</td><td></td></tr><tr><td>7a1ce696e260899688cb705f243adf73c679f0d9</td><td>Predicting Missing Demographic Information in +</td><td>('29980351', 'Garrett Bingham', 'garrett bingham')</td><td></td></tr><tr><td>7ac9aaafe4d74542832c273acf9d631cb8ea6193</td><td>Deep Micro-Dictionary Learning and Coding Network +<br/><b>University of Trento, Trento, Italy</b><br/>2Department of Electrical Engineering, Hong Kong Polytechnic Unversity, Hong Kong, China +<br/>3Lingxi Artificial Interlligence Co., Ltd, Shen Zhen, China +<br/>4Computer Vision Laboratory, ´Ecole Polytechnique F´ed´erale de Lausanne, Lausanne, Switzerland +<br/><b>University of Oxford, Oxford, UK</b><br/><b>Texas State University, San Marcos, USA</b></td><td>('46666325', 'Hao Tang', 'hao tang')<br/>('49567679', 'Heng Wei', 'heng wei')<br/>('38505394', 'Wei Xiao', 'wei xiao')<br/>('47824598', 'Wei Wang', 'wei wang')<br/>('40147776', 'Dan Xu', 'dan xu')<br/>('1703601', 'Nicu Sebe', 'nicu sebe')</td><td>{hao.tang, niculae.sebe}@unitn.it, 15102924d@connect.polyu.hk, xiaoweithu@163.com +<br/>wei.wang@epfl.ch, danxu@robots.ox.ac.uk, y y34@txstate.edu +</td></tr><tr><td>7a1ce696e260899688cb705f243adf73c679f0d9</td><td>Predicting Missing Demographic Information in <br/>Biometric Records using Label Propagation <br/>Techniques <br/>Department of Computer Science and Engineering @@ -37095,6 +47190,23 @@ <br/><b>Michigan State University</b><br/>East Lansing, Michigan 48824 </td><td>('3153117', 'Thomas Swearingen', 'thomas swearingen')<br/>('1698707', 'Arun Ross', 'arun ross')</td><td>Email: swearin3@msu.edu <br/>Email: rossarun@msu.edu +</td></tr><tr><td>7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697</td><td>Attend and Rectify: a Gated Attention +<br/>Mechanism for Fine-Grained Recovery +<br/>†Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB), +<br/>Campus UAB, 08193 Bellaterra, Catalonia Spain +<br/>‡Visual Tagging Services, Parc de Recerca, Campus UAB +</td><td>('1739551', 'Josep M. Gonfaus', 'josep m. gonfaus')<br/>('7153363', 'Guillem Cucurull', 'guillem cucurull')<br/>('1696387', 'F. Xavier Roca', 'f. xavier roca')</td><td></td></tr><tr><td>7aa062c6c90dba866273f5edd413075b90077b51</td><td>I.J. Information Technology and Computer Science, 2017, 5, 40-51 +<br/>Published Online May 2017 in MECS (http://www.mecs-press.org/) +<br/>DOI: 10.5815/ijitcs.2017.05.06 +<br/>Minimizing Separability: A Comparative Analysis +<br/>of Illumination Compensation Techniques in Face +<br/>Recognition +<br/><b>Baze University, Abuja, Nigeria</b></td><td>('7392398', 'Chollette C. Olisah', 'chollette c. olisah')</td><td>E-mail: chollette.olisah@bazeuniversity.edu.ng +</td></tr><tr><td>7a131fafa7058fb75fdca32d0529bc7cb50429bd</td><td>Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and +<br/>Identity Preserving Frontal View Synthesis +<br/>1National Laboratory of Pattern Recognition, CASIA +<br/>2Center for Research on Intelligent Perception and Computing, CASIA +<br/><b>University of Chinese Academy of Sciences, Beijing, China</b></td><td>('48241673', 'Rui Huang', 'rui huang')<br/>('50202300', 'Shu Zhang', 'shu zhang')<br/>('50290162', 'Tianyu Li', 'tianyu li')<br/>('1705643', 'Ran He', 'ran he')</td><td>huangrui@cmu.edu, tianyu.lizard@gmail.com, {shu.zhang, rhe}@nlpr.ia.ac.cn </td></tr><tr><td>1451e7b11e66c86104f9391b80d9fb422fb11c01</td><td>IET Signal Processing <br/>Research Article <br/>Image privacy protection with secure JPEG @@ -37253,7 +47365,17 @@ <br/>of multiple classes. However, its classification performance was not sufficient for <br/>many applications in practice, because class subspaces are generated indepen- <br/>dently of each other [1]. There is no reason to assume a priori that each class -</td><td>('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')</td><td></td></tr><tr><td>146a7ecc7e34b85276dd0275c337eff6ba6ef8c0</td><td>This is a pre-print of the original paper submitted for review in FG 2017. +</td><td>('1770128', 'Kazuhiro Fukui', 'kazuhiro fukui')</td><td></td></tr><tr><td>1442319de86d171ce9595b20866ec865003e66fc</td><td>Vision-Based Fall Detection with Convolutional +<br/>Neural Networks +<br/><b>DeustoTech - University of Deusto</b><br/>Avenida de las Universidades, 24 - 48007, Bilbao, Spain +<br/>2 Dept. of Computer Science and Artificial Intelligence, Basque +<br/><b>Country University, San Sebastian, Spain</b><br/>P. Manuel Lardizabal, 1 - 20018, San Sebastian, Spain +<br/>3 Ikerbasque, Basque Foundation for Science, Bilbao, Spain +<br/>Maria Diaz de Haro, 3 - 48013 Bilbao, Spain +<br/>4 Donostia International Physics Center (DIPC), San Sebastian, Spain +<br/>P. Manuel Lardizabal, 4 - 20018, San Sebastian, Spain +</td><td>('2481918', 'Gorka Azkune', 'gorka azkune')<br/>('3147227', 'Ignacio Arganda-Carreras', 'ignacio arganda-carreras')</td><td>{adrian.nunez@deusto.es, gorka.azkune@deusto.es, ignacio.arganda@ehu.es} +</td></tr><tr><td>146a7ecc7e34b85276dd0275c337eff6ba6ef8c0</td><td>This is a pre-print of the original paper submitted for review in FG 2017. <br/>AFFACT - Alignment Free Facial Attribute Classification Technique <br/>Vision and Security Technology (VAST) Lab, <br/><b>University of Colorado Colorado Springs</b><br/>∗ authors with equal contribution @@ -37576,7 +47698,16 @@ </td></tr><tr><td>14a5feadd4209d21fa308e7a942967ea7c13b7b6</td><td>978-1-4673-0046-9/12/$26.00 ©2012 IEEE <br/>1025 <br/>ICASSP 2012 -</td><td></td><td></td></tr><tr><td>8ec82da82416bb8da8cdf2140c740e1574eaf84f</td><td>CHUNG AND ZISSERMAN: BMVC AUTHOR GUIDELINES +</td><td></td><td></td></tr><tr><td>14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b</td><td>Modeling Spatio-Temporal Human Track Structure for Action +<br/>Localization +</td><td>('2926143', 'Anton Osokin', 'anton osokin')</td><td></td></tr><tr><td>14ee4948be56caeb30aa3b94968ce663e7496ce4</td><td>Jang, Y; Gunes, H; Patras, I +<br/>© Copyright 2018 IEEE +<br/>For additional information about this publication click this link. +<br/>http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405 +<br/>Information about this research object was correct at the time of download; we occasionally +<br/>make corrections to records, please therefore check the published record when citing. For +</td><td></td><td>more information contact scholarlycommunications@qmul.ac.uk +</td></tr><tr><td>8ec82da82416bb8da8cdf2140c740e1574eaf84f</td><td>CHUNG AND ZISSERMAN: BMVC AUTHOR GUIDELINES <br/>Lip Reading in Profile <br/>http://www.robots.ox.ac.uk/~joon <br/>http://www.robots.ox.ac.uk/~az @@ -37623,7 +47754,19 @@ <br/>[11]. This could indicate that image manipulations tend to equalize face recognition abilities, and <br/>we investigate whether this is the case with the manipulations and face recognition algorithms we <br/>test. -</td><td>('1897270', 'Cathy Chen', 'cathy chen')</td><td></td></tr><tr><td>8e94ed0d7606408a0833e69c3185d6dcbe22bbbe</td><td>© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE +</td><td>('1897270', 'Cathy Chen', 'cathy chen')</td><td></td></tr><tr><td>8e3d0b401dec8818cd0245c540c6bc032f169a1d</td><td>McGan: Mean and Covariance Feature Matching GAN +</td><td>('2211263', 'Youssef Mroueh', 'youssef mroueh')</td><td></td></tr><tr><td>8e3c97e420e0112c043929087d6456d8ab61e95c</td><td>SAFDARNEJAD et al.: ROBUST GLOBAL MOTION COMPENSATION +<br/>Robust Global Motion Compensation in +<br/>Presence of Predominant Foreground +<br/>https://www.msu.edu/~safdarne/ +<br/>http://www.cse.msu.edu/~liuxm/ +<br/>http://www.egr.msu.edu/ndel/profile/lalita-udpa +<br/><b>Michigan State University</b><br/>East Lansing +<br/>Michigan, USA +</td><td>('2941187', 'Seyed Morteza Safdarnejad', 'seyed morteza safdarnejad')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')<br/>('1938832', 'Lalita Udpa', 'lalita udpa')</td><td></td></tr><tr><td>8e0ab1b08964393e4f9f42ca037220fe98aad7ac</td><td>UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face +<br/>Recognition +<br/><b>Imperial College London</b></td><td>('3234063', 'Jiankang Deng', 'jiankang deng')<br/>('1902288', 'Shiyang Cheng', 'shiyang cheng')<br/>('4091869', 'Niannan Xue', 'niannan xue')<br/>('47943220', 'Yuxiang Zhou', 'yuxiang zhou')</td><td>j.deng16, shiyang.cheng11,n.xue15,yuxiang.zhou10,s.zafeiriou@imperial.ac.uk +</td></tr><tr><td>8e94ed0d7606408a0833e69c3185d6dcbe22bbbe</td><td>© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE <br/>must be obtained for all other uses, in any current or future media, including <br/>reprinting/republishing this material for advertising or promotional purposes, <br/>creating new collective works, for resale or redistribution to servers or lists, or @@ -37643,7 +47786,7 @@ <br/>Multimedia Communications Department <br/>BP 193, 06904 Sophia Antipolis Cedex, France </td><td>('1723883', 'Florent Perronnin', 'florent perronnin')<br/>('1709849', 'Jean-Luc Dugelay', 'jean-luc dugelay')</td><td>fflorent.perronnin, jean-luc.dugelayg@eurecom.fr -</td></tr><tr><td>8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958</td><td>Segment-based SVMs for +</td></tr><tr><td>8ed32c8fad924736ebc6d99c5c319312ba1fa80b</td><td></td><td></td><td></td></tr><tr><td>8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958</td><td>Segment-based SVMs for <br/>Time Series Analysis <br/>CMU-RI-TR-12-1 <br/>Submitted in partial fulfillment of the @@ -37684,7 +47827,13 @@ <br/>am 18.09.2008 angenommen. </td><td></td><td></td></tr><tr><td>8ed051be31309a71b75e584bc812b71a0344a019</td><td>Class-based feature matching across unrestricted <br/>transformations -</td><td>('1938475', 'Evgeniy Bart', 'evgeniy bart')<br/>('1743045', 'Shimon Ullman', 'shimon ullman')</td><td></td></tr><tr><td>8ee5b1c9fb0bded3578113c738060290403ed472</td><td>Extending Explicit Shape Regression with +</td><td>('1938475', 'Evgeniy Bart', 'evgeniy bart')<br/>('1743045', 'Shimon Ullman', 'shimon ullman')</td><td></td></tr><tr><td>8e36100cb144685c26e46ad034c524b830b8b2f2</td><td>Modeling Facial Geometry using Compositional VAEs +<br/>1 ´Ecole Polytechnique F´ed´erale de Lausanne +<br/>2Facebook Reality Labs, Pittsburgh +</td><td>('33846296', 'Chenglei Wu', 'chenglei wu')<br/>('14373499', 'Jason Saragih', 'jason saragih')<br/>('1717736', 'Pascal Fua', 'pascal fua')<br/>('1774867', 'Yaser Sheikh', 'yaser sheikh')</td><td>{firstname.lastname}@epfl.ch, {firstname.lastname}@fb.com +</td></tr><tr><td>8ed33184fccde677ec8413ae06f28ea9f2ca70f3</td><td>Multimodal Visual Concept Learning with Weakly Supervised Techniques +<br/><b>School of E.C.E., National Technical University of Athens, Greece</b></td><td>('7311172', 'Giorgos Bouritsas', 'giorgos bouritsas')<br/>('2539459', 'Petros Koutras', 'petros koutras')<br/>('2641229', 'Athanasia Zlatintsi', 'athanasia zlatintsi')<br/>('1750686', 'Petros Maragos', 'petros maragos')</td><td>gbouritsas@gmail.com, {pkoutras, nzlat, maragos}@cs.ntua.gr +</td></tr><tr><td>8ee5b1c9fb0bded3578113c738060290403ed472</td><td>Extending Explicit Shape Regression with <br/>Mixed Feature Channels and Pose Priors <br/><b>Karlsruhe Institute of</b><br/>Technology (KIT) <br/>Karlsruhe, Germany @@ -37697,7 +47846,13 @@ </td><td>('39610204', 'Matthias Richter', 'matthias richter')<br/>('1697965', 'Hua Gao', 'hua gao')</td><td>matthias.richter@kit.edu <br/>hua.gao@epfl.ch <br/>ekenel@itu.edu.tr -</td></tr><tr><td>8efda5708bbcf658d4f567e3866e3549fe045bbb</td><td>Pre-trained Deep Convolutional Neural Networks +</td></tr><tr><td>8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b</td><td>International Journal of Computer Vision manuscript No. +<br/>(will be inserted by the editor) +<br/>Learning from Longitudinal Face Demonstration - +<br/>Where Tractable Deep Modeling Meets Inverse Reinforcement Learning +<br/>Savvides · Tien D. Bui +<br/>Received: date / Accepted: date +</td><td>('1876581', 'Chi Nhan Duong', 'chi nhan duong')</td><td></td></tr><tr><td>8efda5708bbcf658d4f567e3866e3549fe045bbb</td><td>Pre-trained Deep Convolutional Neural Networks <br/>for Face Recognition <br/>Siebert Looije <br/>S2209276 @@ -37708,7 +47863,17 @@ <br/>Dr. M.A. (Marco) Wiering <br/>K. (Klaas) Dijkstra, MSc. <br/><b>ALICE Institute</b><br/><b>University of Groningen</b><br/>Nijenborgh 9, 9747 AG, Groningen, The Netherlands -<br/><b>facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty</b></td><td></td><td></td></tr><tr><td>225fb9181545f8750061c7693661b62d715dc542</td><td></td><td></td><td></td></tr><tr><td>22043cbd2b70cb8195d8d0500460ddc00ddb1a62</td><td>Separability-Oriented Subclass Discriminant +<br/><b>facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty</b></td><td></td><td></td></tr><tr><td>2227f978f084ebb18cb594c0cfaf124b0df6bf95</td><td>Pillar Networks for action recognition +<br/>B Sengupta +<br/>Cortexica Vision Systems Limited +<br/><b>Imperial College London</b><br/>London, UK +<br/>Y Qian +<br/>Cortexica Vision Systems Limited +<br/>30 Stamford Street SE1 9LQ +<br/>London, UK +</td><td></td><td>b.sengupta@imperial.ac.uk +<br/>yu.qian@cortexica.com +</td></tr><tr><td>225fb9181545f8750061c7693661b62d715dc542</td><td></td><td></td><td></td></tr><tr><td>22043cbd2b70cb8195d8d0500460ddc00ddb1a62</td><td>Separability-Oriented Subclass Discriminant <br/>Analysis </td><td>('2986129', 'Huan Wan', 'huan wan')<br/>('27838939', 'Hui Wang', 'hui wang')<br/>('35009947', 'Gongde Guo', 'gongde guo')<br/>('10803956', 'Xin Wei', 'xin wei')</td><td></td></tr><tr><td>22137ce9c01a8fdebf92ef35407a5a5d18730dde</td><td></td><td></td><td></td></tr><tr><td>22e2066acfb795ac4db3f97d2ac176d6ca41836c</td><td>Coarse-to-Fine Auto-Encoder Networks (CFAN) <br/>for Real-Time Face Alignment @@ -37769,9 +47934,19 @@ </td></tr><tr><td>22e678d3e915218a7c09af0d1602e73080658bb7</td><td>Adventures in Archiving and Using Three Years of Webcam Images <br/>Department of Computer Science and Engineering <br/><b>Washington University, St. Louis, MO, USA</b></td><td>('1990750', 'Nathan Jacobs', 'nathan jacobs')<br/>('39795519', 'Walker Burgin', 'walker burgin')<br/>('1761429', 'Robert Pless', 'robert pless')</td><td>{jacobsn,wsb1,rzs1,dyr1,pless}@cse.wustl.edu -</td></tr><tr><td>227b18fab568472bf14f9665cedfb95ed33e5fce</td><td>Compositional Dictionaries for Domain Adaptive +</td></tr><tr><td>2201f187a7483982c2e8e2585ad9907c5e66671d</td><td>Joint Face Alignment and 3D Face Reconstruction +<br/><b>College of Computer Science, Sichuan University, Chengdu, China</b><br/>2 Department of Computer Science and Engineering +<br/><b>Michigan State University, East Lansing, MI, U.S.A</b></td><td>('50207647', 'Feng Liu', 'feng liu')<br/>('39422721', 'Dan Zeng', 'dan zeng')<br/>('7345195', 'Qijun Zhao', 'qijun zhao')<br/>('1759169', 'Xiaoming Liu', 'xiaoming liu')</td><td></td></tr><tr><td>227b18fab568472bf14f9665cedfb95ed33e5fce</td><td>Compositional Dictionaries for Domain Adaptive <br/>Face Recognition -</td><td>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>2241eda10b76efd84f3c05bdd836619b4a3df97e</td><td>One-to-many face recognition with bilinear CNNs +</td><td>('2077648', 'Qiang Qiu', 'qiang qiu')<br/>('9215658', 'Rama Chellappa', 'rama chellappa')</td><td></td></tr><tr><td>227b1a09b942eaf130d1d84cdcabf98921780a22</td><td>Yang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:51 +<br/>https://doi.org/10.1186/s13634-018-0572-6 +<br/>EURASIP Journal on Advances +<br/>in Signal Processing +<br/>R ES EAR CH +<br/>Multi-feature shape regression for face +<br/>alignment +<br/>Open Access +</td><td>('3413708', 'Wei-jong Yang', 'wei-jong yang')<br/>('49070426', 'Yi-Chen Chen', 'yi-chen chen')<br/>('1789917', 'Pau-Choo Chung', 'pau-choo chung')<br/>('1749263', 'Jar-Ferr Yang', 'jar-ferr yang')</td><td></td></tr><tr><td>2241eda10b76efd84f3c05bdd836619b4a3df97e</td><td>One-to-many face recognition with bilinear CNNs <br/>Aruni RoyChowdhury <br/><b>University of Massachusetts, Amherst</b><br/>Erik Learned-Miller </td><td>('2144284', 'Tsung-Yu Lin', 'tsung-yu lin')<br/>('35208858', 'Subhransu Maji', 'subhransu maji')</td><td>{arunirc,tsungyulin,smaji,elm}@cs.umass.edu @@ -37823,6 +47998,13 @@ </td><td>('2986395', 'Panna Felsen', 'panna felsen')<br/>('33932184', 'Pulkit Agrawal', 'pulkit agrawal')<br/>('1689212', 'Jitendra Malik', 'jitendra malik')</td><td>panna@berkeley.edu <br/>pulkitag@berkeley.edu <br/>malik@berkeley.edu +</td></tr><tr><td>25ff865460c2b5481fa4161749d5da8501010aa0</td><td>Seeing What Is Not There: +<br/>Learning Context to Determine Where Objects Are Missing +<br/>Department of Computer Science +<br/><b>University of Maryland</b><br/>Figure 1: When curb ramps (green rectangle) are missing from a segment of sidewalks in an intersection (orange rectangle), +<br/>people with mobility impairments are unable to cross the street. We propose an approach to determine where objects are +<br/>missing by learning a context model so that it can be combined with object detection results. +</td><td>('39516880', 'Jin Sun', 'jin sun')<br/>('34734622', 'David W. Jacobs', 'david w. jacobs')</td><td>{jinsun,djacobs}@cs.umd.edu </td></tr><tr><td>25d514d26ecbc147becf4117512523412e1f060b</td><td>Annotated Crowd Video Face Database <br/>IIIT-Delhi, India </td><td>('2952437', 'Tejas I. Dhamecha', 'tejas i. dhamecha')<br/>('2578160', 'Priyanka Verma', 'priyanka verma')<br/>('3239512', 'Mahek Shah', 'mahek shah')<br/>('39129417', 'Richa Singh', 'richa singh')<br/>('2338122', 'Mayank Vatsa', 'mayank vatsa')</td><td>{tejasd,priyanka13100,mahek13106,rsingh,mayank}@iiitd.ac.in @@ -37871,7 +48053,16 @@ <br/>yi.gao@stonybrookmedicine.edu </td></tr><tr><td>25d3e122fec578a14226dc7c007fb1f05ddf97f7</td><td>The First Facial Expression Recognition and Analysis Challenge </td><td>('1795528', 'Michel F. Valstar', 'michel f. valstar')<br/>('39532631', 'Bihan Jiang', 'bihan jiang')<br/>('1875347', 'Marc Mehu', 'marc mehu')<br/>('1694605', 'Maja Pantic', 'maja pantic')</td><td></td></tr><tr><td>2597b0dccdf3d89eaffd32e202570b1fbbedd1d6</td><td>Towards predicting the likeability of fashion images -</td><td>('2569065', 'Jinghua Wang', 'jinghua wang')<br/>('2613790', 'Abrar Abdul Nabi', 'abrar abdul nabi')<br/>('22804340', 'Gang Wang', 'gang wang')<br/>('2737180', 'Chengde Wan', 'chengde wan')<br/>('2475944', 'Tian-Tsong Ng', 'tian-tsong ng')</td><td></td></tr><tr><td>25c108a56e4cb757b62911639a40e9caf07f1b4f</td><td>Recurrent Scale Approximation for Object Detection in CNN +</td><td>('2569065', 'Jinghua Wang', 'jinghua wang')<br/>('2613790', 'Abrar Abdul Nabi', 'abrar abdul nabi')<br/>('22804340', 'Gang Wang', 'gang wang')<br/>('2737180', 'Chengde Wan', 'chengde wan')<br/>('2475944', 'Tian-Tsong Ng', 'tian-tsong ng')</td><td></td></tr><tr><td>2588acc7a730d864f84d4e1a050070ff873b03d5</td><td>Article +<br/>Action Recognition by an Attention-Aware Temporal +<br/>Weighted Convolutional Neural Network +<br/><b>Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an 710049, China</b><br/>Received: 27 April 2018; Accepted: 19 June 2018; Published: 21 June 2018 +</td><td>('40367806', 'Le Wang', 'le wang')<br/>('14800230', 'Jinliang Zang', 'jinliang zang')<br/>('46324995', 'Qilin Zhang', 'qilin zhang')<br/>('1786361', 'Zhenxing Niu', 'zhenxing niu')<br/>('1745420', 'Gang Hua', 'gang hua')<br/>('1715389', 'Nanning Zheng', 'nanning zheng')</td><td>zjl19920904@stu.xjtu.edu.cn (J.Z.); nnzheng@xjtu.edu.cn (N.Z.) +<br/>2 HERE Technologies, Chicago, IL 60606, USA; qilin.zhang@here.com +<br/>3 Alibaba Group, Hangzhou 311121, China; zhenxing.nzx@alibaba-inc.com +<br/>4 Microsoft Research, Redmond, WA 98052, USA; ganghua@microsoft.com +<br/>* Correspondence: lewang@xjtu.edu.cn; Tel.: +86-29-8266-8672 +</td></tr><tr><td>25982e2bef817ebde7be5bb80b22a9864b979fb0</td><td></td><td></td><td></td></tr><tr><td>25c108a56e4cb757b62911639a40e9caf07f1b4f</td><td>Recurrent Scale Approximation for Object Detection in CNN <br/><b>Multimedia Laboratory at The Chinese University of Hong Kong</b><br/>1SenseTime Group Limited </td><td>('1715752', 'Yu Liu', 'yu liu')<br/>('1929886', 'Hongyang Li', 'hongyang li')<br/>('1721677', 'Junjie Yan', 'junjie yan')<br/>('22181490', 'Fangyin Wei', 'fangyin wei')<br/>('31843833', 'Xiaogang Wang', 'xiaogang wang')<br/>('1741901', 'Xiaoou Tang', 'xiaoou tang')</td><td>liuyuisanai@gmail.com,{yangli,xgwang}@ee.cuhk.edu.hk, <br/>{yanjunjie,weifangyin}@sensetime.com, xtang@ie.cuhk.edu.hk diff --git a/reports/institution_names.csv b/reports/institution_names.csv index ef0b2a51..7010cb87 100644 --- a/reports/institution_names.csv +++ b/reports/institution_names.csv @@ -6,17 +6,22 @@ A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER A Thesis submitted to McGill University in partial fulfillment of the requirements for the
A dissertation submitted to the Faculty of the University of Delaware in partial
A dissertation submitted to the University of Bristol in accordance with the requirements
+"A. van Kleef, University of Amsterdam"
AALTO UNIVERSITY
"ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam"
"ADSIP Research Centre, University of Central Lancashire"
AI Institute
ALICE Institute
+"ALPHA COLLEGE OF ENGINEERING, CHENNAI"
ARISTOTLE UNIVERSITY OF THESSALONIKI
ATR Human Information Processing Research Laboratories
ATR Human Information Processing Research Laboratory
ATR Interpreting Telecommunications Research Laboratories
"Aalborg University, Denmark"
+"Aalen University, Germany"
+"Aalto University, Espoo, Finland"
"Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark"
+"Abdul WaliKhan University, Mardan, KPK, Pakistan"
"Aberystwyth University, UK"
"Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India"
"Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan"
@@ -29,8 +34,10 @@ Acharya Institute Of Technology "Aditya institute of Technology and Management, Tekkalli-532 201, A.P"
"Adobe Systems, Inc., 345 Park Ave, San Jose, CA"
"Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore"
+"Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore"
"Advanced Engineering, The Chinese University of Hong Kong"
"Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul"
+"Affiliated to Anna university, Chennai"
"Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India"
AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of
Akita Prefectural University
@@ -42,17 +49,22 @@ Alan W Black (Carnegie Mellon University Alex Waibel (Carnegie Mellon University
"Alexandria University, Alexandria, Egypt"
"Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest"
+Allen Institute for Arti cial Intelligence
Allen Institute for Arti cial Intelligence (AI
"Allen Institute for Arti cial Intelligence (AI2), Seattle, WA"
"Amal Jyothi College of Engineering, Kanjirappally, India"
"Amazon, Inc"
+American University
"American University, Washington, DC, USA"
Amherst College
Amirkabir University of Technology
"Amirkabir University of Technology, University of Southern California"
"Amirkabir University of Technology, Tehran"
+"Amirkabir University of Technology, Tehran, Iran"
"Amirkabir University of Technology, Tehran. Iran"
+Amity University
"Amity University, Lucknow, India"
+"Amity University, Noida, India"
"Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam"
"Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome"
"AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of"
@@ -69,10 +81,14 @@ Aristotle University of Thessaloniki GR "Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece"
"Aristotle University of Thessaloniki, Greece"
"Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece"
+"Aristotle University of Thessaloniki, Thessaloniki, Greece"
AristotleUniversityofThessaloniki
Arizona State University
"Arizona State University, AZ, USA"
+"Arizona State University, Phoenix, Arizona"
"Arizona State University, Tempe AZ"
+Army Research Laboratory
+"Aron Szekely, University of Oxford, UK"
"Arti cial Intelligence Institute, China"
"Arts Media and Engineering, Arizona State University"
"Arts, Commerce and Science College, Gangakhed, M.S, India"
@@ -95,7 +111,9 @@ Australian National University and NICTA "Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL"
"Australian National University, Canberra"
"Australian National University, Canberra, ACT 0200, Australia"
+"Australian National University, Canberra, Australia"
"Australian National University, and NICTA"
+"Author s addresses: X. Peng, University of Rochester; L. Chi"
"Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy"
Autonomous University of Barcelona
Azad University of Qazvin
@@ -112,15 +130,19 @@ B.S. University of Central Florida B.S. University of Indonesia
"B.S., Computer Engineering, Bo gazi ci University"
"B.S., E.E., Bo azi i University"
+"B.S., Pennsylvania State University"
B.S./M.S. Brandeis University
B.S.Abdur Rahman University B.S.Abdur Rahman University
"B.Sc., University of Science and Technology of China"
"B.Tech (C.S.E), Bharath University, Chennai"
+"B.Tech., Electronics Engineering, Institute of Technology, Banaras Hindu University"
"BECS, Aalto University School of Science and Technology, Finland"
"BECS, Aalto University, Helsinki, Finland"
"BRIC, University of North Carolina at Chapel Hill, NC 27599, USA"
"Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca"
+"Bacha Khan University, Charsadda, KPK, Pakistan"
"Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria"
+"Bahc es ehir University, Istanbul, Turkey"
Bahcesehir University
Baidu IDL and Tsinghua University
Baidu Research Institute of Deep Learning
@@ -132,36 +154,52 @@ Bangladesh University of Engineering and Technology(BUET "Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India"
"Bar Ilan University, Israel"
Bas kent University
+"Baze University, Abuja, Nigeria"
Beckman Institute
Beckman Institute for Advanced Science and Technology
+"Beckman Institute, University of Illinois at Urbana-Champaign"
"Beckman Institute, University of Illinois at Urbana-Champaign, IL USA"
"Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA"
"Beckman Institute, University of Illinois at Urbana-Champaign, USA"
"Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA"
+"Beckmann Institute, University of Illinois at Urbana-Champaign, USA"
+"Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology"
+"Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands"
Beihang University
"Beihang University 2Gri th University 3University of York, UK"
+"Beihang University, 2The Chinese University of Hong Kong, 3Sensetime Group Limited"
"Beihang University, Beijing 100191, China"
"Beihang University, Beijing, China"
+Beijing Institute of Technology
"Beijing Institute of Technology University, P. R. China"
"Beijing Institute of Technology, Beijing 100081 CHINA"
"Beijing Institute of Technology, Beijing 100081, PR China"
"Beijing Institute of Technology, Beijing, China"
"Beijing Institute of Technology, China"
Beijing Jiaotong University
+"Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China"
"Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China"
+Beijing National Research Center for Information Science and Technology
"Beijing Normal University, China"
"Beijing Union University, 100101, China"
+"Beijing University of Chemical Technology, China"
Beijing University of Posts and Telecommunications
"Beijing University of Posts and Telecommunications, Beijing, China"
"Beijing University of Posts and Telecommunications, Beijing, China. 2School of"
"Beijing University of Posts and Telecommunications, Beijing, P.R. China"
"Beijing University of Technology, Beijing 100022, China"
"Beijing, China"
+"BeingTogether Centre, Institute for Media Innovation, Singapore 637553, Singapore"
"Benha University, Egypt"
+Berlin Institute of Technology
Bharath Institute of Science and Technology
+"Bharath University, India"
"Bharathidasan University, Trichy, India"
"Bharti Vidyapeeth Deemed University, Pune, India"
+"Bibliographic details for the item, including a URL"
Bielefeld University
+"Big Data Institute, University of Oxford"
+"Big Data Research Center, University of Electronic Science and Technology of China"
"Bilgi University, Dolapdere, Istanbul, TR"
Bilkent University
"Bilkent University, 06800 Cankaya, Turkey"
@@ -170,7 +208,9 @@ Bilkent University Biometric Research Center
"Biometric Research Center, The Hong Kong Polytechnic University"
"Biometric and Image Processing Lab, University of Salerno, Italy"
+"Biometrics Research Lab, College of Computer Science, Sichuan University, Chengdu 610065, China"
"Birkbeck College, University of London"
+Birkbeck University of London
Bo gazi ci University
"Bo gazi ci University, Turkey"
"Bo gazic i University, Istanbul, Turkey"
@@ -182,23 +222,32 @@ Boston College "Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos"
Boston University
Boston University / **Rutgers University / ***Gallaudet University
+Boston University 2Pattern Analysis and Computer Vision (PAVIS
Boston University Computer Science Technical Report No
Boston University Theses and Dissertations
+Boston University and 2University of North Carolina
"Boston University, Boston, MA"
"Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA"
"Boston University, USA"
+"Boston University1, University of Tokyo"
Bournemouth University
"Bournemouth University, UK"
"Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA"
+"Brazil, University Hospital Zurich, Z rich"
Brown University
+Brown University 2University of Bath
"Brown University, 2University of California, San Diego, 3California Institute of Technology"
"Brown University, Providence, RI"
+"Brown University, Providence, RI 02912, USA"
"Brown University, United States"
+"Budapest, Hungary, E tv s Lor nd University, Budapest, Hungary, 3 Institute for Computer Science"
"C.L. Teo, University of Maryland"
CALIFORNIA INSTITUTE OF TECHNOLOGY
CARNEGIE MELLON UNIVERSITY
"CAS), Institute of Computing Technology, CAS, Beijing 100190, China"
"CAS), Institute of Computing Technology, CAS, Beijing, 100190, China"
+"CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China"
+"CBSRandNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China"
"CISE, University of Florida, Gainesville, FL"
"CISUC, University of Coimbra"
"CMR Institute of Technology, Hyderabad, (India"
@@ -210,6 +259,10 @@ COMSATS Institute of Information Technology Wah Cantt "COMSATS Institute of Information Technology, Lahore 54000, Pakistan"
"COMSATS Institute of Information Technology, Pakistan"
"CRCV, University of Central Florida"
+"CRIPAC and NLPR and CEBSIT, CASIA 2University of Chinese Academy of Sciences"
+"CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong"
+"CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition"
+"CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong"
CUNY City College
CUNY Graduate Center and City College
"CVAP, KTH (Royal Institute of Technology), Stockholm, SE"
@@ -219,14 +272,17 @@ CUNY Graduate Center and City College CVSSP University of Surrey
"CVSSP, University of Surrey"
"CVSSP, University of Surrey, UK"
+"Ca Foscari University of Venice, Venice, Italy"
"Caarmel Engineering College, MG University, Kerala, India"
"Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel"
California Institute of Technology
+"California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA"
"California Institute of Technology, Pasadena, CA"
"California Institute of Technology, Pasadena, CA, USA"
"California Institute of Technology, Pasadena, California, USA"
"California Institute of Technology, USA"
"California State University, Fullerton, USA"
+"California State University, Long Beach, USA"
Cambridge Research Laboratory
Cambridge University
"Cambridge University, Trumpington Street, Cambridge CB21PZ, UK"
@@ -237,6 +293,8 @@ Cardi University Carleton University
Carnegie Mellon University
Carnegie Mellon University (CMU
+Carnegie Mellon University 2University of Washington 3Allen Institute for Arti cial Intelligence
+"Carnegie Mellon University 4College of CS and SE, Shenzhen University"
"Carnegie Mellon University Pittsburgh, PA - 15213, USA"
"Carnegie Mellon University Pittsburgh, PA, USA"
"Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA"
@@ -250,8 +308,11 @@ Carnegie Mellon University (CMU "Carnegie Mellon University, Pittsburgh, USA"
"Carnegie Mellon University, USA"
Carnegie Melon University
+Carney Institute for Brain Science
"Catholic University of Rio de Janeiro, Brazil"
+"Center For Automation Research, University of Maryland, College Park"
"Center for Arti cial Vision Research, Korea University"
+"Center for Automated Learning and Discovery), Carnegie Mellon University"
"Center for Automation Research (CfAR), University of Maryland, College Park, MD"
"Center for Automation Research, UMIACS, University of Maryland, College Park"
"Center for Automation Research, UMIACS, University of Maryland, College Park, MD"
@@ -269,6 +330,7 @@ Carnegie Melon University "Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin"
"Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA"
"Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ"
+"Center for Computational Intelligence, Nanyang Technology University, Singapore"
"Center for Healthy Aging, University of"
"Center for Information Science, Peking University, Beijing 100871, China"
"Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT"
@@ -286,9 +348,12 @@ Carnegie Melon University Central Mechanical Engineering Research Institute
"Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India"
"Central Tehran Branch, Azad University"
+"Central University of Finance and Economics, Beijing, China"
Central Washington University
"Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA"
+"Centre for Applied Autism Research, University of Bath, Bath, United Kingdom, 2 Social and"
"Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de"
+"Centre for Imaging Sciences, University of"
"Centre for Intelligent Machines, McGill University, Montreal, Canada"
"Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia"
"Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of"
@@ -296,6 +361,8 @@ Central Washington University "Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia"
"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK"
"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH"
+"Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK"
+"Centre for Vision, Speech and Signal Processing, University of Surrey, UK"
"Chalmers University of Technology, SAFER"
"Chandigarh Engg. College, Mohali, Punjab, India"
"Chandigarh University, Gharuan, Punjab, India"
@@ -307,6 +374,8 @@ China University of Mining and Technol "China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of"
"China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology"
"China-Singapore Institute of Digital Media, Singapore"
+Chinese University of Hong Kong
+Chittagong University of Engineering and Technology
"Chonbuk National University, Jeonju 561-756, Korea"
"Chonbuk National University, Jeonju-si"
"Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences"
@@ -325,16 +394,20 @@ Clemson University Coburg University
"Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht"
"Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of"
+"Cognitive Neuroscience Laboratory, Centre of Biology and Health Sciences, Mackenzie Presbyterian University, S o Paulo"
"Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany"
"Collage of Sciences, Baghdad University, Iraq"
"College Heights Blvd, Bowling Green, KY"
"College Park, MD"
"College Park, MD 20742 USA"
"College Park, MD, 20740, USA"
+"College Park, MD, USA"
"College Park, Maryland"
"College Park, USA"
"College Park, United States"
"College Road East, Princeton, NJ"
+"College of Automation, Harbin Engineering University, Heilongjiang, China"
+College of Computer Science
College of Computer Science and Information Sciences
"College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China"
"College of Computer Science and Information Technology, Northeast Normal University, Changchun"
@@ -342,15 +415,22 @@ College of Computer Science and Information Sciences College of Computer Science and Technology
"College of Computer Science and Technology, Chongqing"
"College of Computer Science and Technology, Zhejiang University, China"
+"College of Computer Science and Technology, Zhejiang University, Hangzhou, China"
"College of Computer Science, Chongqing University, Chongqing, 400030, China"
"College of Computer Science, Chongqing University, Chongqing, China"
+"College of Computer Science, Sichuan University"
"College of Computer Science, Sichuan University, Chengdu 610065, P.R. China"
+"College of Computer Science, Sichuan University, Chengdu, China"
"College of Computer Science, Zhejiang University"
+"College of Computer Science, Zhejiang University, Hangzhou 310027, China"
"College of Computer Science, Zhejiang University, Hangzhou, China"
"College of Computer Science, Zhejiang University, Zhejiang, China"
+"College of Computer and Control Engineering, Nankai University 4 Hikvision Research"
+"College of Computer and Control Engineering, Nankai University 4: Hikvision Research"
"College of Computer and Information Engineering, Nanyang Institute of Technology"
"College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China"
College of Computer and Information Science
+"College of Computer and Information Science, Northeastern University, Boston, MA, USA"
"College of Computer and Information Science, Northeastern University, Boston, USA"
"College of Computer and Information Science, Northeastern University, MA, USA"
"College of Computer and Information Science, Southwest University, Chongqing 400715, China"
@@ -360,28 +440,36 @@ College of Computing "College of Computing, Georgia Institute of Technology"
"College of Computing, Georgia Institute of Technology, Atlanta, GA, USA"
College of Electrical and Information Engineering
+"College of Electrical and Information Engineering, Hunan University, China"
"College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China"
+"College of Electronics and Information Engineering, Sejong University"
"College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China"
+"College of Electronics and Information Engineering, Tongji University"
"College of Electronics and Information, Northwestern Polytechnic University"
College of Engineering (Poly
"College of Engineering Pune, India"
College of Engineering and Computer Science
College of Engineering and Mineral Resources
"College of Engineering, Mathematics and Physical Sciences"
+"College of Engineering, Northeastern University, Boston, MA, USA"
"College of Engineering, Pune, India"
"College of Engineering, Purdue University"
College of Image Arts and Sciences
College of Informatics
College of Information Engineering
"College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University"
+College of Information Science and Electronic Engineering
College of Information Science and Engineering
"College of Information Science and Engineering, Ocean University of China, Qingdao, China"
"College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan"
"College of Information Science and Engineering, Xinjiang University"
+College of Information Science and Technology
"College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi"
+"College of Information and Computer Sciences, University of Massachusetts, Amherst"
College of Information and Control Engineering in China University of Petroleum
"College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China"
College of Information and Electrical Engineering
+"College of Information and Engineering, Hunan University, Changsha, China"
"College of Information, Yunnan Normal University, Kunming, China"
"College of Mechatronic Engineering and Automation, National University of Defense Technology"
"College of Medical Informatics, Chongqing Medical University, Chongqing, China"
@@ -390,12 +478,17 @@ College of Information and Electrical Engineering "College of Science, Menou a University, Menou a 32721, Egypt"
"College of Sciences, Northeastern University, Shenyang 110819, China"
"College of Software Engineering, Southeast University, Nanjing 210096, China"
+"College of Software, Beihang University"
"College of software, Chongqing University of Posts and Telecommunications Chongqing"
"CollegePark, MD"
Colorado State University
+"Colorado State University, Fort Collins, CO 80523, USA"
"Colorado State University, Fort Collins, Colorado, USA"
+"Colorado State University, Fort Collins, USA"
+"Columbia Business School, University of California, San Diego"
Columbia University
Columbia University in the City of New York
+"Columbia University, National University of Singapore"
"Columbia University, New York NY 10027, USA"
"Columbia University, New York, NY"
"Columbia University, New York, NY 10027, USA"
@@ -414,14 +507,19 @@ Compi`egne University of Technology "Computer Graphics Research Group, University of Freiburg, Freiburg, Germany"
"Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA"
"Computer Laboratory, University of Cambridge, Cambridge, UK"
+"Computer School, University of South China, Hengyang, China"
+"Computer Science Depart., Cornell University, USA"
+"Computer Science Depart., Rochester University, USA"
"Computer Science Division, The Open University of Israel"
"Computer Science Division, The Open University of Israel, Israel"
+"Computer Science North South University, Dhaka"
"Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA"
"Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA"
"Computer Science and Engineering, Anna University, India"
"Computer Science and Engineering, Easwari Engineering College, India"
"Computer Science and Engineering, Michigan State University, East Lansing, USA"
"Computer Science and Engineering, University of Michigan, Ann Arbor"
+"Computer Science and Engineering, University of Texas at Arlington, USA"
"Computer Science and Engineering, University of Washington"
"Computer Science and Engineering, University of Washington, Seattle, WA"
"Computer Science and Engineering, University of Washington, Seattle, WA, USA"
@@ -433,10 +531,12 @@ Compi`egne University of Technology "Computer Science, Engineering and Mathematics School, Flinders University, Australia"
"Computer Science, Princeton University, Princeton, NJ, USA"
"Computer Vision Group, Friedrich Schiller University Jena"
+"Computer Vision Group, Friedrich Schiller University Jena, Germany"
"Computer Vision Group, Friedrich Schiller University of Jena, Germany"
"Computer Vision Group, L. D. College of Engineering, Ahmedabad, India"
"Computer Vision Group, Xerox Research Center Europe, Meylan, France"
"Computer Vision Lab, Delft University of Technology"
+"Computer Vision Lab, Delft University of Technology, Netherlands"
"Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden"
"Computer Vision Laboratory, Link oping University, Sweden"
"Computer Vision Laboratory, The University of Nottingham"
@@ -451,17 +551,24 @@ Computer and Vision Research Center Concordia University
"Concordia University, Canada"
"Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada"
+"Concordia University, Montreal, Quebec, Canada"
Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university
+"Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, China"
+"Cooperative Medianet Innovation Center, Shanghai Jiao Tong University"
"Cooperative Medianet Innovation Center, Shanghai Jiaotong University"
"Coordinated Science Lab, University of Illinois at Urbana-Champaign"
+"Copyright c(cid:2) 2017 The Institute of Electronics, Information and Communication Engineers"
"Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers"
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
Cornell University
Cornell University 2 Cornell Tech
Cornell University 2Eastman Kodak Company
+Cornell University and Stanford University
"Cornell University, Ithaca, NY, U.S.A"
"Cornell University, Ithaca, New York"
+"Cornell University, Washington University in St. Louis"
"Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein"
+"Country University, San Sebastian, Spain"
Courant Institute
Courant Institute and Google Research
Courant Institute of Mathematical Sciences
@@ -470,6 +577,7 @@ Courant Institute of Mathematical Sciences "Current Address: Research Institute of Child Development and Education, University of Amsterdam"
Curtin University of Technology
"Curtin University, Perth, Australia"
+"Curtin University, Perth, WA 6102, Australia"
Cyprus University of Technology
"Cyprus University of Technology, Cyprus"
Czech Technical University
@@ -477,6 +585,7 @@ Czech Technical University D.J. Sanghvi College of Engineering
"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune"
"D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University"
+"DAIS, University of Venice, Italy"
DAP - University of Sassari
"DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA"
"DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco"
@@ -493,6 +602,8 @@ DISI - University of Trento DUBLIN CITY UNIVERSITY
"DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China"
DVMM Lab - Columbia University
+Dalian Maritime University
+Dalian University of Technology
"Dalian University of Technology, China"
"Dalian University of Technology, Dalian 116024, China"
"Dalian University of Technology, Dalian, China"
@@ -503,6 +614,7 @@ Dartmouth College "Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA"
"Dartmouth College, NH 03755 USA"
Datta Meghe College of Engineering
+"David R. Simmons, University of"
"Dayananda Sagar College of Engg., India"
"Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India"
Delft University of Technology
@@ -514,6 +626,7 @@ Democritus University of Thrace "Deparment of Computing, Imperial College London, UK"
Departm nt of Information Engin ering Th Chines University of Hong Kong
"Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India"
+DeustoTech - University of Deusto
"Deva Ramanan, University of California at Irvine"
"Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA"
Dhaka University
@@ -524,6 +637,8 @@ Digital Media Research Center "Dipartimento di Sistemi e Informatica, University of Florence"
"Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India"
"Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do"
+"Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do"
+"Division of Computer Science and Engineering, Hanyang University"
"Division of Computer Science, University of California, Berkeley, CA, USA e-mail"
"Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu"
"Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu"
@@ -536,21 +651,31 @@ Digital Media Research Center Doctor of Philosophy of University College London
"Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania"
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
+Dr C V Raman Institute of Science and Technology
Dr. B. C. Roy Engineering College
Dr. Babasaheb Ambedkar Marathwada University
+"Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India"
"Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India"
Drexel University
+"Drexel University, Philadelphia, PA"
Duke University
+"Duke University, Durham, NC, USA"
+"Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom"
+"Durham University, Durham, UK"
"ECE dept, University of Miami"
"ECE, National University of Singapore, Singapore"
"ECSE, Rensselaer Polytechnic Institute, Troy, NY"
+"ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA"
"EECS, Syracuse University, Syracuse, NY, USA"
+"EECS, University of California Berkeley"
"EEMCS, University of Twente"
"EEMCS, University of Twente Enschede, The Netherlands"
"EEMCS, University of Twente, Netherlands"
"EEMCS, University of Twente, The Netherlands"
"EIMT, Open University of"
+"EIMT, Open University of Catalonia, Barcelona, Spain"
"ESAT, Katholieke Universiteit Leuven, Leuven, Belgium"
+"ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai"
"ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai"
"ESTeM, University of Canberra"
East China Normal University
@@ -559,6 +684,7 @@ Eastern Mediterranean University Eastern University
"Ecole Polytechnique Federale de Lausanne, Signal Processing Institute"
Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT
+"Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 7, 2017 (received for review January"
"Education, Yunnan Normal University, Kunming, China"
"Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan"
"Eindhoven University of Technology, The Netherlands"
@@ -568,27 +694,37 @@ Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT "Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab"
"Electrical Engineering, University of"
"Electrical and Computer Engineering, National University of Singapore, Singapore"
+"Electrical and Computer Engineering, Northeastern University, Boston, MA"
"Electrical and Computer Engineering, The University of Memphis"
"Electrical and Computer Engineering, University of Auckland, New Zealand"
+"Electrical and Computer Engineering, University of Pittsburgh, USA"
"Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada"
+"Electrical and Space Engineering, Lule University of Technology"
"Electrical, Computer, Rensselaer Polytechnic Institute"
"Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute"
Electronic Engineering and Computer Science Queen Mary University of London
+"Electronic Engineering and Computer Science, Queen Mary University of London, UK"
"Electronic and Information Engineering, University of Bologna, Italy"
"Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India"
"Electronics Engineering, National Institute of Technical Teachers"
"Electronics and Communication Engineering, Chuo University"
"Electronics and Computer Science, University of Southampton, Southampton, Hampshire"
Electronics and Telecommunications Research Institute
+Emory University
+"Emory University, USA"
"Engg, Priyadarshini College of"
Engineering Chaoyang University Nankai Institute of
"Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez"
+"Engineering and Applied Science, SUNY Binghamton University, NY, USA"
"Engineering and Natural Science, Sabanci University, Istanbul, Turkey"
"Engineering, G.H.Raisoni College of Engineering"
+"Engineering, Iran University"
"Engineering, National Formosa University"
"Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman"
"Engineering, University of Akron, Akron, OH 44325-3904, USA"
"Engineering, University of Dundee"
+"Engineering, York University, Canada"
+Enlighten Research publications by members of the University of Glasgow
"Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom"
Eskisehir Osmangazi University
"Exploratory Computer Vision Group, IBM T. J. Watson Research Center"
@@ -596,16 +732,19 @@ Eskisehir Osmangazi University "FI-90014 University of Oulu, Finland"
FL
"FX Palo Alto Laboratory, Inc., California, USA"
+"FaceTec, Inc"
Facebook 4Texas AandM University 5IBM Research
"Facebook AI Research, 2Dartmouth College"
"Facial Image Processing and Analysis Group, Institute for Anthropomatics"
"Facial expression gures prominently in research on almost every aspect of emotion, including psychophys"
+"Faculty member, Parallel Data Lab (PDL), Carnegie Mellon University"
"Faculty of Computer Science, Dalhousie University, Halifax, Canada"
"Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands"
"Faculty of Computer Science, University of A Coru na, Coru na, Spain"
"Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana"
"Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran"
"Faculty of Computers and Information, Cairo University, Cairo, Egypt"
+"Faculty of Computing and Informatics, Multimedia University, Malaysia"
"Faculty of EEMCS, Delft University of Technology, The Netherlands"
"Faculty of EEMCS, University of Twente, The Netherlands"
"Faculty of ETI, Gdansk University of Technology, Gdansk, Poland"
@@ -622,16 +761,24 @@ Facebook 4Texas AandM University 5IBM Research "Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia"
"Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran"
"Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran"
+"Faculty of Electronics and Communication, Taishan University"
+"Faculty of Electronics and Communication, Yanshan University"
"Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland"
"Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia"
"Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey"
"Faculty of Engineering and Technology, Multimedia University (Melaka Campus"
"Faculty of Engineering, Ain Shams University, Cairo, Egypt"
+"Faculty of Engineering, Al Azhar University, Qena, Egypt"
+"Faculty of Engineering, Bar-Ilan University, Israel"
+"Faculty of Engineering, Ferdowsi University, Mashhad, Iran"
+"Faculty of Engineering, Multimedia University, Malaysia"
"Faculty of Informatics, E otv os Lor and University, Budapest, Hungary"
+"Faculty of Informatics, University of Debrecen, Hungary"
"Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia"
"Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan"
"Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam"
"Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain"
+"Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK"
"Faculty of Science and Engineering, Waseda University, Tokyo, Japan"
"Faculty of Science and Technology, University of Macau"
"Faculty of Science, University of Amsterdam, The Netherlands"
@@ -653,11 +800,16 @@ Firat University Florida International University
Florida State University
"Florida State University, Tallahassee, FL 32306, USA"
+"Florida State University, Tallahassee, Florida, U.S.A"
+"Florida State University, USA"
Formerly: Texas AandM University
"Foundation University Rawalpindi Campus, Pakistan"
"Foundation University, Rawalpindi 46000, Pakistan"
"Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India"
+Franklin. W. Olin College of Engineering
Fraser University
+Fraunhofer Heinrich Hertz Institute
+"Fraunhofer Institute for Digital Media Technology, Germany"
Fraunhofer Institute for Integrated Circuits IIS
"Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB"
"Friedrich Schiller University, D-07740 Jena"
@@ -665,16 +817,20 @@ Fudan University "Fudan University, 2Microsoft Research Asia, 3University of Maryland"
"Fudan University, Shanghai, China"
Funding was provided by the U.S. National Institutes of Mental
+"G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune"
"G.H.Raisoni College of Engg. and Mgmt., Pune, India"
GE Global Research Center
+"GIPSA-lab, Institute of Engineering, Universit Grenoble Alpes, Centre National de la Recherche Scienti que, Grenoble INP"
"GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology"
"GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA"
"GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS"
+GREYC Research Lab
"GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin"
"GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco"
"Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC"
"Games Studio, Faculty of Engineering and IT, University of Technology, Sydney"
Gangnung-Wonju National University
+Gannan Normal University
"Gannan Normal University, Ganzhou 341000, China"
"Gatsby Computational Neuroscience Unit, University College London, London, UK"
"Gayathri.S, M.E., Vins Christian college of Engineering"
@@ -683,19 +839,30 @@ Gdansk University of Technology George Mason University
"George Mason University, Fairfax Virginia, USA"
"George Mason University, Fairfax, VA, USA"
+George Washington University
Georgia Institute of Technology
+Georgia Institute of Technology 2Emory University
+"Georgia Institute of Technology, CVIT, IIIT Hyderabad, IIT Kanpur"
+"Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institute"
"Georgia Institute of Technology, Atlanta, Georgia, USA"
German Research Center for Arti cial Intelligence (DFKI
"German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany"
+"Germany, University of Oldenburg, Oldenburg, Germany"
+"Gettysburg College, Gettysburg, PA, USA"
+Ghent University
+"Giulia Andrighetto, Institute of"
"Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia"
Glyndwr University
"Gokaraju Rangaraju Institute of Engineering and Technology, Hyd"
"Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad"
+"Goldsmiths, University of London"
"Goldsmiths, University of London, London, UK"
"Goldsmiths, University of London, UK"
"Gonda Brain Research Center, Bar Ilan University, Israel"
"Google, Inc"
+"Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL"
"Governance, Keio University"
+Government College of Engineering
"Government College of Engineering, Aurangabad"
"Government College of Engineering, Aurangabad [Autonomous"
"Grad. School at Shenzhen, Tsinghua University"
@@ -709,6 +876,7 @@ Glyndwr University "Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University"
"Graduate School of Doshisha University, Kyoto, Japan"
"Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan"
+"Graduate School of Engineering, Tottori University"
"Graduate School of Informatics, Kyoto University"
"Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan"
"Graduate School of Information Science and Technology, The University of Tokyo"
@@ -718,32 +886,49 @@ Glyndwr University "Graduate School of Science and Engineering, Saitama University"
"Graduate School of System Informatics, Kobe University"
"Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan"
+"Graduate School of Systems and Information Engineering, University of Tsukuba"
+"Graduate University for Advanced Studies, Kanagawa, Japan"
"Graduate University of CAS, 100190, Beijing, China"
"Graduate University of Chinese Academy of Sciences(CAS), 100190, China"
"Graduate University of Chinese Academy of Sciences, Beijing 100049, China"
+"Gravis Research Group, University of Basel"
Graz University of Technology
"Graz University of Technology, Austria"
"Gri th University, QLD-4111, Brisbane, Australia"
+"Grif th University, Australia"
"Grif th University, QLD, Australia"
+"Grove School of Engineering, CUNY City College, NY, USA"
Guangdong Medical College
+Guangdong University of Technology
"Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India"
"Gujarat Technological University, India"
"Gujarat Technological University, V.V.Nagar, India"
+Gyan Ganga Institute of
"H. He, Honkong Polytechnic University"
+"HAVELSAN Inc., 2Bilkent University, 3Hacettepe University"
+"HCI Lab., Samsung Advanced Institute of Technology, Yongin, Korea"
HELSINKI UNIVERSITY OF TECHNOLOGY
"HOD, St. Joseph College of Information Technology, Songea, Tanzania"
Hacettepe University
Halmstad University
+Hangzhou Institute of Service
+Hangzhou Normal University
"Hankuk University of Foreign Studies, South Korea"
Hanoi University of Science and Technology
+"Hanshan Normal University, Chaozhou, 521041, China"
Hanyang University
Harbin Institute of Technology
+"Harbin Institute of Technology (Shenzhen), China"
"Harbin Institute of Technology, Harbin 150001, China"
"Harbin Institute of Technology, Harbin, China"
"Harbin Institute of Technology, School of Computer Science and Technology"
Harbin Institute of Technology;Shenzhen University
Harvard University
+Harvard University 2University of Southern California
+"Harvard University 3Perceptive Automata, Inc"
+Harvard University 4Max Planck Institute for Informatics
"Harvard University, Cambridge, MA"
+"Harvard University, Cambridge, MA 02138, USA"
"Harvard University, Cambridge, MA, USA"
"Harvard University, USA"
Harvard and Massachusetts Institute
@@ -761,6 +946,7 @@ Helsinki University of Technology Laboratory of Computational Engineering Public Heriot-Watt University
"Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne"
High Institute of Medical Technologies
+Hikvision Research Institute
"Hindusthan College of Engineering and Technology, Coimbatore, India"
"Hiroshima University, Japan"
Ho Chi Minh City University of
@@ -805,6 +991,7 @@ IBM T. J. Watson Research Center "IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY"
"IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
IBM T.J. Watson Research Center
+"IBM TJ Watson Research Center, USA"
IBM Thomas J. Watson Research Center
"IBM Watson Research Center, Armonk, NY, USA"
ICMC University of S ao Paulo
@@ -813,6 +1000,7 @@ ICSI / UC Berkeley 2Brigham Young University IDIAP RESEARCH INSTITUTE
IDIAP Research Institute
"IDIAP Research Institute, Martigny, Switzerland"
+"IEEE Member, Shahid Rajaee Teacher training University"
"IES College of Technology, Bhopal"
"IHCC, RSCS, CECS, Australian National University"
"IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA"
@@ -822,24 +1010,31 @@ IDIAP Research Institute "IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands"
IMPERIAL COLLEGE
"IN3, Open University of"
+"INTELSIG, Monte ore Institute, University of Li`ege, Belgium"
+ISISTAN Research Institute - CONICET - UNICEN
"ISLA Lab, Informatics Institute"
"ISLA Lab, Informatics Institute, University of Amsterdam"
"ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis"
"ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address"
+"IT Instituto de Telecomunica es, University of Beira Interior, Covilh , Portugal"
+"IT - Instituto de Telecomunica es, University of Beira Interior"
"ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing"
"ITCS, Tsinghua University"
"ITEE, The University of Queensland, Australia"
+"ITIC Research Institute, National University of Cuyo"
Idiap Research Institute
Idiap Research Institute and EPF Lausanne
"Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay"
"Idiap Research Institute, Martigny, Switzerland"
"Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France"
"Idiap Research Institute, Switzerland"
+"Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland"
"Iftm University, Moradabad-244001 U.P"
Illinois Institute of Technology
"Illinois Institute of Technology, Chicago, Illinois, USA"
"Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany"
"Image Processing Center, Beihang University"
+"Image Understanding and Interactive Robotics, Reutlingen University, 72762 Reutlingen, Germany"
"Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia"
"Image and Video Research Laboratory, Queensland University of Technology"
"Imaging Science and Biomedical Engineering, The University of Manchester, UK"
@@ -855,29 +1050,43 @@ Imperial College London / Twente University "Imperial College, London, UK"
"Imperial College, South Kensington Campus, London SW7 2AZ, UK"
In the Graduate College
+Inception Institute of Arti cial
+"Inception Institute of Arti cial Intelligence (IIAI), Abu Dhabi, UAE"
+"Inception Institute of Arti cial Intelligence, UAE"
India
"Indian Institute of Informaiton Technology, Allahabad, India"
Indian Institute of Science
Indian Institute of Science Bangalore
+"Indian Institute of Science, Bangalore"
"Indian Institute of Science, India"
Indian Institute of Technology
"Indian Institute of Technology Delhi, New Delhi, India"
Indian Institute of Technology Kanpur
+Indian Institute of Technology Kharagpur
+"Indian Institute of Technology Kharagpur, India"
+"Indian Institute of Technology Madras, Chennai 600036, India"
+"Indian Institute of Technology Madras, Chennai, India"
+Indian Institute of Technology Ropar
+"Indian Institute of Technology, Bombay, India"
"Indian Institute of Technology, Kharagpur"
"Indian Institute of Technology, Madras"
"Indian Institute of Technology, Madras, Chennai 600036, INDIA"
"Indian Institute of Technology, Roorkee"
Indiana University
Indiana University Bloomington
+"Indra Ganesan College of Engineering, Trichy, India"
Indraprastha Institute of Information Technology
"Indraprastha Institute of Information Technology (Delhi, India"
"Indraprastha Institute of Information Technology, Delhi"
+Informatics Institute
Informatics and Telematics Institute
"Informatics and Telematics Institute, Centre for Research and Technology Hellas"
"Informatics and Telematics Institute, Centre of Research and Technology - Hellas"
"Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland"
+"Information Sciences Institute and Computer Science, University of Southern California"
"Information Sciences Institute, USC, CA, USA"
"Information Systems Design, Doshisha University, Kyoto, Japan"
+"Information Systems, University of Wisconsin-River Falls, Wisconsin, WI, United States of America"
Information Technologies Institute
"Information Technology University (ITU), Punjab, Lahore, Pakistan"
"Information Technology, Madras Institute of Technology, TamilNadu, India, email"
@@ -890,20 +1099,25 @@ Information Technologies Institute Institute
"Institute AIFB, Karlsruhe Institute of Technology, Germany"
"Institute Polythechnic of Leiria, Portugal"
+"Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK"
Institute for Advanced
Institute for Advanced Computer Studies
"Institute for Advanced Computer Studies, University of Maryland, College Park, MD"
Institute for Anthropomatics
"Institute for Arts, Science and Technology"
Institute for Communication Systems
+Institute for Complex
Institute for Computer Graphics and Vision
"Institute for Computer Graphics and Vision, Graz University of Technology"
+Institute for Creative Technologies
"Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States"
"Institute for Electronics, Signal Processing and Communications"
"Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn"
+Institute for Human-Machine
Institute for Human-Machine Communication
"Institute for Human-Machine Communication, Technische Universit at M unchen"
"Institute for Human-Machine Communication, Technische Universit at M unchen, Germany"
+Institute for Infocomm Research
"Institute for Infocomm Research (I2R), A*STAR, Singapore"
"Institute for Infocomm Research, A*STAR"
"Institute for Infocomm Research, A*STAR, Singapore"
@@ -913,11 +1127,14 @@ Institute for Human-Machine Communication Institute for Information Systems Engineering
"Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University"
"Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China"
+"Institute for Language, Cognition and Computation"
+Institute for Media Technology
"Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA"
Institute for Neural Computation
"Institute for Neural Computation, University of California, San Diego"
"Institute for Neural Computation, University of California, San Diego, La Jolla, CA"
Institute for Numerical Mathematics
+"Institute for Optical Systems, HTWG Konstanz, Germany"
"Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan"
Institute for Robotics and Intelligent
Institute for Robotics and Intelligent Systems
@@ -933,14 +1150,19 @@ Institute of "Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany"
Institute of Arti cial Intelligence and Cognitive Engineering
"Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen"
+"Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an 710049, China"
+"Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an, Shannxi 710049, China"
+Institute of Automatic Control
Institute of Automatic Control Engineering (LSR
Institute of Automation
+"Institute of Automation Chinese Academy of Sciences, Beijing, China"
"Institute of Automation, Chinese Academy of"
"Institute of Automation, Chinese Academy of Sciences"
"Institute of Automation, Chinese Academy of Sciences (CASIA"
"Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C"
"Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China"
"Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China"
+"Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China"
"Institute of Automation, Chinese Academy of Sciences, China"
"Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School"
"Institute of Biochemistry, University of Balochistan, Quetta"
@@ -951,8 +1173,11 @@ Institute of Automation Institute of Communications Engineering
Institute of Computer Science
Institute of Computer Science III
+Institute of Computer Science and
"Institute of Computer Science and Technology, Chongqing University of Posts and"
+"Institute of Computer Science and Technology, Peking University"
"Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece"
+"Institute of Computer science, Shahid Bahonar University"
Institute of Computing
Institute of Computing Technology
"Institute of Computing Technology, CAS"
@@ -961,6 +1186,7 @@ Institute of Computing Technology "Institute of Computing Technology, Chinese Academy of Sciences"
"Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China"
"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China"
+"Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China"
"Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander"
"Institute of Data Science and Technology, Alibaba Group"
Institute of Deep Learning
@@ -977,6 +1203,7 @@ Institute of Electronics and Computer Science Institute of Graduate Studies and Research
"Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany"
"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University"
+"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong"
"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University"
"Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China"
Institute of Industrial Science
@@ -984,14 +1211,20 @@ Institute of Industrial Science Institute of Informatics - ISLA
"Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY"
Institute of Information Science
+"Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy"
+"Institute of Information Science, Academia Sinica, Taipei"
"Institute of Information Science, Academia Sinica, Taipei, Taiwan"
+"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China"
"Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China"
Institute of Information Technology
Institute of Interdisciplinary Studies in Identity Sciences (IISIS
+Institute of Mathematics and Statistics
Institute of Media Innovation
"Institute of Media and Information Technology, Chiba University"
"Institute of Mental Health, Peking University, P.R. China"
+"Institute of Mental Health, The University of Nottingham"
"Institute of Microelectronics, Tsinghua University, Beijing 100084, China"
+"Institute of Neural Information Processing, Ulm University, Germany"
"Institute of Neural Information Processing, Ulm University, Ulm, Germany"
"Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain"
Institute of Psychology and Behavioral Sciences
@@ -999,28 +1232,39 @@ Institute of Psychology and Behavioral Sciences "Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland"
Institute of Road and
"Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan"
+"Institute of Software, Chinese Academy of Sciences"
+"Institute of Software, Chinese Academy of Sciences (CAS"
"Institute of Software, Chinese Academy of Sciences, Beijing 100190, China"
"Institute of Systems Engineering, Southeast University, Nanjing, China"
Institute of Systems and Robotics
"Institute of Systems and Robotics - University of Coimbra, Portugal"
"Institute of Systems and Robotics, University of Coimbra, Portugal"
+"Institute of Technology, Banaras Hindu"
+"Institute of Telecommunications, TU Wien"
+"Institute of Transportation Systems, German Aerospace Center (DLR), Braunschweig"
Institute of control science and engineering
"Institute ofInformation Science, Academia Sinica, Taipei, Taiwan"
+"Institute, CAS, China"
"Integrated Research Center, Universit`a Campus Bio-Medico di Roma"
"Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA"
Intelligence Computing Research Center
"Intelligence, Concordia University, Montreal"
"Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching"
+"Intelligent Behaviour Understanding Group, Imperial College London, London, UK"
"Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan"
"Intelligent Recognition and Image Processing Lab, Beihang University, Beijing"
+"Intelligent Sensory Interactive Systems, University of Amsterdam, Netherlands"
"Intelligent Systems Group, University of Groningen, The Netherlands"
"Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht"
"Intelligent Systems Lab Amsterdam, University of Amsterdam"
"Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands"
"Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden"
+"Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK"
"Intelligent User Interfaces Lab, Ko c University, Turkey"
+"Intelligent and Interactive Systems, Institute of Computer Science, University of"
Interactive and Digital Media Institute
"Interactive and Digital Media Institute, National University of Singapore, SG"
+"Interactive and Digital Media Institute, National University of Singapore, Singapore"
"Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea"
"Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea"
International Institute of Information Technology
@@ -1034,16 +1278,20 @@ Islamic Azad University of AHAR "Islamic Azad University, Gonabad, Iran"
"Islamic Azad University, Mashhad Branch, Mashhad, Iran"
"Islamic Azad University, Qazvin, Iran"
+"Islamic Azad University, Science and Research Campus"
"Islamic Azad University, Shahrood, Iran"
Islamic University of Gaza - Palestine
"IslamicAzad University, Qazvin, Iran"
+Istanbul Bilgi University - DCE
Istanbul Technical University
"Istanbul Technical University, Istanbul, 34469, TURKEY"
"Istanbul Technical University, Istanbul, Turkey"
"Istanbul Technical University, Turkey"
Istanbul University
IstanbulTechnicalUniversity
+"Italian Institute of Technology, 5Mapillary Research"
"J. P. College of Engineering, India"
+"JACOB GOLDBERGER, Bar-Ilan University"
"JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China"
Jacobs University
Jadavpur University
@@ -1060,13 +1308,18 @@ Japan Advanced Institute of Science and Technology "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA"
"Jiangnan University, Wuxi"
"Jilin University, Changchun 130012, China"
+"Jo ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia"
"Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) +Johns Hopkins University
"Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA"
"Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA"
+"Johns Hopkins University, Baltimore, MD, 21218, USA"
"Johns Hopkins University, Center for Speech and Language Processing"
"Joint Research Institute, Foshan, China"
K S Rangasamy College of Technology
K. N. Toosi University of
+"K.D.K. College of Engineering Nagpur, India"
+"K.K Wagh Institute of Engineering and Education Research, Nashik, India"
"K.N. Toosi University of Technology, Tehran, Iran"
"K.S.R. College Of Engineering, Tiruchengode, India"
"K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India"
@@ -1074,6 +1327,7 @@ K. N. Toosi University of KIT University of the State of Baden-W rttemberg and National Laboratory of the Helmholtz Association
"KTH Royal Institute of Technology, CVAP Lab, Stockholm, Sweden"
"KTH Royal Institute of Technology, Stockholm"
+KTH Royal Institute of Technology
"KTH, Royal Institute of Technology"
"KU Phonetics and Psycholinguistics Lab, University of Kansas"
Karlsruhe Institute of
@@ -1081,8 +1335,10 @@ Karlsruhe Institute of Technology "Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany"
"Karlsruhe Institute of Technology, Germany"
"Karlsruhe Institute of Technology, Karlsruhe, Germany"
+"Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany"
Katholieke Universiteit Leuven
"Katholieke Universiteit Leuven, ESAT/VISICS"
+Keele University
"Keio University, Yokohama 223-8522, Japan"
Kent State University
"Kent State University, Kent, Ohio, USA"
@@ -1093,12 +1349,15 @@ Kent State University "Key Laboratory of Behavior Sciences, Institute of Psychology"
"Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing"
"Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai, China"
+"Key Laboratory of MOEMS of the Ministry of Education, Tianjin University, 300072, China"
"Key Laboratory of Machine Perception (MOE), School of EECS, Peking University"
"Key Laboratory of Machine Perception, Peking University, Beijing"
"Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education"
+"Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University"
"Key Laboratory of Transient Optics and Photonics, Xi an Institute of Optics and Precision Mechanics, Chi"
"Khalifa University, Abu Dhabi, United Arab Emirates"
Khulna University of Engineering and Technology
+"King Abdullah University of Science and Technology (KAUST), Saudi Arabia"
"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia"
King Faisal University
"King Saud University, KSA"
@@ -1106,6 +1365,7 @@ King Faisal University "King Saud University, Riyadh"
"King Saud University, Riyadh 11543, Saudi Arabia"
"King Saud University, Riyadh, Saudi Arabia"
+"King s College London, UK"
Kingston University
"Kingston University London, University of Westminster London"
"Kingston University, UK"
@@ -1123,9 +1383,11 @@ Korea Advanced institute of Science and Technology "Korea Electronics Technology Institute, 203-103 B/D 192, Yakdae-Dong"
"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep"
"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of"
+"Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of Korea; E"
Korea University
"Korea University, Seoul 136-713, Korea"
"Korean Research Institute of Standards and Science (KRISS), Korea"
+"Kota University, Kota(INDIA"
"Kulhare, Sourabh, ""Deep Learning for Semantic Video Understanding"" (2017). Thesis. Rochester Institute of Technology. Accessed"
"Kumamoto University, 2-39-1 Kurokami, Kumamoto shi"
"Kurukshetra University, Kurukshetra"
@@ -1139,8 +1401,10 @@ Kyung Hee University South of Korea "Kyung Hee University, Yongin, Rep. of Korea"
Kyushu University
"L3S Research Center, Hannover, Germany"
+"L3S Research Center, Leibniz Universit at Hannover, Germany"
"LCSEE, West Virginia University"
"LIACS Media Lab, Leiden University, The Netherlands"
+"LIMSI, CNRS, University of Paris-Sud, Orsay, France"
"LIP6, UPMC - Sorbonne University, Paris, France"
"LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France"
"LIUM Laboratory, Le Mans, France, 2 Idiap Research Institute, Martigny, Switzerland"
@@ -1148,15 +1412,26 @@ Kyushu University "Lab of Science and Technology, Southeast University, Nanjing 210096, China"
"Lab, University College London, London WC1H 0AP, UK. 3Clinical"
"Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan"
+"Laboratory of Pattern Recognition, Institute of Automation, CAS"
"Laboratory, University of Houston, Houston, TX, USA"
+Lafayette College
+Lake Forest College
+Lake Forest College Publications
Language Technologies Institute
+"Language Technologies Institute, Carnegie Mellon University"
"Language Technologies Institute, Carnegie Mellon University, PA, USA"
"Language Technologies Institute, School of Computer Science"
+Language Technology Institute
"Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA, USA"
+"Language Technology Institute, Carnegie Mellon Universty"
+"Language Technology Lab, University of Duisburg-Essen"
"Language and Brain Lab, Simon Fraser University, Canada"
+"Laval University, Qu bec, Canada"
"Learning Systems Group, California Institute of Technology"
"Lecturer, Amity school of Engineering and Technology, Amity University, Haryana, India"
+Leeds Beckett University
"Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands"
+"Leiden University, Netherlands"
"Leiden, the Netherlands, 3 Delft University of Technology"
"Lille 1 University, France"
"Link oping University, Computer Vision Laboratory"
@@ -1166,9 +1441,11 @@ Link to publication from Aalborg University Link to publication in University of Groningen/UMCG research database
Link to publication record in Queen's University Belfast Research Portal
"Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health"
+"Lite-On Singapore Pte. Ltd, 2Imperial College London"
Liverpool John Moores University
Lomonosov Moscow State University
"Lomonosov Moscow State University, 2Video Analysis Technologies, LLC"
+"Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics"
"Lotus Hill Institute for Computer Vision and Information Science, 436000, China"
Louisiana State University
"Lund University, Cognimatics AB"
@@ -1180,24 +1457,32 @@ M. Mark Everingham University of Leeds "M.S. (University of California, Berkeley"
M.S. Brunel University of West London
M.S. University of Central Florida
+"M.S., Electrical and Computer Engineering, Carnegie Mellon University"
+"M.S., University of Memphis"
"M.Tech Scholar, MES College of Engineering, Kuttippuram"
"M.Tech Student, Mount Zion College of Engineering, Pathanamthitta, Kerala, India"
"M.Tech Student, SSG Engineering College, Odisha, India"
"M.Tech, Information Technology, Madras Institute of Technology, TamilNadu, India"
"M.Tech, Sri Sunflower College of Engineering and Technology, Lankapalli"
+"M.tech.student, Arya College of"
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT
"MATS University, MATS School of Engineering and Technology, Arang, Raipur, India"
"MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry"
"MES College of Engineering, Kuttippuram"
METs Institute of Engineering
+MICC University of Florence
MICC - University of Florence
"MICC, University of Florence"
+"MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research"
+"MIRA Institute, University of Twente, Enschede, The"
"MIRACL-FS, University of Sfax"
"MIRACL-FSEG, University of Sfax"
"MISC Laboratory, Constantine 2 University, Constantine, Algeria"
+MIT College of Engineering (Pune University
"MIT, McGovern Institute, Center for Brains, Minds and Machines"
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
+"MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China"
"MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff"
"MRC Laboratory For Molecular Cell Biology, University College London"
"MTech Student 1, 2, Disha Institute of"
@@ -1219,6 +1504,8 @@ Malaviya National Institute of Technology "Mancha, Spain, Imperial College, London, UK"
"Manchester University, UK"
"Mangalore Institute of Engineering and Technology, Badaga"
+"Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore, India"
+Manipur Institute of Technology
"Manonmaniam Sundaranar University, India"
"Manonmaniam Sundaranar University, Tirunelveli"
"Manonmaniam Sundaranar University, Tirunelveli, India"
@@ -1229,20 +1516,29 @@ Massachusettes Institute of Technology Massachusetts Institute
Massachusetts Institute of Technology
Massachusetts Institute of Technology (MIT
+Massachusetts Institute of Technology 2013. All rights reserved
Massachusetts Institute of Technology 2014. All rights reserved
Massachusetts Institute of Technology Rapporteur
"Massachusetts Institute of Technology, 2Facebook Applied Machine Learning, 3Dartmouth College"
"Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA"
"Massachusetts Institute of Technology, Cambridge, MA 02139, USA"
+"Massachusetts Institute of Technology, Cambridge, MA USA"
+"Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune"
Math Institute
Max Planck Institute f ur biologische Kybernetik
Max Planck Institute for Biological Cybernetics
"Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 T bingen, Germany"
+"Max Planck Institute for Evolutionary Anthropology, Germany"
Max Planck Institute for Informatics
"Max Planck Institute for Informatics, Germany"
"Max Planck Institute for Informatics, Saarbr ucken, Germany"
"Max Planck Institute for Informatics, Saarbr ucken, Germany (MPI-INF.MPG.DE"
+"Max Planck Institute for Informatics, Saarland Informatics Campus"
+"Max Planck Institute for Informatics, Saarland Informatics Campus, Germany"
+"Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbr cken, Germany"
+"Max Planck Institute for Intelligent Systems, T ubingen, Germany"
Max-Planck Institute for Informatics
+Max-Planck-Institute for Informatics
McGill University
"McGill University, Montreal, Canada"
McGovern Institute
@@ -1252,6 +1548,7 @@ McMaster University "Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular"
"Medical School, University of Ioannina, Ioannina, Greece"
Meiji University
+"Melbourne University, Advisors: K. Borovkov, R. Evans"
"Menara, 1008 Tunis; 2University of Tunis El-Manar, Tunis with expertise in Mechanic, Optics, Biophysics, Conference Master"
"Metron, Inc"
Michigan State University
@@ -1262,7 +1559,10 @@ Michigan State University "Michigan State University, East Lansing, MI 48824, USA"
"Michigan State University, East Lansing, MI, U.S.A"
"Michigan State University, East Lansing, MI, USA"
+"Michigan State University, East Lansing, USA"
+"Michigan State University, MI"
"Michigan State University, NEC Laboratories America"
+"Michigan State University, USA"
"Microsystems Design Lab, The Pennsylvania State University"
Middle East Technical University
Middlebury College
@@ -1275,12 +1575,16 @@ Mihaylo College of Business and Economics "Minia University, Egypt"
Ministry of Higher Education and Scientific Research / The University of Mustsnsiriyah/Baghdad IRAQ
Mitsubishi Electric Research Laboratory
+Mitsubishi Electric Research Labs
Mitsubishi Electric Research Labs (MERL
"Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA"
Mme Tinne Tuytelaars Katholieke Universiteit Leuven
Monash University
+"Monash University Malaysia, School of Information Technology, Sunway"
+"Monash University, Australia"
"Monash University, Victoria, Australia"
"Montefiore Institute, University of Li ge, 4000 Li ge, Belgium"
+Montreal Institute for Learning Algorithms
"Montreal Institute for Learning Algorithms, Universit e de Montr eal"
Moradabad Institute of Technology
"Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russia"
@@ -1296,7 +1600,12 @@ Multimedia Laboratory at The Chinese University of Hong Kong Multimedia University
"Multimedia University (MMU), Cyberjaya, Malaysia"
"Multimedia University, Cyberjaya, Malaysia"
+"Multimedia University, Faculty of Computing and Informatics, Cyberjaya"
+"Multimedia University, Faculty of Engineering, Cyberjaya, 63100 Selangor, Malaysia"
+"Multimedia University, Research Institute for Digital Security, Cyberjaya"
+"Multimedia, Vision and Graphics Laboratory, Koc University, Istanbul, Turkey"
"Multimodal Computing and Interaction, Saarland University, Germany"
+Murdoch University
Myongji University
"Myongji University, Yongin, 449-728 South"
"NEC Laboratories America, Inc"
@@ -1311,6 +1620,7 @@ Nagoya University "Najafabad Branch, Islamic Azad University"
Nam k Kemal University
"Nam k Kemal University, Tekirda g, Turkey"
+"Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca NY"
"Nanjing University of Aeronautics and Astronautics, China"
"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China"
Nanjing University of Information Science and Technology
@@ -1328,6 +1638,7 @@ Nanyang Technological University "Nanyang Technological University, 2University of California San Diego"
"Nanyang Technological University, Singapore"
"Nanyang Technological University, Singapore 639798, Singapore"
+"Nanyang Technological University, Singapore, Singapore"
"Narayana Pharmacy College, Nellore, India"
National Cheng Kung University
"National Cheng Kung University, Tainan, Taiwan"
@@ -1336,7 +1647,9 @@ National Cheng Kung University "National Chiao Tung University, Taiwan"
National Chiao-Tung University
"National Chung Cheng University, Chiayi, Taiwan, R.O.C"
+"National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University"
"National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan, China"
+"National Formosa University, Taiwan"
National Institute of Advanced Industrial
National Institute of Advanced Industrial Science and Technology
National Institute of Advanced Industrial Science and Technology (AIST
@@ -1348,6 +1661,7 @@ National Institute of Informatics "National Institute of Optics, National Research Council, Arnesano, LE, Italy"
National Institute of Standards and Technology
"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA"
+National Institute of Technology
National Institute of Technology Karnataka
National Institute of Technology Rourkela
"National Institute of Technology, Durgapur, West Bengal, India"
@@ -1356,7 +1670,9 @@ National Institutes of Health "National Kaohsiung University of Applied Sciences, Kaohsiung, Kaohsiung, Taiwan, ROC"
"National Key Laboratory for Novel Software Technology, Nanjing University, China"
"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China"
+"National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China"
"National Lab of Pattern Recognition, Institute of Automation"
+"National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha, China"
"National Laboratory of Pattern Recognition (NLPR), Institute of Automation"
"National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences"
"National Laboratory of Pattern Recognition, Institute of Automation"
@@ -1366,6 +1682,8 @@ National Institutes of Health "National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences"
"National Laboratory on Machine Perception, Peking University, Beijing, P.R. China"
"National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce"
+National Research University Higher
+National Research University Higher School of Economics
"National Research University Higher School of Economics, Nizhny Novgorod, Russian"
"National Sun Yat Sen University, 804 Kaohsiung, Taiwan"
"National Taichung University of Science and Technology, Taichung, Taiwan, R.O.C"
@@ -1378,12 +1696,16 @@ National Taiwan University of Science and Technology "National Taiwan University, Taiwan"
National Technical University of Athens
"National Technical University of Athens, 15780 Athens, Greece"
+"National Tsing Hua University, 101 Kuang Fu Road, Section 2, Hsinchu 300, Taiwan"
"National Tsing Hua University, Hsin-Chu, Taiwan"
+"National Tsing Hua University, Taiwan"
"National Tsing-Hua University, Hsin-Chu, Taiwan"
National University
"National University of Computer and Emerging Sciences (NUCES-FAST), Islamabad, Pakistan"
+National University of Defense
National University of Defense Technology
"National University of Defense Technology, Changsha 410073, China"
+"National University of Defense Technology, Changsha, China"
"National University of Ireland Maynooth, Co. Kildare, Ireland"
"National University of Kaohsiung, 811 Kaohsiung, Taiwan"
National University of Science and Technology
@@ -1394,6 +1716,7 @@ National University of Singapore "National University of Singapore, Singapore"
National University of Technology Technology
National University of singapore
+"Netherlands, Donders Institute, Radboud University, Nijmegen, The"
"Netherlands, Utrecht University, Utrecht, The Netherlands"
"Neurological Institute, USA"
"Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States"
@@ -1401,25 +1724,33 @@ New Jersey Institute of Technology "New Jersey Institute of Technology, USA"
New York University
"New York University Shanghai, 1555 Century Ave, Pudong"
+"New York University, Brooklyn, NY, USA"
"Newcastle University, Newcastle upon Tyne"
+"Newcastle University, UK"
+Ningxia University
No Institute Given
Nokia Bell Labs and University of Oxford
"Nokia Research Center, Tampere, Finland"
"Normal University, Kunming, China"
North Carolina AandT State University
North Carolina Central University
+"North Carolina State University, Raleigh, NC, USA"
+"North Carolina State University, Raleigh, USA"
"North China Electric Power University, Baoding, China"
+North China University of Technology
"North China University of Technology, Beijing 100144 CHINA"
"North Dakota State University, Fargo, ND 58108-6050, USA"
"North Dakota State University, Fargo, ND58105, USA"
Northeastern University
Northeastern University 2Microsoft Research 3City University of New York
+"Northeastern University, Boston, MA"
"Northeastern University, Boston, MA, USA"
"Northeastern University, Boston, USA"
"Northeastern University, MA, USA"
Northumbria University
"Northumbria University, Newcastle Upon-Tyne NE21XE, UK"
"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK"
+Northwestern Polytechnical University
Northwestern University
Northwestern University) to T.E. We thank Vincent De Gardelle for helpful comments on an earlier version of
Nottingham Trent University
@@ -1432,18 +1763,25 @@ OF STANFORD UNIVERSITY Oakland University
Odaiyappa College of
Okayama University
+"Open Lab, School of Computing, Newcastle University, UK"
+"Optics and Engineering Informatics, Budapest University of Technology and Economics"
Opus College of Engineering
Oregon State University
+"Organization, University of Twente, Enschede, The Netherlands, HAN"
+"Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan"
"Other uses, including reproduction and distribution, or selling or"
Otto von Guericke University
Otto-von-Guericke University Magdeburg
Oxford Brookes University
"Oxford Brookes University, Oxford, United Kingdom"
+"Oxford Brookes University, UK"
Oxford University
"Oxford University, UK"
+"Ozye gin University, Istanbul, Turkey"
"P A College of Engineering, Nadupadavu"
"P. O. Box 4500 FI-90014 University of Oulu, Finland"
"P. O. Box 4500 Fin-90014 University of Oulu, Finland"
+"P. R. Patil College of Engineering, Amravati Maharashtra India"
"P.A. College of Engnineering, Mangalore"
"P.G. Student, SRV Engineering College, sembodai, India"
"P.S.R Engineering College, Sivakasi, Tamilnadu, India"
@@ -1457,21 +1795,30 @@ PES Modern College of Engg Palo Alto Research Center (PARC
"PanimalarInstitute of Technology, Tamilnadu, India"
"Paran a Federal University, Curitiba, Brazil"
+Parisutham Institute of Technology and Science
"Pathological anxiety is associated with disrupted cognitive processing, including working memory and"
"Pattern Recognition Group, University of Siegen"
"Pattern Recognition and Bio-informatics Laboratory, Delft University of Technology, THE NETHERLANDS"
"Pattern Recognition and Bioinformatics Group, Delft University of Technology"
"Pattern Recognition and Bioinformatics Group, Delft University of Technology, The Netherlands"
+"Paul G. Allen School of Computer Science and Engineering, University of Washington"
Peking University
"Peking University, Beijing, China"
+"Peking University, China"
Pennsylvania
+Pennsylvania State University
+"Perceptive Automata, Inc"
"Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India"
"Ph.D student Zaid Shhedi, Doctoral School of Automatic Control and Computers, University"
+"Phiar Technologies, Inc"
+"Physical Sciences, University"
Plymouth University
+Plymouth University - CRNS
Pohang University of Science and Technology
Politehnica University of Timisoara
"Polytechnic Institute of NYU, NY, USA"
Polytechnic University of Bucharest
+"Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of"
"Polytechnic University of Milan, Milan, 20156, Italy, 3 Applied Electronics"
"Pompeu Fabra University, Spain"
Pondicherry Engineering College
@@ -1480,18 +1827,21 @@ Portland State University "Portland State University, USA"
Portugal
Poznan University of Technology
+"Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand"
Princeton University
"Princeton University, Princeton, NJ, USA"
"Princeton University, Princeton, New Jersey, USA"
"Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India"
"Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India"
"Priyadarshini College of Engg, Nagpur, India"
+Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE
"Program of Computational Science and Engineering, Bo gazi ci University"
"Proto Labs, Inc"
Psychiatry at the University of Pittsburgh
"Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg"
"Psychology and Psychiatry, University of Pittsburgh, USA"
"Psychology, American University"
+"Psychology, University of"
"Psychology, University of Illinois, Beckman Institute, Urbana-Champaign, Illinois 61801, University of"
"Psychonomic Society, Inc"
"Psychopharmacology Unit, Educational and Health Psychology, University College"
@@ -1499,9 +1849,11 @@ Psychiatry at the University of Pittsburgh "Publication details, including instructions for authors and subscription"
"Publication details, including instructions for authors and subscription information"
"Pune Institute of Computer Technology, Pune, ( India"
+"Pune Institute of Computer Technology, Pune, India"
Punjabi University Patiala
Purdue Institute for Integrative Neuroscience
Purdue University
+"Purdue University, 2Nanjing University"
"Purdue University, West Lafayette, IN 47907, USA"
"Purdue University, West Lafayette, IN, USA"
"Purdue University, West Lafayette, IN. 47907, USA"
@@ -1510,7 +1862,9 @@ Purdue University "QCIS Centre, FEIT, University of Technology, Sydney, NSW 2007, Australia"
"QCIS, University of Technology Sydney, Sydney, Australia"
"QCIS, University of Technology, Sydney"
+"Qatar Computing Research Institute, HBKU"
"Qatar University, Qatar"
+Qihoo 360 AI Institute
"Qihoo 360 AI Institute, Beijing, China"
"Quanti ed Employee unit, Finnish Institute of Occupational Health"
"Quantitative Employee unit, Finnish Institute of Occupational Health"
@@ -1530,6 +1884,7 @@ Queensland University of Technology (QUT Queensland University of Technology(QUT
"Queensland University of Technology, Australia"
"Queensland University of Technology, Brisbane, QLD, Australia"
+"Queensland University of Technology, Brisbane, Queensland, Australia"
"R. Campellone, 3210 Tolman Hall, University of California, Berkeley"
"R.C.Patel Institute of Technology, Shirpur, Dist.Dhule.Maharashtra, India"
"RCC Institute of Information Technology, Kolkata, India"
@@ -1541,12 +1896,16 @@ Queensland University of Technology(QUT RWTH Aachen University
"RWTH Aachen University, Aachen, Germany"
"RWTH Aachen University, Germany"
+"Rachel Merchak, Wittenberg University"
+"Ragon Institute of MGH, MIT and Harvard"
Raipur institute of technology
"Rayalaseema University Kurnool, Andhra Pradesh"
"Recanati Genetic Institute, Rabin Medical Center and Schneider Children s Medical Center, Petah Tikva, Israel"
"Recognition, Institute of Automation"
"Recognition, Institute of Automation, Chinese Academy of Sciences"
"Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China"
+"Remote Sensing Unit Optics, Optometry and Vision Sciences Group, University of Beira Interior"
+Renmin University of China
Rensselaer Polytechnic Institute
"Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 USA"
"Rensselaer Polytechnic Institute, Troy, NY 12180, USA"
@@ -1556,6 +1915,7 @@ Research Center E. Piaggio "Research Center E. Piaggio , University of Pisa, Pisa, Italy, 2 Faculty of Psychology, University of Florence, Florence, Italy"
"Research Center CENTIA, Electronics and Mechatronics"
Research Center and Laboratoire
+"Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran"
Research Center for Information
"Research Center for Information Technology Innovation, Academia Sinica"
"Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan"
@@ -1568,12 +1928,14 @@ Research Center for Information "Research Institute of Child Development and Education, University of Amsterdam, Utrecht, The"
"Research Institute of Shenzhen, Wuhan University, Shenzhen, China"
"Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea"
+"Research Institute, Watchdata Inc., Beijing, China"
"Research Reports of CMP, Czech Technical University in Prague, No"
"Research Scholar (M.Tech, IT), Institute of Engineering and Technology"
"Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India"
"Research Scholar, PSGR Krishnammal College for Women, Coimbatore"
"Research School of Computer Science, The Australian National University, ACT 2601, Australia"
"Research School of Engineering, The Australian National University, ACT 2601, Australia"
+"Research University, ENS/INRIA/CNRS UMR 8548, Paris, France"
Reutlingen University
"Rheinische-Friedrich-Wilhelms University, Bonn, Germany"
Rice University
@@ -1583,6 +1945,7 @@ Rice University "Ritsumeikan University, Kyoto, Japan"
"Ritsumeikan, University"
"Rm 1365, Stanford University, 401 Quarry Road, Stanford, CA"
+"Robotic Research Centre, Nanyang Technological University, Singapore 639798, Singapore"
Robotics Institute
"Robotics Institute, Carnegie Mellon University"
"Robotics Institute, Carnegie Mellon University 3University of Pittsburgh, USA"
@@ -1605,7 +1968,10 @@ Rowland Institute at Harvard Ruhr University Bochum
"Ruhr-University Bochum, Germany"
Rutgers University
+"Rutgers University Newark, 101 Warren St., Newark, NJ, 07102 USA"
+"Rutgers University, 94 Brett Rd, Piscataway Township, NJ 08854, USA"
"Rutgers University, Computer and Information Sciences, 110 Frelinghuysen Road, Piscataway, NJ"
+"Rutgers University, NJ, USA"
"Rutgers University, New Brunswick, NJ"
"Rutgers University, Newark, NJ, USA"
"Rutgers University, Piscataway NJ 08854, USA"
@@ -1617,11 +1983,13 @@ Rutgers University "Rutgers, The State University of New Jersey, 723 CoRE, 94 Brett Rd, Piscataway, NJ"
"Rutgers, The State University of New Jersey, Piscataway, NJ"
"Ryerson University, Canada"
+"Ryerson University, Toronto, Canada"
"S J B Institute of Technology, Bangalore, Karnataka, India"
"S.R.C.E.M, Banmore, RGPV, University, Bhopal, Madhya Pradesh, India"
SAMSI and Duke University
"SASTRA University, Thanjavur, Tamil Nadu, India"
"SBK Women s University, Quetta, Balochistan"
+"SHIRI AZENKOT, Information Science, Cornell Tech, Cornell University"
"SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University"
SIMON FRASER UNIVERSITY
"SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York"
@@ -1632,31 +2000,46 @@ SIMON FRASER UNIVERSITY "SSN College of Engineering, Kalavakkam, Tamil Nadu, India"
STANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY
SUS college of Engineering and Technology
+SWPS University of Social Sciences
+SWPS University of Social Sciences and Humanities
+Saarland University
+"Saarland University, Saarbr cken, Germany, 2 Utrecht University, Utrecht, the Netherlands"
Sabanc University
Sabanci University
+"Sabanci University, Istanbul, Turkey"
"Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel"
Sakarya University
"Salgado de Oliveira University, Brazil"
Samsung Advanced Institute of Technology
"Samsung Advanced Institute of Technology (SAIT), KAIST"
"Samsung RandD Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA"
+"Samsung Telecommunication Research Institute, Beijing, China"
+Samsung-PDMI Joint AI Center
"San Jose State University, San Jose, CA"
Sanghvi Institute of Management and Science
"Santa Clara University, Santa Clara, CA. 95053, USA"
Santa Fe Institute
+"Sapienza University of Rome, 2Fondazione Bruno Kessler, 3University of Trento"
"Sapienza University of Rome, Italy"
Sarhad University of Science and Information Technology
"Sathyabama University Old Mamallapuram Road, Chennai, India"
"Sathyabama University, Chennai, India"
"Savitri Bai Phule Pune University, Maharashtra India"
Savitribai Phule Pune University
+"Sch l of EECS, Peking University, Beijing, 100871, China"
+"School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran"
"School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand"
+"School of Arti cial Intelligence, University of Chinese Academy of Sciences, Beijing, China"
"School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave"
+"School of Automation Science and Electrical Engineering, Beihang University, Beijing, China"
"School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China"
"School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA"
"School of Business, Aalto University, Finland"
+"School of Business, University of Southern California; Alexandra Mislin"
+"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom"
"School of Comm. and Info. Engineering, Beijing University of Posts and Telecom., Beijing China"
"School of Communication Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone"
+"School of Communication and Information Engineering, Shanghai University"
"School of Computer Engineering, Nanyang Technological University, Singapore"
"School of Computer Engineering, Sejong University, Seoul, Korea"
"School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN"
@@ -1671,14 +2054,18 @@ Savitribai Phule Pune University "School of Computer Science and Engineering, Southeast University, Nanjing 211189, China"
"School of Computer Science and Engineering, Water Resources University, Hanoi 10000, Vietnam"
"School of Computer Science and Information Systems, Birkbeck College, University of London"
+"School of Computer Science and Software Engineering, East China Normal University, China"
"School of Computer Science and Software Engineering, Shenzhen University"
"School of Computer Science and Software Engineering, Shenzhen University, Nanhai Ave 3688, Shenzhen"
+"School of Computer Science and Software Engineering, University of Western Australia"
"School of Computer Science and Technology, Harbin Institute of"
+"School of Computer Science and Technology, Harbin Institute of Technology"
"School of Computer Science and Technology, Harbin Institute of Technology, China"
"School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China"
"School of Computer Science and Technology, Nanjing University of Science and Technology, China"
"School of Computer Science and Technology, Shandong Institute of Business and Technology"
"School of Computer Science and Technology, Shandong University"
+"School of Computer Science and Technology, Shandong University, China"
"School of Computer Science and Technology, Tianjin University"
"School of Computer Science and Technology, Tianjin University, 300072 Tianjin, China"
"School of Computer Science and Technology, Tianjin University, China"
@@ -1686,7 +2073,10 @@ Savitribai Phule Pune University "School of Computer Science and Technology, Tianjin University, Tianjin, China"
"School of Computer Science and Technology, University of Science and Technology of China"
"School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China"
+"School of Computer Science, Beijing University of Posts and Telecommunications, Beijing China"
"School of Computer Science, CECS, Australian National University, Australia"
+"School of Computer Science, CECS, Australian National University, Canberra"
+"School of Computer Science, Carnegie Mellon University"
"School of Computer Science, Carnegie Mellon University, 15213, USA"
"School of Computer Science, Carnegie Mellon University, PA 15213, USA"
"School of Computer Science, Carnegie Mellon University, PA, USA"
@@ -1697,11 +2087,15 @@ Savitribai Phule Pune University "School of Computer Science, Fudan University, Shanghai, 200433, China"
"School of Computer Science, Fudan University, Shanghai, China"
"School of Computer Science, Nanjing University of Science and Technology"
+"School of Computer Science, National University of Defense Technology, Changsha, China"
"School of Computer Science, Northwestern Polytechnical University, China"
"School of Computer Science, Northwestern Polytechnical University, P.R.China"
"School of Computer Science, Northwestern Polytechnical University, Xi an China"
+"School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xian 710072, Shaanxi, P. R. China"
"School of Computer Science, Sichuan University, Chengdu, China"
"School of Computer Science, South China Normal University, China"
+"School of Computer Science, Tel Aviv University"
+"School of Computer Science, The Hebrew University, Israel"
"School of Computer Science, The University of Adelaide, Australia"
"School of Computer Science, The University of Manchester"
"School of Computer Science, The University of Nottingham"
@@ -1717,11 +2111,16 @@ Savitribai Phule Pune University "School of Computer Science, Wuyi University, Jiangmen 529020, China"
"School of Computer Software, Tianjin University, 300072 Tianjin, China"
"School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China"
+"School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008 china"
"School of Computer and Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R"
+"School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China"
"School of Computer and Information Science, Chongqing Normal University 401331, China"
+"School of Computer and Information Technology, Beijing Jiaotong University, Beijing"
"School of Computer and Information, Hefei University of Technology, China"
"School of Computer and Information, Hefei University of Technology, Hefei"
+"School of Computer and Information, Hefei University of Technology, Hefei, China"
"School of Computer, Beijing Institute of Technology, Beijing, China"
+"School of Computer, National University of Defense Technology"
"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada"
"School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; E-Mail"
"School of Computing Science, Simon Fraser University, Canada"
@@ -1730,79 +2129,111 @@ Savitribai Phule Pune University "School of Computing and Communications Infolab21, Lancaster University, Lancaster LA1 4WA, UK"
"School of Computing and Communications, University of Technology Sydney, Sydney, Australia"
"School of Computing and Info. Sciences, Florida International University"
+"School of Computing and Mathematics, Charles Sturt University, Wagga Wagga, Australia"
+"School of Computing, National University of Singapore"
"School of Computing, National University of Singapore, SG"
"School of Computing, National University of Singapore, Singapore"
"School of Computing, Staffordshire University"
"School of Control Science and Engineering, Shandong University, Jinan 250061, China"
+"School of Data Science, Fudan University"
"School of Data Science, Fudan University, China"
"School of Data and Computer Science, Sun Yat-Sen University, China"
+"School of Data and Computer Science, Sun Yat-Sen University, GuangZhou, China"
"School of Data and Computer Science, Sun Yat-sen University"
+"School of Data and Computer Science, Sun Yat-sen University, China"
"School of Data and Computer Science, Sun Yat-sen University, P.R.China"
"School of Data of Computer Science, Sun Yat-sen University, P.R. China"
"School of E.C.E., National Technical University of Athens, 15773 Athens, Greece"
+"School of E.C.E., National Technical University of Athens, Greece"
+"School of ECE, Peking University 2School of EIE, South China University of Technology"
+"School of EECS, Peking University, Beijing, 100871, China"
"School of EECS, Queen Mary University of London"
+"School of EECS, Queen Mary University of London, London, UK"
"School of EECS, Queen Mary University of London, UK"
"School of EEE, Nanyang Technological University, Singapore"
+"School of Electrical Engineering and Automation, Anhui University, Hefei, China, Hong Kong Polytechnic"
"School of Electrical Engineering and Automation, Harbin Institute of Technology"
+"School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT"
"School of Electrical Engineering and Computer Science, Peking University"
"School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran"
"School of Electrical and Computer Engineering, Cornell University"
+"School of Electrical and Computer Engineering, Cornell University, Ithaca NY"
+"School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA"
"School of Electrical and Computer Engineering, RMIT University"
"School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia"
"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"
"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 2Advanced Digital Sciences Center, Singapore"
+"School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008 china"
"School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia, 2 Sydney Medical"
"School of Electrical and Information Engineering, Xi an Jiaotong University, Xi an, China"
"School of Electrical, Computer and Energy Engineering, Arizona State University"
"School of Electromechanical Engineering, Guangdong University of Technology, 510006 Guangzhou, China"
"School of Electronic Engineering and Computer Science, Peking University, 100871, China"
+"School of Electronic Information Engineering, Tianjin University, China"
"School of Electronic and Computer Engineering, Peking University"
"School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China"
"School of Electronic and Information Engineering, South China University of Technology"
"School of Electronic and Information Engineering, Tongji University, Shanghai, China"
+"School of Electronic and Information, Yangtze University, Jingzhou 434023, China"
"School of Electronics Engineering and Computer Science, Peking University"
"School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China"
"School of Electronics and Computer Engineering, Peking University"
"School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai"
+"School of Electronics and Information Technology, Sun Yat-Sen University, GuangZhou, China"
"School of Electronics and Information, Northwestern Polytechnical University, China"
+"School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada"
+"School of Engineering, CECS, Australian National University, Canberra, Australia"
"School of Engineering, Taylor s University"
"School of Engineering, University of Guelph"
"School of Engineering, University of Portsmouth, United Kingdom"
+"School of Engineering, University of Waikato, Hamilton, New Zealand"
"School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu"
"School of Games, Hongik University, Seoul, Korea"
"School of ICE, Beijing University of Posts and Telecommunications, Beijing, China"
"School of Info. and Commu. Engineering, Beijing University of Posts and Telecommunications"
+"School of Informatics, University of Edinburgh"
"School of Informatics, University of Edinburgh, UK"
"School of Information Engineering, Guangdong Medical College, Song Shan Hu"
"School of Information Engineering, Guangdong University of Technology, 510006 Guangzhou, China"
"School of Information Engineering, Nanchang University, China"
+"School of Information Engineering, Wuyi University, Jiangmen 529020, China"
"School of Information Science and Engineering, Central South University, Changsha"
"School of Information Science and Engineering, Southeast University, Nanjing, China"
+"School of Information Science and Engineering, Xiamen University, Xiamen 361005, China"
"School of Information Science and Technology, Donghua University, Shanghai 200051, China"
"School of Information Science and Technology, Northwestern University, Xi an710127, Shanxi, China"
"School of Information Science and Technology, ShanghaiTech University, Shanghai, 200031, China"
"School of Information Science and Technology, Sun Yat-sen University, China"
+"School of Information Science, Japan Advanced Institute of Science and Technology"
"School of Information Systems, Singapore Management University, Singapore"
+"School of Information Technology (ITE), Halmstad University, Box 823, 30118 Halmstad, Sweden"
"School of Information Technology and Electrical Engineering, The University of Queensland"
"School of Information Technology and Engineering, University of Ottawa, Ontario, Canada"
+"School of Information Technology and Engineering, VIT University, Vellore, 632014, India"
"School of Information Technology and Management, University of International"
+"School of Information and Communication Engineering, Beijing University of Posts and Telecommunications"
"School of Information and Control Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China"
"School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China"
"School of IoT Engineering, Jiangnan University, Wuxi 214122, China"
"School of IoT Engineering, Jiangnan University, Wuxi, 214122, China"
"School of Management Engineering, Henan Institute of Engineering, Zhengzhou 451191, P.R. China"
+"School of Management, University of Bath, Bath, UK"
"School of Mathematical Science, Dalian University of Technology, Dalian, China"
"School of Mathematical Science, Peking University, China"
"School of Mathematical Sciences, Dalian University of Technology, Linggong Rd. 2, Dalian"
"School of Mathematical Sciences, Monash University, VIC 3800, Australia"
+"School of Mathematical Sciences, Peking University, China"
"School of Mathematics and Computational Science, Sun Yat-sen University, China"
"School of Mathematics and Computer Science, Northeastern State University, Tahlequah, OK 74464, USA"
"School of Mathematics and Statistics, Xi an Jiaotong University, P. R. China"
"School of Mathematics and Statistics, Xi an Jiaotong University, Xi an, China"
"School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China"
"School of Medicine, Shenzhen University, Shenzhen 518060, China"
+"School of Medicine, Tehran University of Medical Sciences, Tehran, Iran"
"School of Optics and Electronics, Beijing Institute of Technology, Beijing"
+"School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China"
"School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, China, 2 School of Information"
+"School of Physics and Optoelectronic Engineering, Xidian University, China"
"School of Psychology, Cardiff University, Cardiff, CF10 3AT, UK"
"School of Psychology, Cardiff University, Cardiff, United Kingdom, College of"
"School of Psychology, The University of New South Wales, Sydney, Australia, 2 School of Psychology"
@@ -1813,12 +2244,14 @@ Savitribai Phule Pune University "School of Software, Sun Yat-sen University, China"
"School of Software, Tianjin University"
"School of Software, Tsinghua University, Beijing 100084, China"
+"School of Software, Xidian University, China"
"School, The University of Sydney, Sydney, NSW, Australia"
"Schreiber Building, room 103, Tel Aviv University, P.O.B. 39040, Ramat Aviv, Tel Aviv"
"Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS"
"Science and Technology, Sun Yat-Sen University, Guangzhou, China, 3 SYSU-CMU Shunde International"
Science and the Robotics Institute at Carnegie Mellon University. This study was supported in part
"Science, University of Amsterdam"
+"Science, University of Bristol"
"Scienti c Visualization and Computer Graphics, University of Groningen, Nijenborgh 9, Groningen, The Netherlands"
"Seattle Paci c University, Seattle, WA 98119-1957, USA"
"Section of Pathology, Second University of Naples, Via L. Armanni"
@@ -1826,23 +2259,35 @@ Science and the Robotics Institute at Carnegie Mellon University. This study was "Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea"
Semarang State University
"Sendai National College of Technology, Natori, Japan"
+"SenseTime Group Limited, 2Tsinghua University"
+"SenseTime Group Limited, 3Peking University"
"SenseTime, 2Tsinghua University"
+"SenseTime-NTU Joint AI Research Centre, Nanyang Technological University"
"Sensor-enhanced Social Media (SeSaMe) Centre, National University of Singapore, Singapore"
Seoul National University
+"Seoul National University, Seoul, Korea"
+"Seoul National University, Seoul, South Korea"
+"Sessional Tutor, The University of Melbourne"
"Several methods exists to induce anxiety in healthy individuals, including threat of shock (ToS), the Trier"
"Shaanxi Provincial Key Lab on Speech and Image Information Processing, Northwestern Polytechnical University, Xi an, China"
Shaheed Zulfikar Ali Bhutto Institute of
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad
+"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan"
ShahidBeheshti University
Shandong University of Science and Technology
Shandong Women s University
+Shanghai Institute for Advanced Communication and Data Science
"Shanghai Institute of Applied Physics, Chinese Academy of Sciences"
Shanghai Jiao Tong University
"Shanghai Jiao Tong University, CloudWalk Technology"
+"Shanghai Jiao Tong University, 2Zhejiang University, 3Massachusetts Institute of Technology"
"Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China"
"Shanghai Jiao Tong University, China"
+"Shanghai Jiao Tong University, China. 2Columbia University, USA"
"Shanghai Jiao Tong University, Shanghai 200240, China"
"Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China"
+ShanghaiTech University
+Shanghaitech University
"Shaoguan University, Da Tang Lu"
"Sharda University, Greater Noida, India"
Sharif University of Technology
@@ -1850,6 +2295,7 @@ Sharif University of Technology "Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China"
Shenzhen Institutes of Advanced Technology
"Shenzhen Institutes of Advanced Technology, CAS, China"
+"Shenzhen Institutes of Advanced Technology, CAS, Shenzhen, China"
"Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China"
"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences"
"Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, China"
@@ -1862,6 +2308,8 @@ Shenzhen Institutes of Advanced Technology "Shenzhen Key Laboratory of High Performance Data Mining, Shenzhen Institutes of Advanced Technology"
"Shenzhen Key Laboratory of Spatial Smart Sensing and Service, Shenzhen University, P.R. China"
"Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China"
+"Shenzhen University, China"
+"Shenzhen University, Shenzhen China"
"Shenzhen University, Shenzhen, China"
"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology"
"Shenzhen key lab of Comp. Vis. and Pat. Rec., Shenzhen Institutes of Advanced Technology, CAS, China"
@@ -1872,6 +2320,8 @@ Shiraz University "Sighthound, Inc"
Signal Processing Institute
Simon Fraser University
+"Simon Fraser University, Burnaby, Canada"
+Singapore University of Technology and Design
Sinhgad College of
"Skolkovo Institute of Science and Technology (Skoltech), Russia"
Slovak University of Technology in
@@ -1879,9 +2329,12 @@ Slovak University of Technology in "Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of"
"Sogang University, Seoul 121-742, Republic of Korea"
"Solapur University, INDIA"
+Sona College of Technology
"Sorbonne Universit s, UPMC University Paris 06, Paris, France"
South China University of China
South China University of Technology
+South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial
+"South China University of Technology, Guangzhou 510640, China"
South College Road
"Southeast University, Nanjing 210096, China"
"Southeast University, Nanjing 211189, China"
@@ -1900,7 +2353,10 @@ Sponsors: Machine Intelligence Research Labs (MIR Labs "Sri Sunflower College of Engineering and Technology, Lankapalli"
"Sri krishna College of Technology, Coimbatore, India"
Sridevi Women's Engineering College
+"Srinivasan Engineering College, Perambalur, India"
"Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India"
+"Ss. Cyril and Methodius University, Skopje, Macedonia"
+"St. Ann s College of Engineering and Technology, Andhra Pradesh, India"
St. Anne s College
St. Francis Institute of Technology
"St. Xavier s Catholic College of Engineering, India"
@@ -1909,6 +2365,9 @@ St. Francis Institute of Technology "Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom"
"Stamford University Bangladesh, Dhaka-1209, Bangladesh"
Stanford University
+Stanford University National Tsing Hua University
+"Stanford University, 2Facebook, 3Dartmouth College"
+"Stanford University, 2Simon Fraser University"
"Stanford University, CA"
"Stanford University, CA, United States"
"Stanford University, Stanford, CA, USA"
@@ -1920,20 +2379,26 @@ Stanford University "State Key Laboratory for Novel Software Technology, Nanjing University, China"
"State Key Laboratory of Brain and Cognitive Science, Institute of Psychology"
"State Key Laboratory of CAD and CG, ZHE JIANG University, HangZhou, 310058 China"
+"State Key Laboratory of ISN, Xidian University"
"State Key Laboratory of Integrated Services Networks, Xidian University, Xi an 710071 China"
+"State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072, China"
"State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China"
"State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China"
+"State Key Laboratory of Software Development Environment, Beihang University, P.R.China"
"State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia"
State University of Feira de Santana (UEFS
"State University of New York Polytechnic Institute, Utica, New York"
+State University of New York at
State University of New York at Binghamton
"State University of New York at Binghamton, Binghamton, NY"
+"State University of New York at Binghamton, USA"
State University of New York at Buffalo
"State University of Rio de Janeiro, Brazil"
"Statistics, University of"
Stevens Institute of Technology
Stevens Institute of Technology Adobe Systems Inc
Stony Brook University
+"Stony Brook University 2Adobe Research 3 CentraleSup elec, Universit e Paris-Saclay"
Stony Brook University Hospital
"Stony Brook University, NY 11794, USA"
"Stony Brook University, NY, USA"
@@ -1944,6 +2409,7 @@ Stony Brook University Hospital "Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India"
Submitted to the Institute for Graduate Studies in
Submitted to the Senate of the Hebrew University
+Sudan University of Science and Technology
"Suhaila N. Mohammed, Baghdad University, College of Science, Baghdad, Iraq"
Sun Yat-Sen (Zhongshan) University
Sun Yat-Sen University
@@ -1954,8 +2420,10 @@ Sungkyunkwan University Swansea University
Swiss Federal Institute of Technology
"Swiss Federal Institute of Technology, Lausanne (EPFL"
+"Switzerland, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt"
"Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong"
"System Research Center, NOKIA Research Center, Beijing, 100176, China"
+"Systems and Communication, University of Milano-Bicocca"
Systems and Telematics - Neurolab
THE UNIVERSITY OF ARIZONA
THE UNIVERSITY OF CHICAGO
@@ -1963,6 +2431,7 @@ THE UNIVERSITY OF CHICAGO Tafresh University
"Tafresh University, Tafresh, Iran"
Taizhou University
+"Taizhou University, Taizhou 317000, China"
"Tamkang University, Taipei, Taiwan"
Tampere University of Technology
"Tampere University of Technology, Finland"
@@ -1975,45 +2444,63 @@ Tampere University of Technology "Technical University in Prague, Technick a 2, 166 27 Prague 6 Czech Republic"
"Technical University of Cluj Napoca, 28 Memorandumului Street"
Technical University of Kaiserslautern
+Technical University of Munich
"Technical University of Munich, Germany"
+"Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm"
"Technical University of Ostrava, FEECS"
TechnicalUniversityofDenmark
Technion Israel Institute of Technology
+Technion - Israel Institute of Technology
"Technological Educational Institute of Athens, 12210 Athens, Greece"
"Technological University, Davanagere, Karnataka, India"
+"Technology, Manchester Metropolitan University"
"Technology, Nanjing University of Aero"
"Technology, University of Oradea 410087, Universitatii 1, Romania"
Tel Aviv University
+"Tel Aviv University, Columbia University"
+"Tel Aviv University, Cornell Tech"
"Tel Aviv University, Israel"
"Tel-Aviv University, Israel"
Temple University
"Temple University, Philadelphia, PA 19122, USA"
"Temple University, Philadelphia, USA"
+Texas AandM University
+"Texas AandM University, College Station TX 77843, USA"
"Texas AandM University, College Station, TX, USA"
+"Texas State University, San Marcos, USA"
Thapar University
The Allen Institute for AI
"The American University In Cairo, Road 90, New Cairo, Cairo, Egypt"
The American University in Cairo
"The American University in Cairo, Egypt"
+"The American University in Cairo, New Cairo 11835, Egypt"
"The Amsterdam School of Communication Research, University of Amsterdam"
The Australian National University
"The Australian National University Canberra ACT 2601, Australia"
The Australian National University Queensland University of Technology
+"The Australian National University, Australia"
"The Australian National University, Canberra, Australia"
The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved
The Author 2014. Published by Oxford University Press
"The Big Data Research Center, Henan University, Kaifeng 475001, China"
+"The Blavatnik School of Computer Science, Tel Aviv University, IL"
"The Blavatnik School of Computer Science, Tel Aviv University, Israel"
"The Blavatnik School of Computer Science, Tel-Aviv University, Israel"
"The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel"
"The Blavatnik School of Computer Science, The Tel-Aviv University"
+"The Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA"
The Chinese University of Hong Kong
+The Chinese University of Hong Kong 3 SenseTime Group Limited
The Chinese University of Hong Kong holds the copyright of this thesis. Any
+"The Chinese University of Hong Kong, 2University of Toronto, 3Youtu Lab, Tencent"
+"The Chinese University of Hong Kong, 4Beijing University of Posts and Telecommunications"
"The Chinese University of Hong Kong, China"
"The Chinese University of Hong Kong, HKSAR, China"
"The Chinese University of Hong Kong, Hong Kong"
"The Chinese University of Hong Kong, Hong Kong SAR, China"
+"The Chinese University of Hong Kong, Hong Kong, China"
"The Chinese University of Hong Kong, New Territories, Hong Kong"
+"The Chinese University of Hong Kong, Sha Tin, Hong Kong"
The Chinese University ofHong Kong
The City College and the Graduate Center
"The City College of New York, New York, NY 10031, USA"
@@ -2021,13 +2508,16 @@ The City University of New York The Education University of Hong Kong
The Florida State University
The Graduate University for Advanced Studies (SOKENDAI
+The Hebrew University of Jerusalem
"The Hebrew University of Jerusalem, Israel"
The Hong Kong Polytechnic University
The Hong Kong Polytechnic University 2Harbin Institute of Technology
"The Hong Kong Polytechnic University, Hong Kong"
+"The Hong Kong Polytechnic University, Hong Kong SAR, China"
"The Hong Kong Polytechnic University, Hong Kong, China"
"The Hong Kong Polytechnic University, Hong Kong, SAR, 2University of Technology Sydney, Australia"
The Hong Kong University of Science and Technology
+The Hong Kong University of Science and Technology 2 Carneige Mellon University
"The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong"
"The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania"
The Institute of Electronics
@@ -2036,8 +2526,10 @@ The Ohio State University "The Ohio State University, Columbus, OH, USA"
"The Ohio State University, OH"
The Open University
+The Open University of
The Open University of Israel
"The Open University of Israel, Israel"
+"The Open University, Israel"
"The Remote Sensing Technology Institute (IMF), German Aerospace Center"
"The Robotics Inistitute, Carnegie Mellon University"
The Robotics Institute
@@ -2054,33 +2546,50 @@ The State University of New Jersey The University of Adelaide; and Australian Centre for Robotic Vision
The University of British Columbia
The University of Cambridge
+The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
+"The University of Edinburgh, Edinburgh, UK"
The University of Electro-Communications
"The University of Electro-Communications, JAPAN"
"The University of Electro-Communications, Tokyo"
+"The University of Electro-Communications, Tokyo, Japan"
The University of Hong Kong
+The University of Leeds
The University of Manchester
The University of Maryland
The University of Newcastle
"The University of Newcastle, Callaghan 2308, Australia"
+The University of North Carolina at Chapel Hill
The University of North Carolina at Charlotte
"The University of North Carolina at Charlotte, USA"
"The University of North Carolina, Chapel Hill"
The University of Nottingham
"The University of Nottingham, UK"
The University of Queensland in
+"The University of Queensland, Australia"
"The University of Queensland, School of ITEE"
"The University of Queensland, School of ITEE, QLD 4072, Australia"
The University of Shef eld
The University of Sydney
+The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong
"The University of Sydney, NSW 2006, Australia"
+"The University of Sydney, SenseTime Computer Vision Research Group"
+"The University of Sydney, SenseTime Computer Vision Research Group, Sydney"
"The University of Sydney, Sydney, Australia"
"The University of Tennessee, Knoxville"
+"The University of Tennessee, Knoxville, TN, USA"
The University of Texas
The University of Texas at
+The University of Texas at Arlington
The University of Texas at Austin
+"The University of Texas at Austin, 2Carnegie Mellon University"
+"The University of Texas at Austin, 78701 Austin, USA"
+"The University of Texas at Austin, Austin, TX"
"The University of Texas at Dallas, Richardson, TX"
The University of Tokyo
+The University of Tokyo / RIKEN
+"The University of Tokyo, 2RIKEN, 3ETH Z urich, 4KU Leuven"
"The University of Tokyo, Japan"
+"The University of Warwick, Coventry, UK"
The University of Western Australia
The University of York
"The University of York, Heslington, York YO10 5DD, United Kingdom"
@@ -2089,12 +2598,19 @@ The University of York The University of the Humanities
The Weizmann Institute of
The Weizmann Institute of Science
+"The Weizmann Institute of Science, Israel"
+"The authors are with Hiroshima University, Higashihiroshima"
"The authors are with the Delft University of Technology, Data and Knowl"
The open University of Israel. 2Adience
"The school of Data Science, Fudan University"
Thesis. Rochester Institute of Technology. Accessed from
+This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for
+"This is an Open Access document downloaded from ORCA, Cardiff University's institutional"
+This work is downloaded from Delft University of Technology
This work was supported by Grant MOP102637 from the Canadian Institutes of Health Research to E.D.R. and the
This work was supported in part by National Institute of Mental Health Award R01 MH 087610 to T.E
+"Tilburg Center for Logic, General Ethics, and Philosophy of Science, Tilburg University, Tilburg, Netherlands"
+Tohoku University
"Tohoku University, Japan"
"Tohoku University, Sendai, Japan"
Tokyo Denki University
@@ -2102,22 +2618,30 @@ Tokyo Institute of Technology "Tokyo Institute of Technology, Japan"
Tokyo Metropolitan University
Tokyo Polytechnic University
+Tokyo University of Science
+"Tokyo, Tokyo, 6National Institute of Informatics, Tokyo"
Tomas Bata University in Zl n
Tomsk Polytechnic University
Tongji University
"Tongji University, Shanghai 201804, China"
+Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology
"Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan"
"Toyota Research Institute, Cambridge, MA 2 University of Michigan, Ann Arbor, MI"
+"Toyota Research Institute, Los Altos, CA, USA"
"Toyota Technological Institute (Chicago, US"
Toyota Technological Institute Chicago (TTIC
Toyota Technological Institute at Chicago
+"Toyota Technological Institute, Chicago"
"Toyota Technological Institute, Chicago (TTIC"
Transilvania University
+Trinity College
Tripura University (A Central University
"Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom"
Tsinghua University
Tsinghua University 4SenseTime
"Tsinghua University, 100084 Beijing, China"
+"Tsinghua University, 2Rutgers University, 3Baidu IDL"
+"Tsinghua University, 2Rutgers University, 3Massachusetts Institute of Technology, 4Baidu IDL"
"Tsinghua University, Beijing 100084, China"
"Tsinghua University, Beijing 100084, P.R.China"
"Tsinghua University, Beijing, China"
@@ -2126,11 +2650,16 @@ Tsinghua University 4SenseTime Tsinghua-CUHK Joint Research Center for Media Sciences
"Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems"
"Turin, Italy, 3 Faculty of Humanities, Research Unit of Logopedics, Child Language Research Center, University of Oulu, Oulu"
+"U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI"
U.S. Army Research Laboratory
"U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD USA"
+"U.S. Army Research Laboratory, Adelphi, MD, USA"
+"UC Irvine1, INRIA2, Carnegie Mellon University"
"UC Lab, Kyung Hee University, Yongin-Si 446-701, Korea"
+UCL and Alan Turing Institute
"UG student, Amity school of Engineering and Technology, Amity University, Haryana, India"
"UMIACS | University of Maryland, College Park"
+"UMIACS, University of Maryland"
"UMIACS, University of Maryland, College Park, MD"
"UMIACS, University of Maryland, College Park, USA"
UNIVERSITY IN PRAGUE
@@ -2150,7 +2679,10 @@ USC Information Sciences Institute "USC Information Sciences Institute (ISI), Marina Del Rey, CA"
USC Institute for Creative Technologies
"USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA"
+"USHER Institute, University of Edinburgh, United Kingdom"
"Uber Advanced Technologies Group, 5Vector Institute"
+"Ubiquitous Computing Lab, Kyung Hee University"
+"UiT The Arctic University of Norway, Troms , Norway"
"Ulm University, Germany"
"Ultra College of Engineering and Technology for Women, India"
"United States of America, State University of New York Albany, Albany"
@@ -2163,6 +2695,7 @@ USC Institute for Creative Technologies University
University Politehnica of Bucharest
"University Politehnica of Bucharest, Romania, Address Splaiul Independent ei"
+University (H
University (ITU
"University B.D.T.College of Engineering, Visvesvaraya"
"University Bourgogne Franche-Comt , France"
@@ -2177,6 +2710,7 @@ University College London University Drive
"University Drive, Fairfax, VA 22030-4444, USA"
"University Health Board, Swansea, United Kingdom"
+University Higher School of Economics (HSE). Any opinions or claims contained in this
"University Hospital Jena, Germany"
University Institute of Engineering and Technology
University Lecturer Anu Soikkeli
@@ -2184,6 +2718,7 @@ University Lecturer Veli-Matti Ulvinen "University Library, Singapore"
University Of California San Diego
University Of Maryland
+University Of Oxford
"University POLITEHNICA Timisoara, Timisoara, 300223, Romania"
"University POLITEHNICA of Bucharest, Bucharest, Romania"
University Politehnica of Bucharest
@@ -2192,6 +2727,7 @@ University Politehnica of Bucharest "University Street, Montral, QC H3A 0E9, Canada"
"University Street, Montreal, QC H3A 0E9, Canada"
"University Technology of Malaysia, 81310 Skudai, Johor, Malaysia"
+"University at Albany, SUNY"
"University at Buffalo, SUNY"
"University at Buffalo, State University of New York"
University of
@@ -2202,10 +2738,13 @@ University of Adelaide "University of Adelaide, SA, Australia"
"University of Aizu, Japan"
"University of Akron, Akron"
+"University of Alabama, Tuscaloosa, AL"
"University of Alberta, Edmonton, AB T6G 2E8, Canada"
"University of Alberta, Edmonton, Canada"
"University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain"
University of Amsterdam
+University of Amsterdam (UvA
+University of Amsterdam and Renmin University at TRECVID
"University of Amsterdam, Amsterdam, The"
"University of Amsterdam, Amsterdam, The Netherlands"
"University of Amsterdam, Amsterdam, the Netherlands, 2 Leiden University"
@@ -2214,6 +2753,7 @@ University of Amsterdam "University of Amsterdam, the Netherlands"
"University of Amsterdam; 2Amsterdam Brain and Cognition Center, University of"
University of Applied Sciences Darmstadt - CASED
+"University of Applied Sciences, Arnhem, The Netherlands"
University of Arizona
University of Arkansas at Little Rock
"University of Balochistan, Quetta"
@@ -2229,16 +2769,19 @@ University of Bath "University of Bath, Bath, Somerset, United Kingdom"
"University of Bath, Bath, United Kingdom"
University of Beira Interior
+University of Bern
University of Birmingham
University of Bonn
"University of Bonn, Germany"
"University of Bonn, Roemerstrasse 164, 53117 Bonn, Germany"
University of Brescia
University of Bridgeport
+"University of Bridgeport, Bridgeport, CT 06604, USA"
University of Bristol
University of Bristol - Explore Bristol Research
"University of Bristol, Bristol, BS8 1UB, UK"
"University of Bristol, Bristol, UK"
+"University of Bristol, United Kingdom"
University of British Columbia
University of Buffalo
"University of Business Agriculture and Technology, Dhaka-1230, Bangladesh"
@@ -2246,11 +2789,14 @@ University of Caen University of Caen Basse-Normandie
"University of Caen, France"
University of Cagliari
+University of Calabria - DeMACS
+"University of Calgary, Canada"
University of California
University of California Berkeley
University of California Berkeley
University of California Davis
University of California San Diego
+"University of California San Diego, La Jolla, California, USA"
University of California Santa Barbara
University of California at Berkeley
University of California at Berkeley / ICSI
@@ -2262,15 +2808,20 @@ University of California at San Diego "University of California, Berkeley"
"University of California, Berkeley, Berkeley CA 94720, USA"
"University of California, Berkeley1 Adobe"
+"University of California, Davis"
+"University of California, Davis 2University of Washington 3Allen Institute for AI"
"University of California, Irvine"
"University of California, Irvine, USA"
"University of California, Los Angeles"
+"University of California, Los Angeles, California, USA"
+"University of California, Los Angeles, USA"
"University of California, Merced"
"University of California, Merced, CA"
"University of California, Merced, CA 95344, USA"
"University of California, Merced, USA"
"University of California, Riverside"
"University of California, Riverside CA 92521-0425, USA"
+"University of California, Riverside, CA"
"University of California, Riverside, California 92521, USA"
"University of California, San Diego"
"University of California, San Diego 2 Carnegie Mellon University"
@@ -2281,6 +2832,7 @@ University of California at San Diego "University of California, Santa Cruz"
University of Cambridge
University of Cambridge Computer Laboratory
+"University of Cambridge, Cambridge, UK"
"University of Cambridge, Computer Laboratory, UK"
"University of Cambridge, The Computer Laboratory, Cambridge CB3 0FD, U.K"
"University of Cambridge, UK 2Carnegie Mellon University, USA"
@@ -2288,6 +2840,7 @@ University of Cambridge Computer Laboratory University of Campinas
University of Campinas (Unicamp
University of Canberra
+"University of Canberra, Australia"
"University of Canberra, Australia, Data61 - CSIRO and ANU, Australia"
"University of Canterbury, New Zealand"
University of Cape Town
@@ -2295,10 +2848,13 @@ University of Cape Town "University of Catania, Italy"
University of Central Florida
"University of Central Florida, Orlando"
+"University of Central Florida, Orlando FL 32816, USA"
"University of Central Florida, Orlando, USA"
"University of Central Florida, USA"
"University of Central Punjab, Pakistan"
+"University of Chester, UK, 3Conservation Biologist"
University of Chinese Academy of
+University of Chinese Academy of Science
University of Chinese Academy of Sciences
University of Chinese Academy of Sciences (UCAS
"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China"
@@ -2309,13 +2865,17 @@ University of Chinese Academy of Sciences (UCAS "University of Chinese Academy of Sciences, Beijing, China"
"University of Chinese Academy of Sciences, China"
"University of Coimbra, Portugal"
+University of Colorado
+"University of Colorado Boulder, 2U.S. Army Research Lab"
University of Colorado Colorado Springs
University of Colorado at Colorado Springs
"University of Colorado at Colorado Springs and Securics, Inc., Colorado Springs, CO, USA"
"University of Colorado, Boulder"
"University of Colorado, Colorado Springs"
+"University of Colorado, Colorado Springs, USA"
University of Connecticut
University of Copenhagen
+"University of Cordoba, Spain"
"University of Crete, Crete, 73100, Greece"
"University of Dammam, Saudi Arabia"
"University of Delaware, Newark, DE. USA"
@@ -2326,10 +2886,15 @@ University of Dhaka University of Dundee
University of Edinburgh
"University of Edinburgh, Edinburgh, UK"
+University of Electronic Science and Technology of China
+"University of Electronic Science and Technology of China, China"
University of Engineering and Technology
+University of Erlangen-Nuremberg
+University of Erlangen-Nuremberg 3 University of Bath
"University of Exceter, Exceter, UK"
University of Exeter
"University of Exeter, UK"
+University of Florence
"University of Florence, Italy"
University of Florida
"University of Florida, Gainesville, FL, 32611, USA"
@@ -2341,11 +2906,15 @@ University of Geneva "University of Genoa, Italy"
"University of Georgia, Athens, GA, U.S.A"
University of Glasgow
+"University of Granada, Granada, Spain"
+"University of Granada, Spain"
University of Groningen
"University of Groningen, Netherlands"
"University of Groningen, The Netherlands"
"University of Gujrat, Pakistan"
+University of Haifa
"University of Haifa, Haifa, Israel"
+"University of Helsinki, Finland"
University of Houston
"University of Houston, Houston, TX 77204, USA"
"University of Houston, Houston, TX, USA"
@@ -2377,14 +2946,18 @@ University of Kentucky "University of Kentucky, 329 Rose St., Lexington, KY, 40508, U.S.A"
"University of Kentucky, USA"
University of Lac Hong 10 Huynh Van Nghe
+"University of Larestan, Iran"
University of Leeds
"University of Lincoln, School of Computer Science, U.K"
"University of Lincoln, U.K"
"University of Lincoln, UK"
+University of Liverpool
University of Ljubljana
University of Ljubljana Faculty
+"University of Ljubljana, Faculty of Electrical Engineering"
"University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000 Ljubljana, Slovenia"
University of London
+"University of Malaga, Spain"
"University of Malaya, 50603 Kuala Lumpur, Malaysia"
"University of Malaya, Kuala Lumpur, Malaysia"
University of Malta
@@ -2396,6 +2969,8 @@ University of Maryland College Park "University of Maryland, Center for Automation Research"
"University of Maryland, College Park"
"University of Maryland, College Park, MD"
+"University of Maryland, College Park, MD 20740; and bIntel Labs, Santa Clara, CA"
+"University of Maryland, College Park, MD, USA"
"University of Maryland, College Park, USA"
"University of Maryland, College Park; 2Arizona State University; 3Xerox Research Centre"
"University of Maryland-College Park, USA"
@@ -2417,12 +2992,19 @@ University of Michigan "University of Michigan, Ann Arbor, MI, USA"
"University of Michigan, Ann Arbor, MI, USA (UMICH.EDU"
"University of Michigan, Ann Arbor, USA"
+University of Michigan-Shanghai Jiao Tong University Joint Institute
University of Milan
"University of Milano-Bicocca, Italy"
University of Minnesota
"University of Minnesota-Twin Cities, Minneapolis"
"University of Missouri, Columbia, MO"
+"University of Missouri, Kansas City"
+University of Modena and Reggio
+"University of Modena and Reggio Emilia, Italy"
+"University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR"
+"University of Nebraska Lincoln, USA"
University of Nebraska - Lincoln
+University of Nevada Las Vegas
"University of Nevada at Reno, USA"
"University of Nevada, Reno, Reno, NV, USA"
"University of Nevada, Reno, USA"
@@ -2432,6 +3014,7 @@ University of North Carolina Wilmington University of North Carolina Wilmington in Partial Ful llment
"University of North Carolina Wilmington, Wilmington, NC, USA"
University of North Carolina at Chapel Hill
+"University of North Carolina at Chapel Hill, 2Adobe Research"
"University of North Carolina at Chapel Hill, Chapel Hill, NC"
"University of North Carolina at Chapel Hill, NC, USA"
"University of North Carolina at Chapel Hill, USA"
@@ -2442,15 +3025,21 @@ University of Northern British Columbia "University of Northern British Columbia, Canada"
University of Notre Dame
"University of Notre Dame, 2IIIT-Delhi"
+"University of Notre Dame, Notre Dame, IN, 46556, USA"
"University of Notre Dame, USA"
"University of Notre Dame. Notre Dame, IN 46556.USA"
University of Nottingham
University of Nottingham Ningbo China
+"University of Nottingham, Ningbo China"
"University of Nottingham, Ningbo, China"
"University of Nottingham, Nottingham, UK"
+"University of Nottingham, School of Psychology, University Park, Nottingham NG"
"University of Nottingham, UK, School of Computer Science"
+University of Ontario Institute
University of Oradea
"University of Oradea 410087, Universitatii 1, Romania"
+University of Otago
+"University of Otago, Dunedin, New Zealand"
University of Ottawa
"University of Ottawa, Canada"
"University of Ottawa, Ottawa, On, Canada"
@@ -2458,9 +3047,12 @@ University of Oulu "University of Oulu, Finland"
"University of Oviedo, Campus de Viesques, 33204 Gij n"
University of Oxford
+University of Oxford 4Massachusetts Institute of Technology 5Google Research
+"University of Oxford, Oxford, UK"
"University of Oxford, Oxford, United Kingdom"
"University of Oxford, UK"
"University of Oxford, United Kingdom"
+"University of Paderborn, Germany"
"University of Patras, Greece"
University of Pennsylvania
"University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania"
@@ -2484,25 +3076,34 @@ University of Pittsburgh "University of Plymouth, UK"
University of Posts and Telecommunications
"University of Queensland, Australia"
+"University of Queensland, Brisbane, Australia"
"University of Queensland, School of ITEE, QLD 4072, Australia"
"University of Queensland, St Lucia QLD Australia, 5 Institut Universitaire de France, Paris, France"
University of Rochester
+"University of Rochester and J. Luo, University of Rochester"
"University of Rochester, NY 14627, USA"
"University of Rochester, Rochester, NY, USA"
+University of S ao Paulo
"University of S ao Paulo - USP, S ao Paulo - Brazil"
"University of S ao Paulo, S ao Paulo, Brazil"
"University of Salzburg, Austria"
"University of Santiago de Compostela, Santiago de Compostela, Spain"
University of Science and
+University of Science and Technology
University of Science and Technology Beijing
+"University of Science and Technology Beijing, Beijing, China"
University of Science and Technology of China
"University of Science and Technology of China, Hefei 230026, P. R. China"
"University of Science and Technology of China, Hefei, 230027, China"
+"University of Science and Technology of China, Hefei, Anhui, China"
"University of Science and Technology of China, Hefei, Anhui, P. R. China"
"University of Science and Technology of China, Hefei, China"
+"University of Science and Technology of China, Key Laboratory of Electromagnetic"
+"University of Science and Technology, Wuhan, 430074, China"
"University of Science, Ho Chi Minh city"
"University of Science, VNU-HCM, Viet Nam"
"University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam"
+"University of Science, Vietnam National University, HCMC"
"University of Science, Vietnam National University-Ho Chi Minh city"
University of Sfax
"University of Shef eld, Regent Court, 211 Portobello, Shef eld"
@@ -2513,17 +3114,20 @@ University of Siena "University of Sk vde, Sweden"
"University of South Carolina, Columbia, USA"
"University of South Carolina, USA"
+"University of South Florida, Tampa, Florida, USA"
University of Southampton
"University of Southampton, SO17 1BJ, UK"
"University of Southampton, UK, 2University of Warwick, UK"
"University of Southampton, United Kingdom"
University of Southern California
+"University of Southern California, 4A9, 5Amazon"
"University of Southern California, Institute for Robotics and Intelligent Systems"
"University of Southern California, Los Angeles, CA 90089, USA"
"University of St Andrews, United Kingdom"
University of Stuttgart
University of Surrey
"University of Surrey, Guildford, Surrey GU2 7XH, UK"
+"University of Surrey, UK"
"University of Surrey, United Kingdom"
University of Sydney
"University of Szeged, 2 E tv s Lor nd University"
@@ -2532,6 +3136,8 @@ University of Sydney University of Tampere
"University of Tampere, Kanslerinnrinne 1, 33014, Tampere, Finland"
University of Technology Sydney
+"University of Technology Sydney, 2 The University of Sydney"
+"University of Technology, Australia"
"University of Technology, Baghdad, Iraq"
"University of Technology, Guangzhou, 510640, P.R.China"
"University of Technology, Sydney"
@@ -2545,21 +3151,29 @@ University of Texas at Arlington "University of Texas at Arlington, Arlington, TX, USA"
"University of Texas at Arlington, Arlington, Texas 76019, USA"
"University of Texas at Arlington, TX, USA"
+"University of Texas at Arlington, TX, USA, 2Beihang University, Beijing, China"
+"University of Texas at Arlington, Texas, USA"
University of Texas at Austin
University of Texas at San Antonio
+"University of Texas at San Antonio, USA"
+"University of Texas, Austin"
"University of Texas, Austin, TX 78712-1188, USA"
University of Thessaloniki
University of Tokyo
"University of Tokyo, 4-6-1 Shirokanedai"
"University of Tokyo, Japan"
University of Toronto
+University of Toronto 2Vector Institute
University of Toronto and Recognyz Systems Technologies
"University of Toronto, 6 Kings College Road, Toronto, ON M5S 3G4 CANADA"
+"University of Toronto, Canada"
"University of Toronto, Toronto, ON M5S 2G4, Canada"
+"University of Toronto1, Twenty Billion Neurons"
University of Toulouse
University of Toulouse II Le Mirail
University of Trento
"University of Trento, Italy"
+"University of Trento, Trento, Italy"
University of Tsukuba
"University of Tsukuba, Japan"
University of Twente
@@ -2570,6 +3184,7 @@ University of Twente 2Dublin City University 3Oxford University "University of Ulsan, Ulsan, Republic of Korea"
University of Venezia
"University of Vermont, 33 Colchester Avenue, Burlington"
+University of Verona
"University of Verona, Verona, Italy"
University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4University of Trento
"University of Victoria, Victoria, Canada"
@@ -2577,25 +3192,33 @@ University of Verona. 2Vienna Institute of Technology. 3ISTC CNR (Trento). 4Univ "University of Vigo, Spain"
University of Virginia
"University of Virginia, Charlottesville, VA"
+"University of Waikato, Hamilton, New Zealand"
University of Warwick
University of Washington
University of Washington 4The Allen Institute for AI
University of Washington and Google Inc
"University of Washington, Bothell"
+"University of Washington, Bothell, USA"
+"University of Washington, Seattle"
"University of Washington, Seattle, USA"
"University of Washington, Seattle, WA 98195, United States"
"University of Washington, Seattle, WA, USA"
University of Waterloo
+"University of Waterloo, ON, Canada"
"University of Waterloo, Waterloo ON N2L3G1, Canada"
+"University of Waterloo, Waterloo, ON N2L 3G1, Canada"
University of West Bohemia
University of Western Australia
University of Wisconsin Madison
+"University of Wisconsin Madison, USA"
University of Wisconsin Madison
University of Wisconsin-Madison
"University of Wisconsin-Madison, Madison, WI, USA"
University of Witwatersrand
University of Wollongong
University of Wollongong. For further information contact the UOW
+University of York
+"University of York, Heslington, York YO10 5GH, UK"
"University of York, UK"
"University of York, York, UK"
"University of York, York, United Kingdom"
@@ -2605,36 +3228,48 @@ University of Wollongong. For further information contact the UOW "University of Zagreb, Unska 3, 10 000 Zagreb"
"University of Zaragoza, Spain"
"University of Zurich, Zurich, Switzerland"
+"University of at Urbana-Champaign, Illinois, USA"
"University of telecommunications and post, Sofia, Bulgaria"
"University of the Basque Country, San Sebastian, Spain"
"University of the South Paci c, Fiji"
University of the Western Cape
University of the Witwatersrand
"University, China"
+"University, Chitorgarh. (INDIA"
"University, Guangzhou, China"
"University, Hong Kong"
+"University, Japan"
+"University, Shanghai, China"
"University, Singapore"
"University, Taiwan, R.O.C"
"University, USA"
+"University, Varanasi, 221005, India"
"University, Xi an Shaanxi Province, Xi an 710049, China"
University: Dhirubhai Ambani Institute of Information and Communication Technology
UniversityofMaryland
"UniversityofMaryland, CollegePark, MD"
Ural Federal University (UrFU
+Usman Institute of Technology
"Utah State University, Logan UT"
"Utah State University, Logan, UT 84322-4205, USA"
"Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, The Netherlands"
+"Utrecht University, Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands"
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl
VEER SURENDRA SAI UNIVERSITY OF
"VHNSN College, Virudhunagar, ANJA College"
+VICTORIA UNIVERSITY OF WELLINGTON
"VISILAB group, University of Castilla-La Mancha, E.T.S.I.Industriales, Avda. Camilo Jose Cela s.n, 13071 Spain"
"VISLab, EBUII-216, University of California Riverside"
"VSB Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic"
"VSI Lab, Goethe University, Frankfurt, Germany"
+"VU University Amsterdam, Computational Lexicology and Terminology Lab, De"
+Vector Institute
Vector Institute for Arti cial Intelligence
+"Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India"
"VelTech Dr. R.R. and Dr. S.R. Technical University, Chennai"
VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College
"Vickram College of Engineering, Enathi, Tamil Nadu, India"
+Victoria University
Victoria University of Wellington
"Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand"
Vienna University of Technology
@@ -2656,6 +3291,8 @@ Virginia Tech Carilion Research Institute "Vision and Sensing, HCC Lab, ESTeM, University of Canberra"
"Vision and Sensing, HCC, ESTeM, University of Canberra"
"Visual Analysis of People Lab, Aalborg University, Denmark"
+"Visual Computing Center, King Abdullah University of Science and Technology (KAUST"
+"Visual Computing Institute, RWTH Aachen University"
"Visual Computing and Communications Lab, Arizona State University"
"Visual Geometry Group, University of Oxford"
"Visual Geometry Group, University of Oxford, Oxford UK"
@@ -2664,17 +3301,23 @@ Virginia Tech Carilion Research Institute "Viswajyothi College of Engineering and Technology Kerala, India"
Vrije Universiteit Brussel
"Vrije Universiteit Brussel, 1050 Brussels, Belgium"
+Warsaw University of Technology
"Warsaw University of Technology, Poland"
Waseda University
"Waseda University, Tokyo, Japan"
+Washington University in St. Louis
"Washington University, St. Louis, MO, USA"
Wayne State University
"Wayne State University, Detroit, MI 48202, USA"
+"We thank the support of New York State through the Goergen Institute for Data Science, our corporate research sponsors"
+Webster University
Weizmann Institute of Science
+"Weizmann Institute of Science, Rehovot, Israel"
"Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of"
"Wenzhou University, China"
"Wenzhou University, Wenzhou, China"
West Virginia University
+"West Virginia University, Morgantown"
"West Virginia University, Morgantown WV 26506, USA"
"West Virginia University, Morgantown, USA"
"West Virginia University, Morgantown, WV"
@@ -2682,37 +3325,59 @@ West Virginia University "West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi"
Western Kentucky University
"Western Sydney University, Parramatta, NSW 2150, Australia"
+"While visual features in single frames are vague and limited, multi-frame information, including deformation and pose"
William Marsh Rice University
+Wittenberg University
+"Wittenberg University, and Dr. Michael Anes, Wittenberg University"
Wolfson College
+Wuhan University
+"Wuhan University, Tencent AI Lab, National University of Singapore, University of Rochester"
Xerox Research Center
Xerox Research Center India
Xerox Research Center Webster
+Xi an Jiaotong University
"Xi an Jiaotong University, China"
+"Xi an Jiaotong University, Xi an, Shannxi 710049, P.R.China"
"Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences"
Xiamen University
"Xiamen University, Xiamen, China"
+"Xiamen University, Xiamen, Fujian, China"
Xidian University
Xidian University 2Xi an Jiaotong University 3Microsoft Research Asia
"Xidian University, Xi an, China"
+"Xidian University, Xi an, China, 4 University of Pittsburgh, PA, USA"
"Y ld z Teknik University, Istanbul, TR"
"Y. Li, University of Maryland"
+"YUHANG ZHAO, Information Science, Cornell Tech, Cornell University"
Yale University
+"Yarmouk University, Jordan"
Yaroslavl State University
+Yeshiva University
Yeungnam University
+Yonsei University
York University
"York University, Toronto"
"York University, Toronto, Canada"
+"York University, Toronto, ON, Canada"
+"Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran"
"ZHAW Datalab, Zurich University of Applied Sciences"
Zaragoza University
"Zhejang University, Hangzhou 310027, P.R.China"
"Zhejiang Normal University, Jinhua, China"
Zhejiang University
Zhejiang University of Technology
+"Zhejiang University, 2Southwest Jiaotong University, 3Carnegie Mellon University"
+"Zhejiang University, China"
+"Zhejiang University, Hangzhou, China"
"Zhengzhou University, Zhengzhou, Henan 450052, China"
+"Zurich University of Applied Sciences, School of Engineering"
"a Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany"
+"a School of Computer and Information Technology, Beijing Jiaotong University, Beijing"
"a Section of Biomedical Image Analysis, University of Pennsylvania, 3600 Market, Suite 380, Philadelphia, PA 19104, USA"
"a The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA"
a The University of Nottingham Malaysia Campus
+"aCenter for Combinatorics, Nankai University, Tianjin 300071, China"
+"aCenter for Spatial Information Science, University of Tokyo, Kashiwa 277-8568, Japan"
"aCentre for Neuroscience, Indian Institute of Science, Bangalore, India"
"aCollege of Computer Science at Chongqing University, 400044, Chongqing, P.R.C"
"aDivision of Biology and Biological Engineering 156-29, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA"
@@ -2722,16 +3387,23 @@ a The University of Nottingham Malaysia Campus aInformation Sciences Institute
"aLawrence Technological University, 21000 W Ten Mile Rd., South eld, MI 48075, United States"
"aMILab, LCSEE, West Virginia University, Morgantown, West Virginia, USA"
+"aNo. 238 Songling Road, Ocean University of"
+"aPattern Recognition Laboratory, Delft University of Technology"
"aResearch Scholar, Anna University, Chennai, Inida"
"aSchool of Computing and Mathematics, Charles Sturt University, Bathurst, NSW"
+"aSchool of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China"
+"aSchool of Engineering and Technology, University of Hertfordshire, Hat eld AL10 9AB, UK"
+"aSchool of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China"
"aSchool of Technology, University of Campinas"
"aTurgut Ozal University, Ankara Turkey"
"abroad, or from public or private research centers"
"additional details of DCS descriptors, including visualization. For extending the evaluation"
"and 2Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708"
+"and Control, Hungarian Academy of Sciences, Budapest, Hungary, Chuo University"
"and Engineering, Beihang University, Beijing, China"
"and IBUG [32]. All of them cover large variations, including different"
"and Mathematical Biosciences Institute, The Ohio State University"
+"and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary"
"and Modeling, Rutgers University"
"and Southeast University, China"
"and bDivision of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA"
@@ -2752,30 +3424,46 @@ at the University of Central Florida "b Computer Technology Institute, Beijing Union University, 100101, China"
"b DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy"
b Institute for Robotics and Intelligent Systems
+"b Machine Perception Laboratory, Institute of Neural Computation, University of California, San Diego, United States"
+"b Research Institute, Watchdata Inc., Beijing, China"
"b School of Applied Mathematics, Xidian University, Xi an, China"
"b School of Business, Reykjavik University, Reykjavik, Iceland"
"b The Interdisciplinary Center for Research on Emotions, University of"
+"bCVSSP, University of Surrey, Guildford, GU2 7XH, UK"
+"bCenter for Applied Mathematics, Tianjin University, Tianjin 300072, China"
"bDiscipline of Business Analytics, The University of Sydney Business School"
+"bFaculty of Computers and Information, Assiut University, Egypt"
"bFaculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia"
+"bMax Planck Institute for Informatics, Germany"
"bRobotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A"
+"bSchool of Automation, China University of Geosciences, Wuhan, Hubei 430074, China"
"bSchool of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China"
"bSchool of Computer and Control Engineering, University of Chinese Academy of Sciences"
+"bSchool of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China"
"bTsinghua University, Beijing, China"
"bUniversity of Nottingham, School of Computer Science, Nottingham, UK"
+bourne University
by grants from the National Institute of Mental Health (MH 15279 and MH067976 (K. Schmidt
"c Cardiff Business School, Cardiff University, Cardiff, United Kingdom"
+"c Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ont. M6A 2E1, Canada"
"c School of Arts and Sciences, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania"
"c School of Computational Science, Florida State University, Tallahassee, FL 32306, USA"
c(cid:13) Carnegie Mellon University
+c(cid:13) Massachusetts Institute of Technology 2006. All rights reserved
c(cid:13)The Chinese University of Hong Kong
c(cid:176) Massachusetts Institute of Technology 2006. All rights reserved
"c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting"
"cCentre of Intelligent Machines, McGill University, Montr eal, QC H3A 0E9, Canada"
"cFaculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, The Netherlands"
+"cFaculty of Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China"
+"cHuizhou School Affiliated to Beijing Normal University, Huizhou 516002, China"
"cSchool of Astronautics at Beihang University, 100191, Beijing, P.R.C"
+"cSchool of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia"
cThe Open University
+"chael G. Foster School of Business, University of Washington, Seattle"
cid:1) Honda Research Institute
cid:1)Institute for Neural Computation
+cid:107)Chongqing University of Posts and Telecommunications
"cid:130) Computer Perception Lab, California State University, Bakersfield, CA 93311, USA"
"cid:2) Imperial College London, United Kingdom"
"cid:2)Honda RandD Americas, Inc., Boston, MA, USA"
@@ -2788,17 +3476,25 @@ cid:3)The Salk Institute and Howard Hughes Medical Institute "cid:63)Queen Mary University of London, Imperial College London"
"cid:63)Sharif University of Technology, University College London, Queen Mary University of London"
cid:63)Stanford University
+"cid:63)The Robotics Institute, Carnegie Mellon University"
+"cid:63)University of Science and Technology of China, Hefei, Anhui, China"
+"cid:92)School of Information Technologies, University of Sydney, Australia"
"cid:93) Faculty of Science and Technology, University of Macau"
"cid:93)Peking University Shenzhen Graduate School, Shenzhen, P.R.China"
+"cid:93)School of Electronic Engineering, Xidian University, China"
+cid:93)University of North Carolina at Charlotte
college of Engineering
comparisons with 12 instance-based classi ers on 13 benchmark University of California Irvine
+"con icting sensory information, i.e., incongruent facial muscle activity, this might impede"
"do, Rep. of Korea, Kyung Hee University, Suwon, Rep. of Korea"
"e ects of di erence factors, including age group, age gap"
+"e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following"
eBay Research Labs
"engineering, Government College of Engineering Kannur, Kerala, India"
"f Neuropsychiatry Section, University of Pennsylvania Medical Center, Hospital of the University of Pennsylvania"
"face processing, including age (Berry, 1990), sex (Hill"
facultyofmathematicsandnaturalsciencesarti cialintelligence22-09-2016|1ATitleA.UthorRijksuniversiteitGroningenSomeFaculty
+"ganization, University of Southern California, Hoffman Hall 515, Los"
"gelmeyer et al., 1996); and, increasingly, its role in reactions to"
"general term, including collaboration. Interaction determines action on someone"
"gies (Bughin et al. 2017). A range of other sectors, includ"
@@ -2810,23 +3506,32 @@ in The University of Michigan "in signed languages, including American Sign Language (ASL). Gestures such"
in the College of Engineering and Computer Science
in the Graduate School of Duke University
+"inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact"
"instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i"
+"is demonstrated using a variety of graphics applications, including cross"
"learning. As a result of this research, many applications, including video surveillance systems"
massachusetts institute of technology artificial intelligence laboratory
+"media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or"
"ment of Psychology, University of California, Berkeley"
ment. Oxford University Press Series in Affective Science. New York: Oxford
"methods, including graph matching, optical- ow-based"
+"mpg.de, Max Planck Institute for Informatics"
"obtained for all other uses, in any current or future media, including reprinting/republishing"
+"ods, including sensitivity to initialization, limited effectiveness in"
of Cornell University
"of Engineering and Information Technology, University of Technology, Sydney, Australia"
"of Maryland, College Park, MD 20742, USA"
"of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China"
"of Psychology, Princeton University, Princeton, NJ 08540. E-mail"
"of Psychology, University of Michigan, Ann Arbor, MI, United States, University of Michigan, Ann"
+of Saarland University
+"of Science, Tilburg University"
"of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science"
of bilkent university
of the University of Notre Dame
+"other uses, in any current or future media, including reprinting/republishing this material for"
"our analysis to stereotypes beyond gender, including those"
+"pelling applications, including cognitive assistance [29], life"
"ples of such ne-grained descriptions, including attributes covering detailed"
"point, lighting, and appearance. Many applications, including video surveillance systems"
"puter Engineering, National University of Singapore, Singapore (e-mails"
@@ -2836,10 +3541,13 @@ of the University of Notre Dame the Chinese University of Hong Kong
"the Chinese University of Hong Kong, Shatin, Hong Kong"
"the Diploma of Imperial College London. This thesis is entirely my own work, and, except"
+"the Indian Institute of Technology, Bombay and Monash University, Australia"
"the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam"
"the face, including negative affect and distress, dates"
+"those who possess it, including the ability to act based on one s"
"tion [11, 10] is making possible very large scale visual recognition both in my own ongoing work, including"
tional Taipei University for his help in performing simulations. The author would like to thank Mr. Ming
+"tional functions, including the effective assessment of"
to Michigan State University
"to process in all the illumination conditions, including total"
"to visually detectable changes in facial appearance, including blushing and tears. These"
@@ -2848,6 +3556,7 @@ to Michigan State University "uses, in any current or future media, including"
"versity of Amsterdam, Amsterdam and University of Trento"
via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to
+"weighing of different types of information, including expected"
y National Institute of Advanced Industrial Science and Technology
yAristotle University of Thessaloniki
yThe University of Tokyo
diff --git a/reports/institutions.html b/reports/institutions.html index e9cc118c..da79f6e5 100644 --- a/reports/institutions.html +++ b/reports/institutions.html @@ -1 +1 @@ -<!doctype html><html><head><title>Institutions</title><link rel='stylesheet' href='reports.css'></head><body><h2>Institutions</h2><table border='1' cellpadding='3' cellspacing='3'><tr><td>9f6d04ce617d24c8001a9a31f11a594bd6fe3510</td><td>1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R</td><td>Department of Psychiatry</td></tr><tr><td>63488398f397b55552f484409b86d812dacde99a</td><td>2 School of Computing, National University of Singapore</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e</td><td>2015 Wiley Periodicals, Inc</td><td></td></tr><tr><td>83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e</td><td>2015 Wiley Periodicals, Inc</td><td></td></tr><tr><td>01cc8a712e67384f9ef9f30580b7415bfd71e980</td><td>2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada</td><td>Department of Psychology</td></tr><tr><td>c7f752eea91bf5495a4f6e6a67f14800ec246d08</td><td>A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER</td><td></td></tr><tr><td>3d68cedd80babfbb04ab197a0b69054e3c196cd9</td><td>A Thesis submitted to McGill University in partial fulfillment of the requirements for the</td><td></td></tr><tr><td>25337690fed69033ef1ce6944e5b78c4f06ffb81</td><td>A dissertation submitted to the Faculty of the University of Delaware in partial</td><td></td></tr><tr><td>c32f04ccde4f11f8717189f056209eb091075254</td><td>A dissertation submitted to the University of Bristol in accordance with the requirements</td><td></td></tr><tr><td>e82360682c4da11f136f3fccb73a31d7fd195694</td><td>AALTO UNIVERSITY</td><td></td></tr><tr><td>33402ee078a61c7d019b1543bb11cc127c2462d2</td><td>ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam</td><td></td></tr><tr><td>0559fb9f5e8627fecc026c8ee6f7ad30e54ee929</td><td>ADSIP Research Centre, University of Central Lancashire</td><td></td></tr><tr><td>ddf55fc9cf57dabf4eccbf9daab52108df5b69aa</td><td>ADSIP Research Centre, University of Central Lancashire</td><td></td></tr><tr><td>0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58</td><td>AI Institute</td><td></td></tr><tr><td>3661a34f302883c759b9fa2ce03de0c7173d2bb2</td><td>AI Institute</td><td></td></tr><tr><td>361c9ba853c7d69058ddc0f32cdbe94fbc2166d5</td><td>ALICE Institute</td><td></td></tr><tr><td>8efda5708bbcf658d4f567e3866e3549fe045bbb</td><td>ALICE Institute</td><td></td></tr><tr><td>1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c</td><td>ARISTOTLE UNIVERSITY OF THESSALONIKI</td><td></td></tr><tr><td>8aae23847e1beb4a6d51881750ce36822ca7ed0b</td><td>ATR Human Information Processing Research Laboratories</td><td></td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>ATR Human Information Processing Research Laboratory</td><td></td></tr><tr><td>8aae23847e1beb4a6d51881750ce36822ca7ed0b</td><td>ATR Interpreting Telecommunications Research Laboratories</td><td></td></tr><tr><td>087002ab569e35432cdeb8e63b2c94f1abc53ea9</td><td>Aalborg University, Denmark</td><td>Department of Communication and Psychology</td></tr><tr><td>8cc07ae9510854ec6e79190cc150f9f1fe98a238</td><td>Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark</td><td>Department of Engineering</td></tr><tr><td>9264b390aa00521f9bd01095ba0ba4b42bf84d7e</td><td>Aberystwyth University, UK</td><td></td></tr><tr><td>d9ef1a80738bbdd35655c320761f95ee609b8f49</td><td>Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India</td><td></td></tr><tr><td>3d143cfab13ecd9c485f19d988242e7240660c86</td><td>Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan</td><td></td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of</td><td></td></tr><tr><td>458677de7910a5455283a2be99f776a834449f61</td><td>Achariya college of Engineering Technology</td><td></td></tr><tr><td>078d507703fc0ac4bf8ca758be101e75ea286c80</td><td>Acharya Institute Of Technology</td><td></td></tr><tr><td>4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6</td><td>Address correspondence to: Karen L. Schmidt, University of</td><td>Department of Psychiatry</td></tr><tr><td>1134a6be0f469ff2c8caab266bbdacf482f32179</td><td>Aditya College of Engineering, Surampalem, East Godavari</td><td>Department of Computer Science and Engineering</td></tr><tr><td>0861f86fb65aa915fbfbe918b28aabf31ffba364</td><td>Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh</td><td>Department of CSE</td></tr><tr><td>68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5</td><td>Aditya institute of Technology and Management, Tekkalli-532 201, A.P</td><td></td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>Adobe Systems, Inc., 345 Park Ave, San Jose, CA</td><td></td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore</td><td></td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Advanced Engineering, The Chinese University of Hong Kong</td><td></td></tr><tr><td>2cc4ae2e864321cdab13c90144d4810464b24275</td><td>Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul</td><td></td></tr><tr><td>beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2</td><td>Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India</td><td></td></tr><tr><td>68d40176e878ebffbc01ffb0556e8cb2756dd9e9</td><td>AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of</td><td></td></tr><tr><td>eeb6d084f9906c53ec8da8c34583105ab5ab8284</td><td>Akita Prefectural University</td><td></td></tr><tr><td>37ef18d71c1ca71c0a33fc625ef439391926bfbb</td><td>Akita Prefectural University, Yurihonjo, Japan</td><td></td></tr><tr><td>eeb6d084f9906c53ec8da8c34583105ab5ab8284</td><td>Akita University</td><td></td></tr><tr><td>37ef18d71c1ca71c0a33fc625ef439391926bfbb</td><td>Akita University, Akita, Japan</td><td></td></tr><tr><td>718d3137adba9e3078fa1f698020b666449f3336</td><td>Al-Khwarizmi Institute of Computer Science</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Alan W Black (Carnegie Mellon University</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Alex Waibel (Carnegie Mellon University</td><td></td></tr><tr><td>6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2</td><td>Alexandria University, Alexandria, Egypt</td><td></td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>Alexandria University, Alexandria, Egypt</td><td>Electrical Engineering Department</td></tr><tr><td>bd0201b32e7eca7818468f2b5cb1fb4374de75b9</td><td>Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest</td><td></td></tr><tr><td>057d5f66a873ec80f8ae2603f937b671030035e6</td><td>Allen Institute for Arti cial Intelligence (AI</td><td></td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>Allen Institute for Arti cial Intelligence (AI2), Seattle, WA</td><td></td></tr><tr><td>02239ae5e922075a354169f75f684cad8fdfd5ab</td><td>Allen Institute for Arti cial Intelligence (AI2), Seattle, WA</td><td></td></tr><tr><td>38f7f3c72e582e116f6f079ec9ae738894785b96</td><td>Amal Jyothi College of Engineering, Kanjirappally, India</td><td>Department of CSE</td></tr><tr><td>009a18d04a5e3ec23f8ffcfc940402fd8ec9488f</td><td>Amazon, Inc</td><td></td></tr><tr><td>4b7c110987c1d89109355b04f8597ce427a7cd72</td><td>American University, Washington, DC, USA</td><td>Department of Psychology and Center for Behavioral Neuroscience</td></tr><tr><td>00075519a794ea546b2ca3ca105e2f65e2f5f471</td><td>Amherst College</td><td></td></tr><tr><td>841bf196ee0086c805bd5d1d0bddfadc87e424ec</td><td>Amirkabir University of Technology</td><td></td></tr><tr><td>2d79d338c114ece1d97cde1aa06ab4cf17d38254</td><td>Amirkabir University of Technology, University of Southern California</td><td></td></tr><tr><td>0ce8a45a77e797e9d52604c29f4c1e227f604080</td><td>Amirkabir University of Technology, Tehran</td><td>Department of Electrical Engineering</td></tr><tr><td>e73b9b16adcf4339ff4d6723e61502489c50c2d9</td><td>Amirkabir University of Technology, Tehran</td><td>Department of Electrical Engineering</td></tr><tr><td>ceb763d6657a07b47e48e8a2956bcfdf2cf10818</td><td>Amirkabir University of Technology, Tehran</td><td>Department of Electrical Engineering</td></tr><tr><td>488d3e32d046232680cc0ba80ce3879f92f35cac</td><td>Amirkabir University of Technology, Tehran. Iran</td><td>Department of Electrical Engineering</td></tr><tr><td>488d3e32d046232680cc0ba80ce3879f92f35cac</td><td>Amirkabir University of Technology, Tehran. Iran</td><td>Department of Electrical Engineering</td></tr><tr><td>23fd653b094c7e4591a95506416a72aeb50a32b5</td><td>Amity University, Lucknow, India</td><td></td></tr><tr><td>23fd653b094c7e4591a95506416a72aeb50a32b5</td><td>Amity University, Lucknow, India</td><td></td></tr><tr><td>44fbbaea6271e47ace47c27701ed05e15da8f7cf</td><td>Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam</td><td></td></tr><tr><td>4157e45f616233a0874f54a59c3df001b9646cd7</td><td>Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome</td><td></td></tr><tr><td>af62621816fbbe7582a7d237ebae1a4d68fcf97d</td><td>AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of</td><td></td></tr><tr><td>27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba</td><td>Anjuman College of Engineering and Technology, Sadar, Nagpur, India</td><td></td></tr><tr><td>2e1415a814ae9abace5550e4893e13bd988c7ba1</td><td>Anna University</td><td></td></tr><tr><td>3fde656343d3fd4223e08e0bc835552bff4bda40</td><td>Anna University Chennai, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>f69de2b6770f0a8de6d3ec1a65cb7996b3c99317</td><td>Anna University, Chennai</td><td></td></tr><tr><td>499343a2fd9421dca608d206e25e53be84489f44</td><td>Annamacharya Institute of Technology and Sciences, Tirupati, India</td><td>Department of ECE</td></tr><tr><td>a57ee5a8fb7618004dd1def8e14ef97aadaaeef5</td><td>Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland</td><td></td></tr><tr><td>0dbacb4fd069462841ebb26e1454b4d147cd8e98</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>3cc46bf79fb9225cf308815c7d41c8dd5625cc29</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>0be2245b2b016de1dcce75ffb3371a5e4b1e731b</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>b3658514a0729694d86a8b89c875a66cde20480c</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>b43b6551ecc556557b63edb8b0dc39901ed0343b</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>8f5ce25e6e1047e1bf5b782d045e1dac29ca747e</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>8f92cccacf2c84f5d69db3597a7c2670d93be781</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>09cf3f1764ab1029f3a7d57b70ae5d5954486d69</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>532f7ec8e0c8f7331417dd4a45dc2e8930874066</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>016f49a54b79ec787e701cc8c7d0280273f9b1ef</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>52885fa403efbab5ef21274282edd98b9ca70cbf</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>52885fa403efbab5ef21274282edd98b9ca70cbf</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>d5afd7b76f1391321a1340a19ba63eec9e0f9833</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>d5afd7b76f1391321a1340a19ba63eec9e0f9833</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>c5f1ae9f46dc44624591db3d5e9f90a6a8391111</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>8c6b9c9c26ead75ce549a57c4fd0a12b46142848</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>3e04feb0b6392f94554f6d18e24fadba1a28b65f</td><td>Aristotle University of Thessaloniki GR</td><td>Department of Informatics</td></tr><tr><td>131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1</td><td>Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece</td><td></td></tr><tr><td>a2eb90e334575d9b435c01de4f4bf42d2464effc</td><td>Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece</td><td></td></tr><tr><td>6c6bb85a08b0bdc50cf8f98408d790ccdb418798</td><td>Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece</td><td></td></tr><tr><td>ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7</td><td>Aristotle University of Thessaloniki, Greece</td><td></td></tr><tr><td>2a65d7d5336b377b7f5a98855767dd48fa516c0f</td><td>Aristotle University of Thessaloniki, Greece</td><td>ECE Department</td></tr><tr><td>5b9d41e2985fa815c0f38a2563cca4311ce82954</td><td>Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece</td><td></td></tr><tr><td>62374b9e0e814e672db75c2c00f0023f58ef442c</td><td>AristotleUniversityofThessaloniki</td><td>DepartmentofInformatics</td></tr><tr><td>5f6ab4543cc38f23d0339e3037a952df7bcf696b</td><td>Arizona State University</td><td></td></tr><tr><td>5f6ab4543cc38f23d0339e3037a952df7bcf696b</td><td>Arizona State University</td><td></td></tr><tr><td>5f6ab4543cc38f23d0339e3037a952df7bcf696b</td><td>Arizona State University</td><td></td></tr><tr><td>9f499948121abb47b31ca904030243e924585d5f</td><td>Arizona State University</td><td></td></tr><tr><td>9f499948121abb47b31ca904030243e924585d5f</td><td>Arizona State University</td><td></td></tr><tr><td>9f499948121abb47b31ca904030243e924585d5f</td><td>Arizona State University</td><td></td></tr><tr><td>06f39834e870278243dda826658319be2d5d8ded</td><td>Arizona State University</td><td></td></tr><tr><td>468c8f09d2ad8b558b65d11ec5ad49208c4da2f2</td><td>Arizona State University</td><td></td></tr><tr><td>468c8f09d2ad8b558b65d11ec5ad49208c4da2f2</td><td>Arizona State University</td><td></td></tr><tr><td>48fea82b247641c79e1994f4ac24cad6b6275972</td><td>Arizona State University</td><td></td></tr><tr><td>4b4ecc1cb7f048235605975ab37bb694d69f63e5</td><td>Arizona State University, AZ, USA</td><td></td></tr><tr><td>ce56be1acffda599dec6cc2af2b35600488846c9</td><td>Arizona State University, Tempe AZ</td><td>Department of Computer Science</td></tr><tr><td>989332c5f1b22604d6bb1f78e606cb6b1f694e1a</td><td>Arti cial Intelligence Institute, China</td><td></td></tr><tr><td>45215e330a4251801877070c85c81f42c2da60fb</td><td>Arts Media and Engineering, Arizona State University</td><td></td></tr><tr><td>ed08ac6da6f8ead590b390b1d14e8a9b97370794</td><td>Arts, Commerce and Science College, Gangakhed, M.S, India</td><td>Department of C.S.</td></tr><tr><td>35e87e06cf19908855a16ede8c79a0d3d7687b5c</td><td>Arts, Science and Commerce College, Chopda</td><td></td></tr><tr><td>656aeb92e4f0e280576cbac57d4abbfe6f9439ea</td><td>Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia</td><td></td></tr><tr><td>a702fc36f0644a958c08de169b763b9927c175eb</td><td>Asia University, Taichung, Taiwan</td><td>Department of Applied Informatics and Multimedia</td></tr><tr><td>512befa10b9b704c9368c2fbffe0dc3efb1ba1bf</td><td>Asian Institute of Technology, Pathumthani, Thailand</td><td></td></tr><tr><td>3cd8ab6bb4b038454861a36d5396f4787a21cc68</td><td>Asian University, Taichung, Taiwan</td><td>Department of Applied Informatics and Multimedia</td></tr><tr><td>47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa</td><td>Assam University, Silchar-788011 Assam University, Silchar</td><td></td></tr><tr><td>50eb2ee977f0f53ab4b39edc4be6b760a2b05f96</td><td>Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq</td><td>Computer Science Department</td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>Assiut University, Assiut 71515, Egypt</td><td>Electrical Engineering Department</td></tr><tr><td>df054fa8ee6bb7d2a50909939d90ef417c73604c</td><td>Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany</td><td></td></tr><tr><td>182470fd0c18d0c5979dff75d089f1da176ceeeb</td><td>Augsburg University, Germany</td><td></td></tr><tr><td>11a2ef92b6238055cf3f6dcac0ff49b7b803aee3</td><td>Australian Centre for Visual Technologies, The University of Adelaide, Australia (b</td><td></td></tr><tr><td>8820d1d3fa73cde623662d92ecf2e3faf1e3f328</td><td>Australian Institute of Sport</td><td></td></tr><tr><td>0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad</td><td>Australian National University</td><td></td></tr><tr><td>0573f3d2754df3a717368a6cbcd940e105d67f0b</td><td>Australian National University</td><td></td></tr><tr><td>0573f3d2754df3a717368a6cbcd940e105d67f0b</td><td>Australian National University</td><td></td></tr><tr><td>0573f3d2754df3a717368a6cbcd940e105d67f0b</td><td>Australian National University</td><td></td></tr><tr><td>060034b59275c13746413ca9c67d6304cba50da6</td><td>Australian National University</td><td></td></tr><tr><td>a7191958e806fce2505a057196ccb01ea763b6ea</td><td>Australian National University</td><td></td></tr><tr><td>fffa2943808509fdbd2fc817cc5366752e57664a</td><td>Australian National University</td><td></td></tr><tr><td>c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1</td><td>Australian National University</td><td></td></tr><tr><td>33695e0779e67c7722449e9a3e2e55fde64cfd99</td><td>Australian National University and NICTA</td><td></td></tr><tr><td>306127c3197eb5544ab1e1bf8279a01e0df26120</td><td>Australian National University and NICTA, Australia</td><td></td></tr><tr><td>b1df214e0f1c5065f53054195cd15012e660490a</td><td>Australian National University and NICTA, Australia</td><td></td></tr><tr><td>062d0813815c2b9864cd9bb4f5a1dc2c580e0d90</td><td>Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO</td><td></td></tr><tr><td>1dc241ee162db246882f366644171c11f7aed96d</td><td>Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL</td><td></td></tr><tr><td>0641dbee7202d07b6c78a39eecd312c17607412e</td><td>Australian National University, Canberra</td><td></td></tr><tr><td>87309bdb2b9d1fb8916303e3866eca6e3452c27d</td><td>Australian National University, Canberra, ACT 0200, Australia</td><td></td></tr><tr><td>b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3</td><td>Australian National University, and NICTA</td><td></td></tr><tr><td>b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3</td><td>Australian National University, and NICTA</td><td></td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy</td><td></td></tr><tr><td>d671a210990f67eba9b2d3dda8c2cb91575b4a7a</td><td>Autonomous University of Barcelona</td><td></td></tr><tr><td>4439746eeb7c7328beba3f3ef47dc67fbb52bcb3</td><td>Azad University of Qazvin</td><td></td></tr><tr><td>e73b9b16adcf4339ff4d6723e61502489c50c2d9</td><td>Azad University, Qazvin, Iran</td><td></td></tr><tr><td>632441c9324cd29489cee3da773a9064a46ae26b</td><td>B. Eng., Zhejiang University</td><td></td></tr><tr><td>00dc942f23f2d52ab8c8b76b6016d9deed8c468d</td><td>B. S. Rochester Institute of Technology</td><td></td></tr><tr><td>13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a</td><td>B. Tech., Indian Institute of Technology Jodhpur</td><td></td></tr><tr><td>87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5</td><td>B.A. Earlham College, Richmond Indiana</td><td></td></tr><tr><td>2bbbbe1873ad2800954058c749a00f30fe61ab17</td><td>B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India</td><td>Department of CSE</td></tr><tr><td>1e5ca4183929929a4e6f09b1e1d54823b8217b8e</td><td>B.Eng., Nankai University</td><td></td></tr><tr><td>348a16b10d140861ece327886b85d96cce95711e</td><td>B.S. (Cornell University</td><td></td></tr><tr><td>ff5dd6f96e108d8233220cc262bc282229c1a582</td><td>B.S. Abdur Rahman University, Chennai-48, India</td><td>Department of Information Technology</td></tr><tr><td>ff5dd6f96e108d8233220cc262bc282229c1a582</td><td>B.S. Abdur Rahman University, Chennai-48, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>d082f35534932dfa1b034499fc603f299645862d</td><td>B.S. University of Central Florida</td><td></td></tr><tr><td>580e48d3e7fe1ae0ceed2137976139852b1755df</td><td>B.S. University of Indonesia</td><td></td></tr><tr><td>80135ed7e34ac1dcc7f858f880edc699a920bf53</td><td>B.S., Computer Engineering, Bo gazi ci University</td><td></td></tr><tr><td>d231a81b38fde73bdbf13cfec57d6652f8546c3c</td><td>B.S., E.E., Bo azi i University</td><td></td></tr><tr><td>5e0e516226413ea1e973f1a24e2fdedde98e7ec0</td><td>B.S./M.S. Brandeis University</td><td></td></tr><tr><td>287795991fad3c61d6058352879c7d7ae1fdd2b6</td><td>B.S.Abdur Rahman University B.S.Abdur Rahman University</td><td></td></tr><tr><td>db1f48a7e11174d4a724a4edb3a0f1571d649670</td><td>B.Sc., University of Science and Technology of China</td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>B.Tech (C.S.E), Bharath University, Chennai</td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>B.Tech (C.S.E), Bharath University, Chennai</td><td></td></tr><tr><td>4abaebe5137d40c9fcb72711cdefdf13d9fc3e62</td><td>BECS, Aalto University School of Science and Technology, Finland</td><td></td></tr><tr><td>3e3a87eb24628ab075a3d2bde3abfd185591aa4c</td><td>BECS, Aalto University, Helsinki, Finland</td><td></td></tr><tr><td>60a006bdfe5b8bf3243404fae8a5f4a9d58fa892</td><td>BRIC, University of North Carolina at Chapel Hill, NC 27599, USA</td><td></td></tr><tr><td>5f676d6eca4c72d1a3f3acf5a4081c29140650fb</td><td>BRIC, University of North Carolina at Chapel Hill, NC 27599, USA</td><td></td></tr><tr><td>76e2d7621019bd45a5851740bd2742afdcf62837</td><td>Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca</td><td>Computer Science Department</td></tr><tr><td>6d618657fa5a584d805b562302fe1090957194ba</td><td>Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria</td><td></td></tr><tr><td>9dcc6dde8d9f132577290d92a1e76b5decc6d755</td><td>Bahcesehir University</td><td>Department of Electrical and Electronics Eng</td></tr><tr><td>ce933821661a0139a329e6c8243e335bfa1022b1</td><td>Baidu IDL and Tsinghua University</td><td></td></tr><tr><td>5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f</td><td>Baidu Research Institute of Deep Learning</td><td></td></tr><tr><td>4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d</td><td>Baidu Research, USA 3John Hopkins University</td><td></td></tr><tr><td>4b7c110987c1d89109355b04f8597ce427a7cd72</td><td>Baingio Pinna, University of</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Banaras Hindu University</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Banaras Hindu University</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Banaras Hindu University</td><td></td></tr><tr><td>8f5facdc0a2a79283864aad03edc702e2a400346</td><td>Bangalore Institute of Technology</td><td>Department of Elecronics and Instrumentation Engg</td></tr><tr><td>e5eb7fa8c9a812d402facfe8e4672670541ed108</td><td>Bangladesh University of Engineering and Technology(BUET</td><td></td></tr><tr><td>fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5</td><td>Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India</td><td>Department of Biomedical Engineering</td></tr><tr><td>c4934d9f9c41dbc46f4173aad2775432fe02e0e6</td><td>Bar Ilan University, Israel</td><td></td></tr><tr><td>4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9</td><td>Bas kent University</td><td></td></tr><tr><td>56f812661c3248ed28859d3b2b39e033b04ae6ae</td><td>Beckman Institute</td><td></td></tr><tr><td>56f812661c3248ed28859d3b2b39e033b04ae6ae</td><td>Beckman Institute</td><td></td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>Beckman Institute</td><td></td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>Beckman Institute</td><td></td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>Beckman Institute</td><td></td></tr><tr><td>75d2ecbbcc934563dff6b39821605dc6f2d5ffcc</td><td>Beckman Institute</td><td></td></tr><tr><td>1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2</td><td>Beckman Institute</td><td></td></tr><tr><td>4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c</td><td>Beckman Institute for Advanced Science and Technology</td><td></td></tr><tr><td>1d19c6857e798943cd0ecd110a7a0d514c671fec</td><td>Beckman Institute for Advanced Science and Technology</td><td></td></tr><tr><td>9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, IL USA</td><td></td></tr><tr><td>0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA</td><td></td></tr><tr><td>6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA</td><td></td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>6308e9c991125ee6734baa3ec93c697211237df8</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>eff87ecafed67cc6fc4f661cb077fed5440994bb</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>288d2704205d9ca68660b9f3a8fda17e18329c13</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA</td><td></td></tr><tr><td>539287d8967cdeb3ef60d60157ee93e8724efcac</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA</td><td></td></tr><tr><td>7c2c9b083817f7a779d819afee383599d2e97ed8</td><td>Beihang University</td><td></td></tr><tr><td>d7d166aee5369b79ea2d71a6edd73b7599597aaa</td><td>Beihang University 2Gri th University 3University of York, UK</td><td></td></tr><tr><td>5b6593a6497868a0d19312952d2b753232414c23</td><td>Beihang University, Beijing 100191, China</td><td></td></tr><tr><td>570308801ff9614191cfbfd7da88d41fb441b423</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>457cf73263d80a1a1338dc750ce9a50313745d1d</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>b191aa2c5b8ece06c221c3a4a0914e8157a16129</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>0ea7b7fff090c707684fd4dc13e0a8f39b300a97</td><td>Beijing Institute of Technology University, P. R. China</td><td></td></tr><tr><td>2a35d20b2c0a045ea84723f328321c18be6f555c</td><td>Beijing Institute of Technology, Beijing 100081 CHINA</td><td></td></tr><tr><td>2a35d20b2c0a045ea84723f328321c18be6f555c</td><td>Beijing Institute of Technology, Beijing 100081 CHINA</td><td></td></tr><tr><td>2a35d20b2c0a045ea84723f328321c18be6f555c</td><td>Beijing Institute of Technology, Beijing 100081 CHINA</td><td></td></tr><tr><td>a090d61bfb2c3f380c01c0774ea17929998e0c96</td><td>Beijing Institute of Technology, Beijing 100081, PR China</td><td></td></tr><tr><td>b3b532e8ea6304446b1623e83b0b9a96968f926c</td><td>Beijing Institute of Technology, Beijing, China</td><td></td></tr><tr><td>14d72dc9f78d65534c68c3ed57305f14bd4b5753</td><td>Beijing Institute of Technology, China</td><td>Department of Electronic Engineering</td></tr><tr><td>b5930275813a7e7a1510035a58dd7ba7612943bc</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>64782a2bc5da11b1b18ca20cecf7bdc26a538d68</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>a660390654498dff2470667b64ea656668c98ecc</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>e726174d516605f80ff359e71f68b6e8e6ec6d5d</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>6fbb179a4ad39790f4558dd32316b9f2818cd106</td><td>Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China</td><td></td></tr><tr><td>7e18b5f5b678aebc8df6246716bf63ea5d8d714e</td><td>Beijing Normal University, China</td><td></td></tr><tr><td>16e95a907b016951da7c9327927bb039534151da</td><td>Beijing Union University, 100101, China</td><td></td></tr><tr><td>25c3cdbde7054fbc647d8be0d746373e7b64d150</td><td>Beijing University of Posts and Telecommunications</td><td></td></tr><tr><td>0294f992f8dfd8748703f953925f9aee14e1b2a2</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>80be8624771104ff4838dcba9629bacfe6b3ea09</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>5c820e47981d21c9dddde8d2f8020146e600368f</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>49820ae612b3c0590a8a78a725f4f378cb605cd1</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>a51882cfd0706512bf50e12c0a7dd0775285030d</td><td>Beijing University of Posts and Telecommunications, Beijing, China. 2School of</td><td></td></tr><tr><td>17579791ead67262fcfb62ed8765e115fb5eca6f</td><td>Beijing University of Posts and Telecommunications, Beijing, P.R. China</td><td></td></tr><tr><td>e0dc6f1b740479098c1d397a7bc0962991b5e294</td><td>Beijing University of Technology, Beijing 100022, China</td><td></td></tr><tr><td>7d9fe410f24142d2057695ee1d6015fb1d347d4a</td><td>Beijing, China</td><td>Computer and Information Engineering Department of Beijing Technology and Business University</td></tr><tr><td>7d9fe410f24142d2057695ee1d6015fb1d347d4a</td><td>Beijing, China</td><td>Computer and Information Engineering Department of Beijing Technology and Business University</td></tr><tr><td>a9fc23d612e848250d5b675e064dba98f05ad0d9</td><td>Benha University, Egypt</td><td></td></tr><tr><td>a9fc23d612e848250d5b675e064dba98f05ad0d9</td><td>Benha University, Egypt</td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>Bharath Institute of Science and Technology</td><td>MCA Department</td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>Bharath Institute of Science and Technology</td><td>MCA Department</td></tr><tr><td>9c7444c6949427994b430787a153d5cceff46d5c</td><td>Bharathidasan University, Trichy, India</td><td></td></tr><tr><td>18cd79f3c93b74d856bff6da92bfc87be1109f80</td><td>Bharti Vidyapeeth Deemed University, Pune, India</td><td>Department of Information Tech.</td></tr><tr><td>4ed54d5093d240cc3644e4212f162a11ae7d1e3b</td><td>Bielefeld University</td><td></td></tr><tr><td>1921e0a97904bdf61e17a165ab159443414308ed</td><td>Bielefeld University</td><td></td></tr><tr><td>2e1fd8d57425b727fd850d7710d38194fa6e2654</td><td>Bielefeld University</td><td></td></tr><tr><td>202d8d93b7b747cdbd6e24e5a919640f8d16298a</td><td>Bilgi University, Dolapdere, Istanbul, TR</td><td>Computer Science Department</td></tr><tr><td>0b6616f3ebff461e4b6c68205fcef1dae43e2a1a</td><td>Bilkent University</td><td></td></tr><tr><td>0b6616f3ebff461e4b6c68205fcef1dae43e2a1a</td><td>Bilkent University</td><td></td></tr><tr><td>887745c282edf9af40d38425d5fdc9b3fe139c08</td><td>Bilkent University</td><td></td></tr><tr><td>887745c282edf9af40d38425d5fdc9b3fe139c08</td><td>Bilkent University</td><td></td></tr><tr><td>1a6c9ef99bf0ab9835a91fe5f1760d98a0606243</td><td>Bilkent University, 06800 Cankaya, Turkey</td><td></td></tr><tr><td>95f26d1c80217706c00b6b4b605a448032b93b75</td><td>Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network</td><td></td></tr><tr><td>17d01f34dfe2136b404e8d7f59cebfb467b72b26</td><td>Bioinformatics Institute, A*STAR, Singapore</td><td></td></tr><tr><td>353b6c1f431feac6edde12b2dde7e6e702455abd</td><td>Biometric Research Center</td><td>Department of Computing</td></tr><tr><td>74f643579949ccd566f2638b85374e7a6857a9fc</td><td>Biometric Research Center, The Hong Kong Polytechnic University</td><td>Department of Computing</td></tr><tr><td>757e4cb981e807d83539d9982ad325331cb59b16</td><td>Biometric and Image Processing Lab, University of Salerno, Italy</td><td></td></tr><tr><td>5ca23ceb0636dfc34c114d4af7276a588e0e8dac</td><td>Birkbeck College, University of London</td><td></td></tr><tr><td>ac12ba5bf81de83991210b4cd95b4ad048317681</td><td>Bo gazi ci University</td><td>Department of Computer Engineering</td></tr><tr><td>80135ed7e34ac1dcc7f858f880edc699a920bf53</td><td>Bo gazi ci University</td><td></td></tr><tr><td>fbf196d83a41d57dfe577b3a54b1b7fa06666e3b</td><td>Bo gazi ci University, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>4c81c76f799c48c33bb63b9369d013f51eaf5ada</td><td>Bo gazic i University, Istanbul, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0</td><td>Bo gazic i University, Istanbul, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>999289b0ef76c4c6daa16a4f42df056bf3d68377</td><td>Bo gazic i University, Istanbul, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>202d8d93b7b747cdbd6e24e5a919640f8d16298a</td><td>Bo gazici University, Istanbul, TR</td><td>Electric and Electronic Engineering Department</td></tr><tr><td>f0681fc08f4d7198dcde803d69ca62f09f3db6c5</td><td>Bogazici University, Bebek</td><td>Electrical and Electronics Engineering Department</td></tr><tr><td>ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7</td><td>Bogazici University, Turkey</td><td></td></tr><tr><td>968b983fa9967ff82e0798a5967920188a3590a8</td><td>Boston College</td><td></td></tr><tr><td>968b983fa9967ff82e0798a5967920188a3590a8</td><td>Boston College</td><td></td></tr><tr><td>77b1db2281292372c38926cc4aca32ef056011dc</td><td>Boston College, USA</td><td>Department of Psychology</td></tr><tr><td>0d3882b22da23497e5de8b7750b71f3a4b0aac6b</td><td>Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos</td><td></td></tr><tr><td>5050807e90a925120cbc3a9cd13431b98965f4b9</td><td>Boston University</td><td>Department of Computer Science</td></tr><tr><td>52c59f9f4993c8248dd3d2d28a4946f1068bcbbe</td><td>Boston University</td><td></td></tr><tr><td>52c59f9f4993c8248dd3d2d28a4946f1068bcbbe</td><td>Boston University</td><td></td></tr><tr><td>52c59f9f4993c8248dd3d2d28a4946f1068bcbbe</td><td>Boston University</td><td></td></tr><tr><td>bffbd04ee5c837cd919b946fecf01897b2d2d432</td><td>Boston University</td><td></td></tr><tr><td>1e5a1619fe5586e5ded2c7a845e73f22960bbf5a</td><td>Boston University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>13940d0cc90dbf854a58f92d533ce7053aac024a</td><td>Boston University</td><td></td></tr><tr><td>13940d0cc90dbf854a58f92d533ce7053aac024a</td><td>Boston University</td><td></td></tr><tr><td>fe961cbe4be0a35becd2d722f9f364ec3c26bd34</td><td>Boston University / **Rutgers University / ***Gallaudet University</td><td></td></tr><tr><td>bffbd04ee5c837cd919b946fecf01897b2d2d432</td><td>Boston University Computer Science Technical Report No</td><td></td></tr><tr><td>13940d0cc90dbf854a58f92d533ce7053aac024a</td><td>Boston University Theses and Dissertations</td><td></td></tr><tr><td>d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f</td><td>Boston University, Boston, MA</td><td>Department of Computer Science</td></tr><tr><td>fe961cbe4be0a35becd2d722f9f364ec3c26bd34</td><td>Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA</td><td></td></tr><tr><td>33f7e78950455c37236b31a6318194cfb2c302a4</td><td>Boston University, USA</td><td>Computer Science Department</td></tr><tr><td>199c2df5f2847f685796c2523221c6436f022464</td><td>Bournemouth University</td><td></td></tr><tr><td>dfd934ae448a1b8947d404b01303951b79b13801</td><td>Bournemouth University, UK</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA</td><td></td></tr><tr><td>df2841a1d2a21a0fc6f14fe53b6124519f3812f9</td><td>Brown University</td><td></td></tr><tr><td>df2841a1d2a21a0fc6f14fe53b6124519f3812f9</td><td>Brown University</td><td></td></tr><tr><td>1586871a1ddfe031b885b94efdbff647cf03eff1</td><td>Brown University</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Brown University</td><td>Department</td></tr><tr><td>1e58d7e5277288176456c66f6b1433c41ca77415</td><td>Brown University, 2University of California, San Diego, 3California Institute of Technology</td><td></td></tr><tr><td>334ac2a459190b41923be57744aa6989f9a54a51</td><td>Brown University, Providence, RI</td><td></td></tr><tr><td>faeefc5da67421ecd71d400f1505cfacb990119c</td><td>Brown University, United States</td><td></td></tr><tr><td>68f89c1ee75a018c8eff86e15b1d2383c250529b</td><td>C.L. Teo, University of Maryland</td><td></td></tr><tr><td>7b43326477795a772c08aee750d3e433f00f20be</td><td>CALIFORNIA INSTITUTE OF TECHNOLOGY</td><td></td></tr><tr><td>514a74aefb0b6a71933013155bcde7308cad2b46</td><td>CARNEGIE MELLON UNIVERSITY</td><td></td></tr><tr><td>652aac54a3caf6570b1c10c993a5af7fa2ef31ff</td><td>CARNEGIE MELLON UNIVERSITY</td><td></td></tr><tr><td>0a79d0ba1a4876086e64fc0041ece5f0de90fbea</td><td>CARNEGIE MELLON UNIVERSITY</td><td></td></tr><tr><td>32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>c03e01717b2d93f04cce9b5fd2dcfd1143bcc180</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>090ff8f992dc71a1125636c1adffc0634155b450</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>061e29eae705f318eee703b9e17dc0989547ba0c</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>22e2066acfb795ac4db3f97d2ac176d6ca41836c</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>d05513c754966801f26e446db174b7f2595805ba</td><td>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>80bd795930837330e3ced199f5b9b75398336b87</td><td>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>64d5772f44efe32eb24c9968a3085bc0786bfca7</td><td>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>21258aa3c48437a2831191b71cd069c05fb84cf7</td><td>CISE, University of Florida, Gainesville, FL</td><td></td></tr><tr><td>3dbfd2fdbd28e4518e2ae05de8374057307e97b3</td><td>CISUC, University of Coimbra</td><td>Department of Informatics Engineering</td></tr><tr><td>45efd6c2dd4ca19eed38ceeb7c2c5568231451e1</td><td>CMR Institute of Technology, Hyderabad, (India</td><td></td></tr><tr><td>32925200665a1bbb4fc8131cd192cb34c2d7d9e3</td><td>CNRS , Institute of Automation of the Chinese Academy of Sciences</td><td></td></tr><tr><td>0c7f27d23a162d4f3896325d147f412c40160b52</td><td>COLUMBIA UNIVERSITY</td><td></td></tr><tr><td>abac0fa75281c9a0690bf67586280ed145682422</td><td>COLUMBIA UNIVERSITY</td><td></td></tr><tr><td>280bc9751593897091015aaf2cab39805768b463</td><td>COMSATS Institute of Information Technology</td><td></td></tr><tr><td>77c53ec6ea448db4dad586e002a395c4a47ecf66</td><td>COMSATS Institute of Information Technology Wah Cantt</td><td>Department of Computer Sciences</td></tr><tr><td>bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9</td><td>COMSATS Institute of Information Technology, Islamabad</td><td></td></tr><tr><td>a87e37d43d4c47bef8992ace408de0f872739efc</td><td>COMSATS Institute of Information Technology, Lahore 54000, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0</td><td>COMSATS Institute of Information Technology, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf</td><td>CRCV, University of Central Florida</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>CUNY City College</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>CUNY Graduate Center and City College</td><td></td></tr><tr><td>12d8730da5aab242795bdff17b30b6e0bac82998</td><td>CVAP, KTH (Royal Institute of Technology), Stockholm, SE</td><td></td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>CVIP Lab, University of Louisville, Louisville, KY 40292, USA</td><td></td></tr><tr><td>6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2</td><td>CVIP Lab, University of Louisville, Louisville, KY, USA</td><td></td></tr><tr><td>0181fec8e42d82bfb03dc8b82381bb329de00631</td><td>CVL, Link oping University, Link oping, Sweden</td><td>Department of Electrical Engineering</td></tr><tr><td>bb489e4de6f9b835d70ab46217f11e32887931a2</td><td>CVSSP University of Surrey</td><td></td></tr><tr><td>c74b1643a108939c6ba42ae4de55cb05b2191be5</td><td>CVSSP, University of Surrey</td><td></td></tr><tr><td>c74b1643a108939c6ba42ae4de55cb05b2191be5</td><td>CVSSP, University of Surrey</td><td></td></tr><tr><td>c74b1643a108939c6ba42ae4de55cb05b2191be5</td><td>CVSSP, University of Surrey</td><td></td></tr><tr><td>70a69569ba61f3585cd90c70ca5832e838fa1584</td><td>CVSSP, University of Surrey, UK</td><td></td></tr><tr><td>a955033ca6716bf9957b362b77092592461664b4</td><td>Caarmel Engineering College, MG University, Kerala, India</td><td>Department of CSE</td></tr><tr><td>9f6d04ce617d24c8001a9a31f11a594bd6fe3510</td><td>Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel</td><td></td></tr><tr><td>0e73d2b0f943cf8559da7f5002414ccc26bc77cd</td><td>California Institute of Technology</td><td></td></tr><tr><td>34108098e1a378bc15a5824812bdf2229b938678</td><td>California Institute of Technology</td><td></td></tr><tr><td>100da509d4fa74afc6e86a49352751d365fceee5</td><td>California Institute of Technology</td><td></td></tr><tr><td>384945abd53f6a6af51faf254ba8ef0f0fb3f338</td><td>California Institute of Technology</td><td></td></tr><tr><td>38bbca5f94d4494494860c5fe8ca8862dcf9676e</td><td>California Institute of Technology</td><td></td></tr><tr><td>53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9</td><td>California Institute of Technology</td><td></td></tr><tr><td>060820f110a72cbf02c14a6d1085bd6e1d994f6a</td><td>California Institute of Technology</td><td></td></tr><tr><td>8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3</td><td>California Institute of Technology</td><td></td></tr><tr><td>00f1e5e954f9eb7ffde3ca74009a8c3c27358b58</td><td>California Institute of Technology, Pasadena, CA</td><td></td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>California Institute of Technology, Pasadena, CA, USA</td><td></td></tr><tr><td>72282287f25c5419dc6fd9e89ec9d86d660dc0b5</td><td>California Institute of Technology, Pasadena, CA, USA</td><td></td></tr><tr><td>14070478b8f0d84e5597c3e67c30af91b5c3a917</td><td>California Institute of Technology, Pasadena, California, USA</td><td></td></tr><tr><td>241d2c517dbc0e22d7b8698e06ace67de5f26fdf</td><td>California Institute of Technology, USA</td><td></td></tr><tr><td>fafe69a00565895c7d57ad09ef44ce9ddd5a6caa</td><td>California State University, Fullerton, USA</td><td></td></tr><tr><td>4ba38262fe20fab3e4c80215147b498f83843b93</td><td>Cambridge Research Laboratory</td><td></td></tr><tr><td>0aa74ad36064906e165ac4b79dec298911a7a4db</td><td>Cambridge University</td><td></td></tr><tr><td>0aa74ad36064906e165ac4b79dec298911a7a4db</td><td>Cambridge University</td><td></td></tr><tr><td>05a312478618418a2efb0a014b45acf3663562d7</td><td>Cambridge University, Trumpington Street, Cambridge CB21PZ, UK</td><td></td></tr><tr><td>e2d265f606cd25f1fd72e5ee8b8f4c5127b764df</td><td>Canadian Institute for Advanced Research</td><td></td></tr><tr><td>16e95a907b016951da7c9327927bb039534151da</td><td>Capital Normal University, 100048, China</td><td></td></tr><tr><td>528069963f0bd0861f380f53270c96c269a3ea1c</td><td>Cardi University</td><td></td></tr><tr><td>b87b0fa1ac0aad0ca563844daecaeecb2df8debf</td><td>Cardiff University, UK</td><td></td></tr><tr><td>5df376748fe5ccd87a724ef31d4fdb579dab693f</td><td>Carleton University</td><td></td></tr><tr><td>158e32579e38c29b26dfd33bf93e772e6211e188</td><td>Carleton University</td><td></td></tr><tr><td>0daf696253a1b42d2c9d23f1008b32c65a9e4c1e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>0c30f6303dc1ff6d05c7cee4f8952b74b9533928</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3b37d95d2855c8db64bd6b1ee5659f87fce36881</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6f84e61f33564e5188136474f9570b1652a0606f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6ae96f68187f1cdb9472104b5431ec66f4b2470f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>35f921def890210dda4b72247849ad7ba7d35250</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>51683eac8bbcd2944f811d9074a74d09d395c7f3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3df8cc0384814c3fb05c44e494ced947a7d43f36</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>0e36ada8cb9c91f07c9dcaf196d036564e117536</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>34c594abba9bb7e5813cfae830e2c4db78cf138c</td><td>Carnegie Mellon University</td><td>Carnegie Mellon University. 2Department of Electrical and Computer Engineering</td></tr><tr><td>050eda213ce29da7212db4e85f948b812a215660</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>d9c4586269a142faee309973e2ce8cde27bda718</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>daa52dd09b61ee94945655f0dde216cce0ebd505</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>bd236913cfe07896e171ece9bda62c18b8c8197e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>c6096986b4d6c374ab2d20031e026b581e7bf7e9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>20a16efb03c366fa4180659c2b2a0c5024c679da</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>11b3877df0213271676fa8aa347046fd4b1a99ad</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>29479bb4fe8c04695e6f5ae59901d15f8da6124b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>29479bb4fe8c04695e6f5ae59901d15f8da6124b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>29479bb4fe8c04695e6f5ae59901d15f8da6124b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>45f858f9e8d7713f60f52618e54089ba68dfcd6d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1f89439524e87a6514f4fbe7ed34bda4fd1ce286</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1f89439524e87a6514f4fbe7ed34bda4fd1ce286</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>176bd61cc843d0ed6aa5af83c22e3feb13b89fe1</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>192235f5a9e4c9d6a28ec0d333e36f294b32f764</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d15254f6f31356963cc70319ce416d28d8924a3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>86ed5b9121c02bcf26900913f2b5ea58ba23508f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9fc04a13eef99851136eadff52e98eb9caac919d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9f4078773c8ea3f37951bf617dbce1d4b3795839</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>07de8371ad4901356145722aa29abaeafd0986b9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6eece104e430829741677cadc1dfacd0e058d60f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3146fabd5631a7d1387327918b184103d06c2211</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3a2cf589f5e11ca886417b72c2592975ff1d8472</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3a2cf589f5e11ca886417b72c2592975ff1d8472</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5</td><td>Carnegie Mellon University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>3fefc856a47726d19a9f1441168480cee6e9f5bb</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3fefc856a47726d19a9f1441168480cee6e9f5bb</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3feb69531653e83d0986a0643e4a6210a088e3e5</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3feb69531653e83d0986a0643e4a6210a088e3e5</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>062d67af7677db086ef35186dc936b4511f155d7</td><td>Carnegie Mellon University</td><td>Machine Learning Department</td></tr><tr><td>97e569159d5658760eb00ca9cb662e6882d2ab0e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>97e569159d5658760eb00ca9cb662e6882d2ab0e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>97e569159d5658760eb00ca9cb662e6882d2ab0e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>0abf67e7bd470d9eb656ea2508beae13ca173198</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>a7c39a4e9977a85673892b714fc9441c959bf078</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>f8015e31d1421f6aee5e17fc3907070b8e0a5e59</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>839a2155995acc0a053a326e283be12068b35cb8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7792fbc59f3eafc709323cdb63852c5d3a4b23e9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>48a9241edda07252c1aadca09875fabcfee32871</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>48a9241edda07252c1aadca09875fabcfee32871</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>48a9241edda07252c1aadca09875fabcfee32871</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1e917fe7462445996837934a7e46eeec14ebc65f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1e917fe7462445996837934a7e46eeec14ebc65f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>240eb0b34872c431ecf9df504671281f59e7da37</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4f7967158b257e86d66bdabfdc556c697d917d24</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>155199d7f10218e29ddaee36ebe611c95cae68c4</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>12692fbe915e6bb1c80733519371bbb90ae07539</td><td>Carnegie Mellon University</td><td>Machine Learning Department</td></tr><tr><td>71f36c8e17a5c080fab31fce1ffea9551fc49e47</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>82e66c4832386cafcec16b92ac88088ffd1a1bc9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>2e0addeffba4be98a6ad0460453fbab52616b139</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>2e98329fdec27d4b3b9b894687e7d1352d828b1d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1394ca71fc52db972366602a6643dc3e65ee8726</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>8e4808e71c9b9f852dc9558d7ef41566639137f3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>74325f3d9aea3a810fe4eab8863d1a48c099de11</td><td>Carnegie Mellon University (CMU</td><td></td></tr><tr><td>5b6d05ce368e69485cb08dd97903075e7f517aed</td><td>Carnegie Mellon University Pittsburgh, PA - 15213, USA</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Carnegie Mellon University Pittsburgh, PA, USA</td><td></td></tr><tr><td>b51b4ef97238940aaa4f43b20a861eaf66f67253</td><td>Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>266ed43dcea2e7db9f968b164ca08897539ca8dd</td><td>Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA</td><td></td></tr><tr><td>c40c23e4afc81c8b119ea361e5582aa3adecb157</td><td>Carnegie Mellon University, Electrical and Computer Engineering</td><td></td></tr><tr><td>1ca815327e62c70f4ee619a836e05183ef629567</td><td>Carnegie Mellon University, Pittsburgh PA</td><td></td></tr><tr><td>e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>2679e4f84c5e773cae31cef158eb358af475e22f</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>63d8110ac76f57b3ba8a5947bc6bdbb86f25a342</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>c660500b49f097e3af67bb14667de30d67db88e3</td><td>Carnegie Mellon University, Pittsburgh, PA 15213, USA</td><td>c Statistics Department</td></tr><tr><td>61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8</td><td>Carnegie Mellon University, Pittsburgh, PA, 15213, USA</td><td></td></tr><tr><td>622daa25b5e6af69f0dac3a3eaf4050aa0860396</td><td>Carnegie Mellon University, Pittsburgh, PA, 15213, USA</td><td></td></tr><tr><td>b234cd7788a7f7fa410653ad2bafef5de7d5ad29</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>17670b60dcfb5cbf8fdae0b266e18cf995f6014c</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>831d661d657d97a07894da8639a048c430c5536d</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>15ee80e86e75bf1413dc38f521b9142b28fe02d1</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>00b29e319ff8b3a521b1320cb8ab5e39d7f42281</td><td>Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca</td><td>Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>4d625677469be99e0a765a750f88cfb85c522cce</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>90a754f597958a2717862fbaa313f67b25083bf9</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>1ec98785ac91808455b753d4bc00441d8572c416</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>f4ebbeb77249d1136c355f5bae30f02961b9a359</td><td>Carnegie Melon University</td><td></td></tr><tr><td>7a0fb972e524cb9115cae655e24f2ae0cfe448e0</td><td>Catholic University of Rio de Janeiro, Brazil</td><td></td></tr><tr><td>3d0f9a3031bee4b89fab703ff1f1d6170493dc01</td><td>Center for Arti cial Vision Research, Korea University</td><td></td></tr><tr><td>c32c8bfadda8f44d40c6cd9058a4016ab1c27499</td><td>Center for Automation Research (CfAR), University of Maryland, College Park, MD</td><td></td></tr><tr><td>45215e330a4251801877070c85c81f42c2da60fb</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park</td><td></td></tr><tr><td>0db36bf08140d53807595b6313201a7339470cfe</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</td><td></td></tr><tr><td>2d748f8ee023a5b1fbd50294d176981ded4ad4ee</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</td><td></td></tr><tr><td>b239a756f22201c2780e46754d06a82f108c1d03</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA</td><td></td></tr><tr><td>c8e84cdff569dd09f8d31e9f9ba3218dee65e961</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA</td><td></td></tr><tr><td>970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3</td><td>Center for Automation Research, University of Maryland</td><td></td></tr><tr><td>8983485996d5d9d162e70d66399047c5d01ac451</td><td>Center for Automation Research, University of Maryland, College Park, MD</td><td></td></tr><tr><td>100105d6c97b23059f7aa70589ead2f61969fbc3</td><td>Center for Automation Research, University of Maryland, College Park, MD 20740, USA</td><td></td></tr><tr><td>4b71d1ff7e589b94e0f97271c052699157e6dc4a</td><td>Center for Automation Research, University of Maryland, College Park, MD 20742, USA</td><td></td></tr><tr><td>c5468665d98ce7349d38afb620adbf51757ab86f</td><td>Center for Automation Research, University of Maryland, College Park, MD 20742, USA</td><td></td></tr><tr><td>add50a7d882eb38e35fe70d11cb40b1f0059c96f</td><td>Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>8f6263e4d3775757e804796e104631c7a2bb8679</td><td>Center for Brain Science, Harvard University, Cambridge, MA 02138 USA</td><td></td></tr><tr><td>8f6263e4d3775757e804796e104631c7a2bb8679</td><td>Center for Brain Science, Harvard University, Cambridge, MA 02138 USA</td><td></td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Center for Brain Science, Harvard University, Cambridge, MA, USA</td><td></td></tr><tr><td>0b242d5123f79defd5f775d49d8a7047ad3153bc</td><td>Center for Brains, Minds and Machines, McGovern Institute, MIT</td><td></td></tr><tr><td>030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f</td><td>Center for Cognitive Neuroscience, Duke University, Durham, North Carolina</td><td></td></tr><tr><td>25e2d3122d4926edaab56a576925ae7a88d68a77</td><td>Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin</td><td>Department of Psychology</td></tr><tr><td>75bf3b6109d7a685236c8589f8ead7d769ea863f</td><td>Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA</td><td></td></tr><tr><td>8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152</td><td>Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ</td><td></td></tr><tr><td>3ca5d3b8f5f071148cb50f22955fd8c1c1992719</td><td>Center for Healthy Aging, University of</td><td>Department of Cellular and Molecular Medicine</td></tr><tr><td>081cb09791e7ff33c5d86fd39db00b2f29653fa8</td><td>Center for Information Science, Peking University, Beijing 100871, China</td><td></td></tr><tr><td>b133b2d7df9b848253b9d75e2ca5c68e21eba008</td><td>Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT</td><td></td></tr><tr><td>b6145d3268032da70edc9cfececa1f9ffa4e3f11</td><td>Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A</td><td></td></tr><tr><td>29b86534d4b334b670914038c801987e18eb5532</td><td>Center for Machine Vision Research, University of Oulu, Finland</td><td></td></tr><tr><td>ac2e44622efbbab525d4301c83cb4d5d7f6f0e55</td><td>Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland</td><td></td></tr><tr><td>27eb7a6e1fb6b42516041def6fe64bd028b7614d</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>7492c611b1df6bce895bee6ba33737e7fc7f60a6</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>193debca0be1c38dabc42dc772513e6653fd91d8</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>7ee53d931668fbed1021839db4210a06e4f33190</td><td>Center for Research in Computer Vision (CRCV), University of Central Florida (UCF</td><td></td></tr><tr><td>976e0264bb57786952a987d4456850e274714fb8</td><td>Center for Research in Computer Vision, University of Central Florida</td><td></td></tr><tr><td>2d79d338c114ece1d97cde1aa06ab4cf17d38254</td><td>Center for Research in Computer Vision, University of Central Florida</td><td></td></tr><tr><td>2910fcd11fafee3f9339387929221f4fc1160973</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, FL</td><td></td></tr><tr><td>14ba910c46d659871843b31d5be6cba59843a8b8</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, FL</td><td></td></tr><tr><td>4205cb47ba4d3c0f21840633bcd49349d1dc02c1</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, USA</td><td></td></tr><tr><td>60a006bdfe5b8bf3243404fae8a5f4a9d58fa892</td><td>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</td><td></td></tr><tr><td>5f676d6eca4c72d1a3f3acf5a4081c29140650fb</td><td>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</td><td></td></tr><tr><td>3acb6b3e3f09f528c88d5dd765fee6131de931ea</td><td>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</td><td></td></tr><tr><td>55079a93b7d1eb789193d7fcdcf614e6829fad0f</td><td>Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen</td><td></td></tr><tr><td>81bfe562e42f2eab3ae117c46c2e07b3d142dade</td><td>Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA</td><td></td></tr><tr><td>0b9ce839b3c77762fff947e60a0eb7ebbf261e84</td><td>Central Mechanical Engineering Research Institute</td><td></td></tr><tr><td>81e11e33fc5785090e2d459da3ac3d3db5e43f65</td><td>Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India</td><td></td></tr><tr><td>82ccd62f70e669ec770daf11d9611cab0a13047e</td><td>Central Tehran Branch, Azad University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>c88ce5ef33d5e544224ab50162d9883ff6429aa3</td><td>Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA</td><td></td></tr><tr><td>6f26ab7edd971148723d9b4dc8ddf71b36be9bf7</td><td>Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de</td><td></td></tr><tr><td>47dabb566f2bdd6b3e4fa7efc941824d8b923a13</td><td>Centre for Intelligent Machines, McGill University, Montreal, Canada</td><td></td></tr><tr><td>e4e3faa47bb567491eaeaebb2213bf0e1db989e1</td><td>Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia</td><td></td></tr><tr><td>1d3dd9aba79a53390317ec1e0b7cd742cba43132</td><td>Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of</td><td></td></tr><tr><td>062d67af7677db086ef35186dc936b4511f155d7</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</td><td></td></tr><tr><td>159e792096756b1ec02ec7a980d5ef26b434ff78</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</td><td></td></tr><tr><td>d0d7671c816ed7f37b16be86fa792a1b29ddd79b</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia</td><td></td></tr><tr><td>438e7999c937b94f0f6384dbeaa3febff6d283b6</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</td><td></td></tr><tr><td>0a11b82aa207d43d1b4c0452007e9388a786be12</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH</td><td></td></tr><tr><td>0cbe059c181278a373292a6af1667c54911e7925</td><td>Chalmers University of Technology, SAFER</td><td></td></tr><tr><td>5a86842ab586de9d62d5badb2ad8f4f01eada885</td><td>Chandigarh Engg. College, Mohali, Punjab, India</td><td>Department . of CSE</td></tr><tr><td>94b9c0a6515913bad345f0940ee233cdf82fffe1</td><td>Chandigarh University, Gharuan, Punjab, India</td><td>Department of Computer Science Engineering</td></tr><tr><td>2679e4f84c5e773cae31cef158eb358af475e22f</td><td>Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science</td><td></td></tr><tr><td>60970e124aa5fb964c9a2a5d48cd6eee769c73ef</td><td>Charles Sturt University</td><td></td></tr><tr><td>2b4d092d70efc13790d0c737c916b89952d4d8c7</td><td>Charotar University of Science and Technology, Changa, India</td><td></td></tr><tr><td>fd96432675911a702b8a4ce857b7c8619498bf9f</td><td>China Mobile Research Institute, Xuanwu Men West Street, Beijing</td><td></td></tr><tr><td>b191aa2c5b8ece06c221c3a4a0914e8157a16129</td><td>China University of Mining and Technol</td><td></td></tr><tr><td>df2494da8efa44d70c27abf23f73387318cf1ca8</td><td>China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of</td><td></td></tr><tr><td>bbcb4920b312da201bf4d2359383fb4ee3b17ed9</td><td>China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology</td><td></td></tr><tr><td>c089c7d8d1413b54f59fc410d88e215902e51638</td><td>China-Singapore Institute of Digital Media, Singapore</td><td></td></tr><tr><td>89e7d23e0c6a1d636f2da68aaef58efee36b718b</td><td>Chonbuk National University, Jeonju 561-756, Korea</td><td></td></tr><tr><td>29fc4de6b680733e9447240b42db13d5832e408f</td><td>Chonbuk National University, Jeonju-si</td><td>Department of Computer Engineering</td></tr><tr><td>492f41e800c52614c5519f830e72561db205e86c</td><td>Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences</td><td></td></tr><tr><td>7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4</td><td>Chosun University</td><td></td></tr><tr><td>677ebde61ba3936b805357e27fce06c44513a455</td><td>Chu Hai College of Higher Education, Hong Kong</td><td>Department of Computer Science</td></tr><tr><td>b503f481120e69b62e076dcccf334ee50559451e</td><td>Chu Hai College of Higher Education, Hong Kong</td><td>Department of Computer Science</td></tr><tr><td>5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c</td><td>Chubu University</td><td></td></tr><tr><td>62f0d8446adee6a5e8102053a63a61af07ac4098</td><td>Chubu University</td><td></td></tr><tr><td>47fdbd64edd7d348713253cf362a9c21f98e4296</td><td>Chubu University</td><td></td></tr><tr><td>009cd18ff06ff91c8c9a08a91d2516b264eee48e</td><td>Chulalongkorn University, Bangkok</td><td>Department of Electrical Engineering</td></tr><tr><td>17cf6195fd2dfa42670dc7ada476e67b381b8f69</td><td>Chung-Ang University, Seoul, Korea</td><td></td></tr><tr><td>c590c6c171392e9f66aab1bce337470c43b48f39</td><td>Chungnam National University</td><td>Department of Psychology/Brain Research Institute</td></tr><tr><td>fc20149dfdff5fdf020647b57e8a09c06e11434b</td><td>City University of Hong Kong</td><td></td></tr><tr><td>dcc38db6c885444694f515d683bbb50521ff3990</td><td>City University of Hong Kong</td><td></td></tr><tr><td>2af2b74c3462ccff3a6881ff7cf4f321b3242fa9</td><td>City University of Hong Kong, Hong Kong, China</td><td>Department of Computer Science</td></tr><tr><td>ffaad0204f4af763e3390a2f6053c0e9875376be</td><td>City University of Hong Kong, Kowloon 999077, Hong Kong, China</td><td>Department of Electronic Engineering</td></tr><tr><td>ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9</td><td>Clemson University</td><td></td></tr><tr><td>367a786cfe930455cd3f6bd2492c304d38f6f488</td><td>Clemson University</td><td></td></tr><tr><td>7fa2605676c589a7d1a90d759f8d7832940118b5</td><td>Clemson University, Clemson, SC</td><td></td></tr><tr><td>1b70bbf7cdfc692873ce98dd3c0e191580a1b041</td><td>Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</td><td></td></tr><tr><td>26d407b911d1234e8e3601e586b49316f0818c95</td><td>Coburg University</td><td></td></tr><tr><td>beb4546ae95f79235c5f3c0e9cc301b5d6fc9374</td><td>Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht</td><td></td></tr><tr><td>b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807</td><td>Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of</td><td></td></tr><tr><td>751970d4fb6f61d1b94ca82682984fd03c74f127</td><td>Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany</td><td></td></tr><tr><td>7f2a4cd506fe84dee26c0fb41848cb219305173f</td><td>Collage of Sciences, Baghdad University, Iraq</td><td>Department Of Computer Science</td></tr><tr><td>ab427f0c7d4b0eb22c045392107509451165b2ba</td><td>College Heights Blvd, Bowling Green, KY</td><td></td></tr><tr><td>9cd6a81a519545bf8aa9023f6e879521f85d4cd1</td><td>College Park, MD</td><td></td></tr><tr><td>b5f4e617ac3fc4700ec8129fcd0dcf5f71722923</td><td>College Park, MD</td><td></td></tr><tr><td>b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8</td><td>College Park, MD</td><td></td></tr><tr><td>bbc4b376ebd296fb9848b857527a72c82828fc52</td><td>College Park, MD</td><td></td></tr><tr><td>297d3df0cf84d24f7efea44f87c090c7d9be4bed</td><td>College Park, MD</td><td></td></tr><tr><td>970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3</td><td>College Park, MD</td><td></td></tr><tr><td>b13a882e6168afc4058fe14cc075c7e41434f43e</td><td>College Park, MD</td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>College Park, MD</td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>College Park, MD</td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>College Park, MD</td><td></td></tr><tr><td>2ee817981e02c4709d65870c140665ed25b005cc</td><td>College Park, MD 20742 USA</td><td></td></tr><tr><td>38a9ca2c49a77b540be52377784b9f734e0417e4</td><td>College Park, MD, 20740, USA</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea</td><td>College Park, USA</td><td></td></tr><tr><td>0058cbe110933f73c21fa6cc9ae0cd23e974a9c7</td><td>College Park, USA</td><td></td></tr><tr><td>4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a</td><td>College Park, USA</td><td></td></tr><tr><td>794c0dc199f0bf778e2d40ce8e1969d4069ffa7b</td><td>College Park, United States</td><td></td></tr><tr><td>4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99</td><td>College Road East, Princeton, NJ</td><td></td></tr><tr><td>2251a88fbccb0228d6d846b60ac3eeabe468e0f1</td><td>College Road East, Princeton, NJ</td><td></td></tr><tr><td>b73d9e1af36aabb81353f29c40ecdcbdf731dbed</td><td>College of Computer Science and Information Sciences</td><td>Department of Software Engineering</td></tr><tr><td>1a41e5d93f1ef5b23b95b7163f5f9aedbe661394</td><td>College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China</td><td></td></tr><tr><td>df2494da8efa44d70c27abf23f73387318cf1ca8</td><td>College of Computer Science and Information Technology, Northeast Normal University, Changchun</td><td></td></tr><tr><td>50e45e9c55c9e79aaae43aff7d9e2f079a2d787b</td><td>College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China</td><td></td></tr><tr><td>bd6099429bb7bf248b1fd6a1739e744512660d55</td><td>College of Computer Science and Technology</td><td></td></tr><tr><td>aac39ca161dfc52aade063901f02f56d01a1693c</td><td>College of Computer Science and Technology</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>edbb8cce0b813d3291cae4088914ad3199736aa0</td><td>College of Computer Science and Technology, Zhejiang University, China</td><td></td></tr><tr><td>0517d08da7550241fb2afb283fc05d37fce5d7b7</td><td>College of Computer Science, Chongqing University, Chongqing, 400030, China</td><td></td></tr><tr><td>a065080353d18809b2597246bb0b48316234c29a</td><td>College of Computer Science, Chongqing University, Chongqing, China</td><td></td></tr><tr><td>0bf3513d18ec37efb1d2c7934a837dabafe9d091</td><td>College of Computer Science, Sichuan University, Chengdu 610065, P.R. China</td><td></td></tr><tr><td>404042a1dcfde338cf24bc2742c57c0fb1f48359</td><td>College of Computer Science, Zhejiang University</td><td></td></tr><tr><td>7c36afc9828379de97f226e131390af719dbc18d</td><td>College of Computer Science, Zhejiang University, Hangzhou, China</td><td></td></tr><tr><td>d0d7671c816ed7f37b16be86fa792a1b29ddd79b</td><td>College of Computer Science, Zhejiang University, Zhejiang, China</td><td></td></tr><tr><td>5db075a308350c083c3fa6722af4c9765c4b8fef</td><td>College of Computer and Information Engineering, Nanyang Institute of Technology</td><td></td></tr><tr><td>76ce3d35d9370f0e2e27cfd29ea0941f1462895f</td><td>College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China</td><td></td></tr><tr><td>23aba7b878544004b5dfa64f649697d9f082b0cf</td><td>College of Computer and Information Science</td><td></td></tr><tr><td>0a9345ea6e488fb936e26a9ba70b0640d3730ba7</td><td>College of Computer and Information Science, Northeastern University, Boston, USA</td><td></td></tr><tr><td>090e4713bcccff52dcd0c01169591affd2af7e76</td><td>College of Computer and Information Science, Northeastern University, MA, USA</td><td></td></tr><tr><td>d22b378fb4ef241d8d210202893518d08e0bb213</td><td>College of Computer and Information Science, Northeastern University, MA, USA</td><td></td></tr><tr><td>0969e0dc05fca21ff572ada75cb4b703c8212e80</td><td>College of Computer and Information Science, Southwest University, Chongqing 400715, China</td><td></td></tr><tr><td>5aadd85e2a77e482d44ac2a215c1f21e4a30d91b</td><td>College of Computer and Information Sciences</td><td></td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>College of Computer and Information Sciences</td><td>Computer Science Department</td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>College of Computer and Information Sciences</td><td>Computer Engineering Department</td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>College of Computer and Information Sciences</td><td>Computer Engineering Department</td></tr><tr><td>81bfe562e42f2eab3ae117c46c2e07b3d142dade</td><td>College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA</td><td></td></tr><tr><td>69eb6c91788e7c359ddd3500d01fb73433ce2e65</td><td>College of Computing</td><td></td></tr><tr><td>b33e8db8ccabdfc49211e46d78d09b14557d4cba</td><td>College of Computing, Georgia Institute of Technology</td><td></td></tr><tr><td>2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8</td><td>College of Computing, Georgia Institute of Technology, Atlanta, GA, USA</td><td></td></tr><tr><td>5b01d4338734aefb16ee82c4c59763d3abc008e6</td><td>College of Electrical and Information Engineering</td><td></td></tr><tr><td>5ae970294aaba5e0225122552c019eb56f20af74</td><td>College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China</td><td></td></tr><tr><td>5f676d6eca4c72d1a3f3acf5a4081c29140650fb</td><td>College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China</td><td></td></tr><tr><td>3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07</td><td>College of Electronics and Information, Northwestern Polytechnic University</td><td></td></tr><tr><td>bb451dc2420e1a090c4796c19716f93a9ef867c9</td><td>College of Engineering (Poly</td><td></td></tr><tr><td>bb451dc2420e1a090c4796c19716f93a9ef867c9</td><td>College of Engineering (Poly</td><td></td></tr><tr><td>13db9466d2ddf3c30b0fd66db8bfe6289e880802</td><td>College of Engineering Pune, India</td><td></td></tr><tr><td>a7191958e806fce2505a057196ccb01ea763b6ea</td><td>College of Engineering and Computer Science</td><td></td></tr><tr><td>d9810786fccee5f5affaef59bc58d2282718af9b</td><td>College of Engineering and Mineral Resources</td><td></td></tr><tr><td>3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3</td><td>College of Engineering, Mathematics and Physical Sciences</td><td></td></tr><tr><td>cfd933f71f4a69625390819b7645598867900eab</td><td>College of Engineering, Pune, India</td><td>Department of Electronics and Telecommunication</td></tr><tr><td>a6b1d79bc334c74cde199e26a7ef4c189e9acd46</td><td>College of Engineering, Purdue University</td><td></td></tr><tr><td>512befa10b9b704c9368c2fbffe0dc3efb1ba1bf</td><td>College of Image Arts and Sciences</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>College of Informatics</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>College of Informatics</td><td></td></tr><tr><td>66dcd855a6772d2731b45cfdd75f084327b055c2</td><td>College of Information Engineering</td><td></td></tr><tr><td>0f395a49ff6cbc7e796656040dbf446a40e300aa</td><td>College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University</td><td></td></tr><tr><td>1fe990ca6df273de10583860933d106298655ec8</td><td>College of Information Science and Engineering</td><td></td></tr><tr><td>b7426836ca364603ccab0e533891d8ac54cf2429</td><td>College of Information Science and Engineering, Ocean University of China, Qingdao, China</td><td></td></tr><tr><td>1a41e5d93f1ef5b23b95b7163f5f9aedbe661394</td><td>College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan</td><td></td></tr><tr><td>a29a22878e1881d6cbf6acff2d0b209c8d3f778b</td><td>College of Information Science and Engineering, Xinjiang University</td><td></td></tr><tr><td>af278274e4bda66f38fd296cfa5c07804fbc26ee</td><td>College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi</td><td></td></tr><tr><td>04f55f81bbd879773e2b8df9c6b7c1d324bc72d8</td><td>College of Information and Control Engineering in China University of Petroleum</td><td></td></tr><tr><td>19868a469dc25ee0db00947e06c804b88ea94fd0</td><td>College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China</td><td></td></tr><tr><td>b5930275813a7e7a1510035a58dd7ba7612943bc</td><td>College of Information and Electrical Engineering</td><td></td></tr><tr><td>74eae724ef197f2822fb7f3029c63014625ce1ca</td><td>College of Information, Yunnan Normal University, Kunming, China</td><td></td></tr><tr><td>a32d4195f7752a715469ad99cb1e6ebc1a099de6</td><td>College of Mechatronic Engineering and Automation, National University of Defense Technology</td><td>Department of Automatic Control</td></tr><tr><td>a065080353d18809b2597246bb0b48316234c29a</td><td>College of Medical Informatics, Chongqing Medical University, Chongqing, China</td><td></td></tr><tr><td>b4362cd87ad219790800127ddd366cc465606a78</td><td>College of Medicine, Seoul National University</td><td>Department of Biomedical Engineering</td></tr><tr><td>50eb2ee977f0f53ab4b39edc4be6b760a2b05f96</td><td>College of Science, Baghdad University, Baghdad, Iraq</td><td>Computer Science Department</td></tr><tr><td>b73d9e1af36aabb81353f29c40ecdcbdf731dbed</td><td>College of Science, Menou a University, Menou a 32721, Egypt</td><td>Department of Computer Science</td></tr><tr><td>3f540faf85e1f8de6ce04fb37e556700b67e4ad3</td><td>College of Sciences, Northeastern University, Shenyang 110819, China</td><td></td></tr><tr><td>c207fd762728f3da4cddcfcf8bf19669809ab284</td><td>College of Software Engineering, Southeast University, Nanjing 210096, China</td><td></td></tr><tr><td>0517d08da7550241fb2afb283fc05d37fce5d7b7</td><td>College of software, Chongqing University of Posts and Telecommunications Chongqing</td><td></td></tr><tr><td>72bf9c5787d7ff56a1697a3389f11d14654b4fcf</td><td>CollegePark, MD</td><td></td></tr><tr><td>dbd5e9691cab2c515b50dda3d0832bea6eef79f2</td><td>CollegePark, MD</td><td></td></tr><tr><td>a481e394f58f2d6e998aa320dad35c0d0e15d43c</td><td>Colorado State University</td><td></td></tr><tr><td>ae5bb02599244d6d88c4fe466a7fdd80aeb91af4</td><td>Colorado State University</td><td></td></tr><tr><td>ae5bb02599244d6d88c4fe466a7fdd80aeb91af4</td><td>Colorado State University</td><td></td></tr><tr><td>38a2661b6b995a3c4d69e7d5160b7596f89ce0e6</td><td>Colorado State University</td><td></td></tr><tr><td>120bcc9879d953de7b2ecfbcd301f72f3a96fb87</td><td>Colorado State University</td><td></td></tr><tr><td>7d306512b545df98243f87cb8173df83b4672b18</td><td>Colorado State University, Fort Collins, Colorado, USA</td><td></td></tr><tr><td>61f93ed515b3bfac822deed348d9e21d5dffe373</td><td>Columbia University</td><td>Department of Computer Science</td></tr><tr><td>61f93ed515b3bfac822deed348d9e21d5dffe373</td><td>Columbia University</td><td>Department of Electrical Engineering</td></tr><tr><td>03c48d8376990cff9f541d542ef834728a2fcda2</td><td>Columbia University</td><td></td></tr><tr><td>35f03f5cbcc21a9c36c84e858eeb15c5d6722309</td><td>Columbia University</td><td></td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>Columbia University</td><td></td></tr><tr><td>0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d</td><td>Columbia University</td><td>EE Department</td></tr><tr><td>33030c23f6e25e30b140615bb190d5e1632c3d3b</td><td>Columbia University</td><td></td></tr><tr><td>bbfe0527e277e0213aafe068113d719b2e62b09c</td><td>Columbia University</td><td></td></tr><tr><td>df0e280cae018cebd5b16ad701ad101265c369fa</td><td>Columbia University</td><td></td></tr><tr><td>4b507a161af8a7dd41e909798b9230f4ac779315</td><td>Columbia University</td><td></td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>Columbia University</td><td></td></tr><tr><td>217de4ff802d4904d3f90d2e24a29371307942fe</td><td>Columbia University</td><td></td></tr><tr><td>217de4ff802d4904d3f90d2e24a29371307942fe</td><td>Columbia University</td><td></td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>Columbia University</td><td></td></tr><tr><td>2a88541448be2eb1b953ac2c0c54da240b47dd8a</td><td>Columbia University</td><td></td></tr><tr><td>5e16f10f2d667d17c029622b9278b6b0a206d394</td><td>Columbia University</td><td>Department of Computer Science</td></tr><tr><td>5e16f10f2d667d17c029622b9278b6b0a206d394</td><td>Columbia University</td><td>Department of Electrical Engineering</td></tr><tr><td>08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d</td><td>Columbia University</td><td></td></tr><tr><td>0f829fee12e86f980a581480a9e0cefccb59e2c5</td><td>Columbia University</td><td></td></tr><tr><td>0a82860d11fcbf12628724333f1e7ada8f3cd255</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>ddaa8add8528857712424fd57179e5db6885df7c</td><td>Columbia University</td><td></td></tr><tr><td>c41de506423e301ef2a10ea6f984e9e19ba091b4</td><td>Columbia University</td><td></td></tr><tr><td>1cee993dc42626caf5dbc26c0a7790ca6571d01a</td><td>Columbia University</td><td>Department of Computer Science</td></tr><tr><td>40217a8c60e0a7d1735d4f631171aa6ed146e719</td><td>Columbia University</td><td></td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>Columbia University</td><td></td></tr><tr><td>47382cb7f501188a81bb2e10cfd7aed20285f376</td><td>Columbia University in the City of New York</td><td></td></tr><tr><td>be86d88ecb4192eaf512f29c461e684eb6c35257</td><td>Columbia University, New York NY 10027, USA</td><td></td></tr><tr><td>4f0d9200647042e41dea71c35eb59e598e6018a7</td><td>Columbia University, New York, NY</td><td></td></tr><tr><td>14fb3283d4e37760b7dc044a1e2906e3cbf4d23a</td><td>Columbia University, New York, NY</td><td></td></tr><tr><td>780557daaa39a445b24c41f637d5fc9b216a0621</td><td>Columbia University, New York, NY 10027, USA</td><td>Department of Electrical Engineering</td></tr><tr><td>a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f</td><td>Columbia University, New York, NY, USA</td><td></td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>Columbia University, USA</td><td></td></tr><tr><td>7e18b5f5b678aebc8df6246716bf63ea5d8d714e</td><td>Columbia University, United States</td><td></td></tr><tr><td>97f9c3bdb4668f3e140ded2da33fe704fc81f3ea</td><td>ColumbiaUniversity, NY, USA</td><td>Department ofComputerScience</td></tr><tr><td>66aad5b42b7dda077a492e5b2c7837a2a808c2fa</td><td>Compi`egne University of Technology</td><td></td></tr><tr><td>a611c978e05d7feab01fb8a37737996ad6e88bd9</td><td>Computational Biomedicine Lab, University of Houston, TX, USA</td><td></td></tr><tr><td>e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef</td><td>Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA</td><td>Department of Computer Science</td></tr><tr><td>e30dc2abac4ecc48aa51863858f6f60c7afdf82a</td><td>Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas</td><td></td></tr><tr><td>6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0</td><td>Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>d687fa99586a9ad229284229f20a157ba2d41aea</td><td>Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India</td><td></td></tr><tr><td>3ca5d3b8f5f071148cb50f22955fd8c1c1992719</td><td>Computer Engineering and Computer Science, Duthie Center for Engineering, University of</td><td></td></tr><tr><td>ad247138e751cefa3bb891c2fe69805da9c293d7</td><td>Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran</td><td></td></tr><tr><td>3a0ea368d7606030a94eb5527a12e6789f727994</td><td>Computer Graphics Research Group, University of Freiburg, Freiburg, Germany</td><td></td></tr><tr><td>1d1a7ef193b958f9074f4f236060a5f5e7642fc1</td><td>Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA</td><td></td></tr><tr><td>2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40</td><td>Computer Laboratory, University of Cambridge, Cambridge, UK</td><td></td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>Computer Science Division, The Open University of Israel</td><td></td></tr><tr><td>5bde1718253ec28a753a892b0ba82d8e553b6bf3</td><td>Computer Science Division, The Open University of Israel</td><td></td></tr><tr><td>7fc3442c8b4c96300ad3e860ee0310edb086de94</td><td>Computer Science Division, The Open University of Israel, Israel</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA</td><td>Department of EECS</td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA</td><td></td></tr><tr><td>55bc7abcef8266d76667896bbc652d081d00f797</td><td>Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA</td><td></td></tr><tr><td>a25106a76af723ba9b09308a7dcf4f76d9283589</td><td>Computer Science and Engineering, Anna University, India</td><td></td></tr><tr><td>a25106a76af723ba9b09308a7dcf4f76d9283589</td><td>Computer Science and Engineering, Easwari Engineering College, India</td><td></td></tr><tr><td>55bc7abcef8266d76667896bbc652d081d00f797</td><td>Computer Science and Engineering, Michigan State University, East Lansing, USA</td><td></td></tr><tr><td>371f40f6d32ece05cc879b6954db408b3d4edaf3</td><td>Computer Science and Engineering, University of Michigan, Ann Arbor</td><td></td></tr><tr><td>345bea5f7d42926f857f395c371118a00382447f</td><td>Computer Science and Engineering, University of Washington</td><td></td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>Computer Science and Engineering, University of Washington, Seattle, WA</td><td></td></tr><tr><td>02239ae5e922075a354169f75f684cad8fdfd5ab</td><td>Computer Science and Engineering, University of Washington, Seattle, WA</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science and Engineering, University of Washington, Seattle, WA, USA</td><td></td></tr><tr><td>17670b60dcfb5cbf8fdae0b266e18cf995f6014c</td><td>Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada</td><td></td></tr><tr><td>210b98394c3be96e7fd75d3eb11a391da1b3a6ca</td><td>Computer Science and Software Engineering, The University of Western Australia</td><td></td></tr><tr><td>ebb1c29145d31c4afa3c9be7f023155832776cd3</td><td>Computer Science and Technology, Tsinghua University, Beijing, China</td><td></td></tr><tr><td>fd96432675911a702b8a4ce857b7c8619498bf9f</td><td>Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science, Brown University, Providence, RI, USA</td><td></td></tr><tr><td>0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf</td><td>Computer Science, Engineering and Mathematics School, Flinders University, Australia</td><td></td></tr><tr><td>0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf</td><td>Computer Science, Engineering and Mathematics School, Flinders University, Australia</td><td></td></tr><tr><td>82c303cf4852ad18116a2eea31e2291325bc19c3</td><td>Computer Science, Engineering and Mathematics School, Flinders University, Australia</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science, Princeton University, Princeton, NJ, USA</td><td></td></tr><tr><td>6ef1996563835b4dfb7fda1d14abe01c8bd24a05</td><td>Computer Vision Group, Friedrich Schiller University Jena</td><td></td></tr><tr><td>a949b8700ca6ba96ee40f75dfee1410c5bbdb3db</td><td>Computer Vision Group, Friedrich Schiller University of Jena, Germany</td><td></td></tr><tr><td>c2e6daebb95c9dfc741af67464c98f1039127627</td><td>Computer Vision Group, Friedrich Schiller University of Jena, Germany</td><td></td></tr><tr><td>0435a34e93b8dda459de49b499dd71dbb478dc18</td><td>Computer Vision Group, L. D. College of Engineering, Ahmedabad, India</td><td></td></tr><tr><td>7cee802e083c5e1731ee50e731f23c9b12da7d36</td><td>Computer Vision Group, L. D. College of Engineering, Ahmedabad, India</td><td></td></tr><tr><td>faca1c97ac2df9d972c0766a296efcf101aaf969</td><td>Computer Vision Group, Xerox Research Center Europe, Meylan, France</td><td></td></tr><tr><td>0d0b880e2b531c45ee8227166a489bf35a528cb9</td><td>Computer Vision Lab, Delft University of Technology</td><td></td></tr><tr><td>8d646ac6e5473398d668c1e35e3daa964d9eb0f6</td><td>Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden</td><td>Department of Electrical Engineering</td></tr><tr><td>264a84f4d27cd4bca94270620907cffcb889075c</td><td>Computer Vision Laboratory, Link oping University, Sweden</td><td>Department of Electrical Engineering</td></tr><tr><td>4cd0da974af9356027a31b8485a34a24b57b8b90</td><td>Computer Vision Laboratory, The University of Nottingham</td><td></td></tr><tr><td>02e628e99f9a1b295458cb453c09863ea1641b67</td><td>Computer Vision Laboratory, University of Nottingham, Nottingham, UK</td><td></td></tr><tr><td>056ba488898a1a1b32daec7a45e0d550e0c51ae4</td><td>Computer Vision Laboratory. University of Nottingham</td><td></td></tr><tr><td>c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f</td><td>Computer Vision Research Group, COMSATS Institute of Information</td><td></td></tr><tr><td>19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54</td><td>Computer Vision and Robotics Research Laboratory</td><td></td></tr><tr><td>29b86534d4b334b670914038c801987e18eb5532</td><td>Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany</td><td></td></tr><tr><td>5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49</td><td>Computer and Systems Engineering, Rensselaer Polytechnic Institute</td><td>Department of Electrical</td></tr><tr><td>a255a54b8758050ea1632bf5a88a201cd72656e1</td><td>Computer and Vision Research Center</td><td></td></tr><tr><td>0b02bfa5f3a238716a83aebceb0e75d22c549975</td><td>Computer vision and Remote Sensing, Berlin university of Technology</td><td></td></tr><tr><td>301b0da87027d6472b98361729faecf6e1d5e5f6</td><td>Computer vision and Remote Sensing, Berlin university of Technology</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Concordia University</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Concordia University</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Concordia University</td><td></td></tr><tr><td>41971dfbf404abeb8cf73fea29dc37b9aae12439</td><td>Concordia University</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Concordia University, Canada</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Concordia University, Canada</td><td></td></tr><tr><td>c418a3441f992fea523926f837f4bfb742548c16</td><td>Concordia University, Canada</td><td>Department of Computer Science and Software Engineering</td></tr><tr><td>266ed43dcea2e7db9f968b164ca08897539ca8dd</td><td>Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada</td><td></td></tr><tr><td>7f59657c883f77dc26393c2f9ed3d19bdf51137b</td><td>Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university</td><td></td></tr><tr><td>4a14a321a9b5101b14ed5ad6aa7636e757909a7c</td><td>Cooperative Medianet Innovation Center, Shanghai Jiaotong University</td><td></td></tr><tr><td>713594c18978b965be87651bb553c28f8501df0a</td><td>Cooperative Medianet Innovation Center, Shanghai Jiaotong University</td><td></td></tr><tr><td>126535430845361cd7a3a6f317797fe6e53f5a3b</td><td>Coordinated Science Lab, University of Illinois at Urbana-Champaign</td><td></td></tr><tr><td>b216040f110d2549f61e3f5a7261cab128cab361</td><td>Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers</td><td></td></tr><tr><td>aba770a7c45e82b2f9de6ea2a12738722566a149</td><td>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</td><td></td></tr><tr><td>38215c283ce4bf2c8edd597ab21410f99dc9b094</td><td>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</td><td></td></tr><tr><td>32d8e555441c47fc27249940991f80502cb70bd5</td><td>Cornell University</td><td></td></tr><tr><td>5aad56cfa2bac5d6635df4184047e809f8fecca2</td><td>Cornell University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>053b263b4a4ccc6f9097ad28ebf39c2957254dfb</td><td>Cornell University</td><td></td></tr><tr><td>053b263b4a4ccc6f9097ad28ebf39c2957254dfb</td><td>Cornell University</td><td></td></tr><tr><td>28d06fd508d6f14cd15f251518b36da17909b79e</td><td>Cornell University</td><td></td></tr><tr><td>192235f5a9e4c9d6a28ec0d333e36f294b32f764</td><td>Cornell University</td><td></td></tr><tr><td>192235f5a9e4c9d6a28ec0d333e36f294b32f764</td><td>Cornell University</td><td></td></tr><tr><td>9fc04a13eef99851136eadff52e98eb9caac919d</td><td>Cornell University</td><td></td></tr><tr><td>9fc04a13eef99851136eadff52e98eb9caac919d</td><td>Cornell University</td><td></td></tr><tr><td>6577c76395896dd4d352f7b1ee8b705b1a45fa90</td><td>Cornell University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>6577c76395896dd4d352f7b1ee8b705b1a45fa90</td><td>Cornell University</td><td>Department of Computer Science</td></tr><tr><td>3026722b4cbe9223eda6ff2822140172e44ed4b1</td><td>Cornell University</td><td></td></tr><tr><td>240eb0b34872c431ecf9df504671281f59e7da37</td><td>Cornell University</td><td></td></tr><tr><td>37278ffce3a0fe2c2bbf6232e805dd3f5267eba3</td><td>Cornell University 2 Cornell Tech</td><td>Department of Computer Science</td></tr><tr><td>e5799fd239531644ad9270f49a3961d7540ce358</td><td>Cornell University 2Eastman Kodak Company</td><td>Department of Elec. and Computer Eng.</td></tr><tr><td>09f58353e48780c707cf24a0074e4d353da18934</td><td>Cornell University, Ithaca, NY, U.S.A</td><td></td></tr><tr><td>b185f0a39384ceb3c4923196aeed6d68830a069f</td><td>Cornell University, Ithaca, New York</td><td></td></tr><tr><td>93747de3d40376761d1ef83ffa72ec38cd385833</td><td>Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein</td><td>Department of Psychology</td></tr><tr><td>014143aa16604ec3f334c1407ceaa496d2ed726e</td><td>Courant Institute</td><td></td></tr><tr><td>55138c2b127ebdcc508503112bf1d1eeb5395604</td><td>Courant Institute and Google Research</td><td></td></tr><tr><td>55138c2b127ebdcc508503112bf1d1eeb5395604</td><td>Courant Institute of Mathematical Sciences</td><td></td></tr><tr><td>05d80c59c6fcc4652cfc38ed63d4c13e2211d944</td><td>Courant Institute of Mathematical Sciences and Google Research, New York, NY</td><td></td></tr><tr><td>05d80c59c6fcc4652cfc38ed63d4c13e2211d944</td><td>Courant Institute of Mathematical Sciences, New York, NY</td><td></td></tr><tr><td>07e639abf1621ceff27c9e3f548fadfa2052c912</td><td>Current Address: Research Institute of Child Development and Education, University of Amsterdam</td><td></td></tr><tr><td>3df7401906ae315e6aef3b4f13126de64b894a54</td><td>Curtin University of Technology</td><td>Department of Computing</td></tr><tr><td>1048c753e9488daa2441c50577fe5fdba5aa5d7c</td><td>Curtin University of Technology</td><td>Department of Computing</td></tr><tr><td>b88ceded6467e9b286f048bb1b17be5998a077bd</td><td>Curtin University, Perth, Australia</td><td></td></tr><tr><td>3cc46bf79fb9225cf308815c7d41c8dd5625cc29</td><td>Cyprus University of Technology</td><td></td></tr><tr><td>9d3aa3b7d392fad596b067b13b9e42443bbc377c</td><td>Cyprus University of Technology</td><td>Department of Multimedia and Graphic Arts</td></tr><tr><td>70db3a0d2ca8a797153cc68506b8650908cb0ada</td><td>Cyprus University of Technology, Cyprus</td><td></td></tr><tr><td>1565721ebdbd2518224f54388ed4f6b21ebd26f3</td><td>Czech Technical University</td><td></td></tr><tr><td>276dbb667a66c23545534caa80be483222db7769</td><td>D Research Center, Kwangwoon University and Springer</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>9d757c0fede931b1c6ac344f67767533043cba14</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</td><td></td></tr><tr><td>9d757c0fede931b1c6ac344f67767533043cba14</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</td><td></td></tr><tr><td>c81ee278d27423fd16c1a114dcae486687ee27ff</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</td><td></td></tr><tr><td>c81ee278d27423fd16c1a114dcae486687ee27ff</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University</td><td></td></tr><tr><td>2ee817981e02c4709d65870c140665ed25b005cc</td><td>DAP - University of Sassari</td><td></td></tr><tr><td>568cff415e7e1bebd4769c4a628b90db293c1717</td><td>DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>779ad364cae60ca57af593c83851360c0f52c7bf</td><td>DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco</td><td></td></tr><tr><td>aadf4b077880ae5eee5dd298ab9e79a1b0114555</td><td>DICGIM - University of Palermo</td><td></td></tr><tr><td>2b84630680e2c906f8d7ac528e2eb32c99ef203a</td><td>DIEI, University of Perugia, Italy</td><td></td></tr><tr><td>43bb20ccfda7b111850743a80a5929792cb031f0</td><td>DISI - University of Trento</td><td></td></tr><tr><td>2b84630680e2c906f8d7ac528e2eb32c99ef203a</td><td>DISI, University of Trento, Italy</td><td></td></tr><tr><td>e6f20e7431172c68f7fce0d4595100445a06c117</td><td>DISI, University of Trento, Trento, Italy</td><td></td></tr><tr><td>303517dfc327c3004ae866a6a340f16bab2ee3e3</td><td>DIT UNIVERSITY, DEHRADUN</td><td></td></tr><tr><td>5058a7ec68c32984c33f357ebaee96c59e269425</td><td>DPDCE, University IUAV</td><td></td></tr><tr><td>a01f9461bc8cf8fe40c26d223ab1abea5d8e2812</td><td>DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy</td><td></td></tr><tr><td>f963967e52a5fd97fa3ebd679fd098c3cb70340e</td><td>DSP Lab, Sharif University of Technology, Tehran, Iran</td><td></td></tr><tr><td>4aa8db1a3379f00db2403bba7dade5d6e258b9e9</td><td>DSP Lab, Sharif University of Technology, Tehran, Iran</td><td></td></tr><tr><td>72f4aaf7e2e3f215cd8762ce283988220f182a5b</td><td>DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK</td><td></td></tr><tr><td>f5af4e9086b0c3aee942cb93ece5820bdc9c9748</td><td>DUBLIN CITY UNIVERSITY</td><td></td></tr><tr><td>ae0765ebdffffd6e6cc33c7705df33b7e8478627</td><td>DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China</td><td></td></tr><tr><td>0b4c4ea4a133b9eab46b217e22bda4d9d13559e6</td><td>DVMM Lab - Columbia University</td><td></td></tr><tr><td>38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f</td><td>Dalian University of Technology, China</td><td></td></tr><tr><td>7a9c317734acaf4b9bd8e07dd99221c457b94171</td><td>Dalian University of Technology, Dalian 116024, China</td><td></td></tr><tr><td>2b64a8c1f584389b611198d47a750f5d74234426</td><td>Dalian University of Technology, Dalian, China</td><td></td></tr><tr><td>9391618c09a51f72a1c30b2e890f4fac1f595ebd</td><td>Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College</td><td></td></tr><tr><td>8f3e120b030e6c1d035cb7bd9c22f6cc75782025</td><td>Dalle Molle Institute for Arti cial Intelligence</td><td></td></tr><tr><td>1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9</td><td>Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea</td><td>Department of Applied Computer Engineering</td></tr><tr><td>9b246c88a0435fd9f6d10dc88f47a1944dd8f89e</td><td>Dartmouth College</td><td></td></tr><tr><td>df71a00071d5a949f9c31371c2e5ee8b478e7dc8</td><td>Dartmouth College</td><td></td></tr><tr><td>df71a00071d5a949f9c31371c2e5ee8b478e7dc8</td><td>Dartmouth College</td><td></td></tr><tr><td>df71a00071d5a949f9c31371c2e5ee8b478e7dc8</td><td>Dartmouth College</td><td></td></tr><tr><td>fd7b6c77b46420c27725757553fcd1fb24ea29a8</td><td>Dartmouth College</td><td>Department of Computer Science</td></tr><tr><td>2af620e17d0ed67d9ccbca624250989ce372e255</td><td>Dartmouth College</td><td></td></tr><tr><td>2d38fd1df95f5025e2cee5bc439ba92b369a93df</td><td>Dartmouth College</td><td></td></tr><tr><td>8d6c4af9d4c01ff47fe0be48155174158a9a5e08</td><td>Dartmouth College</td><td></td></tr><tr><td>0cbc4dcf2aa76191bbf641358d6cecf38f644325</td><td>Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA</td><td></td></tr><tr><td>1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8</td><td>Dartmouth College, NH 03755 USA</td><td>Computer Science Department</td></tr><tr><td>e43cc682453cf3874785584fca813665878adaa7</td><td>Datta Meghe College of Engineering</td><td></td></tr><tr><td>574705812f7c0e776ad5006ae5e61d9b071eebdb</td><td>Dayananda Sagar College of Engg., India</td><td>¹Department rtment of Telecommunication Engg.</td></tr><tr><td>574705812f7c0e776ad5006ae5e61d9b071eebdb</td><td>Dayananda Sagar College of Engg., India</td><td>²Department of Telecommunication Engg.</td></tr><tr><td>2bbbbe1873ad2800954058c749a00f30fe61ab17</td><td>Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India</td><td></td></tr><tr><td>738a985fba44f9f5acd516e07d0d9578f2ffaa4e</td><td>Delft University of Technology</td><td></td></tr><tr><td>473cbc5ec2609175041e1410bc6602b187d03b23</td><td>Delft University of Technology</td><td></td></tr><tr><td>067126ce1f1a205f98e33db7a3b77b7aec7fb45a</td><td>Delft University of Technology, The Netherlands</td><td></td></tr><tr><td>42765c170c14bd58e7200b09b2e1e17911eed42b</td><td>Democritus University of Thrace</td><td></td></tr><tr><td>4d6462fb78db88afff44561d06dd52227190689c</td><td>Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain</td><td></td></tr><tr><td>d394bd9fbaad1f421df8a49347d4b3fca307db83</td><td>Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>Deparment of Computing, Goldsmiths, University of London, UK</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>Deparment of Computing, Imperial College London, UK</td><td></td></tr><tr><td>ea218cebea2228b360680cb85ca133e8c2972e56</td><td>Departm nt of Information Engin ering Th Chines University of Hong Kong</td><td></td></tr><tr><td>68003e92a41d12647806d477dd7d20e4dcde1354</td><td>Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India</td><td></td></tr><tr><td>74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8</td><td>Deva Ramanan, University of California at Irvine</td><td></td></tr><tr><td>89bc311df99ad0127383a9149d1684dfd8a5aa34</td><td>Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA</td><td></td></tr><tr><td>026e4ee480475e63ae68570d73388f8dfd4b4cde</td><td>Dhaka University</td><td></td></tr><tr><td>2e1415a814ae9abace5550e4893e13bd988c7ba1</td><td>Dhanalakshmi Srinivasan College of Engineering</td><td>ECE Department</td></tr><tr><td>6ae96f68187f1cdb9472104b5431ec66f4b2470f</td><td>Dietrich College Honors Theses</td><td></td></tr><tr><td>6ae96f68187f1cdb9472104b5431ec66f4b2470f</td><td>Dietrich College of Humanities and Social Sciences</td><td></td></tr><tr><td>1f89439524e87a6514f4fbe7ed34bda4fd1ce286</td><td>Dietrich College of Humanities and Social Sciences</td><td></td></tr><tr><td>902114feaf33deac209225c210bbdecbd9ef33b1</td><td>Digital Media Research Center</td><td></td></tr><tr><td>2bab44d3a4c5ca79fb8f87abfef4456d326a0445</td><td>Dipartimento di Sistemi e Informatica, University of Florence</td><td></td></tr><tr><td>a3dc109b1dff3846f5a2cc1fe2448230a76ad83f</td><td>Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India</td><td></td></tr><tr><td>273b0511588ab0a81809a9e75ab3bd93d6a0f1e3</td><td>Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do</td><td></td></tr><tr><td>8b2704a5218a6ef70e553eaf0a463bd55129b69d</td><td>Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do</td><td></td></tr><tr><td>a0e7f8771c7d83e502d52c276748a33bae3d5f81</td><td>Division of Computer Science, University of California, Berkeley, CA, USA e-mail</td><td></td></tr><tr><td>cc91001f9d299ad70deb6453d55b2c0b967f8c0d</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu</td><td></td></tr><tr><td>ff01bc3f49130d436fca24b987b7e3beedfa404d</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu</td><td></td></tr><tr><td>d00c335fbb542bc628642c1db36791eae24e02b7</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu</td><td></td></tr><tr><td>c3b3636080b9931ac802e2dd28b7b684d6cf4f8b</td><td>Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology</td><td></td></tr><tr><td>497bf2df484906e5430aa3045cf04a40c9225f94</td><td>Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea</td><td></td></tr><tr><td>ed08ac6da6f8ead590b390b1d14e8a9b97370794</td><td>Dnyanopasak College Parbhani, M.S, India</td><td>Department of C.S.</td></tr><tr><td>528069963f0bd0861f380f53270c96c269a3ea1c</td><td>Doctor of Philosophy in Computer Science at Cardi University, July 24th</td><td></td></tr><tr><td>0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7</td><td>Doctor of Philosophy in Computing of Imperial College, February</td><td></td></tr><tr><td>1467c4ab821c3b340abe05a1b13a19318ebbce98</td><td>Doctor of Philosophy of University College London</td><td></td></tr><tr><td>6e782073a013ce3dbc5b9b56087fd0300c510f67</td><td>Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania</td><td></td></tr><tr><td>146bbf00298ee1caecde3d74e59a2b8773d2c0fc</td><td>Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the</td><td></td></tr><tr><td>3f4bfa4e3655ef392eb5ad609d31c05f29826b45</td><td>Dr. B. C. Roy Engineering College</td><td></td></tr><tr><td>35e87e06cf19908855a16ede8c79a0d3d7687b5c</td><td>Dr. Babasaheb Ambedkar Marathwada University</td><td></td></tr><tr><td>e5342233141a1d3858ed99ccd8ca0fead519f58b</td><td>Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India</td><td>Department of CSE</td></tr><tr><td>59e75aad529b8001afc7e194e21668425119b864</td><td>Drexel University</td><td></td></tr><tr><td>0aae88cf63090ea5b2c80cd014ef4837bcbaadd8</td><td>Drexel University</td><td></td></tr><tr><td>900207b3bc3a4e5244cae9838643a9685a84fee0</td><td>Drexel University</td><td></td></tr><tr><td>0be764800507d2e683b3fb6576086e37e56059d1</td><td>Duke University</td><td></td></tr><tr><td>9cd6a81a519545bf8aa9023f6e879521f85d4cd1</td><td>Duke University</td><td></td></tr><tr><td>9cd6a81a519545bf8aa9023f6e879521f85d4cd1</td><td>Duke University</td><td></td></tr><tr><td>2742a61d32053761bcc14bd6c32365bfcdbefe35</td><td>Duke University</td><td></td></tr><tr><td>2742a61d32053761bcc14bd6c32365bfcdbefe35</td><td>Duke University</td><td></td></tr><tr><td>3933416f88c36023a0cba63940eb92f5cef8001a</td><td>Duke University</td><td></td></tr><tr><td>c1f07ec629be1c6fe562af0e34b04c54e238dcd1</td><td>ECE dept, University of Miami</td><td></td></tr><tr><td>4e8c608fc4b8198f13f8a68b9c1a0780f6f50105</td><td>ECE, National University of Singapore, Singapore</td><td></td></tr><tr><td>7c4c442e9c04c6b98cd2aa221e9d7be15efd8663</td><td>ECSE, Rensselaer Polytechnic Institute, Troy, NY</td><td></td></tr><tr><td>7b9961094d3e664fc76b12211f06e12c47a7e77d</td><td>EECS, Syracuse University, Syracuse, NY, USA</td><td></td></tr><tr><td>88bef50410cea3c749c61ed68808fcff84840c37</td><td>EEMCS, University of Twente</td><td></td></tr><tr><td>1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6</td><td>EEMCS, University of Twente Enschede, The Netherlands</td><td></td></tr><tr><td>3f957142ef66f2921e7c8c7eadc8e548dccc1327</td><td>EEMCS, University of Twente, Netherlands</td><td></td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>4c87aafa779747828054cffee3125fcea332364d</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>143bee9120bcd7df29a0f2ad6f0f0abfb23977b8</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>4a5592ae1f5e9fa83d9fa17451c8ab49608421e4</td><td>EIMT, Open University of</td><td></td></tr><tr><td>b5d7c5aba7b1ededdf61700ca9d8591c65e84e88</td><td>ESAT, Katholieke Universiteit Leuven, Leuven, Belgium</td><td></td></tr><tr><td>071135dfb342bff884ddb9a4d8af0e70055c22a1</td><td>ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai</td><td></td></tr><tr><td>060034b59275c13746413ca9c67d6304cba50da6</td><td>ESTeM, University of Canberra</td><td></td></tr><tr><td>fffa2943808509fdbd2fc817cc5366752e57664a</td><td>ESTeM, University of Canberra</td><td></td></tr><tr><td>d961617db4e95382ba869a7603006edc4d66ac3b</td><td>East China Normal University</td><td></td></tr><tr><td>03baf00a3d00887dd7c828c333d4a29f3aacd5f5</td><td>Eastern Mediterranean University</td><td></td></tr><tr><td>3f4c262d836b2867a53eefb959057350bf7219c9</td><td>Eastern Mediterranean University</td><td>Computer Engineering Department</td></tr><tr><td>c5421a18583f629b49ca20577022f201692c4f5d</td><td>Eastern Mediterranean University, Gazima usa, Northern Cyprus</td><td>Department of Computer Engineering</td></tr><tr><td>026e4ee480475e63ae68570d73388f8dfd4b4cde</td><td>Eastern University</td><td></td></tr><tr><td>0cd8895b4a8f16618686f622522726991ca2a324</td><td>Ecole Polytechnique Federale de Lausanne, Signal Processing Institute</td><td></td></tr><tr><td>b55d0c9a022874fb78653a0004998a66f8242cad</td><td>Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT</td><td></td></tr><tr><td>74eae724ef197f2822fb7f3029c63014625ce1ca</td><td>Education, Yunnan Normal University, Kunming, China</td><td></td></tr><tr><td>0ba0f000baf877bc00a9e144b88fa6d373db2708</td><td>Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan</td><td></td></tr><tr><td>d185f4f05c587e23c0119f2cdfac8ea335197ac0</td><td>Eindhoven University of Technology, The Netherlands</td><td></td></tr><tr><td>7e00fb79576fe213853aeea39a6bc51df9fdca16</td><td>Eindhoven University of Technology, The Netherlands</td><td></td></tr><tr><td>1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2</td><td>Eindhoven University of Technology, The Netherlands</td><td></td></tr><tr><td>39dc2ce4cce737e78010642048b6ed1b71e8ac2f</td><td>Elect. Eng. Faculty, Tabriz University, Tabriz, Iran</td><td></td></tr><tr><td>210b98394c3be96e7fd75d3eb11a391da1b3a6ca</td><td>Electrical Eng. Dep., Central Tehran Branch, Islamic Azad University, Tehran, Iran</td><td></td></tr><tr><td>126214ef0dcef2b456cb413905fa13160c73ec8e</td><td>Electrical Engineering Institute, EPFL</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>Electrical Engineering, University of</td><td></td></tr><tr><td>0ea7b7fff090c707684fd4dc13e0a8f39b300a97</td><td>Electrical and Computer Engineering, National University of Singapore, Singapore</td><td></td></tr><tr><td>db82f9101f64d396a86fc2bd05b352e433d88d02</td><td>Electrical and Computer Engineering, The University of Memphis</td><td></td></tr><tr><td>22143664860c6356d3de3556ddebe3652f9c912a</td><td>Electrical and Computer Engineering, University of Auckland, New Zealand</td><td></td></tr><tr><td>ac75c662568cbb7308400cc002469a14ff25edfd</td><td>Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada</td><td></td></tr><tr><td>e8f0f9b74db6794830baa2cab48d99d8724e8cb6</td><td>Electrical, Computer, Rensselaer Polytechnic Institute</td><td>and Systems Engineering Department</td></tr><tr><td>245f8ec4373e0a6c1cae36cd6fed5a2babed1386</td><td>Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute</td><td></td></tr><tr><td>a51882cfd0706512bf50e12c0a7dd0775285030d</td><td>Electronic Engineering and Computer Science Queen Mary University of London</td><td></td></tr><tr><td>b375db63742f8a67c2a7d663f23774aedccc84e5</td><td>Electronic and Information Engineering, University of Bologna, Italy</td><td>Department of Electrical</td></tr><tr><td>191674c64f89c1b5cba19732869aa48c38698c84</td><td>Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India</td><td></td></tr><tr><td>d82b93f848d5442f82154a6011d26df8a9cd00e7</td><td>Electronics Engineering, National Institute of Technical Teachers</td><td></td></tr><tr><td>31d60b2af2c0e172c1a6a124718e99075818c408</td><td>Electronics and Communication Engineering, Chuo University</td><td>Department of Electrical</td></tr><tr><td>3bd1d41a656c8159305ba2aa395f68f41ab84f31</td><td>Electronics and Computer Science, University of Southampton, Southampton, Hampshire</td><td></td></tr><tr><td>887b7676a4efde616d13f38fcbfe322a791d1413</td><td>Electronics and Telecommunications Research Institute</td><td></td></tr><tr><td>90d735cffd84e8f2ae4d0c9493590f3a7d99daf1</td><td>Engg, Priyadarshini College of</td><td></td></tr><tr><td>9c1860de6d6e991a45325c997bf9651c8a9d716f</td><td>Engineering Chaoyang University Nankai Institute of</td><td></td></tr><tr><td>5d185d82832acd430981ffed3de055db34e3c653</td><td>Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>Engineering and Natural Science, Sabanci University, Istanbul, Turkey</td><td></td></tr><tr><td>ce6f459462ea9419ca5adcc549d1d10e616c0213</td><td>Engineering, G.H.Raisoni College of Engineering</td><td></td></tr><tr><td>63c109946ffd401ee1195ed28f2fb87c2159e63d</td><td>Engineering, National Formosa University</td><td></td></tr><tr><td>2f78e471d2ec66057b7b718fab8bfd8e5183d8f4</td><td>Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman</td><td></td></tr><tr><td>23e75f5ce7e73714b63f036d6247fa0172d97cb6</td><td>Engineering, University of Akron, Akron, OH 44325-3904, USA</td><td></td></tr><tr><td>d5b0e73b584be507198b6665bcddeba92b62e1e5</td><td>Engineering, University of Dundee</td><td></td></tr><tr><td>b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88</td><td>Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom</td><td></td></tr><tr><td>1565721ebdbd2518224f54388ed4f6b21ebd26f3</td><td>Eskisehir Osmangazi University</td><td></td></tr><tr><td>13bda03fc8984d5943ed8d02e49a779d27c84114</td><td>Eskisehir Osmangazi University</td><td></td></tr><tr><td>14811696e75ce09fd84b75fdd0569c241ae02f12</td><td>Eskisehir Osmangazi University</td><td></td></tr><tr><td>396a19e29853f31736ca171a3f40c506ef418a9f</td><td>Exploratory Computer Vision Group, IBM T. J. Watson Research Center</td><td></td></tr><tr><td>68f89c1ee75a018c8eff86e15b1d2383c250529b</td><td>F.Ferraro, University of Rochester</td><td></td></tr><tr><td>214ac8196d8061981bef271b37a279526aab5024</td><td>FI-90014 University of Oulu, Finland</td><td></td></tr><tr><td>5121f42de7cb9e41f93646e087df82b573b23311</td><td>FL</td><td>Department of Mechanical and Aerospace Engineering - University of Florida - Gainesville</td></tr><tr><td>71e6a46b32a8163c9eda69e1badcee6348f1f56a</td><td>FX Palo Alto Laboratory, Inc., California, USA</td><td></td></tr><tr><td>e378ce25579f3676ca50c8f6454e92a886b9e4d7</td><td>Facebook 4Texas AandM University 5IBM Research</td><td></td></tr><tr><td>1c30bb689a40a895bd089e55e0cad746e343d1e2</td><td>Facebook AI Research, 2Dartmouth College</td><td></td></tr><tr><td>0ac664519b2b8abfb8966dafe60d093037275573</td><td>Facial Image Processing and Analysis Group, Institute for Anthropomatics</td><td></td></tr><tr><td>34d484b47af705e303fc6987413dc0180f5f04a9</td><td>Facial expression gures prominently in research on almost every aspect of emotion, including psychophys</td><td></td></tr><tr><td>d41c11ebcb06c82b7055e2964914b9af417abfb2</td><td>Facial expression gures prominently in research on almost every aspect of emotion, including psychophys</td><td></td></tr><tr><td>1576ed0f3926c6ce65e0ca770475bca6adcfdbb4</td><td>Faculty of Computer Science, Dalhousie University, Halifax, Canada</td><td></td></tr><tr><td>9be94fa0330dd493f127d51e4ef7f9fd64613cfc</td><td>Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands</td><td></td></tr><tr><td>3dbfd2fdbd28e4518e2ae05de8374057307e97b3</td><td>Faculty of Computer Science, University of A Coru na, Coru na, Spain</td><td></td></tr><tr><td>1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113</td><td>Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana</td><td></td></tr><tr><td>15cf7bdc36ec901596c56d04c934596cf7b43115</td><td>Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran</td><td></td></tr><tr><td>4919663c62174a9bc0cc7f60da8f96974b397ad2</td><td>Faculty of Computers and Information, Cairo University, Cairo, Egypt</td><td></td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Faculty of EEMCS, Delft University of Technology, The Netherlands</td><td></td></tr><tr><td>42afe6d016e52c99e2c0d876052ade9c192d91e7</td><td>Faculty of EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>2ca43325a5dbde91af90bf850b83b0984587b3cc</td><td>Faculty of ETI, Gdansk University of Technology, Gdansk, Poland</td><td>Department of Intelligent Interactive Systems</td></tr><tr><td>023ed32ac3ea6029f09b8c582efbe3866de7d00a</td><td>Faculty of Electrical Engineering, Czech Technical University</td><td></td></tr><tr><td>37c8514df89337f34421dc27b86d0eb45b660a5e</td><td>Faculty of Electrical Engineering, Czech Technical University in Prague</td><td></td></tr><tr><td>7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d</td><td>Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of</td><td></td></tr><tr><td>e42998bbebddeeb4b2bedf5da23fa5c4efc976fa</td><td>Faculty of Electrical Engineering, Mathematics and Computer Science, University</td><td></td></tr><tr><td>3505c9b0a9631539e34663310aefe9b05ac02727</td><td>Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The</td><td></td></tr><tr><td>ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea</td><td>Faculty of Electrical Engineering, University of Ljubljana</td><td></td></tr><tr><td>368d59cf1733af511ed8abbcbeb4fb47afd4da1c</td><td>Faculty of Electrical Engineering, University of Ljubljana, Slovenia</td><td></td></tr><tr><td>1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>02e39f23e08c2cb24d188bf0ca34141f3cc72d47</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>afe9cfba90d4b1dbd7db1cf60faf91f24d12b286</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta</td><td></td></tr><tr><td>12003a7d65c4f98fb57587fd0e764b44d0d10125</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>32728e1eb1da13686b69cc0bd7cce55a5c963cdd</td><td>Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran</td><td></td></tr><tr><td>32728e1eb1da13686b69cc0bd7cce55a5c963cdd</td><td>Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran</td><td></td></tr><tr><td>32728e1eb1da13686b69cc0bd7cce55a5c963cdd</td><td>Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran</td><td></td></tr><tr><td>fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f</td><td>Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland</td><td></td></tr><tr><td>a308077e98a611a977e1e85b5a6073f1a9bae6f0</td><td>Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia</td><td>Department of Biomedical Engineering</td></tr><tr><td>3dcebd4a1d66313dcd043f71162d677761b07a0d</td><td>Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey</td><td></td></tr><tr><td>89c51f73ec5ebd1c2a9000123deaf628acf3cdd8</td><td>Faculty of Engineering and Technology, Multimedia University (Melaka Campus</td><td></td></tr><tr><td>0172867f4c712b33168d9da79c6d3859b198ed4c</td><td>Faculty of Engineering, Ain Shams University, Cairo, Egypt</td><td>Computer and System Engineering Department</td></tr><tr><td>0b183f5260667c16ef6f640e5da50272c36d599b</td><td>Faculty of Informatics, E otv os Lor and University, Budapest, Hungary</td><td></td></tr><tr><td>e4df83b7424842ff5864c10fa55d38eae1c45fac</td><td>Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia</td><td></td></tr><tr><td>3daf1191d43e21a8302d98567630b0e2025913b0</td><td>Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan</td><td></td></tr><tr><td>50e45e9c55c9e79aaae43aff7d9e2f079a2d787b</td><td>Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam</td><td></td></tr><tr><td>59e2037f5079794cb9128c7f0900a568ced14c2a</td><td>Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain</td><td></td></tr><tr><td>6eb1e006b7758b636a569ca9e15aafd038d2c1b1</td><td>Faculty of Science and Engineering, Waseda University, Tokyo, Japan</td><td></td></tr><tr><td>8d91f06af4ef65193f3943005922f25dbb483ee4</td><td>Faculty of Science and Technology, University of Macau</td><td>Department of Mathematics</td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>a75edf8124f5b52690c08ff35b0c7eb8355fe950</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>eff87ecafed67cc6fc4f661cb077fed5440994bb</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>f0ae807627f81acb63eb5837c75a1e895a92c376</td><td>Faculty of Telecommunications, Technical University, Sofia, Bulgaria</td><td></td></tr><tr><td>f0ae807627f81acb63eb5837c75a1e895a92c376</td><td>Faculty of Telecommunications, Technical University, Sofia, Bulgaria</td><td></td></tr><tr><td>26af867977f90342c9648ccf7e30f94470d40a73</td><td>Federal Institute of Science and Technology, Mookkannoor</td><td></td></tr><tr><td>26af867977f90342c9648ccf7e30f94470d40a73</td><td>Federal Institute of Science and Technology, Mookkannoor</td><td></td></tr><tr><td>52012b4ecb78f6b4b9ea496be98bcfe0944353cd</td><td>Federal University Technology Akure, PMB 704, Akure, Nigeria</td><td>Department of Computer Science</td></tr><tr><td>21b16df93f0fab4864816f35ccb3207778a51952</td><td>Federal University of Bahia (UFBA</td><td></td></tr><tr><td>9854145f2f64d52aac23c0301f4bb6657e32e562</td><td>Federal University of Campina Grande (UFCG</td><td></td></tr><tr><td>e0ed0e2d189ff73701ec72e167d44df4eb6e864d</td><td>Federal University of Para ba</td><td></td></tr><tr><td>d30050cfd16b29e43ed2024ae74787ac0bbcf2f7</td><td>Federal University of Technology - Paran a</td><td></td></tr><tr><td>a8583e80a455507a0f146143abeb35e769d25e4e</td><td>Feng Chia University, Taichung, Taiwan</td><td></td></tr><tr><td>11a210835b87ccb4989e9ba31e7559bb7a9fd292</td><td>Ferdowsi University of Mashhad, Mashhad, Iran</td><td>b Department of Computer Engineering</td></tr><tr><td>01125e3c68edb420b8d884ff53fb38d9fbe4f2b8</td><td>Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions</td><td></td></tr><tr><td>89d7cc9bbcd2fdc4f4434d153ecb83764242227b</td><td>Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai</td><td></td></tr><tr><td>1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f</td><td>Final Year, PanimalarInstitute of Technology</td><td>Department of Computer Science and Engineering</td></tr><tr><td>5cfbeae360398de9e20e4165485837bd42b93217</td><td>Firat University</td><td></td></tr><tr><td>5cfbeae360398de9e20e4165485837bd42b93217</td><td>Firat University</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Florian Metze, Chair (Carnegie Mellon University</td><td></td></tr><tr><td>47d3b923730746bfaabaab29a35634c5f72c3f04</td><td>Florida Institute Of Technology, Melbourne Fl</td><td>Electrical And Computer Engineering Department</td></tr><tr><td>68f69e6c6c66cfde3d02237a6918c9d1ee678e1b</td><td>Florida International University</td><td></td></tr><tr><td>33ac7fd3a622da23308f21b0c4986ae8a86ecd2b</td><td>Florida International University</td><td></td></tr><tr><td>14e8dbc0db89ef722c3c198ae19bde58138e88bf</td><td>Florida International University</td><td></td></tr><tr><td>14e8dbc0db89ef722c3c198ae19bde58138e88bf</td><td>Florida International University</td><td></td></tr><tr><td>1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177</td><td>Florida State University</td><td></td></tr><tr><td>2878b06f3c416c98496aad6fc2ddf68d2de5b8f6</td><td>Florida State University, Tallahassee, FL 32306, USA</td><td>a Department of Computer Science</td></tr><tr><td>2878b06f3c416c98496aad6fc2ddf68d2de5b8f6</td><td>Florida State University, Tallahassee, FL 32306, USA</td><td>b Department of Mathematics</td></tr><tr><td>0742d051caebf8a5d452c03c5d55dfb02f84baab</td><td>Formerly: Texas AandM University</td><td></td></tr><tr><td>7c42371bae54050dbbf7ded1e7a9b4109a23a482</td><td>Foundation University Rawalpindi Campus, Pakistan</td><td>Department of Software Engineering</td></tr><tr><td>0c3f7272a68c8e0aa6b92d132d1bf8541c062141</td><td>Foundation University, Rawalpindi 46000, Pakistan</td><td>Department of Software Engineering</td></tr><tr><td>8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09</td><td>Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43</td><td>Fraser University</td><td></td></tr><tr><td>749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7</td><td>Fraunhofer Institute for Integrated Circuits IIS</td><td></td></tr><tr><td>50ccc98d9ce06160cdf92aaf470b8f4edbd8b899</td><td>Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB</td><td></td></tr><tr><td>346dbc7484a1d930e7cc44276c29d134ad76dc3f</td><td>Friedrich Schiller University, D-07740 Jena</td><td>b Department of Computer Science</td></tr><tr><td>994b52bf884c71a28b4f5be4eda6baaacad1beee</td><td>Fudan University</td><td></td></tr><tr><td>1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6</td><td>Fudan University, 2Microsoft Research Asia, 3University of Maryland</td><td></td></tr><tr><td>0dfa460a35f7cab4705726b6367557b9f7842c65</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>a46086e210c98dcb6cb9a211286ef906c580f4e8</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>b5c749f98710c19b6c41062c60fb605e1ef4312a</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>ee6b503ab512a293e3088fdd7a1c893a77902acb</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>1dacc2f4890431d867a038fd81c111d639cf4d7e</td><td>Funding was provided by the U.S. National Institutes of Mental</td><td></td></tr><tr><td>6d4b5444c45880517213a2fdcdb6f17064b3fa91</td><td>G.H.Raisoni College of Engg. and Mgmt., Pune, India</td><td></td></tr><tr><td>6d4b5444c45880517213a2fdcdb6f17064b3fa91</td><td>G.H.Raisoni College of Engg. and Mgmt., Pune, India</td><td></td></tr><tr><td>6d4b5444c45880517213a2fdcdb6f17064b3fa91</td><td>G.H.Raisoni College of Engg. and Mgmt., Pune, India</td><td></td></tr><tr><td>6515fe829d0b31a5e1f4dc2970a78684237f6edb</td><td>GE Global Research Center</td><td></td></tr><tr><td>69ff40fd5ce7c3e6db95a2b63d763edd8db3a102</td><td>GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology</td><td>Department of Computer Engineering</td></tr><tr><td>18166432309000d9a5873f989b39c72a682932f5</td><td>GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA</td><td></td></tr><tr><td>5860cf0f24f2ec3f8cbc39292976eed52ba2eafd</td><td>GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS</td><td></td></tr><tr><td>42dc36550912bc40f7faa195c60ff6ffc04e7cd6</td><td>GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin</td><td></td></tr><tr><td>779ad364cae60ca57af593c83851360c0f52c7bf</td><td>GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco</td><td></td></tr><tr><td>fe961cbe4be0a35becd2d722f9f364ec3c26bd34</td><td>Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC</td><td></td></tr><tr><td>cd687ddbd89a832f51d5510c478942800a3e6854</td><td>Games Studio, Faculty of Engineering and IT, University of Technology, Sydney</td><td></td></tr><tr><td>8b547b87fd95c8ff6a74f89a2b072b60ec0a3351</td><td>Games Studio, Faculty of Engineering and IT, University of Technology, Sydney</td><td></td></tr><tr><td>0c8a0a81481ceb304bd7796e12f5d5fa869ee448</td><td>Gangnung-Wonju National University</td><td>Department of Electronics Engineering</td></tr><tr><td>769461ff717d987482b28b32b1e2a6e46570e3ff</td><td>Gannan Normal University, Ganzhou 341000, China</td><td>Department of Mathematics and Computer Science</td></tr><tr><td>0b183f5260667c16ef6f640e5da50272c36d599b</td><td>Gatsby Computational Neuroscience Unit, University College London, London, UK</td><td></td></tr><tr><td>af62621816fbbe7582a7d237ebae1a4d68fcf97d</td><td>Gayathri.S, M.E., Vins Christian college of Engineering</td><td>Department of Information Technology</td></tr><tr><td>81e366ed1834a8d01c4457eccae4d57d169cb932</td><td>Gdansk University of Technology</td><td></td></tr><tr><td>6821113166b030d2123c3cd793dd63d2c909a110</td><td>Gdansk University of Technology, Faculty of Electronics, Telecommunication</td><td></td></tr><tr><td>9c4cc11d0df2de42d6593f5284cfdf3f05da402a</td><td>George Mason University</td><td>Department of Computer Science</td></tr><tr><td>20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6</td><td>George Mason University</td><td>Department of Computer Science</td></tr><tr><td>d28d697b578867500632b35b1b19d3d76698f4a9</td><td>George Mason University</td><td></td></tr><tr><td>4f028efe6708fc252851eee4a14292b7ce79d378</td><td>George Mason University</td><td></td></tr><tr><td>757e4cb981e807d83539d9982ad325331cb59b16</td><td>George Mason University, Fairfax Virginia, USA</td><td>Department of Computer Science</td></tr><tr><td>1c147261f5ab1b8ee0a54021a3168fa191096df8</td><td>George Mason University, Fairfax, VA, USA</td><td>Department of Computer Science</td></tr><tr><td>69eb6c91788e7c359ddd3500d01fb73433ce2e65</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5a87bc1eae2ec715a67db4603be3d1bb8e53ace2</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>f4f9697f2519f1fe725ee7e3788119ed217dca34</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>e4bc529ced68fae154e125c72af5381b1185f34e</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5c8ae37d532c7bb8d7f00dfde84df4ba63f46297</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5c8ae37d532c7bb8d7f00dfde84df4ba63f46297</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>91df860368cbcebebd83d59ae1670c0f47de171d</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>98c2053e0c31fab5bcb9ce5386335b647160cc09</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>aac934f2eed758d4a27562dae4e9c5415ff4cdb7</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>7966146d72f9953330556baa04be746d18702047</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>4aa286914f17cd8cefa0320e41800a99c142a1cd</td><td>Georgia Institute of Technology, Atlanta, Georgia, USA</td><td></td></tr><tr><td>20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba</td><td>German Research Center for Arti cial Intelligence (DFKI</td><td></td></tr><tr><td>5da740682f080a70a30dc46b0fc66616884463ec</td><td>German Research Center for Arti cial Intelligence (DFKI</td><td></td></tr><tr><td>df054fa8ee6bb7d2a50909939d90ef417c73604c</td><td>German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany</td><td></td></tr><tr><td>434bf475addfb580707208618f99c8be0c55cf95</td><td>German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany</td><td></td></tr><tr><td>c92bb26238f6e30196b0c4a737d8847e61cfb7d4</td><td>Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia</td><td></td></tr><tr><td>ae4390873485c9432899977499c3bf17886fa149</td><td>Glyndwr University</td><td></td></tr><tr><td>80c8d143e7f61761f39baec5b6dfb8faeb814be9</td><td>Gokaraju Rangaraju Institute of Engineering and Technology, Hyd</td><td></td></tr><tr><td>0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae</td><td>Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad</td><td>CSE Department</td></tr><tr><td>7f82f8a416170e259b217186c9e38a9b05cb3eb4</td><td>Goldsmiths, University of London, London, UK</td><td>Department of Computing</td></tr><tr><td>193debca0be1c38dabc42dc772513e6653fd91d8</td><td>Goldsmiths, University of London, UK</td><td>Department of Computing</td></tr><tr><td>936227f7483938097cc1cdd3032016df54dbd5b6</td><td>Gonda Brain Research Center, Bar Ilan University, Israel</td><td></td></tr><tr><td>113c22eed8383c74fe6b218743395532e2897e71</td><td>Google, Inc</td><td></td></tr><tr><td>3634b4dd263c0f330245c086ce646c9bb748cd6b</td><td>Google, Inc</td><td></td></tr><tr><td>924b14a9e36d0523a267293c6d149bca83e73f3b</td><td>Governance, Keio University</td><td></td></tr><tr><td>28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d</td><td>Government College of Engineering, Aurangabad</td><td></td></tr><tr><td>bd78a853df61d03b7133aea58e45cd27d464c3cf</td><td>Government College of Engineering, Aurangabad [Autonomous</td><td></td></tr><tr><td>3fb26f3abcf0d287243646426cd5ddeee33624d4</td><td>Grad. School at Shenzhen, Tsinghua University</td><td>Tsinghua University 2Department of Automation</td></tr><tr><td>41aa209e9d294d370357434f310d49b2b0baebeb</td><td>Grad. School of Information Science and Technology, The University of Tokyo, Japan</td><td></td></tr><tr><td>47eba2f95679e106e463e8296c1f61f6ddfe815b</td><td>Graduate Institute of Electronics Engineering, National Taiwan University</td><td></td></tr><tr><td>91e507d2d8375bf474f6ffa87788aa3e742333ce</td><td>Graduate Institute of Networking and Multimedia, National Taiwan University</td><td></td></tr><tr><td>6ab33fa51467595f18a7a22f1d356323876f8262</td><td>Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan</td><td></td></tr><tr><td>5b73b7b335f33cda2d0662a8e9520f357b65f3ac</td><td>Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan</td><td></td></tr><tr><td>2afdda6fb85732d830cea242c1ff84497cd5f3cb</td><td>Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan</td><td></td></tr><tr><td>9110c589c6e78daf4affd8e318d843dc750fb71a</td><td>Graduate School at Shenzhen, Tsinghua University, Shenzhen</td><td></td></tr><tr><td>207798603e3089a1c807c93e5f36f7767055ec06</td><td>Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China</td><td></td></tr><tr><td>dced05d28f353be971ea2c14517e85bc457405f3</td><td>Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University</td><td></td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Graduate School of Doshisha University, Kyoto, Japan</td><td></td></tr><tr><td>11408af8861fb0a977412e58c1a23d61b8df458c</td><td>Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>537d8c4c53604fd419918ec90d6ef28d045311d0</td><td>Graduate School of Informatics, Kyoto University</td><td></td></tr><tr><td>d3b550e587379c481392fb07f2cbbe11728cf7a6</td><td>Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan</td><td></td></tr><tr><td>09b0ef3248ff8f1a05b8704a1b4cf64951575be9</td><td>Graduate School of Information Science and Technology, The University of Tokyo</td><td></td></tr><tr><td>c0723e0e154a33faa6ff959d084aebf07770ffaf</td><td>Graduate School of Information Science, Nagoya University, Japan</td><td></td></tr><tr><td>5b86c36e3eb59c347b81125d5dd57dd2a2c377a9</td><td>Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan</td><td></td></tr><tr><td>5865e824e3d8560e07840dd5f75cfe9bf68f9d96</td><td>Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara</td><td></td></tr><tr><td>a6ebe013b639f0f79def4c219f585b8a012be04f</td><td>Graduate School of Science and Engineering, Saitama University</td><td></td></tr><tr><td>b133b2d7df9b848253b9d75e2ca5c68e21eba008</td><td>Graduate School of System Informatics, Kobe University</td><td></td></tr><tr><td>9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d</td><td>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>11408af8861fb0a977412e58c1a23d61b8df458c</td><td>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>98fb3890c565f1d32049a524ec425ceda1da5c24</td><td>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>449808b7aa9ee6b13ad1a21d9f058efaa400639a</td><td>Graduate University of CAS, 100190, Beijing, China</td><td></td></tr><tr><td>bd8b7599acf53e3053aa27cfd522764e28474e57</td><td>Graduate University of Chinese Academy of Sciences(CAS), 100190, China</td><td></td></tr><tr><td>32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>80bd795930837330e3ced199f5b9b75398336b87</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>061e29eae705f318eee703b9e17dc0989547ba0c</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>64d5772f44efe32eb24c9968a3085bc0786bfca7</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>44f23600671473c3ddb65a308ca97657bc92e527</td><td>Graz University of Technology</td><td></td></tr><tr><td>44f23600671473c3ddb65a308ca97657bc92e527</td><td>Graz University of Technology</td><td></td></tr><tr><td>de8381903c579a4fed609dff3e52a1dc51154951</td><td>Graz University of Technology</td><td></td></tr><tr><td>c5935b92bd23fd25cae20222c7c2abc9f4caa770</td><td>Graz University of Technology</td><td></td></tr><tr><td>c5935b92bd23fd25cae20222c7c2abc9f4caa770</td><td>Graz University of Technology</td><td></td></tr><tr><td>4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8</td><td>Graz University of Technology</td><td></td></tr><tr><td>fc2bad3544c7c8dc7cd182f54888baf99ed75e53</td><td>Graz University of Technology, Austria</td><td></td></tr><tr><td>80277fb3a8a981933533cf478245f262652a33b5</td><td>Graz University of Technology, Austria</td><td></td></tr><tr><td>5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48</td><td>Graz University of Technology, Austria</td><td></td></tr><tr><td>9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6</td><td>Gri th University, QLD-4111, Brisbane, Australia</td><td></td></tr><tr><td>05f3d1e9fb254b275354ca69018e9ed321dd8755</td><td>Grif th University, QLD, Australia</td><td></td></tr><tr><td>d72973a72b5d891a4c2d873daeb1bc274b48cddf</td><td>Guangdong Medical College</td><td></td></tr><tr><td>1b70bbf7cdfc692873ce98dd3c0e191580a1b041</td><td>Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</td><td></td></tr><tr><td>9d36c81b27e67c515df661913a54a797cd1260bb</td><td>Gujarat Technological University, India</td><td>Department of Information Technology</td></tr><tr><td>9d36c81b27e67c515df661913a54a797cd1260bb</td><td>Gujarat Technological University, India</td><td>Department of Computer Engineering</td></tr><tr><td>2b4d092d70efc13790d0c737c916b89952d4d8c7</td><td>Gujarat Technological University, V.V.Nagar, India</td><td></td></tr><tr><td>68f89c1ee75a018c8eff86e15b1d2383c250529b</td><td>H. He, Honkong Polytechnic University</td><td></td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td>HELSINKI UNIVERSITY OF TECHNOLOGY</td><td></td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td>HELSINKI UNIVERSITY OF TECHNOLOGY</td><td></td></tr><tr><td>13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd</td><td>HOD, St. Joseph College of Information Technology, Songea, Tanzania</td><td>Department of Computer Science</td></tr><tr><td>5050807e90a925120cbc3a9cd13431b98965f4b9</td><td>Hacettepe University</td><td>Department of Computer Engineering</td></tr><tr><td>4bd088ba3f42aa1e43ae33b1988264465a643a1f</td><td>Halmstad University</td><td></td></tr><tr><td>8af411697e73f6cfe691fe502d4bfb42510b4835</td><td>Hankuk University of Foreign Studies, South Korea</td><td></td></tr><tr><td>a59cdc49185689f3f9efdf7ee261c78f9c180789</td><td>Hanoi University of Science and Technology</td><td></td></tr><tr><td>7d53678ef6009a68009d62cd07c020706a2deac3</td><td>Hanyang University</td><td>Department of Electronics and Computer Engineering</td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Harbin Institute of Technology</td><td></td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Harbin Institute of Technology</td><td></td></tr><tr><td>a52581a7b48138d7124afc7ccfcf8ec3b48359d0</td><td>Harbin Institute of Technology, Harbin 150001, China</td><td>Department of Computer Science and Technology</td></tr><tr><td>ad784332cc37720f03df1c576e442c9c828a587a</td><td>Harbin Institute of Technology, Harbin, China</td><td>Department of Computer Science</td></tr><tr><td>016a8ed8f6ba49bc669dbd44de4ff31a79963078</td><td>Harbin Institute of Technology, Harbin, China</td><td>Department of Computer Science</td></tr><tr><td>badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e</td><td>Harbin Institute of Technology, Harbin, China</td><td></td></tr><tr><td>c9e955cb9709f16faeb0c840f4dae92eb875450a</td><td>Harbin Institute of Technology, School of Computer Science and Technology</td><td></td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Harbin Institute of Technology;Shenzhen University</td><td></td></tr><tr><td>591a737c158be7b131121d87d9d81b471c400dba</td><td>Harvard University</td><td></td></tr><tr><td>3d0379688518cc0e8f896e30815d0b5e8452d4cd</td><td>Harvard University</td><td></td></tr><tr><td>3d0379688518cc0e8f896e30815d0b5e8452d4cd</td><td>Harvard University</td><td></td></tr><tr><td>0ba402af3b8682e2aa89f76bd823ddffdf89fa0a</td><td>Harvard University</td><td></td></tr><tr><td>023be757b1769ecb0db810c95c010310d7daf00b</td><td>Harvard University</td><td></td></tr><tr><td>4b74f2d56cd0dda6f459319fec29559291c61bff</td><td>Harvard University</td><td></td></tr><tr><td>20cfb4136c1a984a330a2a9664fcdadc2228b0bc</td><td>Harvard University, Cambridge, MA</td><td></td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Harvard University, Cambridge, MA</td><td>Department of Molecular and Cellular Biology</td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Harvard University, Cambridge, MA, USA</td><td>Department of Computer Science</td></tr><tr><td>25e2d3122d4926edaab56a576925ae7a88d68a77</td><td>Harvard University, USA</td><td></td></tr><tr><td>25e2d3122d4926edaab56a576925ae7a88d68a77</td><td>Harvard and Massachusetts Institute</td><td></td></tr><tr><td>31182c5ffc8c5d8772b6db01ec98144cd6e4e897</td><td>Hasan Kalyoncu University, Gaziantep, Turkey</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>b4362cd87ad219790800127ddd366cc465606a78</td><td>Head and Neck Surgery, Seoul National University</td><td>Department of Otorhinolaryngology</td></tr><tr><td>581e920ddb6ecfc2a313a3aa6fed3d933b917ab0</td><td>Hector Research Institute of Education Sciences and Psychology, T ubingen</td><td></td></tr><tr><td>c9e955cb9709f16faeb0c840f4dae92eb875450a</td><td>Heilongjiang University, College of Computer Science and Technology, China</td><td></td></tr><tr><td>03adcf58d947a412f3904a79f2ab51cfdf0e838a</td><td>Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India</td><td></td></tr><tr><td>587c48ec417be8b0334fa39075b3bfd66cc29dbe</td><td>Helen Wills Neuroscience Institute, University of</td><td></td></tr><tr><td>b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807</td><td>Helsinki Collegium for Advanced Studies, University of Helsinki, Finland</td><td></td></tr><tr><td>b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807</td><td>Helsinki Institute for Information Technology, Aalto University, Finland</td><td></td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td>Helsinki University of Technology Laboratory of Computational Engineering Publications</td><td></td></tr><tr><td>0b87d91fbda61cdea79a4b4dcdcb6d579f063884</td><td>Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China</td><td></td></tr><tr><td>17045163860fc7c38a0f7d575f3e44aaa5fa40d7</td><td>Hengyang Normal University, Hengyang, China</td><td></td></tr><tr><td>2cdc40f20b70ca44d9fd8e7716080ee05ca7924a</td><td>Heriot-Watt University</td><td></td></tr><tr><td>7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b</td><td>Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne</td><td></td></tr><tr><td>907475a4febf3f1d4089a3e775ea018fbec895fe</td><td>Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>High Institute of Medical Technologies</td><td></td></tr><tr><td>90fb58eeb32f15f795030c112f5a9b1655ba3624</td><td>Hindusthan College of Engineering and Technology, Coimbatore, India</td><td></td></tr><tr><td>44c9b5c55ca27a4313daf3760a3f24a440ce17ad</td><td>Hiroshima University, Japan</td><td></td></tr><tr><td>44c9b5c55ca27a4313daf3760a3f24a440ce17ad</td><td>Hiroshima University, Japan</td><td></td></tr><tr><td>167736556bea7fd57cfabc692ec4ae40c445f144</td><td>Ho Chi Minh City University of</td><td></td></tr><tr><td>c2c3ff1778ed9c33c6e613417832505d33513c55</td><td>Ho Chi Minh City University of Science</td><td>Department of Computer Science</td></tr><tr><td>b84b7b035c574727e4c30889e973423fe15560d7</td><td>HoHai University</td><td></td></tr><tr><td>2331df8ca9f29320dd3a33ce68a539953fa87ff5</td><td>Honda Fundamental Research Labs</td><td></td></tr><tr><td>3a0ea368d7606030a94eb5527a12e6789f727994</td><td>Honda RandD Americas, Inc., Boston, MA, USA</td><td></td></tr><tr><td>1270044a3fa1a469ec2f4f3bd364754f58a1cb56</td><td>Honda Research Institute</td><td></td></tr><tr><td>f2b13946d42a50fa36a2c6d20d28de2234aba3b4</td><td>Honda Research Institute USA</td><td></td></tr><tr><td>f2b13946d42a50fa36a2c6d20d28de2234aba3b4</td><td>Honda Research Institute USA</td><td></td></tr><tr><td>4836b084a583d2e794eb6a94982ea30d7990f663</td><td>Hong Kong Applied Science and Technology Research Institute Company Limited</td><td></td></tr><tr><td>4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7</td><td>Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China</td><td></td></tr><tr><td>439647914236431c858535a2354988dde042ef4d</td><td>Hong Kong Baptist University</td><td>Department of Computer Science</td></tr><tr><td>11c04c4f0c234a72f94222efede9b38ba6b2306c</td><td>Hong Kong Polytechnic University</td><td></td></tr><tr><td>38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f</td><td>Hong Kong Polytechnic University, Hong Kong</td><td>Department of Computing</td></tr><tr><td>48174c414cfce7f1d71c4401d2b3d49ba91c5338</td><td>Hong Kong Polytechnic University, Hong Kong</td><td>Department of Computing</td></tr><tr><td>5ea165d2bbd305dc125415487ef061bce75dac7d</td><td>Hong Kong Polytechnic University, Hong Kong, China</td><td>Department of Computing</td></tr><tr><td>8000c4f278e9af4d087c0d0895fff7012c5e3d78</td><td>Hong Kong University of Science and Technology</td><td>Department of Computer Science and Engineering</td></tr><tr><td>4fcd19b0cc386215b8bd0c466e42934e5baaa4b7</td><td>Hong Kong University of Science and Technology</td><td>Department of Electronic and Computer Engineering</td></tr><tr><td>4fcd19b0cc386215b8bd0c466e42934e5baaa4b7</td><td>Hong Kong University of Science and Technology</td><td>Department of Computer Science and Engineering</td></tr><tr><td>585260468d023ffc95f0e539c3fa87254c28510b</td><td>Hong Kong University of Science and Technology, Hong Kong</td><td></td></tr><tr><td>14070478b8f0d84e5597c3e67c30af91b5c3a917</td><td>Howard Hughes Medical Institute (HHMI</td><td></td></tr><tr><td>aa912375eaf50439bec23de615aa8a31a3395ad3</td><td>Howard University, Washington DC</td><td>Department of Electrical Engineering</td></tr><tr><td>aa912375eaf50439bec23de615aa8a31a3395ad3</td><td>Howard University, Washington DC</td><td>Department of Electrical Engineering</td></tr><tr><td>a3f684930c5c45fcb56a2b407d26b63879120cbf</td><td>Hua Zhong University of Science and Technology, Wuhan, China</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>Huazhong Agricultural University</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>Huazhong Agricultural University</td><td></td></tr><tr><td>7f2a4cd506fe84dee26c0fb41848cb219305173f</td><td>Huazhong University of</td><td>Department of Electronics and information Engineering</td></tr><tr><td>6a0368b4e132f4aa3bbdeada8d894396f201358a</td><td>Huazhong University of Science and Technology</td><td></td></tr><tr><td>51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6</td><td>Huazhong University of Science and Technology</td><td></td></tr><tr><td>b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24</td><td>Huazhong University of Science and Technology, Wuhan, China</td><td></td></tr><tr><td>6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9</td><td>Human Centered Multimedia, Augsburg University, Germany</td><td></td></tr><tr><td>0efdd82a4753a8309ff0a3c22106c570d8a84c20</td><td>Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>Human Development and Applied Psychology, University of Toronto, Ontario, Canada</td><td></td></tr><tr><td>9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6</td><td>Human Genome Center, Institute of Medical Science</td><td></td></tr><tr><td>b073313325b6482e22032e259d7311fb9615356c</td><td>Human Interaction Research Lab</td><td></td></tr><tr><td>6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9</td><td>Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand</td><td></td></tr><tr><td>7643861bb492bf303b25d0306462f8fb7dc29878</td><td>Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany</td><td></td></tr><tr><td>c207fd762728f3da4cddcfcf8bf19669809ab284</td><td>Human Media Interaction, University of Twente, P.O. Box</td><td></td></tr><tr><td>b8caf1b1bc3d7a26a91574b493c502d2128791f6</td><td>Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg</td><td></td></tr><tr><td>a703d51c200724517f099ee10885286ddbd8b587</td><td>Human-friendly Welfare Robotic System Engineering Research Center, KAIST</td><td></td></tr><tr><td>5bc0a89f4f73523967050374ed34d7bc89e4d9e1</td><td>Humboldt-University, Berlin, Germany</td><td>c Department of Psychology</td></tr><tr><td>5b01d4338734aefb16ee82c4c59763d3abc008e6</td><td>Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China</td><td></td></tr><tr><td>1fe990ca6df273de10583860933d106298655ec8</td><td>Hunan University</td><td></td></tr><tr><td>ce56be1acffda599dec6cc2af2b35600488846c9</td><td>IBM Almaden Research Center, San Jose CA</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>IBM China Research Lab</td><td></td></tr><tr><td>23c3eb6ad8e5f18f672f187a6e9e9b0d94042970</td><td>IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore</td><td></td></tr><tr><td>2a88541448be2eb1b953ac2c0c54da240b47dd8a</td><td>IBM T. J. Watson Research Center</td><td></td></tr><tr><td>5e16f10f2d667d17c029622b9278b6b0a206d394</td><td>IBM T. J. Watson Research Center</td><td></td></tr><tr><td>8323529cf37f955fb3fc6674af6e708374006a28</td><td>IBM T. J. Watson Research Center</td><td></td></tr><tr><td>66b9d954dd8204c3a970d86d91dd4ea0eb12db47</td><td>IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY</td><td></td></tr><tr><td>499f1d647d938235e9186d968b7bb2ab20f2726d</td><td>IBM T. J. Watson Research Center, Yorktown Heights, NY, USA</td><td></td></tr><tr><td>3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f</td><td>IBM T.J. Watson Research Center</td><td></td></tr><tr><td>cfd8c66e71e98410f564babeb1c5fd6f77182c55</td><td>IBM T.J. Watson Research Center</td><td></td></tr><tr><td>7e9df45ece7843fe050033c81014cc30b3a8903a</td><td>IBM T.J. Watson Research Center</td><td></td></tr><tr><td>350da18d8f7455b0e2920bc4ac228764f8fac292</td><td>IBM Thomas J. Watson Research Center</td><td></td></tr><tr><td>131178dad3c056458e0400bed7ee1a36de1b2918</td><td>IBM Watson Research Center, Armonk, NY, USA</td><td></td></tr><tr><td>bb489e4de6f9b835d70ab46217f11e32887931a2</td><td>ICMC University of S ao Paulo</td><td></td></tr><tr><td>0d538084f664b4b7c0e11899d08da31aead87c32</td><td>ICSI / UC Berkeley 2Brigham Young University</td><td></td></tr><tr><td>a52581a7b48138d7124afc7ccfcf8ec3b48359d0</td><td>ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences</td><td></td></tr><tr><td>89cabb60aa369486a1ebe586dbe09e3557615ef8</td><td>IDIAP RESEARCH INSTITUTE</td><td></td></tr><tr><td>816bd8a7f91824097f098e4f3e0f4b69f481689d</td><td>IDIAP Research Institute</td><td></td></tr><tr><td>816bd8a7f91824097f098e4f3e0f4b69f481689d</td><td>IDIAP Research Institute</td><td></td></tr><tr><td>5160569ca88171d5fa257582d161e9063c8f898d</td><td>IDIAP Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>22fdd8d65463f520f054bf4f6d2d216b54fc5677</td><td>IES College of Technology, Bhopal</td><td>Department of Computer Science Engg.</td></tr><tr><td>69fb98e11df56b5d7ec7d45442af274889e4be52</td><td>IHCC, RSCS, CECS, Australian National University</td><td></td></tr><tr><td>3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9</td><td>IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA</td><td></td></tr><tr><td>6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf</td><td>IIIS, Tsinghua University</td><td></td></tr><tr><td>016800413ebd1a87730a5cf828e197f43a08f4b3</td><td>IIIS, Tsinghua University</td><td></td></tr><tr><td>568cff415e7e1bebd4769c4a628b90db293c1717</td><td>IIIS, Tsinghua University, Beijing, China</td><td></td></tr><tr><td>3a76e9fc2e89bdd10a9818f7249fbf61d216efc4</td><td>IIIT-Delhi, India, 2West Virginia University</td><td></td></tr><tr><td>00d931eccab929be33caea207547989ae7c1ef39</td><td>IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands</td><td>Department of Computer Science</td></tr><tr><td>00d931eccab929be33caea207547989ae7c1ef39</td><td>IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands</td><td>Department of Computer Science</td></tr><tr><td>1e8eec6fc0e4538e21909ab6037c228547a678ba</td><td>IMPERIAL COLLEGE</td><td></td></tr><tr><td>4a5592ae1f5e9fa83d9fa17451c8ab49608421e4</td><td>IN3, Open University of</td><td></td></tr><tr><td>14014a1bdeb5d63563b68b52593e3ac1e3ce7312</td><td>ISLA Lab, Informatics Institute</td><td></td></tr><tr><td>935a7793cbb8f102924fa34fce1049727de865c2</td><td>ISLA Lab, Informatics Institute, University of Amsterdam</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address</td><td></td></tr><tr><td>b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae</td><td>ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing</td><td></td></tr><tr><td>6043006467fb3fd1e9783928d8040ee1f1db1f3a</td><td>ITCS, Tsinghua University</td><td></td></tr><tr><td>4e8c608fc4b8198f13f8a68b9c1a0780f6f50105</td><td>ITEE, The University of Queensland, Australia</td><td></td></tr><tr><td>93971a49ef6cc88a139420349a1dfd85fb5d3f5c</td><td>Idiap Research Institute</td><td></td></tr><tr><td>939123cf21dc9189a03671484c734091b240183e</td><td>Idiap Research Institute</td><td></td></tr><tr><td>af13c355a2a14bb74847aedeafe990db3fc9cbd4</td><td>Idiap Research Institute</td><td></td></tr><tr><td>af13c355a2a14bb74847aedeafe990db3fc9cbd4</td><td>Idiap Research Institute</td><td></td></tr><tr><td>235d5620d05bb7710f5c4fa6fceead0eb670dec5</td><td>Idiap Research Institute</td><td></td></tr><tr><td>06d93a40365da90f30a624f15bf22a90d9cfe6bb</td><td>Idiap Research Institute and EPF Lausanne</td><td></td></tr><tr><td>8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff</td><td>Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay</td><td></td></tr><tr><td>0b642f6d48a51df64502462372a38c50df2051b1</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>c23153aade9be0c941390909c5d1aad8924821db</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>78d645d5b426247e9c8f359694080186681f57db</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>46ae4d593d89b72e1a479a91806c39095cd96615</td><td>Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France</td><td></td></tr><tr><td>167736556bea7fd57cfabc692ec4ae40c445f144</td><td>Idiap Research Institute, Switzerland</td><td></td></tr><tr><td>47b508abdaa5661fe14c13e8eb21935b8940126b</td><td>Iftm University, Moradabad-244001 U.P</td><td></td></tr><tr><td>9d66de2a59ec20ca00a618481498a5320ad38481</td><td>Illinois Institute of Technology</td><td>y Department of Computer Science</td></tr><tr><td>27846b464369095f4909f093d11ed481277c8bba</td><td>Illinois Institute of Technology, Chicago, Illinois, USA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>1149c6ac37ae2310fe6be1feb6e7e18336552d95</td><td>Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany</td><td></td></tr><tr><td>df0e280cae018cebd5b16ad701ad101265c369fa</td><td>Image Processing Center, Beihang University</td><td></td></tr><tr><td>64f9519f20acdf703984f02e05fd23f5e2451977</td><td>Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia</td><td></td></tr><tr><td>98af221afd64a23e82c40fd28d25210c352e41b7</td><td>Image and Video Research Laboratory, Queensland University of Technology</td><td></td></tr><tr><td>0d14261e69a4ad4140ce17c1d1cea76af6546056</td><td>Imaging Science and Biomedical Engineering, The University of Manchester, UK</td><td></td></tr><tr><td>1b60b8e70859d5c85ac90510b370b501c5728620</td><td>Imaging Science and Biomedical Engineering, The University of Manchester, UK</td><td></td></tr><tr><td>0de91641f37b0a81a892e4c914b46d05d33fd36e</td><td>Imperial College London</td><td></td></tr><tr><td>59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b</td><td>Imperial College London</td><td></td></tr><tr><td>5040f7f261872a30eec88788f98326395a44db03</td><td>Imperial College London</td><td></td></tr><tr><td>03b03f5a301b2ff88ab3bb4969f54fd9a35c7271</td><td>Imperial College London</td><td></td></tr><tr><td>046a694bbb3669f2ff705c6c706ca3af95db798c</td><td>Imperial College London</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13</td><td>Imperial College London</td><td></td></tr><tr><td>a2bcfba155c990f64ffb44c0a1bb53f994b68a15</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>a2bcfba155c990f64ffb44c0a1bb53f994b68a15</td><td>Imperial College London</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>d140c5add2cddd4a572f07358d666fe00e8f4fe1</td><td>Imperial College London</td><td></td></tr><tr><td>809ea255d144cff780300440d0f22c96e98abd53</td><td>Imperial College London</td><td></td></tr><tr><td>809ea255d144cff780300440d0f22c96e98abd53</td><td>Imperial College London</td><td></td></tr><tr><td>1a85956154c170daf7f15f32f29281269028ff69</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>1afdedba774f6689eb07e048056f7844c9083be9</td><td>Imperial College London</td><td></td></tr><tr><td>8f08b2101d43b1c0829678d6a824f0f045d57da5</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>7e0c75ce731131e613544e1a85ae0f2c28ee4c1f</td><td>Imperial College London</td><td></td></tr><tr><td>88bef50410cea3c749c61ed68808fcff84840c37</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>38cbb500823057613494bacd0078aa0e57b30af8</td><td>Imperial College London</td><td></td></tr><tr><td>38cbb500823057613494bacd0078aa0e57b30af8</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>06d7ef72fae1be206070b9119fb6b61ce4699587</td><td>Imperial College London</td><td></td></tr><tr><td>f9ccfe000092121a2016639732cdb368378256d5</td><td>Imperial College London</td><td></td></tr><tr><td>2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3</td><td>Imperial College London</td><td>Computing Department</td></tr><tr><td>84e6669b47670f9f4f49c0085311dce0e178b685</td><td>Imperial College London</td><td></td></tr><tr><td>1d0128b9f96f4c11c034d41581f23eb4b4dd7780</td><td>Imperial College London</td><td></td></tr><tr><td>40bb090a4e303f11168dce33ed992f51afe02ff7</td><td>Imperial College London</td><td></td></tr><tr><td>40bb090a4e303f11168dce33ed992f51afe02ff7</td><td>Imperial College London</td><td></td></tr><tr><td>40bb090a4e303f11168dce33ed992f51afe02ff7</td><td>Imperial College London</td><td></td></tr><tr><td>7a84368ebb1a20cc0882237a4947efc81c56c0c0</td><td>Imperial College London</td><td></td></tr><tr><td>aeeea6eec2f063c006c13be865cec0c350244e5b</td><td>Imperial College London / Twente University</td><td></td></tr><tr><td>1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6</td><td>Imperial College London, London, UK</td><td></td></tr><tr><td>090ff8f992dc71a1125636c1adffc0634155b450</td><td>Imperial College London, London, UK</td><td></td></tr><tr><td>7f82f8a416170e259b217186c9e38a9b05cb3eb4</td><td>Imperial College London, London, UK</td><td>Department of Computing</td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London, On do</td><td></td></tr><tr><td>624496296af19243d5f05e7505fd927db02fd0ce</td><td>Imperial College London, U.K</td><td></td></tr><tr><td>232b6e2391c064d483546b9ee3aafe0ba48ca519</td><td>Imperial College London, U.K</td><td></td></tr><tr><td>9b0489f2d5739213ef8c3e2e18739c4353c3a3b7</td><td>Imperial College London, UK</td><td>Department of Computing</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>3505c9b0a9631539e34663310aefe9b05ac02727</td><td>Imperial College London, UK</td><td>Department of Computing</td></tr><tr><td>055de0519da7fdf27add848e691087e0af166637</td><td>Imperial College London, UK</td><td>Computing Department</td></tr><tr><td>0209389b8369aaa2a08830ac3b2036d4901ba1f1</td><td>Imperial College London, UK</td><td></td></tr><tr><td>ac2e44622efbbab525d4301c83cb4d5d7f6f0e55</td><td>Imperial College London, UK</td><td></td></tr><tr><td>27eb7a6e1fb6b42516041def6fe64bd028b7614d</td><td>Imperial College London, UK</td><td></td></tr><tr><td>42afe6d016e52c99e2c0d876052ade9c192d91e7</td><td>Imperial College London, UK</td><td>Computing Department</td></tr><tr><td>7492c611b1df6bce895bee6ba33737e7fc7f60a6</td><td>Imperial College London, UK</td><td>Department of Computing</td></tr><tr><td>193debca0be1c38dabc42dc772513e6653fd91d8</td><td>Imperial College London, UK</td><td>cid:63)Department of Computing</td></tr><tr><td>4c87aafa779747828054cffee3125fcea332364d</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>a06b6d30e2b31dc600f622ab15afe5e2929581a7</td><td>Imperial College London, UK</td><td></td></tr><tr><td>143bee9120bcd7df29a0f2ad6f0f0abfb23977b8</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>f4210309f29d4bbfea9642ecadfb6cf9581ccec7</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>e42998bbebddeeb4b2bedf5da23fa5c4efc976fa</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>3f957142ef66f2921e7c8c7eadc8e548dccc1327</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>06c2dfe1568266ad99368fc75edf79585e29095f</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7</td><td>Imperial College of Science, Technology and Medicine</td><td></td></tr><tr><td>2eb9f1dbea71bdc57821dedbb587ff04f3a25f07</td><td>Imperial College, 180 Queens Gate</td><td>Computing Department</td></tr><tr><td>d65b82b862cf1dbba3dee6541358f69849004f30</td><td>Imperial College, London, UK</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>292c6b743ff50757b8230395c4a001f210283a34</td><td>Imperial College, South Kensington Campus, London SW7 2AZ, UK</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43</td><td>In the Graduate College</td><td></td></tr><tr><td>7553fba5c7f73098524fbb58ca534a65f08e91e7</td><td>India</td><td>CSE Department and CSVTU University</td></tr><tr><td>7553fba5c7f73098524fbb58ca534a65f08e91e7</td><td>India</td><td>CSE Department and CSVTU University</td></tr><tr><td>7f268f29d2c8f58cea4946536f5e2325777fa8fa</td><td>Indian Institute of Informaiton Technology, Allahabad, India</td><td></td></tr><tr><td>4be774af78f5bf55f7b7f654f9042b6e288b64bd</td><td>Indian Institute of Science</td><td></td></tr><tr><td>4542273a157bfd4740645a6129d1784d1df775d2</td><td>Indian Institute of Science</td><td></td></tr><tr><td>6226f2ea345f5f4716ac4ddca6715a47162d5b92</td><td>Indian Institute of Science Bangalore</td><td></td></tr><tr><td>6226f2ea345f5f4716ac4ddca6715a47162d5b92</td><td>Indian Institute of Science Bangalore</td><td></td></tr><tr><td>90a754f597958a2717862fbaa313f67b25083bf9</td><td>Indian Institute of Science, India</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>1e94cc91c5293c8fc89204d4b881552e5b2ce672</td><td>Indian Institute of Technology Delhi, New Delhi, India</td><td></td></tr><tr><td>3f4bfa4e3655ef392eb5ad609d31c05f29826b45</td><td>Indian Institute of Technology Kanpur</td><td></td></tr><tr><td>e9bb045e702ee38e566ce46cc1312ed25cb59ea7</td><td>Indian Institute of Technology, Kharagpur</td><td></td></tr><tr><td>0fae5d9d2764a8d6ea691b9835d497dd680bbccd</td><td>Indian Institute of Technology, Madras</td><td></td></tr><tr><td>0fae5d9d2764a8d6ea691b9835d497dd680bbccd</td><td>Indian Institute of Technology, Madras</td><td></td></tr><tr><td>86c5478f21c4a9f9de71b5ffa90f2a483ba5c497</td><td>Indian Institute of Technology, Madras, Chennai 600036, INDIA</td><td>Department of Computer Science and Engineering</td></tr><tr><td>e9bb045e702ee38e566ce46cc1312ed25cb59ea7</td><td>Indian Institute of Technology, Roorkee</td><td></td></tr><tr><td>0182d090478be67241392df90212d6cd0fb659e6</td><td>Indiana University</td><td></td></tr><tr><td>0182d090478be67241392df90212d6cd0fb659e6</td><td>Indiana University</td><td></td></tr><tr><td>0b835284b8f1f45f87b0ce004a4ad2aca1d9e153</td><td>Indiana University Bloomington</td><td></td></tr><tr><td>97865d31b5e771cf4162bc9eae7de6991ceb8bbf</td><td>Indraprastha Institute of Information Technology</td><td></td></tr><tr><td>8fa3478aaf8e1f94e849d7ffbd12146946badaba</td><td>Indraprastha Institute of Information Technology (Delhi, India</td><td></td></tr><tr><td>787c1bb6d1f2341c5909a0d6d7314bced96f4681</td><td>Indraprastha Institute of Information Technology, Delhi</td><td></td></tr><tr><td>205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa</td><td>Informatics and Telematics Institute</td><td></td></tr><tr><td>d5afd7b76f1391321a1340a19ba63eec9e0f9833</td><td>Informatics and Telematics Institute</td><td></td></tr><tr><td>5b9d41e2985fa815c0f38a2563cca4311ce82954</td><td>Informatics and Telematics Institute, Centre for Research and Technology Hellas</td><td></td></tr><tr><td>a2bcfba155c990f64ffb44c0a1bb53f994b68a15</td><td>Informatics and Telematics Institute, Centre of Research and Technology - Hellas</td><td></td></tr><tr><td>ff7bc7a6d493e01ec8fa2b889bcaf6349101676e</td><td>Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland</td><td></td></tr><tr><td>582edc19f2b1ab2ac6883426f147196c8306685a</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>870433ba89d8cab1656e57ac78f1c26f4998edfb</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>1e6ed6ca8209340573a5e907a6e2e546a3bf2d28</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Information Systems Design, Doshisha University, Kyoto, Japan</td><td></td></tr><tr><td>182470fd0c18d0c5979dff75d089f1da176ceeeb</td><td>Information Technologies Institute</td><td></td></tr><tr><td>bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9</td><td>Information Technology University (ITU), Punjab, Lahore, Pakistan</td><td></td></tr><tr><td>e4bf70e818e507b54f7d94856fecc42cc9e0f73d</td><td>Information Technology, Madras Institute of Technology, TamilNadu, India, email</td><td></td></tr><tr><td>d5b5c63c5611d7b911bc1f7e161a0863a34d44ea</td><td>Information and Media Processing Research Laboratories, NEC Corporation</td><td></td></tr><tr><td>924b14a9e36d0523a267293c6d149bca83e73f3b</td><td>Information, Keio University</td><td></td></tr><tr><td>ac51d9ddbd462d023ec60818bac6cdae83b66992</td><td>Informatization Office, National University of Defense Technology, Changsha 410073, China</td><td></td></tr><tr><td>af278274e4bda66f38fd296cfa5c07804fbc26ee</td><td>Innopolis University, Kazan, Russia</td><td>Department of Computer Science</td></tr><tr><td>2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3</td><td>Inst. Neural Computation, University of California</td><td></td></tr><tr><td>a6e21438695dbc3a184d33b6cf5064ddf655a9ba</td><td>Institiude of Computer Science and Technology, Peking University</td><td></td></tr><tr><td>31afdb6fa95ded37e5871587df38976fdb8c0d67</td><td>Institute</td><td></td></tr><tr><td>1b4bc7447f500af2601c5233879afc057a5876d8</td><td>Institute</td><td></td></tr><tr><td>66330846a03dcc10f36b6db9adf3b4d32e7a3127</td><td>Institute AIFB, Karlsruhe Institute of Technology, Germany</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute Polythechnic of Leiria, Portugal</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>Institute for Advanced</td><td></td></tr><tr><td>4377b03bbee1f2cf99950019a8d4111f8de9c34a</td><td>Institute for Advanced Computer Studies</td><td></td></tr><tr><td>074af31bd9caa61fea3c4216731420bd7c08b96a</td><td>Institute for Advanced Computer Studies, University of Maryland, College Park, MD</td><td></td></tr><tr><td>507c9672e3673ed419075848b4b85899623ea4b0</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>9ed4ad41cbad645e7109e146ef6df73f774cd75d</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>a5ade88747fa5769c9c92ffde9b7196ff085a9eb</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>a5ade88747fa5769c9c92ffde9b7196ff085a9eb</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>10f66f6550d74b817a3fdcef7fdeba13ccdba51c</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>656ef752b363a24f84cc1aeba91e4fa3d5dd66ba</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>14b87359f6874ff9b8ee234b18b418e57e75b762</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>ae4390873485c9432899977499c3bf17886fa149</td><td>Institute for Arts, Science and Technology</td><td></td></tr><tr><td>de15af84b1257211a11889b6c2adf0a2bcf59b42</td><td>Institute for Communication Systems</td><td></td></tr><tr><td>fc2bad3544c7c8dc7cd182f54888baf99ed75e53</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>80277fb3a8a981933533cf478245f262652a33b5</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>de8381903c579a4fed609dff3e52a1dc51154951</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>3137a3fedf23717c411483c7b4bd2ed646258401</td><td>Institute for Computer Graphics and Vision, Graz University of Technology</td><td></td></tr><tr><td>2dd2c7602d7f4a0b78494ac23ee1e28ff489be88</td><td>Institute for Computer Graphics and Vision, Graz University of Technology</td><td></td></tr><tr><td>e35b09879a7df814b2be14d9102c4508e4db458b</td><td>Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States</td><td></td></tr><tr><td>910524c0d0fe062bf806bb545627bf2c9a236a03</td><td>Institute for Electronics, Signal Processing and Communications</td><td></td></tr><tr><td>561ae67de137e75e9642ab3512d3749b34484310</td><td>Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn</td><td></td></tr><tr><td>e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5</td><td>Institute for Human-Machine Communication</td><td></td></tr><tr><td>966e36f15b05ef8436afecf57a97b73d6dcada94</td><td>Institute for Human-Machine Communication, Technische Universit at M unchen</td><td></td></tr><tr><td>718824256b4461d62d192ab9399cfc477d3660b4</td><td>Institute for Human-Machine Communication, Technische Universit at M unchen, Germany</td><td></td></tr><tr><td>b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e</td><td>Institute for Infocomm Research (I2R), A*STAR, Singapore</td><td></td></tr><tr><td>3b557c4fd6775afc80c2cf7c8b16edde125b270e</td><td>Institute for Infocomm Research, A*STAR</td><td></td></tr><tr><td>3d948e4813a6856e5b8b54c20e50cc5050e66abe</td><td>Institute for Infocomm Research, A*STAR, Singapore</td><td></td></tr><tr><td>1e07500b00fcd0f65cf30a11f9023f74fe8ce65c</td><td>Institute for Infocomm Research, A*STAR, Singapore</td><td></td></tr><tr><td>0bf3513d18ec37efb1d2c7934a837dabafe9d091</td><td>Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore</td><td></td></tr><tr><td>481fb0a74528fa7706669a5cce6a212ac46eaea3</td><td>Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore</td><td></td></tr><tr><td>c7c03324833ba262eeaada0349afa1b5990c1ea7</td><td>Institute for Infocomm Research, Singapore</td><td>Visual Computing Department</td></tr><tr><td>1f9b2f70c24a567207752989c5bd4907442a9d0f</td><td>Institute for Infocomm Research, Singapore</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Institute for Information Systems Engineering</td><td></td></tr><tr><td>b73d9e1af36aabb81353f29c40ecdcbdf731dbed</td><td>Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University</td><td></td></tr><tr><td>d0d7671c816ed7f37b16be86fa792a1b29ddd79b</td><td>Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China</td><td></td></tr><tr><td>a0061dae94d916f60a5a5373088f665a1b54f673</td><td>Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA</td><td></td></tr><tr><td>9547a7bce2b85ef159b2d7c1b73dea82827a449f</td><td>Institute for Neural Computation</td><td></td></tr><tr><td>57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1</td><td>Institute for Neural Computation</td><td></td></tr><tr><td>9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e</td><td>Institute for Neural Computation, University of California, San Diego</td><td></td></tr><tr><td>1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61</td><td>Institute for Neural Computation, University of California, San Diego</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>Institute for Neural Computation, University of California, San Diego, La Jolla, CA</td><td></td></tr><tr><td>50f0c495a214b8d57892d43110728e54e413d47d</td><td>Institute for Numerical Mathematics</td><td></td></tr><tr><td>c78fdd080df01fff400a32fb4cc932621926021f</td><td>Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan</td><td></td></tr><tr><td>c78fdd080df01fff400a32fb4cc932621926021f</td><td>Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan</td><td></td></tr><tr><td>1cad5d682393ffbb00fd26231532d36132582bb4</td><td>Institute for Robotics and Intelligent</td><td></td></tr><tr><td>6341274aca0c2977c3e1575378f4f2126aa9b050</td><td>Institute for Robotics and Intelligent Systems</td><td></td></tr><tr><td>582edc19f2b1ab2ac6883426f147196c8306685a</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>870433ba89d8cab1656e57ac78f1c26f4998edfb</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>1e6ed6ca8209340573a5e907a6e2e546a3bf2d28</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>d28d32af7ef9889ef9cb877345a90ea85e70f7f1</td><td>Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA</td><td></td></tr><tr><td>f963967e52a5fd97fa3ebd679fd098c3cb70340e</td><td>Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran</td><td></td></tr><tr><td>d1881993c446ea693bbf7f7d6e750798bf958900</td><td>Institute for System Programming</td><td></td></tr><tr><td>d1881993c446ea693bbf7f7d6e750798bf958900</td><td>Institute for System Programming</td><td></td></tr><tr><td>0ef96d97365899af797628e80f8d1020c4c7e431</td><td>Institute for Vision Systems Engineering</td><td></td></tr><tr><td>87bee0e68dfc86b714f0107860d600fffdaf7996</td><td>Institute for Vision and Graphics, University of Siegen, Germany</td><td></td></tr><tr><td>d350a9390f0818703f886138da27bf8967fe8f51</td><td>Institute for Vision and Graphics, University of Siegen, Germany</td><td></td></tr><tr><td>b4f4b0d39fd10baec34d3412d53515f1a4605222</td><td>Institute for studies in theoretical Physics and Mathematics(IPM</td><td></td></tr><tr><td>0515e43c92e4e52254a14660718a9e498bd61cf5</td><td>Institute of</td><td></td></tr><tr><td>5ea9cba00f74d2e113a10c484ebe4b5780493964</td><td>Institute of</td><td></td></tr><tr><td>bbcb4920b312da201bf4d2359383fb4ee3b17ed9</td><td>Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing</td><td></td></tr><tr><td>bbe949c06dc4872c7976950b655788555fe513b8</td><td>Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany</td><td></td></tr><tr><td>4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac</td><td>Institute of Arti cial Intelligence and Cognitive Engineering</td><td></td></tr><tr><td>d8896861126b7fd5d2ceb6fed8505a6dff83414f</td><td>Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen</td><td></td></tr><tr><td>1255afbf86423c171349e874b3ac297de19f00cd</td><td>Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen</td><td></td></tr><tr><td>d074b33afd95074d90360095b6ecd8bc4e5bb6a2</td><td>Institute of Automatic Control Engineering (LSR</td><td></td></tr><tr><td>6691dfa1a83a04fdc0177d8d70e3df79f606b10f</td><td>Institute of Automation</td><td></td></tr><tr><td>171d8a39b9e3d21231004f7008397d5056ff23af</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>b3c398da38d529b907b0bac7ec586c81b851708f</td><td>Institute of Automation, Chinese Academy of</td><td></td></tr><tr><td>d04d5692461d208dd5f079b98082eda887b62323</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>bc910ca355277359130da841a589a36446616262</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>ca54d0a128b96b150baef392bf7e498793a6371f</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>4e6c17966efae956133bf8f22edeffc24a0470c1</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>2654ef92491cebeef0997fd4b599ac903e48d07a</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>2a4153655ad1169d482e22c468d67f3bc2c49f12</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>3661a34f302883c759b9fa2ce03de0c7173d2bb2</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>5b89744d2ac9021f468b3ffd32edf9c00ed7fed7</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>63cff99eff0c38b633c8a3a2fec8269869f81850</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>4622b82a8aff4ac1e87b01d2708a333380b5913b</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>82b43bc9213230af9db17322301cbdf81e2ce8cc</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>492f41e800c52614c5519f830e72561db205e86c</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>b11bb6bd63ee6f246d278dd4edccfbe470263803</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>231a6d2ee1cc76f7e0c5912a530912f766e0b459</td><td>Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C</td><td></td></tr><tr><td>2b10a07c35c453144f22e8c539bf9a23695e85fc</td><td>Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China</td><td></td></tr><tr><td>2af2b74c3462ccff3a6881ff7cf4f321b3242fa9</td><td>Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>321c8ba38db118d8b02c0ba209be709e6792a2c7</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>c94b3a05f6f41d015d524169972ae8fd52871b67</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>19a9f658ea14701502d169dc086651b1d9b2a8ea</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>4c6233765b5f83333f6c675d3389bbbf503805e3</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>2f04ba0f74df046b0080ca78e56898bd4847898b</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>199c2df5f2847f685796c2523221c6436f022464</td><td>Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School</td><td></td></tr><tr><td>4ea53e76246afae94758c1528002808374b75cfa</td><td>Institute of Biochemistry, University of Balochistan, Quetta</td><td></td></tr><tr><td>0b85b50b6ff03a7886c702ceabad9ab8c8748fdc</td><td>Institute of Child Health, University College London, UK</td><td></td></tr><tr><td>2c34bf897bad780e124d5539099405c28f3279ac</td><td>Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China</td><td></td></tr><tr><td>c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8</td><td>Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain</td><td></td></tr><tr><td>081286ede247c5789081502a700b378b6223f94b</td><td>Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social</td><td>Department of Experimental Psychology</td></tr><tr><td>182470fd0c18d0c5979dff75d089f1da176ceeeb</td><td>Institute of Communications Engineering</td><td></td></tr><tr><td>81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f</td><td>Institute of Computer Science</td><td></td></tr><tr><td>4015e8195db6edb0ef8520709ca9cb2c46f29be7</td><td>Institute of Computer Science</td><td></td></tr><tr><td>14b66748d7c8f3752dca23991254fca81b6ee86c</td><td>Institute of Computer Science III</td><td></td></tr><tr><td>0517d08da7550241fb2afb283fc05d37fce5d7b7</td><td>Institute of Computer Science and Technology, Chongqing University of Posts and</td><td></td></tr><tr><td>488375ae857a424febed7c0347cc9590989f01f7</td><td>Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece</td><td></td></tr><tr><td>9d24179aa33a94c8c61f314203bf9e906d6b64de</td><td>Institute of Computing</td><td></td></tr><tr><td>4b74f2d56cd0dda6f459319fec29559291c61bff</td><td>Institute of Computing</td><td></td></tr><tr><td>38a9ca2c49a77b540be52377784b9f734e0417e4</td><td>Institute of Computing</td><td></td></tr><tr><td>902114feaf33deac209225c210bbdecbd9ef33b1</td><td>Institute of Computing</td><td></td></tr><tr><td>badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e</td><td>Institute of Computing Technology</td><td></td></tr><tr><td>51a8dabe4dae157aeffa5e1790702d31368b9161</td><td>Institute of Computing Technology, CAS</td><td></td></tr><tr><td>2969f822b118637af29d8a3a0811ede2751897b5</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>449808b7aa9ee6b13ad1a21d9f058efaa400639a</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>303a7099c01530fa0beb197eb1305b574168b653</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>d2cd9a7f19600370bce3ea29aba97d949fe0ceb9</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>db36e682501582d1c7b903422993cf8d70bb0b42</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>a820941eaf03077d68536732a4d5f28d94b5864a</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>56359d2b4508cc267d185c1d6d310a1c4c2cc8c2</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>0595d18e8d8c9fb7689f636341d8a55cc15b3e6a</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>0568fc777081cbe6de95b653644fec7b766537b2</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>bd8b7599acf53e3053aa27cfd522764e28474e57</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>11dc744736a30a189f88fa81be589be0b865c9fa</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>7c9622ad1d8971cd74cc9e838753911fe27ccac4</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>5d88702cdc879396b8b2cc674e233895de99666b</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>24cb375a998f4af278998f8dee1d33603057e525</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>120bcc9879d953de7b2ecfbcd301f72f3a96fb87</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>e0dc6f1b740479098c1d397a7bc0962991b5e294</td><td>Institute of Computing Technology, Chinese Academy of Sciences</td><td></td></tr><tr><td>2af2b74c3462ccff3a6881ff7cf4f321b3242fa9</td><td>Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>3b7f6035a113b560760c5e8000540fc46f91fed5</td><td>Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China</td><td></td></tr><tr><td>ac1d97a465b7cc56204af5f2df0d54f819eef8a6</td><td>Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander</td><td></td></tr><tr><td>74875368649f52f74bfc4355689b85a724c3db47</td><td>Institute of Data Science and Technology, Alibaba Group</td><td></td></tr><tr><td>250ebcd1a8da31f0071d07954eea4426bb80644c</td><td>Institute of Deep Learning</td><td></td></tr><tr><td>74875368649f52f74bfc4355689b85a724c3db47</td><td>Institute of Deep Learning, Baidu Research</td><td></td></tr><tr><td>8bf243817112ac0aa1348b40a065bb0b735cdb9c</td><td>Institute of Digital Media</td><td></td></tr><tr><td>32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b</td><td>Institute of Digital Media, Peking University, Beijing 100871, China</td><td></td></tr><tr><td>d2cd9a7f19600370bce3ea29aba97d949fe0ceb9</td><td>Institute of Digital Media, Peking University, Beijing 100871, China</td><td></td></tr><tr><td>449808b7aa9ee6b13ad1a21d9f058efaa400639a</td><td>Institute of Digital Media, Peking University, Beijing, 100871, China</td><td></td></tr><tr><td>1130c38e88108cf68b92ecc61a9fc5aeee8557c9</td><td>Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria</td><td></td></tr><tr><td>be07f2950771d318a78d2b64de340394f7d6b717</td><td>Institute of Electrical and Electronics Engineers</td><td></td></tr><tr><td>162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e</td><td>Institute of Electrical and Electronics Engineers (IEEE). DOI</td><td></td></tr><tr><td>daa02cf195818cbf651ef81941a233727f71591f</td><td>Institute of Electronics and Computer Science</td><td></td></tr><tr><td>511b06c26b0628175c66ab70dd4c1a4c0c19aee9</td><td>Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj</td><td></td></tr><tr><td>081286ede247c5789081502a700b378b6223f94b</td><td>Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland</td><td></td></tr><tr><td>03baf00a3d00887dd7c828c333d4a29f3aacd5f5</td><td>Institute of Graduate Studies and Research</td><td></td></tr><tr><td>561ae67de137e75e9642ab3512d3749b34484310</td><td>Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany</td><td></td></tr><tr><td>c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774</td><td>Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University</td><td></td></tr><tr><td>159e792096756b1ec02ec7a980d5ef26b434ff78</td><td>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University</td><td></td></tr><tr><td>7fc76446d2b11fc0479df6e285723ceb4244d4ef</td><td>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China</td><td></td></tr><tr><td>4d625677469be99e0a765a750f88cfb85c522cce</td><td>Institute of Industrial Science</td><td></td></tr><tr><td>4d625677469be99e0a765a750f88cfb85c522cce</td><td>Institute of Industrial Science</td><td></td></tr><tr><td>846c028643e60fefc86bae13bebd27341b87c4d1</td><td>Institute of Industrial Science, The University of Tokyo</td><td></td></tr><tr><td>1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6</td><td>Institute of Informatics - ISLA</td><td></td></tr><tr><td>72f4aaf7e2e3f215cd8762ce283988220f182a5b</td><td>Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY</td><td></td></tr><tr><td>5f57a1a3a1e5364792b35e8f5f259f92ad561c1f</td><td>Institute of Information Science</td><td></td></tr><tr><td>b5930275813a7e7a1510035a58dd7ba7612943bc</td><td>Institute of Information Science</td><td></td></tr><tr><td>64782a2bc5da11b1b18ca20cecf7bdc26a538d68</td><td>Institute of Information Science</td><td></td></tr><tr><td>a660390654498dff2470667b64ea656668c98ecc</td><td>Institute of Information Science</td><td></td></tr><tr><td>e726174d516605f80ff359e71f68b6e8e6ec6d5d</td><td>Institute of Information Science</td><td></td></tr><tr><td>1c17450c4d616e1e1eece248c42eba4f87de9e0d</td><td>Institute of Information Science</td><td></td></tr><tr><td>6ab33fa51467595f18a7a22f1d356323876f8262</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>5397c34a5e396658fa57e3ca0065a2878c3cced7</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>5b73b7b335f33cda2d0662a8e9520f357b65f3ac</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>c44c84540db1c38ace232ef34b03bda1c81ba039</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>739d400cb6fb730b894182b29171faaae79e3f01</td><td>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China</td><td></td></tr><tr><td>8af411697e73f6cfe691fe502d4bfb42510b4835</td><td>Institute of Information Technology</td><td></td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>Institute of Interdisciplinary Studies in Identity Sciences (IISIS</td><td></td></tr><tr><td>2be0ab87dc8f4005c37c523f712dd033c0685827</td><td>Institute of Media Innovation</td><td></td></tr><tr><td>0fdcfb4197136ced766d538b9f505729a15f0daf</td><td>Institute of Media and Information Technology, Chiba University</td><td></td></tr><tr><td>142e5b4492bc83b36191be4445ef0b8b770bf4b0</td><td>Institute of Mental Health, Peking University, P.R. China</td><td></td></tr><tr><td>bc866c2ced533252f29cf2111dd71a6d1724bd49</td><td>Institute of Microelectronics, Tsinghua University, Beijing 100084, China</td><td></td></tr><tr><td>50c0de2cccf7084a81debad5fdb34a9139496da0</td><td>Institute of Neural Information Processing, Ulm University, Ulm, Germany</td><td></td></tr><tr><td>1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16</td><td>Institute of Neural Information Processing, Ulm University, Ulm, Germany</td><td></td></tr><tr><td>a35dd69d63bac6f3296e0f1d148708cfa4ba80f6</td><td>Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain</td><td></td></tr><tr><td>55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c</td><td>Institute of Psychology and Behavioral Sciences</td><td></td></tr><tr><td>0f395a49ff6cbc7e796656040dbf446a40e300aa</td><td>Institute of Psychology, Chinese</td><td></td></tr><tr><td>b3b4a7e29b9186e00d2948a1d706ee1605fe5811</td><td>Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland</td><td></td></tr><tr><td>98a660c15c821ea6d49a61c5061cd88e26c18c65</td><td>Institute of Road and</td><td>Department of Electronics and Communication Engineering</td></tr><tr><td>3d143cfab13ecd9c485f19d988242e7240660c86</td><td>Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan</td><td></td></tr><tr><td>19e62a56b6772bbd37dfc6b8f948e260dbb474f5</td><td>Institute of Software, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>d33b26794ea6d744bba7110d2d4365b752d7246f</td><td>Institute of Software, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>Institute of Systems Engineering, Southeast University, Nanjing, China</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute of Systems and Robotics</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute of Systems and Robotics</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute of Systems and Robotics</td><td></td></tr><tr><td>11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5</td><td>Institute of Systems and Robotics - University of Coimbra, Portugal</td><td></td></tr><tr><td>3802c97f925cb03bac91d9db13d8b777dfd29dcc</td><td>Institute of Systems and Robotics, University of Coimbra, Portugal</td><td></td></tr><tr><td>29e793271370c1f9f5ac03d7b1e70d1efa10577c</td><td>Institute of control science and engineering</td><td></td></tr><tr><td>2afdda6fb85732d830cea242c1ff84497cd5f3cb</td><td>Institute ofInformation Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>c91103e6612fa7e664ccbc3ed1b0b5deac865b02</td><td>Integrated Research Center, Universit`a Campus Bio-Medico di Roma</td><td></td></tr><tr><td>0cbc4dcf2aa76191bbf641358d6cecf38f644325</td><td>Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA</td><td></td></tr><tr><td>7c119e6bdada2882baca232da76c35ae9b5277f8</td><td>Intelligence Computing Research Center</td><td></td></tr><tr><td>3b2d5585af59480531616fe970cb265bbdf63f5b</td><td>Intelligence, Concordia University, Montreal</td><td></td></tr><tr><td>c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f</td><td>Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching</td><td></td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan</td><td></td></tr><tr><td>bd8f3fef958ebed5576792078f84c43999b1b207</td><td>Intelligent Recognition and Image Processing Lab, Beihang University, Beijing</td><td></td></tr><tr><td>4c8ef4f98c6c8d340b011cfa0bb65a9377107970</td><td>Intelligent Systems Group, University of Groningen, The Netherlands</td><td></td></tr><tr><td>beb4546ae95f79235c5f3c0e9cc301b5d6fc9374</td><td>Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht</td><td></td></tr><tr><td>937ffb1c303e0595317873eda5ce85b1a17f9943</td><td>Intelligent Systems Lab Amsterdam, University of Amsterdam</td><td></td></tr><tr><td>999289b0ef76c4c6daa16a4f42df056bf3d68377</td><td>Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>faeefc5da67421ecd71d400f1505cfacb990119c</td><td>Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden</td><td></td></tr><tr><td>465d5bb11912005f0a4f0569c6524981df18a7de</td><td>Intelligent User Interfaces Lab, Ko c University, Turkey</td><td></td></tr><tr><td>2f2aa67c5d6dbfaf218c104184a8c807e8b29286</td><td>Interactive and Digital Media Institute</td><td></td></tr><tr><td>ee7093e91466b81d13f4d6933bcee48e4ee63a16</td><td>Interactive and Digital Media Institute, National University of Singapore, SG</td><td></td></tr><tr><td>c0ee89dc2dad76147780f96294de9e421348c1f4</td><td>Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea</td><td></td></tr><tr><td>b4362cd87ad219790800127ddd366cc465606a78</td><td>Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea</td><td></td></tr><tr><td>243e9d490fe98d139003bb8dc95683b366866c57</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>156cd2a0e2c378e4c3649a1d046cd080d3338bca</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1</td><td>International Institute of Information Technology, Hyderabad, India</td><td></td></tr><tr><td>0c3f7272a68c8e0aa6b92d132d1bf8541c062141</td><td>International Islamic University, Islamabad 44000, Pakistan</td><td>Department of Computer Science and Software Engineering</td></tr><tr><td>fde0180735699ea31f6c001c71eae507848b190f</td><td>International University of</td><td></td></tr><tr><td>fde0180735699ea31f6c001c71eae507848b190f</td><td>International University of</td><td></td></tr><tr><td>fae83b145e5eeda8327de9f19df286edfaf5e60c</td><td>Ionian University</td><td></td></tr><tr><td>966e36f15b05ef8436afecf57a97b73d6dcada94</td><td>Iran</td><td>Computer Engineering Department University of Isfahan</td></tr><tr><td>6fda12c43b53c679629473806c2510d84358478f</td><td>Islamic Azad University</td><td>Department of Computer Science</td></tr><tr><td>ad8540379884ec03327076b562b63bc47e64a2c7</td><td>Islamic Azad University</td><td></td></tr><tr><td>841bf196ee0086c805bd5d1d0bddfadc87e424ec</td><td>Islamic Azad University</td><td></td></tr><tr><td>39dc2ce4cce737e78010642048b6ed1b71e8ac2f</td><td>Islamic Azad University of AHAR</td><td></td></tr><tr><td>19f076998ba757602c8fec04ce6a4ca674de0e25</td><td>Islamic Azad University, Gonabad, Iran</td><td>Department of Control and Electrical Engineering</td></tr><tr><td>11a210835b87ccb4989e9ba31e7559bb7a9fd292</td><td>Islamic Azad University, Mashhad Branch, Mashhad, Iran</td><td>a Department of Artificial Intelligence</td></tr><tr><td>ceb763d6657a07b47e48e8a2956bcfdf2cf10818</td><td>Islamic Azad University, Qazvin, Iran</td><td></td></tr><tr><td>ad247138e751cefa3bb891c2fe69805da9c293d7</td><td>Islamic Azad University, Shahrood, Iran</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>d5fa9d98c8da54a57abf353767a927d662b7f026</td><td>Islamic University of Gaza - Palestine</td><td></td></tr><tr><td>0ce8a45a77e797e9d52604c29f4c1e227f604080</td><td>IslamicAzad University, Qazvin, Iran</td><td></td></tr><tr><td>26f03693c50eb50a42c9117f107af488865f3dc1</td><td>Istanbul Technical University</td><td></td></tr><tr><td>09733129161ca7d65cf56a7ad63c17f493386027</td><td>Istanbul Technical University</td><td></td></tr><tr><td>14b87359f6874ff9b8ee234b18b418e57e75b762</td><td>Istanbul Technical University</td><td></td></tr><tr><td>72f4aaf7e2e3f215cd8762ce283988220f182a5b</td><td>Istanbul Technical University, Istanbul, 34469, TURKEY</td><td>Department of Computer Engineering</td></tr><tr><td>2050847bc7a1a0453891f03aeeb4643e360fde7d</td><td>Istanbul Technical University, Istanbul, Turkey</td><td></td></tr><tr><td>3d9db1cacf9c3bb7af57b8112787b59f45927355</td><td>Istanbul Technical University, Turkey</td><td></td></tr><tr><td>a5ade88747fa5769c9c92ffde9b7196ff085a9eb</td><td>Istanbul Technical University, Turkey</td><td></td></tr><tr><td>9dcc6dde8d9f132577290d92a1e76b5decc6d755</td><td>Istanbul University</td><td>Department of Electrical and Electronics Eng</td></tr><tr><td>070ab604c3ced2c23cce2259043446c5ee342fd6</td><td>IstanbulTechnicalUniversity</td><td></td></tr><tr><td>18a9f3d855bd7728ed4f988675fa9405b5478845</td><td>J. P. College of Engineering, India</td><td>Department of Electronics and Communication Engineering</td></tr><tr><td>ad784332cc37720f03df1c576e442c9c828a587a</td><td>JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China</td><td></td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>Jacobs University</td><td></td></tr><tr><td>6f0900a7fe8a774a1977c5f0a500b2898bcbe149</td><td>Jadavpur University</td><td>Department of Computer Science and Engineering</td></tr><tr><td>3f4bfa4e3655ef392eb5ad609d31c05f29826b45</td><td>Jadavpur University</td><td></td></tr><tr><td>aaeb8b634bb96a372b972f63ec1dc4db62e7b62a</td><td>Jadavpur University, India</td><td>Department of Printing Engineering</td></tr><tr><td>aaeb8b634bb96a372b972f63ec1dc4db62e7b62a</td><td>Jadavpur University, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>4d01d78544ae0de3075304ff0efa51a077c903b7</td><td>Jahangirnagar University</td><td></td></tr><tr><td>8f8a5be9dc16d73664285a29993af7dc6a598c83</td><td>Jahangirnagar University, Savar, Dhaka 1342, Bangladesh</td><td>Department of Computer Science and Engineering</td></tr><tr><td>58db008b204d0c3c6744f280e8367b4057173259</td><td>Jaipur, Rajasthan, India</td><td>aDepartment of Computer Engineering Malaviya National Institute of Technology</td></tr><tr><td>13f6ab2f245b4a871720b95045c41a4204626814</td><td>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United</td><td></td></tr><tr><td>c0723e0e154a33faa6ff959d084aebf07770ffaf</td><td>Japan</td><td>Department of Life System Science and Technology Chukyo University</td></tr><tr><td>9ed943f143d2deaac2efc9cf414b3092ed482610</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>26c884829897b3035702800937d4d15fef7010e4</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>982f5c625d6ad0dac25d7acbce4dabfb35dd7f23</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>76d939f73a327bf1087d91daa6a7824681d76ea1</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>c180f22a9af4a2f47a917fd8f15121412f2d0901</td><td>Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan</td><td></td></tr><tr><td>5865e824e3d8560e07840dd5f75cfe9bf68f9d96</td><td>Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara</td><td></td></tr><tr><td>f19777e37321f79e34462fc4c416bd56772031bf</td><td>Jawaharlal Technological University, Anantapur</td><td></td></tr><tr><td>0229829e9a1eed5769a2b5eccddcaa7cd9460b92</td><td>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA</td><td></td></tr><tr><td>493ec9e567c5587c4cbeb5f08ca47408ca2d6571</td><td>Jiangnan University, Wuxi</td><td></td></tr><tr><td>aac39ca161dfc52aade063901f02f56d01a1693c</td><td>Jilin University, Changchun 130012, China</td><td></td></tr><tr><td>8320dbdd3e4712cca813451cd94a909527652d63</td><td>Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) +<!doctype html><html><head><title>Institutions</title><link rel='stylesheet' href='reports.css'></head><body><h2>Institutions</h2><table border='1' cellpadding='3' cellspacing='3'><tr><td>9f6d04ce617d24c8001a9a31f11a594bd6fe3510</td><td>1E1 WC Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada T6G 2R</td><td>Department of Psychiatry</td></tr><tr><td>63488398f397b55552f484409b86d812dacde99a</td><td>2 School of Computing, National University of Singapore</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e</td><td>2015 Wiley Periodicals, Inc</td><td></td></tr><tr><td>83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e</td><td>2015 Wiley Periodicals, Inc</td><td></td></tr><tr><td>01cc8a712e67384f9ef9f30580b7415bfd71e980</td><td>2Program in Neuroscience, and 3Rotman Research Institute, University of Toronto, Toronto, Ontario M5S 3G3, Canada</td><td>Department of Psychology</td></tr><tr><td>c7f752eea91bf5495a4f6e6a67f14800ec246d08</td><td>A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER</td><td></td></tr><tr><td>3d68cedd80babfbb04ab197a0b69054e3c196cd9</td><td>A Thesis submitted to McGill University in partial fulfillment of the requirements for the</td><td></td></tr><tr><td>25337690fed69033ef1ce6944e5b78c4f06ffb81</td><td>A dissertation submitted to the Faculty of the University of Delaware in partial</td><td></td></tr><tr><td>c32f04ccde4f11f8717189f056209eb091075254</td><td>A dissertation submitted to the University of Bristol in accordance with the requirements</td><td></td></tr><tr><td>e0244a8356b57a5721c101ead351924bcfb2eef4</td><td>A. van Kleef, University of Amsterdam</td><td>Department of Social Psychology</td></tr><tr><td>e82360682c4da11f136f3fccb73a31d7fd195694</td><td>AALTO UNIVERSITY</td><td></td></tr><tr><td>33402ee078a61c7d019b1543bb11cc127c2462d2</td><td>ACRV, The Australian National University University of Oxford QUVA Lab, University of Amsterdam</td><td></td></tr><tr><td>0559fb9f5e8627fecc026c8ee6f7ad30e54ee929</td><td>ADSIP Research Centre, University of Central Lancashire</td><td></td></tr><tr><td>ddf55fc9cf57dabf4eccbf9daab52108df5b69aa</td><td>ADSIP Research Centre, University of Central Lancashire</td><td></td></tr><tr><td>0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58</td><td>AI Institute</td><td></td></tr><tr><td>3661a34f302883c759b9fa2ce03de0c7173d2bb2</td><td>AI Institute</td><td></td></tr><tr><td>e90e12e77cab78ba8f8f657db2bf4ae3dabd5166</td><td>AI Institute</td><td></td></tr><tr><td>361c9ba853c7d69058ddc0f32cdbe94fbc2166d5</td><td>ALICE Institute</td><td></td></tr><tr><td>8efda5708bbcf658d4f567e3866e3549fe045bbb</td><td>ALICE Institute</td><td></td></tr><tr><td>76b11c281ac47fe6d95e124673a408ee9eb568e3</td><td>ALPHA COLLEGE OF ENGINEERING, CHENNAI</td><td></td></tr><tr><td>1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c</td><td>ARISTOTLE UNIVERSITY OF THESSALONIKI</td><td></td></tr><tr><td>8aae23847e1beb4a6d51881750ce36822ca7ed0b</td><td>ATR Human Information Processing Research Laboratories</td><td></td></tr><tr><td>45c31cde87258414f33412b3b12fc5bec7cb3ba9</td><td>ATR Human Information Processing Research Laboratory</td><td></td></tr><tr><td>8aae23847e1beb4a6d51881750ce36822ca7ed0b</td><td>ATR Interpreting Telecommunications Research Laboratories</td><td></td></tr><tr><td>7ef44b7c2b5533d00001ae81f9293bdb592f1146</td><td>Aalborg University, Denmark</td><td></td></tr><tr><td>087002ab569e35432cdeb8e63b2c94f1abc53ea9</td><td>Aalborg University, Denmark</td><td>Department of Communication and Psychology</td></tr><tr><td>f6cf2108ec9d0f59124454d88045173aa328bd2e</td><td>Aalen University, Germany</td><td></td></tr><tr><td>08d41d2f68a2bf0091dc373573ca379de9b16385</td><td>Aalto University, Espoo, Finland</td><td>Department of Computer Science</td></tr><tr><td>8cc07ae9510854ec6e79190cc150f9f1fe98a238</td><td>Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark</td><td>Department of Engineering</td></tr><tr><td>032825000c03b8ab4c207e1af4daeb1f225eb025</td><td>Abdul WaliKhan University, Mardan, KPK, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>9264b390aa00521f9bd01095ba0ba4b42bf84d7e</td><td>Aberystwyth University, UK</td><td></td></tr><tr><td>d9ef1a80738bbdd35655c320761f95ee609b8f49</td><td>Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India</td><td></td></tr><tr><td>3d143cfab13ecd9c485f19d988242e7240660c86</td><td>Academic Center for Computing and Media Studies, Kyoto University, Kyoto 606-8501, Japan</td><td></td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Academy of Sciences (Grant No. KGZD-EW-T03), and project MMT-8115038 of the Shun Hing Institute of</td><td></td></tr><tr><td>458677de7910a5455283a2be99f776a834449f61</td><td>Achariya college of Engineering Technology</td><td></td></tr><tr><td>078d507703fc0ac4bf8ca758be101e75ea286c80</td><td>Acharya Institute Of Technology</td><td></td></tr><tr><td>4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6</td><td>Address correspondence to: Karen L. Schmidt, University of</td><td>Department of Psychiatry</td></tr><tr><td>1134a6be0f469ff2c8caab266bbdacf482f32179</td><td>Aditya College of Engineering, Surampalem, East Godavari</td><td>Department of Computer Science and Engineering</td></tr><tr><td>0861f86fb65aa915fbfbe918b28aabf31ffba364</td><td>Aditya Institute of Technology And Management, Tekkali, Srikakulam, Andhra Pradesh</td><td>Department of CSE</td></tr><tr><td>68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5</td><td>Aditya institute of Technology and Management, Tekkalli-532 201, A.P</td><td></td></tr><tr><td>7808937b46acad36e43c30ae4e9f3fd57462853d</td><td>Adobe Systems, Inc., 345 Park Ave, San Jose, CA</td><td></td></tr><tr><td>0d3bb75852098b25d90f31d2f48fd0cb4944702b</td><td>Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore</td><td></td></tr><tr><td>34ce703b7e79e3072eed7f92239a4c08517b0c55</td><td>Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, Singapore</td><td></td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Advanced Engineering, The Chinese University of Hong Kong</td><td></td></tr><tr><td>2cc4ae2e864321cdab13c90144d4810464b24275</td><td>Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul</td><td></td></tr><tr><td>5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6</td><td>Affiliated to Anna university, Chennai</td><td></td></tr><tr><td>beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2</td><td>Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India</td><td></td></tr><tr><td>68d40176e878ebffbc01ffb0556e8cb2756dd9e9</td><td>AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of</td><td></td></tr><tr><td>eeb6d084f9906c53ec8da8c34583105ab5ab8284</td><td>Akita Prefectural University</td><td></td></tr><tr><td>37ef18d71c1ca71c0a33fc625ef439391926bfbb</td><td>Akita Prefectural University, Yurihonjo, Japan</td><td></td></tr><tr><td>eeb6d084f9906c53ec8da8c34583105ab5ab8284</td><td>Akita University</td><td></td></tr><tr><td>37ef18d71c1ca71c0a33fc625ef439391926bfbb</td><td>Akita University, Akita, Japan</td><td></td></tr><tr><td>718d3137adba9e3078fa1f698020b666449f3336</td><td>Al-Khwarizmi Institute of Computer Science</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Alan W Black (Carnegie Mellon University</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Alex Waibel (Carnegie Mellon University</td><td></td></tr><tr><td>6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2</td><td>Alexandria University, Alexandria, Egypt</td><td></td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>Alexandria University, Alexandria, Egypt</td><td>Electrical Engineering Department</td></tr><tr><td>bd0201b32e7eca7818468f2b5cb1fb4374de75b9</td><td>Alin Moldoveanu, Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest</td><td></td></tr><tr><td>f08e425c2fce277aedb51d93757839900d591008</td><td>Allen Institute for Arti cial Intelligence</td><td></td></tr><tr><td>fa90b825346a51562d42f6b59a343b98ea2e501a</td><td>Allen Institute for Arti cial Intelligence</td><td></td></tr><tr><td>057d5f66a873ec80f8ae2603f937b671030035e6</td><td>Allen Institute for Arti cial Intelligence (AI</td><td></td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>Allen Institute for Arti cial Intelligence (AI2), Seattle, WA</td><td></td></tr><tr><td>02239ae5e922075a354169f75f684cad8fdfd5ab</td><td>Allen Institute for Arti cial Intelligence (AI2), Seattle, WA</td><td></td></tr><tr><td>38f7f3c72e582e116f6f079ec9ae738894785b96</td><td>Amal Jyothi College of Engineering, Kanjirappally, India</td><td>Department of CSE</td></tr><tr><td>009a18d04a5e3ec23f8ffcfc940402fd8ec9488f</td><td>Amazon, Inc</td><td></td></tr><tr><td>e0244a8356b57a5721c101ead351924bcfb2eef4</td><td>American University</td><td></td></tr><tr><td>4b7c110987c1d89109355b04f8597ce427a7cd72</td><td>American University, Washington, DC, USA</td><td>Department of Psychology and Center for Behavioral Neuroscience</td></tr><tr><td>00075519a794ea546b2ca3ca105e2f65e2f5f471</td><td>Amherst College</td><td></td></tr><tr><td>841bf196ee0086c805bd5d1d0bddfadc87e424ec</td><td>Amirkabir University of Technology</td><td></td></tr><tr><td>2d79d338c114ece1d97cde1aa06ab4cf17d38254</td><td>Amirkabir University of Technology, University of Southern California</td><td></td></tr><tr><td>0ce8a45a77e797e9d52604c29f4c1e227f604080</td><td>Amirkabir University of Technology, Tehran</td><td>Department of Electrical Engineering</td></tr><tr><td>e73b9b16adcf4339ff4d6723e61502489c50c2d9</td><td>Amirkabir University of Technology, Tehran</td><td>Department of Electrical Engineering</td></tr><tr><td>ceb763d6657a07b47e48e8a2956bcfdf2cf10818</td><td>Amirkabir University of Technology, Tehran</td><td>Department of Electrical Engineering</td></tr><tr><td>ae2c71080b0e17dee4e5a019d87585f2987f0508</td><td>Amirkabir University of Technology, Tehran, Iran</td><td>Department of Biomedical Engineering</td></tr><tr><td>ae2c71080b0e17dee4e5a019d87585f2987f0508</td><td>Amirkabir University of Technology, Tehran, Iran</td><td>Address: Department of Biomedical Engineering</td></tr><tr><td>488d3e32d046232680cc0ba80ce3879f92f35cac</td><td>Amirkabir University of Technology, Tehran. Iran</td><td>Department of Electrical Engineering</td></tr><tr><td>488d3e32d046232680cc0ba80ce3879f92f35cac</td><td>Amirkabir University of Technology, Tehran. Iran</td><td>Department of Electrical Engineering</td></tr><tr><td>33548531f9ed2ce6f87b3a1caad122c97f1fd2e9</td><td>Amity University</td><td></td></tr><tr><td>33548531f9ed2ce6f87b3a1caad122c97f1fd2e9</td><td>Amity University</td><td></td></tr><tr><td>33548531f9ed2ce6f87b3a1caad122c97f1fd2e9</td><td>Amity University</td><td></td></tr><tr><td>23fd653b094c7e4591a95506416a72aeb50a32b5</td><td>Amity University, Lucknow, India</td><td></td></tr><tr><td>23fd653b094c7e4591a95506416a72aeb50a32b5</td><td>Amity University, Lucknow, India</td><td></td></tr><tr><td>312b2566e315dd6e65bd42cfcbe4d919159de8a1</td><td>Amity University, Noida, India</td><td></td></tr><tr><td>44fbbaea6271e47ace47c27701ed05e15da8f7cf</td><td>Amsterdam; and 3Center for Experimental Economics and Political Decision Making, University of Amsterdam</td><td></td></tr><tr><td>4157e45f616233a0874f54a59c3df001b9646cd7</td><td>Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; 3The Wellcome</td><td></td></tr><tr><td>af62621816fbbe7582a7d237ebae1a4d68fcf97d</td><td>AncyRijaV, Author is currently pursuing M.E (Software Engineering) in Vins Christian College of</td><td></td></tr><tr><td>27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba</td><td>Anjuman College of Engineering and Technology, Sadar, Nagpur, India</td><td></td></tr><tr><td>2e1415a814ae9abace5550e4893e13bd988c7ba1</td><td>Anna University</td><td></td></tr><tr><td>3fde656343d3fd4223e08e0bc835552bff4bda40</td><td>Anna University Chennai, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>f69de2b6770f0a8de6d3ec1a65cb7996b3c99317</td><td>Anna University, Chennai</td><td></td></tr><tr><td>499343a2fd9421dca608d206e25e53be84489f44</td><td>Annamacharya Institute of Technology and Sciences, Tirupati, India</td><td>Department of ECE</td></tr><tr><td>a57ee5a8fb7618004dd1def8e14ef97aadaaeef5</td><td>Applied computing and mechanics laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland</td><td></td></tr><tr><td>0dbacb4fd069462841ebb26e1454b4d147cd8e98</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>3cc46bf79fb9225cf308815c7d41c8dd5625cc29</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>0be2245b2b016de1dcce75ffb3371a5e4b1e731b</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>b3658514a0729694d86a8b89c875a66cde20480c</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>b43b6551ecc556557b63edb8b0dc39901ed0343b</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>c00df53bd46f78ae925c5768d46080159d4ef87d</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>8f5ce25e6e1047e1bf5b782d045e1dac29ca747e</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>8f92cccacf2c84f5d69db3597a7c2670d93be781</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>09cf3f1764ab1029f3a7d57b70ae5d5954486d69</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>532f7ec8e0c8f7331417dd4a45dc2e8930874066</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>016f49a54b79ec787e701cc8c7d0280273f9b1ef</td><td>Aristotle University of Thessaloniki</td><td>Department of Informatics</td></tr><tr><td>52885fa403efbab5ef21274282edd98b9ca70cbf</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>52885fa403efbab5ef21274282edd98b9ca70cbf</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>d5afd7b76f1391321a1340a19ba63eec9e0f9833</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>d5afd7b76f1391321a1340a19ba63eec9e0f9833</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>c5f1ae9f46dc44624591db3d5e9f90a6a8391111</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>8c6b9c9c26ead75ce549a57c4fd0a12b46142848</td><td>Aristotle University of Thessaloniki</td><td></td></tr><tr><td>3e04feb0b6392f94554f6d18e24fadba1a28b65f</td><td>Aristotle University of Thessaloniki GR</td><td>Department of Informatics</td></tr><tr><td>131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1</td><td>Aristotle University of Thessaloniki, Box 451, 54124 Thessaloniki, Greece</td><td></td></tr><tr><td>a2eb90e334575d9b435c01de4f4bf42d2464effc</td><td>Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece</td><td></td></tr><tr><td>6c6bb85a08b0bdc50cf8f98408d790ccdb418798</td><td>Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece</td><td></td></tr><tr><td>ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7</td><td>Aristotle University of Thessaloniki, Greece</td><td></td></tr><tr><td>2a65d7d5336b377b7f5a98855767dd48fa516c0f</td><td>Aristotle University of Thessaloniki, Greece</td><td>ECE Department</td></tr><tr><td>2d9e58ea582e054e9d690afca8b6a554c3687ce6</td><td>Aristotle University of Thessaloniki, Greece</td><td>ECE Department</td></tr><tr><td>5b9d41e2985fa815c0f38a2563cca4311ce82954</td><td>Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece</td><td></td></tr><tr><td>e7b2b0538731adaacb2255235e0a07d5ccf09189</td><td>Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece</td><td></td></tr><tr><td>4896909796f9bd2f70a2cb24bf18daacd6a12128</td><td>Aristotle University of Thessaloniki, Thessaloniki, Greece</td><td></td></tr><tr><td>62374b9e0e814e672db75c2c00f0023f58ef442c</td><td>AristotleUniversityofThessaloniki</td><td>DepartmentofInformatics</td></tr><tr><td>5f6ab4543cc38f23d0339e3037a952df7bcf696b</td><td>Arizona State University</td><td></td></tr><tr><td>5f6ab4543cc38f23d0339e3037a952df7bcf696b</td><td>Arizona State University</td><td></td></tr><tr><td>5f6ab4543cc38f23d0339e3037a952df7bcf696b</td><td>Arizona State University</td><td></td></tr><tr><td>9f499948121abb47b31ca904030243e924585d5f</td><td>Arizona State University</td><td></td></tr><tr><td>9f499948121abb47b31ca904030243e924585d5f</td><td>Arizona State University</td><td></td></tr><tr><td>9f499948121abb47b31ca904030243e924585d5f</td><td>Arizona State University</td><td></td></tr><tr><td>06f39834e870278243dda826658319be2d5d8ded</td><td>Arizona State University</td><td></td></tr><tr><td>468c8f09d2ad8b558b65d11ec5ad49208c4da2f2</td><td>Arizona State University</td><td></td></tr><tr><td>468c8f09d2ad8b558b65d11ec5ad49208c4da2f2</td><td>Arizona State University</td><td></td></tr><tr><td>48fea82b247641c79e1994f4ac24cad6b6275972</td><td>Arizona State University</td><td></td></tr><tr><td>4b4ecc1cb7f048235605975ab37bb694d69f63e5</td><td>Arizona State University, AZ, USA</td><td></td></tr><tr><td>bd9c9729475ba7e3b255e24e7478a5acb393c8e9</td><td>Arizona State University, Phoenix, Arizona</td><td></td></tr><tr><td>ce56be1acffda599dec6cc2af2b35600488846c9</td><td>Arizona State University, Tempe AZ</td><td>Department of Computer Science</td></tr><tr><td>15d653972d176963ef0ad2cc582d3b35ca542673</td><td>Arizona State University, Tempe AZ</td><td></td></tr><tr><td>5b721f86f4a394f05350641e639a9d6cb2046c45</td><td>Army Research Laboratory</td><td></td></tr><tr><td>ea890846912f16a0f3a860fce289596a7dac575f</td><td>Aron Szekely, University of Oxford, UK</td><td></td></tr><tr><td>989332c5f1b22604d6bb1f78e606cb6b1f694e1a</td><td>Arti cial Intelligence Institute, China</td><td></td></tr><tr><td>45215e330a4251801877070c85c81f42c2da60fb</td><td>Arts Media and Engineering, Arizona State University</td><td></td></tr><tr><td>ed08ac6da6f8ead590b390b1d14e8a9b97370794</td><td>Arts, Commerce and Science College, Gangakhed, M.S, India</td><td>Department of C.S.</td></tr><tr><td>35e87e06cf19908855a16ede8c79a0d3d7687b5c</td><td>Arts, Science and Commerce College, Chopda</td><td></td></tr><tr><td>656aeb92e4f0e280576cbac57d4abbfe6f9439ea</td><td>Asia Pacific University of Technology and Innovation, Kuala Lumpur 57000, Malaysia</td><td></td></tr><tr><td>a702fc36f0644a958c08de169b763b9927c175eb</td><td>Asia University, Taichung, Taiwan</td><td>Department of Applied Informatics and Multimedia</td></tr><tr><td>512befa10b9b704c9368c2fbffe0dc3efb1ba1bf</td><td>Asian Institute of Technology, Pathumthani, Thailand</td><td></td></tr><tr><td>3cd8ab6bb4b038454861a36d5396f4787a21cc68</td><td>Asian University, Taichung, Taiwan</td><td>Department of Applied Informatics and Multimedia</td></tr><tr><td>47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa</td><td>Assam University, Silchar-788011 Assam University, Silchar</td><td></td></tr><tr><td>50eb2ee977f0f53ab4b39edc4be6b760a2b05f96</td><td>Assistant Lecturer, College of Science, Baghdad University, Baghdad, Iraq</td><td>Computer Science Department</td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>Assiut University, Assiut 71515, Egypt</td><td>Electrical Engineering Department</td></tr><tr><td>df054fa8ee6bb7d2a50909939d90ef417c73604c</td><td>Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany</td><td></td></tr><tr><td>182470fd0c18d0c5979dff75d089f1da176ceeeb</td><td>Augsburg University, Germany</td><td></td></tr><tr><td>11a2ef92b6238055cf3f6dcac0ff49b7b803aee3</td><td>Australian Centre for Visual Technologies, The University of Adelaide, Australia (b</td><td></td></tr><tr><td>8820d1d3fa73cde623662d92ecf2e3faf1e3f328</td><td>Australian Institute of Sport</td><td></td></tr><tr><td>0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad</td><td>Australian National University</td><td></td></tr><tr><td>9b684e2e2bb43862f69b12c6be94db0e7a756187</td><td>Australian National University</td><td></td></tr><tr><td>0573f3d2754df3a717368a6cbcd940e105d67f0b</td><td>Australian National University</td><td></td></tr><tr><td>0573f3d2754df3a717368a6cbcd940e105d67f0b</td><td>Australian National University</td><td></td></tr><tr><td>0573f3d2754df3a717368a6cbcd940e105d67f0b</td><td>Australian National University</td><td></td></tr><tr><td>060034b59275c13746413ca9c67d6304cba50da6</td><td>Australian National University</td><td></td></tr><tr><td>a7191958e806fce2505a057196ccb01ea763b6ea</td><td>Australian National University</td><td></td></tr><tr><td>fffa2943808509fdbd2fc817cc5366752e57664a</td><td>Australian National University</td><td></td></tr><tr><td>c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1</td><td>Australian National University</td><td></td></tr><tr><td>33695e0779e67c7722449e9a3e2e55fde64cfd99</td><td>Australian National University and NICTA</td><td></td></tr><tr><td>306127c3197eb5544ab1e1bf8279a01e0df26120</td><td>Australian National University and NICTA, Australia</td><td></td></tr><tr><td>b1df214e0f1c5065f53054195cd15012e660490a</td><td>Australian National University and NICTA, Australia</td><td></td></tr><tr><td>062d0813815c2b9864cd9bb4f5a1dc2c580e0d90</td><td>Australian National University, 2CVLab, EPFL, Switzerland, 3Smart Vision Systems, CSIRO</td><td></td></tr><tr><td>1dc241ee162db246882f366644171c11f7aed96d</td><td>Australian National University, 2Smart Vision Systems, CSIRO, 3CVLab, EPFL</td><td></td></tr><tr><td>0641dbee7202d07b6c78a39eecd312c17607412e</td><td>Australian National University, Canberra</td><td></td></tr><tr><td>87309bdb2b9d1fb8916303e3866eca6e3452c27d</td><td>Australian National University, Canberra, ACT 0200, Australia</td><td></td></tr><tr><td>8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f</td><td>Australian National University, Canberra, Australia</td><td></td></tr><tr><td>b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3</td><td>Australian National University, and NICTA</td><td></td></tr><tr><td>b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3</td><td>Australian National University, and NICTA</td><td></td></tr><tr><td>682760f2f767fb47e1e2ca35db3becbb6153756f</td><td>Author s addresses: X. Peng, University of Rochester; L. Chi</td><td>Data Science Department</td></tr><tr><td>16bce9f940bb01aa5ec961892cc021d4664eb9e4</td><td>Author s addresses: Z. Li and D. Gong, Shenzhen Institutes of Advanced Technology, Chinese Academy</td><td></td></tr><tr><td>d671a210990f67eba9b2d3dda8c2cb91575b4a7a</td><td>Autonomous University of Barcelona</td><td></td></tr><tr><td>4439746eeb7c7328beba3f3ef47dc67fbb52bcb3</td><td>Azad University of Qazvin</td><td></td></tr><tr><td>e73b9b16adcf4339ff4d6723e61502489c50c2d9</td><td>Azad University, Qazvin, Iran</td><td></td></tr><tr><td>632441c9324cd29489cee3da773a9064a46ae26b</td><td>B. Eng., Zhejiang University</td><td></td></tr><tr><td>00dc942f23f2d52ab8c8b76b6016d9deed8c468d</td><td>B. S. Rochester Institute of Technology</td><td></td></tr><tr><td>13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a</td><td>B. Tech., Indian Institute of Technology Jodhpur</td><td></td></tr><tr><td>87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5</td><td>B.A. Earlham College, Richmond Indiana</td><td></td></tr><tr><td>2bbbbe1873ad2800954058c749a00f30fe61ab17</td><td>B.E, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India</td><td>Department of CSE</td></tr><tr><td>1e5ca4183929929a4e6f09b1e1d54823b8217b8e</td><td>B.Eng., Nankai University</td><td></td></tr><tr><td>348a16b10d140861ece327886b85d96cce95711e</td><td>B.S. (Cornell University</td><td></td></tr><tr><td>ff5dd6f96e108d8233220cc262bc282229c1a582</td><td>B.S. Abdur Rahman University, Chennai-48, India</td><td>Department of Information Technology</td></tr><tr><td>ff5dd6f96e108d8233220cc262bc282229c1a582</td><td>B.S. Abdur Rahman University, Chennai-48, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>d082f35534932dfa1b034499fc603f299645862d</td><td>B.S. University of Central Florida</td><td></td></tr><tr><td>580e48d3e7fe1ae0ceed2137976139852b1755df</td><td>B.S. University of Indonesia</td><td></td></tr><tr><td>80135ed7e34ac1dcc7f858f880edc699a920bf53</td><td>B.S., Computer Engineering, Bo gazi ci University</td><td></td></tr><tr><td>d231a81b38fde73bdbf13cfec57d6652f8546c3c</td><td>B.S., E.E., Bo azi i University</td><td></td></tr><tr><td>eed7920682789a9afd0de4efd726cd9a706940c8</td><td>B.S., Pennsylvania State University</td><td></td></tr><tr><td>5e0e516226413ea1e973f1a24e2fdedde98e7ec0</td><td>B.S./M.S. Brandeis University</td><td></td></tr><tr><td>287795991fad3c61d6058352879c7d7ae1fdd2b6</td><td>B.S.Abdur Rahman University B.S.Abdur Rahman University</td><td></td></tr><tr><td>db1f48a7e11174d4a724a4edb3a0f1571d649670</td><td>B.Sc., University of Science and Technology of China</td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>B.Tech (C.S.E), Bharath University, Chennai</td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>B.Tech (C.S.E), Bharath University, Chennai</td><td></td></tr><tr><td>eb70c38a350d13ea6b54dc9ebae0b64171d813c9</td><td>B.Tech., Electronics Engineering, Institute of Technology, Banaras Hindu University</td><td></td></tr><tr><td>4abaebe5137d40c9fcb72711cdefdf13d9fc3e62</td><td>BECS, Aalto University School of Science and Technology, Finland</td><td></td></tr><tr><td>3e3a87eb24628ab075a3d2bde3abfd185591aa4c</td><td>BECS, Aalto University, Helsinki, Finland</td><td></td></tr><tr><td>60a006bdfe5b8bf3243404fae8a5f4a9d58fa892</td><td>BRIC, University of North Carolina at Chapel Hill, NC 27599, USA</td><td></td></tr><tr><td>5f676d6eca4c72d1a3f3acf5a4081c29140650fb</td><td>BRIC, University of North Carolina at Chapel Hill, NC 27599, USA</td><td></td></tr><tr><td>76e2d7621019bd45a5851740bd2742afdcf62837</td><td>Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca</td><td>Computer Science Department</td></tr><tr><td>032825000c03b8ab4c207e1af4daeb1f225eb025</td><td>Bacha Khan University, Charsadda, KPK, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>ec90d333588421764dff55658a73bbd3ea3016d2</td><td>Bacha Khan University, Charsadda, KPK, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>6d618657fa5a584d805b562302fe1090957194ba</td><td>Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria</td><td></td></tr><tr><td>c7de0c85432ad17a284b5b97c4f36c23f506d9d1</td><td>Bahc es ehir University, Istanbul, Turkey</td><td>Department of Electrical and Electronics Engineering</td></tr><tr><td>9dcc6dde8d9f132577290d92a1e76b5decc6d755</td><td>Bahcesehir University</td><td>Department of Electrical and Electronics Eng</td></tr><tr><td>ce933821661a0139a329e6c8243e335bfa1022b1</td><td>Baidu IDL and Tsinghua University</td><td></td></tr><tr><td>5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f</td><td>Baidu Research Institute of Deep Learning</td><td></td></tr><tr><td>56a677c889e0e2c9f68ab8ca42a7e63acf986229</td><td>Baidu Research, USA 3John Hopkins University</td><td></td></tr><tr><td>4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d</td><td>Baidu Research, USA 3John Hopkins University</td><td></td></tr><tr><td>4b7c110987c1d89109355b04f8597ce427a7cd72</td><td>Baingio Pinna, University of</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Banaras Hindu University</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Banaras Hindu University</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Banaras Hindu University</td><td></td></tr><tr><td>8f5facdc0a2a79283864aad03edc702e2a400346</td><td>Bangalore Institute of Technology</td><td>Department of Elecronics and Instrumentation Engg</td></tr><tr><td>e5eb7fa8c9a812d402facfe8e4672670541ed108</td><td>Bangladesh University of Engineering and Technology(BUET</td><td></td></tr><tr><td>fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5</td><td>Bapuji Institute of Engineering and Technology Davanagere, Karnataka, India</td><td>Department of Biomedical Engineering</td></tr><tr><td>c4934d9f9c41dbc46f4173aad2775432fe02e0e6</td><td>Bar Ilan University, Israel</td><td></td></tr><tr><td>4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9</td><td>Bas kent University</td><td></td></tr><tr><td>7aa062c6c90dba866273f5edd413075b90077b51</td><td>Baze University, Abuja, Nigeria</td><td>Department of Computer Science and IT</td></tr><tr><td>56f812661c3248ed28859d3b2b39e033b04ae6ae</td><td>Beckman Institute</td><td></td></tr><tr><td>56f812661c3248ed28859d3b2b39e033b04ae6ae</td><td>Beckman Institute</td><td></td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>Beckman Institute</td><td></td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>Beckman Institute</td><td></td></tr><tr><td>5185f2a40836a754baaa7419a1abdd1e7ffaf2ad</td><td>Beckman Institute</td><td></td></tr><tr><td>75d2ecbbcc934563dff6b39821605dc6f2d5ffcc</td><td>Beckman Institute</td><td></td></tr><tr><td>1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2</td><td>Beckman Institute</td><td></td></tr><tr><td>4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c</td><td>Beckman Institute for Advanced Science and Technology</td><td></td></tr><tr><td>1d19c6857e798943cd0ecd110a7a0d514c671fec</td><td>Beckman Institute for Advanced Science and Technology</td><td></td></tr><tr><td>f87b22e7f0c66225824a99cada71f9b3e66b5742</td><td>Beckman Institute, University of Illinois at Urbana-Champaign</td><td></td></tr><tr><td>9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, IL USA</td><td></td></tr><tr><td>0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA</td><td></td></tr><tr><td>6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, IL, USA</td><td></td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>6308e9c991125ee6734baa3ec93c697211237df8</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>eff87ecafed67cc6fc4f661cb077fed5440994bb</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>288d2704205d9ca68660b9f3a8fda17e18329c13</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA</td><td></td></tr><tr><td>539287d8967cdeb3ef60d60157ee93e8724efcac</td><td>Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA</td><td></td></tr><tr><td>9ac43a98fe6fde668afb4fcc115e4ee353a6732d</td><td>Beckmann Institute, University of Illinois at Urbana-Champaign, USA</td><td></td></tr><tr><td>85fd2bda5eb3afe68a5a78c30297064aec1361f6</td><td>Behavioural Science Group, Warwick Business School, University of Warwick; and 4Faculty of Psychology</td><td></td></tr><tr><td>e7cac91da51b78eb4a28e194d3f599f95742e2a2</td><td>Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands</td><td></td></tr><tr><td>7c2c9b083817f7a779d819afee383599d2e97ed8</td><td>Beihang University</td><td></td></tr><tr><td>d7d166aee5369b79ea2d71a6edd73b7599597aaa</td><td>Beihang University 2Gri th University 3University of York, UK</td><td></td></tr><tr><td>40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b</td><td>Beihang University, 2The Chinese University of Hong Kong, 3Sensetime Group Limited</td><td></td></tr><tr><td>5b6593a6497868a0d19312952d2b753232414c23</td><td>Beihang University, Beijing 100191, China</td><td></td></tr><tr><td>570308801ff9614191cfbfd7da88d41fb441b423</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>457cf73263d80a1a1338dc750ce9a50313745d1d</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>b8375ff50b8a6f1a10dd809129a18df96888ac8b</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>b191aa2c5b8ece06c221c3a4a0914e8157a16129</td><td>Beihang University, Beijing, China</td><td></td></tr><tr><td>928b8eb47288a05611c140d02441660277a7ed54</td><td>Beijing Institute of Technology</td><td></td></tr><tr><td>713db3874b77212492d75fb100a345949f3d3235</td><td>Beijing Institute of Technology</td><td></td></tr><tr><td>0ea7b7fff090c707684fd4dc13e0a8f39b300a97</td><td>Beijing Institute of Technology University, P. R. China</td><td></td></tr><tr><td>2a35d20b2c0a045ea84723f328321c18be6f555c</td><td>Beijing Institute of Technology, Beijing 100081 CHINA</td><td></td></tr><tr><td>2a35d20b2c0a045ea84723f328321c18be6f555c</td><td>Beijing Institute of Technology, Beijing 100081 CHINA</td><td></td></tr><tr><td>2a35d20b2c0a045ea84723f328321c18be6f555c</td><td>Beijing Institute of Technology, Beijing 100081 CHINA</td><td></td></tr><tr><td>a090d61bfb2c3f380c01c0774ea17929998e0c96</td><td>Beijing Institute of Technology, Beijing 100081, PR China</td><td></td></tr><tr><td>b3b532e8ea6304446b1623e83b0b9a96968f926c</td><td>Beijing Institute of Technology, Beijing, China</td><td></td></tr><tr><td>c829be73584966e3162f7ccae72d9284a2ebf358</td><td>Beijing Institute of Technology, Beijing, China</td><td></td></tr><tr><td>14d72dc9f78d65534c68c3ed57305f14bd4b5753</td><td>Beijing Institute of Technology, China</td><td>Department of Electronic Engineering</td></tr><tr><td>b5968e7bb23f5f03213178c22fd2e47af3afa04c</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>b5930275813a7e7a1510035a58dd7ba7612943bc</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>b42a97fb47bcd6bfa72e130c08960a77ee96f9ab</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>0a4fc9016aacae9cdf40663a75045b71e64a70c9</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>64782a2bc5da11b1b18ca20cecf7bdc26a538d68</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>a660390654498dff2470667b64ea656668c98ecc</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>e726174d516605f80ff359e71f68b6e8e6ec6d5d</td><td>Beijing Jiaotong University</td><td></td></tr><tr><td>35e0256b33212ddad2db548484c595334f15b4da</td><td>Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, China</td><td></td></tr><tr><td>6fbb179a4ad39790f4558dd32316b9f2818cd106</td><td>Beijing Laboratory of IIT, School of Computer Science, Beijing Institute of Technology, Beijing, China</td><td></td></tr><tr><td>3bb6570d81685b769dc9e74b6e4958894087f3f1</td><td>Beijing National Research Center for Information Science and Technology</td><td></td></tr><tr><td>7e18b5f5b678aebc8df6246716bf63ea5d8d714e</td><td>Beijing Normal University, China</td><td></td></tr><tr><td>16e95a907b016951da7c9327927bb039534151da</td><td>Beijing Union University, 100101, China</td><td></td></tr><tr><td>571b83f7fc01163383e6ca6a9791aea79cafa7dd</td><td>Beijing University of Chemical Technology, China</td><td></td></tr><tr><td>3dfb822e16328e0f98a47209d7ecd242e4211f82</td><td>Beijing University of Posts and Telecommunications</td><td></td></tr><tr><td>25c3cdbde7054fbc647d8be0d746373e7b64d150</td><td>Beijing University of Posts and Telecommunications</td><td></td></tr><tr><td>0294f992f8dfd8748703f953925f9aee14e1b2a2</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>80be8624771104ff4838dcba9629bacfe6b3ea09</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>5c820e47981d21c9dddde8d2f8020146e600368f</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>d3b0839324d0091e70ce34f44c979b9366547327</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>cdef0eaff4a3c168290d238999fc066ebc3a93e8</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>1275d6a800f8cf93c092603175fdad362b69c191</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>49820ae612b3c0590a8a78a725f4f378cb605cd1</td><td>Beijing University of Posts and Telecommunications, Beijing, China</td><td></td></tr><tr><td>a51882cfd0706512bf50e12c0a7dd0775285030d</td><td>Beijing University of Posts and Telecommunications, Beijing, China. 2School of</td><td></td></tr><tr><td>17579791ead67262fcfb62ed8765e115fb5eca6f</td><td>Beijing University of Posts and Telecommunications, Beijing, P.R. China</td><td></td></tr><tr><td>e0dc6f1b740479098c1d397a7bc0962991b5e294</td><td>Beijing University of Technology, Beijing 100022, China</td><td></td></tr><tr><td>7d9fe410f24142d2057695ee1d6015fb1d347d4a</td><td>Beijing, China</td><td>Computer and Information Engineering Department of Beijing Technology and Business University</td></tr><tr><td>7d9fe410f24142d2057695ee1d6015fb1d347d4a</td><td>Beijing, China</td><td>Computer and Information Engineering Department of Beijing Technology and Business University</td></tr><tr><td>1feeab271621128fe864e4c64bab9b2e2d0ed1f1</td><td>BeingTogether Centre, Institute for Media Innovation, Singapore 637553, Singapore</td><td></td></tr><tr><td>a9fc23d612e848250d5b675e064dba98f05ad0d9</td><td>Benha University, Egypt</td><td></td></tr><tr><td>a9fc23d612e848250d5b675e064dba98f05ad0d9</td><td>Benha University, Egypt</td><td></td></tr><tr><td>2c1f8ddbfbb224271253a27fed0c2425599dfe47</td><td>Berlin Institute of Technology</td><td></td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>Bharath Institute of Science and Technology</td><td>MCA Department</td></tr><tr><td>363ca0a3f908859b1b55c2ff77cc900957653748</td><td>Bharath Institute of Science and Technology</td><td>MCA Department</td></tr><tr><td>23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e</td><td>Bharath University, India</td><td>Computer Science Department</td></tr><tr><td>23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e</td><td>Bharath University, India</td><td>Computer Science Department</td></tr><tr><td>9c7444c6949427994b430787a153d5cceff46d5c</td><td>Bharathidasan University, Trichy, India</td><td></td></tr><tr><td>18cd79f3c93b74d856bff6da92bfc87be1109f80</td><td>Bharti Vidyapeeth Deemed University, Pune, India</td><td>Department of Information Tech.</td></tr><tr><td>0da4c3d898ca2fff9e549d18f513f4898e960aca</td><td>Bibliographic details for the item, including a URL</td><td></td></tr><tr><td>4ed54d5093d240cc3644e4212f162a11ae7d1e3b</td><td>Bielefeld University</td><td></td></tr><tr><td>1921e0a97904bdf61e17a165ab159443414308ed</td><td>Bielefeld University</td><td></td></tr><tr><td>2e1fd8d57425b727fd850d7710d38194fa6e2654</td><td>Bielefeld University</td><td></td></tr><tr><td>62fd622b3ca97eb5577fd423fb9efde9a849cbef</td><td>Big Data Institute, University of Oxford</td><td></td></tr><tr><td>928b8eb47288a05611c140d02441660277a7ed54</td><td>Big Data Research Center, University of Electronic Science and Technology of China</td><td></td></tr><tr><td>202d8d93b7b747cdbd6e24e5a919640f8d16298a</td><td>Bilgi University, Dolapdere, Istanbul, TR</td><td>Computer Science Department</td></tr><tr><td>0b6616f3ebff461e4b6c68205fcef1dae43e2a1a</td><td>Bilkent University</td><td></td></tr><tr><td>0b6616f3ebff461e4b6c68205fcef1dae43e2a1a</td><td>Bilkent University</td><td></td></tr><tr><td>887745c282edf9af40d38425d5fdc9b3fe139c08</td><td>Bilkent University</td><td></td></tr><tr><td>887745c282edf9af40d38425d5fdc9b3fe139c08</td><td>Bilkent University</td><td></td></tr><tr><td>1a6c9ef99bf0ab9835a91fe5f1760d98a0606243</td><td>Bilkent University, 06800 Cankaya, Turkey</td><td></td></tr><tr><td>95f26d1c80217706c00b6b4b605a448032b93b75</td><td>Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, Guangdong Province, China, 2 Key Laboratory of Network</td><td></td></tr><tr><td>17d01f34dfe2136b404e8d7f59cebfb467b72b26</td><td>Bioinformatics Institute, A*STAR, Singapore</td><td></td></tr><tr><td>353b6c1f431feac6edde12b2dde7e6e702455abd</td><td>Biometric Research Center</td><td>Department of Computing</td></tr><tr><td>74f643579949ccd566f2638b85374e7a6857a9fc</td><td>Biometric Research Center, The Hong Kong Polytechnic University</td><td>Department of Computing</td></tr><tr><td>757e4cb981e807d83539d9982ad325331cb59b16</td><td>Biometric and Image Processing Lab, University of Salerno, Italy</td><td></td></tr><tr><td>2c62b9e64aeddf12f9d399b43baaefbca8e11148</td><td>Biometrics Research Lab, College of Computer Science, Sichuan University, Chengdu 610065, China</td><td></td></tr><tr><td>5ca23ceb0636dfc34c114d4af7276a588e0e8dac</td><td>Birkbeck College, University of London</td><td></td></tr><tr><td>d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d</td><td>Birkbeck University of London</td><td></td></tr><tr><td>ac12ba5bf81de83991210b4cd95b4ad048317681</td><td>Bo gazi ci University</td><td>Department of Computer Engineering</td></tr><tr><td>80135ed7e34ac1dcc7f858f880edc699a920bf53</td><td>Bo gazi ci University</td><td></td></tr><tr><td>fbf196d83a41d57dfe577b3a54b1b7fa06666e3b</td><td>Bo gazi ci University, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>4c81c76f799c48c33bb63b9369d013f51eaf5ada</td><td>Bo gazic i University, Istanbul, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0</td><td>Bo gazic i University, Istanbul, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>999289b0ef76c4c6daa16a4f42df056bf3d68377</td><td>Bo gazic i University, Istanbul, Turkey</td><td>Department of Computer Engineering</td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>247a6b0e97b9447850780fe8dbc4f94252251133</td><td>Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>202d8d93b7b747cdbd6e24e5a919640f8d16298a</td><td>Bo gazici University, Istanbul, TR</td><td>Electric and Electronic Engineering Department</td></tr><tr><td>f0681fc08f4d7198dcde803d69ca62f09f3db6c5</td><td>Bogazici University, Bebek</td><td>Electrical and Electronics Engineering Department</td></tr><tr><td>ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7</td><td>Bogazici University, Turkey</td><td></td></tr><tr><td>968b983fa9967ff82e0798a5967920188a3590a8</td><td>Boston College</td><td></td></tr><tr><td>968b983fa9967ff82e0798a5967920188a3590a8</td><td>Boston College</td><td></td></tr><tr><td>77b1db2281292372c38926cc4aca32ef056011dc</td><td>Boston College, USA</td><td>Department of Psychology</td></tr><tr><td>0d3882b22da23497e5de8b7750b71f3a4b0aac6b</td><td>Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos</td><td></td></tr><tr><td>5050807e90a925120cbc3a9cd13431b98965f4b9</td><td>Boston University</td><td>Department of Computer Science</td></tr><tr><td>6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a</td><td>Boston University</td><td>Department of Computer Science</td></tr><tr><td>52c59f9f4993c8248dd3d2d28a4946f1068bcbbe</td><td>Boston University</td><td></td></tr><tr><td>52c59f9f4993c8248dd3d2d28a4946f1068bcbbe</td><td>Boston University</td><td></td></tr><tr><td>52c59f9f4993c8248dd3d2d28a4946f1068bcbbe</td><td>Boston University</td><td></td></tr><tr><td>bffbd04ee5c837cd919b946fecf01897b2d2d432</td><td>Boston University</td><td></td></tr><tr><td>f60a85bd35fa85739d712f4c93ea80d31aa7de07</td><td>Boston University</td><td>Department of Computer Science</td></tr><tr><td>1e5a1619fe5586e5ded2c7a845e73f22960bbf5a</td><td>Boston University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>13940d0cc90dbf854a58f92d533ce7053aac024a</td><td>Boston University</td><td></td></tr><tr><td>13940d0cc90dbf854a58f92d533ce7053aac024a</td><td>Boston University</td><td></td></tr><tr><td>fe961cbe4be0a35becd2d722f9f364ec3c26bd34</td><td>Boston University / **Rutgers University / ***Gallaudet University</td><td></td></tr><tr><td>aafb8dc8fda3b13a64ec3f1ca7911df01707c453</td><td>Boston University 2Pattern Analysis and Computer Vision (PAVIS</td><td>Department of Computer Science</td></tr><tr><td>bffbd04ee5c837cd919b946fecf01897b2d2d432</td><td>Boston University Computer Science Technical Report No</td><td></td></tr><tr><td>13940d0cc90dbf854a58f92d533ce7053aac024a</td><td>Boston University Theses and Dissertations</td><td></td></tr><tr><td>4850af6b54391fc33c8028a0b7fafe05855a96ff</td><td>Boston University and 2University of North Carolina</td><td></td></tr><tr><td>d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f</td><td>Boston University, Boston, MA</td><td>Department of Computer Science</td></tr><tr><td>fe961cbe4be0a35becd2d722f9f364ec3c26bd34</td><td>Boston University, Linguistics Program, 621 Commonwealth Avenue, Boston, MA</td><td></td></tr><tr><td>33f7e78950455c37236b31a6318194cfb2c302a4</td><td>Boston University, USA</td><td>Computer Science Department</td></tr><tr><td>f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a</td><td>Boston University1, University of Tokyo</td><td></td></tr><tr><td>199c2df5f2847f685796c2523221c6436f022464</td><td>Bournemouth University</td><td></td></tr><tr><td>370b6b83c7512419188f5373a962dd3175a56a9b</td><td>Bournemouth University</td><td></td></tr><tr><td>370b6b83c7512419188f5373a962dd3175a56a9b</td><td>Bournemouth University</td><td></td></tr><tr><td>370b6b83c7512419188f5373a962dd3175a56a9b</td><td>Bournemouth University</td><td></td></tr><tr><td>370b6b83c7512419188f5373a962dd3175a56a9b</td><td>Bournemouth University</td><td></td></tr><tr><td>dfd934ae448a1b8947d404b01303951b79b13801</td><td>Bournemouth University, UK</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA</td><td></td></tr><tr><td>2dfe0e7e81f65716b09c590652a4dd8452c10294</td><td>Brazil, University Hospital Zurich, Z rich</td><td>3 Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine</td></tr><tr><td>df2841a1d2a21a0fc6f14fe53b6124519f3812f9</td><td>Brown University</td><td></td></tr><tr><td>df2841a1d2a21a0fc6f14fe53b6124519f3812f9</td><td>Brown University</td><td></td></tr><tr><td>e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf</td><td>Brown University</td><td></td></tr><tr><td>1586871a1ddfe031b885b94efdbff647cf03eff1</td><td>Brown University</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Brown University</td><td>Department</td></tr><tr><td>b1451721864e836069fa299a64595d1655793757</td><td>Brown University 2University of Bath</td><td></td></tr><tr><td>1e58d7e5277288176456c66f6b1433c41ca77415</td><td>Brown University, 2University of California, San Diego, 3California Institute of Technology</td><td></td></tr><tr><td>334ac2a459190b41923be57744aa6989f9a54a51</td><td>Brown University, Providence, RI</td><td></td></tr><tr><td>cbbd13c29d042743f0139f1e044b6bca731886d0</td><td>Brown University, Providence, RI 02912, USA</td><td></td></tr><tr><td>faeefc5da67421ecd71d400f1505cfacb990119c</td><td>Brown University, United States</td><td></td></tr><tr><td>540b39ba1b8ef06293ed793f130e0483e777e278</td><td>Budapest, Hungary, E tv s Lor nd University, Budapest, Hungary, 3 Institute for Computer Science</td><td>2 Department of Ethology</td></tr><tr><td>68f89c1ee75a018c8eff86e15b1d2383c250529b</td><td>C.L. Teo, University of Maryland</td><td></td></tr><tr><td>7b43326477795a772c08aee750d3e433f00f20be</td><td>CALIFORNIA INSTITUTE OF TECHNOLOGY</td><td></td></tr><tr><td>514a74aefb0b6a71933013155bcde7308cad2b46</td><td>CARNEGIE MELLON UNIVERSITY</td><td></td></tr><tr><td>652aac54a3caf6570b1c10c993a5af7fa2ef31ff</td><td>CARNEGIE MELLON UNIVERSITY</td><td></td></tr><tr><td>0a79d0ba1a4876086e64fc0041ece5f0de90fbea</td><td>CARNEGIE MELLON UNIVERSITY</td><td></td></tr><tr><td>32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>c03e01717b2d93f04cce9b5fd2dcfd1143bcc180</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>090ff8f992dc71a1125636c1adffc0634155b450</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>061e29eae705f318eee703b9e17dc0989547ba0c</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>22e2066acfb795ac4db3f97d2ac176d6ca41836c</td><td>CAS), Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>d05513c754966801f26e446db174b7f2595805ba</td><td>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>80bd795930837330e3ced199f5b9b75398336b87</td><td>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>64d5772f44efe32eb24c9968a3085bc0786bfca7</td><td>CAS), Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>d69271c7b77bc3a06882884c21aa1b609b3f76cc</td><td>CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China</td><td></td></tr><tr><td>dcf71245addaf66a868221041aabe23c0a074312</td><td>CBSR and NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China</td><td></td></tr><tr><td>4cdb6144d56098b819076a8572a664a2c2d27f72</td><td>CBSRandNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China</td><td></td></tr><tr><td>21258aa3c48437a2831191b71cd069c05fb84cf7</td><td>CISE, University of Florida, Gainesville, FL</td><td></td></tr><tr><td>3dbfd2fdbd28e4518e2ae05de8374057307e97b3</td><td>CISUC, University of Coimbra</td><td>Department of Informatics Engineering</td></tr><tr><td>45efd6c2dd4ca19eed38ceeb7c2c5568231451e1</td><td>CMR Institute of Technology, Hyderabad, (India</td><td></td></tr><tr><td>32925200665a1bbb4fc8131cd192cb34c2d7d9e3</td><td>CNRS , Institute of Automation of the Chinese Academy of Sciences</td><td></td></tr><tr><td>0c7f27d23a162d4f3896325d147f412c40160b52</td><td>COLUMBIA UNIVERSITY</td><td></td></tr><tr><td>abac0fa75281c9a0690bf67586280ed145682422</td><td>COLUMBIA UNIVERSITY</td><td></td></tr><tr><td>280bc9751593897091015aaf2cab39805768b463</td><td>COMSATS Institute of Information Technology</td><td></td></tr><tr><td>77c53ec6ea448db4dad586e002a395c4a47ecf66</td><td>COMSATS Institute of Information Technology Wah Cantt</td><td>Department of Computer Sciences</td></tr><tr><td>bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9</td><td>COMSATS Institute of Information Technology, Islamabad</td><td></td></tr><tr><td>a87e37d43d4c47bef8992ace408de0f872739efc</td><td>COMSATS Institute of Information Technology, Lahore 54000, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0</td><td>COMSATS Institute of Information Technology, Pakistan</td><td>Department of Computer Science</td></tr><tr><td>6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf</td><td>CRCV, University of Central Florida</td><td></td></tr><tr><td>39ed31ced75e6151dde41944a47b4bdf324f922b</td><td>CRIPAC and NLPR and CEBSIT, CASIA 2University of Chinese Academy of Sciences</td><td></td></tr><tr><td>831b4d8b0c0173b0bac0e328e844a0fbafae6639</td><td>CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong</td><td></td></tr><tr><td>1316296fae6485c1510f00b1b57fb171b9320ac2</td><td>CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong</td><td></td></tr><tr><td>06262d6beeccf2784e4e36a995d5ee2ff73c8d11</td><td>CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition</td><td></td></tr><tr><td>51faacfa4fb1e6aa252c6970e85ff35c5719f4ff</td><td>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</td><td></td></tr><tr><td>d78734c54f29e4474b4d47334278cfde6efe963a</td><td>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</td><td></td></tr><tr><td>c97a5f2241cc6cd99ef0c4527ea507a50841f60b</td><td>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</td><td></td></tr><tr><td>1c9efb6c895917174ac6ccc3bae191152f90c625</td><td>CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>CUNY City College</td><td></td></tr><tr><td>91495c689e6e614247495c3f322d400d8098de43</td><td>CUNY City College</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>CUNY Graduate Center and City College</td><td></td></tr><tr><td>91495c689e6e614247495c3f322d400d8098de43</td><td>CUNY Graduate Center and City College</td><td></td></tr><tr><td>12d8730da5aab242795bdff17b30b6e0bac82998</td><td>CVAP, KTH (Royal Institute of Technology), Stockholm, SE</td><td></td></tr><tr><td>9a4c45e5c6e4f616771a7325629d167a38508691</td><td>CVIP Lab, University of Louisville, Louisville, KY 40292, USA</td><td></td></tr><tr><td>6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2</td><td>CVIP Lab, University of Louisville, Louisville, KY, USA</td><td></td></tr><tr><td>0181fec8e42d82bfb03dc8b82381bb329de00631</td><td>CVL, Link oping University, Link oping, Sweden</td><td>Department of Electrical Engineering</td></tr><tr><td>bb489e4de6f9b835d70ab46217f11e32887931a2</td><td>CVSSP University of Surrey</td><td></td></tr><tr><td>c74b1643a108939c6ba42ae4de55cb05b2191be5</td><td>CVSSP, University of Surrey</td><td></td></tr><tr><td>c74b1643a108939c6ba42ae4de55cb05b2191be5</td><td>CVSSP, University of Surrey</td><td></td></tr><tr><td>c74b1643a108939c6ba42ae4de55cb05b2191be5</td><td>CVSSP, University of Surrey</td><td></td></tr><tr><td>70a69569ba61f3585cd90c70ca5832e838fa1584</td><td>CVSSP, University of Surrey, UK</td><td></td></tr><tr><td>54a9ed950458f4b7e348fa78a718657c8d3d0e05</td><td>Ca Foscari University of Venice, Venice, Italy</td><td></td></tr><tr><td>a955033ca6716bf9957b362b77092592461664b4</td><td>Caarmel Engineering College, MG University, Kerala, India</td><td>Department of CSE</td></tr><tr><td>9f6d04ce617d24c8001a9a31f11a594bd6fe3510</td><td>Calgary, 2500 University Dr., N.W. Calgary, AB, Canada T2N 1N4. Tel</td><td></td></tr><tr><td>0e73d2b0f943cf8559da7f5002414ccc26bc77cd</td><td>California Institute of Technology</td><td></td></tr><tr><td>34108098e1a378bc15a5824812bdf2229b938678</td><td>California Institute of Technology</td><td></td></tr><tr><td>100da509d4fa74afc6e86a49352751d365fceee5</td><td>California Institute of Technology</td><td></td></tr><tr><td>384945abd53f6a6af51faf254ba8ef0f0fb3f338</td><td>California Institute of Technology</td><td></td></tr><tr><td>38bbca5f94d4494494860c5fe8ca8862dcf9676e</td><td>California Institute of Technology</td><td></td></tr><tr><td>53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9</td><td>California Institute of Technology</td><td></td></tr><tr><td>060820f110a72cbf02c14a6d1085bd6e1d994f6a</td><td>California Institute of Technology</td><td></td></tr><tr><td>8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3</td><td>California Institute of Technology</td><td></td></tr><tr><td>f0f0e94d333b4923ae42ee195df17c0df62ea0b1</td><td>California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA</td><td></td></tr><tr><td>00f1e5e954f9eb7ffde3ca74009a8c3c27358b58</td><td>California Institute of Technology, Pasadena, CA</td><td></td></tr><tr><td>56ae6d94fc6097ec4ca861f0daa87941d1c10b70</td><td>California Institute of Technology, Pasadena, CA, USA</td><td></td></tr><tr><td>72282287f25c5419dc6fd9e89ec9d86d660dc0b5</td><td>California Institute of Technology, Pasadena, CA, USA</td><td></td></tr><tr><td>14070478b8f0d84e5597c3e67c30af91b5c3a917</td><td>California Institute of Technology, Pasadena, California, USA</td><td></td></tr><tr><td>241d2c517dbc0e22d7b8698e06ace67de5f26fdf</td><td>California Institute of Technology, USA</td><td></td></tr><tr><td>fafe69a00565895c7d57ad09ef44ce9ddd5a6caa</td><td>California State University, Fullerton, USA</td><td></td></tr><tr><td>f0ca31fd5cad07e84b47d50dc07db9fc53482a46</td><td>California State University, Long Beach, USA</td><td>Department of Mathematics and Statistics</td></tr><tr><td>4ba38262fe20fab3e4c80215147b498f83843b93</td><td>Cambridge Research Laboratory</td><td></td></tr><tr><td>0aa74ad36064906e165ac4b79dec298911a7a4db</td><td>Cambridge University</td><td></td></tr><tr><td>0aa74ad36064906e165ac4b79dec298911a7a4db</td><td>Cambridge University</td><td></td></tr><tr><td>05a312478618418a2efb0a014b45acf3663562d7</td><td>Cambridge University, Trumpington Street, Cambridge CB21PZ, UK</td><td></td></tr><tr><td>e2d265f606cd25f1fd72e5ee8b8f4c5127b764df</td><td>Canadian Institute for Advanced Research</td><td></td></tr><tr><td>16e95a907b016951da7c9327927bb039534151da</td><td>Capital Normal University, 100048, China</td><td></td></tr><tr><td>528069963f0bd0861f380f53270c96c269a3ea1c</td><td>Cardi University</td><td></td></tr><tr><td>b87b0fa1ac0aad0ca563844daecaeecb2df8debf</td><td>Cardiff University, UK</td><td></td></tr><tr><td>5df376748fe5ccd87a724ef31d4fdb579dab693f</td><td>Carleton University</td><td></td></tr><tr><td>158e32579e38c29b26dfd33bf93e772e6211e188</td><td>Carleton University</td><td></td></tr><tr><td>0daf696253a1b42d2c9d23f1008b32c65a9e4c1e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>0c30f6303dc1ff6d05c7cee4f8952b74b9533928</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3b37d95d2855c8db64bd6b1ee5659f87fce36881</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6f84e61f33564e5188136474f9570b1652a0606f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6ae96f68187f1cdb9472104b5431ec66f4b2470f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>35f921def890210dda4b72247849ad7ba7d35250</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>51683eac8bbcd2944f811d9074a74d09d395c7f3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3df8cc0384814c3fb05c44e494ced947a7d43f36</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>0e36ada8cb9c91f07c9dcaf196d036564e117536</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>34c594abba9bb7e5813cfae830e2c4db78cf138c</td><td>Carnegie Mellon University</td><td>Carnegie Mellon University. 2Department of Electrical and Computer Engineering</td></tr><tr><td>050eda213ce29da7212db4e85f948b812a215660</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>a36c8a4213251d3fd634e8893ad1b932205ad1ca</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>d9c4586269a142faee309973e2ce8cde27bda718</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>b3b467961ba66264bb73ffe00b1830d7874ae8ce</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>df9269657505fcdc1e10cf45bbb8e325678a40f5</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>daa52dd09b61ee94945655f0dde216cce0ebd505</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>bd236913cfe07896e171ece9bda62c18b8c8197e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>bd8f77b7d3b9d272f7a68defc1412f73e5ac3135</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>eb70c38a350d13ea6b54dc9ebae0b64171d813c9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e3bb83684817c7815f5005561a85c23942b1f46b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>ca37eda56b9ee53610c66951ee7ca66a35d0a846</td><td>Carnegie Mellon University</td><td>Machine Learning Department</td></tr><tr><td>c88c21eb9a8e08b66c981db35f6556f4974d27a8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>edff76149ec44f6849d73f019ef9bded534a38c2</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>c6096986b4d6c374ab2d20031e026b581e7bf7e9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>20a16efb03c366fa4180659c2b2a0c5024c679da</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>20c02e98602f6adf1cebaba075d45cef50de089f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4b61d8490bf034a2ee8aa26601d13c83ad7f843a</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>11b3877df0213271676fa8aa347046fd4b1a99ad</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>29479bb4fe8c04695e6f5ae59901d15f8da6124b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>29479bb4fe8c04695e6f5ae59901d15f8da6124b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>29479bb4fe8c04695e6f5ae59901d15f8da6124b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7c825562b3ff4683ed049a372cb6807abb09af2a</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>45f858f9e8d7713f60f52618e54089ba68dfcd6d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1f89439524e87a6514f4fbe7ed34bda4fd1ce286</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1f89439524e87a6514f4fbe7ed34bda4fd1ce286</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>87e6cb090aecfc6f03a3b00650a5c5f475dfebe1</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>176bd61cc843d0ed6aa5af83c22e3feb13b89fe1</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>192235f5a9e4c9d6a28ec0d333e36f294b32f764</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d15254f6f31356963cc70319ce416d28d8924a3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4d16337cc0431cd43043dfef839ce5f0717c3483</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>86ed5b9121c02bcf26900913f2b5ea58ba23508f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9fc04a13eef99851136eadff52e98eb9caac919d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9f4078773c8ea3f37951bf617dbce1d4b3795839</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b3e360b80268fda4e37ff39b7f303e3684e8719</td><td>Carnegie Mellon University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6b17b219bd1a718b5cd63427032d93c603fcf24f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>07de8371ad4901356145722aa29abaeafd0986b9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6eece104e430829741677cadc1dfacd0e058d60f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3146fabd5631a7d1387327918b184103d06c2211</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>963d0d40de8780161b70d28d2b125b5222e75596</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>963d0d40de8780161b70d28d2b125b5222e75596</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>963d0d40de8780161b70d28d2b125b5222e75596</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3a2cf589f5e11ca886417b72c2592975ff1d8472</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3a2cf589f5e11ca886417b72c2592975ff1d8472</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5</td><td>Carnegie Mellon University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>3fefc856a47726d19a9f1441168480cee6e9f5bb</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3fefc856a47726d19a9f1441168480cee6e9f5bb</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3feb69531653e83d0986a0643e4a6210a088e3e5</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>3feb69531653e83d0986a0643e4a6210a088e3e5</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>6dbdb07ce2991db0f64c785ad31196dfd4dae721</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>062d67af7677db086ef35186dc936b4511f155d7</td><td>Carnegie Mellon University</td><td>Machine Learning Department</td></tr><tr><td>97e569159d5658760eb00ca9cb662e6882d2ab0e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>97e569159d5658760eb00ca9cb662e6882d2ab0e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>97e569159d5658760eb00ca9cb662e6882d2ab0e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>0abf67e7bd470d9eb656ea2508beae13ca173198</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>d35534f3f59631951011539da2fe83f2844ca245</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>a0b1990dd2b4cd87e4fd60912cc1552c34792770</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>a0b1990dd2b4cd87e4fd60912cc1552c34792770</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>a0b1990dd2b4cd87e4fd60912cc1552c34792770</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>a7c39a4e9977a85673892b714fc9441c959bf078</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>b1fdd4ae17d82612cefd4e78b690847b071379d3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>db848c3c32464d12da33b2f4c3a29fe293fc35d1</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>e19fb22b35c352f57f520f593d748096b41a4a7b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>fac8cff9052fc5fab7d5ef114d1342daba5e4b82</td><td>Carnegie Mellon University</td><td>Department of Statistics</td></tr><tr><td>fac8cff9052fc5fab7d5ef114d1342daba5e4b82</td><td>Carnegie Mellon University</td><td>Department of Statistics</td></tr><tr><td>fac8cff9052fc5fab7d5ef114d1342daba5e4b82</td><td>Carnegie Mellon University</td><td>Department of Statistics</td></tr><tr><td>f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>f8015e31d1421f6aee5e17fc3907070b8e0a5e59</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>839a2155995acc0a053a326e283be12068b35cb8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7792fbc59f3eafc709323cdb63852c5d3a4b23e9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>48a9241edda07252c1aadca09875fabcfee32871</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>48a9241edda07252c1aadca09875fabcfee32871</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>48a9241edda07252c1aadca09875fabcfee32871</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>704d88168bdfabe31b6ff484507f4a2244b8c52b</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1ea74780d529a458123a08250d8fa6ef1da47a25</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1e917fe7462445996837934a7e46eeec14ebc65f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1e917fe7462445996837934a7e46eeec14ebc65f</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>240eb0b34872c431ecf9df504671281f59e7da37</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>23fc83c8cfff14a16df7ca497661264fc54ed746</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>4f7967158b257e86d66bdabfdc556c697d917d24</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>155199d7f10218e29ddaee36ebe611c95cae68c4</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>12692fbe915e6bb1c80733519371bbb90ae07539</td><td>Carnegie Mellon University</td><td>Machine Learning Department</td></tr><tr><td>71f36c8e17a5c080fab31fce1ffea9551fc49e47</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>82e66c4832386cafcec16b92ac88088ffd1a1bc9</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>2e0addeffba4be98a6ad0460453fbab52616b139</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>2e98329fdec27d4b3b9b894687e7d1352d828b1d</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>78598e7005f7c96d64cc47ff47e6f13ae52245b8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>78598e7005f7c96d64cc47ff47e6f13ae52245b8</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>1394ca71fc52db972366602a6643dc3e65ee8726</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>7f57e9939560562727344c1c987416285ef76cda</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>8e4808e71c9b9f852dc9558d7ef41566639137f3</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958</td><td>Carnegie Mellon University</td><td></td></tr><tr><td>74325f3d9aea3a810fe4eab8863d1a48c099de11</td><td>Carnegie Mellon University (CMU</td><td></td></tr><tr><td>d5de42d37ee84c86b8f9a054f90ddb4566990ec0</td><td>Carnegie Mellon University 2University of Washington 3Allen Institute for Arti cial Intelligence</td><td></td></tr><tr><td>1d7df3df839a6aa8f5392310d46b2a89080a3c25</td><td>Carnegie Mellon University 4College of CS and SE, Shenzhen University</td><td>Department of ECE</td></tr><tr><td>5b6d05ce368e69485cb08dd97903075e7f517aed</td><td>Carnegie Mellon University Pittsburgh, PA - 15213, USA</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Carnegie Mellon University Pittsburgh, PA, USA</td><td></td></tr><tr><td>b51b4ef97238940aaa4f43b20a861eaf66f67253</td><td>Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>266ed43dcea2e7db9f968b164ca08897539ca8dd</td><td>Carnegie Mellon University, CyLab Biometrics Center, Pittsburgh, PA, USA</td><td></td></tr><tr><td>c40c23e4afc81c8b119ea361e5582aa3adecb157</td><td>Carnegie Mellon University, Electrical and Computer Engineering</td><td></td></tr><tr><td>1ca815327e62c70f4ee619a836e05183ef629567</td><td>Carnegie Mellon University, Pittsburgh PA</td><td></td></tr><tr><td>c71217b2b111a51a31cf1107c71d250348d1ff68</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td></td></tr><tr><td>e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>2679e4f84c5e773cae31cef158eb358af475e22f</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>63d8110ac76f57b3ba8a5947bc6bdbb86f25a342</td><td>Carnegie Mellon University, Pittsburgh, PA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>c660500b49f097e3af67bb14667de30d67db88e3</td><td>Carnegie Mellon University, Pittsburgh, PA 15213, USA</td><td>c Statistics Department</td></tr><tr><td>61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8</td><td>Carnegie Mellon University, Pittsburgh, PA, 15213, USA</td><td></td></tr><tr><td>622daa25b5e6af69f0dac3a3eaf4050aa0860396</td><td>Carnegie Mellon University, Pittsburgh, PA, 15213, USA</td><td></td></tr><tr><td>9487cea80f23afe9bccc94deebaa3eefa6affa99</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>b234cd7788a7f7fa410653ad2bafef5de7d5ad29</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>eb8519cec0d7a781923f68fdca0891713cb81163</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>17670b60dcfb5cbf8fdae0b266e18cf995f6014c</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>831d661d657d97a07894da8639a048c430c5536d</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>15ee80e86e75bf1413dc38f521b9142b28fe02d1</td><td>Carnegie Mellon University, Pittsburgh, PA, USA</td><td></td></tr><tr><td>00b29e319ff8b3a521b1320cb8ab5e39d7f42281</td><td>Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>c34532fe6bfbd1e6df477c9ffdbb043b77e7804d</td><td>Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca</td><td>Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>4d625677469be99e0a765a750f88cfb85c522cce</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>656531036cee6b2c2c71954bb6540ef6b2e016d0</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>90a754f597958a2717862fbaa313f67b25083bf9</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>1ec98785ac91808455b753d4bc00441d8572c416</td><td>Carnegie Mellon University, USA</td><td></td></tr><tr><td>f4ebbeb77249d1136c355f5bae30f02961b9a359</td><td>Carnegie Melon University</td><td></td></tr><tr><td>cbbd13c29d042743f0139f1e044b6bca731886d0</td><td>Carney Institute for Brain Science</td><td></td></tr><tr><td>7a0fb972e524cb9115cae655e24f2ae0cfe448e0</td><td>Catholic University of Rio de Janeiro, Brazil</td><td></td></tr><tr><td>8981be3a69cd522b4e57e9914bf19f034d4b530c</td><td>Center For Automation Research, University of Maryland, College Park</td><td></td></tr><tr><td>3d0f9a3031bee4b89fab703ff1f1d6170493dc01</td><td>Center for Arti cial Vision Research, Korea University</td><td></td></tr><tr><td>fac8cff9052fc5fab7d5ef114d1342daba5e4b82</td><td>Center for Automated Learning and Discovery), Carnegie Mellon University</td><td></td></tr><tr><td>c32c8bfadda8f44d40c6cd9058a4016ab1c27499</td><td>Center for Automation Research (CfAR), University of Maryland, College Park, MD</td><td></td></tr><tr><td>45215e330a4251801877070c85c81f42c2da60fb</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park</td><td></td></tr><tr><td>0db36bf08140d53807595b6313201a7339470cfe</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</td><td></td></tr><tr><td>93420d9212dd15b3ef37f566e4d57e76bb2fab2f</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</td><td></td></tr><tr><td>872dfdeccf99bbbed7c8f1ea08afb2d713ebe085</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</td><td></td></tr><tr><td>2d748f8ee023a5b1fbd50294d176981ded4ad4ee</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD</td><td></td></tr><tr><td>b239a756f22201c2780e46754d06a82f108c1d03</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742 USA</td><td></td></tr><tr><td>c8e84cdff569dd09f8d31e9f9ba3218dee65e961</td><td>Center for Automation Research, UMIACS, University of Maryland, College Park, MD 20742, USA</td><td></td></tr><tr><td>970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3</td><td>Center for Automation Research, University of Maryland</td><td></td></tr><tr><td>8983485996d5d9d162e70d66399047c5d01ac451</td><td>Center for Automation Research, University of Maryland, College Park, MD</td><td></td></tr><tr><td>100105d6c97b23059f7aa70589ead2f61969fbc3</td><td>Center for Automation Research, University of Maryland, College Park, MD 20740, USA</td><td></td></tr><tr><td>4b71d1ff7e589b94e0f97271c052699157e6dc4a</td><td>Center for Automation Research, University of Maryland, College Park, MD 20742, USA</td><td></td></tr><tr><td>c5468665d98ce7349d38afb620adbf51757ab86f</td><td>Center for Automation Research, University of Maryland, College Park, MD 20742, USA</td><td></td></tr><tr><td>add50a7d882eb38e35fe70d11cb40b1f0059c96f</td><td>Center for Biometrics and Security Research and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>8f6263e4d3775757e804796e104631c7a2bb8679</td><td>Center for Brain Science, Harvard University, Cambridge, MA 02138 USA</td><td></td></tr><tr><td>8f6263e4d3775757e804796e104631c7a2bb8679</td><td>Center for Brain Science, Harvard University, Cambridge, MA 02138 USA</td><td></td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Center for Brain Science, Harvard University, Cambridge, MA, USA</td><td></td></tr><tr><td>0b242d5123f79defd5f775d49d8a7047ad3153bc</td><td>Center for Brains, Minds and Machines, McGovern Institute, MIT</td><td></td></tr><tr><td>030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f</td><td>Center for Cognitive Neuroscience, Duke University, Durham, North Carolina</td><td></td></tr><tr><td>25e2d3122d4926edaab56a576925ae7a88d68a77</td><td>Center for Cognitive Science, University of Turin, Turin, Italy, 2 Neuroscience Institute of Turin</td><td>Department of Psychology</td></tr><tr><td>75bf3b6109d7a685236c8589f8ead7d769ea863f</td><td>Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA</td><td></td></tr><tr><td>b8ebda42e272d3617375118542d4675a0c0e501d</td><td>Center for Cognitive Ubiquitous Computing, Arizona State University, Tempe, AZ, USA</td><td></td></tr><tr><td>8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152</td><td>Center for Computational Biomedicine Imaging and Modeling Center, Rutgers University, New Brunswick, NJ</td><td></td></tr><tr><td>73b90573d272887a6d835ace89bfaf717747c59b</td><td>Center for Computational Intelligence, Nanyang Technology University, Singapore</td><td></td></tr><tr><td>3ca5d3b8f5f071148cb50f22955fd8c1c1992719</td><td>Center for Healthy Aging, University of</td><td>Department of Cellular and Molecular Medicine</td></tr><tr><td>081cb09791e7ff33c5d86fd39db00b2f29653fa8</td><td>Center for Information Science, Peking University, Beijing 100871, China</td><td></td></tr><tr><td>b133b2d7df9b848253b9d75e2ca5c68e21eba008</td><td>Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT</td><td></td></tr><tr><td>b6145d3268032da70edc9cfececa1f9ffa4e3f11</td><td>Center for Intelligent Machines, McGill University, 3480 University Street, Montreal, Canada H3A 2A</td><td></td></tr><tr><td>29b86534d4b334b670914038c801987e18eb5532</td><td>Center for Machine Vision Research, University of Oulu, Finland</td><td></td></tr><tr><td>ac2e44622efbbab525d4301c83cb4d5d7f6f0e55</td><td>Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Finland</td><td></td></tr><tr><td>27eb7a6e1fb6b42516041def6fe64bd028b7614d</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>7492c611b1df6bce895bee6ba33737e7fc7f60a6</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>193debca0be1c38dabc42dc772513e6653fd91d8</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>Center for Machine Vision and Signal Analysis, University of Oulu, Finland</td><td></td></tr><tr><td>c73dd452c20460f40becb1fd8146239c88347d87</td><td>Center for Research in Computer Vision (CRCV), University of Central Florida (UCF</td><td></td></tr><tr><td>7ee53d931668fbed1021839db4210a06e4f33190</td><td>Center for Research in Computer Vision (CRCV), University of Central Florida (UCF</td><td></td></tr><tr><td>8fe38962c24300129391f6d7ac24d7783e0fddd0</td><td>Center for Research in Computer Vision, University of Central Florida</td><td></td></tr><tr><td>976e0264bb57786952a987d4456850e274714fb8</td><td>Center for Research in Computer Vision, University of Central Florida</td><td></td></tr><tr><td>2d79d338c114ece1d97cde1aa06ab4cf17d38254</td><td>Center for Research in Computer Vision, University of Central Florida</td><td></td></tr><tr><td>ad2339c48ad4ffdd6100310dcbb1fb78e72fac98</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, FL</td><td></td></tr><tr><td>2910fcd11fafee3f9339387929221f4fc1160973</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, FL</td><td></td></tr><tr><td>14ba910c46d659871843b31d5be6cba59843a8b8</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, FL</td><td></td></tr><tr><td>4205cb47ba4d3c0f21840633bcd49349d1dc02c1</td><td>Center for Research in Computer Vision, University of Central Florida, Orlando, USA</td><td></td></tr><tr><td>60a006bdfe5b8bf3243404fae8a5f4a9d58fa892</td><td>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</td><td></td></tr><tr><td>5f676d6eca4c72d1a3f3acf5a4081c29140650fb</td><td>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</td><td></td></tr><tr><td>3acb6b3e3f09f528c88d5dd765fee6131de931ea</td><td>Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA</td><td></td></tr><tr><td>55079a93b7d1eb789193d7fcdcf614e6829fad0f</td><td>Center for Sensor Systems (ZESS) and Institute for Vision and Graphics#, University of Siegen</td><td></td></tr><tr><td>81bfe562e42f2eab3ae117c46c2e07b3d142dade</td><td>Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA</td><td></td></tr><tr><td>0b9ce839b3c77762fff947e60a0eb7ebbf261e84</td><td>Central Mechanical Engineering Research Institute</td><td></td></tr><tr><td>81e11e33fc5785090e2d459da3ac3d3db5e43f65</td><td>Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India</td><td></td></tr><tr><td>82ccd62f70e669ec770daf11d9611cab0a13047e</td><td>Central Tehran Branch, Azad University</td><td></td></tr><tr><td>fd10b0c771a2620c0db294cfb82b80d65f73900d</td><td>Central University of Finance and Economics, Beijing, China</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>56c2fb2438f32529aec604e6fc3b06a595ddbfcc</td><td>Central Washington University</td><td></td></tr><tr><td>c88ce5ef33d5e544224ab50162d9883ff6429aa3</td><td>Central Washington University, 400 E. University Way, Ellensburg, WA 98926, USA</td><td></td></tr><tr><td>2dfe0e7e81f65716b09c590652a4dd8452c10294</td><td>Centre for Applied Autism Research, University of Bath, Bath, United Kingdom, 2 Social and</td><td>Department of Psychology</td></tr><tr><td>6f26ab7edd971148723d9b4dc8ddf71b36be9bf7</td><td>Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, Australia, 2 Departamento de Engenharia de</td><td></td></tr><tr><td>c317181fa1de2260e956f05cd655642607520a4f</td><td>Centre for Imaging Sciences, University of</td><td></td></tr><tr><td>47dabb566f2bdd6b3e4fa7efc941824d8b923a13</td><td>Centre for Intelligent Machines, McGill University, Montreal, Canada</td><td></td></tr><tr><td>e4e3faa47bb567491eaeaebb2213bf0e1db989e1</td><td>Centre for Quantum Computation and Intelligent Systems, FEIT, University of Technology Sydney, Australia</td><td></td></tr><tr><td>1d3dd9aba79a53390317ec1e0b7cd742cba43132</td><td>Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and IT, University of</td><td></td></tr><tr><td>ca37eda56b9ee53610c66951ee7ca66a35d0a846</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</td><td></td></tr><tr><td>062d67af7677db086ef35186dc936b4511f155d7</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</td><td></td></tr><tr><td>159e792096756b1ec02ec7a980d5ef26b434ff78</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney</td><td></td></tr><tr><td>d0d7671c816ed7f37b16be86fa792a1b29ddd79b</td><td>Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney, Sydney, Australia</td><td></td></tr><tr><td>438e7999c937b94f0f6384dbeaa3febff6d283b6</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</td><td></td></tr><tr><td>96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</td><td></td></tr><tr><td>2c62b9e64aeddf12f9d399b43baaefbca8e11148</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</td><td></td></tr><tr><td>40e1743332523b2ab5614bae5e10f7a7799161f4</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, UK</td><td></td></tr><tr><td>0a11b82aa207d43d1b4c0452007e9388a786be12</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH</td><td></td></tr><tr><td>bd70f832e133fb87bae82dfaa0ae9d1599e52e4b</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK</td><td></td></tr><tr><td>ed07856461da6c7afa4f1782b5b607b45eebe9f6</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</td><td></td></tr><tr><td>c146aa6d56233ce700032f1cb179700778557601</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</td><td></td></tr><tr><td>7df268a3f4da7d747b792882dfb0cbdb7cc431bc</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</td><td></td></tr><tr><td>7224d58a7e1f02b84994b60dc3b84d9fe6941ff5</td><td>Centre for Vision, Speech and Signal Processing, University of Surrey, UK</td><td></td></tr><tr><td>0cbe059c181278a373292a6af1667c54911e7925</td><td>Chalmers University of Technology, SAFER</td><td></td></tr><tr><td>5a86842ab586de9d62d5badb2ad8f4f01eada885</td><td>Chandigarh Engg. College, Mohali, Punjab, India</td><td>Department . of CSE</td></tr><tr><td>94b9c0a6515913bad345f0940ee233cdf82fffe1</td><td>Chandigarh University, Gharuan, Punjab, India</td><td>Department of Computer Science Engineering</td></tr><tr><td>2679e4f84c5e773cae31cef158eb358af475e22f</td><td>Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science</td><td></td></tr><tr><td>60970e124aa5fb964c9a2a5d48cd6eee769c73ef</td><td>Charles Sturt University</td><td></td></tr><tr><td>2b4d092d70efc13790d0c737c916b89952d4d8c7</td><td>Charotar University of Science and Technology, Changa, India</td><td></td></tr><tr><td>fd96432675911a702b8a4ce857b7c8619498bf9f</td><td>China Mobile Research Institute, Xuanwu Men West Street, Beijing</td><td></td></tr><tr><td>b191aa2c5b8ece06c221c3a4a0914e8157a16129</td><td>China University of Mining and Technol</td><td></td></tr><tr><td>df2494da8efa44d70c27abf23f73387318cf1ca8</td><td>China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of</td><td></td></tr><tr><td>bbcb4920b312da201bf4d2359383fb4ee3b17ed9</td><td>China, 2 School of Computer Science and Engineering, Nanjing University of Science and Technology</td><td></td></tr><tr><td>c089c7d8d1413b54f59fc410d88e215902e51638</td><td>China-Singapore Institute of Digital Media, Singapore</td><td></td></tr><tr><td>f3a59d85b7458394e3c043d8277aa1ffe3cdac91</td><td>Chinese University of Hong Kong</td><td></td></tr><tr><td>f3a59d85b7458394e3c043d8277aa1ffe3cdac91</td><td>Chinese University of Hong Kong</td><td></td></tr><tr><td>eed93d2e16b55142b3260d268c9e72099c53d5bc</td><td>Chittagong University of Engineering and Technology</td><td></td></tr><tr><td>89e7d23e0c6a1d636f2da68aaef58efee36b718b</td><td>Chonbuk National University, Jeonju 561-756, Korea</td><td></td></tr><tr><td>29fc4de6b680733e9447240b42db13d5832e408f</td><td>Chonbuk National University, Jeonju-si</td><td>Department of Computer Engineering</td></tr><tr><td>492f41e800c52614c5519f830e72561db205e86c</td><td>Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences</td><td></td></tr><tr><td>7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4</td><td>Chosun University</td><td></td></tr><tr><td>677ebde61ba3936b805357e27fce06c44513a455</td><td>Chu Hai College of Higher Education, Hong Kong</td><td>Department of Computer Science</td></tr><tr><td>b503f481120e69b62e076dcccf334ee50559451e</td><td>Chu Hai College of Higher Education, Hong Kong</td><td>Department of Computer Science</td></tr><tr><td>5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c</td><td>Chubu University</td><td></td></tr><tr><td>62f0d8446adee6a5e8102053a63a61af07ac4098</td><td>Chubu University</td><td></td></tr><tr><td>47fdbd64edd7d348713253cf362a9c21f98e4296</td><td>Chubu University</td><td></td></tr><tr><td>009cd18ff06ff91c8c9a08a91d2516b264eee48e</td><td>Chulalongkorn University, Bangkok</td><td>Department of Electrical Engineering</td></tr><tr><td>17cf6195fd2dfa42670dc7ada476e67b381b8f69</td><td>Chung-Ang University, Seoul, Korea</td><td></td></tr><tr><td>c590c6c171392e9f66aab1bce337470c43b48f39</td><td>Chungnam National University</td><td>Department of Psychology/Brain Research Institute</td></tr><tr><td>fc20149dfdff5fdf020647b57e8a09c06e11434b</td><td>City University of Hong Kong</td><td></td></tr><tr><td>dcc38db6c885444694f515d683bbb50521ff3990</td><td>City University of Hong Kong</td><td></td></tr><tr><td>2af2b74c3462ccff3a6881ff7cf4f321b3242fa9</td><td>City University of Hong Kong, Hong Kong, China</td><td>Department of Computer Science</td></tr><tr><td>ffaad0204f4af763e3390a2f6053c0e9875376be</td><td>City University of Hong Kong, Kowloon 999077, Hong Kong, China</td><td>Department of Electronic Engineering</td></tr><tr><td>5f453a35d312debfc993d687fd0b7c36c1704b16</td><td>Clemson University</td><td></td></tr><tr><td>ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9</td><td>Clemson University</td><td></td></tr><tr><td>367a786cfe930455cd3f6bd2492c304d38f6f488</td><td>Clemson University</td><td></td></tr><tr><td>7fa2605676c589a7d1a90d759f8d7832940118b5</td><td>Clemson University, Clemson, SC</td><td></td></tr><tr><td>1b70bbf7cdfc692873ce98dd3c0e191580a1b041</td><td>Co-Guide, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</td><td></td></tr><tr><td>c7f0c0636d27a1d45b8fcef37e545b902195d937</td><td>Coburg University</td><td></td></tr><tr><td>c7f0c0636d27a1d45b8fcef37e545b902195d937</td><td>Coburg University</td><td></td></tr><tr><td>26d407b911d1234e8e3601e586b49316f0818c95</td><td>Coburg University</td><td></td></tr><tr><td>beb4546ae95f79235c5f3c0e9cc301b5d6fc9374</td><td>Cognitive Arti cial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht</td><td></td></tr><tr><td>b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807</td><td>Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of</td><td></td></tr><tr><td>2dfe0e7e81f65716b09c590652a4dd8452c10294</td><td>Cognitive Neuroscience Laboratory, Centre of Biology and Health Sciences, Mackenzie Presbyterian University, S o Paulo</td><td></td></tr><tr><td>751970d4fb6f61d1b94ca82682984fd03c74f127</td><td>Cognitive Systems Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany</td><td></td></tr><tr><td>7f2a4cd506fe84dee26c0fb41848cb219305173f</td><td>Collage of Sciences, Baghdad University, Iraq</td><td>Department Of Computer Science</td></tr><tr><td>ab427f0c7d4b0eb22c045392107509451165b2ba</td><td>College Heights Blvd, Bowling Green, KY</td><td></td></tr><tr><td>053931267af79a89791479b18d1b9cde3edcb415</td><td>College Park, MD</td><td></td></tr><tr><td>9cd6a81a519545bf8aa9023f6e879521f85d4cd1</td><td>College Park, MD</td><td></td></tr><tr><td>b5f4e617ac3fc4700ec8129fcd0dcf5f71722923</td><td>College Park, MD</td><td></td></tr><tr><td>b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8</td><td>College Park, MD</td><td></td></tr><tr><td>bbc4b376ebd296fb9848b857527a72c82828fc52</td><td>College Park, MD</td><td></td></tr><tr><td>297d3df0cf84d24f7efea44f87c090c7d9be4bed</td><td>College Park, MD</td><td></td></tr><tr><td>7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d</td><td>College Park, MD</td><td></td></tr><tr><td>970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3</td><td>College Park, MD</td><td></td></tr><tr><td>b13a882e6168afc4058fe14cc075c7e41434f43e</td><td>College Park, MD</td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>College Park, MD</td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>College Park, MD</td><td></td></tr><tr><td>ceeb67bf53ffab1395c36f1141b516f893bada27</td><td>College Park, MD</td><td></td></tr><tr><td>2ee817981e02c4709d65870c140665ed25b005cc</td><td>College Park, MD 20742 USA</td><td></td></tr><tr><td>38a9ca2c49a77b540be52377784b9f734e0417e4</td><td>College Park, MD, 20740, USA</td><td></td></tr><tr><td>f571fe3f753765cf695b75b1bd8bed37524a52d2</td><td>College Park, MD, USA</td><td></td></tr><tr><td>f571fe3f753765cf695b75b1bd8bed37524a52d2</td><td>College Park, MD, USA</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>College Park, Maryland</td><td></td></tr><tr><td>29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea</td><td>College Park, USA</td><td></td></tr><tr><td>0058cbe110933f73c21fa6cc9ae0cd23e974a9c7</td><td>College Park, USA</td><td></td></tr><tr><td>4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a</td><td>College Park, USA</td><td></td></tr><tr><td>794c0dc199f0bf778e2d40ce8e1969d4069ffa7b</td><td>College Park, United States</td><td></td></tr><tr><td>4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99</td><td>College Road East, Princeton, NJ</td><td></td></tr><tr><td>2251a88fbccb0228d6d846b60ac3eeabe468e0f1</td><td>College Road East, Princeton, NJ</td><td></td></tr><tr><td>cfa931e6728a825caada65624ea22b840077f023</td><td>College of Automation, Harbin Engineering University, Heilongjiang, China</td><td></td></tr><tr><td>656531036cee6b2c2c71954bb6540ef6b2e016d0</td><td>College of Computer Science</td><td></td></tr><tr><td>b73d9e1af36aabb81353f29c40ecdcbdf731dbed</td><td>College of Computer Science and Information Sciences</td><td>Department of Software Engineering</td></tr><tr><td>1a41e5d93f1ef5b23b95b7163f5f9aedbe661394</td><td>College of Computer Science and Information Technology, Central South University of Forestry and Technology, Hunan 410004, China</td><td></td></tr><tr><td>df2494da8efa44d70c27abf23f73387318cf1ca8</td><td>College of Computer Science and Information Technology, Northeast Normal University, Changchun</td><td></td></tr><tr><td>50e45e9c55c9e79aaae43aff7d9e2f079a2d787b</td><td>College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China</td><td></td></tr><tr><td>bd6099429bb7bf248b1fd6a1739e744512660d55</td><td>College of Computer Science and Technology</td><td></td></tr><tr><td>aac39ca161dfc52aade063901f02f56d01a1693c</td><td>College of Computer Science and Technology</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>86b6de59f17187f6c238853810e01596d37f63cd</td><td>College of Computer Science and Technology, Chongqing</td><td></td></tr><tr><td>edbb8cce0b813d3291cae4088914ad3199736aa0</td><td>College of Computer Science and Technology, Zhejiang University, China</td><td></td></tr><tr><td>2d8001ffee6584b3f4d951d230dc00a06e8219f8</td><td>College of Computer Science and Technology, Zhejiang University, Hangzhou, China</td><td></td></tr><tr><td>0517d08da7550241fb2afb283fc05d37fce5d7b7</td><td>College of Computer Science, Chongqing University, Chongqing, 400030, China</td><td></td></tr><tr><td>a065080353d18809b2597246bb0b48316234c29a</td><td>College of Computer Science, Chongqing University, Chongqing, China</td><td></td></tr><tr><td>4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec</td><td>College of Computer Science, Sichuan University</td><td></td></tr><tr><td>0bf3513d18ec37efb1d2c7934a837dabafe9d091</td><td>College of Computer Science, Sichuan University, Chengdu 610065, P.R. China</td><td></td></tr><tr><td>5cbe1445d683d605b31377881ac8540e1d17adf0</td><td>College of Computer Science, Sichuan University, Chengdu, China</td><td></td></tr><tr><td>a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b</td><td>College of Computer Science, Sichuan University, Chengdu, China</td><td></td></tr><tr><td>2201f187a7483982c2e8e2585ad9907c5e66671d</td><td>College of Computer Science, Sichuan University, Chengdu, China</td><td></td></tr><tr><td>404042a1dcfde338cf24bc2742c57c0fb1f48359</td><td>College of Computer Science, Zhejiang University</td><td></td></tr><tr><td>9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd</td><td>College of Computer Science, Zhejiang University, Hangzhou 310027, China</td><td></td></tr><tr><td>9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd</td><td>College of Computer Science, Zhejiang University, Hangzhou 310027, China</td><td></td></tr><tr><td>7c36afc9828379de97f226e131390af719dbc18d</td><td>College of Computer Science, Zhejiang University, Hangzhou, China</td><td></td></tr><tr><td>d0d7671c816ed7f37b16be86fa792a1b29ddd79b</td><td>College of Computer Science, Zhejiang University, Zhejiang, China</td><td></td></tr><tr><td>d454ad60b061c1a1450810a0f335fafbfeceeccc</td><td>College of Computer and Control Engineering, Nankai University 4 Hikvision Research</td><td></td></tr><tr><td>5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b</td><td>College of Computer and Control Engineering, Nankai University 4: Hikvision Research</td><td></td></tr><tr><td>5db075a308350c083c3fa6722af4c9765c4b8fef</td><td>College of Computer and Information Engineering, Nanyang Institute of Technology</td><td></td></tr><tr><td>76ce3d35d9370f0e2e27cfd29ea0941f1462895f</td><td>College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China</td><td></td></tr><tr><td>f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e</td><td>College of Computer and Information Science</td><td></td></tr><tr><td>23aba7b878544004b5dfa64f649697d9f082b0cf</td><td>College of Computer and Information Science</td><td></td></tr><tr><td>07fa153b8e6196ee6ef6efd8b743de8485a07453</td><td>College of Computer and Information Science, Northeastern University, Boston, MA, USA</td><td></td></tr><tr><td>e3c8e49ffa7beceffca3f7f276c27ae6d29b35db</td><td>College of Computer and Information Science, Northeastern University, Boston, USA</td><td></td></tr><tr><td>0a9345ea6e488fb936e26a9ba70b0640d3730ba7</td><td>College of Computer and Information Science, Northeastern University, Boston, USA</td><td></td></tr><tr><td>090e4713bcccff52dcd0c01169591affd2af7e76</td><td>College of Computer and Information Science, Northeastern University, MA, USA</td><td></td></tr><tr><td>d22b378fb4ef241d8d210202893518d08e0bb213</td><td>College of Computer and Information Science, Northeastern University, MA, USA</td><td></td></tr><tr><td>0969e0dc05fca21ff572ada75cb4b703c8212e80</td><td>College of Computer and Information Science, Southwest University, Chongqing 400715, China</td><td></td></tr><tr><td>5aadd85e2a77e482d44ac2a215c1f21e4a30d91b</td><td>College of Computer and Information Sciences</td><td></td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>College of Computer and Information Sciences</td><td>Computer Science Department</td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>College of Computer and Information Sciences</td><td>Computer Engineering Department</td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>College of Computer and Information Sciences</td><td>Computer Engineering Department</td></tr><tr><td>81bfe562e42f2eab3ae117c46c2e07b3d142dade</td><td>College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA</td><td></td></tr><tr><td>69eb6c91788e7c359ddd3500d01fb73433ce2e65</td><td>College of Computing</td><td></td></tr><tr><td>93af36da08bf99e68c9b0d36e141ed8154455ac2</td><td>College of Computing</td><td></td></tr><tr><td>5fa04523ff13a82b8b6612250a39e1edb5066521</td><td>College of Computing</td><td></td></tr><tr><td>b33e8db8ccabdfc49211e46d78d09b14557d4cba</td><td>College of Computing, Georgia Institute of Technology</td><td></td></tr><tr><td>2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8</td><td>College of Computing, Georgia Institute of Technology, Atlanta, GA, USA</td><td></td></tr><tr><td>5b01d4338734aefb16ee82c4c59763d3abc008e6</td><td>College of Electrical and Information Engineering</td><td></td></tr><tr><td>d307a766cc9c728a24422313d4c3dcfdb0d16dd5</td><td>College of Electrical and Information Engineering, Hunan University, China</td><td></td></tr><tr><td>5ae970294aaba5e0225122552c019eb56f20af74</td><td>College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China</td><td></td></tr><tr><td>d31af74425719a3840b496b7932e0887b35e9e0d</td><td>College of Electronics and Information Engineering, Sejong University</td><td>Department of Software</td></tr><tr><td>5f676d6eca4c72d1a3f3acf5a4081c29140650fb</td><td>College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China</td><td></td></tr><tr><td>411318684bd2d42e4b663a37dcf0532a48f0146d</td><td>College of Electronics and Information Engineering, Tongji University</td><td></td></tr><tr><td>3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07</td><td>College of Electronics and Information, Northwestern Polytechnic University</td><td></td></tr><tr><td>accbd6cd5dd649137a7c57ad6ef99232759f7544</td><td>College of Electronics and Information, Northwestern Polytechnic University</td><td></td></tr><tr><td>bb451dc2420e1a090c4796c19716f93a9ef867c9</td><td>College of Engineering (Poly</td><td></td></tr><tr><td>bb451dc2420e1a090c4796c19716f93a9ef867c9</td><td>College of Engineering (Poly</td><td></td></tr><tr><td>13db9466d2ddf3c30b0fd66db8bfe6289e880802</td><td>College of Engineering Pune, India</td><td></td></tr><tr><td>a7191958e806fce2505a057196ccb01ea763b6ea</td><td>College of Engineering and Computer Science</td><td></td></tr><tr><td>d9810786fccee5f5affaef59bc58d2282718af9b</td><td>College of Engineering and Mineral Resources</td><td></td></tr><tr><td>3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3</td><td>College of Engineering, Mathematics and Physical Sciences</td><td></td></tr><tr><td>07fa153b8e6196ee6ef6efd8b743de8485a07453</td><td>College of Engineering, Northeastern University, Boston, MA, USA</td><td></td></tr><tr><td>cfd933f71f4a69625390819b7645598867900eab</td><td>College of Engineering, Pune, India</td><td>Department of Electronics and Telecommunication</td></tr><tr><td>a6b1d79bc334c74cde199e26a7ef4c189e9acd46</td><td>College of Engineering, Purdue University</td><td></td></tr><tr><td>512befa10b9b704c9368c2fbffe0dc3efb1ba1bf</td><td>College of Image Arts and Sciences</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>College of Informatics</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>College of Informatics</td><td></td></tr><tr><td>66dcd855a6772d2731b45cfdd75f084327b055c2</td><td>College of Information Engineering</td><td></td></tr><tr><td>0f395a49ff6cbc7e796656040dbf446a40e300aa</td><td>College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University</td><td></td></tr><tr><td>134f1cee8408cca648d8b4ca44b38b0a7023af71</td><td>College of Information Science and Electronic Engineering</td><td></td></tr><tr><td>1fe990ca6df273de10583860933d106298655ec8</td><td>College of Information Science and Engineering</td><td></td></tr><tr><td>b7426836ca364603ccab0e533891d8ac54cf2429</td><td>College of Information Science and Engineering, Ocean University of China, Qingdao, China</td><td></td></tr><tr><td>1a41e5d93f1ef5b23b95b7163f5f9aedbe661394</td><td>College of Information Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan</td><td></td></tr><tr><td>a29a22878e1881d6cbf6acff2d0b209c8d3f778b</td><td>College of Information Science and Engineering, Xinjiang University</td><td></td></tr><tr><td>571b83f7fc01163383e6ca6a9791aea79cafa7dd</td><td>College of Information Science and Technology</td><td></td></tr><tr><td>af278274e4bda66f38fd296cfa5c07804fbc26ee</td><td>College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi</td><td></td></tr><tr><td>8986585975c0090e9ad97bec2ba6c4b437419dae</td><td>College of Information and Computer Sciences, University of Massachusetts, Amherst</td><td></td></tr><tr><td>04f55f81bbd879773e2b8df9c6b7c1d324bc72d8</td><td>College of Information and Control Engineering in China University of Petroleum</td><td></td></tr><tr><td>19868a469dc25ee0db00947e06c804b88ea94fd0</td><td>College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China</td><td></td></tr><tr><td>b5930275813a7e7a1510035a58dd7ba7612943bc</td><td>College of Information and Electrical Engineering</td><td></td></tr><tr><td>86d0127e1fd04c3d8ea78401c838af621647dc95</td><td>College of Information and Engineering, Hunan University, Changsha, China</td><td></td></tr><tr><td>74eae724ef197f2822fb7f3029c63014625ce1ca</td><td>College of Information, Yunnan Normal University, Kunming, China</td><td></td></tr><tr><td>a32d4195f7752a715469ad99cb1e6ebc1a099de6</td><td>College of Mechatronic Engineering and Automation, National University of Defense Technology</td><td>Department of Automatic Control</td></tr><tr><td>a065080353d18809b2597246bb0b48316234c29a</td><td>College of Medical Informatics, Chongqing Medical University, Chongqing, China</td><td></td></tr><tr><td>b4362cd87ad219790800127ddd366cc465606a78</td><td>College of Medicine, Seoul National University</td><td>Department of Biomedical Engineering</td></tr><tr><td>50eb2ee977f0f53ab4b39edc4be6b760a2b05f96</td><td>College of Science, Baghdad University, Baghdad, Iraq</td><td>Computer Science Department</td></tr><tr><td>b73d9e1af36aabb81353f29c40ecdcbdf731dbed</td><td>College of Science, Menou a University, Menou a 32721, Egypt</td><td>Department of Computer Science</td></tr><tr><td>3f540faf85e1f8de6ce04fb37e556700b67e4ad3</td><td>College of Sciences, Northeastern University, Shenyang 110819, China</td><td></td></tr><tr><td>c207fd762728f3da4cddcfcf8bf19669809ab284</td><td>College of Software Engineering, Southeast University, Nanjing 210096, China</td><td></td></tr><tr><td>e065a2cb4534492ccf46d0afc81b9ad8b420c5ec</td><td>College of Software, Beihang University</td><td></td></tr><tr><td>0517d08da7550241fb2afb283fc05d37fce5d7b7</td><td>College of software, Chongqing University of Posts and Telecommunications Chongqing</td><td></td></tr><tr><td>72bf9c5787d7ff56a1697a3389f11d14654b4fcf</td><td>CollegePark, MD</td><td></td></tr><tr><td>dbd5e9691cab2c515b50dda3d0832bea6eef79f2</td><td>CollegePark, MD</td><td></td></tr><tr><td>a481e394f58f2d6e998aa320dad35c0d0e15d43c</td><td>Colorado State University</td><td></td></tr><tr><td>ae5bb02599244d6d88c4fe466a7fdd80aeb91af4</td><td>Colorado State University</td><td></td></tr><tr><td>ae5bb02599244d6d88c4fe466a7fdd80aeb91af4</td><td>Colorado State University</td><td></td></tr><tr><td>38a2661b6b995a3c4d69e7d5160b7596f89ce0e6</td><td>Colorado State University</td><td></td></tr><tr><td>d26b443f87df76034ff0fa9c5de9779152753f0c</td><td>Colorado State University</td><td></td></tr><tr><td>120bcc9879d953de7b2ecfbcd301f72f3a96fb87</td><td>Colorado State University</td><td></td></tr><tr><td>3294e27356c3b1063595885a6d731d625b15505a</td><td>Colorado State University, Fort Collins, CO 80523, USA</td><td>Departments of Computer Science2 and Mathematics1</td></tr><tr><td>7d306512b545df98243f87cb8173df83b4672b18</td><td>Colorado State University, Fort Collins, Colorado, USA</td><td></td></tr><tr><td>f0ca31fd5cad07e84b47d50dc07db9fc53482a46</td><td>Colorado State University, Fort Collins, USA</td><td>Department of Mathematics</td></tr><tr><td>85fd2bda5eb3afe68a5a78c30297064aec1361f6</td><td>Columbia Business School, University of California, San Diego</td><td>Columbia University; 2Psychology Department</td></tr><tr><td>61f93ed515b3bfac822deed348d9e21d5dffe373</td><td>Columbia University</td><td>Department of Computer Science</td></tr><tr><td>61f93ed515b3bfac822deed348d9e21d5dffe373</td><td>Columbia University</td><td>Department of Electrical Engineering</td></tr><tr><td>03c48d8376990cff9f541d542ef834728a2fcda2</td><td>Columbia University</td><td></td></tr><tr><td>35f03f5cbcc21a9c36c84e858eeb15c5d6722309</td><td>Columbia University</td><td></td></tr><tr><td>670637d0303a863c1548d5b19f705860a23e285c</td><td>Columbia University</td><td></td></tr><tr><td>0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d</td><td>Columbia University</td><td>EE Department</td></tr><tr><td>33030c23f6e25e30b140615bb190d5e1632c3d3b</td><td>Columbia University</td><td></td></tr><tr><td>bbfe0527e277e0213aafe068113d719b2e62b09c</td><td>Columbia University</td><td></td></tr><tr><td>df0e280cae018cebd5b16ad701ad101265c369fa</td><td>Columbia University</td><td></td></tr><tr><td>4b507a161af8a7dd41e909798b9230f4ac779315</td><td>Columbia University</td><td></td></tr><tr><td>4c170a0dcc8de75587dae21ca508dab2f9343974</td><td>Columbia University</td><td></td></tr><tr><td>217de4ff802d4904d3f90d2e24a29371307942fe</td><td>Columbia University</td><td></td></tr><tr><td>217de4ff802d4904d3f90d2e24a29371307942fe</td><td>Columbia University</td><td></td></tr><tr><td>759a3b3821d9f0e08e0b0a62c8b693230afc3f8d</td><td>Columbia University</td><td></td></tr><tr><td>2a88541448be2eb1b953ac2c0c54da240b47dd8a</td><td>Columbia University</td><td></td></tr><tr><td>5e16f10f2d667d17c029622b9278b6b0a206d394</td><td>Columbia University</td><td>Department of Computer Science</td></tr><tr><td>5e16f10f2d667d17c029622b9278b6b0a206d394</td><td>Columbia University</td><td>Department of Electrical Engineering</td></tr><tr><td>08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d</td><td>Columbia University</td><td></td></tr><tr><td>0f829fee12e86f980a581480a9e0cefccb59e2c5</td><td>Columbia University</td><td></td></tr><tr><td>0a82860d11fcbf12628724333f1e7ada8f3cd255</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>b13bf657ca6d34d0df90e7ae739c94a7efc30dc3</td><td>Columbia University</td><td></td></tr><tr><td>ddaa8add8528857712424fd57179e5db6885df7c</td><td>Columbia University</td><td></td></tr><tr><td>c41de506423e301ef2a10ea6f984e9e19ba091b4</td><td>Columbia University</td><td></td></tr><tr><td>1cee993dc42626caf5dbc26c0a7790ca6571d01a</td><td>Columbia University</td><td>Department of Computer Science</td></tr><tr><td>40217a8c60e0a7d1735d4f631171aa6ed146e719</td><td>Columbia University</td><td></td></tr><tr><td>140438a77a771a8fb656b39a78ff488066eb6b50</td><td>Columbia University</td><td></td></tr><tr><td>47382cb7f501188a81bb2e10cfd7aed20285f376</td><td>Columbia University in the City of New York</td><td></td></tr><tr><td>3240c9359061edf7a06bfeb7cc20c103a65904c2</td><td>Columbia University, National University of Singapore</td><td></td></tr><tr><td>be86d88ecb4192eaf512f29c461e684eb6c35257</td><td>Columbia University, New York NY 10027, USA</td><td></td></tr><tr><td>4f0d9200647042e41dea71c35eb59e598e6018a7</td><td>Columbia University, New York, NY</td><td></td></tr><tr><td>14fb3283d4e37760b7dc044a1e2906e3cbf4d23a</td><td>Columbia University, New York, NY</td><td></td></tr><tr><td>780557daaa39a445b24c41f637d5fc9b216a0621</td><td>Columbia University, New York, NY 10027, USA</td><td>Department of Electrical Engineering</td></tr><tr><td>a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f</td><td>Columbia University, New York, NY, USA</td><td></td></tr><tr><td>774cbb45968607a027ae4729077734db000a1ec5</td><td>Columbia University, USA</td><td></td></tr><tr><td>7e18b5f5b678aebc8df6246716bf63ea5d8d714e</td><td>Columbia University, United States</td><td></td></tr><tr><td>97f9c3bdb4668f3e140ded2da33fe704fc81f3ea</td><td>ColumbiaUniversity, NY, USA</td><td>Department ofComputerScience</td></tr><tr><td>66aad5b42b7dda077a492e5b2c7837a2a808c2fa</td><td>Compi`egne University of Technology</td><td></td></tr><tr><td>a611c978e05d7feab01fb8a37737996ad6e88bd9</td><td>Computational Biomedicine Lab, University of Houston, TX, USA</td><td></td></tr><tr><td>e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef</td><td>Computational Biomedicine Laboratory, University of Houston, Houston, Texas 77204, USA</td><td>Department of Computer Science</td></tr><tr><td>e30dc2abac4ecc48aa51863858f6f60c7afdf82a</td><td>Computational Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas</td><td></td></tr><tr><td>6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0</td><td>Computational Science and Engineering Program, Bo gazic i University, Istanbul, Turkey</td><td></td></tr><tr><td>d687fa99586a9ad229284229f20a157ba2d41aea</td><td>Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India</td><td></td></tr><tr><td>3ca5d3b8f5f071148cb50f22955fd8c1c1992719</td><td>Computer Engineering and Computer Science, Duthie Center for Engineering, University of</td><td></td></tr><tr><td>ad247138e751cefa3bb891c2fe69805da9c293d7</td><td>Computer Engineering, Faculty of Engineering, Kharazmi University of Tehran, Tehran, Iran</td><td></td></tr><tr><td>3a0ea368d7606030a94eb5527a12e6789f727994</td><td>Computer Graphics Research Group, University of Freiburg, Freiburg, Germany</td><td></td></tr><tr><td>1d1a7ef193b958f9074f4f236060a5f5e7642fc1</td><td>Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA</td><td></td></tr><tr><td>2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40</td><td>Computer Laboratory, University of Cambridge, Cambridge, UK</td><td></td></tr><tr><td>511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7</td><td>Computer School, University of South China, Hengyang, China</td><td></td></tr><tr><td>d5d7e89e6210fcbaa52dc277c1e307632cd91dab</td><td>Computer Science Depart., Cornell University, USA</td><td></td></tr><tr><td>d5d7e89e6210fcbaa52dc277c1e307632cd91dab</td><td>Computer Science Depart., Rochester University, USA</td><td></td></tr><tr><td>560e0e58d0059259ddf86fcec1fa7975dee6a868</td><td>Computer Science Division, The Open University of Israel</td><td></td></tr><tr><td>5bde1718253ec28a753a892b0ba82d8e553b6bf3</td><td>Computer Science Division, The Open University of Israel</td><td></td></tr><tr><td>7fc3442c8b4c96300ad3e860ee0310edb086de94</td><td>Computer Science Division, The Open University of Israel, Israel</td><td></td></tr><tr><td>12ebeb2176a5043ad57bc5f3218e48a96254e3e9</td><td>Computer Science North South University, Dhaka</td><td></td></tr><tr><td>12ebeb2176a5043ad57bc5f3218e48a96254e3e9</td><td>Computer Science North South University, Dhaka</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA</td><td>Department of EECS</td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science and Arti cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA</td><td></td></tr><tr><td>55bc7abcef8266d76667896bbc652d081d00f797</td><td>Computer Science and Electrical Engineering, West Virginia University, Morgantown, USA</td><td></td></tr><tr><td>a25106a76af723ba9b09308a7dcf4f76d9283589</td><td>Computer Science and Engineering, Anna University, India</td><td></td></tr><tr><td>a25106a76af723ba9b09308a7dcf4f76d9283589</td><td>Computer Science and Engineering, Easwari Engineering College, India</td><td></td></tr><tr><td>e22adcd2a6a7544f017ec875ce8f89d5c59e09c8</td><td>Computer Science and Engineering, Michigan State University, East Lansing, USA</td><td></td></tr><tr><td>55bc7abcef8266d76667896bbc652d081d00f797</td><td>Computer Science and Engineering, Michigan State University, East Lansing, USA</td><td></td></tr><tr><td>371f40f6d32ece05cc879b6954db408b3d4edaf3</td><td>Computer Science and Engineering, University of Michigan, Ann Arbor</td><td></td></tr><tr><td>f3ca2c43e8773b7062a8606286529c5bc9b3ce25</td><td>Computer Science and Engineering, University of Texas at Arlington, USA</td><td></td></tr><tr><td>345bea5f7d42926f857f395c371118a00382447f</td><td>Computer Science and Engineering, University of Washington</td><td></td></tr><tr><td>51eba481dac6b229a7490f650dff7b17ce05df73</td><td>Computer Science and Engineering, University of Washington, Seattle, WA</td><td></td></tr><tr><td>02239ae5e922075a354169f75f684cad8fdfd5ab</td><td>Computer Science and Engineering, University of Washington, Seattle, WA</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science and Engineering, University of Washington, Seattle, WA, USA</td><td></td></tr><tr><td>eb8519cec0d7a781923f68fdca0891713cb81163</td><td>Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada</td><td></td></tr><tr><td>17670b60dcfb5cbf8fdae0b266e18cf995f6014c</td><td>Computer Science and Software Engineering, Concordia University, Montr eal, Qu ebec, Canada</td><td></td></tr><tr><td>210b98394c3be96e7fd75d3eb11a391da1b3a6ca</td><td>Computer Science and Software Engineering, The University of Western Australia</td><td></td></tr><tr><td>ebb1c29145d31c4afa3c9be7f023155832776cd3</td><td>Computer Science and Technology, Tsinghua University, Beijing, China</td><td></td></tr><tr><td>fd96432675911a702b8a4ce857b7c8619498bf9f</td><td>Computer Science, Beijing Institute of Technology, Beijing 100081, P.R.China</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science, Brown University, Providence, RI, USA</td><td></td></tr><tr><td>0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf</td><td>Computer Science, Engineering and Mathematics School, Flinders University, Australia</td><td></td></tr><tr><td>0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf</td><td>Computer Science, Engineering and Mathematics School, Flinders University, Australia</td><td></td></tr><tr><td>82c303cf4852ad18116a2eea31e2291325bc19c3</td><td>Computer Science, Engineering and Mathematics School, Flinders University, Australia</td><td></td></tr><tr><td>124538b3db791e30e1b62f81d4101be435ee12ef</td><td>Computer Science, Princeton University, Princeton, NJ, USA</td><td></td></tr><tr><td>6ef1996563835b4dfb7fda1d14abe01c8bd24a05</td><td>Computer Vision Group, Friedrich Schiller University Jena</td><td></td></tr><tr><td>0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f</td><td>Computer Vision Group, Friedrich Schiller University Jena, Germany</td><td></td></tr><tr><td>a949b8700ca6ba96ee40f75dfee1410c5bbdb3db</td><td>Computer Vision Group, Friedrich Schiller University of Jena, Germany</td><td></td></tr><tr><td>c2e6daebb95c9dfc741af67464c98f1039127627</td><td>Computer Vision Group, Friedrich Schiller University of Jena, Germany</td><td></td></tr><tr><td>0435a34e93b8dda459de49b499dd71dbb478dc18</td><td>Computer Vision Group, L. D. College of Engineering, Ahmedabad, India</td><td></td></tr><tr><td>7cee802e083c5e1731ee50e731f23c9b12da7d36</td><td>Computer Vision Group, L. D. College of Engineering, Ahmedabad, India</td><td></td></tr><tr><td>faca1c97ac2df9d972c0766a296efcf101aaf969</td><td>Computer Vision Group, Xerox Research Center Europe, Meylan, France</td><td></td></tr><tr><td>0d0b880e2b531c45ee8227166a489bf35a528cb9</td><td>Computer Vision Lab, Delft University of Technology</td><td></td></tr><tr><td>ea46951b070f37ad95ea4ed08c7c2a71be2daedc</td><td>Computer Vision Lab, Delft University of Technology, Netherlands</td><td></td></tr><tr><td>8d646ac6e5473398d668c1e35e3daa964d9eb0f6</td><td>Computer Vision Laboratory, Link oping University, SE-581 83 Link oping, Sweden</td><td>Department of Electrical Engineering</td></tr><tr><td>264a84f4d27cd4bca94270620907cffcb889075c</td><td>Computer Vision Laboratory, Link oping University, Sweden</td><td>Department of Electrical Engineering</td></tr><tr><td>4cd0da974af9356027a31b8485a34a24b57b8b90</td><td>Computer Vision Laboratory, The University of Nottingham</td><td></td></tr><tr><td>02e628e99f9a1b295458cb453c09863ea1641b67</td><td>Computer Vision Laboratory, University of Nottingham, Nottingham, UK</td><td></td></tr><tr><td>056ba488898a1a1b32daec7a45e0d550e0c51ae4</td><td>Computer Vision Laboratory. University of Nottingham</td><td></td></tr><tr><td>c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f</td><td>Computer Vision Research Group, COMSATS Institute of Information</td><td></td></tr><tr><td>acee2201f8a15990551804dd382b86973eb7c0a8</td><td>Computer Vision and Robotics Research Laboratory</td><td></td></tr><tr><td>19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54</td><td>Computer Vision and Robotics Research Laboratory</td><td></td></tr><tr><td>29b86534d4b334b670914038c801987e18eb5532</td><td>Computer Vision for Human Computer Interaction, Karlsruhe Institute of Technology, Germany</td><td></td></tr><tr><td>5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49</td><td>Computer and Systems Engineering, Rensselaer Polytechnic Institute</td><td>Department of Electrical</td></tr><tr><td>a255a54b8758050ea1632bf5a88a201cd72656e1</td><td>Computer and Vision Research Center</td><td></td></tr><tr><td>0b02bfa5f3a238716a83aebceb0e75d22c549975</td><td>Computer vision and Remote Sensing, Berlin university of Technology</td><td></td></tr><tr><td>301b0da87027d6472b98361729faecf6e1d5e5f6</td><td>Computer vision and Remote Sensing, Berlin university of Technology</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Concordia University</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Concordia University</td><td></td></tr><tr><td>ec05078be14a11157ac0e1c6b430ac886124589b</td><td>Concordia University</td><td></td></tr><tr><td>41971dfbf404abeb8cf73fea29dc37b9aae12439</td><td>Concordia University</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Concordia University, Canada</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Concordia University, Canada</td><td></td></tr><tr><td>c418a3441f992fea523926f837f4bfb742548c16</td><td>Concordia University, Canada</td><td>Department of Computer Science and Software Engineering</td></tr><tr><td>266ed43dcea2e7db9f968b164ca08897539ca8dd</td><td>Concordia University, Computer Science and Software Engineering, Montr eal, Qu ebec, Canada</td><td></td></tr><tr><td>6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d</td><td>Concordia University, Montreal, Quebec, Canada</td><td>Department of Computer Science and Software Engineering</td></tr><tr><td>7f59657c883f77dc26393c2f9ed3d19bdf51137b</td><td>Conference on CyberGames and Interactive Entertainment (pp. 52-58). Western Australia: Murdoch university</td><td></td></tr><tr><td>fd33df02f970055d74fbe69b05d1a7a1b9b2219b</td><td>Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, China</td><td></td></tr><tr><td>e90e12e77cab78ba8f8f657db2bf4ae3dabd5166</td><td>Cooperative Medianet Innovation Center, Shanghai Jiao Tong University</td><td></td></tr><tr><td>4a14a321a9b5101b14ed5ad6aa7636e757909a7c</td><td>Cooperative Medianet Innovation Center, Shanghai Jiaotong University</td><td></td></tr><tr><td>713594c18978b965be87651bb553c28f8501df0a</td><td>Cooperative Medianet Innovation Center, Shanghai Jiaotong University</td><td></td></tr><tr><td>126535430845361cd7a3a6f317797fe6e53f5a3b</td><td>Coordinated Science Lab, University of Illinois at Urbana-Champaign</td><td></td></tr><tr><td>bcf19b964e7d1134d00332cf1acf1ee6184aff00</td><td>Copyright c(cid:2) 2017 The Institute of Electronics, Information and Communication Engineers</td><td></td></tr><tr><td>b216040f110d2549f61e3f5a7261cab128cab361</td><td>Copyright c(cid:3) 2017 The Institute of Electronics, Information and Communication Engineers</td><td></td></tr><tr><td>04317e63c08e7888cef480fe79f12d3c255c5b00</td><td>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</td><td></td></tr><tr><td>aba770a7c45e82b2f9de6ea2a12738722566a149</td><td>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</td><td></td></tr><tr><td>c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290</td><td>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</td><td></td></tr><tr><td>38215c283ce4bf2c8edd597ab21410f99dc9b094</td><td>Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other</td><td></td></tr><tr><td>32d8e555441c47fc27249940991f80502cb70bd5</td><td>Cornell University</td><td></td></tr><tr><td>5aad56cfa2bac5d6635df4184047e809f8fecca2</td><td>Cornell University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>053b263b4a4ccc6f9097ad28ebf39c2957254dfb</td><td>Cornell University</td><td></td></tr><tr><td>053b263b4a4ccc6f9097ad28ebf39c2957254dfb</td><td>Cornell University</td><td></td></tr><tr><td>28d06fd508d6f14cd15f251518b36da17909b79e</td><td>Cornell University</td><td></td></tr><tr><td>8a8861ad6caedc3993e31d46e7de6c251a8cda22</td><td>Cornell University</td><td></td></tr><tr><td>192235f5a9e4c9d6a28ec0d333e36f294b32f764</td><td>Cornell University</td><td></td></tr><tr><td>192235f5a9e4c9d6a28ec0d333e36f294b32f764</td><td>Cornell University</td><td></td></tr><tr><td>9fc04a13eef99851136eadff52e98eb9caac919d</td><td>Cornell University</td><td></td></tr><tr><td>9fc04a13eef99851136eadff52e98eb9caac919d</td><td>Cornell University</td><td></td></tr><tr><td>6577c76395896dd4d352f7b1ee8b705b1a45fa90</td><td>Cornell University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>6577c76395896dd4d352f7b1ee8b705b1a45fa90</td><td>Cornell University</td><td>Department of Computer Science</td></tr><tr><td>3026722b4cbe9223eda6ff2822140172e44ed4b1</td><td>Cornell University</td><td></td></tr><tr><td>6c5fbf156ef9fc782be0089309074cc52617b868</td><td>Cornell University</td><td>Department of Computer Science and Cornell Tech</td></tr><tr><td>ce9e1dfa7705623bb67df3a91052062a0a0ca456</td><td>Cornell University</td><td></td></tr><tr><td>240eb0b34872c431ecf9df504671281f59e7da37</td><td>Cornell University</td><td></td></tr><tr><td>8bdf6f03bde08c424c214188b35be8b2dec7cdea</td><td>Cornell University</td><td></td></tr><tr><td>37278ffce3a0fe2c2bbf6232e805dd3f5267eba3</td><td>Cornell University 2 Cornell Tech</td><td>Department of Computer Science</td></tr><tr><td>e5799fd239531644ad9270f49a3961d7540ce358</td><td>Cornell University 2Eastman Kodak Company</td><td>Department of Elec. and Computer Eng.</td></tr><tr><td>8cb6daba2cb1e208e809633133adfee0183b8dd2</td><td>Cornell University and Stanford University</td><td></td></tr><tr><td>09f58353e48780c707cf24a0074e4d353da18934</td><td>Cornell University, Ithaca, NY, U.S.A</td><td></td></tr><tr><td>b185f0a39384ceb3c4923196aeed6d68830a069f</td><td>Cornell University, Ithaca, New York</td><td></td></tr><tr><td>345cc31c85e19cea9f8b8521be6a37937efd41c2</td><td>Cornell University, Washington University in St. Louis</td><td></td></tr><tr><td>93747de3d40376761d1ef83ffa72ec38cd385833</td><td>Correspondence should be addressed to: Astrid C. Homan, University of Amsterdam, Weesperplein</td><td>Department of Psychology</td></tr><tr><td>1442319de86d171ce9595b20866ec865003e66fc</td><td>Country University, San Sebastian, Spain</td><td></td></tr><tr><td>014143aa16604ec3f334c1407ceaa496d2ed726e</td><td>Courant Institute</td><td></td></tr><tr><td>55138c2b127ebdcc508503112bf1d1eeb5395604</td><td>Courant Institute and Google Research</td><td></td></tr><tr><td>55138c2b127ebdcc508503112bf1d1eeb5395604</td><td>Courant Institute of Mathematical Sciences</td><td></td></tr><tr><td>05d80c59c6fcc4652cfc38ed63d4c13e2211d944</td><td>Courant Institute of Mathematical Sciences and Google Research, New York, NY</td><td></td></tr><tr><td>05d80c59c6fcc4652cfc38ed63d4c13e2211d944</td><td>Courant Institute of Mathematical Sciences, New York, NY</td><td></td></tr><tr><td>07e639abf1621ceff27c9e3f548fadfa2052c912</td><td>Current Address: Research Institute of Child Development and Education, University of Amsterdam</td><td></td></tr><tr><td>3df7401906ae315e6aef3b4f13126de64b894a54</td><td>Curtin University of Technology</td><td>Department of Computing</td></tr><tr><td>1048c753e9488daa2441c50577fe5fdba5aa5d7c</td><td>Curtin University of Technology</td><td>Department of Computing</td></tr><tr><td>b88ceded6467e9b286f048bb1b17be5998a077bd</td><td>Curtin University, Perth, Australia</td><td></td></tr><tr><td>e9a5a38e7da3f0aa5d21499149536199f2e0e1f7</td><td>Curtin University, Perth, WA 6102, Australia</td><td>Department of Computing</td></tr><tr><td>3cc46bf79fb9225cf308815c7d41c8dd5625cc29</td><td>Cyprus University of Technology</td><td></td></tr><tr><td>9d3aa3b7d392fad596b067b13b9e42443bbc377c</td><td>Cyprus University of Technology</td><td>Department of Multimedia and Graphic Arts</td></tr><tr><td>70db3a0d2ca8a797153cc68506b8650908cb0ada</td><td>Cyprus University of Technology, Cyprus</td><td></td></tr><tr><td>1565721ebdbd2518224f54388ed4f6b21ebd26f3</td><td>Czech Technical University</td><td></td></tr><tr><td>276dbb667a66c23545534caa80be483222db7769</td><td>D Research Center, Kwangwoon University and Springer</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>88850b73449973a34fefe491f8836293fc208580</td><td>D.J. Sanghvi College of Engineering</td><td></td></tr><tr><td>9d757c0fede931b1c6ac344f67767533043cba14</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</td><td></td></tr><tr><td>9d757c0fede931b1c6ac344f67767533043cba14</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</td><td></td></tr><tr><td>c81ee278d27423fd16c1a114dcae486687ee27ff</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune</td><td></td></tr><tr><td>c81ee278d27423fd16c1a114dcae486687ee27ff</td><td>D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University</td><td></td></tr><tr><td>d5d7e89e6210fcbaa52dc277c1e307632cd91dab</td><td>DAIS, University of Venice, Italy</td><td></td></tr><tr><td>2ee817981e02c4709d65870c140665ed25b005cc</td><td>DAP - University of Sassari</td><td></td></tr><tr><td>568cff415e7e1bebd4769c4a628b90db293c1717</td><td>DCMandB, University of Michigan, Ann Arbor, USA 4 SCS, Carnegie Mellon University, Pittsburgh, USA</td><td></td></tr><tr><td>779ad364cae60ca57af593c83851360c0f52c7bf</td><td>DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco</td><td></td></tr><tr><td>aadf4b077880ae5eee5dd298ab9e79a1b0114555</td><td>DICGIM - University of Palermo</td><td></td></tr><tr><td>2b84630680e2c906f8d7ac528e2eb32c99ef203a</td><td>DIEI, University of Perugia, Italy</td><td></td></tr><tr><td>43bb20ccfda7b111850743a80a5929792cb031f0</td><td>DISI - University of Trento</td><td></td></tr><tr><td>2b84630680e2c906f8d7ac528e2eb32c99ef203a</td><td>DISI, University of Trento, Italy</td><td></td></tr><tr><td>e6f20e7431172c68f7fce0d4595100445a06c117</td><td>DISI, University of Trento, Trento, Italy</td><td></td></tr><tr><td>303517dfc327c3004ae866a6a340f16bab2ee3e3</td><td>DIT UNIVERSITY, DEHRADUN</td><td></td></tr><tr><td>5058a7ec68c32984c33f357ebaee96c59e269425</td><td>DPDCE, University IUAV</td><td></td></tr><tr><td>a01f9461bc8cf8fe40c26d223ab1abea5d8e2812</td><td>DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy</td><td></td></tr><tr><td>f963967e52a5fd97fa3ebd679fd098c3cb70340e</td><td>DSP Lab, Sharif University of Technology, Tehran, Iran</td><td></td></tr><tr><td>4aa8db1a3379f00db2403bba7dade5d6e258b9e9</td><td>DSP Lab, Sharif University of Technology, Tehran, Iran</td><td></td></tr><tr><td>72f4aaf7e2e3f215cd8762ce283988220f182a5b</td><td>DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK</td><td></td></tr><tr><td>f5af4e9086b0c3aee942cb93ece5820bdc9c9748</td><td>DUBLIN CITY UNIVERSITY</td><td></td></tr><tr><td>ae0765ebdffffd6e6cc33c7705df33b7e8478627</td><td>DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China</td><td></td></tr><tr><td>0b4c4ea4a133b9eab46b217e22bda4d9d13559e6</td><td>DVMM Lab - Columbia University</td><td></td></tr><tr><td>1275852f2e78ed9afd189e8b845fdb5393413614</td><td>Dalian Maritime University</td><td></td></tr><tr><td>052f994898c79529955917f3dfc5181586282cf8</td><td>Dalian University of Technology</td><td></td></tr><tr><td>38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f</td><td>Dalian University of Technology, China</td><td></td></tr><tr><td>7a9c317734acaf4b9bd8e07dd99221c457b94171</td><td>Dalian University of Technology, Dalian 116024, China</td><td></td></tr><tr><td>2b64a8c1f584389b611198d47a750f5d74234426</td><td>Dalian University of Technology, Dalian, China</td><td></td></tr><tr><td>9391618c09a51f72a1c30b2e890f4fac1f595ebd</td><td>Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College</td><td></td></tr><tr><td>8f3e120b030e6c1d035cb7bd9c22f6cc75782025</td><td>Dalle Molle Institute for Arti cial Intelligence</td><td></td></tr><tr><td>1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9</td><td>Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, Korea</td><td>Department of Applied Computer Engineering</td></tr><tr><td>9b246c88a0435fd9f6d10dc88f47a1944dd8f89e</td><td>Dartmouth College</td><td></td></tr><tr><td>3328413ee9944de1cc7c9c1d1bf2fece79718ba1</td><td>Dartmouth College</td><td></td></tr><tr><td>3328413ee9944de1cc7c9c1d1bf2fece79718ba1</td><td>Dartmouth College</td><td></td></tr><tr><td>df71a00071d5a949f9c31371c2e5ee8b478e7dc8</td><td>Dartmouth College</td><td></td></tr><tr><td>df71a00071d5a949f9c31371c2e5ee8b478e7dc8</td><td>Dartmouth College</td><td></td></tr><tr><td>df71a00071d5a949f9c31371c2e5ee8b478e7dc8</td><td>Dartmouth College</td><td></td></tr><tr><td>fd7b6c77b46420c27725757553fcd1fb24ea29a8</td><td>Dartmouth College</td><td>Department of Computer Science</td></tr><tr><td>86374bb8d309ad4dbde65c21c6fda6586ae4147a</td><td>Dartmouth College</td><td></td></tr><tr><td>2af620e17d0ed67d9ccbca624250989ce372e255</td><td>Dartmouth College</td><td></td></tr><tr><td>2d38fd1df95f5025e2cee5bc439ba92b369a93df</td><td>Dartmouth College</td><td></td></tr><tr><td>8d6c4af9d4c01ff47fe0be48155174158a9a5e08</td><td>Dartmouth College</td><td></td></tr><tr><td>0cbc4dcf2aa76191bbf641358d6cecf38f644325</td><td>Dartmouth College, 6211 Sudiko Lab, Hanover, NH 03755, USA</td><td></td></tr><tr><td>1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8</td><td>Dartmouth College, NH 03755 USA</td><td>Computer Science Department</td></tr><tr><td>e43cc682453cf3874785584fca813665878adaa7</td><td>Datta Meghe College of Engineering</td><td></td></tr><tr><td>ea890846912f16a0f3a860fce289596a7dac575f</td><td>David R. Simmons, University of</td><td></td></tr><tr><td>574705812f7c0e776ad5006ae5e61d9b071eebdb</td><td>Dayananda Sagar College of Engg., India</td><td>¹Department rtment of Telecommunication Engg.</td></tr><tr><td>574705812f7c0e776ad5006ae5e61d9b071eebdb</td><td>Dayananda Sagar College of Engg., India</td><td>²Department of Telecommunication Engg.</td></tr><tr><td>2bbbbe1873ad2800954058c749a00f30fe61ab17</td><td>Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India</td><td></td></tr><tr><td>738a985fba44f9f5acd516e07d0d9578f2ffaa4e</td><td>Delft University of Technology</td><td></td></tr><tr><td>361d6345919c2edc5c3ce49bb4915ed2b4ee49be</td><td>Delft University of Technology</td><td></td></tr><tr><td>41f26101fed63a8d149744264dd5aa79f1928265</td><td>Delft University of Technology</td><td></td></tr><tr><td>473cbc5ec2609175041e1410bc6602b187d03b23</td><td>Delft University of Technology</td><td></td></tr><tr><td>067126ce1f1a205f98e33db7a3b77b7aec7fb45a</td><td>Delft University of Technology, The Netherlands</td><td></td></tr><tr><td>42765c170c14bd58e7200b09b2e1e17911eed42b</td><td>Democritus University of Thrace</td><td></td></tr><tr><td>4d6462fb78db88afff44561d06dd52227190689c</td><td>Dep. of Applied Mathematics and Analysis, University of Barcelona, Spain</td><td></td></tr><tr><td>d394bd9fbaad1f421df8a49347d4b3fca307db83</td><td>Deparment of Computer Science, Queen Mary, University of London, London, E1 4NS, UK</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>Deparment of Computing, Goldsmiths, University of London, UK</td><td></td></tr><tr><td>aa0c30bd923774add6e2f27ac74acd197b9110f2</td><td>Deparment of Computing, Imperial College London, UK</td><td></td></tr><tr><td>ea218cebea2228b360680cb85ca133e8c2972e56</td><td>Departm nt of Information Engin ering Th Chines University of Hong Kong</td><td></td></tr><tr><td>68003e92a41d12647806d477dd7d20e4dcde1354</td><td>Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India</td><td></td></tr><tr><td>1442319de86d171ce9595b20866ec865003e66fc</td><td>DeustoTech - University of Deusto</td><td></td></tr><tr><td>74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8</td><td>Deva Ramanan, University of California at Irvine</td><td></td></tr><tr><td>89bc311df99ad0127383a9149d1684dfd8a5aa34</td><td>Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA</td><td></td></tr><tr><td>026e4ee480475e63ae68570d73388f8dfd4b4cde</td><td>Dhaka University</td><td></td></tr><tr><td>2e1415a814ae9abace5550e4893e13bd988c7ba1</td><td>Dhanalakshmi Srinivasan College of Engineering</td><td>ECE Department</td></tr><tr><td>6ae96f68187f1cdb9472104b5431ec66f4b2470f</td><td>Dietrich College Honors Theses</td><td></td></tr><tr><td>6ae96f68187f1cdb9472104b5431ec66f4b2470f</td><td>Dietrich College of Humanities and Social Sciences</td><td></td></tr><tr><td>1f89439524e87a6514f4fbe7ed34bda4fd1ce286</td><td>Dietrich College of Humanities and Social Sciences</td><td></td></tr><tr><td>902114feaf33deac209225c210bbdecbd9ef33b1</td><td>Digital Media Research Center</td><td></td></tr><tr><td>2bab44d3a4c5ca79fb8f87abfef4456d326a0445</td><td>Dipartimento di Sistemi e Informatica, University of Florence</td><td></td></tr><tr><td>a3dc109b1dff3846f5a2cc1fe2448230a76ad83f</td><td>Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India</td><td></td></tr><tr><td>273b0511588ab0a81809a9e75ab3bd93d6a0f1e3</td><td>Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do</td><td></td></tr><tr><td>8b2704a5218a6ef70e553eaf0a463bd55129b69d</td><td>Division of Computer Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do</td><td></td></tr><tr><td>97137d5154a9f22a5d9ecc32e8e2b95d07a5a571</td><td>Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do</td><td></td></tr><tr><td>59e9934720baf3c5df3a0e1e988202856e1f83ce</td><td>Division of Computer Science and Engineering, Hanyang University</td><td></td></tr><tr><td>a0e7f8771c7d83e502d52c276748a33bae3d5f81</td><td>Division of Computer Science, University of California, Berkeley, CA, USA e-mail</td><td></td></tr><tr><td>cc91001f9d299ad70deb6453d55b2c0b967f8c0d</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu</td><td></td></tr><tr><td>ff01bc3f49130d436fca24b987b7e3beedfa404d</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu</td><td></td></tr><tr><td>6f3054f182c34ace890a32fdf1656b583fbc7445</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu</td><td></td></tr><tr><td>d00c335fbb542bc628642c1db36791eae24e02b7</td><td>Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu</td><td></td></tr><tr><td>c3b3636080b9931ac802e2dd28b7b684d6cf4f8b</td><td>Division of IT Convergence, Daegu Gyeongbuk Institute of Science and Technology</td><td></td></tr><tr><td>497bf2df484906e5430aa3045cf04a40c9225f94</td><td>Division of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea</td><td></td></tr><tr><td>ed08ac6da6f8ead590b390b1d14e8a9b97370794</td><td>Dnyanopasak College Parbhani, M.S, India</td><td>Department of C.S.</td></tr><tr><td>528069963f0bd0861f380f53270c96c269a3ea1c</td><td>Doctor of Philosophy in Computer Science at Cardi University, July 24th</td><td></td></tr><tr><td>0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7</td><td>Doctor of Philosophy in Computing of Imperial College, February</td><td></td></tr><tr><td>1467c4ab821c3b340abe05a1b13a19318ebbce98</td><td>Doctor of Philosophy of University College London</td><td></td></tr><tr><td>6e782073a013ce3dbc5b9b56087fd0300c510f67</td><td>Doctoral School of Automatic Control and Computers, University POLITEHNICA of Bucharest, Romania</td><td></td></tr><tr><td>146bbf00298ee1caecde3d74e59a2b8773d2c0fc</td><td>Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the</td><td></td></tr><tr><td>f8f872044be2918de442ba26a30336d80d200c42</td><td>Dr C V Raman Institute of Science and Technology</td><td></td></tr><tr><td>3f4bfa4e3655ef392eb5ad609d31c05f29826b45</td><td>Dr. B. C. Roy Engineering College</td><td></td></tr><tr><td>35e87e06cf19908855a16ede8c79a0d3d7687b5c</td><td>Dr. Babasaheb Ambedkar Marathwada University</td><td></td></tr><tr><td>1910f5f7ac81d4fcc30284e88dee3537887acdf3</td><td>Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India</td><td></td></tr><tr><td>e5342233141a1d3858ed99ccd8ca0fead519f58b</td><td>Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India</td><td>Department of CSE</td></tr><tr><td>59e75aad529b8001afc7e194e21668425119b864</td><td>Drexel University</td><td></td></tr><tr><td>0aae88cf63090ea5b2c80cd014ef4837bcbaadd8</td><td>Drexel University</td><td></td></tr><tr><td>900207b3bc3a4e5244cae9838643a9685a84fee0</td><td>Drexel University</td><td></td></tr><tr><td>17a8d1b1b4c23a630b051f35e47663fc04dcf043</td><td>Drexel University, Philadelphia, PA</td><td>Department of Computer Science</td></tr><tr><td>0be764800507d2e683b3fb6576086e37e56059d1</td><td>Duke University</td><td></td></tr><tr><td>9cd6a81a519545bf8aa9023f6e879521f85d4cd1</td><td>Duke University</td><td></td></tr><tr><td>9cd6a81a519545bf8aa9023f6e879521f85d4cd1</td><td>Duke University</td><td></td></tr><tr><td>2742a61d32053761bcc14bd6c32365bfcdbefe35</td><td>Duke University</td><td></td></tr><tr><td>2742a61d32053761bcc14bd6c32365bfcdbefe35</td><td>Duke University</td><td></td></tr><tr><td>3933416f88c36023a0cba63940eb92f5cef8001a</td><td>Duke University</td><td></td></tr><tr><td>1badfeece64d1bf43aa55c141afe61c74d0bd25e</td><td>Duke University</td><td></td></tr><tr><td>8ccde9d80706a59e606f6e6d48d4260b60ccc736</td><td>Duke University</td><td>Department of Mathematics</td></tr><tr><td>8ccde9d80706a59e606f6e6d48d4260b60ccc736</td><td>Duke University</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>cca9ae621e8228cfa787ec7954bb375536160e0d</td><td>Duke University, Durham, NC, USA</td><td></td></tr><tr><td>f412d9d7bc7534e7daafa43f8f5eab811e7e4148</td><td>Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom</td><td></td></tr><tr><td>cd23dc3227ee2a3ab0f4de1817d03ca771267aeb</td><td>Durham University, Durham, UK</td><td></td></tr><tr><td>c1f07ec629be1c6fe562af0e34b04c54e238dcd1</td><td>ECE dept, University of Miami</td><td></td></tr><tr><td>4e8c608fc4b8198f13f8a68b9c1a0780f6f50105</td><td>ECE, National University of Singapore, Singapore</td><td></td></tr><tr><td>7c4c442e9c04c6b98cd2aa221e9d7be15efd8663</td><td>ECSE, Rensselaer Polytechnic Institute, Troy, NY</td><td></td></tr><tr><td>dbed26cc6d818b3679e46677abc9fa8e04e8c6a6</td><td>ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA</td><td></td></tr><tr><td>7b9961094d3e664fc76b12211f06e12c47a7e77d</td><td>EECS, Syracuse University, Syracuse, NY, USA</td><td></td></tr><tr><td>f60a85bd35fa85739d712f4c93ea80d31aa7de07</td><td>EECS, University of California Berkeley</td><td></td></tr><tr><td>88bef50410cea3c749c61ed68808fcff84840c37</td><td>EEMCS, University of Twente</td><td></td></tr><tr><td>1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6</td><td>EEMCS, University of Twente Enschede, The Netherlands</td><td></td></tr><tr><td>3f957142ef66f2921e7c8c7eadc8e548dccc1327</td><td>EEMCS, University of Twente, Netherlands</td><td></td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>4c87aafa779747828054cffee3125fcea332364d</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>143bee9120bcd7df29a0f2ad6f0f0abfb23977b8</td><td>EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>4a5592ae1f5e9fa83d9fa17451c8ab49608421e4</td><td>EIMT, Open University of</td><td></td></tr><tr><td>8d5998cd984e7cce307da7d46f155f9db99c6590</td><td>EIMT, Open University of Catalonia, Barcelona, Spain</td><td></td></tr><tr><td>b5d7c5aba7b1ededdf61700ca9d8591c65e84e88</td><td>ESAT, Katholieke Universiteit Leuven, Leuven, Belgium</td><td></td></tr><tr><td>46f2611dc4a9302e0ac00a79456fa162461a8c80</td><td>ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai</td><td></td></tr><tr><td>071135dfb342bff884ddb9a4d8af0e70055c22a1</td><td>ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai</td><td></td></tr><tr><td>060034b59275c13746413ca9c67d6304cba50da6</td><td>ESTeM, University of Canberra</td><td></td></tr><tr><td>fffa2943808509fdbd2fc817cc5366752e57664a</td><td>ESTeM, University of Canberra</td><td></td></tr><tr><td>9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca</td><td>East China Normal University</td><td></td></tr><tr><td>d93baa5ecf3e1196b34494a79df0a1933fd2b4ec</td><td>East China Normal University</td><td></td></tr><tr><td>d93baa5ecf3e1196b34494a79df0a1933fd2b4ec</td><td>East China Normal University</td><td></td></tr><tr><td>d93baa5ecf3e1196b34494a79df0a1933fd2b4ec</td><td>East China Normal University</td><td></td></tr><tr><td>d961617db4e95382ba869a7603006edc4d66ac3b</td><td>East China Normal University</td><td></td></tr><tr><td>03baf00a3d00887dd7c828c333d4a29f3aacd5f5</td><td>Eastern Mediterranean University</td><td></td></tr><tr><td>3f4c262d836b2867a53eefb959057350bf7219c9</td><td>Eastern Mediterranean University</td><td>Computer Engineering Department</td></tr><tr><td>c5421a18583f629b49ca20577022f201692c4f5d</td><td>Eastern Mediterranean University, Gazima usa, Northern Cyprus</td><td>Department of Computer Engineering</td></tr><tr><td>026e4ee480475e63ae68570d73388f8dfd4b4cde</td><td>Eastern University</td><td></td></tr><tr><td>0cd8895b4a8f16618686f622522726991ca2a324</td><td>Ecole Polytechnique Federale de Lausanne, Signal Processing Institute</td><td></td></tr><tr><td>b55d0c9a022874fb78653a0004998a66f8242cad</td><td>Economy (MKE) and the Korea Evaluation Institute of Industrial Technology (KEIT</td><td></td></tr><tr><td>e00d391d7943561f5c7b772ab68e2bb6a85e64c4</td><td>Edited by David L. Donoho, Stanford University, Stanford, CA, and approved August 7, 2017 (received for review January</td><td></td></tr><tr><td>74eae724ef197f2822fb7f3029c63014625ce1ca</td><td>Education, Yunnan Normal University, Kunming, China</td><td></td></tr><tr><td>0ba0f000baf877bc00a9e144b88fa6d373db2708</td><td>Education, Yunnan NormalUniversity, Kunming, China2. College of Information, Yunnan</td><td></td></tr><tr><td>d185f4f05c587e23c0119f2cdfac8ea335197ac0</td><td>Eindhoven University of Technology, The Netherlands</td><td></td></tr><tr><td>7e00fb79576fe213853aeea39a6bc51df9fdca16</td><td>Eindhoven University of Technology, The Netherlands</td><td></td></tr><tr><td>1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2</td><td>Eindhoven University of Technology, The Netherlands</td><td></td></tr><tr><td>39dc2ce4cce737e78010642048b6ed1b71e8ac2f</td><td>Elect. Eng. Faculty, Tabriz University, Tabriz, Iran</td><td></td></tr><tr><td>210b98394c3be96e7fd75d3eb11a391da1b3a6ca</td><td>Electrical Eng. Dep., Central Tehran Branch, Islamic Azad University, Tehran, Iran</td><td></td></tr><tr><td>126214ef0dcef2b456cb413905fa13160c73ec8e</td><td>Electrical Engineering Institute, EPFL</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>Electrical Engineering LR11ESO4), University of Tunis EL Manar. Adress: ENSIT 5, Avenue Taha Hussein, B. P. : 56, Bab</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>Electrical Engineering, University of</td><td></td></tr><tr><td>0ea7b7fff090c707684fd4dc13e0a8f39b300a97</td><td>Electrical and Computer Engineering, National University of Singapore, Singapore</td><td></td></tr><tr><td>e38371b69be4f341baa95bc854584e99b67c6d3a</td><td>Electrical and Computer Engineering, Northeastern University, Boston, MA</td><td></td></tr><tr><td>db82f9101f64d396a86fc2bd05b352e433d88d02</td><td>Electrical and Computer Engineering, The University of Memphis</td><td></td></tr><tr><td>22143664860c6356d3de3556ddebe3652f9c912a</td><td>Electrical and Computer Engineering, University of Auckland, New Zealand</td><td></td></tr><tr><td>f3ca2c43e8773b7062a8606286529c5bc9b3ce25</td><td>Electrical and Computer Engineering, University of Pittsburgh, USA</td><td></td></tr><tr><td>ac75c662568cbb7308400cc002469a14ff25edfd</td><td>Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada</td><td></td></tr><tr><td>03ac1c694bc84a27621da6bfe73ea9f7210c6d45</td><td>Electrical and Space Engineering, Lule University of Technology</td><td>Department of Computer Science</td></tr><tr><td>e8f0f9b74db6794830baa2cab48d99d8724e8cb6</td><td>Electrical, Computer, Rensselaer Polytechnic Institute</td><td>and Systems Engineering Department</td></tr><tr><td>245f8ec4373e0a6c1cae36cd6fed5a2babed1386</td><td>Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute</td><td></td></tr><tr><td>a51882cfd0706512bf50e12c0a7dd0775285030d</td><td>Electronic Engineering and Computer Science Queen Mary University of London</td><td></td></tr><tr><td>7224d58a7e1f02b84994b60dc3b84d9fe6941ff5</td><td>Electronic Engineering and Computer Science, Queen Mary University of London, UK</td><td></td></tr><tr><td>b375db63742f8a67c2a7d663f23774aedccc84e5</td><td>Electronic and Information Engineering, University of Bologna, Italy</td><td>Department of Electrical</td></tr><tr><td>191674c64f89c1b5cba19732869aa48c38698c84</td><td>Electronics And Communication Engg., Adhiyamaan College of Engg., Hosur, (India</td><td></td></tr><tr><td>d82b93f848d5442f82154a6011d26df8a9cd00e7</td><td>Electronics Engineering, National Institute of Technical Teachers</td><td></td></tr><tr><td>31d60b2af2c0e172c1a6a124718e99075818c408</td><td>Electronics and Communication Engineering, Chuo University</td><td>Department of Electrical</td></tr><tr><td>3bd1d41a656c8159305ba2aa395f68f41ab84f31</td><td>Electronics and Computer Science, University of Southampton, Southampton, Hampshire</td><td></td></tr><tr><td>887b7676a4efde616d13f38fcbfe322a791d1413</td><td>Electronics and Telecommunications Research Institute</td><td></td></tr><tr><td>7cf579088e0456d04b531da385002825ca6314e2</td><td>Emory University</td><td></td></tr><tr><td>7cf579088e0456d04b531da385002825ca6314e2</td><td>Emory University</td><td></td></tr><tr><td>656531036cee6b2c2c71954bb6540ef6b2e016d0</td><td>Emory University, USA</td><td></td></tr><tr><td>90d735cffd84e8f2ae4d0c9493590f3a7d99daf1</td><td>Engg, Priyadarshini College of</td><td></td></tr><tr><td>9c1860de6d6e991a45325c997bf9651c8a9d716f</td><td>Engineering Chaoyang University Nankai Institute of</td><td></td></tr><tr><td>d02c54192dbd0798b43231efe1159d6b4375ad36</td><td>Engineering Chaoyang University Nankai Institute of</td><td></td></tr><tr><td>5d185d82832acd430981ffed3de055db34e3c653</td><td>Engineering Institute, Autonomous University of Baja California, Blvd. Benito Ju rez</td><td></td></tr><tr><td>ee815f60dc4a090fa9fcfba0135f4707af21420d</td><td>Engineering and Applied Science, SUNY Binghamton University, NY, USA</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>Engineering and Natural Science, Sabanci University, Istanbul, Turkey</td><td></td></tr><tr><td>ce6f459462ea9419ca5adcc549d1d10e616c0213</td><td>Engineering, G.H.Raisoni College of Engineering</td><td></td></tr><tr><td>9853136dbd7d5f6a9c57dc66060cab44a86cd662</td><td>Engineering, Iran University</td><td></td></tr><tr><td>9853136dbd7d5f6a9c57dc66060cab44a86cd662</td><td>Engineering, Iran University</td><td></td></tr><tr><td>63c109946ffd401ee1195ed28f2fb87c2159e63d</td><td>Engineering, National Formosa University</td><td></td></tr><tr><td>2f78e471d2ec66057b7b718fab8bfd8e5183d8f4</td><td>Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman</td><td></td></tr><tr><td>23e75f5ce7e73714b63f036d6247fa0172d97cb6</td><td>Engineering, University of Akron, Akron, OH 44325-3904, USA</td><td></td></tr><tr><td>d5b0e73b584be507198b6665bcddeba92b62e1e5</td><td>Engineering, University of Dundee</td><td></td></tr><tr><td>ffe4bb47ec15f768e1744bdf530d5796ba56cfc1</td><td>Engineering, York University, Canada</td><td></td></tr><tr><td>2322ec2f3571e0ddc593c4e2237a6a794c61251d</td><td>Enlighten Research publications by members of the University of Glasgow</td><td></td></tr><tr><td>b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88</td><td>Environment, Northumbria University, Newcastle, NE1 8ST, United Kingdom</td><td></td></tr><tr><td>1565721ebdbd2518224f54388ed4f6b21ebd26f3</td><td>Eskisehir Osmangazi University</td><td></td></tr><tr><td>13bda03fc8984d5943ed8d02e49a779d27c84114</td><td>Eskisehir Osmangazi University</td><td></td></tr><tr><td>14811696e75ce09fd84b75fdd0569c241ae02f12</td><td>Eskisehir Osmangazi University</td><td></td></tr><tr><td>396a19e29853f31736ca171a3f40c506ef418a9f</td><td>Exploratory Computer Vision Group, IBM T. J. Watson Research Center</td><td></td></tr><tr><td>68f89c1ee75a018c8eff86e15b1d2383c250529b</td><td>F.Ferraro, University of Rochester</td><td></td></tr><tr><td>214ac8196d8061981bef271b37a279526aab5024</td><td>FI-90014 University of Oulu, Finland</td><td></td></tr><tr><td>5121f42de7cb9e41f93646e087df82b573b23311</td><td>FL</td><td>Department of Mechanical and Aerospace Engineering - University of Florida - Gainesville</td></tr><tr><td>71e6a46b32a8163c9eda69e1badcee6348f1f56a</td><td>FX Palo Alto Laboratory, Inc., California, USA</td><td></td></tr><tr><td>df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb</td><td>FaceTec, Inc</td><td></td></tr><tr><td>e378ce25579f3676ca50c8f6454e92a886b9e4d7</td><td>Facebook 4Texas AandM University 5IBM Research</td><td></td></tr><tr><td>1c30bb689a40a895bd089e55e0cad746e343d1e2</td><td>Facebook AI Research, 2Dartmouth College</td><td></td></tr><tr><td>0ac664519b2b8abfb8966dafe60d093037275573</td><td>Facial Image Processing and Analysis Group, Institute for Anthropomatics</td><td></td></tr><tr><td>34d484b47af705e303fc6987413dc0180f5f04a9</td><td>Facial expression gures prominently in research on almost every aspect of emotion, including psychophys</td><td></td></tr><tr><td>d41c11ebcb06c82b7055e2964914b9af417abfb2</td><td>Facial expression gures prominently in research on almost every aspect of emotion, including psychophys</td><td></td></tr><tr><td>fac8cff9052fc5fab7d5ef114d1342daba5e4b82</td><td>Faculty member, Parallel Data Lab (PDL), Carnegie Mellon University</td><td></td></tr><tr><td>1576ed0f3926c6ce65e0ca770475bca6adcfdbb4</td><td>Faculty of Computer Science, Dalhousie University, Halifax, Canada</td><td></td></tr><tr><td>9be94fa0330dd493f127d51e4ef7f9fd64613cfc</td><td>Faculty of Computer Science, Mathematics, and Engineering, University of Twente, Enschede, Netherlands</td><td></td></tr><tr><td>3dbfd2fdbd28e4518e2ae05de8374057307e97b3</td><td>Faculty of Computer Science, University of A Coru na, Coru na, Spain</td><td></td></tr><tr><td>1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113</td><td>Faculty of Computer and Information Science, University of Ljubljana, Ve cna pot 113, SI-1000 Ljubljana</td><td></td></tr><tr><td>15cf7bdc36ec901596c56d04c934596cf7b43115</td><td>Faculty of Computer, Khoy Branch, Islamic Azad University, Khoy, Iran</td><td></td></tr><tr><td>4919663c62174a9bc0cc7f60da8f96974b397ad2</td><td>Faculty of Computers and Information, Cairo University, Cairo, Egypt</td><td></td></tr><tr><td>20b994a78cd1db6ba86ea5aab7211574df5940b3</td><td>Faculty of Computing and Informatics, Multimedia University, Malaysia</td><td></td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Faculty of EEMCS, Delft University of Technology, The Netherlands</td><td></td></tr><tr><td>42afe6d016e52c99e2c0d876052ade9c192d91e7</td><td>Faculty of EEMCS, University of Twente, The Netherlands</td><td></td></tr><tr><td>2ca43325a5dbde91af90bf850b83b0984587b3cc</td><td>Faculty of ETI, Gdansk University of Technology, Gdansk, Poland</td><td>Department of Intelligent Interactive Systems</td></tr><tr><td>023ed32ac3ea6029f09b8c582efbe3866de7d00a</td><td>Faculty of Electrical Engineering, Czech Technical University</td><td></td></tr><tr><td>37c8514df89337f34421dc27b86d0eb45b660a5e</td><td>Faculty of Electrical Engineering, Czech Technical University in Prague</td><td></td></tr><tr><td>7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d</td><td>Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of</td><td></td></tr><tr><td>e42998bbebddeeb4b2bedf5da23fa5c4efc976fa</td><td>Faculty of Electrical Engineering, Mathematics and Computer Science, University</td><td></td></tr><tr><td>3505c9b0a9631539e34663310aefe9b05ac02727</td><td>Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The</td><td></td></tr><tr><td>ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea</td><td>Faculty of Electrical Engineering, University of Ljubljana</td><td></td></tr><tr><td>368d59cf1733af511ed8abbcbeb4fb47afd4da1c</td><td>Faculty of Electrical Engineering, University of Ljubljana, Slovenia</td><td></td></tr><tr><td>1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr a ka cesta 25, SI-1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>02e39f23e08c2cb24d188bf0ca34141f3cc72d47</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska 25, SI-1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>afe9cfba90d4b1dbd7db1cf60faf91f24d12b286</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta</td><td></td></tr><tr><td>12003a7d65c4f98fb57587fd0e764b44d0d10125</td><td>Faculty of Electrical Engineering, University of Ljubljana, Tr za ska cesta 25, SI-1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>32728e1eb1da13686b69cc0bd7cce55a5c963cdd</td><td>Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran</td><td></td></tr><tr><td>32728e1eb1da13686b69cc0bd7cce55a5c963cdd</td><td>Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran</td><td></td></tr><tr><td>32728e1eb1da13686b69cc0bd7cce55a5c963cdd</td><td>Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran</td><td></td></tr><tr><td>b166ce267ddb705e6ed855c6b679ec699d62e9cb</td><td>Faculty of Electronics and Communication, Taishan University</td><td>Department of Physics and Electronics Engineering</td></tr><tr><td>b166ce267ddb705e6ed855c6b679ec699d62e9cb</td><td>Faculty of Electronics and Communication, Yanshan University</td><td>Department of Information Science and Engineering</td></tr><tr><td>fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f</td><td>Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland</td><td></td></tr><tr><td>a308077e98a611a977e1e85b5a6073f1a9bae6f0</td><td>Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia</td><td>Department of Biomedical Engineering</td></tr><tr><td>3dcebd4a1d66313dcd043f71162d677761b07a0d</td><td>Faculty of Engineering and Natural Sciences, Sabanc University, stanbul, Turkey</td><td></td></tr><tr><td>89c51f73ec5ebd1c2a9000123deaf628acf3cdd8</td><td>Faculty of Engineering and Technology, Multimedia University (Melaka Campus</td><td></td></tr><tr><td>0172867f4c712b33168d9da79c6d3859b198ed4c</td><td>Faculty of Engineering, Ain Shams University, Cairo, Egypt</td><td>Computer and System Engineering Department</td></tr><tr><td>03ac1c694bc84a27621da6bfe73ea9f7210c6d45</td><td>Faculty of Engineering, Al Azhar University, Qena, Egypt</td><td></td></tr><tr><td>33ef419dffef85443ec9fe89a93f928bafdc922e</td><td>Faculty of Engineering, Bar-Ilan University, Israel</td><td></td></tr><tr><td>5f7c4c20ae2731bfb650a96b69fd065bf0bb950e</td><td>Faculty of Engineering, Ferdowsi University, Mashhad, Iran</td><td>Department of Computer Engineering</td></tr><tr><td>20b994a78cd1db6ba86ea5aab7211574df5940b3</td><td>Faculty of Engineering, Multimedia University, Malaysia</td><td></td></tr><tr><td>0b183f5260667c16ef6f640e5da50272c36d599b</td><td>Faculty of Informatics, E otv os Lor and University, Budapest, Hungary</td><td></td></tr><tr><td>1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc</td><td>Faculty of Informatics, University of Debrecen, Hungary</td><td></td></tr><tr><td>e4df83b7424842ff5864c10fa55d38eae1c45fac</td><td>Faculty of Information Science and Technology, Multimedia University, 75450 Melaka, Malaysia</td><td></td></tr><tr><td>3daf1191d43e21a8302d98567630b0e2025913b0</td><td>Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan</td><td></td></tr><tr><td>50e45e9c55c9e79aaae43aff7d9e2f079a2d787b</td><td>Faculty of Information Technology, Vietnam National University of Agriculture, Hanoi 10000, Vietnam</td><td></td></tr><tr><td>59e2037f5079794cb9128c7f0900a568ced14c2a</td><td>Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain</td><td></td></tr><tr><td>2c62b9e64aeddf12f9d399b43baaefbca8e11148</td><td>Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK</td><td></td></tr><tr><td>6eb1e006b7758b636a569ca9e15aafd038d2c1b1</td><td>Faculty of Science and Engineering, Waseda University, Tokyo, Japan</td><td></td></tr><tr><td>8d91f06af4ef65193f3943005922f25dbb483ee4</td><td>Faculty of Science and Technology, University of Macau</td><td>Department of Mathematics</td></tr><tr><td>102b968d836177f9c436141e382915a4f8549276</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>a75edf8124f5b52690c08ff35b0c7eb8355fe950</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>eff87ecafed67cc6fc4f661cb077fed5440994bb</td><td>Faculty of Science, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>f0ae807627f81acb63eb5837c75a1e895a92c376</td><td>Faculty of Telecommunications, Technical University, Sofia, Bulgaria</td><td></td></tr><tr><td>f0ae807627f81acb63eb5837c75a1e895a92c376</td><td>Faculty of Telecommunications, Technical University, Sofia, Bulgaria</td><td></td></tr><tr><td>26af867977f90342c9648ccf7e30f94470d40a73</td><td>Federal Institute of Science and Technology, Mookkannoor</td><td></td></tr><tr><td>26af867977f90342c9648ccf7e30f94470d40a73</td><td>Federal Institute of Science and Technology, Mookkannoor</td><td></td></tr><tr><td>52012b4ecb78f6b4b9ea496be98bcfe0944353cd</td><td>Federal University Technology Akure, PMB 704, Akure, Nigeria</td><td>Department of Computer Science</td></tr><tr><td>21b16df93f0fab4864816f35ccb3207778a51952</td><td>Federal University of Bahia (UFBA</td><td></td></tr><tr><td>9854145f2f64d52aac23c0301f4bb6657e32e562</td><td>Federal University of Campina Grande (UFCG</td><td></td></tr><tr><td>e0ed0e2d189ff73701ec72e167d44df4eb6e864d</td><td>Federal University of Para ba</td><td></td></tr><tr><td>d30050cfd16b29e43ed2024ae74787ac0bbcf2f7</td><td>Federal University of Technology - Paran a</td><td></td></tr><tr><td>a8583e80a455507a0f146143abeb35e769d25e4e</td><td>Feng Chia University, Taichung, Taiwan</td><td></td></tr><tr><td>11a210835b87ccb4989e9ba31e7559bb7a9fd292</td><td>Ferdowsi University of Mashhad, Mashhad, Iran</td><td>b Department of Computer Engineering</td></tr><tr><td>01125e3c68edb420b8d884ff53fb38d9fbe4f2b8</td><td>Figure 1: A few results from our VRN - Guided method, on a full range of pose, including large expressions</td><td></td></tr><tr><td>89d7cc9bbcd2fdc4f4434d153ecb83764242227b</td><td>Final Year Student, M.Tech IT, Vel Tech Dr. RR andDr. SR Technical University, Chennai</td><td></td></tr><tr><td>1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f</td><td>Final Year, PanimalarInstitute of Technology</td><td>Department of Computer Science and Engineering</td></tr><tr><td>5cfbeae360398de9e20e4165485837bd42b93217</td><td>Firat University</td><td></td></tr><tr><td>5cfbeae360398de9e20e4165485837bd42b93217</td><td>Firat University</td><td></td></tr><tr><td>23aef683f60cb8af239b0906c45d11dac352fb4e</td><td>Florian Metze, Chair (Carnegie Mellon University</td><td></td></tr><tr><td>47d3b923730746bfaabaab29a35634c5f72c3f04</td><td>Florida Institute Of Technology, Melbourne Fl</td><td>Electrical And Computer Engineering Department</td></tr><tr><td>68f69e6c6c66cfde3d02237a6918c9d1ee678e1b</td><td>Florida International University</td><td></td></tr><tr><td>33ac7fd3a622da23308f21b0c4986ae8a86ecd2b</td><td>Florida International University</td><td></td></tr><tr><td>715b69575dadd7804b4f8ccb419a3ad8b7b7ca89</td><td>Florida International University</td><td>Department of Psychology</td></tr><tr><td>715b69575dadd7804b4f8ccb419a3ad8b7b7ca89</td><td>Florida International University</td><td>Department of Mathematics and Statistics</td></tr><tr><td>14e8dbc0db89ef722c3c198ae19bde58138e88bf</td><td>Florida International University</td><td></td></tr><tr><td>14e8dbc0db89ef722c3c198ae19bde58138e88bf</td><td>Florida International University</td><td></td></tr><tr><td>26a44feb7a64db7986473ca801c251aa88748477</td><td>Florida State University</td><td></td></tr><tr><td>26a44feb7a64db7986473ca801c251aa88748477</td><td>Florida State University</td><td></td></tr><tr><td>64ec0c53dd1aa51eb15e8c2a577701e165b8517b</td><td>Florida State University</td><td></td></tr><tr><td>64ec0c53dd1aa51eb15e8c2a577701e165b8517b</td><td>Florida State University</td><td></td></tr><tr><td>1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177</td><td>Florida State University</td><td></td></tr><tr><td>2878b06f3c416c98496aad6fc2ddf68d2de5b8f6</td><td>Florida State University, Tallahassee, FL 32306, USA</td><td>a Department of Computer Science</td></tr><tr><td>2878b06f3c416c98496aad6fc2ddf68d2de5b8f6</td><td>Florida State University, Tallahassee, FL 32306, USA</td><td>b Department of Mathematics</td></tr><tr><td>24f022d807352abf071880877c38e53a98254dcd</td><td>Florida State University, Tallahassee, Florida, U.S.A</td><td>Statistics Department</td></tr><tr><td>42ea8a96eea023361721f0ea34264d3d0fc49ebd</td><td>Florida State University, USA</td><td>aDepartment of Statistics</td></tr><tr><td>0742d051caebf8a5d452c03c5d55dfb02f84baab</td><td>Formerly: Texas AandM University</td><td></td></tr><tr><td>7c42371bae54050dbbf7ded1e7a9b4109a23a482</td><td>Foundation University Rawalpindi Campus, Pakistan</td><td>Department of Software Engineering</td></tr><tr><td>0c3f7272a68c8e0aa6b92d132d1bf8541c062141</td><td>Foundation University, Rawalpindi 46000, Pakistan</td><td>Department of Software Engineering</td></tr><tr><td>8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09</td><td>Francis Xavier Engineering College, Tirunelveli, Tamilnadu, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d</td><td>Franklin. W. Olin College of Engineering</td><td></td></tr><tr><td>1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43</td><td>Fraser University</td><td></td></tr><tr><td>2c1f8ddbfbb224271253a27fed0c2425599dfe47</td><td>Fraunhofer Heinrich Hertz Institute</td><td></td></tr><tr><td>2c1f8ddbfbb224271253a27fed0c2425599dfe47</td><td>Fraunhofer Heinrich Hertz Institute</td><td></td></tr><tr><td>0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f</td><td>Fraunhofer Institute for Digital Media Technology, Germany</td><td></td></tr><tr><td>749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7</td><td>Fraunhofer Institute for Integrated Circuits IIS</td><td></td></tr><tr><td>50ccc98d9ce06160cdf92aaf470b8f4edbd8b899</td><td>Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB</td><td></td></tr><tr><td>346dbc7484a1d930e7cc44276c29d134ad76dc3f</td><td>Friedrich Schiller University, D-07740 Jena</td><td>b Department of Computer Science</td></tr><tr><td>7df4f96138a4e23492ea96cf921794fc5287ba72</td><td>Fudan University</td><td></td></tr><tr><td>994b52bf884c71a28b4f5be4eda6baaacad1beee</td><td>Fudan University</td><td></td></tr><tr><td>1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6</td><td>Fudan University, 2Microsoft Research Asia, 3University of Maryland</td><td></td></tr><tr><td>0dfa460a35f7cab4705726b6367557b9f7842c65</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>a46086e210c98dcb6cb9a211286ef906c580f4e8</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>b5c749f98710c19b6c41062c60fb605e1ef4312a</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>ee6b503ab512a293e3088fdd7a1c893a77902acb</td><td>Fudan University, Shanghai, China</td><td></td></tr><tr><td>1dacc2f4890431d867a038fd81c111d639cf4d7e</td><td>Funding was provided by the U.S. National Institutes of Mental</td><td></td></tr><tr><td>477236563c6a6c6db922045453b74d3f9535bfa1</td><td>G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune</td><td>Computer and Science Department Savitribai Phule Pune University</td></tr><tr><td>6d4b5444c45880517213a2fdcdb6f17064b3fa91</td><td>G.H.Raisoni College of Engg. and Mgmt., Pune, India</td><td></td></tr><tr><td>6d4b5444c45880517213a2fdcdb6f17064b3fa91</td><td>G.H.Raisoni College of Engg. and Mgmt., Pune, India</td><td></td></tr><tr><td>6d4b5444c45880517213a2fdcdb6f17064b3fa91</td><td>G.H.Raisoni College of Engg. and Mgmt., Pune, India</td><td></td></tr><tr><td>6515fe829d0b31a5e1f4dc2970a78684237f6edb</td><td>GE Global Research Center</td><td></td></tr><tr><td>c87d5036d3a374c66ec4f5870df47df7176ce8b9</td><td>GIPSA-lab, Institute of Engineering, Universit Grenoble Alpes, Centre National de la Recherche Scienti que, Grenoble INP</td><td></td></tr><tr><td>69ff40fd5ce7c3e6db95a2b63d763edd8db3a102</td><td>GIT Vision Lab, http://vision.gyte.edu.tr/, Gebze Institute of Technology</td><td>Department of Computer Engineering</td></tr><tr><td>18166432309000d9a5873f989b39c72a682932f5</td><td>GRASP Laboratory, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA, USA</td><td></td></tr><tr><td>5860cf0f24f2ec3f8cbc39292976eed52ba2eafd</td><td>GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS</td><td></td></tr><tr><td>eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6</td><td>GREYC Research Lab</td><td></td></tr><tr><td>42dc36550912bc40f7faa195c60ff6ffc04e7cd6</td><td>GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar echal Juin</td><td></td></tr><tr><td>779ad364cae60ca57af593c83851360c0f52c7bf</td><td>GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco</td><td></td></tr><tr><td>fe961cbe4be0a35becd2d722f9f364ec3c26bd34</td><td>Gallaudet University, Technology Access Program, 800 Florida Ave NE, Washington, DC</td><td></td></tr><tr><td>cd687ddbd89a832f51d5510c478942800a3e6854</td><td>Games Studio, Faculty of Engineering and IT, University of Technology, Sydney</td><td></td></tr><tr><td>8b547b87fd95c8ff6a74f89a2b072b60ec0a3351</td><td>Games Studio, Faculty of Engineering and IT, University of Technology, Sydney</td><td></td></tr><tr><td>0c8a0a81481ceb304bd7796e12f5d5fa869ee448</td><td>Gangnung-Wonju National University</td><td>Department of Electronics Engineering</td></tr><tr><td>370b6b83c7512419188f5373a962dd3175a56a9b</td><td>Gannan Normal University</td><td></td></tr><tr><td>769461ff717d987482b28b32b1e2a6e46570e3ff</td><td>Gannan Normal University, Ganzhou 341000, China</td><td>Department of Mathematics and Computer Science</td></tr><tr><td>0b183f5260667c16ef6f640e5da50272c36d599b</td><td>Gatsby Computational Neuroscience Unit, University College London, London, UK</td><td></td></tr><tr><td>af62621816fbbe7582a7d237ebae1a4d68fcf97d</td><td>Gayathri.S, M.E., Vins Christian college of Engineering</td><td>Department of Information Technology</td></tr><tr><td>81e366ed1834a8d01c4457eccae4d57d169cb932</td><td>Gdansk University of Technology</td><td></td></tr><tr><td>6821113166b030d2123c3cd793dd63d2c909a110</td><td>Gdansk University of Technology, Faculty of Electronics, Telecommunication</td><td></td></tr><tr><td>9c4cc11d0df2de42d6593f5284cfdf3f05da402a</td><td>George Mason University</td><td>Department of Computer Science</td></tr><tr><td>20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6</td><td>George Mason University</td><td>Department of Computer Science</td></tr><tr><td>d28d697b578867500632b35b1b19d3d76698f4a9</td><td>George Mason University</td><td></td></tr><tr><td>4f028efe6708fc252851eee4a14292b7ce79d378</td><td>George Mason University</td><td></td></tr><tr><td>757e4cb981e807d83539d9982ad325331cb59b16</td><td>George Mason University, Fairfax Virginia, USA</td><td>Department of Computer Science</td></tr><tr><td>1c147261f5ab1b8ee0a54021a3168fa191096df8</td><td>George Mason University, Fairfax, VA, USA</td><td>Department of Computer Science</td></tr><tr><td>ce9e1dfa7705623bb67df3a91052062a0a0ca456</td><td>George Washington University</td><td></td></tr><tr><td>59d225486161b43b7bf6919b4a4b4113eb50f039</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>69eb6c91788e7c359ddd3500d01fb73433ce2e65</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>93af36da08bf99e68c9b0d36e141ed8154455ac2</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5a87bc1eae2ec715a67db4603be3d1bb8e53ace2</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5fa04523ff13a82b8b6612250a39e1edb5066521</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>bd8f77b7d3b9d272f7a68defc1412f73e5ac3135</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>e293a31260cf20996d12d14b8f29a9d4d99c4642</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>f4f9697f2519f1fe725ee7e3788119ed217dca34</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>e4bc529ced68fae154e125c72af5381b1185f34e</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>fb85867c989b9ee6b7899134136f81d6372526a9</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>20c02e98602f6adf1cebaba075d45cef50de089f</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>20c02e98602f6adf1cebaba075d45cef50de089f</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>1fdeba9c4064b449231eac95e610f3288801fd3e</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5c8ae37d532c7bb8d7f00dfde84df4ba63f46297</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>5c8ae37d532c7bb8d7f00dfde84df4ba63f46297</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>91df860368cbcebebd83d59ae1670c0f47de171d</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>98c2053e0c31fab5bcb9ce5386335b647160cc09</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>aac934f2eed758d4a27562dae4e9c5415ff4cdb7</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>a6e25cab2251a8ded43c44b28a87f4c62e3a548a</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>7966146d72f9953330556baa04be746d18702047</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>4f0b8f730273e9f11b2bfad2415485414b96299f</td><td>Georgia Institute of Technology</td><td></td></tr><tr><td>4dca3d6341e1d991c902492952e726dc2a443d1c</td><td>Georgia Institute of Technology 2Emory University</td><td></td></tr><tr><td>96f0e7416994035c91f4e0dfa40fd45090debfc5</td><td>Georgia Institute of Technology, CVIT, IIIT Hyderabad, IIT Kanpur</td><td></td></tr><tr><td>106092fafb53e36077eba88f06feecd07b9e78e7</td><td>Georgia Institute of Technology, 2NEC Laboratories America, 3Georgia Tech Research Institute</td><td></td></tr><tr><td>4aa286914f17cd8cefa0320e41800a99c142a1cd</td><td>Georgia Institute of Technology, Atlanta, Georgia, USA</td><td></td></tr><tr><td>20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba</td><td>German Research Center for Arti cial Intelligence (DFKI</td><td></td></tr><tr><td>5da740682f080a70a30dc46b0fc66616884463ec</td><td>German Research Center for Arti cial Intelligence (DFKI</td><td></td></tr><tr><td>df054fa8ee6bb7d2a50909939d90ef417c73604c</td><td>German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany</td><td></td></tr><tr><td>434bf475addfb580707208618f99c8be0c55cf95</td><td>German Research Center for Arti cial Intelligence (DFKI), Kaiserslautern, Germany</td><td></td></tr><tr><td>fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e</td><td>Germany, University of Oldenburg, Oldenburg, Germany</td><td>2Department of Psychology</td></tr><tr><td>b15a06d701f0a7f508e3355a09d0016de3d92a6d</td><td>Gettysburg College, Gettysburg, PA, USA</td><td></td></tr><tr><td>9d58e8ab656772d2c8a99a9fb876d5611fe2fe20</td><td>Ghent University</td><td></td></tr><tr><td>ea890846912f16a0f3a860fce289596a7dac575f</td><td>Giulia Andrighetto, Institute of</td><td></td></tr><tr><td>c92bb26238f6e30196b0c4a737d8847e61cfb7d4</td><td>Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, Australia</td><td></td></tr><tr><td>ae4390873485c9432899977499c3bf17886fa149</td><td>Glyndwr University</td><td></td></tr><tr><td>80c8d143e7f61761f39baec5b6dfb8faeb814be9</td><td>Gokaraju Rangaraju Institute of Engineering and Technology, Hyd</td><td></td></tr><tr><td>0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae</td><td>Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad</td><td>CSE Department</td></tr><tr><td>7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922</td><td>Goldsmiths, University of London</td><td></td></tr><tr><td>7f82f8a416170e259b217186c9e38a9b05cb3eb4</td><td>Goldsmiths, University of London, London, UK</td><td>Department of Computing</td></tr><tr><td>193debca0be1c38dabc42dc772513e6653fd91d8</td><td>Goldsmiths, University of London, UK</td><td>Department of Computing</td></tr><tr><td>936227f7483938097cc1cdd3032016df54dbd5b6</td><td>Gonda Brain Research Center, Bar Ilan University, Israel</td><td></td></tr><tr><td>51cb09ee04831b95ae02e1bee9b451f8ac4526e3</td><td>Google, Inc</td><td></td></tr><tr><td>113c22eed8383c74fe6b218743395532e2897e71</td><td>Google, Inc</td><td></td></tr><tr><td>3634b4dd263c0f330245c086ce646c9bb748cd6b</td><td>Google, Inc</td><td></td></tr><tr><td>dde5125baefa1141f1ed50479a3fd67c528a965f</td><td>Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL</td><td></td></tr><tr><td>924b14a9e36d0523a267293c6d149bca83e73f3b</td><td>Governance, Keio University</td><td></td></tr><tr><td>bc6de183cd8b2baeebafeefcf40be88468b04b74</td><td>Government College of Engineering</td><td></td></tr><tr><td>28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d</td><td>Government College of Engineering, Aurangabad</td><td></td></tr><tr><td>bd78a853df61d03b7133aea58e45cd27d464c3cf</td><td>Government College of Engineering, Aurangabad [Autonomous</td><td></td></tr><tr><td>3fb26f3abcf0d287243646426cd5ddeee33624d4</td><td>Grad. School at Shenzhen, Tsinghua University</td><td>Tsinghua University 2Department of Automation</td></tr><tr><td>41aa209e9d294d370357434f310d49b2b0baebeb</td><td>Grad. School of Information Science and Technology, The University of Tokyo, Japan</td><td></td></tr><tr><td>47eba2f95679e106e463e8296c1f61f6ddfe815b</td><td>Graduate Institute of Electronics Engineering, National Taiwan University</td><td></td></tr><tr><td>91e507d2d8375bf474f6ffa87788aa3e742333ce</td><td>Graduate Institute of Networking and Multimedia, National Taiwan University</td><td></td></tr><tr><td>6ab33fa51467595f18a7a22f1d356323876f8262</td><td>Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan</td><td></td></tr><tr><td>5b73b7b335f33cda2d0662a8e9520f357b65f3ac</td><td>Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan</td><td></td></tr><tr><td>2afdda6fb85732d830cea242c1ff84497cd5f3cb</td><td>Graduate Institute ofNetworking and Multimedia, National Taiwan University, Taipei, Taiwan</td><td></td></tr><tr><td>9110c589c6e78daf4affd8e318d843dc750fb71a</td><td>Graduate School at Shenzhen, Tsinghua University, Shenzhen</td><td></td></tr><tr><td>207798603e3089a1c807c93e5f36f7767055ec06</td><td>Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China</td><td></td></tr><tr><td>dced05d28f353be971ea2c14517e85bc457405f3</td><td>Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University</td><td></td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Graduate School of Doshisha University, Kyoto, Japan</td><td></td></tr><tr><td>11408af8861fb0a977412e58c1a23d61b8df458c</td><td>Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>837e99301e00c2244023a8a48ff98d7b521c93ac</td><td>Graduate School of Engineering, Tottori University</td><td></td></tr><tr><td>537d8c4c53604fd419918ec90d6ef28d045311d0</td><td>Graduate School of Informatics, Kyoto University</td><td></td></tr><tr><td>d3b550e587379c481392fb07f2cbbe11728cf7a6</td><td>Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan</td><td></td></tr><tr><td>09b0ef3248ff8f1a05b8704a1b4cf64951575be9</td><td>Graduate School of Information Science and Technology, The University of Tokyo</td><td></td></tr><tr><td>9730b9cd998c0a549601c554221a596deda8af5b</td><td>Graduate School of Information Science and Technology, The University of Tokyo</td><td></td></tr><tr><td>c0723e0e154a33faa6ff959d084aebf07770ffaf</td><td>Graduate School of Information Science, Nagoya University, Japan</td><td></td></tr><tr><td>5b86c36e3eb59c347b81125d5dd57dd2a2c377a9</td><td>Graduate School of Information Science, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan</td><td></td></tr><tr><td>5865e824e3d8560e07840dd5f75cfe9bf68f9d96</td><td>Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara</td><td></td></tr><tr><td>a6ebe013b639f0f79def4c219f585b8a012be04f</td><td>Graduate School of Science and Engineering, Saitama University</td><td></td></tr><tr><td>b133b2d7df9b848253b9d75e2ca5c68e21eba008</td><td>Graduate School of System Informatics, Kobe University</td><td></td></tr><tr><td>9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d</td><td>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>11408af8861fb0a977412e58c1a23d61b8df458c</td><td>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>98fb3890c565f1d32049a524ec425ceda1da5c24</td><td>Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan</td><td></td></tr><tr><td>856317f27248cdb20226eaae599e46de628fb696</td><td>Graduate School of Systems and Information Engineering, University of Tsukuba</td><td></td></tr><tr><td>ffea8775fc9c32f573d1251e177cd283b4fe09c9</td><td>Graduate University for Advanced Studies, Kanagawa, Japan</td><td></td></tr><tr><td>449808b7aa9ee6b13ad1a21d9f058efaa400639a</td><td>Graduate University of CAS, 100190, Beijing, China</td><td></td></tr><tr><td>bd8b7599acf53e3053aa27cfd522764e28474e57</td><td>Graduate University of Chinese Academy of Sciences(CAS), 100190, China</td><td></td></tr><tr><td>32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>80bd795930837330e3ced199f5b9b75398336b87</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>061e29eae705f318eee703b9e17dc0989547ba0c</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>64d5772f44efe32eb24c9968a3085bc0786bfca7</td><td>Graduate University of Chinese Academy of Sciences, Beijing 100049, China</td><td></td></tr><tr><td>ac86ccc16d555484a91741e4cb578b75599147b2</td><td>Gravis Research Group, University of Basel</td><td>Department for Mathematics and Computer Science</td></tr><tr><td>44f23600671473c3ddb65a308ca97657bc92e527</td><td>Graz University of Technology</td><td></td></tr><tr><td>44f23600671473c3ddb65a308ca97657bc92e527</td><td>Graz University of Technology</td><td></td></tr><tr><td>96a9ca7a8366ae0efe6b58a515d15b44776faf6e</td><td>Graz University of Technology</td><td></td></tr><tr><td>de8381903c579a4fed609dff3e52a1dc51154951</td><td>Graz University of Technology</td><td></td></tr><tr><td>c5935b92bd23fd25cae20222c7c2abc9f4caa770</td><td>Graz University of Technology</td><td></td></tr><tr><td>c5935b92bd23fd25cae20222c7c2abc9f4caa770</td><td>Graz University of Technology</td><td></td></tr><tr><td>4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8</td><td>Graz University of Technology</td><td></td></tr><tr><td>fc2bad3544c7c8dc7cd182f54888baf99ed75e53</td><td>Graz University of Technology, Austria</td><td></td></tr><tr><td>80277fb3a8a981933533cf478245f262652a33b5</td><td>Graz University of Technology, Austria</td><td></td></tr><tr><td>5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48</td><td>Graz University of Technology, Austria</td><td></td></tr><tr><td>9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6</td><td>Gri th University, QLD-4111, Brisbane, Australia</td><td></td></tr><tr><td>7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922</td><td>Grif th University, Australia</td><td></td></tr><tr><td>05f3d1e9fb254b275354ca69018e9ed321dd8755</td><td>Grif th University, QLD, Australia</td><td></td></tr><tr><td>ee815f60dc4a090fa9fcfba0135f4707af21420d</td><td>Grove School of Engineering, CUNY City College, NY, USA</td><td></td></tr><tr><td>d72973a72b5d891a4c2d873daeb1bc274b48cddf</td><td>Guangdong Medical College</td><td></td></tr><tr><td>764882e6779fbee29c3d87e00302befc52d2ea8d</td><td>Guangdong University of Technology</td><td></td></tr><tr><td>764882e6779fbee29c3d87e00302befc52d2ea8d</td><td>Guangdong University of Technology</td><td></td></tr><tr><td>764882e6779fbee29c3d87e00302befc52d2ea8d</td><td>Guangdong University of Technology</td><td></td></tr><tr><td>1b70bbf7cdfc692873ce98dd3c0e191580a1b041</td><td>Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India</td><td></td></tr><tr><td>9d36c81b27e67c515df661913a54a797cd1260bb</td><td>Gujarat Technological University, India</td><td>Department of Information Technology</td></tr><tr><td>9d36c81b27e67c515df661913a54a797cd1260bb</td><td>Gujarat Technological University, India</td><td>Department of Computer Engineering</td></tr><tr><td>2b4d092d70efc13790d0c737c916b89952d4d8c7</td><td>Gujarat Technological University, V.V.Nagar, India</td><td></td></tr><tr><td>15cf1f17aeba62cd834116b770f173b0aa614bf4</td><td>Gyan Ganga Institute of</td><td></td></tr><tr><td>68f89c1ee75a018c8eff86e15b1d2383c250529b</td><td>H. He, Honkong Polytechnic University</td><td></td></tr><tr><td>c588c89a72f89eed29d42f34bfa5d4cffa530732</td><td>HAVELSAN Inc., 2Bilkent University, 3Hacettepe University</td><td></td></tr><tr><td>bd70f832e133fb87bae82dfaa0ae9d1599e52e4b</td><td>HCI Lab., Samsung Advanced Institute of Technology, Yongin, Korea</td><td></td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td>HELSINKI UNIVERSITY OF TECHNOLOGY</td><td></td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td>HELSINKI UNIVERSITY OF TECHNOLOGY</td><td></td></tr><tr><td>13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd</td><td>HOD, St. Joseph College of Information Technology, Songea, Tanzania</td><td>Department of Computer Science</td></tr><tr><td>5050807e90a925120cbc3a9cd13431b98965f4b9</td><td>Hacettepe University</td><td>Department of Computer Engineering</td></tr><tr><td>9865fe20df8fe11717d92b5ea63469f59cf1635a</td><td>Hacettepe University</td><td></td></tr><tr><td>4bd088ba3f42aa1e43ae33b1988264465a643a1f</td><td>Halmstad University</td><td></td></tr><tr><td>b73795963dc623a634d218d29e4a5b74dfbc79f1</td><td>Hangzhou Institute of Service</td><td></td></tr><tr><td>b73795963dc623a634d218d29e4a5b74dfbc79f1</td><td>Hangzhou Normal University</td><td></td></tr><tr><td>8af411697e73f6cfe691fe502d4bfb42510b4835</td><td>Hankuk University of Foreign Studies, South Korea</td><td></td></tr><tr><td>a59cdc49185689f3f9efdf7ee261c78f9c180789</td><td>Hanoi University of Science and Technology</td><td></td></tr><tr><td>f842b13bd494be1bbc1161dc6df244340b28a47f</td><td>Hanshan Normal University, Chaozhou, 521041, China</td><td>Department of Physics and Electronic Engineering</td></tr><tr><td>f842b13bd494be1bbc1161dc6df244340b28a47f</td><td>Hanshan Normal University, Chaozhou, 521041, China</td><td>Department of Physics and Electronic Engineering</td></tr><tr><td>946017d5f11aa582854ac4c0e0f1b18b06127ef1</td><td>Hanyang University</td><td></td></tr><tr><td>7d53678ef6009a68009d62cd07c020706a2deac3</td><td>Hanyang University</td><td>Department of Electronics and Computer Engineering</td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Harbin Institute of Technology</td><td></td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Harbin Institute of Technology</td><td></td></tr><tr><td>b73795963dc623a634d218d29e4a5b74dfbc79f1</td><td>Harbin Institute of Technology</td><td></td></tr><tr><td>993d189548e8702b1cb0b02603ef02656802c92b</td><td>Harbin Institute of Technology (Shenzhen), China</td><td></td></tr><tr><td>a52581a7b48138d7124afc7ccfcf8ec3b48359d0</td><td>Harbin Institute of Technology, Harbin 150001, China</td><td>Department of Computer Science and Technology</td></tr><tr><td>ad784332cc37720f03df1c576e442c9c828a587a</td><td>Harbin Institute of Technology, Harbin, China</td><td>Department of Computer Science</td></tr><tr><td>016a8ed8f6ba49bc669dbd44de4ff31a79963078</td><td>Harbin Institute of Technology, Harbin, China</td><td>Department of Computer Science</td></tr><tr><td>badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e</td><td>Harbin Institute of Technology, Harbin, China</td><td></td></tr><tr><td>c9e955cb9709f16faeb0c840f4dae92eb875450a</td><td>Harbin Institute of Technology, School of Computer Science and Technology</td><td></td></tr><tr><td>f5149fb6b455a73734f1252a96a9ce5caa95ae02</td><td>Harbin Institute of Technology;Shenzhen University</td><td></td></tr><tr><td>591a737c158be7b131121d87d9d81b471c400dba</td><td>Harvard University</td><td></td></tr><tr><td>3d0379688518cc0e8f896e30815d0b5e8452d4cd</td><td>Harvard University</td><td></td></tr><tr><td>3d0379688518cc0e8f896e30815d0b5e8452d4cd</td><td>Harvard University</td><td></td></tr><tr><td>0ba402af3b8682e2aa89f76bd823ddffdf89fa0a</td><td>Harvard University</td><td></td></tr><tr><td>023be757b1769ecb0db810c95c010310d7daf00b</td><td>Harvard University</td><td></td></tr><tr><td>4b74f2d56cd0dda6f459319fec29559291c61bff</td><td>Harvard University</td><td></td></tr><tr><td>d3b18ba0d9b247bfa2fb95543d172ef888dfff95</td><td>Harvard University 2University of Southern California</td><td></td></tr><tr><td>17479e015a2dcf15d40190e06419a135b66da4e0</td><td>Harvard University 3Perceptive Automata, Inc</td><td>Department of Psychology</td></tr><tr><td>b1451721864e836069fa299a64595d1655793757</td><td>Harvard University 4Max Planck Institute for Informatics</td><td></td></tr><tr><td>20cfb4136c1a984a330a2a9664fcdadc2228b0bc</td><td>Harvard University, Cambridge, MA</td><td></td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Harvard University, Cambridge, MA</td><td>Department of Molecular and Cellular Biology</td></tr><tr><td>d0509afe9c2c26fe021889f8efae1d85b519452a</td><td>Harvard University, Cambridge, MA 02138, USA</td><td></td></tr><tr><td>78436256ff8f2e448b28e854ebec5e8d8306cf21</td><td>Harvard University, Cambridge, MA, USA</td><td>Department of Computer Science</td></tr><tr><td>25e2d3122d4926edaab56a576925ae7a88d68a77</td><td>Harvard University, USA</td><td></td></tr><tr><td>25e2d3122d4926edaab56a576925ae7a88d68a77</td><td>Harvard and Massachusetts Institute</td><td></td></tr><tr><td>31182c5ffc8c5d8772b6db01ec98144cd6e4e897</td><td>Hasan Kalyoncu University, Gaziantep, Turkey</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>b4362cd87ad219790800127ddd366cc465606a78</td><td>Head and Neck Surgery, Seoul National University</td><td>Department of Otorhinolaryngology</td></tr><tr><td>581e920ddb6ecfc2a313a3aa6fed3d933b917ab0</td><td>Hector Research Institute of Education Sciences and Psychology, T ubingen</td><td></td></tr><tr><td>c9e955cb9709f16faeb0c840f4dae92eb875450a</td><td>Heilongjiang University, College of Computer Science and Technology, China</td><td></td></tr><tr><td>03adcf58d947a412f3904a79f2ab51cfdf0e838a</td><td>Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule, Maharastra, India</td><td></td></tr><tr><td>587c48ec417be8b0334fa39075b3bfd66cc29dbe</td><td>Helen Wills Neuroscience Institute, University of</td><td></td></tr><tr><td>ff9195f99a1a28ced431362f5363c9a5da47a37b</td><td>Helen Wills Neuroscience Institute, University of</td><td></td></tr><tr><td>b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807</td><td>Helsinki Collegium for Advanced Studies, University of Helsinki, Finland</td><td></td></tr><tr><td>b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807</td><td>Helsinki Institute for Information Technology, Aalto University, Finland</td><td></td></tr><tr><td>711bb5f63139ee7a9b9aef21533f959671a7d80e</td><td>Helsinki University of Technology Laboratory of Computational Engineering Publications</td><td></td></tr><tr><td>0b87d91fbda61cdea79a4b4dcdcb6d579f063884</td><td>Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China</td><td></td></tr><tr><td>17045163860fc7c38a0f7d575f3e44aaa5fa40d7</td><td>Hengyang Normal University, Hengyang, China</td><td></td></tr><tr><td>2cdc40f20b70ca44d9fd8e7716080ee05ca7924a</td><td>Heriot-Watt University</td><td></td></tr><tr><td>7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b</td><td>Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne</td><td></td></tr><tr><td>907475a4febf3f1d4089a3e775ea018fbec895fe</td><td>Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>High Institute of Medical Technologies</td><td></td></tr><tr><td>ac559873b288f3ac28ee8a38c0f3710ea3f986d9</td><td>Hikvision Research Institute</td><td></td></tr><tr><td>bd21109e40c26af83c353a3271d0cd0b5c4b4ade</td><td>Hikvision Research Institute</td><td></td></tr><tr><td>90fb58eeb32f15f795030c112f5a9b1655ba3624</td><td>Hindusthan College of Engineering and Technology, Coimbatore, India</td><td></td></tr><tr><td>44c9b5c55ca27a4313daf3760a3f24a440ce17ad</td><td>Hiroshima University, Japan</td><td></td></tr><tr><td>44c9b5c55ca27a4313daf3760a3f24a440ce17ad</td><td>Hiroshima University, Japan</td><td></td></tr><tr><td>167736556bea7fd57cfabc692ec4ae40c445f144</td><td>Ho Chi Minh City University of</td><td></td></tr><tr><td>c2c3ff1778ed9c33c6e613417832505d33513c55</td><td>Ho Chi Minh City University of Science</td><td>Department of Computer Science</td></tr><tr><td>b84b7b035c574727e4c30889e973423fe15560d7</td><td>HoHai University</td><td></td></tr><tr><td>2331df8ca9f29320dd3a33ce68a539953fa87ff5</td><td>Honda Fundamental Research Labs</td><td></td></tr><tr><td>3a0ea368d7606030a94eb5527a12e6789f727994</td><td>Honda RandD Americas, Inc., Boston, MA, USA</td><td></td></tr><tr><td>1270044a3fa1a469ec2f4f3bd364754f58a1cb56</td><td>Honda Research Institute</td><td></td></tr><tr><td>f2b13946d42a50fa36a2c6d20d28de2234aba3b4</td><td>Honda Research Institute USA</td><td></td></tr><tr><td>f2b13946d42a50fa36a2c6d20d28de2234aba3b4</td><td>Honda Research Institute USA</td><td></td></tr><tr><td>4836b084a583d2e794eb6a94982ea30d7990f663</td><td>Hong Kong Applied Science and Technology Research Institute Company Limited</td><td></td></tr><tr><td>4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7</td><td>Hong Kong Applied Science and Technology Research Institute Company Limited, Hong Kong, China</td><td></td></tr><tr><td>439647914236431c858535a2354988dde042ef4d</td><td>Hong Kong Baptist University</td><td>Department of Computer Science</td></tr><tr><td>11c04c4f0c234a72f94222efede9b38ba6b2306c</td><td>Hong Kong Polytechnic University</td><td></td></tr><tr><td>38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f</td><td>Hong Kong Polytechnic University, Hong Kong</td><td>Department of Computing</td></tr><tr><td>48174c414cfce7f1d71c4401d2b3d49ba91c5338</td><td>Hong Kong Polytechnic University, Hong Kong</td><td>Department of Computing</td></tr><tr><td>5ea165d2bbd305dc125415487ef061bce75dac7d</td><td>Hong Kong Polytechnic University, Hong Kong, China</td><td>Department of Computing</td></tr><tr><td>8000c4f278e9af4d087c0d0895fff7012c5e3d78</td><td>Hong Kong University of Science and Technology</td><td>Department of Computer Science and Engineering</td></tr><tr><td>4fcd19b0cc386215b8bd0c466e42934e5baaa4b7</td><td>Hong Kong University of Science and Technology</td><td>Department of Electronic and Computer Engineering</td></tr><tr><td>4fcd19b0cc386215b8bd0c466e42934e5baaa4b7</td><td>Hong Kong University of Science and Technology</td><td>Department of Computer Science and Engineering</td></tr><tr><td>585260468d023ffc95f0e539c3fa87254c28510b</td><td>Hong Kong University of Science and Technology, Hong Kong</td><td></td></tr><tr><td>14070478b8f0d84e5597c3e67c30af91b5c3a917</td><td>Howard Hughes Medical Institute (HHMI</td><td></td></tr><tr><td>aa912375eaf50439bec23de615aa8a31a3395ad3</td><td>Howard University, Washington DC</td><td>Department of Electrical Engineering</td></tr><tr><td>aa912375eaf50439bec23de615aa8a31a3395ad3</td><td>Howard University, Washington DC</td><td>Department of Electrical Engineering</td></tr><tr><td>a3f684930c5c45fcb56a2b407d26b63879120cbf</td><td>Hua Zhong University of Science and Technology, Wuhan, China</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>Huazhong Agricultural University</td><td></td></tr><tr><td>4698a599425c3a6bae1c698456029519f8f2befe</td><td>Huazhong Agricultural University</td><td></td></tr><tr><td>7f2a4cd506fe84dee26c0fb41848cb219305173f</td><td>Huazhong University of</td><td>Department of Electronics and information Engineering</td></tr><tr><td>6a0368b4e132f4aa3bbdeada8d894396f201358a</td><td>Huazhong University of Science and Technology</td><td></td></tr><tr><td>51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6</td><td>Huazhong University of Science and Technology</td><td></td></tr><tr><td>b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24</td><td>Huazhong University of Science and Technology, Wuhan, China</td><td></td></tr><tr><td>6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9</td><td>Human Centered Multimedia, Augsburg University, Germany</td><td></td></tr><tr><td>0efdd82a4753a8309ff0a3c22106c570d8a84c20</td><td>Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>Human Development and Applied Psychology, University of Toronto, Ontario, Canada</td><td></td></tr><tr><td>9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6</td><td>Human Genome Center, Institute of Medical Science</td><td></td></tr><tr><td>b073313325b6482e22032e259d7311fb9615356c</td><td>Human Interaction Research Lab</td><td></td></tr><tr><td>6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9</td><td>Human Interface Technology Lab New Zealand, University of Canterbury, New Zealand</td><td></td></tr><tr><td>950171acb24bb24a871ba0d02d580c09829de372</td><td>Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany</td><td></td></tr><tr><td>7643861bb492bf303b25d0306462f8fb7dc29878</td><td>Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Germany</td><td></td></tr><tr><td>c207fd762728f3da4cddcfcf8bf19669809ab284</td><td>Human Media Interaction, University of Twente, P.O. Box</td><td></td></tr><tr><td>b8caf1b1bc3d7a26a91574b493c502d2128791f6</td><td>Human and Health Sciences, Swansea University, Swansea, United Kingdom, 3 Abertawe Bro-Morgannwg</td><td></td></tr><tr><td>a703d51c200724517f099ee10885286ddbd8b587</td><td>Human-friendly Welfare Robotic System Engineering Research Center, KAIST</td><td></td></tr><tr><td>5bc0a89f4f73523967050374ed34d7bc89e4d9e1</td><td>Humboldt-University, Berlin, Germany</td><td>c Department of Psychology</td></tr><tr><td>5b01d4338734aefb16ee82c4c59763d3abc008e6</td><td>Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering, Xiangtan, China</td><td></td></tr><tr><td>1fe990ca6df273de10583860933d106298655ec8</td><td>Hunan University</td><td></td></tr><tr><td>ce56be1acffda599dec6cc2af2b35600488846c9</td><td>IBM Almaden Research Center, San Jose CA</td><td></td></tr><tr><td>59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb</td><td>IBM China Research Lab</td><td></td></tr><tr><td>91495c689e6e614247495c3f322d400d8098de43</td><td>IBM China Research Lab</td><td></td></tr><tr><td>23c3eb6ad8e5f18f672f187a6e9e9b0d94042970</td><td>IBM Research, Australia, 2 IBM T.J. Watson Research Center, 3 National University of Singapore</td><td></td></tr><tr><td>2a88541448be2eb1b953ac2c0c54da240b47dd8a</td><td>IBM T. J. Watson Research Center</td><td></td></tr><tr><td>5e16f10f2d667d17c029622b9278b6b0a206d394</td><td>IBM T. J. Watson Research Center</td><td></td></tr><tr><td>8323529cf37f955fb3fc6674af6e708374006a28</td><td>IBM T. J. Watson Research Center</td><td></td></tr><tr><td>66b9d954dd8204c3a970d86d91dd4ea0eb12db47</td><td>IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY</td><td></td></tr><tr><td>499f1d647d938235e9186d968b7bb2ab20f2726d</td><td>IBM T. J. Watson Research Center, Yorktown Heights, NY, USA</td><td></td></tr><tr><td>3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f</td><td>IBM T.J. Watson Research Center</td><td></td></tr><tr><td>cfd8c66e71e98410f564babeb1c5fd6f77182c55</td><td>IBM T.J. Watson Research Center</td><td></td></tr><tr><td>7e9df45ece7843fe050033c81014cc30b3a8903a</td><td>IBM T.J. Watson Research Center</td><td></td></tr><tr><td>c1298120e9ab0d3764512cbd38b47cd3ff69327b</td><td>IBM TJ Watson Research Center, USA</td><td></td></tr><tr><td>350da18d8f7455b0e2920bc4ac228764f8fac292</td><td>IBM Thomas J. Watson Research Center</td><td></td></tr><tr><td>131178dad3c056458e0400bed7ee1a36de1b2918</td><td>IBM Watson Research Center, Armonk, NY, USA</td><td></td></tr><tr><td>bb489e4de6f9b835d70ab46217f11e32887931a2</td><td>ICMC University of S ao Paulo</td><td></td></tr><tr><td>0d538084f664b4b7c0e11899d08da31aead87c32</td><td>ICSI / UC Berkeley 2Brigham Young University</td><td></td></tr><tr><td>a52581a7b48138d7124afc7ccfcf8ec3b48359d0</td><td>ICT-ISVISION Joint RandD Laboratory for Face Recognition, Institute of Computer Technology, The Chinese Academy of Sciences</td><td></td></tr><tr><td>89cabb60aa369486a1ebe586dbe09e3557615ef8</td><td>IDIAP RESEARCH INSTITUTE</td><td></td></tr><tr><td>816bd8a7f91824097f098e4f3e0f4b69f481689d</td><td>IDIAP Research Institute</td><td></td></tr><tr><td>816bd8a7f91824097f098e4f3e0f4b69f481689d</td><td>IDIAP Research Institute</td><td></td></tr><tr><td>5160569ca88171d5fa257582d161e9063c8f898d</td><td>IDIAP Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>53ce84598052308b86ba79d873082853022aa7e9</td><td>IEEE Member, Shahid Rajaee Teacher training University</td><td>Electrical and Computer Engineering Department</td></tr><tr><td>22fdd8d65463f520f054bf4f6d2d216b54fc5677</td><td>IES College of Technology, Bhopal</td><td>Department of Computer Science Engg.</td></tr><tr><td>69fb98e11df56b5d7ec7d45442af274889e4be52</td><td>IHCC, RSCS, CECS, Australian National University</td><td></td></tr><tr><td>3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9</td><td>IIE, Universidad de la Rep ublica, Uruguay. 2ECE, Duke University, USA</td><td></td></tr><tr><td>a301ddc419cbd900b301a95b1d9e4bb770afc6a3</td><td>IIIS, Tsinghua University</td><td></td></tr><tr><td>6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf</td><td>IIIS, Tsinghua University</td><td></td></tr><tr><td>016800413ebd1a87730a5cf828e197f43a08f4b3</td><td>IIIS, Tsinghua University</td><td></td></tr><tr><td>568cff415e7e1bebd4769c4a628b90db293c1717</td><td>IIIS, Tsinghua University, Beijing, China</td><td></td></tr><tr><td>3a76e9fc2e89bdd10a9818f7249fbf61d216efc4</td><td>IIIT-Delhi, India, 2West Virginia University</td><td></td></tr><tr><td>00d931eccab929be33caea207547989ae7c1ef39</td><td>IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands</td><td>Department of Computer Science</td></tr><tr><td>00d931eccab929be33caea207547989ae7c1ef39</td><td>IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands</td><td>Department of Computer Science</td></tr><tr><td>1e8eec6fc0e4538e21909ab6037c228547a678ba</td><td>IMPERIAL COLLEGE</td><td></td></tr><tr><td>4a5592ae1f5e9fa83d9fa17451c8ab49608421e4</td><td>IN3, Open University of</td><td></td></tr><tr><td>858b51a8a8aa082732e9c7fbbd1ea9df9c76b013</td><td>INTELSIG, Monte ore Institute, University of Li`ege, Belgium</td><td></td></tr><tr><td>7bbaa09c9e318da4370a83b126bcdb214e7f8428</td><td>ISISTAN Research Institute - CONICET - UNICEN</td><td></td></tr><tr><td>14014a1bdeb5d63563b68b52593e3ac1e3ce7312</td><td>ISLA Lab, Informatics Institute</td><td></td></tr><tr><td>935a7793cbb8f102924fa34fce1049727de865c2</td><td>ISLA Lab, Informatics Institute, University of Amsterdam</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>ISTMT, Laboratory of Research in Biophysics and Medical Technologies LRBTM Higher Institute of Medical Technologies of Tunis</td><td></td></tr><tr><td>ea6f5c8e12513dbaca6bbdff495ef2975b8001bd</td><td>ISTMT, University of Tunis El Manar Address: 9, Rue Docteur Zouhe r Safi 1006; 3Faculty of Medicine of Tunis; Address</td><td></td></tr><tr><td>178a82e3a0541fa75c6a11350be5bded133a59fd</td><td>IT Instituto de Telecomunica es, University of Beira Interior, Covilh , Portugal</td><td>Department of Computer Science</td></tr><tr><td>ef230e3df720abf2983ba6b347c9d46283e4b690</td><td>IT - Instituto de Telecomunica es, University of Beira Interior</td><td></td></tr><tr><td>ef230e3df720abf2983ba6b347c9d46283e4b690</td><td>IT - Instituto de Telecomunica es, University of Beira Interior</td><td></td></tr><tr><td>b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae</td><td>ITCS, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing</td><td></td></tr><tr><td>6043006467fb3fd1e9783928d8040ee1f1db1f3a</td><td>ITCS, Tsinghua University</td><td></td></tr><tr><td>4e8c608fc4b8198f13f8a68b9c1a0780f6f50105</td><td>ITEE, The University of Queensland, Australia</td><td></td></tr><tr><td>7bbaa09c9e318da4370a83b126bcdb214e7f8428</td><td>ITIC Research Institute, National University of Cuyo</td><td></td></tr><tr><td>93971a49ef6cc88a139420349a1dfd85fb5d3f5c</td><td>Idiap Research Institute</td><td></td></tr><tr><td>939123cf21dc9189a03671484c734091b240183e</td><td>Idiap Research Institute</td><td></td></tr><tr><td>b59cee1f647737ec3296ccb3daa25c890359c307</td><td>Idiap Research Institute</td><td></td></tr><tr><td>d7593148e4319df7a288180d920f2822eeecea0b</td><td>Idiap Research Institute</td><td></td></tr><tr><td>af13c355a2a14bb74847aedeafe990db3fc9cbd4</td><td>Idiap Research Institute</td><td></td></tr><tr><td>af13c355a2a14bb74847aedeafe990db3fc9cbd4</td><td>Idiap Research Institute</td><td></td></tr><tr><td>235d5620d05bb7710f5c4fa6fceead0eb670dec5</td><td>Idiap Research Institute</td><td></td></tr><tr><td>06d93a40365da90f30a624f15bf22a90d9cfe6bb</td><td>Idiap Research Institute and EPF Lausanne</td><td></td></tr><tr><td>8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff</td><td>Idiap Research Institute and EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Universit Paris-Saclay</td><td></td></tr><tr><td>0b642f6d48a51df64502462372a38c50df2051b1</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>52472ec859131844f38fc7d57944778f01d109ac</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>c23153aade9be0c941390909c5d1aad8924821db</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>78d645d5b426247e9c8f359694080186681f57db</td><td>Idiap Research Institute, Martigny, Switzerland</td><td></td></tr><tr><td>46ae4d593d89b72e1a479a91806c39095cd96615</td><td>Idiap Research Institute, Martigny, Switzerland, 2LIUM, University of Maine, Le Mans, France</td><td></td></tr><tr><td>167736556bea7fd57cfabc692ec4ae40c445f144</td><td>Idiap Research Institute, Switzerland</td><td></td></tr><tr><td>68484ae8a042904a95a8d284a7f85a4e28e37513</td><td>Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland</td><td></td></tr><tr><td>47b508abdaa5661fe14c13e8eb21935b8940126b</td><td>Iftm University, Moradabad-244001 U.P</td><td></td></tr><tr><td>9d66de2a59ec20ca00a618481498a5320ad38481</td><td>Illinois Institute of Technology</td><td>y Department of Computer Science</td></tr><tr><td>27846b464369095f4909f093d11ed481277c8bba</td><td>Illinois Institute of Technology, Chicago, Illinois, USA</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>1149c6ac37ae2310fe6be1feb6e7e18336552d95</td><td>Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany</td><td></td></tr><tr><td>df0e280cae018cebd5b16ad701ad101265c369fa</td><td>Image Processing Center, Beihang University</td><td></td></tr><tr><td>2c62b9e64aeddf12f9d399b43baaefbca8e11148</td><td>Image Understanding and Interactive Robotics, Reutlingen University, 72762 Reutlingen, Germany</td><td></td></tr><tr><td>64f9519f20acdf703984f02e05fd23f5e2451977</td><td>Image and Video Laboratory, Queensland University of Technology (QUT), Brisbane, QLD, Australia</td><td></td></tr><tr><td>98af221afd64a23e82c40fd28d25210c352e41b7</td><td>Image and Video Research Laboratory, Queensland University of Technology</td><td></td></tr><tr><td>0d14261e69a4ad4140ce17c1d1cea76af6546056</td><td>Imaging Science and Biomedical Engineering, The University of Manchester, UK</td><td></td></tr><tr><td>1b60b8e70859d5c85ac90510b370b501c5728620</td><td>Imaging Science and Biomedical Engineering, The University of Manchester, UK</td><td></td></tr><tr><td>0de91641f37b0a81a892e4c914b46d05d33fd36e</td><td>Imperial College London</td><td></td></tr><tr><td>59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b</td><td>Imperial College London</td><td></td></tr><tr><td>5040f7f261872a30eec88788f98326395a44db03</td><td>Imperial College London</td><td></td></tr><tr><td>03b03f5a301b2ff88ab3bb4969f54fd9a35c7271</td><td>Imperial College London</td><td></td></tr><tr><td>046a694bbb3669f2ff705c6c706ca3af95db798c</td><td>Imperial College London</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>56e079f4eb40744728fd1d7665938b06426338e5</td><td>Imperial College London</td><td></td></tr><tr><td>33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13</td><td>Imperial College London</td><td></td></tr><tr><td>a2bcfba155c990f64ffb44c0a1bb53f994b68a15</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>a2bcfba155c990f64ffb44c0a1bb53f994b68a15</td><td>Imperial College London</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>d140c5add2cddd4a572f07358d666fe00e8f4fe1</td><td>Imperial College London</td><td></td></tr><tr><td>4bbe460ab1b279a55e3c9d9f488ff79884d01608</td><td>Imperial College London</td><td></td></tr><tr><td>29c340c83b3bbef9c43b0c50b4d571d5ed037cbd</td><td>Imperial College London</td><td></td></tr><tr><td>7cffcb4f24343a924a8317d560202ba9ed26cd0b</td><td>Imperial College London</td><td></td></tr><tr><td>809ea255d144cff780300440d0f22c96e98abd53</td><td>Imperial College London</td><td></td></tr><tr><td>809ea255d144cff780300440d0f22c96e98abd53</td><td>Imperial College London</td><td></td></tr><tr><td>1a85956154c170daf7f15f32f29281269028ff69</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>1afdedba774f6689eb07e048056f7844c9083be9</td><td>Imperial College London</td><td></td></tr><tr><td>8f08b2101d43b1c0829678d6a824f0f045d57da5</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>7e0c75ce731131e613544e1a85ae0f2c28ee4c1f</td><td>Imperial College London</td><td></td></tr><tr><td>88bef50410cea3c749c61ed68808fcff84840c37</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>38cbb500823057613494bacd0078aa0e57b30af8</td><td>Imperial College London</td><td></td></tr><tr><td>38cbb500823057613494bacd0078aa0e57b30af8</td><td>Imperial College London</td><td></td></tr><tr><td>9af9a88c60d9e4b53e759823c439fc590a4b5bc5</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London</td><td></td></tr><tr><td>06d7ef72fae1be206070b9119fb6b61ce4699587</td><td>Imperial College London</td><td></td></tr><tr><td>a812368fe1d4a186322bf72a6d07e1cf60067234</td><td>Imperial College London</td><td></td></tr><tr><td>b93bf0a7e449cfd0db91a83284d9eba25a6094d8</td><td>Imperial College London</td><td>Department of Computing</td></tr><tr><td>f9ccfe000092121a2016639732cdb368378256d5</td><td>Imperial College London</td><td></td></tr><tr><td>2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3</td><td>Imperial College London</td><td>Computing Department</td></tr><tr><td>84e6669b47670f9f4f49c0085311dce0e178b685</td><td>Imperial College London</td><td></td></tr><tr><td>1d0128b9f96f4c11c034d41581f23eb4b4dd7780</td><td>Imperial College London</td><td></td></tr><tr><td>40bb090a4e303f11168dce33ed992f51afe02ff7</td><td>Imperial College London</td><td></td></tr><tr><td>40bb090a4e303f11168dce33ed992f51afe02ff7</td><td>Imperial College London</td><td></td></tr><tr><td>40bb090a4e303f11168dce33ed992f51afe02ff7</td><td>Imperial College London</td><td></td></tr><tr><td>7a84368ebb1a20cc0882237a4947efc81c56c0c0</td><td>Imperial College London</td><td></td></tr><tr><td>8e0ab1b08964393e4f9f42ca037220fe98aad7ac</td><td>Imperial College London</td><td></td></tr><tr><td>2227f978f084ebb18cb594c0cfaf124b0df6bf95</td><td>Imperial College London</td><td></td></tr><tr><td>aeeea6eec2f063c006c13be865cec0c350244e5b</td><td>Imperial College London / Twente University</td><td></td></tr><tr><td>1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6</td><td>Imperial College London, London, UK</td><td></td></tr><tr><td>090ff8f992dc71a1125636c1adffc0634155b450</td><td>Imperial College London, London, UK</td><td></td></tr><tr><td>7f82f8a416170e259b217186c9e38a9b05cb3eb4</td><td>Imperial College London, London, UK</td><td>Department of Computing</td></tr><tr><td>54bb25a213944b08298e4e2de54f2ddea890954a</td><td>Imperial College London, On do</td><td></td></tr><tr><td>624496296af19243d5f05e7505fd927db02fd0ce</td><td>Imperial College London, U.K</td><td></td></tr><tr><td>232b6e2391c064d483546b9ee3aafe0ba48ca519</td><td>Imperial College London, U.K</td><td></td></tr><tr><td>9b0489f2d5739213ef8c3e2e18739c4353c3a3b7</td><td>Imperial College London, UK</td><td>Department of Computing</td></tr><tr><td>044d9a8c61383312cdafbcc44b9d00d650b21c70</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>3505c9b0a9631539e34663310aefe9b05ac02727</td><td>Imperial College London, UK</td><td>Department of Computing</td></tr><tr><td>0ba1d855cd38b6a2c52860ae4d1a85198b304be4</td><td>Imperial College London, UK</td><td>Computing Department</td></tr><tr><td>055de0519da7fdf27add848e691087e0af166637</td><td>Imperial College London, UK</td><td>Computing Department</td></tr><tr><td>0209389b8369aaa2a08830ac3b2036d4901ba1f1</td><td>Imperial College London, UK</td><td></td></tr><tr><td>ac2e44622efbbab525d4301c83cb4d5d7f6f0e55</td><td>Imperial College London, UK</td><td></td></tr><tr><td>27eb7a6e1fb6b42516041def6fe64bd028b7614d</td><td>Imperial College London, UK</td><td></td></tr><tr><td>7df268a3f4da7d747b792882dfb0cbdb7cc431bc</td><td>Imperial College London, UK</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>42afe6d016e52c99e2c0d876052ade9c192d91e7</td><td>Imperial College London, UK</td><td>Computing Department</td></tr><tr><td>7492c611b1df6bce895bee6ba33737e7fc7f60a6</td><td>Imperial College London, UK</td><td>Department of Computing</td></tr><tr><td>193debca0be1c38dabc42dc772513e6653fd91d8</td><td>Imperial College London, UK</td><td>cid:63)Department of Computing</td></tr><tr><td>1921795408345751791b44b379f51b7dd54ebfa2</td><td>Imperial College London, UK</td><td></td></tr><tr><td>4c87aafa779747828054cffee3125fcea332364d</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>5bd3d08335bb4e444a86200c5e9f57fd9d719e14</td><td>Imperial College London, UK</td><td></td></tr><tr><td>013909077ad843eb6df7a3e8e290cfd5575999d2</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>a06b6d30e2b31dc600f622ab15afe5e2929581a7</td><td>Imperial College London, UK</td><td></td></tr><tr><td>12095f9b35ee88272dd5abc2d942a4f55804b31e</td><td>Imperial College London, UK</td><td></td></tr><tr><td>143bee9120bcd7df29a0f2ad6f0f0abfb23977b8</td><td>Imperial College London, UK</td><td>Comp. Department</td></tr><tr><td>f4210309f29d4bbfea9642ecadfb6cf9581ccec7</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>e42998bbebddeeb4b2bedf5da23fa5c4efc976fa</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>3f957142ef66f2921e7c8c7eadc8e548dccc1327</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>30fd1363fa14965e3ab48a7d6235e4b3516c1da1</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>06c2dfe1568266ad99368fc75edf79585e29095f</td><td>Imperial College London, United Kingdom</td><td>Department of Computing</td></tr><tr><td>0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7</td><td>Imperial College of Science, Technology and Medicine</td><td></td></tr><tr><td>2eb9f1dbea71bdc57821dedbb587ff04f3a25f07</td><td>Imperial College, 180 Queens Gate</td><td>Computing Department</td></tr><tr><td>d65b82b862cf1dbba3dee6541358f69849004f30</td><td>Imperial College, London, UK</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>292c6b743ff50757b8230395c4a001f210283a34</td><td>Imperial College, South Kensington Campus, London SW7 2AZ, UK</td><td>Department of Electrical and Electronic Engineering</td></tr><tr><td>283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43</td><td>In the Graduate College</td><td></td></tr><tr><td>f7b4bc4ef14349a6e66829a0101d5b21129dcf55</td><td>Inception Institute of Arti cial</td><td></td></tr><tr><td>d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5</td><td>Inception Institute of Arti cial Intelligence (IIAI), Abu Dhabi, UAE</td><td></td></tr><tr><td>993d189548e8702b1cb0b02603ef02656802c92b</td><td>Inception Institute of Arti cial Intelligence, UAE</td><td></td></tr><tr><td>7553fba5c7f73098524fbb58ca534a65f08e91e7</td><td>India</td><td>CSE Department and CSVTU University</td></tr><tr><td>7553fba5c7f73098524fbb58ca534a65f08e91e7</td><td>India</td><td>CSE Department and CSVTU University</td></tr><tr><td>7f268f29d2c8f58cea4946536f5e2325777fa8fa</td><td>Indian Institute of Informaiton Technology, Allahabad, India</td><td></td></tr><tr><td>d79365336115661b0e8dbbcd4b2aa1f504b91af6</td><td>Indian Institute of Science</td><td></td></tr><tr><td>4be774af78f5bf55f7b7f654f9042b6e288b64bd</td><td>Indian Institute of Science</td><td></td></tr><tr><td>4542273a157bfd4740645a6129d1784d1df775d2</td><td>Indian Institute of Science</td><td></td></tr><tr><td>6226f2ea345f5f4716ac4ddca6715a47162d5b92</td><td>Indian Institute of Science Bangalore</td><td></td></tr><tr><td>6226f2ea345f5f4716ac4ddca6715a47162d5b92</td><td>Indian Institute of Science Bangalore</td><td></td></tr><tr><td>13604bbdb6f04a71dea4bd093794e46730b0a488</td><td>Indian Institute of Science, Bangalore</td><td></td></tr><tr><td>13604bbdb6f04a71dea4bd093794e46730b0a488</td><td>Indian Institute of Science, Bangalore</td><td></td></tr><tr><td>90a754f597958a2717862fbaa313f67b25083bf9</td><td>Indian Institute of Science, India</td><td></td></tr><tr><td>1fe1bd6b760e3059fff73d53a57ce3a6079adea1</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>cbb27980eb04f68d9f10067d3d3c114efa9d0054</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>cbb27980eb04f68d9f10067d3d3c114efa9d0054</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>cbb27980eb04f68d9f10067d3d3c114efa9d0054</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>48463a119f67ff2c43b7c38f0a722a32f590dfeb</td><td>Indian Institute of Technology</td><td></td></tr><tr><td>1e94cc91c5293c8fc89204d4b881552e5b2ce672</td><td>Indian Institute of Technology Delhi, New Delhi, India</td><td></td></tr><tr><td>3f4bfa4e3655ef392eb5ad609d31c05f29826b45</td><td>Indian Institute of Technology Kanpur</td><td></td></tr><tr><td>53a41c711b40e7fe3dc2b12e0790933d9c99a6e0</td><td>Indian Institute of Technology Kharagpur</td><td></td></tr><tr><td>db67edbaeb78e1dd734784cfaaa720ba86ceb6d2</td><td>Indian Institute of Technology Kharagpur</td><td></td></tr><tr><td>aae742779e8b754da7973949992d258d6ca26216</td><td>Indian Institute of Technology Kharagpur, India</td><td></td></tr><tr><td>68f61154a0080c4aae9322110c8827978f01ac2e</td><td>Indian Institute of Technology Madras, Chennai 600036, India</td><td>Department of Electrical Engineering</td></tr><tr><td>959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c</td><td>Indian Institute of Technology Madras, Chennai, India</td><td></td></tr><tr><td>59efb1ac77c59abc8613830787d767100387c680</td><td>Indian Institute of Technology Ropar</td><td></td></tr><tr><td>59efb1ac77c59abc8613830787d767100387c680</td><td>Indian Institute of Technology Ropar</td><td></td></tr><tr><td>f997a71f1e54d044184240b38d9dc680b3bbbbc0</td><td>Indian Institute of Technology Ropar</td><td></td></tr><tr><td>f997a71f1e54d044184240b38d9dc680b3bbbbc0</td><td>Indian Institute of Technology Ropar</td><td></td></tr><tr><td>f997a71f1e54d044184240b38d9dc680b3bbbbc0</td><td>Indian Institute of Technology Ropar</td><td></td></tr><tr><td>f997a71f1e54d044184240b38d9dc680b3bbbbc0</td><td>Indian Institute of Technology Ropar</td><td></td></tr><tr><td>db3545a983ffd24c97c18bf7f068783102548ad7</td><td>Indian Institute of Technology, Bombay, India</td><td></td></tr><tr><td>e9bb045e702ee38e566ce46cc1312ed25cb59ea7</td><td>Indian Institute of Technology, Kharagpur</td><td></td></tr><tr><td>0fae5d9d2764a8d6ea691b9835d497dd680bbccd</td><td>Indian Institute of Technology, Madras</td><td></td></tr><tr><td>0fae5d9d2764a8d6ea691b9835d497dd680bbccd</td><td>Indian Institute of Technology, Madras</td><td></td></tr><tr><td>86c5478f21c4a9f9de71b5ffa90f2a483ba5c497</td><td>Indian Institute of Technology, Madras, Chennai 600036, INDIA</td><td>Department of Computer Science and Engineering</td></tr><tr><td>e9bb045e702ee38e566ce46cc1312ed25cb59ea7</td><td>Indian Institute of Technology, Roorkee</td><td></td></tr><tr><td>f3a59d85b7458394e3c043d8277aa1ffe3cdac91</td><td>Indiana University</td><td></td></tr><tr><td>0182d090478be67241392df90212d6cd0fb659e6</td><td>Indiana University</td><td></td></tr><tr><td>0182d090478be67241392df90212d6cd0fb659e6</td><td>Indiana University</td><td></td></tr><tr><td>0b835284b8f1f45f87b0ce004a4ad2aca1d9e153</td><td>Indiana University Bloomington</td><td></td></tr><tr><td>b7894c1f805ffd90ab4ab06002c70de68d6982ab</td><td>Indra Ganesan College of Engineering, Trichy, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>97865d31b5e771cf4162bc9eae7de6991ceb8bbf</td><td>Indraprastha Institute of Information Technology</td><td></td></tr><tr><td>8fa3478aaf8e1f94e849d7ffbd12146946badaba</td><td>Indraprastha Institute of Information Technology (Delhi, India</td><td></td></tr><tr><td>869a2fbe42d3fdf40ed8b768edbf54137be7ac71</td><td>Indraprastha Institute of Information Technology, Delhi</td><td></td></tr><tr><td>787c1bb6d1f2341c5909a0d6d7314bced96f4681</td><td>Indraprastha Institute of Information Technology, Delhi</td><td></td></tr><tr><td>0f21a39fa4c0a19c4a5b4733579e393cb1d04f71</td><td>Informatics Institute</td><td></td></tr><tr><td>205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa</td><td>Informatics and Telematics Institute</td><td></td></tr><tr><td>d5afd7b76f1391321a1340a19ba63eec9e0f9833</td><td>Informatics and Telematics Institute</td><td></td></tr><tr><td>5b9d41e2985fa815c0f38a2563cca4311ce82954</td><td>Informatics and Telematics Institute, Centre for Research and Technology Hellas</td><td></td></tr><tr><td>a2bcfba155c990f64ffb44c0a1bb53f994b68a15</td><td>Informatics and Telematics Institute, Centre of Research and Technology - Hellas</td><td></td></tr><tr><td>ff7bc7a6d493e01ec8fa2b889bcaf6349101676e</td><td>Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland</td><td></td></tr><tr><td>fa90b825346a51562d42f6b59a343b98ea2e501a</td><td>Information Sciences Institute and Computer Science, University of Southern California</td><td></td></tr><tr><td>582edc19f2b1ab2ac6883426f147196c8306685a</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>c75e6ce54caf17b2780b4b53f8d29086b391e839</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>870433ba89d8cab1656e57ac78f1c26f4998edfb</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>0a34fe39e9938ae8c813a81ae6d2d3a325600e5c</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>1e6ed6ca8209340573a5e907a6e2e546a3bf2d28</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>12408baf69419409d228d96c6f88b6bcde303505</td><td>Information Sciences Institute, USC, CA, USA</td><td></td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Information Systems Design, Doshisha University, Kyoto, Japan</td><td></td></tr><tr><td>892c911ca68f5b4bad59cde7eeb6c738ec6c4586</td><td>Information Systems, University of Wisconsin-River Falls, Wisconsin, WI, United States of America</td><td></td></tr><tr><td>182470fd0c18d0c5979dff75d089f1da176ceeeb</td><td>Information Technologies Institute</td><td></td></tr><tr><td>bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9</td><td>Information Technology University (ITU), Punjab, Lahore, Pakistan</td><td></td></tr><tr><td>e4bf70e818e507b54f7d94856fecc42cc9e0f73d</td><td>Information Technology, Madras Institute of Technology, TamilNadu, India, email</td><td></td></tr><tr><td>d5b5c63c5611d7b911bc1f7e161a0863a34d44ea</td><td>Information and Media Processing Research Laboratories, NEC Corporation</td><td></td></tr><tr><td>924b14a9e36d0523a267293c6d149bca83e73f3b</td><td>Information, Keio University</td><td></td></tr><tr><td>ac51d9ddbd462d023ec60818bac6cdae83b66992</td><td>Informatization Office, National University of Defense Technology, Changsha 410073, China</td><td></td></tr><tr><td>af278274e4bda66f38fd296cfa5c07804fbc26ee</td><td>Innopolis University, Kazan, Russia</td><td>Department of Computer Science</td></tr><tr><td>2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3</td><td>Inst. Neural Computation, University of California</td><td></td></tr><tr><td>a6e21438695dbc3a184d33b6cf5064ddf655a9ba</td><td>Institiude of Computer Science and Technology, Peking University</td><td></td></tr><tr><td>31afdb6fa95ded37e5871587df38976fdb8c0d67</td><td>Institute</td><td></td></tr><tr><td>1b4bc7447f500af2601c5233879afc057a5876d8</td><td>Institute</td><td></td></tr><tr><td>66330846a03dcc10f36b6db9adf3b4d32e7a3127</td><td>Institute AIFB, Karlsruhe Institute of Technology, Germany</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute Polythechnic of Leiria, Portugal</td><td></td></tr><tr><td>ea890846912f16a0f3a860fce289596a7dac575f</td><td>Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK</td><td></td></tr><tr><td>24f1febcdf56cd74cb19d08010b6eb5e7c81c362</td><td>Institute for Advanced</td><td></td></tr><tr><td>4377b03bbee1f2cf99950019a8d4111f8de9c34a</td><td>Institute for Advanced Computer Studies</td><td></td></tr><tr><td>074af31bd9caa61fea3c4216731420bd7c08b96a</td><td>Institute for Advanced Computer Studies, University of Maryland, College Park, MD</td><td></td></tr><tr><td>507c9672e3673ed419075848b4b85899623ea4b0</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>9ed4ad41cbad645e7109e146ef6df73f774cd75d</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>a5ade88747fa5769c9c92ffde9b7196ff085a9eb</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>a5ade88747fa5769c9c92ffde9b7196ff085a9eb</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>10f66f6550d74b817a3fdcef7fdeba13ccdba51c</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>656ef752b363a24f84cc1aeba91e4fa3d5dd66ba</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>14b87359f6874ff9b8ee234b18b418e57e75b762</td><td>Institute for Anthropomatics</td><td></td></tr><tr><td>ae4390873485c9432899977499c3bf17886fa149</td><td>Institute for Arts, Science and Technology</td><td></td></tr><tr><td>de15af84b1257211a11889b6c2adf0a2bcf59b42</td><td>Institute for Communication Systems</td><td></td></tr><tr><td>f7a271acccf9ec66c9b114d36eec284fbb89c7ef</td><td>Institute for Complex</td><td></td></tr><tr><td>fc2bad3544c7c8dc7cd182f54888baf99ed75e53</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>80277fb3a8a981933533cf478245f262652a33b5</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>96a9ca7a8366ae0efe6b58a515d15b44776faf6e</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>de8381903c579a4fed609dff3e52a1dc51154951</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8</td><td>Institute for Computer Graphics and Vision</td><td></td></tr><tr><td>3137a3fedf23717c411483c7b4bd2ed646258401</td><td>Institute for Computer Graphics and Vision, Graz University of Technology</td><td></td></tr><tr><td>2dd2c7602d7f4a0b78494ac23ee1e28ff489be88</td><td>Institute for Computer Graphics and Vision, Graz University of Technology</td><td></td></tr><tr><td>b73795963dc623a634d218d29e4a5b74dfbc79f1</td><td>Institute for Creative Technologies</td><td></td></tr><tr><td>e35b09879a7df814b2be14d9102c4508e4db458b</td><td>Institute for Disease Modeling, Intellectual Ventures Laboratory, Bellevue, WA 98004, United States</td><td></td></tr><tr><td>910524c0d0fe062bf806bb545627bf2c9a236a03</td><td>Institute for Electronics, Signal Processing and Communications</td><td></td></tr><tr><td>561ae67de137e75e9642ab3512d3749b34484310</td><td>Institute for Genomic Statistic and Bioinformatics, University Hospital Bonn</td><td></td></tr><tr><td>fe464b2b54154d231671750053861f5fd14454f5</td><td>Institute for Human-Machine</td><td></td></tr><tr><td>e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5</td><td>Institute for Human-Machine Communication</td><td></td></tr><tr><td>966e36f15b05ef8436afecf57a97b73d6dcada94</td><td>Institute for Human-Machine Communication, Technische Universit at M unchen</td><td></td></tr><tr><td>718824256b4461d62d192ab9399cfc477d3660b4</td><td>Institute for Human-Machine Communication, Technische Universit at M unchen, Germany</td><td></td></tr><tr><td>464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a</td><td>Institute for Infocomm Research</td><td></td></tr><tr><td>b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e</td><td>Institute for Infocomm Research (I2R), A*STAR, Singapore</td><td></td></tr><tr><td>3b557c4fd6775afc80c2cf7c8b16edde125b270e</td><td>Institute for Infocomm Research, A*STAR</td><td></td></tr><tr><td>3d948e4813a6856e5b8b54c20e50cc5050e66abe</td><td>Institute for Infocomm Research, A*STAR, Singapore</td><td></td></tr><tr><td>1e07500b00fcd0f65cf30a11f9023f74fe8ce65c</td><td>Institute for Infocomm Research, A*STAR, Singapore</td><td></td></tr><tr><td>0bf3513d18ec37efb1d2c7934a837dabafe9d091</td><td>Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore</td><td></td></tr><tr><td>481fb0a74528fa7706669a5cce6a212ac46eaea3</td><td>Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore</td><td></td></tr><tr><td>c7c03324833ba262eeaada0349afa1b5990c1ea7</td><td>Institute for Infocomm Research, Singapore</td><td>Visual Computing Department</td></tr><tr><td>1f9b2f70c24a567207752989c5bd4907442a9d0f</td><td>Institute for Infocomm Research, Singapore</td><td></td></tr><tr><td>6409b8879c7e61acf3ca17bcc62f49edca627d4c</td><td>Institute for Information Systems Engineering</td><td></td></tr><tr><td>b73d9e1af36aabb81353f29c40ecdcbdf731dbed</td><td>Institute for Information Technology and Communications (IIKT), Otto-von-Guericke-University</td><td></td></tr><tr><td>d0d7671c816ed7f37b16be86fa792a1b29ddd79b</td><td>Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China</td><td></td></tr><tr><td>fdfd57d4721174eba288e501c0c120ad076cdca8</td><td>Institute for Language, Cognition and Computation</td><td></td></tr><tr><td>fe464b2b54154d231671750053861f5fd14454f5</td><td>Institute for Media Technology</td><td></td></tr><tr><td>a0061dae94d916f60a5a5373088f665a1b54f673</td><td>Institute for Medical Engineering Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA</td><td></td></tr><tr><td>9547a7bce2b85ef159b2d7c1b73dea82827a449f</td><td>Institute for Neural Computation</td><td></td></tr><tr><td>57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1</td><td>Institute for Neural Computation</td><td></td></tr><tr><td>9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e</td><td>Institute for Neural Computation, University of California, San Diego</td><td></td></tr><tr><td>1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61</td><td>Institute for Neural Computation, University of California, San Diego</td><td></td></tr><tr><td>3dabf7d853769cfc4986aec443cc8b6699136ed0</td><td>Institute for Neural Computation, University of California, San Diego, La Jolla, CA</td><td></td></tr><tr><td>50f0c495a214b8d57892d43110728e54e413d47d</td><td>Institute for Numerical Mathematics</td><td></td></tr><tr><td>54a9ed950458f4b7e348fa78a718657c8d3d0e05</td><td>Institute for Optical Systems, HTWG Konstanz, Germany</td><td></td></tr><tr><td>c78fdd080df01fff400a32fb4cc932621926021f</td><td>Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan</td><td></td></tr><tr><td>c78fdd080df01fff400a32fb4cc932621926021f</td><td>Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan</td><td></td></tr><tr><td>87e6cb090aecfc6f03a3b00650a5c5f475dfebe1</td><td>Institute for Robotics and Intelligent</td><td></td></tr><tr><td>1cad5d682393ffbb00fd26231532d36132582bb4</td><td>Institute for Robotics and Intelligent</td><td></td></tr><tr><td>6341274aca0c2977c3e1575378f4f2126aa9b050</td><td>Institute for Robotics and Intelligent Systems</td><td></td></tr><tr><td>582edc19f2b1ab2ac6883426f147196c8306685a</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>c75e6ce54caf17b2780b4b53f8d29086b391e839</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>870433ba89d8cab1656e57ac78f1c26f4998edfb</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>0a34fe39e9938ae8c813a81ae6d2d3a325600e5c</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>1e6ed6ca8209340573a5e907a6e2e546a3bf2d28</td><td>Institute for Robotics and Intelligent Systems, USC, CA, USA</td><td></td></tr><tr><td>d28d32af7ef9889ef9cb877345a90ea85e70f7f1</td><td>Institute for Robotics and Intelligent Systems, University of Southern California, CA, USA</td><td></td></tr><tr><td>f963967e52a5fd97fa3ebd679fd098c3cb70340e</td><td>Institute for Studies in Fundamental Sciences (IPM), Tehran, Iran</td><td></td></tr><tr><td>d1881993c446ea693bbf7f7d6e750798bf958900</td><td>Institute for System Programming</td><td></td></tr><tr><td>d1881993c446ea693bbf7f7d6e750798bf958900</td><td>Institute for System Programming</td><td></td></tr><tr><td>0ef96d97365899af797628e80f8d1020c4c7e431</td><td>Institute for Vision Systems Engineering</td><td></td></tr><tr><td>87bee0e68dfc86b714f0107860d600fffdaf7996</td><td>Institute for Vision and Graphics, University of Siegen, Germany</td><td></td></tr><tr><td>d350a9390f0818703f886138da27bf8967fe8f51</td><td>Institute for Vision and Graphics, University of Siegen, Germany</td><td></td></tr><tr><td>b4f4b0d39fd10baec34d3412d53515f1a4605222</td><td>Institute for studies in theoretical Physics and Mathematics(IPM</td><td></td></tr><tr><td>0515e43c92e4e52254a14660718a9e498bd61cf5</td><td>Institute of</td><td></td></tr><tr><td>5ea9cba00f74d2e113a10c484ebe4b5780493964</td><td>Institute of</td><td></td></tr><tr><td>bbcb4920b312da201bf4d2359383fb4ee3b17ed9</td><td>Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing</td><td></td></tr><tr><td>bbe949c06dc4872c7976950b655788555fe513b8</td><td>Institute of Anthropomatics, Karlsruhe Institute of Technology, Germany</td><td></td></tr><tr><td>4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac</td><td>Institute of Arti cial Intelligence and Cognitive Engineering</td><td></td></tr><tr><td>d8896861126b7fd5d2ceb6fed8505a6dff83414f</td><td>Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen</td><td></td></tr><tr><td>1255afbf86423c171349e874b3ac297de19f00cd</td><td>Institute of Arti cial Intelligence and Cognitive Engineering (ALICE), University of Groningen</td><td></td></tr><tr><td>2588acc7a730d864f84d4e1a050070ff873b03d5</td><td>Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an 710049, China</td><td></td></tr><tr><td>f02a6bccdaee14ab55ad94263539f4f33f1b15bb</td><td>Institute of Arti cial Intelligence and Robotics, Xi an Jiaotong University, Xi an, Shannxi 710049, China</td><td></td></tr><tr><td>fe464b2b54154d231671750053861f5fd14454f5</td><td>Institute of Automatic Control</td><td></td></tr><tr><td>d074b33afd95074d90360095b6ecd8bc4e5bb6a2</td><td>Institute of Automatic Control Engineering (LSR</td><td></td></tr><tr><td>6691dfa1a83a04fdc0177d8d70e3df79f606b10f</td><td>Institute of Automation</td><td></td></tr><tr><td>171d8a39b9e3d21231004f7008397d5056ff23af</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>122f51cee489ba4da5ab65064457fbe104713526</td><td>Institute of Automation</td><td></td></tr><tr><td>d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e</td><td>Institute of Automation Chinese Academy of Sciences, Beijing, China</td><td></td></tr><tr><td>b3c398da38d529b907b0bac7ec586c81b851708f</td><td>Institute of Automation, Chinese Academy of</td><td></td></tr><tr><td>3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>d04d5692461d208dd5f079b98082eda887b62323</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>bc910ca355277359130da841a589a36446616262</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>ca54d0a128b96b150baef392bf7e498793a6371f</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>4e6c17966efae956133bf8f22edeffc24a0470c1</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>2654ef92491cebeef0997fd4b599ac903e48d07a</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>2a4153655ad1169d482e22c468d67f3bc2c49f12</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>3661a34f302883c759b9fa2ce03de0c7173d2bb2</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>5b89744d2ac9021f468b3ffd32edf9c00ed7fed7</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>63cff99eff0c38b633c8a3a2fec8269869f81850</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>46e72046a9bb2d4982d60bcf5c63dbc622717f0f</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>4622b82a8aff4ac1e87b01d2708a333380b5913b</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>82b43bc9213230af9db17322301cbdf81e2ce8cc</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>492f41e800c52614c5519f830e72561db205e86c</td><td>Institute of Automation, Chinese Academy of Sciences</td><td></td></tr><tr><td>6c80c834d426f0bc4acd6355b1946b71b50cbc0b</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>b11bb6bd63ee6f246d278dd4edccfbe470263803</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>2c19d3d35ef7062061b9e16d040cebd7e45f281d</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>488e475eeb3bb39a145f23ede197cd3620f1d98a</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>853bd61bc48a431b9b1c7cab10c603830c488e39</td><td>Institute of Automation, Chinese Academy of Sciences (CASIA</td><td></td></tr><tr><td>231a6d2ee1cc76f7e0c5912a530912f766e0b459</td><td>Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R.C</td><td></td></tr><tr><td>2b10a07c35c453144f22e8c539bf9a23695e85fc</td><td>Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China</td><td></td></tr><tr><td>2af2b74c3462ccff3a6881ff7cf4f321b3242fa9</td><td>Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>212608e00fc1e8912ff845ee7a4a67f88ba938fc</td><td>Institute of Automation, Chinese Academy of Sciences, Beijing, P. R. China</td><td></td></tr><tr><td>506c2fbfa9d16037d50d650547ad3366bb1e1cde</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>321c8ba38db118d8b02c0ba209be709e6792a2c7</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>c94b3a05f6f41d015d524169972ae8fd52871b67</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>45e616093a92e5f1e61a7c6037d5f637aa8964af</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>19a9f658ea14701502d169dc086651b1d9b2a8ea</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>4c6233765b5f83333f6c675d3389bbbf503805e3</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>2f04ba0f74df046b0080ca78e56898bd4847898b</td><td>Institute of Automation, Chinese Academy of Sciences, China</td><td></td></tr><tr><td>199c2df5f2847f685796c2523221c6436f022464</td><td>Institute of Automation, Chinese Academy of Sciences; 2Miscrosoft Research Asian; 3Media School</td><td></td></tr><tr><td>4ea53e76246afae94758c1528002808374b75cfa</td><td>Institute of Biochemistry, University of Balochistan, Quetta</td><td></td></tr><tr><td>0b85b50b6ff03a7886c702ceabad9ab8c8748fdc</td><td>Institute of Child Health, University College London, UK</td><td></td></tr><tr><td>2c34bf897bad780e124d5539099405c28f3279ac</td><td>Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China</td><td></td></tr><tr><td>c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8</td><td>Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. 2Affective Brain</td><td></td></tr><tr><td>081286ede247c5789081502a700b378b6223f94b</td><td>Institute of Cognitive and Behavioural Neuroscience, SWPS University of Social</td><td>Department of Experimental Psychology</td></tr><tr><td>182470fd0c18d0c5979dff75d089f1da176ceeeb</td><td>Institute of Communications Engineering</td><td></td></tr><tr><td>81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f</td><td>Institute of Computer Science</td><td></td></tr><tr><td>4015e8195db6edb0ef8520709ca9cb2c46f29be7</td><td>Institute of Computer Science</td><td></td></tr><tr><td>14b66748d7c8f3752dca23991254fca81b6ee86c</td><td>Institute of Computer Science III</td><td></td></tr><tr><td>8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8</td><td>Institute of Computer Science and</td><td></td></tr><tr><td>0517d08da7550241fb2afb283fc05d37fce5d7b7</td><td>Institute of Computer Science and Technology, Chongqing University of Posts and</td><td></td></tr><tr><td>06f585a3a05dd3371cd600a40dc35500e2f82f9b</td><td>Institute of Computer Science and Technology, Peking University</td><td></td></tr><tr><td>b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89</td><td>Institute of Computer Science and Technology, Peking University</td><td></td></tr><tr><td>488375ae857a424febed7c0347cc9590989f01f7</td><td>Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Crete, 73100, Greece</td><td></td></tr><tr><td>53ce84598052308b86ba79d873082853022aa7e9</td><td>Institute of Computer science, Shahid Bahonar University</td><td></td></tr><tr><td>9d24179aa33a94c8c61f314203bf9e906d6b64de</td><td>Institute of Computing</td><td></td></tr><tr><td>4b74f2d56cd0dda6f459319fec29559291c61bff</td><td>Institute of Computing</td><td></td></tr><tr><td>38a9ca2c49a77b540be52377784b9f734e0417e4</td><td>Institute of Computing</td><td></td></tr><tr><td>902114feaf33deac209225c210bbdecbd9ef33b1</td><td>Institute of Computing</td><td></td></tr><tr><td>badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e</td><td>Institute of Computing Technology</td><td></td></tr><tr><td>51a8dabe4dae157aeffa5e1790702d31368b9161</td><td>Institute of Computing Technology, CAS</td><td></td></tr><tr><td>2969f822b118637af29d8a3a0811ede2751897b5</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>449808b7aa9ee6b13ad1a21d9f058efaa400639a</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>303a7099c01530fa0beb197eb1305b574168b653</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>d2cd9a7f19600370bce3ea29aba97d949fe0ceb9</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>db36e682501582d1c7b903422993cf8d70bb0b42</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>a820941eaf03077d68536732a4d5f28d94b5864a</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>cd023d2d067365c83d8e27431e83e7e66082f718</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2</td><td>Institute of Computing Technology, CAS, Beijing 100190, China</td><td></td></tr><tr><td>68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>56359d2b4508cc267d185c1d6d310a1c4c2cc8c2</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>0595d18e8d8c9fb7689f636341d8a55cc15b3e6a</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>0568fc777081cbe6de95b653644fec7b766537b2</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>bd8b7599acf53e3053aa27cfd522764e28474e57</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>ab734bac3994b00bf97ce22b9abc881ee8c12918</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>11dc744736a30a189f88fa81be589be0b865c9fa</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>7c9622ad1d8971cd74cc9e838753911fe27ccac4</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>288964068cd87d97a98b8bc927d6e0d2349458a2</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>5d88702cdc879396b8b2cc674e233895de99666b</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>99facca6fc50cc30f13b7b6dd49ace24bc94f702</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>24cb375a998f4af278998f8dee1d33603057e525</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>120bcc9879d953de7b2ecfbcd301f72f3a96fb87</td><td>Institute of Computing Technology, CAS, Beijing, 100190, China</td><td></td></tr><tr><td>e0dc6f1b740479098c1d397a7bc0962991b5e294</td><td>Institute of Computing Technology, Chinese Academy of Sciences</td><td></td></tr><tr><td>2af2b74c3462ccff3a6881ff7cf4f321b3242fa9</td><td>Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>3b7f6035a113b560760c5e8000540fc46f91fed5</td><td>Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China</td><td></td></tr><tr><td>ed388878151a3b841f95a62c42382e634d4ab82e</td><td>Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China</td><td></td></tr><tr><td>ac1d97a465b7cc56204af5f2df0d54f819eef8a6</td><td>Institute of Computing, University of Campinas (Unicamp), Campinas, Brazil, e-mail: ander</td><td></td></tr><tr><td>74875368649f52f74bfc4355689b85a724c3db47</td><td>Institute of Data Science and Technology, Alibaba Group</td><td></td></tr><tr><td>250ebcd1a8da31f0071d07954eea4426bb80644c</td><td>Institute of Deep Learning</td><td></td></tr><tr><td>74875368649f52f74bfc4355689b85a724c3db47</td><td>Institute of Deep Learning, Baidu Research</td><td></td></tr><tr><td>8bf243817112ac0aa1348b40a065bb0b735cdb9c</td><td>Institute of Digital Media</td><td></td></tr><tr><td>32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b</td><td>Institute of Digital Media, Peking University, Beijing 100871, China</td><td></td></tr><tr><td>d2cd9a7f19600370bce3ea29aba97d949fe0ceb9</td><td>Institute of Digital Media, Peking University, Beijing 100871, China</td><td></td></tr><tr><td>449808b7aa9ee6b13ad1a21d9f058efaa400639a</td><td>Institute of Digital Media, Peking University, Beijing, 100871, China</td><td></td></tr><tr><td>1130c38e88108cf68b92ecc61a9fc5aeee8557c9</td><td>Institute of Electrical Measurement and Measurement Signal Processing, TU Graz, Austria</td><td></td></tr><tr><td>be07f2950771d318a78d2b64de340394f7d6b717</td><td>Institute of Electrical and Electronics Engineers</td><td></td></tr><tr><td>162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e</td><td>Institute of Electrical and Electronics Engineers (IEEE). DOI</td><td></td></tr><tr><td>daa02cf195818cbf651ef81941a233727f71591f</td><td>Institute of Electronics and Computer Science</td><td></td></tr><tr><td>511b06c26b0628175c66ab70dd4c1a4c0c19aee9</td><td>Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj</td><td></td></tr><tr><td>081286ede247c5789081502a700b378b6223f94b</td><td>Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland</td><td></td></tr><tr><td>03baf00a3d00887dd7c828c333d4a29f3aacd5f5</td><td>Institute of Graduate Studies and Research</td><td></td></tr><tr><td>561ae67de137e75e9642ab3512d3749b34484310</td><td>Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany</td><td></td></tr><tr><td>c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774</td><td>Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University</td><td></td></tr><tr><td>372a8bf0ef757c08551d41e40cb7a485527b6cd7</td><td>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong</td><td></td></tr><tr><td>159e792096756b1ec02ec7a980d5ef26b434ff78</td><td>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University</td><td></td></tr><tr><td>7fc76446d2b11fc0479df6e285723ceb4244d4ef</td><td>Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China</td><td></td></tr><tr><td>4d625677469be99e0a765a750f88cfb85c522cce</td><td>Institute of Industrial Science</td><td></td></tr><tr><td>4d625677469be99e0a765a750f88cfb85c522cce</td><td>Institute of Industrial Science</td><td></td></tr><tr><td>846c028643e60fefc86bae13bebd27341b87c4d1</td><td>Institute of Industrial Science, The University of Tokyo</td><td></td></tr><tr><td>1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6</td><td>Institute of Informatics - ISLA</td><td></td></tr><tr><td>72f4aaf7e2e3f215cd8762ce283988220f182a5b</td><td>Institute of Informatics, Istanbul Technical University, Istanbul, 34469, TURKEY</td><td></td></tr><tr><td>5f57a1a3a1e5364792b35e8f5f259f92ad561c1f</td><td>Institute of Information Science</td><td></td></tr><tr><td>b5930275813a7e7a1510035a58dd7ba7612943bc</td><td>Institute of Information Science</td><td></td></tr><tr><td>b42a97fb47bcd6bfa72e130c08960a77ee96f9ab</td><td>Institute of Information Science</td><td></td></tr><tr><td>64782a2bc5da11b1b18ca20cecf7bdc26a538d68</td><td>Institute of Information Science</td><td></td></tr><tr><td>a660390654498dff2470667b64ea656668c98ecc</td><td>Institute of Information Science</td><td></td></tr><tr><td>e726174d516605f80ff359e71f68b6e8e6ec6d5d</td><td>Institute of Information Science</td><td></td></tr><tr><td>1c17450c4d616e1e1eece248c42eba4f87de9e0d</td><td>Institute of Information Science</td><td></td></tr><tr><td>266766818dbc5a4ca1161ae2bc14c9e269ddc490</td><td>Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy</td><td></td></tr><tr><td>0951f42abbf649bb564a21d4ff5dddf9a5ea54d9</td><td>Institute of Information Science, Academia Sinica, Taipei</td><td></td></tr><tr><td>6ab33fa51467595f18a7a22f1d356323876f8262</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>5397c34a5e396658fa57e3ca0065a2878c3cced7</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>5b73b7b335f33cda2d0662a8e9520f357b65f3ac</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>c44c84540db1c38ace232ef34b03bda1c81ba039</td><td>Institute of Information Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>2303d07d839e8b20f33d6e2ec78d1353cac256cf</td><td>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China</td><td></td></tr><tr><td>739d400cb6fb730b894182b29171faaae79e3f01</td><td>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, P.R. China</td><td></td></tr><tr><td>8af411697e73f6cfe691fe502d4bfb42510b4835</td><td>Institute of Information Technology</td><td></td></tr><tr><td>137aa2f891d474fce1e7a1d1e9b3aefe21e22b34</td><td>Institute of Interdisciplinary Studies in Identity Sciences (IISIS</td><td></td></tr><tr><td>4ab84f203b0e752be83f7f213d7495b04b1c4c79</td><td>Institute of Mathematics and Statistics</td><td></td></tr><tr><td>2be0ab87dc8f4005c37c523f712dd033c0685827</td><td>Institute of Media Innovation</td><td></td></tr><tr><td>0fdcfb4197136ced766d538b9f505729a15f0daf</td><td>Institute of Media and Information Technology, Chiba University</td><td></td></tr><tr><td>142e5b4492bc83b36191be4445ef0b8b770bf4b0</td><td>Institute of Mental Health, Peking University, P.R. China</td><td></td></tr><tr><td>614079f1a0d0938f9c30a1585f617fa278816d53</td><td>Institute of Mental Health, The University of Nottingham</td><td></td></tr><tr><td>bc866c2ced533252f29cf2111dd71a6d1724bd49</td><td>Institute of Microelectronics, Tsinghua University, Beijing 100084, China</td><td></td></tr><tr><td>54a9ed950458f4b7e348fa78a718657c8d3d0e05</td><td>Institute of Neural Information Processing, Ulm University, Germany</td><td></td></tr><tr><td>50c0de2cccf7084a81debad5fdb34a9139496da0</td><td>Institute of Neural Information Processing, Ulm University, Ulm, Germany</td><td></td></tr><tr><td>1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16</td><td>Institute of Neural Information Processing, Ulm University, Ulm, Germany</td><td></td></tr><tr><td>a35dd69d63bac6f3296e0f1d148708cfa4ba80f6</td><td>Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain</td><td></td></tr><tr><td>55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c</td><td>Institute of Psychology and Behavioral Sciences</td><td></td></tr><tr><td>0f395a49ff6cbc7e796656040dbf446a40e300aa</td><td>Institute of Psychology, Chinese</td><td></td></tr><tr><td>b3b4a7e29b9186e00d2948a1d706ee1605fe5811</td><td>Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland</td><td></td></tr><tr><td>98a660c15c821ea6d49a61c5061cd88e26c18c65</td><td>Institute of Road and</td><td>Department of Electronics and Communication Engineering</td></tr><tr><td>3d143cfab13ecd9c485f19d988242e7240660c86</td><td>Institute of Scienti c and Industrial Research, Osaka University, Ibaraki-shi 567-0047, Japan</td><td></td></tr><tr><td>c9367ed83156d4d682cefc59301b67f5460013e0</td><td>Institute of Software, Chinese Academy of Sciences</td><td></td></tr><tr><td>cf805d478aeb53520c0ab4fcdc9307d093c21e52</td><td>Institute of Software, Chinese Academy of Sciences (CAS</td><td></td></tr><tr><td>19e62a56b6772bbd37dfc6b8f948e260dbb474f5</td><td>Institute of Software, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>d33b26794ea6d744bba7110d2d4365b752d7246f</td><td>Institute of Software, Chinese Academy of Sciences, Beijing 100190, China</td><td></td></tr><tr><td>feb6e267923868bff6e2108603d00fdfd65251ca</td><td>Institute of Systems Engineering, Southeast University, Nanjing, China</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute of Systems and Robotics</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute of Systems and Robotics</td><td></td></tr><tr><td>8c9c8111e18f8798a612e7386e88536dfe26455e</td><td>Institute of Systems and Robotics</td><td></td></tr><tr><td>11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5</td><td>Institute of Systems and Robotics - University of Coimbra, Portugal</td><td></td></tr><tr><td>3802c97f925cb03bac91d9db13d8b777dfd29dcc</td><td>Institute of Systems and Robotics, University of Coimbra, Portugal</td><td></td></tr><tr><td>81706277ed180a92d2eeb94ac0560f7dc591ee13</td><td>Institute of Technology, Banaras Hindu</td><td></td></tr><tr><td>81706277ed180a92d2eeb94ac0560f7dc591ee13</td><td>Institute of Technology, Banaras Hindu</td><td></td></tr><tr><td>d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f</td><td>Institute of Telecommunications, TU Wien</td><td></td></tr><tr><td>fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e</td><td>Institute of Transportation Systems, German Aerospace Center (DLR), Braunschweig</td><td>Department of Human Factors</td></tr><tr><td>29e793271370c1f9f5ac03d7b1e70d1efa10577c</td><td>Institute of control science and engineering</td><td></td></tr><tr><td>2afdda6fb85732d830cea242c1ff84497cd5f3cb</td><td>Institute ofInformation Science, Academia Sinica, Taipei, Taiwan</td><td></td></tr><tr><td>d93baa5ecf3e1196b34494a79df0a1933fd2b4ec</td><td>Institute, CAS, China</td><td></td></tr><tr><td>d93baa5ecf3e1196b34494a79df0a1933fd2b4ec</td><td>Institute, CAS, China</td><td></td></tr><tr><td>c91103e6612fa7e664ccbc3ed1b0b5deac865b02</td><td>Integrated Research Center, Universit`a Campus Bio-Medico di Roma</td><td></td></tr><tr><td>0cbc4dcf2aa76191bbf641358d6cecf38f644325</td><td>Intel Lab, 2200 Mission College Blvd, Santa Clara, CA 95054, USA</td><td></td></tr><tr><td>7c119e6bdada2882baca232da76c35ae9b5277f8</td><td>Intelligence Computing Research Center</td><td></td></tr><tr><td>3b2d5585af59480531616fe970cb265bbdf63f5b</td><td>Intelligence, Concordia University, Montreal</td><td></td></tr><tr><td>c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f</td><td>Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching</td><td></td></tr><tr><td>c87f7ee391d6000aef2eadb49f03fc237f4d1170</td><td>Intelligent Behaviour Understanding Group, Imperial College London, London, UK</td><td>Department of Computing</td></tr><tr><td>3fac7c60136a67b320fc1c132fde45205cd2ac66</td><td>Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan</td><td></td></tr><tr><td>bd8f3fef958ebed5576792078f84c43999b1b207</td><td>Intelligent Recognition and Image Processing Lab, Beihang University, Beijing</td><td></td></tr><tr><td>ea46951b070f37ad95ea4ed08c7c2a71be2daedc</td><td>Intelligent Sensory Interactive Systems, University of Amsterdam, Netherlands</td><td></td></tr><tr><td>4c8ef4f98c6c8d340b011cfa0bb65a9377107970</td><td>Intelligent Systems Group, University of Groningen, The Netherlands</td><td></td></tr><tr><td>beb4546ae95f79235c5f3c0e9cc301b5d6fc9374</td><td>Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht</td><td></td></tr><tr><td>937ffb1c303e0595317873eda5ce85b1a17f9943</td><td>Intelligent Systems Lab Amsterdam, University of Amsterdam</td><td></td></tr><tr><td>999289b0ef76c4c6daa16a4f42df056bf3d68377</td><td>Intelligent Systems Lab Amsterdam, University of Amsterdam, The Netherlands</td><td></td></tr><tr><td>faeefc5da67421ecd71d400f1505cfacb990119c</td><td>Intelligent Systems Laboratory, Halmstad University, Halmstad, Sweden</td><td></td></tr><tr><td>54948ee407b5d32da4b2eee377cc44f20c3a7e0c</td><td>Intelligent Systems Laboratory, University of Bristol, Bristol BS8 1UB, UK</td><td></td></tr><tr><td>465d5bb11912005f0a4f0569c6524981df18a7de</td><td>Intelligent User Interfaces Lab, Ko c University, Turkey</td><td></td></tr><tr><td>858b51a8a8aa082732e9c7fbbd1ea9df9c76b013</td><td>Intelligent and Interactive Systems, Institute of Computer Science, University of</td><td></td></tr><tr><td>2f2aa67c5d6dbfaf218c104184a8c807e8b29286</td><td>Interactive and Digital Media Institute</td><td></td></tr><tr><td>ee7093e91466b81d13f4d6933bcee48e4ee63a16</td><td>Interactive and Digital Media Institute, National University of Singapore, SG</td><td></td></tr><tr><td>38c901a58244be9a2644d486f9a1284dc0edbf8a</td><td>Interactive and Digital Media Institute, National University of Singapore, Singapore</td><td></td></tr><tr><td>c0ee89dc2dad76147780f96294de9e421348c1f4</td><td>Interdisciplinary Program in Visual Information Processing, Korea University, Seoul, Korea</td><td></td></tr><tr><td>b4362cd87ad219790800127ddd366cc465606a78</td><td>Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 03080, Korea</td><td></td></tr><tr><td>d02b32b012ffba2baeb80dca78e7857aaeececb0</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>f5eb411217f729ad7ae84bfd4aeb3dedb850206a</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>185263189a30986e31566394680d6d16b0089772</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>243e9d490fe98d139003bb8dc95683b366866c57</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>156cd2a0e2c378e4c3649a1d046cd080d3338bca</td><td>International Institute of Information Technology</td><td></td></tr><tr><td>0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1</td><td>International Institute of Information Technology, Hyderabad, India</td><td></td></tr><tr><td>96e1ccfe96566e3c96d7b86e134fa698c01f2289</td><td>International Institute of Information Technology, Hyderabad, India</td><td></td></tr><tr><td>0c3f7272a68c8e0aa6b92d132d1bf8541c062141</td><td>International Islamic University, Islamabad 44000, Pakistan</td><td>Department of Computer Science and Software Engineering</td></tr><tr><td>fde0180735699ea31f6c001c71eae507848b190f</td><td>International University of</td><td></td></tr><tr><td>fde0180735699ea31f6c001c71eae507848b190f</td><td>International University of</td><td></td></tr><tr><td>fae83b145e5eeda8327de9f19df286edfaf5e60c</td><td>Ionian University</td><td></td></tr><tr><td>966e36f15b05ef8436afecf57a97b73d6dcada94</td><td>Iran</td><td>Computer Engineering Department University of Isfahan</td></tr><tr><td>6fda12c43b53c679629473806c2510d84358478f</td><td>Islamic Azad University</td><td>Department of Computer Science</td></tr><tr><td>ad8540379884ec03327076b562b63bc47e64a2c7</td><td>Islamic Azad University</td><td></td></tr><tr><td>7cffcb4f24343a924a8317d560202ba9ed26cd0b</td><td>Islamic Azad University</td><td></td></tr><tr><td>841bf196ee0086c805bd5d1d0bddfadc87e424ec</td><td>Islamic Azad University</td><td></td></tr><tr><td>39dc2ce4cce737e78010642048b6ed1b71e8ac2f</td><td>Islamic Azad University of AHAR</td><td></td></tr><tr><td>19f076998ba757602c8fec04ce6a4ca674de0e25</td><td>Islamic Azad University, Gonabad, Iran</td><td>Department of Control and Electrical Engineering</td></tr><tr><td>11a210835b87ccb4989e9ba31e7559bb7a9fd292</td><td>Islamic Azad University, Mashhad Branch, Mashhad, Iran</td><td>a Department of Artificial Intelligence</td></tr><tr><td>ceb763d6657a07b47e48e8a2956bcfdf2cf10818</td><td>Islamic Azad University, Qazvin, Iran</td><td></td></tr><tr><td>53ce84598052308b86ba79d873082853022aa7e9</td><td>Islamic Azad University, Science and Research Campus</td><td>Department of Computer Engineering Hamedan Branch</td></tr><tr><td>ad247138e751cefa3bb891c2fe69805da9c293d7</td><td>Islamic Azad University, Shahrood, Iran</td><td>Department of Electrical and Computer Engineering</td></tr><tr><td>d5fa9d98c8da54a57abf353767a927d662b7f026</td><td>Islamic University of Gaza - Palestine</td><td></td></tr><tr><td>0ce8a45a77e797e9d52604c29f4c1e227f604080</td><td>IslamicAzad University, Qazvin, Iran</td><td></td></tr><tr><td>8bed7ff2f75d956652320270eaf331e1f73efb35</td><td>Istanbul Bilgi University - DCE</td><td></td></tr><tr><td>fd53be2e0a9f33080a9db4b5a5e416e24ae8e198</td><td>Istanbul Technical University</td><td></td></tr><tr><td>26f03693c50eb50a42c9117f107af488865f3dc1</td><td>Istanbul Technical University</td><td></td></tr><tr><td>09733129161ca7d65cf56a7ad63c17f493386027</td><td>Istanbul Technical University</td><td></td></tr><tr><td>14b87359f6874ff9b8ee234b18b418e57e75b762</td><td>Istanbul Technical University</td><td></td></tr><tr><td>72f4aaf7e2e3f215cd8762ce283988220f182a5b</td><td>Istanbul Technical University, Istanbul, 34469, TURKEY</td><td>Department of Computer Engineering</td></tr><tr><td>2050847bc7a1a0453891f03aeeb4643e360fde7d</td><td>Istanbul Technical University, Istanbul, Turkey</td><td></td></tr><tr><td>d3d5d86afec84c0713ec868cf5ed41661fc96edc</td><td>Istanbul Technical University, Istanbul, Turkey</td><td></td></tr><tr><td>3d9db1cacf9c3bb7af57b8112787b59f45927355</td><td>Istanbul Technical University, Turkey</td><td></td></tr><tr><td>a5ade88747fa5769c9c92ffde9b7196ff085a9eb</td><td>Istanbul Technical University, Turkey</td><td></td></tr><tr><td>9dcc6dde8d9f132577290d92a1e76b5decc6d755</td><td>Istanbul University</td><td>Department of Electrical and Electronics Eng</td></tr><tr><td>070ab604c3ced2c23cce2259043446c5ee342fd6</td><td>IstanbulTechnicalUniversity</td><td></td></tr><tr><td>097340d3ac939ce181c829afb6b6faff946cdce0</td><td>Italian Institute of Technology, 5Mapillary Research</td><td></td></tr><tr><td>18a9f3d855bd7728ed4f988675fa9405b5478845</td><td>J. P. College of Engineering, India</td><td>Department of Electronics and Communication Engineering</td></tr><tr><td>f28b7d62208fdaaa658716403106a2b0b527e763</td><td>JACOB GOLDBERGER, Bar-Ilan University</td><td></td></tr><tr><td>ad784332cc37720f03df1c576e442c9c828a587a</td><td>JDL, Institute of Computing Technology, CAS, P.O. Box 2704, Beijing, China</td><td></td></tr><tr><td>070de852bc6eb275d7ca3a9cdde8f6be8795d1a3</td><td>Jacobs University</td><td></td></tr><tr><td>6f0900a7fe8a774a1977c5f0a500b2898bcbe149</td><td>Jadavpur University</td><td>Department of Computer Science and Engineering</td></tr><tr><td>3f4bfa4e3655ef392eb5ad609d31c05f29826b45</td><td>Jadavpur University</td><td></td></tr><tr><td>aaeb8b634bb96a372b972f63ec1dc4db62e7b62a</td><td>Jadavpur University, India</td><td>Department of Printing Engineering</td></tr><tr><td>aaeb8b634bb96a372b972f63ec1dc4db62e7b62a</td><td>Jadavpur University, India</td><td>Department of Computer Science and Engineering</td></tr><tr><td>4d01d78544ae0de3075304ff0efa51a077c903b7</td><td>Jahangirnagar University</td><td></td></tr><tr><td>8f8a5be9dc16d73664285a29993af7dc6a598c83</td><td>Jahangirnagar University, Savar, Dhaka 1342, Bangladesh</td><td>Department of Computer Science and Engineering</td></tr><tr><td>58db008b204d0c3c6744f280e8367b4057173259</td><td>Jaipur, Rajasthan, India</td><td>aDepartment of Computer Engineering Malaviya National Institute of Technology</td></tr><tr><td>13f6ab2f245b4a871720b95045c41a4204626814</td><td>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United</td><td></td></tr><tr><td>c0723e0e154a33faa6ff959d084aebf07770ffaf</td><td>Japan</td><td>Department of Life System Science and Technology Chukyo University</td></tr><tr><td>9ed943f143d2deaac2efc9cf414b3092ed482610</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>26c884829897b3035702800937d4d15fef7010e4</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>982f5c625d6ad0dac25d7acbce4dabfb35dd7f23</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>76d939f73a327bf1087d91daa6a7824681d76ea1</td><td>Japan Advanced Institute of Science and Technology</td><td></td></tr><tr><td>c180f22a9af4a2f47a917fd8f15121412f2d0901</td><td>Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan</td><td></td></tr><tr><td>5865e824e3d8560e07840dd5f75cfe9bf68f9d96</td><td>Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara</td><td></td></tr><tr><td>f19777e37321f79e34462fc4c416bd56772031bf</td><td>Jawaharlal Technological University, Anantapur</td><td></td></tr><tr><td>0229829e9a1eed5769a2b5eccddcaa7cd9460b92</td><td>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA</td><td></td></tr><tr><td>493ec9e567c5587c4cbeb5f08ca47408ca2d6571</td><td>Jiangnan University, Wuxi</td><td></td></tr><tr><td>aac39ca161dfc52aade063901f02f56d01a1693c</td><td>Jilin University, Changchun 130012, China</td><td></td></tr><tr><td>f5fae7810a33ed67852ad6a3e0144cb278b24b41</td><td>Jo ef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia</td><td></td></tr><tr><td>8320dbdd3e4712cca813451cd94a909527652d63</td><td>Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) diff --git a/reports/institutions_missing.html b/reports/institutions_missing.html index 6266cffe..93a26238 100644 --- a/reports/institutions_missing.html +++ b/reports/institutions_missing.html @@ -1,4 +1,7 @@ -<!doctype html><html><head><title>Institutions</title><link rel='stylesheet' href='reports.css'></head><body><h2>Institutions</h2><table border='1' cellpadding='3' cellspacing='3'><tr><td>61084a25ebe736e8f6d7a6e53b2c20d9723c4608</td><td></td></tr><tr><td>614a7c42aae8946c7ad4c36b53290860f6256441</td><td>1 +<!doctype html><html><head><title>Institutions</title><link rel='stylesheet' href='reports.css'></head><body><h2>Institutions</h2><table border='1' cellpadding='3' cellspacing='3'><tr><td>61084a25ebe736e8f6d7a6e53b2c20d9723c4608</td><td></td></tr><tr><td>61f04606528ecf4a42b49e8ac2add2e9f92c0def</td><td>Deep Deformation Network for Object Landmark +<br/>Localization +<br/>NEC Laboratories America, Department of Media Analytics +</td></tr><tr><td>614a7c42aae8946c7ad4c36b53290860f6256441</td><td>1 <br/>Joint Face Detection and Alignment using <br/>Multi-task Cascaded Convolutional Networks </td></tr><tr><td>0d88ab0250748410a1bc990b67ab2efb370ade5d</td><td>Author(s) : @@ -24,7 +27,13 @@ </td></tr><tr><td>0dd72887465046b0f8fc655793c6eaaac9c03a3d</td><td>Real-time Head Orientation from a Monocular <br/>Camera using Deep Neural Network <br/>KAIST, Republic of Korea -</td></tr><tr><td>0d087aaa6e2753099789cd9943495fbbd08437c0</td><td></td></tr><tr><td>0d8415a56660d3969449e77095be46ef0254a448</td><td></td></tr><tr><td>0d735e7552af0d1dcd856a8740401916e54b7eee</td><td></td></tr><tr><td>0d06b3a4132d8a2effed115a89617e0a702c957a</td><td></td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td></td></tr><tr><td>956317de62bd3024d4ea5a62effe8d6623a64e53</td><td>Lighting Analysis and Texture Modification of 3D Human +</td></tr><tr><td>0d087aaa6e2753099789cd9943495fbbd08437c0</td><td></td></tr><tr><td>0d8415a56660d3969449e77095be46ef0254a448</td><td></td></tr><tr><td>0d735e7552af0d1dcd856a8740401916e54b7eee</td><td></td></tr><tr><td>0d06b3a4132d8a2effed115a89617e0a702c957a</td><td></td></tr><tr><td>0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e</td><td></td></tr><tr><td>0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a</td><td>Detection and Tracking of Faces in Videos: A Review +<br/>© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 +<br/>of Related Work +<br/>1Student, 2Assistant Professor +<br/>1, 2Dept. of Electronics & Comm., S S I E T, Punjab, India +<br/>________________________________________________________________________________________________________ +</td></tr><tr><td>956317de62bd3024d4ea5a62effe8d6623a64e53</td><td>Lighting Analysis and Texture Modification of 3D Human <br/>Face Scans <br/>Author <br/>Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng @@ -54,12 +63,23 @@ <br/>Generalized Zero-Shot Learning for Action <br/>Recognition with Web-Scale Video Data <br/>Received: date / Accepted: date +</td></tr><tr><td>59fc69b3bc4759eef1347161e1248e886702f8f7</td><td>Final Report of Final Year Project +<br/>HKU-Face: A Large Scale Dataset for +<br/>Deep Face Recognition +<br/>3035141841 +<br/>COMP4801 Final Year Project +<br/>Project Code: 17007 </td></tr><tr><td>59bfeac0635d3f1f4891106ae0262b81841b06e4</td><td>Face Verification Using the LARK Face <br/>Representation </td></tr><tr><td>590628a9584e500f3e7f349ba7e2046c8c273fcf</td><td></td></tr><tr><td>59eefa01c067a33a0b9bad31c882e2710748ea24</td><td>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY <br/>Fast Landmark Localization <br/>with 3D Component Reconstruction and CNN for <br/>Cross-Pose Recognition +</td></tr><tr><td>5945464d47549e8dcaec37ad41471aa70001907f</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Every Moment Counts: Dense Detailed Labeling of Actions in Complex +<br/>Videos +<br/>Received: date / Accepted: date </td></tr><tr><td>59c9d416f7b3d33141cc94567925a447d0662d80</td><td>Universität des Saarlandes <br/>Max-Planck-Institut für Informatik <br/>AG5 @@ -92,11 +112,18 @@ </td></tr><tr><td>923ede53b0842619831e94c7150e0fc4104e62f7</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>1293 <br/>ICASSP 2016 +</td></tr><tr><td>92b61b09d2eed4937058d0f9494d9efeddc39002</td><td>Under review in IJCV manuscript No. +<br/>(will be inserted by the editor) +<br/>BoxCars: Improving Vehicle Fine-Grained Recognition using +<br/>3D Bounding Boxes in Traffic Surveillance +<br/>Received: date / Accepted: date </td></tr><tr><td>920a92900fbff22fdaaef4b128ca3ca8e8d54c3e</td><td>LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM <br/>SELECTION <br/>Ecole Polytechnique F´ed´erale de Lausanne (EPFL) <br/>Signal Processing Laboratory (LTS4) <br/>Switzerland-1015 Lausanne +</td></tr><tr><td>9207671d9e2b668c065e06d9f58f597601039e5e</td><td>Face Detection Using a 3D Model on +<br/>Face Keypoints </td></tr><tr><td>9282239846d79a29392aa71fc24880651826af72</td><td>Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14 <br/>http://jivp.eurasipjournals.com/content/2014/1/14 <br/>RESEARCH @@ -184,6 +211,17 @@ </td></tr><tr><td>0c75c7c54eec85e962b1720755381cdca3f57dfb</td><td>2212 <br/>Face Landmark Fitting via Optimized Part <br/>Mixtures and Cascaded Deformable Model +</td></tr><tr><td>0ca36ecaf4015ca4095e07f0302d28a5d9424254</td><td>Improving Bag-of-Visual-Words Towards Effective Facial Expressive +<br/>Image Classification +<br/>1Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France +<br/>Keywords: +<br/>BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF. +</td></tr><tr><td>0cfca73806f443188632266513bac6aaf6923fa8</td><td>Predictive Uncertainty in Large Scale Classification +<br/>using Dropout - Stochastic Gradient Hamiltonian +<br/>Monte Carlo. +<br/>Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4. +<br/>∗Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile. +<br/>∗∗German Research Centre for Artificial Intelligence, Bremen, Germany. </td></tr><tr><td>0c54e9ac43d2d3bab1543c43ee137fc47b77276e</td><td></td></tr><tr><td>0c5afb209b647456e99ce42a6d9d177764f9a0dd</td><td>97 <br/>Recognizing Action Units for <br/>Facial Expression Analysis @@ -199,20 +237,29 @@ </td></tr><tr><td>0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d</td><td>SUBMITTED TO JOURNAL <br/>Weakly Supervised PatchNets: Describing and <br/>Aggregating Local Patches for Scene Recognition -</td></tr><tr><td>0c60eebe10b56dbffe66bb3812793dd514865935</td><td></td></tr><tr><td>660b73b0f39d4e644bf13a1745d6ee74424d4a16</td><td></td></tr><tr><td>66d512342355fb77a4450decc89977efe7e55fa2</td><td>Under review as a conference paper at ICLR 2018 +</td></tr><tr><td>0c60eebe10b56dbffe66bb3812793dd514865935</td><td></td></tr><tr><td>6601a0906e503a6221d2e0f2ca8c3f544a4adab7</td><td>SRTM-2 2/9/06 3:27 PM Page 321 +<br/>Detection of Ancient Settlement Mounds: +<br/>Archaeological Survey Based on the +<br/>SRTM Terrain Model +<br/>B.H. Menze, J.A. Ur, and A.G. Sherratt +</td></tr><tr><td>660b73b0f39d4e644bf13a1745d6ee74424d4a16</td><td></td></tr><tr><td>66d512342355fb77a4450decc89977efe7e55fa2</td><td>Under review as a conference paper at ICLR 2018 <br/>LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- <br/>INATIVE AND MINIMUM INFORMATION LOSS PRIORS <br/>Anonymous authors <br/>Paper under double-blind review </td></tr><tr><td>6643a7feebd0479916d94fb9186e403a4e5f7cbf</td><td>Chapter 8 <br/>3D Face Recognition +</td></tr><tr><td>661ca4bbb49bb496f56311e9d4263dfac8eb96e9</td><td>Datasheets for Datasets +</td></tr><tr><td>66d087f3dd2e19ffe340c26ef17efe0062a59290</td><td>Dog Breed Identification +<br/>Brian Mittl +<br/>Vijay Singh </td></tr><tr><td>66a2c229ac82e38f1b7c77a786d8cf0d7e369598</td><td>Proceedings of the 2016 Industrial and Systems Engineering Research Conference <br/>H. Yang, Z. Kong, and MD Sarder, eds. <br/>A Probabilistic Adaptive Search System <br/>for Exploring the Face Space <br/>Escuela Superior Politecnica del Litoral (ESPOL) <br/>Guayaquil-Ecuador -</td></tr><tr><td>66886997988358847615375ba7d6e9eb0f1bb27f</td><td></td></tr><tr><td>66a9935e958a779a3a2267c85ecb69fbbb75b8dc</td><td>FAST AND ROBUST FIXED-RANK MATRIX RECOVERY +</td></tr><tr><td>66886997988358847615375ba7d6e9eb0f1bb27f</td><td></td></tr><tr><td>66837add89caffd9c91430820f49adb5d3f40930</td><td></td></tr><tr><td>66a9935e958a779a3a2267c85ecb69fbbb75b8dc</td><td>FAST AND ROBUST FIXED-RANK MATRIX RECOVERY <br/>Fast and Robust Fixed-Rank Matrix <br/>Recovery <br/>Antonio Lopez @@ -378,7 +425,9 @@ <br/>sive review of both approaches is given in [5]. </td></tr><tr><td>3edb0fa2d6b0f1984e8e2c523c558cb026b2a983</td><td>Automatic Age Estimation Based on <br/>Facial Aging Patterns -</td></tr><tr><td>3ee7a8107a805370b296a53e355d111118e96b7c</td><td></td></tr><tr><td>3ea8a6dc79d79319f7ad90d663558c664cf298d4</td><td></td></tr><tr><td>3e4f84ce00027723bdfdb21156c9003168bc1c80</td><td>1979 +</td></tr><tr><td>3ee7a8107a805370b296a53e355d111118e96b7c</td><td></td></tr><tr><td>3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b</td><td>Deep Value Networks Learn to +<br/>Evaluate and Iteratively Refine Structured Outputs +</td></tr><tr><td>3ea8a6dc79d79319f7ad90d663558c664cf298d4</td><td></td></tr><tr><td>3e4f84ce00027723bdfdb21156c9003168bc1c80</td><td>1979 <br/>© EURASIP, 2011 - ISSN 2076-1465 <br/>19th European Signal Processing Conference (EUSIPCO 2011) <br/>INTRODUCTION @@ -419,7 +468,7 @@ <br/>K.U.Leuven, Belgium <br/>Dept. of Computer Science <br/>K.U.Leuven, Belgium -</td></tr><tr><td>50d15cb17144344bb1879c0a5de7207471b9ff74</td><td>Divide, Share, and Conquer: Multi-task +</td></tr><tr><td>50a0930cb8cc353e15a5cb4d2f41b365675b5ebf</td><td></td></tr><tr><td>50d15cb17144344bb1879c0a5de7207471b9ff74</td><td>Divide, Share, and Conquer: Multi-task <br/>Attribute Learning with Selective Sharing </td></tr><tr><td>5028c0decfc8dd623c50b102424b93a8e9f2e390</td><td>Published as a conference paper at ICLR 2017 <br/>REVISITING CLASSIFIER TWO-SAMPLE TESTS @@ -433,7 +482,9 @@ <br/>Part and Attribute Discovery from Relative Annotations <br/>Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014 <br/>© Springer Science+Business Media New York 2014 -</td></tr><tr><td>68a3f12382003bc714c51c85fb6d0557dcb15467</td><td></td></tr><tr><td>68d4056765c27fbcac233794857b7f5b8a6a82bf</td><td>Example-Based Face Shape Recovery Using the +</td></tr><tr><td>68d2afd8c5c1c3a9bbda3dd209184e368e4376b9</td><td>Representation Learning by Rotating Your Faces +</td></tr><tr><td>68a3f12382003bc714c51c85fb6d0557dcb15467</td><td></td></tr><tr><td>68d08ed9470d973a54ef7806318d8894d87ba610</td><td>Drive Video Analysis for the Detection of Traffic Near-Miss Incidents +</td></tr><tr><td>68caf5d8ef325d7ea669f3fb76eac58e0170fff0</td><td></td></tr><tr><td>68d4056765c27fbcac233794857b7f5b8a6a82bf</td><td>Example-Based Face Shape Recovery Using the <br/>Zenith Angle of the Surface Normal <br/>Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3, <br/>and Luz A. Torres-M´endez1 @@ -441,6 +492,9 @@ <br/>2 Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000, <br/>3 ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico <br/>Veracruz, M´exico +</td></tr><tr><td>684f5166d8147b59d9e0938d627beff8c9d208dd</td><td>IEEE TRANS. NNLS, JUNE 2017 +<br/>Discriminative Block-Diagonal Representation +<br/>Learning for Image Recognition </td></tr><tr><td>68cf263a17862e4dd3547f7ecc863b2dc53320d8</td><td></td></tr><tr><td>68e9c837431f2ba59741b55004df60235e50994d</td><td>Detecting Faces Using Region-based Fully <br/>Convolutional Networks <br/>Tencent AI Lab, China @@ -833,7 +887,12 @@ <br/>[8 of 21] T. Boult and W. Scheirer. Long range facial image acquisition and quality. In M. Tisarelli, S. Li, and R. Chellappa. <br/>[15 of 21] N. Pinto, J. J. DiCarlo, and D. D. Cox. How far can you get with a modern face recognition test set using only simple features? In IEEE CVPR, 2009. <br/>[18 of 21] T. Sim, S. Baker, and M. Bsat. The CMU Pose, Illumination and Expression (PIE) Database. In Proceedings of the IEEE F&G, May 2002. -</td></tr><tr><td>5721216f2163d026e90d7cd9942aeb4bebc92334</td><td></td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td></td></tr><tr><td>57d37ad025b5796457eee7392d2038910988655a</td><td>GEERATVEEETATF +</td></tr><tr><td>5721216f2163d026e90d7cd9942aeb4bebc92334</td><td></td></tr><tr><td>5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725</td><td></td></tr><tr><td>574ad7ef015995efb7338829a021776bf9daaa08</td><td>AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks +<br/>for Human Action Recognition in Videos +<br/>1IIT Kanpur‡ +<br/>2SRI International +<br/>3UCSD +</td></tr><tr><td>57d37ad025b5796457eee7392d2038910988655a</td><td>GEERATVEEETATF <br/> <br/>by <br/>DagaEha @@ -942,9 +1001,17 @@ <br/>Universit´e catholique de Louvain, B-1348 Belgium, <br/>2 IDIAP, CH-1920 Martigny, <br/>Switzerland +</td></tr><tr><td>6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb</td><td>Low Resolution Face Recognition Using a +<br/>Two-Branch Deep Convolutional Neural Network +<br/>Architecture </td></tr><tr><td>6f288a12033fa895fb0e9ec3219f3115904f24de</td><td>Learning Expressionlets via Universal Manifold <br/>Model for Dynamic Facial Expression Recognition -</td></tr><tr><td>6f2dc51d607f491dbe6338711c073620c85351ac</td><td></td></tr><tr><td>6f75697a86d23d12a14be5466a41e5a7ffb79fad</td><td></td></tr><tr><td>6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81</td><td>Structured Output SVM Prediction of Apparent Age, +</td></tr><tr><td>6f2dc51d607f491dbe6338711c073620c85351ac</td><td></td></tr><tr><td>6f75697a86d23d12a14be5466a41e5a7ffb79fad</td><td></td></tr><tr><td>6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd</td><td>Pages 51.1-51.12 +<br/>DOI: https://dx.doi.org/10.5244/C.30.51 +</td></tr><tr><td>6f7a8b3e8f212d80f0fb18860b2495be4c363eac</td><td>Creating Capsule Wardrobes from Fashion Images +<br/>UT-Austin +<br/>UT-Austin +</td></tr><tr><td>6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81</td><td>Structured Output SVM Prediction of Apparent Age, <br/>Gender and Smile From Deep Features <br/>Michal Uˇriˇc´aˇr <br/>CMP, Dept. of Cybernetics @@ -975,12 +1042,20 @@ </td></tr><tr><td>6fe2efbcb860767f6bb271edbb48640adbd806c3</td><td>SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS <br/>Soft Biometrics; Human Identification using <br/>Comparative Descriptions +</td></tr><tr><td>6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae</td><td>DAISEE: Dataset for Affective States in +<br/>E-Learning Environments +<br/>1 Microsoft India R&D Pvt. Ltd. +<br/>2 Department of Computer Science, IIT Hyderabad </td></tr><tr><td>6f5151c7446552fd6a611bf6263f14e729805ec7</td><td>5KHHAO /7 %:0 7 <br/>)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA <br/>FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI <br/>?=IIIAF=H=>EEJO MAECDJEC <br/>/=>H M=LAAJI H FHE?EF= ?FAJI ==OIEI 2+) ! 1 JDEI F=FAH MA -</td></tr><tr><td>03d9ccce3e1b4d42d234dba1856a9e1b28977640</td><td></td></tr><tr><td>03f7041515d8a6dcb9170763d4f6debd50202c2b</td><td>Clustering Millions of Faces by Identity +</td></tr><tr><td>03c56c176ec6377dddb6a96c7b2e95408db65a7a</td><td>A Novel Geometric Framework on Gram Matrix +<br/>Trajectories for Human Behavior Understanding +</td></tr><tr><td>03d9ccce3e1b4d42d234dba1856a9e1b28977640</td><td></td></tr><tr><td>0322e69172f54b95ae6a90eb3af91d3daa5e36ea</td><td>Face Classification using Adjusted Histogram in +<br/>Grayscale +</td></tr><tr><td>03f7041515d8a6dcb9170763d4f6debd50202c2b</td><td>Clustering Millions of Faces by Identity </td></tr><tr><td>038ce930a02d38fb30d15aac654ec95640fe5cb0</td><td>Approximate Structured Output Learning for Constrained Local <br/>Models with Application to Real-time Facial Feature Detection and <br/>Tracking on Low-power Devices @@ -1195,8 +1270,10 @@ <br/>approaches, <br/>1991) <br/>and -</td></tr><tr><td>9bcfadd22b2c84a717c56a2725971b6d49d3a804</td><td>How to Detect a Loss of Attention in a Tutoring System +</td></tr><tr><td>9bc01fa9400c231e41e6a72ec509d76ca797207c</td><td></td></tr><tr><td>9bcfadd22b2c84a717c56a2725971b6d49d3a804</td><td>How to Detect a Loss of Attention in a Tutoring System <br/>using Facial Expressions and Gaze Direction +</td></tr><tr><td>9bac481dc4171aa2d847feac546c9f7299cc5aa0</td><td>Matrix Product State for Higher-Order Tensor +<br/>Compression and Classification </td></tr><tr><td>9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7</td><td>Faical Expression Recognition by Combining <br/>Texture and Geometrical Features </td></tr><tr><td>9ea73660fccc4da51c7bc6eb6eedabcce7b5cead</td><td>Talking Head Detection by Likelihood-Ratio Test† @@ -1209,7 +1286,11 @@ <br/> </td></tr><tr><td>9e0285debd4b0ba7769b389181bd3e0fd7a02af6</td><td>From face images and attributes to attributes <br/>Computer Vision Laboratory, ETH Zurich, Switzerland -</td></tr><tr><td>9e5c2d85a1caed701b68ddf6f239f3ff941bb707</td><td></td></tr><tr><td>04bb3fa0824d255b01e9db4946ead9f856cc0b59</td><td></td></tr><tr><td>04470861408d14cc860f24e73d93b3bb476492d0</td><td></td></tr><tr><td>0447bdb71490c24dd9c865e187824dee5813a676</td><td>Manifold Estimation in View-based Feature +</td></tr><tr><td>9e5c2d85a1caed701b68ddf6f239f3ff941bb707</td><td></td></tr><tr><td>04bb3fa0824d255b01e9db4946ead9f856cc0b59</td><td></td></tr><tr><td>040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Large-scale Bisample Learning on ID vs. Spot Face Recognition +<br/>Received: date / Accepted: date +</td></tr><tr><td>04470861408d14cc860f24e73d93b3bb476492d0</td><td></td></tr><tr><td>0447bdb71490c24dd9c865e187824dee5813a676</td><td>Manifold Estimation in View-based Feature <br/>Space for Face Synthesis Across Pose <br/>Paper 27 </td></tr><tr><td>044ba70e6744e80c6a09fa63ed6822ae241386f2</td><td>TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION @@ -1231,10 +1312,18 @@ </td></tr><tr><td>04250e037dce3a438d8f49a4400566457190f4e2</td><td></td></tr><tr><td>0431e8a01bae556c0d8b2b431e334f7395dd803a</td><td>Learning Localized Perceptual Similarity Metrics for Interactive Categorization <br/>Google Inc. <br/>google.com +</td></tr><tr><td>04b4c779b43b830220bf938223f685d1057368e9</td><td>Video retrieval based on deep convolutional +<br/>neural network +<br/>Yajiao Dong +<br/>School of Information and Electronics, +<br/>Beijing Institution of Technology, Beijing, China +<br/>Jianguo Li +<br/>School of Information and Electronics, +<br/>Beijing Institution of Technology, Beijing, China </td></tr><tr><td>04616814f1aabe3799f8ab67101fbaf9fd115ae4</td><td><b>UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese</b></td></tr><tr><td>6a3a07deadcaaab42a0689fbe5879b5dfc3ede52</td><td>Learning to Estimate Pose by Watching Videos <br/>Department of Computer Science and Engineering <br/>IIT Kanpur -</td></tr><tr><td>6a184f111d26787703f05ce1507eef5705fdda83</td><td></td></tr><tr><td>6a16b91b2db0a3164f62bfd956530a4206b23fea</td><td>A Method for Real-Time Eye Blink Detection and Its Application +</td></tr><tr><td>6ad107c08ac018bfc6ab31ec92c8a4b234f67d49</td><td></td></tr><tr><td>6a184f111d26787703f05ce1507eef5705fdda83</td><td></td></tr><tr><td>6a16b91b2db0a3164f62bfd956530a4206b23fea</td><td>A Method for Real-Time Eye Blink Detection and Its Application <br/>Mahidol Wittayanusorn School <br/>Puttamonton, Nakornpatom 73170, Thailand </td></tr><tr><td>6a806978ca5cd593d0ccd8b3711b6ef2a163d810</td><td>Facial feature tracking for Emotional Dynamic @@ -1353,7 +1442,9 @@ </td></tr><tr><td>32df63d395b5462a8a4a3c3574ae7916b0cd4d1d</td><td>978-1-4577-0539-7/11/$26.00 ©2011 IEEE <br/>1489 <br/>ICASSP 2011 -</td></tr><tr><td>35308a3fd49d4f33bdbd35fefee39e39fe6b30b7</td><td></td></tr><tr><td>3538d2b5f7ab393387ce138611ffa325b6400774</td><td>A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION +</td></tr><tr><td>35308a3fd49d4f33bdbd35fefee39e39fe6b30b7</td><td></td></tr><tr><td>352d61eb66b053ae5689bd194840fd5d33f0e9c0</td><td>Analysis Dictionary Learning based +<br/>Classification: Structure for Robustness +</td></tr><tr><td>3538d2b5f7ab393387ce138611ffa325b6400774</td><td>A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION <br/>ALGORITHMS <br/>A. U. Batur <br/>B. E. Flinchbaugh @@ -1372,6 +1463,11 @@ <br/>Unconstrained Still/Video-Based Face Verification with Deep <br/>Convolutional Neural Networks <br/>Received: date / Accepted: date +</td></tr><tr><td>35b1c1f2851e9ac4381ef41b4d980f398f1aad68</td><td>Geometry Guided Convolutional Neural Networks for +<br/>Self-Supervised Video Representation Learning +</td></tr><tr><td>351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd</td><td>ActionSnapping: Motion-based Video +<br/>Synchronization +<br/>Disney Research </td></tr><tr><td>35e4b6c20756cd6388a3c0012b58acee14ffa604</td><td>Gender Classification in Large Databases <br/>E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63) <br/>Universidad de Las Palmas de Gran Canaria @@ -1399,6 +1495,8 @@ </td></tr><tr><td>353a89c277cca3e3e4e8c6a199ae3442cdad59b5</td><td></td></tr><tr><td>352110778d2cc2e7110f0bf773398812fd905eb1</td><td>TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014 <br/>Matrix Completion for Weakly-supervised <br/>Multi-label Image Classification +</td></tr><tr><td>6964af90cf8ac336a2a55800d9c510eccc7ba8e1</td><td>Temporal Relational Reasoning in Videos +<br/>MIT CSAIL </td></tr><tr><td>697b0b9630213ca08a1ae1d459fabc13325bdcbb</td><td></td></tr><tr><td>69d29012d17cdf0a2e59546ccbbe46fa49afcd68</td><td>Subspace clustering of dimensionality-reduced data <br/>ETH Zurich, Switzerland </td></tr><tr><td>69de532d93ad8099f4d4902c4cad28db958adfea</td><td></td></tr><tr><td>69526cdf6abbfc4bcd39616acde544568326d856</td><td>636 @@ -1435,7 +1533,7 @@ <br/>M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae <br/>Department of Electrical Engineering, Universidad de Chile <br/>Advanced Mining Technology Center, Universidad de Chile -</td></tr><tr><td>3c03d95084ccbe7bf44b6d54151625c68f6e74d0</td><td></td></tr><tr><td>3ce2ecf3d6ace8d80303daf67345be6ec33b3a93</td><td></td></tr><tr><td>3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8</td><td>Measuring Gaze Orientation for Human-Robot +</td></tr><tr><td>3c03d95084ccbe7bf44b6d54151625c68f6e74d0</td><td></td></tr><tr><td>3cd7b15f5647e650db66fbe2ce1852e00c05b2e4</td><td></td></tr><tr><td>3ce2ecf3d6ace8d80303daf67345be6ec33b3a93</td><td></td></tr><tr><td>3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8</td><td>Measuring Gaze Orientation for Human-Robot <br/>Interaction <br/>∗ CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France <br/>† Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France @@ -1471,7 +1569,9 @@ <br/>2 Visual features <br/>We use some basic properties of facial features to initialize our algorithm : eyes <br/>are dark and circular, mouth is an horizontal dark line with a specific color,... -</td></tr><tr><td>3cb64217ca2127445270000141cfa2959c84d9e7</td><td></td></tr><tr><td>3cd5da596060819e2b156e8b3a28331ef633036b</td><td></td></tr><tr><td>3c8da376576938160cbed956ece838682fa50e9f</td><td>Chapter 4 +</td></tr><tr><td>3cb64217ca2127445270000141cfa2959c84d9e7</td><td></td></tr><tr><td>3cd5da596060819e2b156e8b3a28331ef633036b</td><td></td></tr><tr><td>3c56acaa819f4e2263638b67cea1ec37a226691d</td><td>Body Joint guided 3D Deep Convolutional +<br/>Descriptors for Action Recognition +</td></tr><tr><td>3c8da376576938160cbed956ece838682fa50e9f</td><td>Chapter 4 <br/>Aiding Face Recognition with <br/>Social Context Association Rule <br/>based Re-Ranking @@ -1517,16 +1617,31 @@ </td></tr><tr><td>566038a3c2867894a08125efe41ef0a40824a090</td><td>978-1-4244-2354-5/09/$25.00 ©2009 IEEE <br/>1945 <br/>ICASSP 2009 +</td></tr><tr><td>56dca23481de9119aa21f9044efd7db09f618704</td><td>Riemannian Dictionary Learning and Sparse +<br/>Coding for Positive Definite Matrices +</td></tr><tr><td>516a27d5dd06622f872f5ef334313350745eadc3</td><td>> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +<br/>1 +<br/>Fine-Grained Facial Expression Analysis Us- +<br/>ing Dimensional Emotion Model +<br/> </td></tr><tr><td>51c3050fb509ca685de3d9ac2e965f0de1fb21cc</td><td>Fantope Regularization in Metric Learning <br/>Marc T. Law <br/>Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France </td></tr><tr><td>51c7c5dfda47647aef2797ac3103cf0e108fdfb4</td><td>CS 395T: Celebrity Look-Alikes ∗ </td></tr><tr><td>519f4eb5fe15a25a46f1a49e2632b12a3b18c94d</td><td>Non-Lambertian Reflectance Modeling and <br/>Shape Recovery of Faces using Tensor Splines -</td></tr><tr><td>51528cdce7a92835657c0a616c0806594de7513b</td><td></td></tr><tr><td>5157dde17a69f12c51186ffc20a0a6c6847f1a29</td><td>Evolutionary Cost-sensitive Extreme Learning +</td></tr><tr><td>51528cdce7a92835657c0a616c0806594de7513b</td><td></td></tr><tr><td>5161e38e4ea716dcfb554ccb88901b3d97778f64</td><td>SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR +<br/>FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON +<br/>School of Computing, KAIST, Republic of Korea +</td></tr><tr><td>51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>A Fast and Accurate System for Face Detection, +<br/>Identification, and Verification +</td></tr><tr><td>5157dde17a69f12c51186ffc20a0a6c6847f1a29</td><td>Evolutionary Cost-sensitive Extreme Learning <br/>Machine <br/>1 -</td></tr><tr><td>51dc127f29d1bb076d97f515dca4cc42dda3d25b</td><td></td></tr><tr><td>3db75962857a602cae65f60f202d311eb4627b41</td><td></td></tr><tr><td>3d36f941d8ec613bb25e80fb8f4c160c1a2848df</td><td>Out-of-sample generalizations for supervised +</td></tr><tr><td>51dc127f29d1bb076d97f515dca4cc42dda3d25b</td><td></td></tr><tr><td>3daafe6389d877fe15d8823cdf5ac15fd919676f</td><td>Human Action Localization +<br/>with Sparse Spatial Supervision +</td></tr><tr><td>3db75962857a602cae65f60f202d311eb4627b41</td><td></td></tr><tr><td>3d36f941d8ec613bb25e80fb8f4c160c1a2848df</td><td>Out-of-sample generalizations for supervised <br/>manifold learning for classification </td></tr><tr><td>3d5a1be4c1595b4805a35414dfb55716e3bf80d8</td><td>Hidden Two-Stream Convolutional Networks for <br/>Action Recognition @@ -1539,7 +1654,7 @@ <br/>V.le delle Scienze, Ed. 6, 90128 Palermo, Italy, <br/>DRAFT <br/>To appear in ICIAP 2015 -</td></tr><tr><td>3dda181be266950ba1280b61eb63ac11777029f9</td><td></td></tr><tr><td>3dd906bc0947e56d2b7bf9530b11351bbdff2358</td><td></td></tr><tr><td>3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a</td><td>1892 +</td></tr><tr><td>3dda181be266950ba1280b61eb63ac11777029f9</td><td></td></tr><tr><td>3d6ee995bc2f3e0f217c053368df659a5d14d5b5</td><td></td></tr><tr><td>3dd906bc0947e56d2b7bf9530b11351bbdff2358</td><td></td></tr><tr><td>3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a</td><td>1892 <br/>Random Multispace Quantization as <br/>an Analytic Mechanism for BioHashing <br/>of Biometric and Random Identity Inputs @@ -1557,6 +1672,15 @@ </td></tr><tr><td>58fa85ed57e661df93ca4cdb27d210afe5d2cdcd</td><td>Cancún Center, Cancún, México, December 4-8, 2016 <br/>978-1-5090-4847-2/16/$31.00 ©2016 IEEE <br/>4118 +</td></tr><tr><td>58bf72750a8f5100e0c01e55fd1b959b31e7dbce</td><td>PyramidBox: A Context-assisted Single Shot +<br/>Face Detector. +<br/>Baidu Inc. +</td></tr><tr><td>58542eeef9317ffab9b155579256d11efb4610f2</td><td>International Journal of Science and Research (IJSR) +<br/>ISSN (Online): 2319-7064 +<br/>Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +<br/>Face Recognition Revisited on Pose, Alignment, +<br/>Color, Illumination and Expression-PyTen +<br/>Computer Science, BIT Noida, India </td></tr><tr><td>58823377757e7dc92f3b70a973be697651089756</td><td>Technical Report <br/>UCAM-CL-TR-861 <br/>ISSN 1476-2986 @@ -1572,7 +1696,14 @@ </td></tr><tr><td>58bb77dff5f6ee0fb5ab7f5079a5e788276184cc</td><td>Facial Expression Recognition with PCA and LBP <br/>Features Extracting from Active Facial Patches <br/> -</td></tr><tr><td>58cb1414095f5eb6a8c6843326a6653403a0ee17</td><td></td></tr><tr><td>677477e6d2ba5b99633aee3d60e77026fb0b9306</td><td></td></tr><tr><td>6742c0a26315d7354ab6b1fa62a5fffaea06da14</td><td>BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE? +</td></tr><tr><td>58cb1414095f5eb6a8c6843326a6653403a0ee17</td><td></td></tr><tr><td>677585ccf8619ec2330b7f2d2b589a37146ffad7</td><td>A flexible model for training action localization +<br/>with varying levels of supervision +</td></tr><tr><td>677477e6d2ba5b99633aee3d60e77026fb0b9306</td><td></td></tr><tr><td>6789bddbabf234f31df992a3356b36a47451efc7</td><td>Unsupervised Generation of Free-Form and +<br/>Parameterized Avatars +</td></tr><tr><td>675b2caee111cb6aa7404b4d6aa371314bf0e647</td><td>AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions +<br/>Carl Vondrick∗ +</td></tr><tr><td>679b72d23a9cfca8a7fe14f1d488363f2139265f</td><td></td></tr><tr><td>67484723e0c2cbeb936b2e863710385bdc7d5368</td><td>Anchor Cascade for Efficient Face Detection +</td></tr><tr><td>6742c0a26315d7354ab6b1fa62a5fffaea06da14</td><td>BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE? <br/>What does 2D geometric information <br/>really tell us about 3D face shape? </td></tr><tr><td>67a50752358d5d287c2b55e7a45cc39be47bf7d0</td><td></td></tr><tr><td>67ba3524e135c1375c74fe53ebb03684754aae56</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE @@ -1580,6 +1711,20 @@ <br/>ICASSP 2017 </td></tr><tr><td>6769cfbd85329e4815bb1332b118b01119975a95</td><td>Tied factor analysis for face recognition across <br/>large pose changes +</td></tr><tr><td>0be43cf4299ce2067a0435798ef4ca2fbd255901</td><td>Title +<br/>A temporal latent topic model for facial expression recognition +<br/>Author(s) +<br/>Shang, L; Chan, KP +<br/>Citation +<br/>The 10th Asian Conference on Computer Vision (ACCV 2010), +<br/>Queenstown, New Zealand, 8-12 November 2010. In Lecture +<br/>Notes in Computer Science, 2010, v. 6495, p. 51-63 +<br/>Issued Date +<br/>2011 +<br/>URL +<br/>http://hdl.handle.net/10722/142604 +<br/>Rights +<br/>Creative Commons: Attribution 3.0 Hong Kong License </td></tr><tr><td>0b2277a0609565c30a8ee3e7e193ce7f79ab48b0</td><td>944 <br/>Cost-Sensitive Semi-Supervised Discriminant <br/>Analysis for Face Recognition @@ -1601,10 +1746,14 @@ <br/>April 13, 2015 </td></tr><tr><td>0b20f75dbb0823766d8c7b04030670ef7147ccdd</td><td>1 <br/>Feature selection using nearest attributes +</td></tr><tr><td>0b5a82f8c0ee3640503ba24ef73e672d93aeebbf</td><td>On Learning 3D Face Morphable Model +<br/>from In-the-wild Images </td></tr><tr><td>0b174d4a67805b8796bfe86cd69a967d357ba9b6</td><td> Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 <br/> Vol. 3(4), 56-62, April (2014) <br/>Res.J.Recent Sci. -</td></tr><tr><td>0ba449e312894bca0d16348f3aef41ca01872383</td><td></td></tr><tr><td>0ba99a709cd34654ac296418a4f41a9543928149</td><td></td></tr><tr><td>0b8c92463f8f5087696681fb62dad003c308ebe2</td><td>On Matching Sketches with Digital Face Images +</td></tr><tr><td>0ba449e312894bca0d16348f3aef41ca01872383</td><td></td></tr><tr><td>0b572a2b7052b15c8599dbb17d59ff4f02838ff7</td><td>Automatic Subspace Learning via Principal +<br/>Coefficients Embedding +</td></tr><tr><td>0ba99a709cd34654ac296418a4f41a9543928149</td><td></td></tr><tr><td>0b8c92463f8f5087696681fb62dad003c308ebe2</td><td>On Matching Sketches with Digital Face Images <br/>in local </td></tr><tr><td>0bc0f9178999e5c2f23a45325fa50300961e0226</td><td>Recognizing facial expressions from videos using Deep <br/>Belief Networks @@ -1621,32 +1770,45 @@ <br/>477 <br/>Learning From Examples in the Small Sample Case: <br/>Face Expression Recognition +</td></tr><tr><td>944faf7f14f1bead911aeec30cc80c861442b610</td><td>Action Tubelet Detector for Spatio-Temporal Action Localization </td></tr><tr><td>9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73</td><td>5967 <br/>A Benchmark and Comparative Study of <br/>Video-Based Face Recognition <br/>on COX Face Database -</td></tr><tr><td>94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81</td><td></td></tr><tr><td>9441253b638373a0027a5b4324b4ee5f0dffd670</td><td>A Novel Scheme for Generating Secure Face +</td></tr><tr><td>94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81</td><td></td></tr><tr><td>94325522c9be8224970f810554611d6a73877c13</td><td></td></tr><tr><td>9441253b638373a0027a5b4324b4ee5f0dffd670</td><td>A Novel Scheme for Generating Secure Face <br/>Templates Using BDA <br/>P.G. Student, Department of Computer Engineering, <br/>Associate Professor, Department of Computer <br/>MCERC, <br/>Nashik (M.S.), India -</td></tr><tr><td>94ac3008bf6be6be6b0f5140a0bea738d4c75579</td><td></td></tr><tr><td>0e8760fc198a7e7c9f4193478c0e0700950a86cd</td><td></td></tr><tr><td>0e50fe28229fea45527000b876eb4068abd6ed8c</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +</td></tr><tr><td>94ac3008bf6be6be6b0f5140a0bea738d4c75579</td><td></td></tr><tr><td>94a11b601af77f0ad46338afd0fa4ccbab909e82</td><td></td></tr><tr><td>0e8760fc198a7e7c9f4193478c0e0700950a86cd</td><td></td></tr><tr><td>0e50fe28229fea45527000b876eb4068abd6ed8c</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>2936 </td></tr><tr><td>0eff410cd6a93d0e37048e236f62e209bc4383d1</td><td>Anchorage Convention District <br/>May 3-8, 2010, Anchorage, Alaska, USA <br/>978-1-4244-5040-4/10/$26.00 ©2010 IEEE <br/>4803 +</td></tr><tr><td>0ee737085af468f264f57f052ea9b9b1f58d7222</td><td>SiGAN: Siamese Generative Adversarial Network +<br/>for Identity-Preserving Face Hallucination </td></tr><tr><td>0ee661a1b6bbfadb5a482ec643573de53a9adf5e</td><td>JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR <br/>On the Use of Discriminative Cohort Score <br/>Normalization for Unconstrained Face Recognition -</td></tr><tr><td>0e3840ea3227851aaf4633133dd3cbf9bbe89e5b</td><td></td></tr><tr><td>0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a</td><td></td></tr><tr><td>0e7c70321462694757511a1776f53d629a1b38f3</td><td>NIST Special Publication 1136 +</td></tr><tr><td>0e3840ea3227851aaf4633133dd3cbf9bbe89e5b</td><td></td></tr><tr><td>0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a</td><td></td></tr><tr><td>0e2ea7af369dbcaeb5e334b02dd9ba5271b10265</td><td></td></tr><tr><td>0e7c70321462694757511a1776f53d629a1b38f3</td><td>NIST Special Publication 1136 <br/>2012 Proceedings of the <br/>Performance Metrics for Intelligent <br/>Systems (PerMI ‘12) Workshop <br/> <br/>http://dx.doi.org/10.6028/NIST.SP.1136 -</td></tr><tr><td>6080f26675e44f692dd722b61905af71c5260af8</td><td></td></tr><tr><td>60d765f2c0a1a674b68bee845f6c02741a49b44e</td><td></td></tr><tr><td>60ce4a9602c27ad17a1366165033fe5e0cf68078</td><td>TECHNICAL NOTE +</td></tr><tr><td>6080f26675e44f692dd722b61905af71c5260af8</td><td></td></tr><tr><td>60d765f2c0a1a674b68bee845f6c02741a49b44e</td><td></td></tr><tr><td>60c24e44fce158c217d25c1bae9f880a8bd19fc3</td><td>Controllable Image-to-Video Translation: +<br/>A Case Study on Facial Expression Generation +<br/>MIT CSAIL +<br/>Wenbing Huang +<br/>Tencent AI Lab +<br/>MIT-Waston Lab +<br/>Tencent AI Lab +<br/>Tencent AI Lab +</td></tr><tr><td>60e2b9b2e0db3089237d0208f57b22a3aac932c1</td><td>Frankenstein: Learning Deep Face Representations +<br/>using Small Data +</td></tr><tr><td>60ce4a9602c27ad17a1366165033fe5e0cf68078</td><td>TECHNICAL NOTE <br/>DIGITAL & MULTIMEDIA SCIENCES <br/>J Forensic Sci, 2015 <br/>doi: 10.1111/1556-4029.12800 @@ -1674,13 +1836,20 @@ </td></tr><tr><td>60b3601d70f5cdcfef9934b24bcb3cc4dde663e7</td><td>SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE <br/>Binary Gradient Correlation Patterns <br/>for Robust Face Recognition -</td></tr><tr><td>34a41ec648d082270697b9ee264f0baf4ffb5c8d</td><td></td></tr><tr><td>34b7e826db49a16773e8747bc8dfa48e344e425d</td><td></td></tr><tr><td>341ed69a6e5d7a89ff897c72c1456f50cfb23c96</td><td>DAGER: Deep Age, Gender and Emotion +</td></tr><tr><td>34a41ec648d082270697b9ee264f0baf4ffb5c8d</td><td></td></tr><tr><td>341002fac5ae6c193b78018a164d3c7295a495e4</td><td>von Mises-Fisher Mixture Model-based Deep +<br/>learning: Application to Face Verification +</td></tr><tr><td>34ec83c8ff214128e7a4a4763059eebac59268a6</td><td>Action Anticipation By Predicting Future +<br/>Dynamic Images +<br/>Australian Centre for Robotic Vision, ANU, Canberra, Australia +</td></tr><tr><td>34b7e826db49a16773e8747bc8dfa48e344e425d</td><td></td></tr><tr><td>341ed69a6e5d7a89ff897c72c1456f50cfb23c96</td><td>DAGER: Deep Age, Gender and Emotion <br/>Recognition Using Convolutional Neural <br/>Networks <br/>Computer Vision Lab, Sighthound Inc., Winter Park, FL </td></tr><tr><td>340d1a9852747b03061e5358a8d12055136599b0</td><td>Audio-Visual Recognition System Insusceptible <br/>to Illumination Variation over Internet Protocol <br/> +</td></tr><tr><td>5a3da29970d0c3c75ef4cb372b336fc8b10381d7</td><td>CNN-based Real-time Dense Face Reconstruction +<br/>with Inverse-rendered Photo-realistic Face Images </td></tr><tr><td>5a34a9bb264a2594c02b5f46b038aa1ec3389072</td><td>Label-Embedding for Image Classification </td></tr><tr><td>5a4c6246758c522f68e75491eb65eafda375b701</td><td>978-1-4244-4296-6/10/$25.00 ©2010 IEEE <br/>1118 @@ -1688,13 +1857,28 @@ </td></tr><tr><td>5aad5e7390211267f3511ffa75c69febe3b84cc7</td><td>Driver Gaze Estimation <br/>Without Using Eye Movement <br/>MIT AgeLab -</td></tr><tr><td>5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372</td><td></td></tr><tr><td>5a7520380d9960ff3b4f5f0fe526a00f63791e99</td><td>The Indian Spontaneous Expression +</td></tr><tr><td>5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372</td><td></td></tr><tr><td>5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605.</td></tr><tr><td>5a7520380d9960ff3b4f5f0fe526a00f63791e99</td><td>The Indian Spontaneous Expression <br/>Database for Emotion Recognition +</td></tr><tr><td>5fff61302adc65d554d5db3722b8a604e62a8377</td><td>Additive Margin Softmax for Face Verification +<br/>UESTC +<br/>Georgia Tech +<br/>UESTC +<br/>UESTC +</td></tr><tr><td>5fa6e4a23da0b39e4b35ac73a15d55cee8608736</td><td>IJCV special issue (Best papers of ECCV 2016) manuscript No. +<br/>(will be inserted by the editor) +<br/>RED-Net: +<br/>A Recurrent Encoder-Decoder Network for Video-based Face Alignment +<br/>Submitted: April 19 2017 / Revised: December 12 2017 </td></tr><tr><td>5f871838710a6b408cf647aacb3b198983719c31</td><td>1716 <br/>Locally Linear Regression for Pose-Invariant <br/>Face Recognition </td></tr><tr><td>5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9</td><td></td></tr><tr><td>5f344a4ef7edfd87c5c4bc531833774c3ed23542</td><td>c -</td></tr><tr><td>5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a</td><td></td></tr><tr><td>5fa932be4d30cad13ea3f3e863572372b915bec8</td><td></td></tr><tr><td>5f5906168235613c81ad2129e2431a0e5ef2b6e4</td><td>Noname manuscript No. +</td></tr><tr><td>5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a</td><td></td></tr><tr><td>5f27ed82c52339124aa368507d66b71d96862cb7</td><td>Semi-supervised Learning of Classifiers: Theory, Algorithms +<br/>and Their Application to Human-Computer Interaction +<br/>This work has been partially funded by NSF Grant IIS 00-85980. +<br/>DRAFT +</td></tr><tr><td>5fa932be4d30cad13ea3f3e863572372b915bec8</td><td></td></tr><tr><td>5f5906168235613c81ad2129e2431a0e5ef2b6e4</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>A Unified Framework for Compositional Fitting of <br/>Active Appearance Models @@ -1731,7 +1915,9 @@ <br/>A Face and Palmprint Recognition Approach Based <br/>on Discriminant DCT Feature Extraction </td></tr><tr><td>339937141ffb547af8e746718fbf2365cc1570c8</td><td>Facial Emotion Recognition in Real Time -</td></tr><tr><td>33ae696546eed070717192d393f75a1583cd8e2c</td><td></td></tr><tr><td>334d6c71b6bce8dfbd376c4203004bd4464c2099</td><td>BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN +</td></tr><tr><td>33aa980544a9d627f305540059828597354b076c</td><td></td></tr><tr><td>33ae696546eed070717192d393f75a1583cd8e2c</td><td></td></tr><tr><td>3352426a67eabe3516812cb66a77aeb8b4df4d1b</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015 +<br/>Joint Multi-view Face Alignment in the Wild +</td></tr><tr><td>334d6c71b6bce8dfbd376c4203004bd4464c2099</td><td>BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN <br/>COMPUTER VISION </td></tr><tr><td>33e20449aa40488c6d4b430a48edf5c4b43afdab</td><td>TRANSACTIONS ON AFFECTIVE COMPUTING <br/>The Faces of Engagement: Automatic @@ -1806,7 +1992,7 @@ </td></tr><tr><td>05f4d907ee2102d4c63a3dc337db7244c570d067</td><td></td></tr><tr><td>05a7be10fa9af8fb33ae2b5b72d108415519a698</td><td>Multilayer and Multimodal Fusion of Deep Neural Networks <br/>for Video Classification <br/>NVIDIA -</td></tr><tr><td>0580edbd7865414c62a36da9504d1169dea78d6f</td><td>Baseline CNN structure analysis for facial expression recognition +</td></tr><tr><td>050a149051a5d268fcc5539e8b654c2240070c82</td><td>MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE</td></tr><tr><td>0580edbd7865414c62a36da9504d1169dea78d6f</td><td>Baseline CNN structure analysis for facial expression recognition </td></tr><tr><td>05e96d76ed4a044d8e54ef44dac004f796572f1a</td><td></td></tr><tr><td>9d839dfc9b6a274e7c193039dfa7166d3c07040b</td><td>Augmented Faces <br/>1ETH Z¨urich <br/>2Kooaba AG @@ -1818,7 +2004,35 @@ <br/>video <br/>(Eigen <br/>passport-verification, -</td></tr><tr><td>9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1</td><td></td></tr><tr><td>02601d184d79742c7cd0c0ed80e846d95def052e</td><td>Graphical Representation for Heterogeneous +</td></tr><tr><td>9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1</td><td></td></tr><tr><td>9ca7899338129f4ba6744f801e722d53a44e4622</td><td>Deep Neural Networks Regularization for Structured +<br/>Output Prediction +<br/>Soufiane Belharbi∗ +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>INSA Rouen, LITIS +<br/>76000 Rouen, France +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +<br/>Normandie Univ, UNIROUEN, UNIHAVRE, +</td></tr><tr><td>9c1664f69d0d832e05759e8f2f001774fad354d6</td><td>Action representations in robotics: A +<br/>taxonomy and systematic classification +<br/>Journal Title +<br/>XX(X):1–32 +<br/>c(cid:13)The Author(s) 2016 +<br/>Reprints and permission: +<br/>sagepub.co.uk/journalsPermissions.nav +<br/>DOI: 10.1177/ToBeAssigned +<br/>www.sagepub.com/ +</td></tr><tr><td>9c065dfb26ce280610a492c887b7f6beccf27319</td><td>Learning from Video and Text via Large-Scale Discriminative Clustering +<br/>1 ´Ecole Normale Sup´erieure +<br/>2Inria +<br/>3CIIRC +</td></tr><tr><td>02601d184d79742c7cd0c0ed80e846d95def052e</td><td>Graphical Representation for Heterogeneous <br/>Face Recognition </td></tr><tr><td>02cc96ad997102b7c55e177ac876db3b91b4e72c</td><td>MuseumVisitors: a dataset for pedestrian and group detection, gaze estimation <br/>and behavior understanding @@ -1944,6 +2158,10 @@ <br/>ASL4GUP 2017 <br/>Held in conjunction with IEEE FG 2017, in May 30, 2017, <br/>Washington DC, USA +</td></tr><tr><td>a3d8b5622c4b9af1f753aade57e4774730787a00</td><td>Pose-Aware Person Recognition +<br/>Anoop Namboodiri (cid:63) +<br/>(cid:63) CVIT, IIIT Hyderabad, India +<br/>† Facebook AI Research </td></tr><tr><td>a3017bb14a507abcf8446b56243cfddd6cdb542b</td><td>Face Localization and Recognition in Varied <br/>Expressions and Illumination <br/>Hui-Yu Huang, Shih-Hang Hsu @@ -1956,11 +2174,16 @@ <br/>Face++, Megvii Inc. <br/>Face++, Megvii Inc. <br/>Face++, Megvii Inc. +</td></tr><tr><td>a3f69a073dcfb6da8038607a9f14eb28b5dab2db</td><td>Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +<br/>1184 +</td></tr><tr><td>a3f78cc944ac189632f25925ba807a0e0678c4d5</td><td>Action Recognition in Realistic Sports Videos </td></tr><tr><td>a33f20773b46283ea72412f9b4473a8f8ad751ae</td><td></td></tr><tr><td>a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7</td><td>Multiple Local Curvature Gabor Binary <br/>Patterns for Facial Action Recognition <br/>Signal Processing Laboratory (LTS5), <br/>´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland -</td></tr><tr><td>a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9</td><td>Recognizing Violence in Movies +</td></tr><tr><td>a32c5138c6a0b3d3aff69bcab1015d8b043c91fb</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018 +<br/>Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406.</td></tr><tr><td>a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9</td><td>Recognizing Violence in Movies <br/>CIS400/401 Project Final Report <br/>Univ. of Pennsylvania <br/>Philadelphia, PA @@ -2022,13 +2245,16 @@ <br/>IEEE SIGNAL PROCESSING MAGAZINE <br/>1053-5888/04/$20.00©2004IEEE <br/>MARCH 2004 +</td></tr><tr><td>b558be7e182809f5404ea0fcf8a1d1d9498dc01a</td><td>Bottom-up and top-down reasoning with convolutional latent-variable models +<br/>UC Irvine +<br/>UC Irvine </td></tr><tr><td>b5fc4f9ad751c3784eaf740880a1db14843a85ba</td><td>SIViP (2007) 1:225–237 <br/>DOI 10.1007/s11760-007-0016-5 <br/>ORIGINAL PAPER <br/>Significance of image representation for face verification <br/>Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007 <br/>© Springer-Verlag London Limited 2007 -</td></tr><tr><td>b5160e95192340c848370f5092602cad8a4050cd</td><td>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR +</td></tr><tr><td>b562def2624f59f7d3824e43ecffc990ad780898</td><td></td></tr><tr><td>b5160e95192340c848370f5092602cad8a4050cd</td><td>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR <br/>Video Classification With CNNs: Using The Codec <br/>As A Spatio-Temporal Activity Sensor </td></tr><tr><td>b52c0faba5e1dc578a3c32a7f5cfb6fb87be06ad</td><td>Journal of Applied Research and @@ -2056,7 +2282,7 @@ </td></tr><tr><td>b5857b5bd6cb72508a166304f909ddc94afe53e3</td><td>SSIG and IRISA at Multimodal Person Discovery <br/>1Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil <br/>2IRISA & Inria Rennes , CNRS, Rennes, France -</td></tr><tr><td>b51e3d59d1bcbc023f39cec233f38510819a2cf9</td><td>CBMM Memo No. 003 +</td></tr><tr><td>b59f441234d2d8f1765a20715e227376c7251cd7</td><td></td></tr><tr><td>b51e3d59d1bcbc023f39cec233f38510819a2cf9</td><td>CBMM Memo No. 003 <br/>March 27, 2014 <br/>Can a biologically-plausible hierarchy effectively <br/>replace face detection, alignment, and @@ -2068,6 +2294,10 @@ <br/>using Partial Observations <br/>Snap Research <br/>Microsoft Research +</td></tr><tr><td>b2b535118c5c4dfcc96f547274cdc05dde629976</td><td>JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +<br/>Automatic Recognition of Facial Displays of +<br/>Unfelt Emotions +<br/>Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, </td></tr><tr><td>b235b4ccd01a204b95f7408bed7a10e080623d2e</td><td>Regularizing Flat Latent Variables with Hierarchical Structures </td></tr><tr><td>b2c25af8a8e191c000f6a55d5f85cf60794c2709</td><td>Noname manuscript No. <br/>(will be inserted by the editor) @@ -2075,15 +2305,29 @@ <br/>Kernel Optimization Through Graph Embedding <br/>N. Vretos, A. Tefas and I. Pitas <br/>the date of receipt and acceptance should be inserted later +</td></tr><tr><td>d904f945c1506e7b51b19c99c632ef13f340ef4c</td><td>A scalable 3D HOG model for fast object detection and viewpoint estimation +<br/>KU Leuven, ESAT/PSI - iMinds +<br/>Kasteelpark Arenberg 10 B-3001 Leuven, Belgium </td></tr><tr><td>d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>3031 <br/>ICASSP 2017 </td></tr><tr><td>d9739d1b4478b0bf379fe755b3ce5abd8c668f89</td><td></td></tr><tr><td>d9318c7259e394b3060b424eb6feca0f71219179</td><td>406 <br/>Face Matching and Retrieval Using Soft Biometrics -</td></tr><tr><td>d9a1dd762383213741de4c1c1fd9fccf44e6480d</td><td></td></tr><tr><td>ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6</td><td>779 +</td></tr><tr><td>d9a1dd762383213741de4c1c1fd9fccf44e6480d</td><td></td></tr><tr><td>d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c</td><td>Learning Inference Models for Computer Vision +</td></tr><tr><td>aca232de87c4c61537c730ee59a8f7ebf5ecb14f</td><td>EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION +<br/>19.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece +<br/>Athens Information Technology +<br/>Keywords: +<br/>Human-Machine Interfaces, Computer Vision, Face Recognition. +</td></tr><tr><td>ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6</td><td>779 <br/>Privacy-Protected Facial Biometric Verification <br/>Using Fuzzy Forest Learning -</td></tr><tr><td>aca273a9350b10b6e2ef84f0e3a327255207d0f5</td><td></td></tr><tr><td>ac820d67b313c38b9add05abef8891426edd5afb</td><td></td></tr><tr><td>acb83d68345fe9a6eb9840c6e1ff0e41fa373229</td><td>Kernel Methods in Computer Vision: +</td></tr><tr><td>aca273a9350b10b6e2ef84f0e3a327255207d0f5</td><td></td></tr><tr><td>ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e</td><td></td></tr><tr><td>ac820d67b313c38b9add05abef8891426edd5afb</td><td></td></tr><tr><td>ac26166857e55fd5c64ae7194a169ff4e473eb8b</td><td>Personalized Age Progression with Bi-level +<br/>Aging Dictionary Learning +</td></tr><tr><td>ac8441e30833a8e2a96a57c5e6fede5df81794af</td><td>IEEE TRANSACTIONS ON IMAGE PROCESSING +<br/>Hierarchical Representation Learning for Kinship +<br/>Verification +</td></tr><tr><td>acb83d68345fe9a6eb9840c6e1ff0e41fa373229</td><td>Kernel Methods in Computer Vision: <br/>Object Localization, Clustering, <br/>and Taxonomy Discovery <br/>vorgelegt von @@ -2121,7 +2365,73 @@ <br/>Submitted for the degree of Doctor of Philosophy <br/>Department of Computer Science <br/>20th February 2007 -</td></tr><tr><td>ad6745dd793073f81abd1f3246ba4102046da022</td><td></td></tr><tr><td>bba281fe9c309afe4e5cc7d61d7cff1413b29558</td><td>Social Cognitive and Affective Neuroscience, 2017, 984–992 +</td></tr><tr><td>ad6745dd793073f81abd1f3246ba4102046da022</td><td></td></tr><tr><td>adf62dfa00748381ac21634ae97710bb80fc2922</td><td>ViFaI: A trained video face indexing scheme +<br/>1. Introduction +<br/>With the increasing prominence of inexpensive +<br/>video recording devices (e.g., digital camcorders and +<br/>video recording smartphones), +<br/>the average user’s +<br/>video collection today is increasing rapidly. With this +<br/>development, there arises a natural desire to rapidly +<br/>access a subset of one’s collection of videos. The solu- +<br/>tion to this problem requires an effective video index- +<br/>ing scheme. In particular, we must be able to easily +<br/>process a video to extract such indexes. +<br/>Today, there also exist large sets of labeled (tagged) +<br/>face images. One important example is an individual’s +<br/>Facebook profile. Such a set of of tagged images of +<br/>one’s self, family, friends, and colleagues represents +<br/>an extremely valuable potential training set. +<br/>In this work, we explore how to leverage the afore- +<br/>mentioned training set to solve the video indexing +<br/>problem. +<br/>2. Problem Statement +<br/>Use a labeled (tagged) training set of face images +<br/>to extract relevant indexes from a collection of videos, +<br/>and use these indexes to answer boolean queries of the +<br/>form: “videos with ‘Person 1’ OP1 ‘Person 2’ OP2 ... +<br/>OP(N-1) ‘Person N’ ”, where ‘Person N’ corresponds +<br/>to a training label (tag) and OPN is a boolean operand +<br/>such as AND, OR, NOT, XOR, and so on. +<br/>3. Proposed Scheme +<br/>In this section, we outline our proposed scheme to +<br/>address the problem we postulate in the previous sec- +<br/>tion. We provide further details about the system im- +<br/>plementation in Section 4. +<br/>At a high level, we subdivide the problem into two +<br/>key phases: the first ”off-line” executed once, and the +<br/>second ”on-line” phase instantiated upon each query. +<br/>For the purposes of this work, we define an index as +<br/>follows: <video id, tag, frame #>. +<br/>3.1. The training phase +<br/>We first outline Phase 1 (the training or “off-line” +<br/>phase): +<br/>1. Use the labeled training set plus an additional set +<br/>of ‘other’ faces to compute the Fisher Linear Dis- +<br/>criminant (FLD) [1]. +<br/>2. Project the training data onto the space defined by +<br/>the eigenvectors returned by the FLD, and train +<br/>a classifier (first nearest neighbour, then SVM if +<br/>required) using the training features. +<br/>3. Iterate through each frame of each video, detect- +<br/>ing faces [2], classifying detected results, and add +<br/>an index if the detected face corresponds to one of +<br/>the labeled classes from the previous step. +<br/>3.2. The query phase +<br/>Now, we outline Phase 2 (the query or “on-line” +<br/>phase): +<br/>1. Key the indexes on their video id. +<br/>2. For each video, evaluate the boolean query for the +<br/>set of corresponding indexes. +<br/>3. Keep videos for which the boolean query evalu- +<br/>ates true, and discard those for which it evaluates +<br/>false. +<br/>4. Implementation Details +<br/>We are implementing the project in C++, leverag- +<br/>ing the OpenCV v2.2 framework [4]. In this section, +<br/>we will highlight some of the critical implementation +<br/>details of our proposed system. +</td></tr><tr><td>bba281fe9c309afe4e5cc7d61d7cff1413b29558</td><td>Social Cognitive and Affective Neuroscience, 2017, 984–992 <br/>doi: 10.1093/scan/nsx030 <br/>Advance Access Publication Date: 11 April 2017 <br/>Original article @@ -2142,7 +2452,9 @@ <br/>==OIEI 7IK=O = B=?E= ANFHAIIE ==OIEI IOIJA ?J=EI JDHAA IJ=CAI B=?A =?GKE <br/>9DAJDAH KIEC *=OAIE= ?=IIEAH " & IKFFHJ LA?JH =?DEA 58 H AKH= <br/>HACEI E = IECA ?=IIEAH EI = ? IJH=JACO & 0MALAH J = ?= HACEI -</td></tr><tr><td>bbe1332b4d83986542f5db359aee1fd9b9ba9967</td><td></td></tr><tr><td>bbf01aa347982592b3e4c9e4f433e05d30e71305</td><td></td></tr><tr><td>bbf1396eb826b3826c5a800975047beabde2f0de</td><td></td></tr><tr><td>d73d2c9a6cef79052f9236e825058d5d9cdc1321</td><td>2014-ENST-0040 +</td></tr><tr><td>bbe1332b4d83986542f5db359aee1fd9b9ba9967</td><td></td></tr><tr><td>bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197</td><td>TO APPEAR IN TPAMI +<br/>From Images to 3D Shape Attributes +</td></tr><tr><td>bbf01aa347982592b3e4c9e4f433e05d30e71305</td><td></td></tr><tr><td>bbf1396eb826b3826c5a800975047beabde2f0de</td><td></td></tr><tr><td>bbd1eb87c0686fddb838421050007e934b2d74ab</td><td></td></tr><tr><td>d73d2c9a6cef79052f9236e825058d5d9cdc1321</td><td>2014-ENST-0040 <br/>EDITE - ED 130 <br/>Doctorat ParisTech <br/>T H È S E @@ -2259,11 +2571,36 @@ <br/>Hollywood Human Action: The Hollywood <br/>dataset [3] contains 8 action classes collected from <br/>32 Hollywood movies with a total of 430 videos. +</td></tr><tr><td>d7b6bbb94ac20f5e75893f140ef7e207db7cd483</td><td>Griffith Research Online +<br/>https://research-repository.griffith.edu.au +<br/>Face Recognition across Pose: A +<br/>Review +<br/>Author +<br/>Zhang, Paul, Gao, Yongsheng +<br/>Published +<br/>2009 +<br/>Journal Title +<br/>Pattern Recognition +<br/>DOI +<br/>https://doi.org/10.1016/j.patcog.2009.04.017 +<br/>Copyright Statement +<br/>Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance +<br/>with the copyright policy of the publisher. Please refer to the journal's website for access to the +<br/>definitive, published version. +<br/>Downloaded from +<br/>http://hdl.handle.net/10072/30193 </td></tr><tr><td>d78373de773c2271a10b89466fe1858c3cab677f</td><td></td></tr><tr><td>d03265ea9200a993af857b473c6bf12a095ca178</td><td>Multiple deep convolutional neural <br/>networks averaging for face <br/>alignment <br/>Zhouping Yin -<br/>Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms</td></tr><tr><td>d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0</td><td></td></tr><tr><td>d03baf17dff5177d07d94f05f5791779adf3cd5f</td><td></td></tr><tr><td>d0a21f94de312a0ff31657fd103d6b29db823caa</td><td>Facial Expression Analysis +<br/>Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms</td></tr><tr><td>d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0</td><td></td></tr><tr><td>d03baf17dff5177d07d94f05f5791779adf3cd5f</td><td></td></tr><tr><td>d0144d76b8b926d22411d388e7a26506519372eb</td><td>Improving Regression Performance with Distributional Losses +</td></tr><tr><td>d02e27e724f9b9592901ac1f45830341d37140fe</td><td>DA-GAN: Instance-level Image Translation by Deep Attention Generative +<br/>Adversarial Networks +<br/>The State Universtiy of New York at Buffalo +<br/>The State Universtiy of New York at Buffalo +<br/>Microsoft Research +<br/>Microsoft Research +</td></tr><tr><td>d0a21f94de312a0ff31657fd103d6b29db823caa</td><td>Facial Expression Analysis </td></tr><tr><td>d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea</td><td>Face Recognition with Patterns of Oriented <br/>Edge Magnitudes <br/>1 Vesalis Sarl, Clermont Ferrand, France @@ -2277,8 +2614,35 @@ <br/>B A S I C R E S E A RC H <br/>M E T H O D S A N D <br/>P RO C E D U R E S +</td></tr><tr><td>be48b5dcd10ab834cd68d5b2a24187180e2b408f</td><td>FOR PERSONAL USE ONLY +<br/>Constrained Low-rank Learning Using Least +<br/>Squares Based Regularization +</td></tr><tr><td>be437b53a376085b01ebd0f4c7c6c9e40a4b1a75</td><td>ISSN (Online) 2321 – 2004 +<br/>ISSN (Print) 2321 – 5526 +<br/> INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +<br/> Vol. 4, Issue 5, May 2016 +<br/>IJIREEICE +<br/>Face Recognition and Retrieval Using Cross +<br/>Age Reference Coding +<br/> BE, DSCE, Bangalore1 +<br/>Assistant Professor, DSCE, Bangalore2 +</td></tr><tr><td>bebea83479a8e1988a7da32584e37bfc463d32d4</td><td>Discovery of Latent 3D Keypoints via +<br/>End-to-end Geometric Reasoning +<br/>Google AI </td></tr><tr><td>bef503cdfe38e7940141f70524ee8df4afd4f954</td><td></td></tr><tr><td>beab10d1bdb0c95b2f880a81a747f6dd17caa9c2</td><td>DeepDeblur: Fast one-step blurry face images restoration <br/>Tsinghua Unversity +</td></tr><tr><td>b331ca23aed90394c05f06701f90afd550131fe3</td><td>Zhou et al. EURASIP Journal on Image and Video Processing (2018) 2018:49 +<br/>https://doi.org/10.1186/s13640-018-0287-5 +<br/>EURASIP Journal on Image +<br/>and Video Processing +<br/>R ES EAR CH +<br/>Double regularized matrix factorization for +<br/>image classification and clustering +<br/>Open Access +</td></tr><tr><td>b3cb91a08be4117d6efe57251061b62417867de9</td><td>T. Swearingen and A. Ross. "A label propagation approach for predicting missing biographic labels in +<br/>A Label Propagation Approach for +<br/>Predicting Missing Biographic Labels +<br/>in Face-Based Biometric Records </td></tr><tr><td>b3c60b642a1c64699ed069e3740a0edeabf1922c</td><td>Max-Margin Object Detection </td></tr><tr><td>b3f7c772acc8bc42291e09f7a2b081024a172564</td><td> www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230 ISSN: 2249-6645 <br/>International Journal of Modern Engineering Research (IJMER) @@ -2287,6 +2651,15 @@ <br/><b></b><br/> </td></tr><tr><td>b32631f456397462b3530757f3a73a2ccc362342</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>3069 +</td></tr><tr><td>b3afa234996f44852317af382b98f5f557cab25a</td><td></td></tr><tr><td>df90850f1c153bfab691b985bfe536a5544e438b</td><td>FACE TRACKING ALGORITHM ROBUST TO POSE, +<br/>ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D +<br/>PARAMETRIC MODEL APPROACH +<br/><b></b><br/>via Bramante 65 - 26013, Crema (CR), Italy +<br/>Luigi Arnone, Fabrizio Beverina +<br/>STMicroelectronics - Advanced System Technology Group +<br/>via Olivetti 5 - 20041, Agrate Brianza, Italy +<br/>Keywords: +<br/>Face tracking, expression changes, FACS, illumination changes. </td></tr><tr><td>df8da144a695269e159fb0120bf5355a558f4b02</td><td>International Journal of Computer Applications (0975 – 8887) <br/>International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013) <br/>Face Recognition using PCA and Eigen Face @@ -2295,6 +2668,8 @@ <br/>Sinhgad Academy of Engineering <br/>EXTC Department <br/>Pune, India +</td></tr><tr><td>df577a89830be69c1bfb196e925df3055cafc0ed</td><td>Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions +<br/>UC Berkeley </td></tr><tr><td>dfabe7ef245ca68185f4fcc96a08602ee1afb3f7</td><td></td></tr><tr><td>df51dfe55912d30fc2f792561e9e0c2b43179089</td><td>Face Hallucination using Linear Models of Coupled <br/>Sparse Support <br/>grid and fuse them to suppress the aliasing caused by under- @@ -2309,6 +2684,11 @@ <br/>Learning Deep Sharable and Structural <br/>Detectors for Face Alignment </td></tr><tr><td>dfa80e52b0489bc2585339ad3351626dee1a8395</td><td>Human Action Forecasting by Learning Task Grammars +</td></tr><tr><td>dfecaedeaf618041a5498cd3f0942c15302e75c3</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>A Recursive Framework for Expression Recognition: From +<br/>Web Images to Deep Models to Game Dataset +<br/>Received: date / Accepted: date </td></tr><tr><td>df5fe0c195eea34ddc8d80efedb25f1b9034d07d</td><td>Robust Modified Active Shape Model for Automatic Facial Landmark <br/>Annotation of Frontal Faces </td></tr><tr><td>df674dc0fc813c2a6d539e892bfc74f9a761fbc8</td><td>IOSR Journal of Computer Engineering (IOSR-JCE) @@ -2319,15 +2699,22 @@ <br/> 1.Ms.Dhanashri Shirkey , 2Prof.Dr.S.R.Gupta, <br/>M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera <br/>Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera +</td></tr><tr><td>da4170c862d8ae39861aa193667bfdbdf0ecb363</td><td>Multi-task CNN Model for Attribute Prediction </td></tr><tr><td>da15344a4c10b91d6ee2e9356a48cb3a0eac6a97</td><td></td></tr><tr><td>da5bfddcfe703ca60c930e79d6df302920ab9465</td><td></td></tr><tr><td>dac2103843adc40191e48ee7f35b6d86a02ef019</td><td>854 <br/>Unsupervised Celebrity Face Naming in Web Videos </td></tr><tr><td>dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e</td><td>RECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS <br/>Institut f¨ur Nachrichtentechnik <br/>Universit¨at Karlsruhe (TH), Germany -</td></tr><tr><td>daba8f0717f3f47c272f018d0a466a205eba6395</td><td></td></tr><tr><td>b41374f4f31906cf1a73c7adda6c50a78b4eb498</td><td>This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +</td></tr><tr><td>daba8f0717f3f47c272f018d0a466a205eba6395</td><td></td></tr><tr><td>daefac0610fdeff415c2a3f49b47968d84692e87</td><td>New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +<br/>Proceedings of NAACL-HLT 2018, pages 1481–1491 +<br/>1481 +</td></tr><tr><td>b49affdff167f5d170da18de3efa6fd6a50262a2</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +<br/>(2008)" +</td></tr><tr><td>b41374f4f31906cf1a73c7adda6c50a78b4eb498</td><td>This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. <br/>Iterative Gaussianization: From ICA to <br/>Random Rotations -</td></tr><tr><td>b4d7ca26deb83cec1922a6964c1193e8dd7270e7</td><td></td></tr><tr><td>b40290a694075868e0daef77303f2c4ca1c43269</td><td>第 40 卷 第 4 期 +</td></tr><tr><td>b4d7ca26deb83cec1922a6964c1193e8dd7270e7</td><td></td></tr><tr><td>b4ee64022cc3ccd14c7f9d4935c59b16456067d3</td><td>Unsupervised Cross-Domain Image Generation +</td></tr><tr><td>b40290a694075868e0daef77303f2c4ca1c43269</td><td>第 40 卷 第 4 期 <br/>2014 年 4 月 <br/>自 动 化 学 报 <br/>ACTA AUTOMATICA SINICA @@ -2345,6 +2732,9 @@ <br/>DOI 10.3724/SP.J.1004.2014.00615 <br/>Combining Local and Global Information for Hair Shape Modeling <br/>AI Hai-Zhou1 +</td></tr><tr><td>a2359c0f81a7eb032cff1fe45e3b80007facaa2a</td><td>Towards Structured Analysis of Broadcast Badminton Videos +<br/>C.V.Jawahar +<br/>CVIT, KCIS, IIIT Hyderabad </td></tr><tr><td>a2d9c9ed29bbc2619d5e03320e48b45c15155195</td><td></td></tr><tr><td>a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d</td><td></td></tr><tr><td>a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa</td><td>Intention from Motion </td></tr><tr><td>a50b4d404576695be7cd4194a064f0602806f3c4</td><td>In Proceedings of BMVC, Edimburgh, UK, September 2006 <br/>Efficiently estimating facial expression and @@ -2379,7 +2769,9 @@ <br/>Driver Assistance: Issues, Algorithms, <br/>and On-Road Evaluations <br/>Mohan Manubhai Trivedi, Fellow, IEEE -</td></tr><tr><td>a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be</td><td></td></tr><tr><td>a503eb91c0bce3a83bf6f524545888524b29b166</td><td></td></tr><tr><td>bd9eb65d9f0df3379ef96e5491533326e9dde315</td><td></td></tr><tr><td>bd07d1f68486052b7e4429dccecdb8deab1924db</td><td></td></tr><tr><td>bd8e2d27987be9e13af2aef378754f89ab20ce10</td><td></td></tr><tr><td>bd2d7c7f0145028e85c102fe52655c2b6c26aeb5</td><td>Attribute-based People Search: Lessons Learnt from a +</td></tr><tr><td>a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be</td><td></td></tr><tr><td>a503eb91c0bce3a83bf6f524545888524b29b166</td><td></td></tr><tr><td>a5a44a32a91474f00a3cda671a802e87c899fbb4</td><td>Moments in Time Dataset: one million +<br/>videos for event understanding +</td></tr><tr><td>bd9eb65d9f0df3379ef96e5491533326e9dde315</td><td></td></tr><tr><td>bd07d1f68486052b7e4429dccecdb8deab1924db</td><td></td></tr><tr><td>bd8e2d27987be9e13af2aef378754f89ab20ce10</td><td></td></tr><tr><td>bd2d7c7f0145028e85c102fe52655c2b6c26aeb5</td><td>Attribute-based People Search: Lessons Learnt from a <br/>Practical Surveillance System <br/>Rogerio Feris <br/>IBM Watson @@ -2389,20 +2781,91 @@ <br/>Lisa Brown <br/>IBM Watson <br/>IBM Watson +</td></tr><tr><td>bdbba95e5abc543981fb557f21e3e6551a563b45</td><td>International Journal of Computational Intelligence and Applications +<br/>Vol. 17, No. 2 (2018) 1850008 (15 pages) +<br/>#.c The Author(s) +<br/>DOI: 10.1142/S1469026818500086 +<br/>Speeding up the Hyperparameter Optimization of Deep +<br/>Convolutional Neural Networks +<br/>Knowledge Technology, Department of Informatics +<br/>Universit€at Hamburg +<br/>Vogt-K€olln-Str. 30, Hamburg 22527, Germany +<br/>Received 15 August 2017 +<br/>Accepted 23 March 2018 +<br/>Published 18 June 2018 +<br/>Most learning algorithms require the practitioner to manually set the values of many hyper- +<br/>parameters before the learning process can begin. However, with modern algorithms, the +<br/>evaluation of a given hyperparameter setting can take a considerable amount of time and the +<br/>search space is often very high-dimensional. We suggest using a lower-dimensional represen- +<br/>tation of the original data to quickly identify promising areas in the hyperparameter space. This +<br/>information can then be used to initialize the optimization algorithm for the original, higher- +<br/>dimensional data. We compare this approach with the standard procedure of optimizing the +<br/>hyperparameters only on the original input. +<br/>We perform experiments with various state-of-the-art hyperparameter optimization algo- +<br/>rithms such as random search, the tree of parzen estimators (TPEs), sequential model-based +<br/>algorithm con¯guration (SMAC), and a genetic algorithm (GA). Our experiments indicate that +<br/>it is possible to speed up the optimization process by using lower-dimensional data repre- +<br/>sentations at the beginning, while increasing the dimensionality of the input later in the opti- +<br/>mization process. This is independent of the underlying optimization procedure, making the +<br/>approach promising for many existing hyperparameter optimization algorithms. +<br/>Keywords: Hyperparameter optimization; hyperparameter importance; convolutional neural +<br/>networks; genetic algorithm; Bayesian optimization. +<br/>1. Introduction +<br/>The performance of many contemporary machine learning algorithms depends cru- +<br/>cially on the speci¯c initialization of hyperparameters such as the general architec- +<br/>ture, the learning rate, regularization parameters, and many others.1,2 Indeed, +<br/>This is an Open Access article published by World Scienti¯c Publishing Company. It is distributed under +<br/>the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is +<br/>permitted, provided the original work is properly cited. +<br/>1850008-1 +<br/>Int. J. Comp. Intel. Appl. 2018.17. Downloaded from www.worldscientific.comby WSPC on 07/18/18. Re-use and distribution is strictly not permitted, except for Open Access articles.</td></tr><tr><td>d1dfdc107fa5f2c4820570e369cda10ab1661b87</td><td>Super SloMo: High Quality Estimation of Multiple Intermediate Frames +<br/>for Video Interpolation +<br/>Erik Learned-Miller1 +<br/>1UMass Amherst +<br/>2NVIDIA 3UC Merced +</td></tr><tr><td>d1a43737ca8be02d65684cf64ab2331f66947207</td><td>IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3) +<br/>Kevin O’Connor z </td></tr><tr><td>d1082eff91e8009bf2ce933ac87649c686205195</td><td>(will be inserted by the editor) <br/>Pruning of Error Correcting Output Codes by <br/>Optimization of Accuracy-Diversity Trade off <br/>S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry <br/>Windeatt · Raymond Smith <br/>Received: date / Accepted: date -</td></tr><tr><td>d6102a7ddb19a185019fd2112d2f29d9258f6dec</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +</td></tr><tr><td>d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0</td><td></td></tr><tr><td>d6102a7ddb19a185019fd2112d2f29d9258f6dec</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>3721 </td></tr><tr><td>d6bfa9026a563ca109d088bdb0252ccf33b76bc6</td><td>Unsupervised Temporal Segmentation of Facial Behaviour <br/>Department of Computer Science and Engineering, IIT Kanpur -</td></tr><tr><td>d6fb606e538763282e3942a5fb45c696ba38aee6</td><td></td></tr><tr><td>bcc172a1051be261afacdd5313619881cbe0f676</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE +</td></tr><tr><td>d6fb606e538763282e3942a5fb45c696ba38aee6</td><td></td></tr><tr><td>bc9003ad368cb79d8a8ac2ad025718da5ea36bc4</td><td>Technische Universit¨at M¨unchen +<br/>Bildverstehen und Intelligente Autonome Systeme +<br/>Facial Expression Recognition With A +<br/>Three-Dimensional Face Model +<br/>Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Informatik der Technischen Uni- +<br/>versit¨at M¨unchen zur Erlangung des akademischen Grades eines +<br/>Doktors der Naturwissenschaften +<br/>genehmigten Dissertation. +<br/>Vorsitzender: +<br/>Univ.-Prof. Dr. Johann Schlichter +<br/>Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. Bernd Radig (i.R.) +<br/>2. Univ.-Prof. Gudrun J. Klinker, Ph.D. +<br/>Die Dissertation wurde am 04.07.2011 bei der Technischen Universit¨at M¨unchen +<br/>eingereicht und durch die Fakult¨at f¨ur Informatik am 02.12.2011 angenommen. +</td></tr><tr><td>bcc346f4a287d96d124e1163e4447bfc47073cd8</td><td></td></tr><tr><td>bcc172a1051be261afacdd5313619881cbe0f676</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>2197 <br/>ICASSP 2017 -</td></tr><tr><td>bcfeac1e5c31d83f1ed92a0783501244dde5a471</td><td></td></tr><tr><td>bc2852fa0a002e683aad3fb0db5523d1190d0ca5</td><td></td></tr><tr><td>bcb99d5150d792001a7d33031a3bd1b77bea706b</td><td></td></tr><tr><td>bcac3a870501c5510df80c2a5631f371f2f6f74a</td><td>CVPR +</td></tr><tr><td>bcfeac1e5c31d83f1ed92a0783501244dde5a471</td><td></td></tr><tr><td>bc2852fa0a002e683aad3fb0db5523d1190d0ca5</td><td></td></tr><tr><td>bcb99d5150d792001a7d33031a3bd1b77bea706b</td><td></td></tr><tr><td>bc811a66855aae130ca78cd0016fd820db1603ec</td><td>Towards three-dimensional face recognition in the real +<br/>To cite this version: +<br/>HAL Id: tel-00998798 +<br/>https://tel.archives-ouvertes.fr/tel-00998798 +<br/>Submitted on 2 Jun 2014 +<br/>archive for the deposit and dissemination of sci- +<br/>entific research documents, whether they are pub- +<br/>teaching and research institutions in France or +<br/>destin´ee au d´epˆot et `a la diffusion de documents +<br/>recherche fran¸cais ou ´etrangers, des laboratoires +</td></tr><tr><td>bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab</td><td>MoCoGAN: Decomposing Motion and Content for Video Generation +<br/>Snap Research +<br/>NVIDIA +</td></tr><tr><td>bcac3a870501c5510df80c2a5631f371f2f6f74a</td><td>CVPR <br/>#1387 <br/>000 <br/>001 @@ -2464,7 +2927,17 @@ <br/>Structured Face Hallucination <br/>Anonymous CVPR submission <br/>Paper ID 1387 -</td></tr><tr><td>aed321909bb87c81121c841b21d31509d6c78f69</td><td></td></tr><tr><td>ae936628e78db4edb8e66853f59433b8cc83594f</td><td></td></tr><tr><td>aebb9649bc38e878baef082b518fa68f5cda23a5</td><td> +</td></tr><tr><td>aed321909bb87c81121c841b21d31509d6c78f69</td><td></td></tr><tr><td>ae936628e78db4edb8e66853f59433b8cc83594f</td><td></td></tr><tr><td>ae2cf545565c157813798910401e1da5dc8a6199</td><td>Mahkonen et al. EURASIP Journal on Image and Video +<br/>Processing (2018) 2018:61 +<br/>https://doi.org/10.1186/s13640-018-0303-9 +<br/>EURASIP Journal on Image +<br/>and Video Processing +<br/>RESEARCH +<br/>Open Access +<br/>Cascade of Boolean detector +<br/>combinations +</td></tr><tr><td>aebb9649bc38e878baef082b518fa68f5cda23a5</td><td> +</td></tr><tr><td>aeff403079022683b233decda556a6aee3225065</td><td>DeepFace: Face Generation using Deep Learning </td></tr><tr><td>ae753fd46a744725424690d22d0d00fb05e53350</td><td>000 <br/>001 <br/>002 @@ -2532,12 +3005,50 @@ </td></tr><tr><td>d83ae5926b05894fcda0bc89bdc621e4f21272da</td><td>version of the following thesis: <br/>Frugal Forests: Learning a Dynamic and Cost Sensitive <br/>Feature Extraction Policy for Anytime Activity Classification +</td></tr><tr><td>d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d</td><td>Robust Face Recognition via Multimodal Deep +<br/>Face Representation </td></tr><tr><td>ab8f9a6bd8f582501c6b41c0e7179546e21c5e91</td><td>Nonparametric Face Verification Using a Novel <br/>Face Representation +</td></tr><tr><td>ab58a7db32683aea9281c188c756ddf969b4cdbd</td><td>Efficient Solvers for Sparse Subspace Clustering +</td></tr><tr><td>ab989225a55a2ddcd3b60a99672e78e4373c0df1</td><td>Sample, Computation vs Storage Tradeoffs for +<br/>Classification Using Tensor Subspace Models </td></tr><tr><td>ab6776f500ed1ab23b7789599f3a6153cdac84f7</td><td>International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1212 <br/>ISSN 2229-5518 <br/>A Survey on Various Facial Expression <br/>Techniques +</td></tr><tr><td>ab2b09b65fdc91a711e424524e666fc75aae7a51</td><td>Multi-modal Biomarkers to Discriminate Cognitive State* +<br/>1MIT Lincoln Laboratory, Lexington, Massachusetts, USA +<br/>2USARIEM, 3NSRDEC +<br/>1. Introduction +<br/>Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have +<br/>recently obtained increasing popularity in the detection of cognitive stress- and neurological-based +<br/>disorders. Such conditions are significantly and adversely affecting human performance and quality +<br/>of life for a large fraction of the world’s population. Example modalities used in detection of these +<br/>conditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. +<br/>Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive +<br/>stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy +<br/>three criteria. First, we seek biomarkers that reflect core components of cognitive status such as +<br/>working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we +<br/>seek biomarkers that reflect timing and coordination relations both within components of each +<br/>modality and across different modalities. This is based on the hypothesis that neural coordination +<br/>across different parts of the brain is essential in cognition (Figure 1). An example of timing and +<br/>coordination within a modality is the set of finely timed and synchronized physiological +<br/>components of speech production, while an example of coordination across modalities is the timing +<br/>and synchrony that occurs across speech and facial expression while speaking. Third, we seek +<br/>multimodal biomarkers that contribute in a complementary fashion under various channel and +<br/>background conditions. In this chapter, as an illustration of this biomarker approach we focus on +<br/>cognitive stress and the particular case of detecting different cognitive load levels. We also briefly +<br/>show how similar feature-extraction principles can be applied to a neurological condition through +<br/>the example of major depression disorder (MDD). MDD is one of several neurological disorders +<br/>where multi-modal biomarkers based on principles of timing and coordination are important for +<br/>detection [11]-[22]. In our cognitive load experiments, we use two easily obtained noninvasive +<br/>modalities, voice and face, and show how these two modalities can be fused to produce results on +<br/>par with more invasive, “gold-standard” EEG measurements. Vocal and facial biomarkers will also +<br/>be used in our MDD case study. In both application areas we focus on timing and coordination +<br/>relations within the components of each modality. +<br/>* Distribution A: public release.This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force contract +<br/>#FA8721-05-C-0002. Opinions,interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States +<br/>Government. </td></tr><tr><td>ab87dfccb1818bdf0b41d732da1f9335b43b74ae</td><td>SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING <br/>Structured Dictionary Learning for Classification </td></tr><tr><td>ab1dfcd96654af0bf6e805ffa2de0f55a73c025d</td><td></td></tr><tr><td>abeda55a7be0bbe25a25139fb9a3d823215d7536</td><td>UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015</td></tr><tr><td>ab1900b5d7cf3317d17193e9327d57b97e24d2fc</td><td></td></tr><tr><td>ab8fb278db4405f7db08fa59404d9dd22d38bc83</td><td>UNIVERSITÉ DE GENÈVE @@ -2555,11 +3066,18 @@ <br/>GENÈVE <br/>Repro-Mail - Université de Genève <br/>2011 -</td></tr><tr><td>e5737ffc4e74374b0c799b65afdbf0304ff344cb</td><td></td></tr><tr><td>e27c92255d7ccd1860b5fb71c5b1277c1648ed1e</td><td></td></tr><tr><td>e200c3f2849d56e08056484f3b6183aa43c0f13a</td><td></td></tr><tr><td>f437b3884a9e5fab66740ca2a6f1f3a5724385ea</td><td>Human Identification Technical Challenges +</td></tr><tr><td>e5737ffc4e74374b0c799b65afdbf0304ff344cb</td><td></td></tr><tr><td>e5823a9d3e5e33e119576a34cb8aed497af20eea</td><td>DocFace+: ID Document to Selfie* Matching +</td></tr><tr><td>e5dfd17dbfc9647ccc7323a5d62f65721b318ba9</td><td></td></tr><tr><td>e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69</td><td>Human Activity Recognition Based on Wearable +<br/>Sensor Data: A Standardization of the +<br/>State-of-the-Art +<br/>Smart Surveillance Interest Group, Computer Science Department +<br/>Universidade Federal de Minas Gerais, Brazil +</td></tr><tr><td>e27c92255d7ccd1860b5fb71c5b1277c1648ed1e</td><td></td></tr><tr><td>e200c3f2849d56e08056484f3b6183aa43c0f13a</td><td></td></tr><tr><td>f437b3884a9e5fab66740ca2a6f1f3a5724385ea</td><td>Human Identification Technical Challenges <br/>DARPA <br/>3701 N. Fairfax Dr <br/>Arlington, VA 22203 -</td></tr><tr><td>f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0</td><td></td></tr><tr><td>f4373f5631329f77d85182ec2df6730cbd4686a9</td><td>Soft Computing manuscript No. +</td></tr><tr><td>f442a2f2749f921849e22f37e0480ac04a3c3fec</td><td></td></tr><tr><td>f4f6fc473effb063b7a29aa221c65f64a791d7f4</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407.</td></tr><tr><td>f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0</td><td></td></tr><tr><td>f4373f5631329f77d85182ec2df6730cbd4686a9</td><td>Soft Computing manuscript No. <br/>(will be inserted by the editor) <br/>Recognizing Gender from Human Facial Regions using <br/>Genetic Algorithm @@ -2571,8 +3089,38 @@ </td></tr><tr><td>f3fcaae2ea3e998395a1443c87544f203890ae15</td><td></td></tr><tr><td>f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7</td><td>NosePose: a competitive, landmark-free <br/>methodology for head pose estimation in the wild <br/>IMAGO Research Group - Universidade Federal do Paran´a -</td></tr><tr><td>f355e54ca94a2d8bbc598e06e414a876eb62ef99</td><td></td></tr><tr><td>ebedc841a2c1b3a9ab7357de833101648281ff0e</td><td></td></tr><tr><td>eb526174fa071345ff7b1fad1fad240cd943a6d7</td><td>Deeply Vulnerable – A Study of the Robustness of Face Recognition to +</td></tr><tr><td>f355e54ca94a2d8bbc598e06e414a876eb62ef99</td><td></td></tr><tr><td>f3ea181507db292b762aa798da30bc307be95344</td><td>Covariance Pooling for Facial Expression Recognition +<br/>†Computer Vision Lab, ETH Zurich, Switzerland +<br/>‡VISICS, KU Leuven, Belgium +</td></tr><tr><td>f3cf10c84c4665a0b28734f5233d423a65ef1f23</td><td>Title +<br/>Temporal Exemplar-based Bayesian Networks for facial +<br/>expression recognition +<br/>Author(s) +<br/>Shang, L; Chan, KP +<br/>Citation +<br/>Proceedings - 7Th International Conference On Machine +<br/>Learning And Applications, Icmla 2008, 2008, p. 16-22 +<br/>Issued Date +<br/>2008 +<br/>URL +<br/>http://hdl.handle.net/10722/61208 +<br/>Rights +<br/>This work is licensed under a Creative Commons Attribution- +<br/>NonCommercial-NoDerivatives 4.0 International License.; +<br/>International Conference on Machine Learning and Applications +<br/>Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +<br/>this material is permitted. However, permission to +<br/>reprint/republish this material for advertising or promotional +<br/>purposes or for creating new collective works for resale or +<br/>redistribution to servers or lists, or to reuse any copyrighted +<br/>component of this work in other works must be obtained from +<br/>the IEEE. +</td></tr><tr><td>f3b7938de5f178e25a3cf477107c76286c0ad691</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017 +<br/>Object Detection with Deep Learning: A Review +</td></tr><tr><td>ebedc841a2c1b3a9ab7357de833101648281ff0e</td><td></td></tr><tr><td>eb526174fa071345ff7b1fad1fad240cd943a6d7</td><td>Deeply Vulnerable – A Study of the Robustness of Face Recognition to <br/>Presentation Attacks +</td></tr><tr><td>eb566490cd1aa9338831de8161c6659984e923fd</td><td>From Lifestyle Vlogs to Everyday Interactions +<br/>EECS Department, UC Berkeley </td></tr><tr><td>eb9312458f84a366e98bd0a2265747aaed40b1a6</td><td>1-4244-1437-7/07/$20.00 ©2007 IEEE <br/>IV - 473 <br/>ICIP 2007 @@ -2583,7 +3131,9 @@ <br/>representation learning using various deep networks <br/>School of Electrical Engineering, KAIST, <br/>Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea -</td></tr><tr><td>ebb9d53668205c5797045ba130df18842e3eadef</td><td></td></tr><tr><td>c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e</td><td>The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 +</td></tr><tr><td>ebb9d53668205c5797045ba130df18842e3eadef</td><td></td></tr><tr><td>eb48a58b873295d719827e746d51b110f5716d6c</td><td>Face Alignment Using K-cluster Regression Forests +<br/>With Weighted Splitting +</td></tr><tr><td>c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e</td><td>The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 <br/>DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL <br/>EXPRESSIONS OF EMOTIONS <br/>1LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France @@ -2593,9 +3143,28 @@ <br/>EMPIRICAL STUDY </td></tr><tr><td>c758b9c82b603904ba8806e6193c5fefa57e9613</td><td>Heterogeneous Face Recognition with CNNs <br/>INRIA Grenoble, Laboratoire Jean Kuntzmann +</td></tr><tr><td>c7c8d150ece08b12e3abdb6224000c07a6ce7d47</td><td>DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification +<br/>National Laboratory of Pattern Recognition, CASIA +<br/>Center for Research on Intelligent Perception and Computing, CASIA +</td></tr><tr><td>c038beaa228aeec174e5bd52460f0de75e9cccbe</td><td>Temporal Segment Networks for Action +<br/>Recognition in Videos </td></tr><tr><td>c043f8924717a3023a869777d4c9bee33e607fb5</td><td>Emotion Separation Is Completed Early and It Depends <br/>on Visual Field Presentation <br/><b>Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia</b><br/>Cyprus +</td></tr><tr><td>c05a7c72e679745deab9c9d7d481f7b5b9b36bdd</td><td>NPS-CS-11-005 +<br/> +<br/> +<br/>NAVAL +<br/>POSTGRADUATE +<br/>SCHOOL +<br/>MONTEREY, CALIFORNIA +<br/>by +<br/>BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS: +<br/>A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE, +<br/> AND SOCIAL CONDITIONS ON THE EFFECTIVE +<br/>COLLECTION OF BIOMETRICS +<br/>April 2011 +<br/>Approved for public release; distribution is unlimited </td></tr><tr><td>c02847a04a99a5a6e784ab580907278ee3c12653</td><td>Fine Grained Video Classification for <br/>Endangered Bird Species Protection <br/>Non-Thesis MS Final Report @@ -2625,6 +3194,9 @@ <br/>because a higher resolution image will require larger filters and deeper networks which is turn hard to <br/>train [3]. So it is not clear whether the low resolution will cause challenge for fine-grained <br/>classification task. Last but not the least, there is not a large training database like PASCAL, MNIST +</td></tr><tr><td>c0c8d720658374cc1ffd6116554a615e846c74b5</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>Modeling Multimodal Clues in a Hybrid Deep +<br/>Learning Framework for Video Classification </td></tr><tr><td>c0d5c3aab87d6e8dd3241db1d931470c15b9e39d</td><td></td></tr><tr><td>eee8a37a12506ff5df72c402ccc3d59216321346</td><td>Uredniki: <br/>dr. Tomaž Erjavec <br/>Odsek za tehnologije znanja @@ -2665,6 +3237,22 @@ <br/>Video and Display Processing <br/>Philips Research USA <br/>Briarcliff Manor, NY 10510 +</td></tr><tr><td>eedfb384a5e42511013b33104f4cd3149432bd9e</td><td>Multimodal Probabilistic Person +<br/>Tracking and Identification +<br/>in Smart Spaces +<br/>zur Erlangung des akademischen Grades eines +<br/>Doktors der Ingenieurwissenschaften +<br/>der Fakultät für Informatik +<br/>der Universität Fridericiana zu Karlsruhe (TH) +<br/>genehmigte +<br/>Dissertation +<br/>von +<br/>aus Karlsruhe +<br/>Tag der mündlichen Prüfung: 20.11.2009 +<br/>Erster Gutachter: +<br/>Zweiter Gutachter: +<br/>Prof. Dr. A. Waibel +<br/>Prof. Dr. R. Stiefelhagen </td></tr><tr><td>c9424d64b12a4abe0af201e7b641409e182babab</td><td>Article <br/>Which, When, and How: Hierarchical Clustering with <br/>Human–Machine Cooperation @@ -2689,8 +3277,14 @@ <br/>for Solving Nonlinear Least Squares <br/>Problems in Computer Vision </td></tr><tr><td>fdf533eeb1306ba418b09210387833bdf27bb756</td><td>951 +</td></tr><tr><td>fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3</td><td>Im2Flow: Motion Hallucination from Static Images for Action Recognition +<br/>UT Austin +<br/>UT Austin +<br/>UT Austin </td></tr><tr><td>fdfaf46910012c7cdf72bba12e802a318b5bef5a</td><td>Computerized Face Recognition in Renaissance <br/>Portrait Art +</td></tr><tr><td>fd15e397629e0241642329fc8ee0b8cd6c6ac807</td><td>Semi-Supervised Clustering with Neural Networks +<br/>IIIT-Delhi, India </td></tr><tr><td>fdca08416bdadda91ae977db7d503e8610dd744f</td><td> <br/>ICT-2009.7.1 <br/>KSERA Project @@ -2708,7 +3302,51 @@ <br/>under the 7th Framework Programme (FP7) for Research and Technological Development under grant <br/>under the 7th Framework Programme (FP7) for Research and Technological Development under grant <br/>agreement n°2010-248085. -</td></tr><tr><td>f2e9494d0dca9fb6b274107032781d435a508de6</td><td></td></tr><tr><td>f2c568fe945e5743635c13fe5535af157b1903d1</td><td></td></tr><tr><td>f26097a1a479fb6f32b27a93f8f32609cfe30fdc</td><td></td></tr><tr><td>f214bcc6ecc3309e2efefdc21062441328ff6081</td><td></td></tr><tr><td>f519723238701849f1160d5a9cedebd31017da89</td><td>Impact of multi-focused images on recognition of soft biometric traits +</td></tr><tr><td>fdaf65b314faee97220162980e76dbc8f32db9d6</td><td>Accepted Manuscript +<br/>Face recognition using both visible light image and near-infrared image and a deep +<br/>network +<br/>PII: +<br/>DOI: +<br/>Reference: +<br/>S2468-2322(17)30014-8 +<br/>10.1016/j.trit.2017.03.001 +<br/>TRIT 41 +<br/>To appear in: +<br/>CAAI Transactions on Intelligence Technology +<br/>Received Date: 30 January 2017 +<br/>Accepted Date: 28 March 2017 +<br/>Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and +<br/>near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi: +<br/>10.1016/j.trit.2017.03.001. +<br/>This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to +<br/>our customers we are providing this early version of the manuscript. The manuscript will undergo +<br/>copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please +<br/>note that during the production process errors may be discovered which could affect the content, and all +<br/>legal disclaimers that apply to the journal pertain. +</td></tr><tr><td>f2e9494d0dca9fb6b274107032781d435a508de6</td><td></td></tr><tr><td>f2c568fe945e5743635c13fe5535af157b1903d1</td><td></td></tr><tr><td>f26097a1a479fb6f32b27a93f8f32609cfe30fdc</td><td></td></tr><tr><td>f231046d5f5d87e2ca5fae88f41e8d74964e8f4f</td><td>We are IntechOpen, +<br/>the first native scientific +<br/>publisher of Open Access books +<br/>3,350 +<br/>108,000 +<br/>1.7 M +<br/>Open access books available +<br/>International authors and editors +<br/>Downloads +<br/>Our authors are among the +<br/>151 +<br/>Countries delivered to +<br/>TOP 1% +<br/>12.2% +<br/>most cited scientists +<br/>Contributors from top 500 universities +<br/>Selection of our books indexed in the Book Citation Index +<br/>in Web of Science™ Core Collection (BKCI) +<br/>Interested in publishing with us? +<br/>Numbers displayed above are based on latest data collected. +<br/>For more information visit www.intechopen.com +</td></tr><tr><td>f214bcc6ecc3309e2efefdc21062441328ff6081</td><td></td></tr><tr><td>f5770dd225501ff3764f9023f19a76fad28127d4</td><td>Real Time Online Facial Expression Transfer +<br/>with Single Video Camera +</td></tr><tr><td>f519723238701849f1160d5a9cedebd31017da89</td><td>Impact of multi-focused images on recognition of soft biometric traits <br/>aEURECOM, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia <br/> <br/>Antipolis cedex, FRANCE @@ -2719,17 +3357,35 @@ <br/>SEARCH <br/>#Student,Cse, CIET, Lam,Guntur, India <br/>* Assistant Professort,Cse, CIET, Lam,Guntur , India -</td></tr><tr><td>e3657ab4129a7570230ff25ae7fbaccb4ba9950c</td><td></td></tr><tr><td>e315959d6e806c8fbfc91f072c322fb26ce0862b</td><td>An Efficient Face Recognition System Based on Sub-Window +</td></tr><tr><td>e393a038d520a073b9835df7a3ff104ad610c552</td><td>Automatic temporal segment +<br/>detection via bilateral long short- +<br/>term memory recurrent neural +<br/>networks +<br/>detection via bilateral long short-term memory recurrent neural networks,” J. +<br/>Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501. +<br/>Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx</td></tr><tr><td>e3657ab4129a7570230ff25ae7fbaccb4ba9950c</td><td></td></tr><tr><td>e315959d6e806c8fbfc91f072c322fb26ce0862b</td><td>An Efficient Face Recognition System Based on Sub-Window <br/>International Journal of Soft Computing and Engineering (IJSCE) <br/>ISSN: 2231-2307, Volume-1, Issue-6, January 2012 <br/>Extraction Algorithm +</td></tr><tr><td>e3c011d08d04c934197b2a4804c90be55e21d572</td><td>How to Train Triplet Networks with 100K Identities? +<br/>Orion Star +<br/>Beijing, China +<br/>Orion Star +<br/>Beijing, China +<br/>Orion Star +<br/>Beijing, China </td></tr><tr><td>e39a0834122e08ba28e7b411db896d0fdbbad9ba</td><td>1368 <br/>Maximum Likelihood Estimation of Depth Maps <br/>Using Photometric Stereo </td></tr><tr><td>e3917d6935586b90baae18d938295e5b089b5c62</td><td>152 <br/>Face Localization and Authentication <br/>Using Color and Depth Images -</td></tr><tr><td>cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2</td><td></td></tr><tr><td>cf875336d5a196ce0981e2e2ae9602580f3f6243</td><td>7 What 1 +</td></tr><tr><td>cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2</td><td></td></tr><tr><td>cfffae38fe34e29d47e6deccfd259788176dc213</td><td>TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012 +<br/>Matrix Completion for Weakly-supervised +<br/>Multi-label Image Classification +</td></tr><tr><td>cfd4004054399f3a5f536df71f9b9987f060f434</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? +<br/>Person Recognition in Personal Photo Collections +</td></tr><tr><td>cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce</td><td></td></tr><tr><td>cf875336d5a196ce0981e2e2ae9602580f3f6243</td><td>7 What 1 <br/>Rosalind W. Picard <br/>It Mean for a Computer to "Have" Emotions? <br/>There is a lot of talk about giving machines emotions, some of @@ -2775,6 +3431,17 @@ <br/>´Ecole Polytechnique de Montr´eal, <br/>Qu´ebec, Canada <br/>Qu´ebec, Canada +</td></tr><tr><td>cfa92e17809e8d20ebc73b4e531a1b106d02b38c</td><td>Advances in Data Analysis and Classification manuscript No. +<br/>(will be inserted by the editor) +<br/>Parametric Classification with Soft Labels using the +<br/>Evidential EM Algorithm +<br/>Linear Discriminant Analysis vs. Logistic Regression +<br/>Received: date / Accepted: date +</td></tr><tr><td>cfdc632adcb799dba14af6a8339ca761725abf0a</td><td>Probabilistic Formulations of Regression with Mixed +<br/>Guidance +</td></tr><tr><td>cfc30ce53bfc204b8764ebb764a029a8d0ad01f4</td><td>Regularizing Deep Neural Networks by Noise: +<br/>Its Interpretation and Optimization +<br/>Dept. of Computer Science and Engineering, POSTECH, Korea </td></tr><tr><td>cf86616b5a35d5ee777585196736dfafbb9853b5</td><td>This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. <br/>Learning Multiscale Active Facial Patches for <br/>Expression Analysis @@ -2782,7 +3449,18 @@ <br/>Detecting Social Relationships in First-Person Views <br/>Universit`a degli Studi di Modena e Reggio Emilia <br/>Via Vignolese 905, 41125 Modena - Italy -</td></tr><tr><td>cac8bb0e393474b9fb3b810c61efdbc2e2c25c29</td><td></td></tr><tr><td>cadba72aa3e95d6dcf0acac828401ddda7ed8924</td><td>THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES +</td></tr><tr><td>cac8bb0e393474b9fb3b810c61efdbc2e2c25c29</td><td></td></tr><tr><td>cad24ba99c7b6834faf6f5be820dd65f1a755b29</td><td>Understanding hand-object +<br/>manipulation by modeling the +<br/>contextual relationship between actions, +<br/>grasp types and object attributes +<br/>Journal Title +<br/>XX(X):1–14 +<br/>c(cid:13)The Author(s) 2016 +<br/>Reprints and permission: +<br/>sagepub.co.uk/journalsPermissions.nav +<br/>DOI: 10.1177/ToBeAssigned +<br/>www.sagepub.com/ +</td></tr><tr><td>cadba72aa3e95d6dcf0acac828401ddda7ed8924</td><td>THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES <br/>POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES <br/>Algorithms and VLSI Architectures <br/>for Low-Power Mobile Face Verification @@ -2820,6 +3498,20 @@ <br/>Weighted Feature Extraction and Fuzzy Classifier </td></tr><tr><td>e4391993f5270bdbc621b8d01702f626fba36fc2</td><td>Author manuscript, published in "18th Scandinavian Conference on Image Analysis (2013)" <br/> DOI : 10.1007/978-3-642-38886-6_31 +</td></tr><tr><td>e4d8ba577cabcb67b4e9e1260573aea708574886</td><td>UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO +<br/>AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA +<br/>Gaspare Giuliano Elias Bruno +<br/>Tese de Doutorado apresentada ao Programa +<br/>de P´os-gradua¸c˜ao em Engenharia de Sistemas e +<br/>Computa¸c˜ao, COPPE, da Universidade Federal +<br/>do Rio de Janeiro, como parte dos requisitos +<br/>necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em +<br/>Engenharia de Sistemas e Computa¸c˜ao. +<br/>Orientadores: Edmundo Albuquerque de +<br/>Souza e Silva +<br/>Rosa Maria Meri Le˜ao +<br/>Rio de Janeiro +<br/>Janeiro de 2016 </td></tr><tr><td>e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd</td><td>Accepted in Pattern Recognition Letters <br/>Pattern Recognition Letters <br/>journal homepage: www.elsevier.com @@ -2833,6 +3525,10 @@ </td></tr><tr><td>fe9c460d5ca625402aa4d6dd308d15a40e1010fa</td><td>Neural Architecture for Temporal Emotion <br/>Classification <br/>Universit¨at Ulm, Neuroinformatik, Germany +</td></tr><tr><td>fe7c0bafbd9a28087e0169259816fca46db1a837</td><td></td></tr><tr><td>fe48f0e43dbdeeaf4a03b3837e27f6705783e576</td><td></td></tr><tr><td>fea83550a21f4b41057b031ac338170bacda8805</td><td>Learning a Metric Embedding +<br/>for Face Recognition +<br/>using the Multibatch Method +<br/>Orcam Ltd., Jerusalem, Israel </td></tr><tr><td>feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc</td><td>EURECOM <br/>Multimedia Communications Department <br/>and @@ -2848,7 +3544,13 @@ <br/>Last update June 1st, 2011 <br/>1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco, <br/>Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales. -</td></tr><tr><td>fe108803ee97badfa2a4abb80f27fa86afd9aad9</td><td></td></tr><tr><td>c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d</td><td>Modeling for part-based visual object +</td></tr><tr><td>fe108803ee97badfa2a4abb80f27fa86afd9aad9</td><td></td></tr><tr><td>fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139</td><td>Rahman et al. EURASIP Journal on Image and Video Processing (2015) 2015:35 +<br/>DOI 10.1186/s13640-015-0090-5 +<br/>RESEARCH +<br/>Open Access +<br/>Bayesian face recognition using 2D +<br/>Gaussian-Hermite moments +</td></tr><tr><td>c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d</td><td>Modeling for part-based visual object <br/>detection based on local features <br/>Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik <br/>der Rheinisch-Westf¨alischen Technischen Hochschule Aachen @@ -2863,17 +3565,66 @@ <br/>Tag der m¨undlichen Pr¨ufung: 28. September 2011 <br/>Diese Dissertation ist auf den Internetseiten der <br/>Hochschulbibliothek online verf¨ugbar. +</td></tr><tr><td>c86e6ed734d3aa967deae00df003557b6e937d3d</td><td>Generative Adversarial Networks with +<br/>Decoder-Encoder Output Noise +<br/>conditional distribution of their neighbors. In [32], Portilla and +<br/>Simoncelli proposed a parametric texture model based on joint +<br/>statistics, which uses a decomposition method that is called +<br/>steerable pyramid decomposition to decompose the texture +<br/>of images. An example-based super-resolution algorithm [11] +<br/>was proposed in 2002, which uses a Markov network to model +<br/>the spatial relationship between the pixels of an image. A +<br/>scene completion algorithm [16] was proposed in 2007, which +<br/>applied a semantic scene match technique. These traditional +<br/>algorithms can be applied to particular image generation tasks, +<br/>such as texture synthesis and super-resolution. Their common +<br/>characteristic is that they predict the images pixel by pixel +<br/>rather than generate an image as a whole, and the basic idea +<br/>of them is to make an interpolation according to the existing +<br/>part of the images. Here, the problem is, given a set of images, +<br/>can we generate totally new images with the same distribution +<br/>of the given ones? </td></tr><tr><td>c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3</td><td>LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS <br/>J´er´emie Nicolle <br/>K´evin Bailly <br/>Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France -</td></tr><tr><td>c82c147c4f13e79ad49ef7456473d86881428b89</td><td></td></tr><tr><td>c8adbe00b5661ab9b3726d01c6842c0d72c8d997</td><td>Deep Architectures for Face Attributes +</td></tr><tr><td>c866a2afc871910e3282fd9498dce4ab20f6a332</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Surveillance Face Recognition Challenge +<br/>Received: date / Accepted: date +</td></tr><tr><td>c82c147c4f13e79ad49ef7456473d86881428b89</td><td></td></tr><tr><td>c84233f854bbed17c22ba0df6048cbb1dd4d3248</td><td>Exploring Locally Rigid Discriminative +<br/>Patches for Learning Relative Attributes +<br/>http://researchweb.iiit.ac.in/~yashaswi.verma/ +<br/>http://www.iiit.ac.in/~jawahar/ +<br/>CVIT +<br/>IIIT-Hyderabad, India +<br/>http://cvit.iiit.ac.in +</td></tr><tr><td>c8adbe00b5661ab9b3726d01c6842c0d72c8d997</td><td>Deep Architectures for Face Attributes <br/>Computer Vision and Machine Learning Group, Flickr, Yahoo, </td></tr><tr><td>fb4545782d9df65d484009558e1824538030bbb1</td><td></td></tr><tr><td>fb5280b80edcf088f9dd1da769463d48e7b08390</td><td></td></tr><tr><td>fba464cb8e3eff455fe80e8fb6d3547768efba2f</td><td> <br/>International Journal of Engineering and Applied Sciences (IJEAS) <br/> ISSN: 2394-3661, Volume-3, Issue-2, February 2016 <br/>Survey Paper on Emotion Recognition <br/> +</td></tr><tr><td>fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59</td><td>Reading Hidden Emotions: Spontaneous +<br/>Micro-expression Spotting and Recognition +</td></tr><tr><td>fb9ad920809669c1b1455cc26dbd900d8e719e61</td><td>3D Gaze Estimation from Remote RGB-D Sensors +<br/>THÈSE NO 6680 (2015) +<br/>PRÉSENTÉE LE 9 OCTOBRE 2015 +<br/>À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR +<br/>LABORATOIRE DE L'IDIAP +<br/>PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE +<br/>ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE +<br/>POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +<br/>PAR +<br/>acceptée sur proposition du jury: +<br/>Prof. K. Aminian, président du jury +<br/>Dr J.-M. Odobez, directeur de thèse +<br/>Prof. L.-Ph. Morency, rapporteur +<br/>Prof. D. Witzner Hansen, rapporteur +<br/>Dr R. Boulic, rapporteur +<br/>Suisse +<br/>2015 </td></tr><tr><td>edef98d2b021464576d8d28690d29f5431fd5828</td><td>Pixel-Level Alignment of Facial Images <br/>for High Accuracy Recognition <br/>Using Ensemble of Patches @@ -2958,14 +3709,33 @@ <br/>Subspace Regression: Predicting a Subspace from one Sample <br/>Anonymous CVPR submission <br/>Paper ID 1369 +</td></tr><tr><td>c11eb653746afa8148dc9153780a4584ea529d28</td><td>Global and Local Consistent Wavelet-domain Age +<br/>Synthesis +</td></tr><tr><td>c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee</td><td>Robust Facial Landmark Localization Based on </td></tr><tr><td>c17a332e59f03b77921942d487b4b102b1ee73b6</td><td>Learning an appearance-based gaze estimator <br/>from one million synthesised images <br/>Tadas Baltruˇsaitis2 -</td></tr><tr><td>c1e76c6b643b287f621135ee0c27a9c481a99054</td><td></td></tr><tr><td>ec22eaa00f41a7f8e45ed833812d1ac44ee1174e</td><td></td></tr><tr><td>ec54000c6c0e660dd99051bdbd7aed2988e27ab8</td><td>TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1 +</td></tr><tr><td>c1e76c6b643b287f621135ee0c27a9c481a99054</td><td></td></tr><tr><td>c6f3399edb73cfba1248aec964630c8d54a9c534</td><td>A Comparison of CNN-based Face and Head Detectors for +<br/>Real-Time Video Surveillance Applications +<br/>1 ´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada +<br/>2 Genetec Inc., Montreal, Canada +</td></tr><tr><td>c62c07de196e95eaaf614fb150a4fa4ce49588b4</td><td>Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) +<br/>1078 +</td></tr><tr><td>ec1e03ec72186224b93b2611ff873656ed4d2f74</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>3D Reconstruction of “In-the-Wild” Faces in +<br/>Images and Videos +</td></tr><tr><td>ec22eaa00f41a7f8e45ed833812d1ac44ee1174e</td><td></td></tr><tr><td>ec54000c6c0e660dd99051bdbd7aed2988e27ab8</td><td>TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1 <br/>*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain <br/>+Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy </td></tr><tr><td>ec0104286c96707f57df26b4f0a4f49b774c486b</td><td>758 <br/>An Ensemble CNN2ELM for Age Estimation +</td></tr><tr><td>4e32fbb58154e878dd2fd4b06398f85636fd0cf4</td><td>A Hierarchical Matcher using Local Classifier Chains +<br/>L. Zhang and I.A. Kakadiaris +<br/>Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204 +</td></tr><tr><td>4e27fec1703408d524d6b7ed805cdb6cba6ca132</td><td>SSD-Sface: Single shot multibox detector for small faces +<br/>C. Thuis +</td></tr><tr><td>4e6c9be0b646d60390fe3f72ce5aeb0136222a10</td><td>Long-term Temporal Convolutions +<br/>for Action Recognition </td></tr><tr><td>4e444db884b5272f3a41e4b68dc0d453d4ec1f4c</td><td></td></tr><tr><td>4ef0a6817a7736c5641dc52cbc62737e2e063420</td><td>International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970) <br/>Volume-4 Number-4 Issue-17 December-2014 <br/>Study of Face Recognition Techniques @@ -2994,7 +3764,35 @@ <br/>http://www.informatik.uni-hamburg.de/WTM </td></tr><tr><td>20e504782951e0c2979d9aec88c76334f7505393</td><td>Robust LSTM-Autoencoders for Face De-Occlusion <br/>in the Wild -</td></tr><tr><td>20767ca3b932cbc7b8112db21980d7b9b3ea43a3</td><td></td></tr><tr><td>20c2a5166206e7ffbb11a23387b9c5edf42b5230</td><td></td></tr><tr><td>2098983dd521e78746b3b3fa35a22eb2fa630299</td><td></td></tr><tr><td>20532b1f80b509f2332b6cfc0126c0f80f438f10</td><td>A deep matrix factorization method for learning +</td></tr><tr><td>20ade100a320cc761c23971d2734388bfe79f7c5</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +<br/>Subspace Clustering via Good Neighbors +</td></tr><tr><td>20767ca3b932cbc7b8112db21980d7b9b3ea43a3</td><td></td></tr><tr><td>20c2a5166206e7ffbb11a23387b9c5edf42b5230</td><td></td></tr><tr><td>2098983dd521e78746b3b3fa35a22eb2fa630299</td><td></td></tr><tr><td>206e24f7d4b3943b35b069ae2d028143fcbd0704</td><td>Learning Structure and Strength of CNN Filters for Small Sample Size Training +<br/>IIIT-Delhi, India +</td></tr><tr><td>2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b</td><td>TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015 +<br/>Co-Localization of Audio Sources in Images Using +<br/>Binaural Features and Locally-Linear Regression +<br/>∗ INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +<br/>† Univ. Grenoble Alpes, GIPSA-Lab, France +<br/>‡ Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel +</td></tr><tr><td>206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8</td><td></td></tr><tr><td>20111924fbf616a13d37823cd8712a9c6b458cd6</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 130 – No.11, November2015 +<br/>Linear Regression Line based Partial Face Recognition +<br/>Naveena M. +<br/>Department of Studies in +<br/>Computer Science, +<br/>Manasagagothri, +<br/>Mysore. +<br/>Department of Studies in +<br/>Computer Science, +<br/>Manasagagothri, +<br/>Mysore. +<br/>P. Nagabhushan +<br/>Department of Studies in +<br/>Computer Science, +<br/>Manasagagothri, +<br/>Mysore. +<br/>images. In +</td></tr><tr><td>20532b1f80b509f2332b6cfc0126c0f80f438f10</td><td>A deep matrix factorization method for learning <br/>attribute representations <br/>Bj¨orn W. Schuller, Senior member, IEEE </td></tr><tr><td>205af28b4fcd6b569d0241bb6b255edb325965a4</td><td>Intel Serv Robotics (2008) 1:143–157 @@ -3031,6 +3829,20 @@ <br/>ADVISERS: </td></tr><tr><td>18d5b0d421332c9321920b07e0e8ac4a240e5f1f</td><td>Collaborative Representation Classification <br/>Ensemble for Face Recognition +</td></tr><tr><td>18d51a366ce2b2068e061721f43cb798177b4bb7</td><td>Cognition and Emotion +<br/>ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20 +<br/>Looking into your eyes: observed pupil size +<br/>influences approach-avoidance responses +<br/>eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI: +<br/>10.1080/02699931.2018.1472554 +<br/>To link to this article: https://doi.org/10.1080/02699931.2018.1472554 +<br/>View supplementary material +<br/>Published online: 11 May 2018. +<br/>Submit your article to this journal +<br/>View related articles +<br/>View Crossmark data +<br/>Full Terms & Conditions of access and use can be found at +<br/>http://www.tandfonline.com/action/journalInformation?journalCode=pcem20 </td></tr><tr><td>1885acea0d24e7b953485f78ec57b2f04e946eaf</td><td>Combining Local and Global Features for 3D Face Tracking <br/>Megvii (face++) Research </td></tr><tr><td>184750382fe9b722e78d22a543e852a6290b3f70</td><td></td></tr><tr><td>18a849b1f336e3c3b7c0ee311c9ccde582d7214f</td><td>Int J Comput Vis @@ -3045,7 +3857,38 @@ <br/>THE BASICS </td></tr><tr><td>185360fe1d024a3313042805ee201a75eac50131</td><td>299 <br/>Person De-Identification in Videos -</td></tr><tr><td>18dfc2434a95f149a6cbb583cca69a98c9de9887</td><td></td></tr><tr><td>27d709f7b67204e1e5e05fe2cfac629afa21699d</td><td></td></tr><tr><td>27cccf992f54966feb2ab4831fab628334c742d8</td><td>International Journal of Computer Applications (0975 – 8887) +</td></tr><tr><td>18dfc2434a95f149a6cbb583cca69a98c9de9887</td><td></td></tr><tr><td>27d709f7b67204e1e5e05fe2cfac629afa21699d</td><td></td></tr><tr><td>275b5091c50509cc8861e792e084ce07aa906549</td><td>Institut für Informatik +<br/>der Technischen +<br/>Universität München +<br/>Dissertation +<br/>Leveraging the User’s Face as a Known Object +<br/>in Handheld Augmented Reality +<br/>Sebastian Bernhard Knorr +</td></tr><tr><td>270733d986a1eb72efda847b4b55bc6ba9686df4</td><td>We are IntechOpen, +<br/>the first native scientific +<br/>publisher of Open Access books +<br/>3,350 +<br/>108,000 +<br/>1.7 M +<br/>Open access books available +<br/>International authors and editors +<br/>Downloads +<br/>Our authors are among the +<br/>151 +<br/>Countries delivered to +<br/>TOP 1% +<br/>12.2% +<br/>most cited scientists +<br/>Contributors from top 500 universities +<br/>Selection of our books indexed in the Book Citation Index +<br/>in Web of Science™ Core Collection (BKCI) +<br/>Interested in publishing with us? +<br/>Numbers displayed above are based on latest data collected. +<br/>For more information visit www.intechopen.com +</td></tr><tr><td>27da432cf2b9129dce256e5bf7f2f18953eef5a5</td><td></td></tr><tr><td>2770b095613d4395045942dc60e6c560e882f887</td><td>GridFace: Face Rectification via Learning Local +<br/>Homography Transformations +<br/>Face++, Megvii Inc. +</td></tr><tr><td>27cccf992f54966feb2ab4831fab628334c742d8</td><td>International Journal of Computer Applications (0975 – 8887) <br/>Volume 64– No.18, February 2013 <br/>Facial Expression Recognition by Statistical, Spatial <br/>Features and using Decision Tree @@ -3086,6 +3929,8 @@ </td></tr><tr><td>4b04247c7f22410681b6aab053d9655cf7f3f888</td><td>Robust Face Recognition by Constrained Part-based <br/>Alignment </td></tr><tr><td>4b60e45b6803e2e155f25a2270a28be9f8bec130</td><td>Attribute Based Object Identification +</td></tr><tr><td>4b48e912a17c79ac95d6a60afed8238c9ab9e553</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>Minimum Margin Loss for Deep Face Recognition </td></tr><tr><td>4b5eeea5dd8bd69331bd4bd4c66098b125888dea</td><td>Human Activity Recognition Using Conditional <br/>Random Fields and Privileged Information <br/>submitted to @@ -3111,9 +3956,15 @@ <br/>JUNE 2008 <br/>Tied Factor Analysis for Face Recognition <br/>across Large Pose Differences -</td></tr><tr><td>111a9645ad0108ad472b2f3b243ed3d942e7ff16</td><td>Facial Expression Classification Using +</td></tr><tr><td>112780a7fe259dc7aff2170d5beda50b2bfa7bda</td><td></td></tr><tr><td>111a9645ad0108ad472b2f3b243ed3d942e7ff16</td><td>Facial Expression Classification Using <br/>Combined Neural Networks <br/>DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil +</td></tr><tr><td>111d0b588f3abbbea85d50a28c0506f74161e091</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 134 – No.10, January 2016 +<br/>Facial Expression Recognition from Visual Information +<br/>using Curvelet Transform +<br/>Surabhi Group of Institution Bhopal +<br/>systems. Further applications </td></tr><tr><td>7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22</td><td>Labeled Faces in the Wild: A Survey </td></tr><tr><td>7d73adcee255469aadc5e926066f71c93f51a1a5</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>1283 @@ -3160,6 +4011,8 @@ <br/>Published online: 14 January 2010 <br/>© Springer Science+Business Media, LLC 2010 </td></tr><tr><td>290136947fd44879d914085ee51d8a4f433765fa</td><td>On a Taxonomy of Facial Features +</td></tr><tr><td>2957715e96a18dbb5ed5c36b92050ec375214aa6</td><td>Improving Face Attribute Detection with Race and Gender Diversity +<br/>InclusiveFaceNet: </td></tr><tr><td>291265db88023e92bb8c8e6390438e5da148e8f5</td><td>MS-Celeb-1M: A Dataset and Benchmark for <br/>Large-Scale Face Recognition <br/>Microsoft Research @@ -3228,20 +4081,114 @@ </td></tr><tr><td>7c7b0550ec41e97fcfc635feffe2e53624471c59</td><td>1051-4651/14 $31.00 © 2014 IEEE <br/>DOI 10.1109/ICPR.2014.124 <br/>660 -</td></tr><tr><td>7ce03597b703a3b6754d1adac5fbc98536994e8f</td><td></td></tr><tr><td>7c1e1c767f7911a390d49bed4f73952df8445936</td><td>NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) +</td></tr><tr><td>7ce03597b703a3b6754d1adac5fbc98536994e8f</td><td></td></tr><tr><td>7c9a65f18f7feb473e993077d087d4806578214e</td><td>SpringerLink - Zeitschriftenbeitrag +<br/>http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352... +<br/>Deutsch +<br/>Deutsch +<br/>Go +<br/>Vorherige Beitrag Nächste Beitrag +<br/>Beitrag markieren +<br/>In den Warenkorb legen +<br/>Zu gespeicherten Artikeln +<br/>hinzufügen +<br/>Permissions & Reprints +<br/>Diesen Artikel empfehlen +<br/>Ergebnisse +<br/>finden +<br/>Erweiterte Suche +<br/>Go +<br/>im gesamten Inhalt +<br/>in dieser Zeitschrift +<br/>in diesem Heft +<br/>Diesen Beitrag exportieren +<br/>Diesen Beitrag exportieren als RIS +<br/>| Text +<br/>Text +<br/>PDF +<br/>PDF ist das gebräuchliche Format +<br/>für Online Publikationen. Die Größe +<br/>dieses Dokumentes beträgt 564 +<br/>Kilobyte. Je nach Art Ihrer +<br/>Internetverbindung kann der +<br/>Download einige Zeit in Anspruch +<br/>nehmen. +<br/>öffnen: Gesamtdokument +<br/>Publikationsart Subject Collections +<br/>Zurück zu: Journal Issue +<br/>Athens Authentication Point +<br/>Zeitschriftenbeitrag +<br/>Willkommen! +<br/>Um unsere personalisierten +<br/>Angebote nutzen zu können, +<br/>müssen Sie angemeldet sein. +<br/>Login +<br/>Jetzt registrieren +<br/>Zugangsdaten vergessen? +<br/>Hilfe. +<br/>Mein Menü +<br/>Markierte Beiträge +<br/>Alerts +<br/>Meine Bestellungen +<br/>Private emotions versus social interaction: a data-driven approach towards +<br/>analysing emotion in speech +<br/>Zeitschrift +<br/>Verlag +<br/>ISSN +<br/>Heft +<br/>Kategorie +<br/>DOI +<br/>Seiten +<br/>Subject Collection +<br/>SpringerLink Date +<br/>User Modeling and User-Adapted Interaction +<br/>Springer Netherlands +<br/>0924-1868 (Print) 1573-1391 (Online) +<br/>Volume 18, Numbers 1-2 / Februar 2008 +<br/>Original Paper +<br/>10.1007/s11257-007-9039-4 +<br/>175-206 +<br/>Informatik +<br/>Freitag, 12. Oktober 2007 +<br/>Gespeicherte Beiträge +<br/>Alle +<br/>Favoriten +<br/>(1) Lehrstuhl für Mustererkennung, FAU Erlangen – Nürnberg, Martensstr. 3, 91058 Erlangen, +<br/>Germany +<br/>Received: 3 July 2006 Accepted: 14 January 2007 Published online: 12 October 2007 +</td></tr><tr><td>7c1e1c767f7911a390d49bed4f73952df8445936</td><td>NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) <br/>Non-Rigid Object Detection with Local <br/>Interleaved Sequential Alignment (LISA) <br/>and Tom´aˇs Svoboda, Member, IEEE </td></tr><tr><td>7c349932a3d083466da58ab1674129600b12b81c</td><td></td></tr><tr><td>1648cf24c042122af2f429641ba9599a2187d605</td><td>Boosting Cross-Age Face Verification via Generative Age Normalization <br/>(cid:2) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France <br/>† Eurecom, 450 route des Chappes, 06410 Biot, France +</td></tr><tr><td>162403e189d1b8463952fa4f18a291241275c354</td><td>Action Recognition with Spatio-Temporal +<br/>Visual Attention on Skeleton Image Sequences +<br/>With a strong ability of modeling sequential data, Recur- +<br/>rent Neural Networks (RNN) with Long Short-Term Memory +<br/>(LSTM) neurons outperform the previous hand-crafted feature +<br/>based methods [9], [10]. Each skeleton frame is converted into +<br/>a feature vector and the whole sequence is fed into the RNN. +<br/>Despite the strong ability in modeling temporal sequences, +<br/>RNN structures lack the ability to efficiently learn the spatial +<br/>relations between the joints. To better use spatial information, +<br/>a hierarchical structure is proposed in [11], [12] that feeds +<br/>the joints into the network as several pre-defined body part +<br/>groups. However, +<br/>limit +<br/>the effectiveness of representing spatial relations. A spatio- +<br/>temporal 2D LSTM (ST-LSTM) network [13] is proposed +<br/>to learn the spatial and temporal relations simultaneously. +<br/>Furthermore, a two-stream RNN structure [14] is proposed to +<br/>learn the spatio-temporal relations with two RNN branches. +<br/>the pre-defined body regions still </td></tr><tr><td>160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b</td><td>Discriminant Multi-Label Manifold Embedding for Facial Action Unit <br/>Detection <br/>Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland </td></tr><tr><td>16671b2dc89367ce4ed2a9c241246a0cec9ec10e</td><td>2006 <br/>Detecting the Number of Clusters <br/>in n-Way Probabilistic Clustering -</td></tr><tr><td>16892074764386b74b6040fe8d6946b67a246a0b</td><td></td></tr><tr><td>16395b40e19cbc6d5b82543039ffff2a06363845</td><td>Action Recognition in Video Using Sparse Coding and Relative Features +</td></tr><tr><td>16de1324459fe8fdcdca80bba04c3c30bb789bdf</td><td></td></tr><tr><td>16892074764386b74b6040fe8d6946b67a246a0b</td><td></td></tr><tr><td>16395b40e19cbc6d5b82543039ffff2a06363845</td><td>Action Recognition in Video Using Sparse Coding and Relative Features <br/>Anal´ı Alfaro <br/>P. Universidad Catolica de Chile <br/>P. Universidad Catolica de Chile @@ -3256,6 +4203,25 @@ <br/>and Timing of Smiles Perceived as Amused, Polite, <br/>and Embarrassed/Nervous <br/>Ó Springer Science+Business Media, LLC 2008 +</td></tr><tr><td>166186e551b75c9b5adcc9218f0727b73f5de899</td><td>Volume 4, Issue 2, February 2016 +<br/>International Journal of Advance Research in +<br/>Computer Science and Management Studies +<br/>Research Article / Survey Paper / Case Study +<br/>Available online at: www.ijarcsms.com +<br/>ISSN: 2321-7782 (Online) +<br/>Automatic Age and Gender Recognition in Human Face Image +<br/>Dataset using Convolutional Neural Network System +<br/>Subhani Shaik1 +<br/>Assoc. Prof & Head of the Department +<br/>Department of CSE, +<br/>Associate Professor +<br/>Department of CSE, +<br/>St.Mary’s Group of Institutions Guntur +<br/>St.Mary’s Group of Institutions Guntur +<br/>Chebrolu(V&M),Guntur(Dt), +<br/>Andhra Pradesh - India +<br/>Chebrolu(V&M),Guntur(Dt), +<br/>Andhra Pradesh - India </td></tr><tr><td>16d9b983796ffcd151bdb8e75fc7eb2e31230809</td><td>EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer <br/>(Guest Editors) <br/>Volume 37 (2018), Number 2 @@ -3264,6 +4230,10 @@ </td></tr><tr><td>1679943d22d60639b4670eba86665371295f52c3</td><td></td></tr><tr><td>169076ffe5e7a2310e98087ef7da25aceb12b62d</td><td></td></tr><tr><td>161eb88031f382e6a1d630cd9a1b9c4bc6b47652</td><td>1 <br/>Automatic Facial Expression Recognition <br/>Using Features of Salient Facial Patches +</td></tr><tr><td>4209783b0cab1f22341f0600eed4512155b1dee6</td><td>Accurate and Efficient Similarity Search for Large Scale Face Recognition +<br/>BUPT +<br/>BUPT +<br/>BUPT </td></tr><tr><td>42e3dac0df30d754c7c7dab9e1bb94990034a90d</td><td>PANDA: Pose Aligned Networks for Deep Attribute Modeling <br/>2EECS, UC Berkeley <br/>1Facebook AI Research @@ -3302,7 +4272,23 @@ <br/>Factorization in the Presence of Outliers and <br/>Missing Data </td></tr><tr><td>89de30a75d3258816c2d4d5a733d2bef894b66b9</td><td></td></tr><tr><td>8913a5b7ed91c5f6dec95349fbc6919deee4fc75</td><td>BigBIRD: A Large-Scale 3D Database of Object Instances -</td></tr><tr><td>45c340c8e79077a5340387cfff8ed7615efa20fd</td><td></td></tr><tr><td>45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8</td><td></td></tr><tr><td>4571626d4d71c0d11928eb99a3c8b10955a74afe</td><td>Geometry Guided Adversarial Facial Expression Synthesis +</td></tr><tr><td>89d3a57f663976a9ac5e9cdad01267c1fc1a7e06</td><td>Neural Class-Specific Regression for face +<br/>verification +</td></tr><tr><td>891b10c4b3b92ca30c9b93170ec9abd71f6099c4</td><td>Facial landmark detection using structured output deep +<br/>neural networks +<br/>Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +<br/>1LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +<br/>2LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +<br/>September 24, 2015 +</td></tr><tr><td>45c340c8e79077a5340387cfff8ed7615efa20fd</td><td></td></tr><tr><td>45e7ddd5248977ba8ec61be111db912a4387d62f</td><td>CHEN ET AL.: ADVERSARIAL POSENET +<br/>Adversarial Learning of Structure-Aware Fully +<br/>Convolutional Networks for Landmark +<br/>Localization +</td></tr><tr><td>45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8</td><td></td></tr><tr><td>4560491820e0ee49736aea9b81d57c3939a69e12</td><td>Investigating the Impact of Data Volume and +<br/>Domain Similarity on Transfer Learning +<br/>Applications +<br/>State Farm Insurance, Bloomington IL 61710, USA, +</td></tr><tr><td>4571626d4d71c0d11928eb99a3c8b10955a74afe</td><td>Geometry Guided Adversarial Facial Expression Synthesis <br/>1National Laboratory of Pattern Recognition, CASIA <br/>2Center for Research on Intelligent Perception and Computing, CASIA <br/>3Center for Excellence in Brain Science and Intelligence Technology, CAS @@ -3317,7 +4303,19 @@ <br/>© EURASIP, 2011 - ISSN 2076-1465 <br/>19th European Signal Processing Conference (EUSIPCO 2011) <br/>INTRODUCTION -</td></tr><tr><td>4511e09ee26044cb46073a8c2f6e1e0fbabe33e8</td><td></td></tr><tr><td>1f8304f4b51033d2671147b33bb4e51b9a1e16fe</td><td>Noname manuscript No. +</td></tr><tr><td>4511e09ee26044cb46073a8c2f6e1e0fbabe33e8</td><td></td></tr><tr><td>45a6333fc701d14aab19f9e2efd59fe7b0e89fec</td><td>HAND POSTURE DATASET CREATION FOR GESTURE +<br/>RECOGNITION +<br/>Luis Anton-Canalis +<br/>Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +<br/>Campus Universitario de Tafira, 35017 Gran Canaria, Spain +<br/>Elena Sanchez-Nielsen +<br/>Departamento de E.I.O. y Computacion +<br/>38271 Universidad de La Laguna, Spain +<br/>Keywords: +<br/>Image understanding, Gesture recognition, Hand dataset. +</td></tr><tr><td>1ffe20eb32dbc4fa85ac7844178937bba97f4bf0</td><td>Face Clustering: Representation and Pairwise +<br/>Constraints +</td></tr><tr><td>1f8304f4b51033d2671147b33bb4e51b9a1e16fe</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>Beyond Trees: <br/>MAP Inference in MRFs via Outer-Planar Decomposition @@ -3364,7 +4362,27 @@ <br/>Boltzmannstr. 3, 85748 Garching b. Muenchen, Germany <br/>∗ Multimedia Communications Department, EURECOM <br/>450 Route des Chappes, 06410 Biot, France +</td></tr><tr><td>1fff309330f85146134e49e0022ac61ac60506a9</td><td>Data-Driven Sparse Sensor Placement for Reconstruction +</td></tr><tr><td>7323b594d3a8508f809e276aa2d224c4e7ec5a80</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>An Experimental Evaluation of Covariates +<br/>Effects on Unconstrained Face Verification </td></tr><tr><td>732e8d8f5717f8802426e1b9debc18a8361c1782</td><td>Unimodal Probability Distributions for Deep Ordinal Classification +</td></tr><tr><td>73ed64803d6f2c49f01cffef8e6be8fc9b5273b8</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Cooking in the kitchen: Recognizing and Segmenting Human +<br/>Activities in Videos +<br/>Received: date / Accepted: date +</td></tr><tr><td>7306d42ca158d40436cc5167e651d7ebfa6b89c1</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Transductive Zero-Shot Action Recognition by +<br/>Word-Vector Embedding +<br/>Received: date / Accepted: date +</td></tr><tr><td>734cdda4a4de2a635404e4c6b61f1b2edb3f501d</td><td>Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 +<br/>http://jivp.eurasipjournals.com/content/2013/1/8 +<br/>R ES EAR CH +<br/>Open Access +<br/>Automatic landmark point detection and tracking +<br/>for human facial expressions </td></tr><tr><td>732686d799d760ccca8ad47b49a8308b1ab381fb</td><td>Running head: TEACHERS’ DIFFERING BEHAVIORS <br/>1 <br/>Graduate School of Psychology @@ -3377,27 +4395,62 @@ </td></tr><tr><td>73fbdd57270b9f91f2e24989178e264f2d2eb7ae</td><td>978-1-4673-0046-9/12/$26.00 ©2012 IEEE <br/>1945 <br/>ICASSP 2012 -</td></tr><tr><td>871f5f1114949e3ddb1bca0982086cc806ce84a8</td><td>Discriminative Learning of Apparel Features +</td></tr><tr><td>73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c</td><td></td></tr><tr><td>871f5f1114949e3ddb1bca0982086cc806ce84a8</td><td>Discriminative Learning of Apparel Features <br/>1 Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland <br/>2 ESAT - PSI / IBBT, K.U. Leuven, Belgium +</td></tr><tr><td>878169be6e2c87df2d8a1266e9e37de63b524ae7</td><td>CBMM Memo No. 089 +<br/>May 10, 2018 +<br/>Image interpretation above and below the object level +</td></tr><tr><td>878301453e3d5cb1a1f7828002ea00f59cbeab06</td><td>Faceness-Net: Face Detection through +<br/>Deep Facial Part Responses +</td></tr><tr><td>87e592ee1a7e2d34e6b115da08700a1ae02e9355</td><td>Deep Pictorial Gaze Estimation +<br/>AIT Lab, Department of Computer Science, ETH Zurich </td></tr><tr><td>87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd</td><td>Craniofacial Image Analysis -</td></tr><tr><td>80193dd633513c2d756c3f568ffa0ebc1bb5213e</td><td></td></tr><tr><td>804b4c1b553d9d7bae70d55bf8767c603c1a09e3</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE +</td></tr><tr><td>8006219efb6ab76754616b0e8b7778dcfb46603d</td><td>CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble</td></tr><tr><td>80193dd633513c2d756c3f568ffa0ebc1bb5213e</td><td></td></tr><tr><td>804b4c1b553d9d7bae70d55bf8767c603c1a09e3</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>1831 <br/>ICASSP 2016 </td></tr><tr><td>800cbbe16be0f7cb921842d54967c9a94eaa2a65</td><td>MULTIMODAL RECOGNITION OF <br/>EMOTIONS +</td></tr><tr><td>803c92a3f0815dbf97e30c4ee9450fd005586e1a</td><td>Max-Mahalanobis Linear Discriminant Analysis Networks +</td></tr><tr><td>80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923</td><td>Research Article +<br/>Soft Biometrics for a Socially Assistive Robotic +<br/>Platform +<br/>Open Access </td></tr><tr><td>80a6bb337b8fdc17bffb8038f3b1467d01204375</td><td>Proceedings of the International Conference on Computer and Information Science and Technology <br/>Ottawa, Ontario, Canada, May 11 – 12, 2015 <br/>Paper No. 126 <br/>Subspace LDA Methods for Solving the Small Sample Size <br/>Problem in Face Recognition <br/><b></b><br/>101 KwanFu Rd., Sec. 2, Hsinchu, Taiwan +</td></tr><tr><td>80097a879fceff2a9a955bf7613b0d3bfa68dc23</td><td>Active Self-Paced Learning for Cost-Effective and +<br/>Progressive Face Identification </td></tr><tr><td>74408cfd748ad5553cba8ab64e5f83da14875ae8</td><td>Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation <br/>and Evaluation -</td></tr><tr><td>747d5fe667519acea1bee3df5cf94d9d6f874f20</td><td></td></tr><tr><td>74b0095944c6e29837c208307a67116ebe1231c8</td><td></td></tr><tr><td>74156a11c2997517061df5629be78428e1f09cbd</td><td>Cancún Center, Cancún, México, December 4-8, 2016 +</td></tr><tr><td>747d5fe667519acea1bee3df5cf94d9d6f874f20</td><td></td></tr><tr><td>74dbe6e0486e417a108923295c80551b6d759dbe</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 45– No.11, May 2012 +<br/>An HMM based Model for Prediction of Emotional +<br/>Composition of a Facial Expression using both +<br/>Significant and Insignificant Action Units and +<br/>Associated Gender Differences +<br/>Department of Management and Information +<br/>Department of Management and Information +<br/>Systems Science +<br/>1603-1 Kamitomioka, Nagaoka +<br/>Niigata, Japan +<br/>Systems Science +<br/>1603-1 Kamitomioka, Nagaoka +<br/>Niigata, Japan +</td></tr><tr><td>747c25bff37b96def96dc039cc13f8a7f42dbbc7</td><td>EmoNets: Multimodal deep learning approaches for emotion +<br/>recognition in video +</td></tr><tr><td>74b0095944c6e29837c208307a67116ebe1231c8</td><td></td></tr><tr><td>74156a11c2997517061df5629be78428e1f09cbd</td><td>Cancún Center, Cancún, México, December 4-8, 2016 <br/>978-1-5090-4846-5/16/$31.00 ©2016 IEEE <br/>2784 -</td></tr><tr><td>745b42050a68a294e9300228e09b5748d2d20b81</td><td></td></tr><tr><td>7480d8739eb7ab97c12c14e75658e5444b852e9f</td><td>NEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL +</td></tr><tr><td>745b42050a68a294e9300228e09b5748d2d20b81</td><td></td></tr><tr><td>749d605dd12a4af58de1fae6f5ef5e65eb06540e</td><td>Multi-Task Video Captioning with Video and Entailment Generation +<br/>UNC Chapel Hill +</td></tr><tr><td>74c19438c78a136677a7cb9004c53684a4ae56ff</td><td>RESOUND: Towards Action Recognition +<br/>without Representation Bias +<br/>UC San Diego +</td></tr><tr><td>7480d8739eb7ab97c12c14e75658e5444b852e9f</td><td>NEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL <br/>MLBoost Revisited: A Faster Metric <br/>Learning Algorithm for Identity-Based Face <br/>Retrieval @@ -3426,6 +4479,24 @@ <br/>J. Paone, D. Bolme, R. Ferrell, Member, IEEE, D. Aykac, and <br/>T. Karnowski, Member, IEEE <br/>Oak Ridge National Laboratory, Oak Ridge, TN +</td></tr><tr><td>1a849b694f2d68c3536ed849ed78c82e979d64d5</td><td>This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling. +<br/>White Rose Research Online URL for this paper: +<br/>http://eprints.whiterose.ac.uk/131760/ +<br/>Version: Accepted Version +<br/>Proceedings Paper: +<br/>Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred +<br/>Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape +<br/>Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic +<br/>Face and Gesture Recognition. IEEE . +<br/>Reuse +<br/>Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless +<br/>indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by +<br/>national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of +<br/>the full text version. This is indicated by the licence information on the White Rose Research Online record +<br/>for the item. +<br/>Takedown +<br/>If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +<br/>https://eprints.whiterose.ac.uk/ </td></tr><tr><td>1a3eee980a2252bb092666cf15dd1301fa84860e</td><td>PCA GAUSSIANIZATION FOR IMAGE PROCESSING <br/>Image Processing Laboratory (IPL), Universitat de Val`encia <br/>Catedr´atico A. Escardino - 46980 Paterna, Val`encia, Spain @@ -3463,7 +4534,13 @@ </td></tr><tr><td>28bc378a6b76142df8762cd3f80f737ca2b79208</td><td>Understanding Objects in Detail with Fine-grained Attributes <br/>Ross Girshick5 <br/>David Weiss7 -</td></tr><tr><td>287900f41dd880802aa57f602e4094a8a9e5ae56</td><td></td></tr><tr><td>28aa89b2c827e5dd65969a5930a0520fdd4a3dc7</td><td></td></tr><tr><td>28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68</td><td>Predicting User Annoyance Using Visual Attributes +</td></tr><tr><td>287900f41dd880802aa57f602e4094a8a9e5ae56</td><td></td></tr><tr><td>28d4e027c7e90b51b7d8908fce68128d1964668a</td><td></td></tr><tr><td>2866cbeb25551257683cf28f33d829932be651fe</td><td>In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP) +<br/>The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026 +<br/>A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS +<br/>ON FACES FROM DIFFERENT DOMAINS +<br/>Erickson R. Nascimento +<br/>Universidade Federal de Minas Gerais (UFMG), Brazil +</td></tr><tr><td>28aa89b2c827e5dd65969a5930a0520fdd4a3dc7</td><td></td></tr><tr><td>28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68</td><td>Predicting User Annoyance Using Visual Attributes <br/>Virginia Tech <br/>Goibibo <br/>Virginia Tech @@ -3495,7 +4572,10 @@ <br/>the name of the author </td></tr><tr><td>176f26a6a8e04567ea71677b99e9818f8a8819d0</td><td>MEG: Multi-Expert Gender classification from <br/>face images in a demographics-balanced dataset -</td></tr><tr><td>17035089959a14fe644ab1d3b160586c67327db2</td><td></td></tr><tr><td>17aa78bd4331ef490f24bdd4d4cd21d22a18c09c</td><td></td></tr><tr><td>1742ffea0e1051b37f22773613f10f69d2e4ed2c</td><td></td></tr><tr><td>1791f790b99471fc48b7e9ec361dc505955ea8b1</td><td></td></tr><tr><td>174930cac7174257515a189cd3ecfdd80ee7dd54</td><td>Multi-view Face Detection Using Deep Convolutional +</td></tr><tr><td>17035089959a14fe644ab1d3b160586c67327db2</td><td></td></tr><tr><td>17a995680482183f3463d2e01dd4c113ebb31608</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z +<br/>Structured Label Inference for +<br/>Visual Understanding +</td></tr><tr><td>17aa78bd4331ef490f24bdd4d4cd21d22a18c09c</td><td></td></tr><tr><td>17c0d99171efc957b88c31a465c59485ab033234</td><td></td></tr><tr><td>1742ffea0e1051b37f22773613f10f69d2e4ed2c</td><td></td></tr><tr><td>1791f790b99471fc48b7e9ec361dc505955ea8b1</td><td></td></tr><tr><td>174930cac7174257515a189cd3ecfdd80ee7dd54</td><td>Multi-view Face Detection Using Deep Convolutional <br/>Neural Networks <br/>Yahoo <br/>Mohammad Saberian @@ -3505,10 +4585,22 @@ </td></tr><tr><td>17fad2cc826d2223e882c9fda0715fcd5475acf3</td><td></td></tr><tr><td>1750db78b7394b8fb6f6f949d68f7c24d28d934f</td><td>Detecting Facial Retouching Using Supervised <br/>Deep Learning <br/>Bowyer, Fellow, IEEE +</td></tr><tr><td>173657da03e3249f4e47457d360ab83b3cefbe63</td><td>HKU-Face: A Large Scale Dataset for +<br/>Deep Face Recognition +<br/>Final Report +<br/>3035140108 +<br/>COMP4801 Final Year Project +<br/>Project Code: 17007 </td></tr><tr><td>7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889</td><td></td></tr><tr><td>7bfe085c10761f5b0cc7f907bdafe1ff577223e0</td><td></td></tr><tr><td>7b9b3794f79f87ca8a048d86954e0a72a5f97758</td><td>DOI 10.1515/jisys-2013-0016 Journal of Intelligent Systems 2013; 22(4): 365–415 <br/>Passing an Enhanced Turing Test – <br/>Interacting with Lifelike Computer <br/>Representations of Specific Individuals +</td></tr><tr><td>7b0f1fc93fb24630eb598330e13f7b839fb46cce</td><td>Learning to Find Eye Region Landmarks for Remote Gaze +<br/>Estimation in Unconstrained Settings +<br/>ETH Zurich +<br/>MPI for Informatics +<br/>MPI for Informatics +<br/>ETH Zurich </td></tr><tr><td>7bdcd85efd1e3ce14b7934ff642b76f017419751</td><td>289 <br/>Learning Discriminant Face Descriptor </td></tr><tr><td>7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f</td><td>On the Design and Evaluation of Robust Head Pose for @@ -3530,10 +4622,22 @@ <br/>Laboratory of Intelligent and <br/>Safe Automobiles <br/>UCSD - La Jolla, CA, USA -</td></tr><tr><td>8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483</td><td></td></tr><tr><td>8f8c0243816f16a21dea1c20b5c81bc223088594</td><td></td></tr><tr><td>8f89aed13cb3555b56fccd715753f9ea72f27f05</td><td>Attended End-to-end Architecture for Age +</td></tr><tr><td>8f772d9ce324b2ef5857d6e0b2a420bc93961196</td><td>MAHPOD et al.: CFDRNN +<br/>Facial Landmark Point Localization using +<br/>Coarse-to-Fine Deep Recurrent Neural Network +</td></tr><tr><td>8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483</td><td></td></tr><tr><td>8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a</td><td>Feature Selection with Annealing for Big Data +<br/>Learning +</td></tr><tr><td>8f9c37f351a91ed416baa8b6cdb4022b231b9085</td><td>Generative Adversarial Style Transfer Networks for Face Aging +<br/>Sveinn Palsson +<br/>D-ITET, ETH Zurich +<br/>Eirikur Agustsson +<br/>D-ITET, ETH Zurich +</td></tr><tr><td>8f8c0243816f16a21dea1c20b5c81bc223088594</td><td></td></tr><tr><td>8f89aed13cb3555b56fccd715753f9ea72f27f05</td><td>Attended End-to-end Architecture for Age <br/>Estimation from Facial Expression Videos </td></tr><tr><td>8f9f599c05a844206b1bd4947d0524234940803d</td><td></td></tr><tr><td>8fd9c22b00bd8c0bcdbd182e17694046f245335f</td><td> <br/>Recognizing Facial Expressions in Videos +</td></tr><tr><td>8a866bc0d925dfd8bb10769b8b87d7d0ff01774d</td><td>WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art +<br/>National Research Council Canada </td></tr><tr><td>8a40b6c75dd6392ee0d3af73cdfc46f59337efa9</td><td></td></tr><tr><td>8a91ad8c46ca8f4310a442d99b98c80fb8f7625f</td><td>2592 <br/>2D Segmentation Using a Robust Active <br/>Shape Model With the EM Algorithm @@ -3545,7 +4649,7 @@ <br/>Detecting Visually Observable Disease <br/>Symptoms from Faces <br/>Open Access -</td></tr><tr><td>7e8016bef2c180238f00eecc6a50eac473f3f138</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +</td></tr><tr><td>7e600faee0ba11467d3f7aed57258b0db0448a72</td><td></td></tr><tr><td>7e8016bef2c180238f00eecc6a50eac473f3f138</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN <br/>Lehrstuhl f¨ur Mensch-Maschine-Kommunikation <br/>Immersive Interactive Data Mining and Machine <br/>Learning Algorithms for Big Data Visualization @@ -3622,7 +4726,10 @@ </td></tr><tr><td>102e374347698fe5404e1d83f441630b1abf62d9</td><td>Facial Image Analysis for Fully-Automatic <br/>Prediction of Difficult Endotracheal Intubation </td></tr><tr><td>100641ed8a5472536dde53c1f50fa2dd2d4e9be9</td><td>Visual Attributes for Enhanced Human-Machine Communication* -</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td></td></tr><tr><td>10e704c82616fb5d9c48e0e68ee86d4f83789d96</td><td></td></tr><tr><td>106732a010b1baf13c61d0994552aee8336f8c85</td><td>Expanded Parts Model for Semantic Description +</td></tr><tr><td>10195a163ab6348eef37213a46f60a3d87f289c5</td><td></td></tr><tr><td>10e704c82616fb5d9c48e0e68ee86d4f83789d96</td><td></td></tr><tr><td>101569eeef2cecc576578bd6500f1c2dcc0274e2</td><td>Multiaccuracy: Black-Box Post-Processing for Fairness in +<br/>Classification +<br/>James Zou +</td></tr><tr><td>106732a010b1baf13c61d0994552aee8336f8c85</td><td>Expanded Parts Model for Semantic Description <br/>of Humans in Still Images </td></tr><tr><td>10e70a34d56258d10f468f8252a7762950830d2b</td><td></td></tr><tr><td>102b27922e9bd56667303f986404f0e1243b68ab</td><td>Wang et al. Appl Inform (2017) 4:13 <br/>DOI 10.1186/s40535-017-0042-5 @@ -3707,6 +4814,9 @@ <br/>Google Inc. <br/>Google Inc. <br/>Google Inc. +</td></tr><tr><td>197c64c36e8a9d624a05ee98b740d87f94b4040c</td><td>Regularized Greedy Column Subset Selection +<br/>aDepartment of Computer Systems, Universidad Polit´ecnica de Madrid +<br/>bDepartment of Applied Mathematics, Universidad Polit´ecnica de Madrid </td></tr><tr><td>19d4855f064f0d53cb851e9342025bd8503922e2</td><td>Learning SURF Cascade for Fast and Accurate Object Detection <br/>Intel Labs China </td></tr><tr><td>19eb486dcfa1963c6404a9f146c378fc7ae3a1df</td><td></td></tr><tr><td>4c6daffd092d02574efbf746d086e6dc0d3b1e91</td><td></td></tr><tr><td>4c6e1840451e1f86af3ef1cb551259cb259493ba</td><td>HAND POSTURE DATASET CREATION FOR GESTURE @@ -3717,7 +4827,7 @@ <br/>38271 Universidad de La Laguna, Spain <br/>Keywords: <br/>Image understanding, Gesture recognition, Hand dataset. -</td></tr><tr><td>4c815f367213cc0fb8c61773cd04a5ca8be2c959</td><td>978-1-4244-4296-6/10/$25.00 ©2010 IEEE +</td></tr><tr><td>4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc</td><td></td></tr><tr><td>4c815f367213cc0fb8c61773cd04a5ca8be2c959</td><td>978-1-4244-4296-6/10/$25.00 ©2010 IEEE <br/>2470 <br/>ICASSP 2010 </td></tr><tr><td>4c4236b62302957052f1bbfbd34dbf71ac1650ec</td><td>SEMI-SUPERVISED FACE RECOGNITION WITH LDA SELF-TRAINING @@ -3749,6 +4859,12 @@ <br/>Interactions <br/>Prepared for: <br/>Office of Naval Research +</td></tr><tr><td>26e570049aaedcfa420fc8c7b761bc70a195657c</td><td>J Sign Process Syst +<br/>DOI 10.1007/s11265-017-1276-0 +<br/>Hybrid Facial Regions Extraction for Micro-expression +<br/>Recognition System +<br/>Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017 +<br/>© Springer Science+Business Media, LLC 2017 </td></tr><tr><td>21ef129c063bad970b309a24a6a18cbcdfb3aff5</td><td>POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE</td></tr><tr><td>218b2c5c9d011eb4432be4728b54e39f366354c1</td><td>Enhancing Training Collections for Image <br/>Annotation: An Instance-Weighted Mixture <br/>Modeling Approach @@ -3796,10 +4912,19 @@ <br/> </td></tr><tr><td>4d2975445007405f8cdcd74b7fd1dd547066f9b8</td><td>Image and Video Processing <br/>for Affective Applications -</td></tr><tr><td>4df889b10a13021928007ef32dc3f38548e5ee56</td><td></td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td></td></tr><tr><td>4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41</td><td></td></tr><tr><td>4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE +</td></tr><tr><td>4df889b10a13021928007ef32dc3f38548e5ee56</td><td></td></tr><tr><td>4d423acc78273b75134e2afd1777ba6d3a398973</td><td></td></tr><tr><td>4db9e5f19366fe5d6a98ca43c1d113dac823a14d</td><td>Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers +<br/>Are 1,000 Features Worth A Picture? +<br/>Department of Computer Science and Center for Human-Computer Interaction +<br/>Virginia Tech, Arlington, VA, USA +</td></tr><tr><td>4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41</td><td></td></tr><tr><td>4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>2352 <br/>ICASSP 2017 -</td></tr><tr><td>4d90bab42806d082e3d8729067122a35bbc15e8d</td><td></td></tr><tr><td>4d0ef449de476631a8d107c8ec225628a67c87f9</td><td>© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE +</td></tr><tr><td>4d90bab42806d082e3d8729067122a35bbc15e8d</td><td></td></tr><tr><td>4d6ad0c7b3cf74adb0507dc886993e603c863e8c</td><td>Human Activity Recognition Based on Wearable +<br/>Sensor Data: A Standardization of the +<br/>State-of-the-Art +<br/>Smart Surveillance Interest Group, Computer Science Department +<br/>Universidade Federal de Minas Gerais, Brazil +</td></tr><tr><td>4d0ef449de476631a8d107c8ec225628a67c87f9</td><td>© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE <br/>must be obtained for all other uses, in any current or future media, including <br/>reprinting/republishing this material for advertising or promotional purposes, <br/>creating new collective works, for resale or redistribution to servers or lists, or @@ -3807,14 +4932,82 @@ <br/>Pre-print of article that appeared at BTAS 2010. <br/>The published article can be accessed from: <br/>http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517 +</td></tr><tr><td>4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f</td><td>Deep multi-frame face super-resolution +<br/>Evgeniya Ustinova, Victor Lempitsky +<br/>October 17, 2017 +</td></tr><tr><td>75879ab7a77318bbe506cb9df309d99205862f6c</td><td>Analysis Of Emotion Recognition From Facial +<br/>Expressions Using Spatial And Transform Domain +<br/>Methods +</td></tr><tr><td>7574f999d2325803f88c4915ba8f304cccc232d1</td><td>Transfer Learning For Cross-Dataset Recognition: A Survey +<br/>This paper summarises and analyses the cross-dataset recognition transfer learning techniques with the +<br/>emphasis on what kinds of methods can be used when the available source and target data are presented +<br/>in different forms for boosting the target task. This paper for the first time summarises several transferring +<br/>criteria in details from the concept level, which are the key bases to guide what kind of knowledge to transfer +<br/>between datasets. In addition, a taxonomy of cross-dataset scenarios and problems is proposed according the +<br/>properties of data that define how different datasets are diverged, thereby review the recent advances on +<br/>each specific problem under different scenarios. Moreover, some real world applications and corresponding +<br/>commonly used benchmarks of cross-dataset recognition are reviewed. Lastly, several future directions are +<br/>identified. +<br/>Additional Key Words and Phrases: Cross-dataset, transfer learning, domain adaptation +<br/>1. INTRODUCTION +<br/>It has been explored how human would transfer learning in one context to another +<br/>similar context [Woodworth and Thorndike 1901; Perkins et al. 1992] in the field of +<br/>Psychology and Education. For example, learning to drive a car helps a person later +<br/>to learn more quickly to drive a truck, and learning mathematics prepares students to +<br/>study physics. The machine learning algorithms are mostly inspired by human brains. +<br/>However, most of them require a huge amount of training examples to learn a new +<br/>model from scratch and fail to apply knowledge learned from previous domains or +<br/>tasks. This may be due to that a basic assumption of statistical learning theory is +<br/>that the training and test data are drawn from the same distribution and belong to +<br/>the same task. Intuitively, learning from scratch is not realistic and practical, because +<br/>it violates how human learn things. In addition, manually labelling a large amount +<br/>of data for new domain or task is labour extensive, especially for the modern “data- +<br/>hungry” and “data-driven” learning techniques (i.e. deep learning). However, the big +<br/>data era provides a huge amount available data collected for other domains and tasks. +<br/>Hence, how to use the previously available data smartly for the current task with +<br/>scarce data will be beneficial for real world applications. +<br/>To reuse the previous knowledge for current tasks, the differences between old data +<br/>and new data need to be taken into account. Take the object recognition as an ex- +<br/>ample. As claimed by Torralba and Efros [2011], despite the great efforts of object +<br/>datasets creators, the datasets appear to have strong build-in bias caused by various +<br/>factors, such as selection bias, capture bias, category or label bias, and negative set +<br/>bias. This suggests that no matter how big the dataset is, it is impossible to cover +<br/>the complexity of the real visual world. Hence, the dataset bias needs to be consid- +<br/>ered before reusing data from previous datasets. Pan and Yang [2010] summarise that +<br/>the differences between different datasets can be caused by domain divergence (i.e. +<br/>distribution shift or feature space difference) or task divergence (i.e. conditional dis- +<br/>tribution shift or label space difference), or both. For example, in visual recognition, +<br/>the distributions between the previous and current data can be discrepant due to the +<br/>different environments, lighting, background, sensor types, resolutions, view angles, +<br/>and post-processing. Those external factors may cause the distribution divergence or +<br/>even feature space divergence between different domains. On the other hand, the task +<br/>divergence between current and previous data is also ubiquitous. For example, it is +<br/>highly possible that an animal species that we want to recognize have not been seen +<br/>ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. </td></tr><tr><td>75e9a141b85d902224f849ea61ab135ae98e7bfb</td><td></td></tr><tr><td>75503aff70a61ff4810e85838a214be484a674ba</td><td>Improved Facial Expression Recognition via Uni-Hyperplane Classification <br/>S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡ </td></tr><tr><td>75cd81d2513b7e41ac971be08bbb25c63c37029a</td><td></td></tr><tr><td>75e5ba7621935b57b2be7bf4a10cad66a9c445b9</td><td></td></tr><tr><td>75859ac30f5444f0d9acfeff618444ae280d661d</td><td>Multibiometric Cryptosystems based on Feature <br/>Level Fusion +</td></tr><tr><td>758d7e1be64cc668c59ef33ba8882c8597406e53</td><td>IEEE TRANSACTIONS ON AFFECTIVE COMPUTING +<br/>AffectNet: A Database for Facial Expression, +<br/>Valence, and Arousal Computing in the Wild +</td></tr><tr><td>754f7f3e9a44506b814bf9dc06e44fecde599878</td><td>Quantized Densely Connected U-Nets for +<br/>Efficient Landmark Localization +</td></tr><tr><td>75249ebb85b74e8932496272f38af274fbcfd696</td><td>Face Identification in Large Galleries +<br/>Smart Surveillance Interest Group, Department of Computer Science +<br/>Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +</td></tr><tr><td>81a142c751bf0b23315fb6717bc467aa4fdfbc92</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE +<br/>1767 +<br/>ICASSP 2017 </td></tr><tr><td>8147ee02ec5ff3a585dddcd000974896cb2edc53</td><td>Angular Embedding: <br/>A Robust Quadratic Criterion <br/>Stella X. Yu, Member, <br/>IEEE +</td></tr><tr><td>8199803f476c12c7f6c0124d55d156b5d91314b6</td><td>The iNaturalist Species Classification and Detection Dataset +<br/>1Caltech +<br/>2Google +<br/>3Cornell Tech +<br/>4iNaturalist </td></tr><tr><td>81831ed8e5b304e9d28d2d8524d952b12b4cbf55</td><td></td></tr><tr><td>81b2a541d6c42679e946a5281b4b9dc603bc171c</td><td>Universit¨at Ulm | 89069 Ulm | Deutschland <br/>Fakult¨at f¨ur Ingenieurwissenschaften und Informatik <br/>Institut f¨ur Neuroinformatik @@ -4084,15 +5277,17 @@ </td></tr><tr><td>86b105c3619a433b6f9632adcf9b253ff98aee87</td><td>1424403677/06/$20.00 ©2006 IEEE <br/>1013 <br/>ICME 2006 -</td></tr><tr><td>86b51bd0c80eecd6acce9fc538f284b2ded5bcdd</td><td></td></tr><tr><td>8699268ee81a7472a0807c1d3b1db0d0ab05f40d</td><td></td></tr><tr><td>72a00953f3f60a792de019a948174bf680cd6c9f</td><td>Stat Comput (2007) 17:57–70 +</td></tr><tr><td>86b51bd0c80eecd6acce9fc538f284b2ded5bcdd</td><td></td></tr><tr><td>8699268ee81a7472a0807c1d3b1db0d0ab05f40d</td><td></td></tr><tr><td>869583b700ecf33a9987447aee9444abfe23f343</td><td></td></tr><tr><td>72a00953f3f60a792de019a948174bf680cd6c9f</td><td>Stat Comput (2007) 17:57–70 <br/>DOI 10.1007/s11222-006-9004-9 <br/>Understanding the role of facial asymmetry in human face <br/>identification <br/>Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007 <br/>C(cid:1) Springer Science + Business Media, LLC 2007 -</td></tr><tr><td>726b8aba2095eef076922351e9d3a724bb71cb51</td><td></td></tr><tr><td>72ecaff8b57023f9fbf8b5b2588f3c7019010ca7</td><td>Facial Keypoints Detection +</td></tr><tr><td>726b8aba2095eef076922351e9d3a724bb71cb51</td><td></td></tr><tr><td>721b109970bf5f1862767a1bec3f9a79e815f79a</td><td></td></tr><tr><td>72ecaff8b57023f9fbf8b5b2588f3c7019010ca7</td><td>Facial Keypoints Detection +</td></tr><tr><td>72591a75469321074b072daff80477d8911c3af3</td><td>Group Component Analysis for Multi-block Data: +<br/>Common and Individual Feature Extraction </td></tr><tr><td>729dbe38538fbf2664bc79847601f00593474b05</td><td></td></tr><tr><td>729a9d35bc291cc7117b924219bef89a864ce62c</td><td>Recognizing Material Properties from Images -</td></tr><tr><td>72c0c8deb9ea6f59fde4f5043bff67366b86bd66</td><td>Age progression in Human Faces : A Survey +</td></tr><tr><td>721d9c387ed382988fce6fa864446fed5fb23173</td><td></td></tr><tr><td>72c0c8deb9ea6f59fde4f5043bff67366b86bd66</td><td>Age progression in Human Faces : A Survey </td></tr><tr><td>445461a34adc4bcdccac2e3c374f5921c93750f8</td><td>Emotional Expression Classification using Time-Series Kernels∗ </td></tr><tr><td>4414a328466db1e8ab9651bf4e0f9f1fe1a163e4</td><td>1164 <br/>© EURASIP, 2010 ISSN 2076-1465 @@ -4110,6 +5305,10 @@ <br/>Eikeo <br/>11 rue Leon Jouhaux, <br/>F-75010, Paris, France +</td></tr><tr><td>44b1399e8569a29eed0d22d88767b1891dbcf987</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +<br/>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +<br/>Learning Multi-modal Latent Attributes +</td></tr><tr><td>446dc1413e1cfaee0030dc74a3cee49a47386355</td><td>Recent Advances in Zero-shot Recognition </td></tr><tr><td>44a3ec27f92c344a15deb8e5dc3a5b3797505c06</td><td>A Taxonomy of Part and Attribute Discovery <br/>Techniques </td></tr><tr><td>44aeda8493ad0d44ca1304756cc0126a2720f07b</td><td>Face Alive Icons @@ -4135,10 +5334,46 @@ <br/>Unknown Institution 2 <br/>Anonymous Author 3 <br/>Unknown Institution 3 -</td></tr><tr><td>2aaa6969c03f435b3ea8431574a91a0843bd320b</td><td></td></tr><tr><td>2ad7cef781f98fd66101fa4a78e012369d064830</td><td></td></tr><tr><td>2ad29b2921aba7738c51d9025b342a0ec770c6ea</td><td></td></tr><tr><td>2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924</td><td></td></tr><tr><td>2ae139b247057c02cda352f6661f46f7feb38e45</td><td>Combining Modality Specific Deep Neural Networks for +</td></tr><tr><td>2aaa6969c03f435b3ea8431574a91a0843bd320b</td><td></td></tr><tr><td>2ad7cef781f98fd66101fa4a78e012369d064830</td><td></td></tr><tr><td>2ad29b2921aba7738c51d9025b342a0ec770c6ea</td><td></td></tr><tr><td>2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924</td><td></td></tr><tr><td>2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c</td><td>Robust Registration and Geometry Estimation from Unstructured +<br/>Facial Scans +</td></tr><tr><td>2ae139b247057c02cda352f6661f46f7feb38e45</td><td>Combining Modality Specific Deep Neural Networks for <br/>Emotion Recognition in Video <br/>1École Polytechique de Montréal, Université de Montréal, Montréal, Canada <br/>2Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada +</td></tr><tr><td>2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83</td><td>121 +<br/>The Effect of Computer-Generated Descriptions +<br/>on Photo-Sharing Experiences of People With +<br/>Visual Impairments +<br/>Like sighted people, visually impaired people want to share photographs on social networking services, but +<br/>find it difficult to identify and select photos from their albums. We aimed to address this problem by +<br/>incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature. We +<br/>interviewed 12 visually impaired participants to understand their photo-sharing experiences and designed a +<br/>photo description feature for the Facebook mobile application. We evaluated this feature with six +<br/>participants in a seven-day diary study. We found that participants used the descriptions to recall and +<br/>organize their photos, but they hesitated to upload photos without a sighted person’s input. In addition to +<br/>basic information about photo content, participants wanted to know more details about salient objects and +<br/>people, and whether the photos reflected their personal aesthetic. We discuss these findings from the lens of +<br/>self-disclosure and self-presentation theories and propose new computer vision research directions that will +<br/>better support visual content sharing by visually impaired people. +<br/>CCS Concepts: • Information interfaces and presentations → Multimedia and information systems; • +<br/>Social and professional topics → People with disabilities +<br/>KEYWORDS +<br/>Visual impairments; computer-generated descriptions; SNSs; photo sharing; self-disclosure; self-presentation +<br/>ACM Reference format: +<br/>The Effect of Computer-Generated Descriptions On Photo-Sharing Experiences of People With Visual +<br/>Impairments. Proc. ACM Hum.-Comput. Interact. 1, CSCW. 121 (November 2017), 22 pages. +<br/>DOI: 10.1145/3134756 +<br/>1 INTRODUCTION +<br/>Sharing memories and experiences via photos is a common way to engage with others on social networking +<br/>services (SNSs) [39,46,51]. For instance, Facebook users uploaded more than 350 million photos a day [24] +<br/>and Twitter, which initially supported only text in tweets, now has more than 28.4% of tweets containing +<br/>images [39]. Visually impaired people (both blind and low vision) have a strong presence on SNS and are +<br/>interested in sharing photos [50]. They take photos for the same reasons that sighted people do: sharing +<br/>daily moments with their sighted friends and family [30,32]. A prior study showed that visually impaired +<br/>people shared a relatively large number of photos on Facebook—only slightly less than their sighted +<br/>counterparts [50]. +<br/> +<br/> PACM on Human-Computer Interaction, Vol. 1, No. 2, Article 121. Publication date: November 2017 </td></tr><tr><td>2a02355c1155f2d2e0cf7a8e197e0d0075437b19</td><td></td></tr><tr><td>2aea27352406a2066ddae5fad6f3f13afdc90be9</td><td></td></tr><tr><td>2ad0ee93d029e790ebb50574f403a09854b65b7e</td><td>Acquiring Linear Subspaces for Face <br/>Recognition under Variable Lighting <br/>David Kriegman, Senior Member, IEEE @@ -4165,7 +5400,9 @@ </td></tr><tr><td>2f16459e2e24dc91b3b4cac7c6294387d4a0eacf</td><td></td></tr><tr><td>2f59f28a1ca3130d413e8e8b59fb30d50ac020e2</td><td>Children Gender Recognition Under Unconstrained <br/>Conditions Based on Contextual Information <br/>Joint Research Centre, European Commission, Ispra, Italy -</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>Names and Faces in the News +</td></tr><tr><td>2f88d3189723669f957d83ad542ac5c2341c37a5</td><td>Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018 +<br/>Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +<br/>Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021.</td></tr><tr><td>2fda164863a06a92d3a910b96eef927269aeb730</td><td>Names and Faces in the News <br/>Computer Science Division <br/>U.C. Berkeley <br/>Berkeley, CA 94720 @@ -4185,7 +5422,7 @@ <br/>Convolutional Neural Network <br/><b></b><br/>Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany <br/>http://www.informatik.uni-hamburg.de/WTM/ -</td></tr><tr><td>2faa09413162b0a7629db93fbb27eda5aeac54ca</td><td>NISTIR 7674 +</td></tr><tr><td>2fea258320c50f36408032c05c54ba455d575809</td><td></td></tr><tr><td>2faa09413162b0a7629db93fbb27eda5aeac54ca</td><td>NISTIR 7674 <br/>Quantifying How Lighting and Focus <br/>Affect Face Recognition Performance <br/>Phillips, P. J. @@ -4229,7 +5466,7 @@ <br/>Anand, INDIA <br/>Anand, INDIA <br/>Anand, INDIA -</td></tr><tr><td>43476cbf2a109f8381b398e7a1ddd794b29a9a16</td><td>A Practical Transfer Learning Algorithm for Face Verification +</td></tr><tr><td>43e268c118ac25f1f0e984b57bc54f0119ded520</td><td></td></tr><tr><td>43476cbf2a109f8381b398e7a1ddd794b29a9a16</td><td>A Practical Transfer Learning Algorithm for Face Verification <br/>David Wipf </td></tr><tr><td>4353d0dcaf450743e9eddd2aeedee4d01a1be78b</td><td>Learning Discriminative LBP-Histogram Bins <br/>for Facial Expression Recognition @@ -4250,6 +5487,9 @@ <br/>Chennai, India <br/>IIT Madras <br/>Chennai, India +</td></tr><tr><td>43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a</td><td>Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl +<br/>Data: 04/05/2018 16:53:32 +<br/>U M CS </td></tr><tr><td>889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7</td><td>174 <br/>Using Support Vector Machines to Enhance the <br/>Performance of Bayesian Face Recognition @@ -4266,6 +5506,9 @@ </td></tr><tr><td>883006c0f76cf348a5f8339bfcb649a3e46e2690</td><td>Weakly Supervised Pain Localization using Multiple Instance Learning </td></tr><tr><td>88f2952535df5859c8f60026f08b71976f8e19ec</td><td>A neural network framework for face <br/>recognition by elastic bunch graph matching +</td></tr><tr><td>8818b12aa0ff3bf0b20f9caa250395cbea0e8769</td><td>Fashion Conversation Data on Instagram +<br/>∗Graduate School of Culture Technology, KAIST, South Korea +<br/>†Department of Communication Studies, UCLA, USA </td></tr><tr><td>8878871ec2763f912102eeaff4b5a2febfc22fbe</td><td>3781 <br/>Human Action Recognition in Unconstrained <br/>Videos by Explicit Motion Modeling @@ -4288,7 +5531,7 @@ <br/>Sarnoff Corporation <br/>201 Washington Rd, <br/>Princeton, NJ, 08540 -</td></tr><tr><td>6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9</td><td></td></tr><tr><td>6b089627a4ea24bff193611e68390d1a4c3b3644</td><td>CROSS-POLLINATION OF NORMALISATION +</td></tr><tr><td>6b333b2c6311e36c2bde920ab5813f8cfcf2b67b</td><td></td></tr><tr><td>6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9</td><td></td></tr><tr><td>6b089627a4ea24bff193611e68390d1a4c3b3644</td><td>CROSS-POLLINATION OF NORMALISATION <br/>TECHNIQUES FROM SPEAKER TO FACE <br/>AUTHENTICATION USING GAUSSIAN <br/>MIXTURE MODELS @@ -4322,6 +5565,8 @@ <br/> OPEN ACCESS <br/>Robust Face Recognition and Tagging in Visual Surveillance <br/>System +</td></tr><tr><td>0750a816858b601c0dbf4cfb68066ae7e788f05d</td><td>CosFace: Large Margin Cosine Loss for Deep Face Recognition +<br/>Tencent AI Lab </td></tr><tr><td>0716e1ad868f5f446b1c367721418ffadfcf0519</td><td>Interactively Guiding Semi-Supervised <br/>Clustering via Attribute-Based Explanations <br/>Virginia Tech, Blacksburg, VA, USA @@ -4354,11 +5599,26 @@ <br/>Algorithm <br/>M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India. <br/>Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India +</td></tr><tr><td>3803b91e784922a2dacd6a18f61b3100629df932</td><td>Temporal Multimodal Fusion +<br/>for Video Emotion Classification in the Wild +<br/>Orange Labs +<br/>Cesson-Sévigné, France +<br/>Orange Labs +<br/>Cesson-Sévigné, France +<br/>Normandie Univ., UNICAEN, +<br/>ENSICAEN, CNRS +<br/>Caen, France +</td></tr><tr><td>38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Multi-distance Support Matrix Machine +<br/>Received: date / Accepted: date </td></tr><tr><td>385750bcf95036c808d63db0e0b14768463ff4c6</td><td></td></tr><tr><td>384f972c81c52fe36849600728865ea50a0c4670</td><td>1 <br/>Multi-Fold Gabor, PCA and ICA Filter <br/>Convolution Descriptor for Face Recognition <br/> -</td></tr><tr><td>38861d0d3a0292c1f54153b303b0d791cbba1d50</td><td></td></tr><tr><td>38192a0f9261d9727b119e294a65f2e25f72d7e6</td><td></td></tr><tr><td>0077cd8f97cafd2b389783858a6e4ab7887b0b6b</td><td>MAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES +</td></tr><tr><td>380d5138cadccc9b5b91c707ba0a9220b0f39271</td><td>Deep Imbalanced Learning for Face Recognition +<br/>and Attribute Prediction +</td></tr><tr><td>38861d0d3a0292c1f54153b303b0d791cbba1d50</td><td></td></tr><tr><td>38192a0f9261d9727b119e294a65f2e25f72d7e6</td><td></td></tr><tr><td>00fb2836068042c19b5197d0999e8e93b920eb9c</td><td></td></tr><tr><td>0077cd8f97cafd2b389783858a6e4ab7887b0b6b</td><td>MAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES <br/>On the Reconstruction of Deep Face Templates </td></tr><tr><td>00214fe1319113e6649435cae386019235474789</td><td>Bachelorarbeit im Fach Informatik <br/>Face Recognition using @@ -4375,7 +5635,7 @@ <br/>Prof. Dr. B. Leibe <br/>Betreuer: <br/>September 2009 -</td></tr><tr><td>00f0ed04defec19b4843b5b16557d8d0ccc5bb42</td><td></td></tr><tr><td>0037bff7be6d463785d4e5b2671da664cd7ef746</td><td>Author manuscript, published in "European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647" +</td></tr><tr><td>0004f72a00096fa410b179ad12aa3a0d10fc853c</td><td></td></tr><tr><td>00f0ed04defec19b4843b5b16557d8d0ccc5bb42</td><td></td></tr><tr><td>0037bff7be6d463785d4e5b2671da664cd7ef746</td><td>Author manuscript, published in "European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647" <br/> DOI : 10.1007/978-3-642-15549-9_46 </td></tr><tr><td>00d9d88bb1bdca35663946a76d807fff3dc1c15f</td><td>Subjects and Their Objects: Localizing Interactees for a <br/>Person-Centric View of Importance @@ -4403,8 +5663,23 @@ <br/>Preserving Structure in Model-Free Tracking </td></tr><tr><td>0059b3dfc7056f26de1eabaafd1ad542e34c2c2e</td><td></td></tr><tr><td>6e198f6cc4199e1c4173944e3df6f39a302cf787</td><td>MORPH-II: Inconsistencies and Cleaning Whitepaper <br/>NSF-REU Site at UNC Wilmington, Summer 2017 -</td></tr><tr><td>6eaf446dec00536858548fe7cc66025b70ce20eb</td><td></td></tr><tr><td>6eba25166fe461dc388805cc2452d49f5d1cdadd</td><td>Pages 122.1-122.12 +</td></tr><tr><td>6eaf446dec00536858548fe7cc66025b70ce20eb</td><td></td></tr><tr><td>6e91be2ad74cf7c5969314b2327b513532b1be09</td><td>Dimensionality Reduction with Subspace Structure +<br/>Preservation +<br/>Department of Computer Science +<br/>SUNY Buffalo +<br/>Buffalo, NY 14260 +</td></tr><tr><td>6eba25166fe461dc388805cc2452d49f5d1cdadd</td><td>Pages 122.1-122.12 <br/>DOI: https://dx.doi.org/10.5244/C.30.122 +</td></tr><tr><td>6e8a81d452a91f5231443ac83e4c0a0db4579974</td><td>Illumination robust face representation based on intrinsic geometrical +<br/>information +<br/>Soyel, H; Ozmen, B; McOwan, PW +<br/>This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET +<br/>Conference on Image Processing (IPR 2012). The version of record is available +<br/>http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1 +<br/>For additional information about this publication click this link. +<br/>http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147 +<br/>Information about this research object was correct at the time of download; we occasionally +<br/>make corrections to records, please therefore check the published record when citing. For </td></tr><tr><td>6ecd4025b7b5f4894c990614a9a65e3a1ac347b2</td><td>International Journal on Recent and Innovation Trends in Computing and Communication <br/> <br/> ISSN: 2321-8169 @@ -4421,6 +5696,11 @@ <br/>Nasik, Maharashtra, India, </td></tr><tr><td>6eaeac9ae2a1697fa0aa8e394edc64f32762f578</td><td></td></tr><tr><td>6ee2ea416382d659a0dddc7a88fc093accc2f8ee</td><td></td></tr><tr><td>6e3a181bf388dd503c83dc324561701b19d37df1</td><td>Finding a low-rank basis in a matrix subspace <br/>Andr´e Uschmajew +</td></tr><tr><td>6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f</td><td>Deep Episodic Memory: Encoding, Recalling, and Predicting +<br/>Episodic Experiences for Robot Action Execution +</td></tr><tr><td>6e911227e893d0eecb363015754824bf4366bdb7</td><td>Wasserstein Divergence for GANs +<br/>1 Computer Vision Lab, ETH Zurich, Switzerland +<br/>2 VISICS, KU Leuven, Belgium </td></tr><tr><td>6ee8a94ccba10062172e5b31ee097c846821a822</td><td>Submitted 3/13; Revised 10/13; Published 12/13 <br/>How to Solve Classification and Regression Problems on <br/>High-Dimensional Data with a Supervised @@ -4558,6 +5838,14 @@ <br/>Using Local Directional Binary Pattern <br/>Electrical Engineering Dept., AmirKabir Univarsity of Technology <br/>Tehran, Iran +</td></tr><tr><td>9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb</td><td>High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs +<br/>1NVIDIA Corporation +<br/>2UC Berkeley +<br/>Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps +<br/>(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can +<br/>change labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also +<br/>allows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road. +<br/>Please visit our website for more side-by-side comparisons as well as interactive editing demos. </td></tr><tr><td>9a7858eda9b40b16002c6003b6db19828f94a6c6</td><td>MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE <br/>(cid:63) UC Berkeley / †ICSI </td></tr><tr><td>9a276c72acdb83660557489114a494b86a39f6ff</td><td>Emotion Classification through Lower Facial Expressions using Adaptive @@ -4565,7 +5853,16 @@ <br/>Department of Information Technology, Faculty of Industrial Technology and Management, </td></tr><tr><td>9a42c519f0aaa68debbe9df00b090ca446d25bc4</td><td>Face Recognition via Centralized Coordinate <br/>Learning -</td></tr><tr><td>36b40c75a3e53c633c4afb5a9309d10e12c292c7</td><td></td></tr><tr><td>365f67fe670bf55dc9ccdcd6888115264b2a2c56</td><td></td></tr><tr><td>36fe39ed69a5c7ff9650fd5f4fe950b5880760b0</td><td>Tracking von Gesichtsmimik +</td></tr><tr><td>9aad8e52aff12bd822f0011e6ef85dfc22fe8466</td><td>Temporal-Spatial Mapping for Action Recognition +</td></tr><tr><td>36b40c75a3e53c633c4afb5a9309d10e12c292c7</td><td></td></tr><tr><td>3646b42511a6a0df5470408bc9a7a69bb3c5d742</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015 +<br/>Detection of Facial Parts based on ABLATA +<br/>Technical Campus, Bhilai +<br/>Vikas Singh +<br/>Technical Campus, Bhilai +<br/>Abha Choubey +<br/>Technical Campus, Bhilai +</td></tr><tr><td>365f67fe670bf55dc9ccdcd6888115264b2a2c56</td><td></td></tr><tr><td>36fe39ed69a5c7ff9650fd5f4fe950b5880760b0</td><td>Tracking von Gesichtsmimik <br/>mit Hilfe von Gitterstrukturen <br/>zur Klassifikation von schmerzrelevanten Action <br/>Units @@ -4605,6 +5902,33 @@ <br/>network using constructive training algorithm <br/>Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014 <br/>© Springer Science+Business Media New York 2014 +</td></tr><tr><td>3674f3597bbca3ce05e4423611d871d09882043b</td><td>ISSN 1796-2048 +<br/>Volume 7, Number 4, August 2012 +<br/>Contents +<br/>Special Issue: Multimedia Contents Security in Social Networks Applications +<br/>Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran +<br/>Guest Editorial +<br/>Zhiyong Zhang and Muthucumaru Maheswaran +<br/>SPECIAL ISSUE PAPERS +<br/>DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding +<br/>Gang Wang and Xiao-lin Gui +<br/>Block-Based Parallel Intra Prediction Scheme for HEVC +<br/>Jie Jiang, Baolong, Wei Mo, and Kefeng Fan +<br/>Optimized LSB Matching Steganography Based on Fisher Information +<br/>Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao +<br/>A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform +<br/>Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo +<br/>Stego Key Estimation in LSB Steganography +<br/>Jing Liu and Guangming Tang +<br/>REGULAR PAPERS +<br/>Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions +<br/>277 +<br/>279 +<br/>289 +<br/>295 +<br/>303 +<br/>309 +<br/>314 </td></tr><tr><td>362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE <br/>2792 <br/>ICASSP 2016 @@ -4624,10 +5948,19 @@ <br/>ICIP 2013 </td></tr><tr><td>5c473cfda1d7c384724fbb139dfe8cb39f79f626</td><td></td></tr><tr><td>5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0</td><td>2132 <br/>Reference Face Graph for Face Recognition +</td></tr><tr><td>5c35ac04260e281141b3aaa7bbb147032c887f0c</td><td>Face Detection and Tracking Control with Omni Car +<br/>CS 231A Final Report +<br/>June 31, 2016 </td></tr><tr><td>5c717afc5a9a8ccb1767d87b79851de8d3016294</td><td>978-1-4673-0046-9/12/$26.00 ©2012 IEEE <br/>1845 <br/>ICASSP 2012 -</td></tr><tr><td>0952ac6ce94c98049d518d29c18d136b1f04b0c0</td><td></td></tr><tr><td>09718bf335b926907ded5cb4c94784fd20e5ccd8</td><td>875 +</td></tr><tr><td>0952ac6ce94c98049d518d29c18d136b1f04b0c0</td><td></td></tr><tr><td>09137e3c267a3414314d1e7e4b0e3a4cae801f45</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Two Birds with One Stone: Transforming and Generating +<br/>Facial Images with Iterative GAN +<br/>Received: date / Accepted: date +</td></tr><tr><td>09926ed62511c340f4540b5bc53cf2480e8063f8</td><td>Action Tubelet Detector for Spatio-Temporal Action Localization +</td></tr><tr><td>09718bf335b926907ded5cb4c94784fd20e5ccd8</td><td>875 <br/>Recognizing Partially Occluded, Expression Variant <br/>Faces From Single Training Image per Person <br/>With SOM and Soft k-NN Ensemble @@ -4691,6 +6024,23 @@ <br/>An Empirical Study of Context in Object Detection <br/>Anonymous CVPR submission <br/>Paper ID 987 +</td></tr><tr><td>09df62fd17d3d833ea6b5a52a232fc052d4da3f5</td><td>ISSN: 1405-5546 +<br/>Instituto Politécnico Nacional +<br/>México +<br/> +<br/>Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez, +<br/>Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J. +<br/>Mejora de Contraste y Compensación en Cambios de la Iluminación +<br/>Instituto Politécnico Nacional +<br/>Distrito Federal, México +<br/>Disponible en: http://www.redalyc.org/articulo.oa?id=61509703 +<br/> Cómo citar el artículo +<br/> Número completo +<br/> Más información del artículo +<br/> Página de la revista en redalyc.org +<br/>Sistema de Información Científica +<br/>Red de Revistas Científicas de América Latina, el Caribe, España y Portugal +<br/>Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto </td></tr><tr><td>097104fc731a15fad07479f4f2c4be2e071054a2</td><td></td></tr><tr><td>09f853ce12f7361c4b50c494df7ce3b9fad1d221</td><td>myjournal manuscript No. <br/>(will be inserted by the editor) <br/>Random forests for real time 3D face analysis @@ -4715,7 +6065,15 @@ <br/>Facial Emotions <br/>School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia </td></tr><tr><td>5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf</td><td>Robust Registration of Dynamic Facial Sequences -</td></tr><tr><td>5dcf78de4d3d867d0fd4a3105f0defae2234b9cb</td><td></td></tr><tr><td>5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e</td><td>Face Recognition Algorithms +</td></tr><tr><td>5dcf78de4d3d867d0fd4a3105f0defae2234b9cb</td><td></td></tr><tr><td>5db4fe0ce9e9227042144758cf6c4c2de2042435</td><td>INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010 +<br/>Recognition of Facial Expression Using Haar +<br/>Wavelet Transform +<br/>for +<br/>paper +<br/>features +<br/>investigates +<br/> +</td></tr><tr><td>5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e</td><td>Face Recognition Algorithms <br/>June 16, 2010 <br/>Ion Marqu´es <br/>Supervisor: @@ -4801,7 +6159,9 @@ <br/>filters with improved performance in terms of several competing <br/>metrics, a search and optimization strategy is required to auto- <br/>matically choose the set of training templates. -</td></tr><tr><td>5d01283474b73a46d80745ad0cc0c4da14aae194</td><td></td></tr><tr><td>5d197c8cd34473eb6cde6b65ced1be82a3a1ed14</td><td><b>AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The"CAS-PEAL","FERET","CMUPIE",and"YaleB"databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The"HarvardRL","CMUPIE"and"YaleB"databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe"BANCA",and"NDHID"databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com</b></td></tr><tr><td>31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a</td><td></td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td></td></tr><tr><td>31c0968fb5f587918f1c49bf7fa51453b3e89cf7</td><td>Deep Transfer Learning for Person Re-identification +</td></tr><tr><td>5d01283474b73a46d80745ad0cc0c4da14aae194</td><td></td></tr><tr><td>5d197c8cd34473eb6cde6b65ced1be82a3a1ed14</td><td><b>AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The"CAS-PEAL","FERET","CMUPIE",and"YaleB"databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The"HarvardRL","CMUPIE"and"YaleB"databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe"BANCA",and"NDHID"databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com</b></td></tr><tr><td>31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a</td><td></td></tr><tr><td>31b05f65405534a696a847dd19c621b7b8588263</td><td></td></tr><tr><td>318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a</td><td>Sparsity in Dynamics of Spontaneous +<br/>Subtle Emotions: Analysis & Application +</td></tr><tr><td>31c0968fb5f587918f1c49bf7fa51453b3e89cf7</td><td>Deep Transfer Learning for Person Re-identification </td></tr><tr><td>31e57fa83ac60c03d884774d2b515813493977b9</td><td></td></tr><tr><td>316e67550fbf0ba54f103b5924e6537712f06bee</td><td>Multimodal semi-supervised learning <br/>for image classification <br/>LEAR team, INRIA Grenoble, France @@ -4827,7 +6187,11 @@ <br/>Publisher: Springer <br/>http://link.springer.com/content/pdf/10.1007%2F978-3- <br/>642-04146-4_50.pdf -</td></tr><tr><td>91883dabc11245e393786d85941fb99a6248c1fb</td><td></td></tr><tr><td>91b1a59b9e0e7f4db0828bf36654b84ba53b0557</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +</td></tr><tr><td>91883dabc11245e393786d85941fb99a6248c1fb</td><td></td></tr><tr><td>917bea27af1846b649e2bced624e8df1d9b79d6f</td><td>Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for +<br/>Mobile and Embedded Applications +<br/>Gyrfalcon Technology Inc. +<br/>1900 McCarthy Blvd. Milpitas, CA 95035 +</td></tr><tr><td>91b1a59b9e0e7f4db0828bf36654b84ba53b0557</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI <br/>> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < <br/> <br/>Simultaneous Hallucination and Recognition of @@ -4835,10 +6199,17 @@ <br/>Decomposition <br/>(SVD) <br/>for performing both +</td></tr><tr><td>911bef7465665d8b194b6b0370b2b2389dfda1a1</td><td>RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW +<br/>Learning Human Optical Flow +<br/>1 MPI for Intelligent Systems +<br/>Tübingen, Germany +<br/>2 Amazon Inc. +</td></tr><tr><td>91ead35d1d2ff2ea7cf35d15b14996471404f68d</td><td>Combining and Steganography of 3D Face Textures </td></tr><tr><td>919d0e681c4ef687bf0b89fe7c0615221e9a1d30</td><td></td></tr><tr><td>912a6a97af390d009773452814a401e258b77640</td><td></td></tr><tr><td>91d513af1f667f64c9afc55ea1f45b0be7ba08d4</td><td>Automatic Face Image Quality Prediction </td></tr><tr><td>918b72a47b7f378bde0ba29c908babf6dab6f833</td><td></td></tr><tr><td>91e58c39608c6eb97b314b0c581ddaf7daac075e</td><td>Pixel-wise Ear Detection with Convolutional <br/>Encoder-Decoder Networks -</td></tr><tr><td>91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0</td><td></td></tr><tr><td>915d4a0fb523249ecbc88eb62cb150a60cf60fa0</td><td>Comparison of Feature Extraction Techniques in Automatic +</td></tr><tr><td>91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0</td><td></td></tr><tr><td>9131c990fad219726eb38384976868b968ee9d9c</td><td>Deep Facial Expression Recognition: A Survey +</td></tr><tr><td>915d4a0fb523249ecbc88eb62cb150a60cf60fa0</td><td>Comparison of Feature Extraction Techniques in Automatic <br/>Face Recognition Systems for Security Applications <br/>S . Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez <br/>Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain @@ -4901,7 +6272,7 @@ <br/>for Visual Recognition <br/>Doctoral Thesis <br/>Stockholm, Sweden, 2017 -</td></tr><tr><td>65817963194702f059bae07eadbf6486f18f4a0a</td><td>http://dx.doi.org/10.1007/s11263-015-0814-0 +</td></tr><tr><td>656f05741c402ba43bb1b9a58bcc5f7ce2403d9a</td><td></td></tr><tr><td>65817963194702f059bae07eadbf6486f18f4a0a</td><td>http://dx.doi.org/10.1007/s11263-015-0814-0 <br/>WhittleSearch: Interactive Image Search with Relative Attribute <br/>Feedback <br/>Received: date / Accepted: date @@ -4925,6 +6296,9 @@ <br/>Technische Universität München <br/>KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft <br/>www.kit.edu +</td></tr><tr><td>65babb10e727382b31ca5479b452ee725917c739</td><td>Label Distribution Learning +</td></tr><tr><td>62dccab9ab715f33761a5315746ed02e48eed2a0</td><td>A Short Note about Kinetics-600 +<br/>Jo˜ao Carreira </td></tr><tr><td>62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4</td><td>Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 <br/>DOI 10.1186/s13640-017-0188-z <br/>EURASIP Journal on Image @@ -4939,7 +6313,77 @@ <br/>for Mathematics <br/>Huerta-Pacheco1 <br/>*Corresponding author -</td></tr><tr><td>6257a622ed6bd1b8759ae837b50580657e676192</td><td></td></tr><tr><td>620e1dbf88069408b008347cd563e16aeeebeb83</td><td></td></tr><tr><td>62a30f1b149843860938de6dd6d1874954de24b7</td><td>418 +</td></tr><tr><td>620339aef06aed07a78f9ed1a057a25433faa58b</td><td></td></tr><tr><td>62b3598b401c807288a113796f424612cc5833ca</td><td></td></tr><tr><td>628a3f027b7646f398c68a680add48c7969ab1d9</td><td>Plan for Final Year Project: +<br/>HKU-Face: A Large Scale Dataset for Deep Face +<br/>Recognition +<br/>3035140108 +<br/>3035141841 +<br/>Introduction +<br/>Face recognition has been one of the most successful techniques in the field of artificial intelligence +<br/>because of its surpassing human-level performance in academic experiments and broad application in +<br/>the industrial world. Gaussian-face[1] and Facenet[2] hold state-of-the-art record using statistical +<br/>method and deep-learning method respectively. What’s more, face recognition has been applied +<br/>in various areas like authority checking and recording, fostering a large number of start-ups like +<br/>Face++. +<br/>Our final year project will deal with the face recognition task by building a large-scaled and carefully- +<br/>filtered dataset. Our project plan specifies our roadmap and current research process. This plan first +<br/>illustrates the significance and potential enhancement in constructing large-scale face dataset for +<br/>both academics and companies. Then objectives to accomplish and related literature review will be +<br/>expressed in detail. Next, methodologies used, scope of our project and challenges faced by us are +<br/>described. The detailed timeline for this project follows as well as a small summary. +<br/>2 Motivation +<br/>Nowadays most of the face recognition tasks are supervised learning tasks which use dataset annotated +<br/>by human beings. This contains mainly two drawbacks: (1) limited size of dataset due to limited +<br/>human effort; (2) accuracy problem resulted from human perceptual bias. +<br/>Parkhi et al.[3] discuss the first problem, showing that giant companies hold private face databases +<br/>with larger size of data (See the comparison in Table 1). Other research institution could only get +<br/>access to public but smaller databases like LFW[4, 5], which acts like a barricade to even higher +<br/>performance. +<br/>Dataset +<br/>IJB-A [6] +<br/>LFW [4, 5] +<br/>YFD [7] +<br/>CelebFaces [8] +<br/>CASIA-WebFace [9] +<br/>MS-Celeb-1M [10] +<br/>Facebook +<br/>Google +<br/>Availability +<br/>public +<br/>public +<br/>public +<br/>public +<br/>public +<br/>public +<br/>private +<br/>private +<br/>identities +<br/>500 +<br/>5K +<br/>1595 +<br/>10K +<br/>10K +<br/>100K +<br/>4K +<br/>8M +<br/>images +<br/>5712 +<br/>13K +<br/>3425 videos +<br/>202K +<br/>500K +<br/>about 10M +<br/>4400K +<br/>100-200M +<br/>Table 1: Face recognition datasets +</td></tr><tr><td>6257a622ed6bd1b8759ae837b50580657e676192</td><td></td></tr><tr><td>626859fe8cafd25da13b19d44d8d9eb6f0918647</td><td>Activity Recognition based on a +<br/>Magnitude-Orientation Stream Network +<br/>Smart Surveillance Interest Group, Department of Computer Science +<br/>Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +</td></tr><tr><td>620e1dbf88069408b008347cd563e16aeeebeb83</td><td></td></tr><tr><td>62007c30f148334fb4d8975f80afe76e5aef8c7f</td><td>Eye In-Painting with Exemplar Generative Adversarial Networks +<br/>Facebook Inc. +<br/>1 Hacker Way, Menlo Park (CA), USA +</td></tr><tr><td>62a30f1b149843860938de6dd6d1874954de24b7</td><td>418 <br/>Fast Algorithm for Updating the Discriminant Vectors <br/>of Dual-Space LDA </td></tr><tr><td>62e0380a86e92709fe2c64e6a71ed94d152c6643</td><td>Facial Emotion Recognition With Expression Energy @@ -4976,6 +6420,12 @@ <br/>Still Images </td></tr><tr><td>964a3196d44f0fefa7de3403849d22bbafa73886</td><td></td></tr><tr><td>9606b1c88b891d433927b1f841dce44b8d3af066</td><td>Principal Component Analysis with Tensor Train <br/>Subspace +</td></tr><tr><td>96b1000031c53cd4c1c154013bb722ffd87fa7da</td><td>ContextVP: Fully Context-Aware Video +<br/>Prediction +<br/>1 NVIDIA, Santa Clara, CA, USA +<br/>2 ETH Zurich, Zurich, Switzerland +<br/>3 The Swiss AI Lab IDSIA, Manno, Switzerland +<br/>4 NNAISENSE, Lugano, Switzerland </td></tr><tr><td>968f472477a8afbadb5d92ff1b9c7fdc89f0c009</td><td>Firefly-based Facial Expression Recognition </td></tr><tr><td>9636c7d3643fc598dacb83d71f199f1d2cc34415</td><td></td></tr><tr><td>3a2fc58222870d8bed62442c00341e8c0a39ec87</td><td>Probabilistic Local Variation <br/>Segmentation @@ -4989,6 +6439,10 @@ </td></tr><tr><td>3a0a839012575ba455f2b84c2d043a35133285f9</td><td>444 <br/>Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454, <br/>Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics +</td></tr><tr><td>3a9681e2e07be7b40b59c32a49a6ff4c40c962a2</td><td>Biometrics & Biostatistics International Journal +<br/>Comparing treatment means: overlapping standard +<br/>errors, overlapping confidence intervals, and tests of +<br/>hypothesis </td></tr><tr><td>3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e</td><td>in any current or <br/>future media, <br/>for all other uses, @@ -5014,6 +6468,8 @@ <br/>Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 <br/> BE, DSCE, Bangalore1 <br/>Assistant Professor, DSCE, Bangalore2 +</td></tr><tr><td>54969bcd728b0f2d3285866c86ef0b4797c2a74d</td><td>IEEE TRANSACTION SUBMISSION +<br/>Learning for Video Compression </td></tr><tr><td>5456166e3bfe78a353df988897ec0bd66cee937f</td><td>Improved Boosting Performance by Exclusion <br/>of Ambiguous Positive Examples <br/>Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden @@ -5056,7 +6512,7 @@ <br/> M.Tech (CSE) <br/> VKIT, Bangalore- 560040 <br/>BANGALORE, INDIA -</td></tr><tr><td>5334ac0a6438483890d5eef64f6db93f44aacdf4</td><td></td></tr><tr><td>539ca9db570b5e43be0576bb250e1ba7a727d640</td><td></td></tr><tr><td>53c8cbc4a3a3752a74f79b74370ed8aeed97db85</td><td></td></tr><tr><td>5366573e96a1dadfcd4fd592f83017e378a0e185</td><td>Böhlen, Chandola and Salunkhe +</td></tr><tr><td>5334ac0a6438483890d5eef64f6db93f44aacdf4</td><td></td></tr><tr><td>53dd25350d3b3aaf19beb2104f1e389e3442df61</td><td></td></tr><tr><td>530243b61fa5aea19b454b7dbcac9f463ed0460e</td><td></td></tr><tr><td>539ca9db570b5e43be0576bb250e1ba7a727d640</td><td></td></tr><tr><td>53c8cbc4a3a3752a74f79b74370ed8aeed97db85</td><td></td></tr><tr><td>5366573e96a1dadfcd4fd592f83017e378a0e185</td><td>Böhlen, Chandola and Salunkhe <br/>Server, server in the cloud. <br/>Who is the fairest in the crowd? </td></tr><tr><td>533bfb82c54f261e6a2b7ed7d31a2fd679c56d18</td><td>Technical Report MSU-CSE-14-1 @@ -5084,9 +6540,17 @@ <br/>1 Center for Research in Computer Vision at UCF, Orlando, USA <br/>2 Google Research, Mountain View, USA <br/>http://crcv.ucf.edu/projects/DaMN/ +</td></tr><tr><td>3fb98e76ffd8ba79e1c22eda4d640da0c037e98a</td><td>Convolutional Neural Networks for Crop Yield Prediction using Satellite Images +<br/>H. Russello </td></tr><tr><td>3f5cf3771446da44d48f1d5ca2121c52975bb3d3</td><td></td></tr><tr><td>3f14b504c2b37a0e8119fbda0eff52efb2eb2461</td><td>5727 <br/>Joint Facial Action Unit Detection and Feature <br/>Fusion: A Multi-Conditional Learning Approach +</td></tr><tr><td>3f9a7d690db82cf5c3940fbb06b827ced59ec01e</td><td>VIP: Finding Important People in Images +<br/>Virginia Tech +<br/>Google Inc. +<br/>Virginia Tech +<br/>Project: https://computing.ece.vt.edu/~mclint/vip/ +<br/>Demo: http://cloudcv.org/vip/ </td></tr><tr><td>3fd90098551bf88c7509521adf1c0ba9b5dfeb57</td><td>Page 1 of 21 <br/>*****For Peer Review Only***** <br/>10 @@ -5154,6 +6618,7 @@ <br/>Ali Pazandeh <br/>Sharif UTech <br/>ESAT-KU Leuven, ETH Zurich +</td></tr><tr><td>30870ef75aa57e41f54310283c0057451c8c822b</td><td>Overcoming Catastrophic Forgetting with Hard Attention to the Task </td></tr><tr><td>303065c44cf847849d04da16b8b1d9a120cef73a</td><td></td></tr><tr><td>3046baea53360a8c5653f09f0a31581da384202e</td><td>Deformable Face Alignment via Local <br/>Measurements and Global Constraints </td></tr><tr><td>3028690d00bd95f20842d4aec84dc96de1db6e59</td><td>Leveraging Union of Subspace Structure to Improve Constrained Clustering @@ -5169,15 +6634,22 @@ <br/>IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY <br/>Unconstrained Face Recognition Using A Set-to-Set <br/>Distance Measure -</td></tr><tr><td>304a306d2a55ea41c2355bd9310e332fa76b3cb0</td><td></td></tr><tr><td>5e28673a930131b1ee50d11f69573c17db8fff3e</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +</td></tr><tr><td>304a306d2a55ea41c2355bd9310e332fa76b3cb0</td><td></td></tr><tr><td>5e7e055ef9ba6e8566a400a8b1c6d8f827099553</td><td></td></tr><tr><td>5e28673a930131b1ee50d11f69573c17db8fff3e</td><td>Author manuscript, published in "Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France <br/>(2008)" </td></tr><tr><td>5e6ba16cddd1797853d8898de52c1f1f44a73279</td><td>Face Identification with Second-Order Pooling </td></tr><tr><td>5e821cb036010bef259046a96fe26e681f20266e</td><td></td></tr><tr><td>5bfc32d9457f43d2488583167af4f3175fdcdc03</td><td>International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 <br/>Local Gray Code Pattern (LGCP): A Robust <br/>Feature Descriptor for Facial Expression <br/>Recognition +</td></tr><tr><td>5ba7882700718e996d576b58528f1838e5559225</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE +<br/>Transactions on Affective Computing +<br/>IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016 +<br/>Predicting Personalized Image Emotion +<br/>Perceptions in Social Networks </td></tr><tr><td>5bb684dfe64171b77df06ba68997fd1e8daffbe1</td><td></td></tr><tr><td>5bae9822d703c585a61575dced83fa2f4dea1c6d</td><td>MOTChallenge 2015: <br/>Towards a Benchmark for Multi-Target Tracking +</td></tr><tr><td>5babbad3daac5c26503088782fd5b62067b94fa5</td><td>Are You Sure You Want To Do That? +<br/>Classification with Verification </td></tr><tr><td>5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65</td><td>Evolving Systems. manuscript No. <br/>(will be inserted by the editor) <br/>An evolving spatio-temporal approach for gender and age @@ -5190,7 +6662,7 @@ <br/>IIIT-Delhi, New Delhi, India <br/>Article history: <br/>Received 29 March 2017 -</td></tr><tr><td>5be3cc1650c918da1c38690812f74573e66b1d32</td><td>Relative Parts: Distinctive Parts for Learning Relative Attributes +</td></tr><tr><td>5b2cfee6e81ef36507ebf3c305e84e9e0473575a</td><td></td></tr><tr><td>5be3cc1650c918da1c38690812f74573e66b1d32</td><td>Relative Parts: Distinctive Parts for Learning Relative Attributes <br/>Center for Visual Information Technology, IIIT Hyderabad, India - 500032 </td></tr><tr><td>5b0ebb8430a04d9259b321fc3c1cc1090b8e600e</td><td></td></tr><tr><td>3765c26362ad1095dfe6744c6d52494ea106a42c</td><td></td></tr><tr><td>3727ac3d50e31a394b200029b2c350073c1b69e3</td><td></td></tr><tr><td>37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e</td><td>WACV <br/>#394 @@ -5310,6 +6782,16 @@ <br/>sagepub.co.uk/journalsPermissions.nav <br/>DOI: 10.1177/ToBeAssigned <br/>www.sagepub.com/ +</td></tr><tr><td>08f4832507259ded9700de81f5fd462caf0d5be8</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 118 – No.14, May 2015 +<br/>Geometric Approach for Human Emotion +<br/>Recognition using Facial Expression +<br/>S. S. Bavkar +<br/>Assistant Professor +<br/>J. S. Rangole +<br/>Assistant Professor +<br/>V. U. Deshmukh +<br/>Assistant Professor </td></tr><tr><td>08d40ee6e1c0060d3b706b6b627e03d4b123377a</td><td>Human Action Localization <br/>with Sparse Spatial Supervision </td></tr><tr><td>08c1f8f0e69c0e2692a2d51040ef6364fb263a40</td><td></td></tr><tr><td>088aabe3da627432fdccf5077969e3f6402f0a80</td><td>Under review as a conference paper at ICLR 2018 @@ -5317,6 +6799,7 @@ <br/>OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER <br/>Anonymous authors <br/>Paper under double-blind review +</td></tr><tr><td>08903bf161a1e8dec29250a752ce9e2a508a711c</td><td>Joint Dimensionality Reduction and Metric Learning: A Geometric Take </td></tr><tr><td>08e24f9df3d55364290d626b23f3d42b4772efb6</td><td>ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION <br/>FUSION <br/>I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1 @@ -5325,7 +6808,13 @@ <br/>web: http://www.aiia.csd.auth.gr <br/>38031 Grenoble, France <br/>web: http://www.lis.inpg.fr -</td></tr><tr><td>0830c9b9f207007d5e07f5269ffba003235e4eff</td><td></td></tr><tr><td>081fb4e97d6bb357506d1b125153111b673cc128</td><td></td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>Understanding Kin Relationships in a Photo +</td></tr><tr><td>0830c9b9f207007d5e07f5269ffba003235e4eff</td><td></td></tr><tr><td>081fb4e97d6bb357506d1b125153111b673cc128</td><td></td></tr><tr><td>0857281a3b6a5faba1405e2c11f4e17191d3824d</td><td>Chude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102 +<br/>http://asp.eurasipjournals.com/content/2014/1/102 +<br/>R ES EAR CH +<br/>Face recognition via edge-based Gabor feature +<br/>representation for plastic surgery-altered images +<br/>Open Access +</td></tr><tr><td>08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7</td><td>Understanding Kin Relationships in a Photo </td></tr><tr><td>082ad50ac59fc694ba4369d0f9b87430553b11db</td><td></td></tr><tr><td>6dd052df6b0e89d394192f7f2af4a3e3b8f89875</td><td>International Journal of Engineering and Advanced Technology (IJEAT) <br/>ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 <br/>A literature survey on Facial Expression @@ -5335,7 +6824,12 @@ <br/>vol. 7 (2014), pp. 25-40 <br/>A Survey on Newer Prospective <br/>Biometric Authentication Modalities -</td></tr><tr><td>6d10beb027fd7213dd4bccf2427e223662e20b7d</td><td></td></tr><tr><td>6de18708218988b0558f6c2f27050bb4659155e4</td><td></td></tr><tr><td>6d91da37627c05150cb40cac323ca12a91965759</td><td></td></tr><tr><td>6d66c98009018ac1512047e6bdfb525c35683b16</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003 +</td></tr><tr><td>6d10beb027fd7213dd4bccf2427e223662e20b7d</td><td></td></tr><tr><td>6dddf1440617bf7acda40d4d75c7fb4bf9517dbb</td><td>JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY +<br/>Beyond Counting: Comparisons of Density Maps for Crowd +<br/>Analysis Tasks - Counting, Detection, and Tracking +</td></tr><tr><td>6de18708218988b0558f6c2f27050bb4659155e4</td><td></td></tr><tr><td>6d91da37627c05150cb40cac323ca12a91965759</td><td></td></tr><tr><td>6d8c9a1759e7204eacb4eeb06567ad0ef4229f93</td><td>Face Alignment Robust to Pose, Expressions and +<br/>Occlusions +</td></tr><tr><td>6d66c98009018ac1512047e6bdfb525c35683b16</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003 <br/>1063 <br/>Face Recognition Based on <br/>Fitting a 3D Morphable Model @@ -5389,10 +6883,17 @@ <br/>been used in the TRECVID video retrieval series. <br/>We took the LSCOM CYC ontology dated 2006-06-30, <br/>which contains 2832 unique categories. We removed +</td></tr><tr><td>01c4cf9c7c08f0ad3f386d88725da564f3c54679</td><td>Interpretability Beyond Feature Attribution: +<br/>Quantitative Testing with Concept Activation Vectors (TCAV) </td></tr><tr><td>017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637</td><td>FACE RECOGNITION WITH HARMONIC DE-LIGHTING <br/>2ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 <br/>1Graduate School, CAS, Beijing, China, 100080 <br/>Emails: {lyqing, sgshan, wgao}jdl.ac.cn +</td></tr><tr><td>014e3d0fa5248e6f4634dc237e2398160294edce</td><td>Int J Comput Vis manuscript No. +<br/>(will be inserted by the editor) +<br/>What does 2D geometric information really tell us about +<br/>3D face shape? +<br/>Received: date / Accepted: date </td></tr><tr><td>01beab8f8293a30cf48f52caea6ca0fb721c8489</td><td></td></tr><tr><td>0178929595f505ef7655272cc2c339d7ed0b9507</td><td></td></tr><tr><td>01b4b32c5ef945426b0396d32d2a12c69c282e29</td><td></td></tr><tr><td>0113b302a49de15a1d41ca4750191979ad756d2f</td><td>1424403677/06/$20.00 ©2006 IEEE <br/>537 <br/>ICME 2006 @@ -5533,6 +7034,8 @@ <br/>Face Recognition </td></tr><tr><td>06262d14323f9e499b7c6e2a3dec76ad9877ba04</td><td>Real-Time Pose Estimation Piggybacked on Object Detection <br/>Brno, Czech Republic +</td></tr><tr><td>062c41dad67bb68fefd9ff0c5c4d296e796004dc</td><td>Temporal Generative Adversarial Nets with Singular Value Clipping +<br/>Preferred Networks inc., Japan </td></tr><tr><td>06400a24526dd9d131dfc1459fce5e5189b7baec</td><td>Event Recognition in Photo Collections with a Stopwatch HMM <br/>1Computer Vision Lab <br/>ETH Z¨urich, Switzerland @@ -5560,6 +7063,9 @@ <br/>Activity Analysis </td></tr><tr><td>06ad99f19cf9cb4a40741a789e4acbf4433c19ae</td><td>SenTion: A framework for Sensing Facial <br/>Expressions +</td></tr><tr><td>6c304f3b9c3a711a0cca5c62ce221fb098dccff0</td><td>Attentive Semantic Video Generation using Captions +<br/>IIT Hyderabad +<br/>IIT Hyderabad </td></tr><tr><td>6c2b392b32b2fd0fe364b20c496fcf869eac0a98</td><td>DOI 10.1007/s00138-012-0423-7 <br/>ORIGINAL PAPER <br/>Fully automatic face recognition framework based @@ -5583,7 +7089,8 @@ <br/>by <br/>David Lieh-Chiang Chen <br/>2012 -</td></tr><tr><td>39ce143238ea1066edf0389d284208431b53b802</td><td></td></tr><tr><td>39ce2232452c0cd459e32a19c1abe2a2648d0c3f</td><td></td></tr><tr><td>3998c5aa6be58cce8cb65a64cb168864093a9a3e</td><td></td></tr><tr><td>397aeaea61ecdaa005b09198942381a7a11cd129</td><td></td></tr><tr><td>39b22bcbd452d5fea02a9ee63a56c16400af2b83</td><td></td></tr><tr><td>399a2c23bd2592ebe20aa35a8ea37d07c14199da</td><td></td></tr><tr><td>3986161c20c08fb4b9b791b57198b012519ea58b</td><td>International Journal of Soft Computing and Engineering (IJSCE) +</td></tr><tr><td>39ce143238ea1066edf0389d284208431b53b802</td><td></td></tr><tr><td>39ce2232452c0cd459e32a19c1abe2a2648d0c3f</td><td></td></tr><tr><td>3998c5aa6be58cce8cb65a64cb168864093a9a3e</td><td></td></tr><tr><td>397aeaea61ecdaa005b09198942381a7a11cd129</td><td></td></tr><tr><td>39b22bcbd452d5fea02a9ee63a56c16400af2b83</td><td></td></tr><tr><td>399a2c23bd2592ebe20aa35a8ea37d07c14199da</td><td></td></tr><tr><td>39c8b34c1b678235b60b648d0b11d241a34c8e32</td><td>Learning to Deblur Images with Exemplars +</td></tr><tr><td>3986161c20c08fb4b9b791b57198b012519ea58b</td><td>International Journal of Soft Computing and Engineering (IJSCE) <br/>ISSN: 2231-2307, Volume-4 Issue-4, September 2014 <br/>An Efficient Method for Face Recognition based on <br/>Fusion of Global and Local Feature Extraction @@ -5593,9 +7100,27 @@ <br/>April 23, 2007 <br/>Tiny images <br/>m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u -</td></tr><tr><td>3958db5769c927cfc2a9e4d1ee33ecfba86fe054</td><td>Describable Visual Attributes for +</td></tr><tr><td>3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1</td><td></td></tr><tr><td>3965d61c4f3b72044f43609c808f8760af8781a2</td><td></td></tr><tr><td>395bf182983e0917f33b9701e385290b64e22f9a</td><td></td></tr><tr><td>3933e323653ff27e68c3458d245b47e3e37f52fd</td><td>Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +<br/>Computational Biomedicine Lab +<br/>4800 Calhoun Rd. Houston, TX, USA +</td></tr><tr><td>39b452453bea9ce398613d8dd627984fd3a0d53c</td><td></td></tr><tr><td>3958db5769c927cfc2a9e4d1ee33ecfba86fe054</td><td>Describable Visual Attributes for <br/>Face Verification and Image Search -</td></tr><tr><td>39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df</td><td></td></tr><tr><td>9949ac42f39aeb7534b3478a21a31bc37fe2ffe3</td><td>Parametric Stereo for Multi-Pose Face Recognition and +</td></tr><tr><td>39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df</td><td></td></tr><tr><td>994f7c469219ccce59c89badf93c0661aae34264</td><td>1 +<br/>Model Based Face Recognition Across Facial +<br/>Expressions +<br/> +<br/>screens, embedded into mobiles and installed into everyday +<br/>living and working environments they become valuable tools +<br/>for human system interaction. A particular important aspect of +<br/>this interaction is detection and recognition of faces and +<br/>interpretation of facial expressions. These capabilities are +<br/>deeply rooted in the human visual system and a crucial +<br/>building block for social interaction. Consequently, these +<br/>capabilities are an important step towards the acceptance of +<br/>many technical systems. +<br/>trees as a classifier +<br/>lies not only +</td></tr><tr><td>9949ac42f39aeb7534b3478a21a31bc37fe2ffe3</td><td>Parametric Stereo for Multi-Pose Face Recognition and <br/>3D-Face Modeling <br/>PSI ESAT-KUL <br/>Leuven, Belgium @@ -5606,6 +7131,14 @@ <br/>A Simple, Fast and Highly-Accurate Algorithm to <br/>Recover 3D Shape from 2D Landmarks on a Single <br/>Image +</td></tr><tr><td>99c20eb5433ed27e70881d026d1dbe378a12b342</td><td>ISCA Archive +<br/>http://www.isca-speech.org/archive +<br/>First Workshop on Speech, Language +<br/>and Audio in Multimedia +<br/>Marseille, France +<br/>August 22-23, 2013 +<br/>Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013. +<br/>78 </td></tr><tr><td>9990e0b05f34b586ffccdc89de2f8b0e5d427067</td><td>International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 <br/>Auto-Optimized Multimodal Expression Recognition <br/>Framework Using 3D Kinect Data for ASD Therapeutic @@ -5616,6 +7149,9 @@ <br/>and <br/>to <br/>recognize +</td></tr><tr><td>99d7678039ad96ee29ab520ff114bb8021222a91</td><td>Political image analysis with deep neural +<br/>networks +<br/>November 28, 2017 </td></tr><tr><td>529e2ce6fb362bfce02d6d9a9e5de635bde81191</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. <br/>> TIP-05732-2009< <br/>1 @@ -5625,13 +7161,42 @@ <br/>Travel Recommendation by Mining People <br/>Attributes and Travel Group Types From <br/>Community-Contributed Photos -</td></tr><tr><td>521482c2089c62a59996425603d8264832998403</td><td></td></tr><tr><td>521b625eebea73b5deb171a350e3709a4910eebf</td><td></td></tr><tr><td>527dda77a3864d88b35e017d542cb612f275a4ec</td><td></td></tr><tr><td>52f23e1a386c87b0dab8bfdf9694c781cd0a3984</td><td></td></tr><tr><td>5239001571bc64de3e61be0be8985860f08d7e7e</td><td>SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 +</td></tr><tr><td>521482c2089c62a59996425603d8264832998403</td><td></td></tr><tr><td>521b625eebea73b5deb171a350e3709a4910eebf</td><td></td></tr><tr><td>527dda77a3864d88b35e017d542cb612f275a4ec</td><td></td></tr><tr><td>52f23e1a386c87b0dab8bfdf9694c781cd0a3984</td><td></td></tr><tr><td>529baf1a79cca813f8c9966ceaa9b3e42748c058</td><td>Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image +<br/> +<br/>{tag} {/tag} +<br/> +<br/> International Journal of Computer Applications +<br/> +<br/> © 2014 by IJCA Journal +<br/> Volume 87 - Number 6 +<br/> +<br/> Year of Publication: 2014 +<br/> +<br/> +<br/> +<br/> Authors: +<br/> +<br/>Bhogeswar Borah +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> 10.5120/15209-3714 +<br/> {bibtex}pxc3893714.bib{/bibtex} +</td></tr><tr><td>5239001571bc64de3e61be0be8985860f08d7e7e</td><td>SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 <br/>Deep Appearance Models: A Deep Boltzmann <br/>Machine Approach for Face Modeling </td></tr><tr><td>550858b7f5efaca2ebed8f3969cb89017bdb739f</td><td></td></tr><tr><td>554b9478fd285f2317214396e0ccd81309963efd</td><td>Spatio-Temporal Action Localization For Human Action <br/>Recognition in Large Dataset <br/>1L2TI, Institut Galil´ee, Universit´e Paris 13, France; <br/>2SERCOM, Ecole Polytechnique de Tunisie +</td></tr><tr><td>55c68c1237166679d2cb65f266f496d1ecd4bec6</td><td>Learning to Score Figure Skating Sport Videos </td></tr><tr><td>5502dfe47ac26e60e0fb25fc0f810cae6f5173c0</td><td>Affordance Prediction via Learned Object Attributes </td></tr><tr><td>55a158f4e7c38fe281d06ae45eb456e05516af50</td><td>The 22nd International Conference on Computer Graphics and Vision <br/>108 @@ -5640,6 +7205,37 @@ <br/>Recurrent Neural Network for Multimodal <br/>Information Fusion <br/>1 Xerox Research Centre India; 2 Amazon Development Center India +</td></tr><tr><td>55c40cbcf49a0225e72d911d762c27bb1c2d14aa</td><td>Indian Face Age Database: A Database for Face Recognition with Age Variation +<br/>{tag} {/tag} +<br/> International Journal of Computer Applications +<br/> +<br/> Foundation of Computer Science (FCS), NY, USA +<br/> +<br/> +<br/>Volume 126 +<br/>- +<br/>Number 5 +<br/> +<br/> +<br/> Year of Publication: 2015 +<br/> +<br/> +<br/> +<br/> +<br/> Authors: +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> +<br/> 10.5120/ijca2015906055 +<br/> {bibtex}2015906055.bib{/bibtex} </td></tr><tr><td>973e3d9bc0879210c9fad145a902afca07370b86</td><td>(IJACSA) International Journal of Advanced Computer Science and Applications, <br/>Vol. 7, No. 7, 2016 <br/>From Emotion Recognition to Website @@ -5654,6 +7250,11 @@ </td></tr><tr><td>97032b13f1371c8a813802ade7558e816d25c73f</td><td>Total Recall Final Report <br/>Supervisor: Professor Duncan Gillies <br/>January 11, 2006 +</td></tr><tr><td>97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5</td><td>manuscript No. +<br/>(will be inserted by the editor) +<br/>Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, +<br/>Deep Architectures, and Beyond +<br/>Zafeiriou4 </td></tr><tr><td>97d1d561362a8b6beb0fdbee28f3862fb48f1380</td><td>1955 <br/>Age Synthesis and Estimation via Faces: <br/>A Survey @@ -5664,7 +7265,19 @@ <br/>Classification in Standard <br/>and Generalized <br/>Dissimilarity Spaces -</td></tr><tr><td>63d8d69e90e79806a062cb8654ad78327c8957bb</td><td></td></tr><tr><td>63eefc775bcd8ccad343433fc7a1dd8e1e5ee796</td><td></td></tr><tr><td>63340c00896d76f4b728dbef85674d7ea8d5ab26</td><td>1732 +</td></tr><tr><td>63d8d69e90e79806a062cb8654ad78327c8957bb</td><td></td></tr><tr><td>631483c15641c3652377f66c8380ff684f3e365c</td><td>Sync-DRAW: Automatic Video Generation using Deep Recurrent +<br/>A(cid:130)entive Architectures +<br/>Gaurav Mi(cid:138)al∗ +<br/>IIT Hyderabad +<br/>Vineeth N Balasubramanian +<br/>IIT Hyderabad +</td></tr><tr><td>63eefc775bcd8ccad343433fc7a1dd8e1e5ee796</td><td></td></tr><tr><td>632fa986bed53862d83918c2b71ab953fd70d6cc</td><td>GÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT +<br/>What Face and Body Shapes Can Tell +<br/>About Height +<br/>CVLab +<br/>EPFL, +<br/>Lausanne, Switzerland +</td></tr><tr><td>63340c00896d76f4b728dbef85674d7ea8d5ab26</td><td>1732 <br/>Discriminant Subspace Analysis: <br/>A Fukunaga-Koontz Approach </td></tr><tr><td>63d865c66faaba68018defee0daf201db8ca79ed</td><td>Deep Regression for Face Alignment @@ -5719,6 +7332,8 @@ <br/>© Springer Science+Business Media Dordrecht 2015 </td></tr><tr><td>0f9bf5d8f9087fcba419379600b86ae9e9940013</td><td></td></tr><tr><td>0f92e9121e9c0addc35eedbbd25d0a1faf3ab529</td><td>MORPH-II: A Proposed Subsetting Scheme <br/>NSF-REU Site at UNC Wilmington, Summer 2017 +</td></tr><tr><td>0fd1bffb171699a968c700f206665b2f8837d953</td><td>Weakly Supervised Object Localization with +<br/>Multi-fold Multiple Instance Learning </td></tr><tr><td>0a511058edae582e8327e8b9d469588c25152dc6</td><td></td></tr><tr><td>0a4f3a423a37588fde9a2db71f114b293fc09c50</td><td></td></tr><tr><td>0a3863a0915256082aee613ba6dab6ede962cdcd</td><td>Early and Reliable Event Detection Using Proximity Space Representation <br/>LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France <br/>J´erˆome Gauthier @@ -5732,7 +7347,7 @@ <br/>The final version of record is available at <br/> http://dx.doi.org/10.1109/TIP.2016.2539502 <br/>Discriminant Incoherent Component Analysis -</td></tr><tr><td>0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7</td><td>Noname manuscript No. +</td></tr><tr><td>0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a</td><td></td></tr><tr><td>0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>Multi-task, multi-label and multi-domain learning with <br/>residual convolutional networks for emotion recognition @@ -5783,7 +7398,9 @@ <br/>Score-level Fusion for Face Recognition <br/>1Department of Creative IT Engineering, POSTECH, Korea <br/>2Department of Computer Science and Engineering, POSTECH, Korea -</td></tr><tr><td>649eb674fc963ce25e4e8ce53ac7ee20500fb0e3</td><td></td></tr><tr><td>642c66df8d0085d97dc5179f735eed82abf110d0</td><td></td></tr><tr><td>641f34deb3bdd123c6b6e7b917519c3e56010cb7</td><td></td></tr><tr><td>6462ef39ca88f538405616239471a8ea17d76259</td><td></td></tr><tr><td>90cb074a19c5e7d92a1c0d328a1ade1295f4f311</td><td>MIT. Media Laboratory Affective Computing Technical Report #571 +</td></tr><tr><td>649eb674fc963ce25e4e8ce53ac7ee20500fb0e3</td><td></td></tr><tr><td>642c66df8d0085d97dc5179f735eed82abf110d0</td><td></td></tr><tr><td>641f34deb3bdd123c6b6e7b917519c3e56010cb7</td><td></td></tr><tr><td>645de797f936cb19c1b8dba3b862543645510544</td><td>Deep Temporal Linear Encoding Networks +<br/>1ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich +</td></tr><tr><td>6462ef39ca88f538405616239471a8ea17d76259</td><td></td></tr><tr><td>90ac0f32c0c29aa4545ed3d5070af17f195d015f</td><td></td></tr><tr><td>90cb074a19c5e7d92a1c0d328a1ade1295f4f311</td><td>MIT. Media Laboratory Affective Computing Technical Report #571 <br/>Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003 <br/>Fully Automatic Upper Facial Action Recognition <br/>MIT Media Laboratory @@ -5801,6 +7418,8 @@ <br/>information <br/>Introduction <br/>---------------------------------------------------------------------***--------------------------------------------------------------------- +</td></tr><tr><td>bf5940d57f97ed20c50278a81e901ae4656f0f2c</td><td>Query-free Clothing Retrieval via Implicit +<br/>Relevance Feedback </td></tr><tr><td>bfb98423941e51e3cd067cb085ebfa3087f3bfbe</td><td>Sparseness helps: Sparsity Augmented <br/>Collaborative Representation for Classification </td></tr><tr><td>d3b73e06d19da6b457924269bb208878160059da</td><td>Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015 @@ -5815,7 +7434,19 @@ <br/>Learning Compact Feature Descriptor and Adaptive <br/>Matching Framework for Face Recognition <br/>improvements -</td></tr><tr><td>d4c7d1a7a03adb2338704d2be7467495f2eb6c7b</td><td></td></tr><tr><td>d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d</td><td></td></tr><tr><td>d4b88be6ce77164f5eea1ed2b16b985c0670463a</td><td>TECHNICAL REPORT JAN.15.2016 +</td></tr><tr><td>d309e414f0d6e56e7ba45736d28ee58ae2bad478</td><td>Efficient Two-Stream Motion and Appearance 3D CNNs for +<br/>Video Classification +<br/>Ali Diba +<br/>ESAT-KU Leuven +<br/>Ali Pazandeh +<br/>Sharif UTech +<br/>Luc Van Gool +<br/>ESAT-KU Leuven, ETH Zurich +</td></tr><tr><td>d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9</td><td></td></tr><tr><td>d33fcdaf2c0bd0100ec94b2c437dccdacec66476</td><td>Neurons with Paraboloid Decision Boundaries for +<br/>Improved Neural Network Classification +<br/>Performance +</td></tr><tr><td>d444368421f456baf8c3cb089244e017f8d32c41</td><td>CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR +</td></tr><tr><td>d4c7d1a7a03adb2338704d2be7467495f2eb6c7b</td><td></td></tr><tr><td>d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d</td><td></td></tr><tr><td>d44a93027208816b9e871101693b05adab576d89</td><td></td></tr><tr><td>d4b88be6ce77164f5eea1ed2b16b985c0670463a</td><td>TECHNICAL REPORT JAN.15.2016 <br/>A Survey of Different 3D Face Reconstruction <br/>Methods <br/>Department of Computer Science and Engineering @@ -5839,7 +7470,14 @@ <br/>Bogot´a, Colombia <br/>Bogot´a, Colombia <br/>Bogot´a, Colombia -</td></tr><tr><td>ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906</td><td>ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 +</td></tr><tr><td>badcd992266c6813063c153c41b87babc0ba36a3</td><td>Recent Advances in Object Detection in the Age +<br/>of Deep Convolutional Neural Networks +<br/>,1,2), Fr´ed´eric Jurie(1) +<br/>(∗) equal contribution +<br/>(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS +<br/>(2)Safran Electronics and Defense +<br/>September 11, 2018 +</td></tr><tr><td>ba788365d70fa6c907b71a01d846532ba3110e31</td><td></td></tr><tr><td>ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906</td><td>ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 <br/>EXISTING SEPARATE ENGLISH EDITION <br/>Uporaba emotivno pogojenega raˇcunalniˇstva v <br/>priporoˇcilnih sistemih @@ -5919,11 +7557,51 @@ <br/>binskih priporoˇcilnih sistemov, ki sta ga razvila Arapakis <br/>[2] in Tkalˇciˇc [14], sorodnega dela na podroˇcju emotivno <br/>pogojenih priporoˇcilnih sistemov takorekoˇc ni. Panti´c in -</td></tr><tr><td>ba29ba8ec180690fca702ad5d516c3e43a7f0bb8</td><td></td></tr><tr><td>bab88235a30e179a6804f506004468aa8c28ce4f</td><td></td></tr><tr><td>a0f94e9400938cbd05c4b60b06d9ed58c3458303</td><td>1118 +</td></tr><tr><td>ba29ba8ec180690fca702ad5d516c3e43a7f0bb8</td><td></td></tr><tr><td>bab88235a30e179a6804f506004468aa8c28ce4f</td><td></td></tr><tr><td>badd371a49d2c4126df95120902a34f4bee01b00</td><td>GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION +<br/>Parallel Separable 3D Convolution for Video +<br/>and Volumetric Data Understanding +<br/>Harvard John A. Paulson School of +<br/>Engineering and Applied Sciences +<br/>Camabridge MA, USA +<br/>Toufiq Parag +<br/>Hanspeter Pfister +</td></tr><tr><td>a0f94e9400938cbd05c4b60b06d9ed58c3458303</td><td>1118 <br/>Value-Directed Human Behavior Analysis <br/>from Video Using Partially Observable <br/>Markov Decision Processes -</td></tr><tr><td>a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670</td><td></td></tr><tr><td>a0dfb8aae58bd757b801e2dcb717a094013bc178</td><td>Reconocimiento de expresiones faciales con base +</td></tr><tr><td>a022eff5470c3446aca683eae9c18319fd2406d5</td><td>2017-ENST-0071 +<br/>EDITE - ED 130 +<br/>Doctorat ParisTech +<br/>T H È S E +<br/>pour obtenir le grade de docteur délivré par +<br/>TÉLÉCOM ParisTech +<br/>Spécialité « SIGNAL et IMAGES » +<br/>présentée et soutenue publiquement par +<br/>le 15 décembre 2017 +<br/>Apprentissage Profond pour la Description Sémantique des Traits +<br/>Visuels Humains +<br/>Directeur de thèse : Jean-Luc DUGELAY +<br/>Co-encadrement de la thèse : Moez BACCOUCHE +<br/>Jury +<br/>Mme Bernadette DORIZZI, PRU, Télécom SudParis +<br/>Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux +<br/>M. Christian WOLF, MC/HDR, INSA de Lyon +<br/>M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes +<br/>M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes +<br/>M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis +<br/>M. Sid-Ahmed BERRANI, Directeur de l’Innovation/HDR, Algérie Télécom +<br/>Présidente +<br/>Rapporteur +<br/>Rapporteur +<br/>Examinateur +<br/>Encadrant +<br/>Directeur de Thèse +<br/>Invité +<br/>TÉLÉCOM ParisTech +<br/>école de l’Institut Télécom - membre de ParisTech +<br/>N°: 2009 ENAM XXXX T H È S E </td></tr><tr><td>a0c37f07710184597befaa7e6cf2f0893ff440e9</td><td></td></tr><tr><td>a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670</td><td></td></tr><tr><td>a0fd85b3400c7b3e11122f44dc5870ae2de9009a</td><td>Learning Deep Representation for Face +<br/>Alignment with Auxiliary Attributes +</td></tr><tr><td>a0dfb8aae58bd757b801e2dcb717a094013bc178</td><td>Reconocimiento de expresiones faciales con base <br/>en la din´amica de puntos de referencia faciales <br/>Instituto Nacional de Astrof´ısica ´Optica y Electr´onica, <br/>Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla, @@ -5959,7 +7637,9 @@ <br/>Merantix GmbH <br/>D-ITET, ETH Zurich <br/>ESAT, KU Leuven -</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td></td></tr><tr><td>a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9</td><td>11th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003 +</td></tr><tr><td>a74251efa970b92925b89eeef50a5e37d9281ad0</td><td></td></tr><tr><td>a7664247a37a89c74d0e1a1606a99119cffc41d4</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +<br/>3287 +</td></tr><tr><td>a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9</td><td>11th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003 <br/>Face Recognition Using Multi-viewpoint Patterns for <br/>Robot Vision <br/>Corporate Research and Development Center, TOSHIBA Corporation @@ -5968,15 +7648,29 @@ <br/>DD2427 Final Project Report <br/>Human face attributes prediction with Deep <br/>Learning +</td></tr><tr><td>a775da3e6e6ea64bffab7f9baf665528644c7ed3</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 142 – No.9, May 2016 +<br/>Human Face Pose Estimation based on Feature +<br/>Extraction Points +<br/>Research scholar, +<br/> Department of ECE +<br/>SBSSTC, Moga Road, +<br/> Ferozepur, Punjab, India </td></tr><tr><td>b8dba0504d6b4b557d51a6cf4de5507141db60cf</td><td>Comparing Performances of Big Data Stream <br/>Processing Platforms with RAM3S -</td></tr><tr><td>b8378ab83bc165bc0e3692f2ce593dcc713df34a</td><td></td></tr><tr><td>b81cae2927598253da37954fb36a2549c5405cdb</td><td>Experiments on Visual Information Extraction with the Faces of Wikipedia +</td></tr><tr><td>b8378ab83bc165bc0e3692f2ce593dcc713df34a</td><td></td></tr><tr><td>b8f3f6d8f188f65ca8ea2725b248397c7d1e662d</td><td>Selfie Detection by Synergy-Constriant Based +<br/>Convolutional Neural Network +<br/>Electrical and Electronics Engineering, NITK-Surathkal, India. +</td></tr><tr><td>b81cae2927598253da37954fb36a2549c5405cdb</td><td>Experiments on Visual Information Extraction with the Faces of Wikipedia <br/>D´epartement de g´enie informatique et g´enie logiciel, Polytechnique Montr´eal <br/>2500, Chemin de Polytechnique, Universit´e de Montr´eal, Montr`eal, Qu´ebec, Canada </td></tr><tr><td>b8a829b30381106b806066d40dd372045d49178d</td><td>1872 <br/>A Probabilistic Framework for Joint Pedestrian Head <br/>and Body Orientation Estimation -</td></tr><tr><td>b171f9e4245b52ff96790cf4f8d23e822c260780</td><td></td></tr><tr><td>b1a3b19700b8738b4510eecf78a35ff38406df22</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE +</td></tr><tr><td>b1d89015f9b16515735d4140c84b0bacbbef19ac</td><td>Too Far to See? Not Really! +<br/>— Pedestrian Detection with Scale-aware +<br/>Localization Policy +</td></tr><tr><td>b14b672e09b5b2d984295dfafb05604492bfaec5</td><td>LearningImageClassificationandRetrievalModelsThomasMensink</td></tr><tr><td>b171f9e4245b52ff96790cf4f8d23e822c260780</td><td></td></tr><tr><td>b1a3b19700b8738b4510eecf78a35ff38406df22</td><td>This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE <br/>Transactions on Affective Computing <br/>JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 <br/>Automatic Analysis of Facial Actions: A Survey @@ -5987,8 +7681,14 @@ </td></tr><tr><td>b19e83eda4a602abc5a8ef57467c5f47f493848d</td><td>JOURNAL OF LATEX CLASS FILES <br/>Heat Kernel Based Local Binary Pattern for <br/>Face Representation +</td></tr><tr><td>dd8084b2878ca95d8f14bae73e1072922f0cc5da</td><td>Model Distillation with Knowledge Transfer from +<br/>Face Classification to Alignment and Verification +<br/>Beijing Orion Star Technology Co., Ltd. Beijing, China </td></tr><tr><td>dd0760bda44d4e222c0a54d41681f97b3270122b</td><td></td></tr><tr><td>ddea3c352f5041fb34433b635399711a90fde0e8</td><td>Facial Expression Classification using Visual Cues and Language <br/>Department of Computer Science and Engineering, IIT Kanpur +</td></tr><tr><td>ddbd24a73ba3d74028596f393bb07a6b87a469c0</td><td>Multi-region two-stream R-CNN +<br/>for action detection +<br/>Inria(cid:63) </td></tr><tr><td>ddf099f0e0631da4a6396a17829160301796151c</td><td>IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY <br/>Learning Face Image Quality from <br/>Human Assessments @@ -6001,14 +7701,22 @@ </td></tr><tr><td>dd2f6a1ba3650075245a422319d86002e1e87808</td><td></td></tr><tr><td>dd8d53e67668067fd290eb500d7dfab5b6f730dd</td><td>69 <br/>A Parameter-Free Framework for General <br/>Supervised Subspace Learning +</td></tr><tr><td>ddbb6e0913ac127004be73e2d4097513a8f02d37</td><td>264 +<br/>IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999 +<br/>Face Detection Using Quantized Skin Color +<br/>Regions Merging and Wavelet Packet Analysis </td></tr><tr><td>dd600e7d6e4443ebe87ab864d62e2f4316431293</td><td></td></tr><tr><td>dcb44fc19c1949b1eda9abe998935d567498467d</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>1916 </td></tr><tr><td>dc77287bb1fcf64358767dc5b5a8a79ed9abaa53</td><td>Fashion Conversation Data on Instagram <br/>∗Graduate School of Culture Technology, KAIST, South Korea <br/>†Department of Communication Studies, UCLA, USA -</td></tr><tr><td>dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb</td><td></td></tr><tr><td>b6c047ab10dd86b1443b088029ffe05d79bbe257</td><td></td></tr><tr><td>b6c53891dff24caa1f2e690552a1a5921554f994</td><td></td></tr><tr><td>b613b30a7cbe76700855479a8d25164fa7b6b9f1</td><td>1 +</td></tr><tr><td>dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb</td><td></td></tr><tr><td>dc974c31201b6da32f48ef81ae5a9042512705fe</td><td>Am I done? Predicting Action Progress in Video +<br/>1 Media Integration and Communication Center, Univ. of Florence, Italy +<br/>2 Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy +</td></tr><tr><td>b6c047ab10dd86b1443b088029ffe05d79bbe257</td><td></td></tr><tr><td>b6c53891dff24caa1f2e690552a1a5921554f994</td><td></td></tr><tr><td>b613b30a7cbe76700855479a8d25164fa7b6b9f1</td><td>1 <br/>Identifying User-Specific Facial Affects from <br/>Spontaneous Expressions with Minimal Annotation +</td></tr><tr><td>b6f682648418422e992e3ef78a6965773550d36b</td><td>February 8, 2017 </td></tr><tr><td>b656abc4d1e9c8dc699906b70d6fcd609fae8182</td><td></td></tr><tr><td>a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd</td><td>(IJARAI) International Journal of Advanced Research in Artificial Intelligence, <br/>Vol. 5, No.6, 2016 <br/>A Model for Facial Emotion Inference Based on @@ -6029,6 +7737,9 @@ <br/>S˜ao Paulo, Brazil <br/>S˜ao Paulo, Brazil <br/>S˜ao Paulo, Brazil +</td></tr><tr><td>a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f</td><td></td></tr><tr><td>a98316980b126f90514f33214dde51813693fe0d</td><td>Collaborations on YouTube: From Unsupervised Detection to the +<br/>Impact on Video and Channel Popularity +<br/>Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany </td></tr><tr><td>a93781e6db8c03668f277676d901905ef44ae49f</td><td>Recent Datasets on Object Manipulation: A Survey </td></tr><tr><td>a9adb6dcccab2d45828e11a6f152530ba8066de6</td><td>Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma <br/>Illumination Subspaces based Robust Face Recognition @@ -6066,9 +7777,16 @@ <br/>ölçüde arttırdığını göstermiştir. <br/>değişimleri, <br/>farklı +</td></tr><tr><td>a95dc0c4a9d882a903ce8c70e80399f38d2dcc89</td><td> TR-IIS-14-003 +<br/>Review and Implementation of +<br/>High-Dimensional Local Binary +<br/>Patterns and Its Application to +<br/>Face Recognition +<br/>July. 24, 2014 || Technical Report No. TR-IIS-14-003 +<br/>http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html </td></tr><tr><td>a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6</td><td>Learning to Succeed while Teaching to Fail: <br/>Privacy in Closed Machine Learning Systems -</td></tr><tr><td>d50c6d22449cc9170ab868b42f8c72f8d31f9b6c</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +</td></tr><tr><td>a92b5234b8b73e06709dd48ec5f0ec357c1aabed</td><td></td></tr><tr><td>d50c6d22449cc9170ab868b42f8c72f8d31f9b6c</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>1668 </td></tr><tr><td>d522c162bd03e935b1417f2e564d1357e98826d2</td><td>He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19 <br/>http://asp.eurasipjournals.com/content/2013/1/19 @@ -6141,6 +7859,11 @@ <br/>in <br/>illumination based <br/>is developed with the objective to +</td></tr><tr><td>d5444f9475253bbcfef85c351ea9dab56793b9ea</td><td>IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS +<br/>BoxCars: Improving Fine-Grained Recognition +<br/>of Vehicles using 3D Bounding Boxes +<br/>in Traffic Surveillance +<br/>in contrast </td></tr><tr><td>d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e</td><td>World Journal of Computer Application and Technology 2(7): 133-138, 2014 <br/>DOI: 10.13189/wjcat.2014.020701 <br/>http://www.hrpub.org @@ -6157,7 +7880,13 @@ <br/>Face Synthesis from Visual Attributes via Sketch using <br/>Conditional VAEs and GANs <br/>Received: date / Accepted: date -</td></tr><tr><td>d5e1173dcb2a51b483f86694889b015d55094634</td><td></td></tr><tr><td>d24dafe10ec43ac8fb98715b0e0bd8e479985260</td><td>J Nonverbal Behav (2018) 42:81–99 +</td></tr><tr><td>d5e1173dcb2a51b483f86694889b015d55094634</td><td></td></tr><tr><td>d2eb1079552fb736e3ba5e494543e67620832c52</td><td>ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1 +<br/>DeSTNet: Densely Fused Spatial +<br/>Transformer Networks1 +<br/>Onfido Research +<br/>3 Finsbury Avenue +<br/>London, UK +</td></tr><tr><td>d24dafe10ec43ac8fb98715b0e0bd8e479985260</td><td>J Nonverbal Behav (2018) 42:81–99 <br/>https://doi.org/10.1007/s10919-017-0266-z <br/>O R I G I N A L P A P E R <br/>Effects of Social Anxiety on Emotional Mimicry @@ -6166,6 +7895,27 @@ <br/>• Agneta H. Fischer2 <br/>Published online: 25 September 2017 <br/>Ó The Author(s) 2017. This article is an open access publication +</td></tr><tr><td>d278e020be85a1ccd90aa366b70c43884dd3f798</td><td>Learning From Less Data: Diversified Subset Selection and +<br/>Active Learning in Image Classification Tasks +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>AITOE Labs +<br/>Mumbai, Maharashtra, India +<br/>AITOE Labs +<br/>Mumbai, Maharashtra, India +<br/>Rishabh Iyer +<br/>AITOE Labs +<br/>Seattle, Washington, USA +<br/>AITOE Labs +<br/>Seattle, Washington, USA +<br/>Narsimha Raju +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>IIT Bombay +<br/>Mumbai, Maharashtra, India +<br/>May 30, 2018 </td></tr><tr><td>aafb271684a52a0b23debb3a5793eb618940c5dd</td><td></td></tr><tr><td>aa52910c8f95e91e9fc96a1aefd406ffa66d797d</td><td>FACE RECOGNITION SYSTEM BASED <br/>ON 2DFLD AND PCA <br/>E&TC Department @@ -6175,6 +7925,8 @@ <br/>ME E&TC [Digital System] <br/>Sinhgad Academy of Engineering <br/>Pune, India +</td></tr><tr><td>aadfcaf601630bdc2af11c00eb34220da59b7559</td><td>Multi-view Hybrid Embedding: +<br/>A Divide-and-Conquer Approach </td></tr><tr><td>aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5</td><td>Biometrics in Ambient Intelligence </td></tr><tr><td>aa331fe378056b6d6031bb8fe6676e035ed60d6d</td><td></td></tr><tr><td>aae0e417bbfba701a1183d3d92cc7ad550ee59c3</td><td>844 <br/>A Statistical Method for 2-D Facial Landmarking @@ -6262,7 +8014,7 @@ <br/>Okhla Phase 3 <br/>Delhi, 110020, India <br/>Delhi, 110020, India -</td></tr><tr><td>af54dd5da722e104740f9b6f261df9d4688a9712</td><td></td></tr><tr><td>afc7092987f0d05f5685e9332d83c4b27612f964</td><td>Person-Independent Facial Expression Detection using Constrained +</td></tr><tr><td>af6cae71f24ea8f457e581bfe1240d5fa63faaf7</td><td></td></tr><tr><td>af54dd5da722e104740f9b6f261df9d4688a9712</td><td></td></tr><tr><td>afc7092987f0d05f5685e9332d83c4b27612f964</td><td>Person-Independent Facial Expression Detection using Constrained <br/>Local Models </td></tr><tr><td>b730908bc1f80b711c031f3ea459e4de09a3d324</td><td>2024 <br/>Active Orientation Models for Face @@ -6289,7 +8041,8 @@ <br/>NFRAD: Near-Infrared Face Recognition at a Distance <br/>aDept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea <br/>bDept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824 -</td></tr><tr><td>b73fdae232270404f96754329a1a18768974d3f6</td><td></td></tr><tr><td>b747fcad32484dfbe29530a15776d0df5688a7db</td><td></td></tr><tr><td>b7f7a4df251ff26aca83d66d6b479f1dc6cd1085</td><td>Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 +</td></tr><tr><td>b73fdae232270404f96754329a1a18768974d3f6</td><td></td></tr><tr><td>b76af8fcf9a3ebc421b075b689defb6dc4282670</td><td>Face Mask Extraction in Video Sequence +</td></tr><tr><td>b747fcad32484dfbe29530a15776d0df5688a7db</td><td></td></tr><tr><td>b7f7a4df251ff26aca83d66d6b479f1dc6cd1085</td><td>Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 <br/>http://jivp.eurasipjournals.com/content/2013/1/55 <br/>RESEARCH <br/>Open Access @@ -6304,7 +8057,10 @@ <br/><b></b></td></tr><tr><td>dbaf89ca98dda2c99157c46abd136ace5bdc33b3</td><td>Nonlinear Cross-View Sample Enrichment for <br/>Action Recognition <br/>Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI -</td></tr><tr><td>dbab6ac1a9516c360cdbfd5f3239a351a64adde7</td><td></td></tr><tr><td>dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8</td><td>Chapter 7 +</td></tr><tr><td>dbab6ac1a9516c360cdbfd5f3239a351a64adde7</td><td></td></tr><tr><td>dbe255d3d2a5d960daaaba71cb0da292e0af36a7</td><td>Evolutionary Cost-sensitive Extreme Learning +<br/>Machine +<br/>1 +</td></tr><tr><td>dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8</td><td>Chapter 7 <br/>Machine Learning Techniques <br/>for Face Analysis </td></tr><tr><td>dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57</td><td>Face Image Analysis With @@ -6317,6 +8073,8 @@ <br/>Stefan Duffner <br/>2007 </td></tr><tr><td>a83fc450c124b7e640adc762e95e3bb6b423b310</td><td>Deep Face Feature for Face Alignment +</td></tr><tr><td>a85e9e11db5665c89b057a124547377d3e1c27ef</td><td>Dynamics of Driver’s Gaze: Explorations in +<br/>Behavior Modeling & Maneuver Prediction </td></tr><tr><td>a8117a4733cce9148c35fb6888962f665ae65b1e</td><td>IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X <br/>A Good Practice Towards Top Performance of Face <br/>Recognition: Transferred Deep Feature Fusion @@ -6373,8 +8131,35 @@ <br/>Simultaneously Learning Neighborship and <br/>Projection Matrix for Supervised <br/>Dimensionality Reduction +</td></tr><tr><td>a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8</td><td>This is a repository copy of Modelling of Orthogonal Craniofacial Profiles. +<br/>White Rose Research Online URL for this paper: +<br/>http://eprints.whiterose.ac.uk/131767/ +<br/>Version: Published Version +<br/>Article: +<br/>Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian +<br/>(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X +<br/>https://doi.org/10.3390/jimaging3040055 +<br/>Reuse +<br/>This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +<br/>allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +<br/>authors for the original work. More information and the full terms of the licence here: +<br/>https://creativecommons.org/licenses/ +<br/>Takedown +<br/>If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +<br/>https://eprints.whiterose.ac.uk/ </td></tr><tr><td>a8e75978a5335fd3deb04572bb6ca43dbfad4738</td><td>Sparse Graphical Representation based Discriminant <br/>Analysis for Heterogeneous Face Recognition +</td></tr><tr><td>ded968b97bd59465d5ccda4f1e441f24bac7ede5</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Large scale 3D Morphable Models +<br/>Zafeiriou +<br/>Received: date / Accepted: date +</td></tr><tr><td>de0eb358b890d92e8f67592c6e23f0e3b2ba3f66</td><td>ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL. +<br/>Inference-Based Similarity Search in +<br/>Randomized Montgomery Domains for +<br/>Privacy-Preserving Biometric Identification +</td></tr><tr><td>dee406a7aaa0f4c9d64b7550e633d81bc66ff451</td><td>Content-Adaptive Sketch Portrait Generation by +<br/>Decompositional Representation Learning </td></tr><tr><td>dedabf9afe2ae4a1ace1279150e5f1d495e565da</td><td>3294 <br/>Robust Face Recognition With Structurally <br/>Incoherent Low-Rank Matrix Decomposition @@ -6383,23 +8168,51 @@ </td></tr><tr><td>ded41c9b027c8a7f4800e61b7cfb793edaeb2817</td><td></td></tr><tr><td>defa8774d3c6ad46d4db4959d8510b44751361d8</td><td>FEBEI - Face Expression Based Emoticon Identification <br/>CS - B657 Computer Vision <br/>Robert J Henderson - rojahend +</td></tr><tr><td>b0c512fcfb7bd6c500429cbda963e28850f2e948</td><td></td></tr><tr><td>b09b693708f412823053508578df289b8403100a</td><td>WANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS +<br/>Two-Stream SR-CNNs for Action +<br/>Recognition in Videos +<br/>1 Advanced Interactive Technologies Lab +<br/>ETH Zurich +<br/>Zurich, Switzerland +<br/>2 Computer Vision Lab +<br/>ETH Zurich +<br/>Zurich, Switzerland </td></tr><tr><td>b07582d1a59a9c6f029d0d8328414c7bef64dca0</td><td>Employing Fusion of Learned and Handcrafted <br/>Features for Unconstrained Ear Recognition <br/>Maur´ıcio Pamplona Segundo∗† <br/>October 24, 2017 -</td></tr><tr><td>b03d6e268cde7380e090ddaea889c75f64560891</td><td></td></tr><tr><td>b0de0892d2092c8c70aa22500fed31aa7eb4dd3f</td><td>(will be inserted by the editor) +</td></tr><tr><td>b03d6e268cde7380e090ddaea889c75f64560891</td><td></td></tr><tr><td>b0c1615ebcad516b5a26d45be58068673e2ff217</td><td>How Image Degradations Affect Deep CNN-based Face +<br/>Recognition? +<br/>S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1 +<br/>G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2 +</td></tr><tr><td>b0de0892d2092c8c70aa22500fed31aa7eb4dd3f</td><td>(will be inserted by the editor) <br/>A robust and efficient video representation for action recognition <br/>Received: date / Accepted: date </td></tr><tr><td>a66d89357ada66d98d242c124e1e8d96ac9b37a0</td><td>Failure Detection for Facial Landmark Detectors <br/>Computer Vision Lab, D-ITET, ETH Zurich, Switzerland </td></tr><tr><td>a608c5f8fd42af6e9bd332ab516c8c2af7063c61</td><td>2408 <br/>Age Estimation via Grouping and Decision Fusion -</td></tr><tr><td>a6583c8daa7927eedb3e892a60fc88bdfe89a486</td><td></td></tr><tr><td>a694180a683f7f4361042c61648aa97d222602db</td><td>Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations +</td></tr><tr><td>a6eb6ad9142130406fb4ffd4d60e8348c2442c29</td><td>Video Description: A Survey of Methods, +<br/>Datasets and Evaluation Metrics +</td></tr><tr><td>a6583c8daa7927eedb3e892a60fc88bdfe89a486</td><td></td></tr><tr><td>a6590c49e44aa4975b2b0152ee21ac8af3097d80</td><td>https://doi.org/10.1007/s11263-018-1074-6 +<br/>3D Interpreter Networks for Viewer-Centered Wireframe Modeling +<br/>Received: date / Accepted: date +</td></tr><tr><td>a694180a683f7f4361042c61648aa97d222602db</td><td>Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations <br/>IIIT-Delhi India -</td></tr><tr><td>a6db73f10084ce6a4186363ea9d7475a9a658a11</td><td></td></tr><tr><td>a6634ff2f9c480e94ed8c01d64c9eb70e0d98487</td><td></td></tr><tr><td>b9f2a755940353549e55690437eb7e13ea226bbf</td><td>Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions +</td></tr><tr><td>a6db73f10084ce6a4186363ea9d7475a9a658a11</td><td></td></tr><tr><td>a6634ff2f9c480e94ed8c01d64c9eb70e0d98487</td><td></td></tr><tr><td>b9d0774b0321a5cfc75471b62c8c5ef6c15527f5</td><td>Fishy Faces: Crafting Adversarial Images to Poison Face Authentication +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +<br/>imec-DistriNet, KU Leuven +</td></tr><tr><td>b908edadad58c604a1e4b431f69ac8ded350589a</td><td>Deep Face Feature for Face Alignment +</td></tr><tr><td>b9f2a755940353549e55690437eb7e13ea226bbf</td><td>Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions </td></tr><tr><td>b9cedd1960d5c025be55ade0a0aa81b75a6efa61</td><td>INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE <br/>MATRIX EXPONENTIAL EIGENPROBLEM FROM <br/>DIMENSIONALITY REDUCTION +</td></tr><tr><td>b971266b29fcecf1d5efe1c4dcdc2355cb188ab0</td><td>MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES +<br/>On the Reconstruction of Face Images from +<br/>Deep Face Templates </td></tr><tr><td>a158c1e2993ac90a90326881dd5cb0996c20d4f3</td><td>OPEN ACCESS <br/>ISSN 2073-8994 <br/>Article @@ -6454,6 +8267,42 @@ <br/>duplicate detection, data deduplication, con- <br/>densation, consolidation <br/>image clustering, +</td></tr><tr><td>a1132e2638a8abd08bdf7fc4884804dd6654fa63</td><td>6 +<br/>Real-Time Video Face Recognition +<br/>for Embedded Devices +<br/>Tessera, Galway, +<br/>Ireland +<br/>1. Introduction +<br/>This chapter will address the challenges of real-time video face recognition systems +<br/>implemented in embedded devices. Topics to be covered include: the importance and +<br/>challenges of video face recognition in real life scenarios, describing a general architecture of +<br/>a generic video face recognition system and a working solution suitable for recognizing +<br/>faces in real-time using low complexity devices. Each component of the system will be +<br/>described together with the system’s performance on a database of video samples that +<br/>resembles real life conditions. +<br/>2. Video face recognition +<br/>Face recognition remains a very active topic in computer vision and receives attention from +<br/>a large community of researchers in that discipline. Many reasons feed this interest; the +<br/>main being the wide range of commercial, law enforcement and security applications that +<br/>require authentication. The progress made in recent years on the methods and algorithms +<br/>for data processing as well as the availability of new technologies makes it easier to study +<br/>these algorithms and turn them into commercially viable product. Biometric based security +<br/>systems are becoming more popular due to their non-invasive nature and their increasing +<br/>reliability. Surveillance applications based on face recognition are gaining increasing +<br/>attention after the United States’ 9/11 events and with the ongoing security threats. The +<br/>Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) includes video face recognition +<br/>testing starting with the 2002 series of tests. +<br/>Recently, face recognition technology was deployed in consumer applications such as +<br/>organizing a collection of images using the faces present in the images (Picassa; Corcoran & +<br/>Costache, 2005), prioritizing family members for best capturing conditions when taking +<br/>pictures, or directly annotating the images as they are captured (Costache et al., 2006). +<br/>Video face recognition, compared with more traditional still face recognition, has the main +<br/>advantage of using multiple instances of the same individual in sequential frames for +<br/>recognition to occur. In still recognition case, the system has only one input image to make +<br/>the decision if the person is or is not in the database. If the image is not suitable for +<br/>recognition (due to face orientation, expression, quality or facial occlusions) the recognition +<br/>result will most likely be incorrect. In the video image there are multiple frames which can +<br/>www.intechopen.com </td></tr><tr><td>a14ae81609d09fed217aa12a4df9466553db4859</td><td>REVISED VERSION, JUNE 2011 <br/>Face Identification Using Large Feature Sets </td></tr><tr><td>a1e97c4043d5cc9896dc60ae7ca135782d89e5fc</td><td>IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE @@ -6461,18 +8310,58 @@ <br/>Personal, Social and Environmental Constraints </td></tr><tr><td>efd308393b573e5410455960fe551160e1525f49</td><td>Tracking Persons-of-Interest via <br/>Unsupervised Representation Adaptation +</td></tr><tr><td>ef4ecb76413a05c96eac4c743d2c2a3886f2ae07</td><td>Modeling the Importance of Faces in Natural Images +<br/>Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a +<br/>aEPFL, Lausanne, Switzerland; +<br/>bOc´e, Paris, France +</td></tr><tr><td>ef032afa4bdb18b328ffcc60e2dc5229cc1939bc</td><td>Fang and Yuan EURASIP Journal on Image and Video +<br/>Processing (2018) 2018:44 +<br/>https://doi.org/10.1186/s13640-018-0282-x +<br/>EURASIP Journal on Image +<br/>and Video Processing +<br/>RESEARCH +<br/>Open Access +<br/>Attribute-enhanced metric learning for +<br/>face retrieval +</td></tr><tr><td>ef5531711a69ed687637c48930261769465457f0</td><td>Studio2Shop: from studio photo shoots to fashion articles +<br/>Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany +<br/>Keywords: +<br/>computer vision, deep learning, fashion, item recognition, street-to-shop +</td></tr><tr><td>efa08283656714911acff2d5022f26904e451113</td><td>Active Object Localization in Visual Situations +</td></tr><tr><td>ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d</td><td>Calhoun: The NPS Institutional Archive +<br/>DSpace Repository +<br/>Theses and Dissertations +<br/>1. Thesis and Dissertation Collection, all items +<br/>2017-12 +<br/>Improving face verification in photo albums by +<br/>combining facial recognition and metadata +<br/>with cross-matching +<br/>Monterey, California: Naval Postgraduate School +<br/>http://hdl.handle.net/10945/56868 +<br/>Downloaded from NPS Archive: Calhoun +</td></tr><tr><td>c3beae515f38daf4bd8053a7d72f6d2ed3b05d88</td><td></td></tr><tr><td>c3dc4f414f5233df96a9661609557e341b71670d</td><td>Tao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4 +<br/>http://asp.eurasipjournals.com/content/2011/1/4 +<br/>RESEARCH +<br/>Utterance independent bimodal emotion +<br/>recognition in spontaneous communication +<br/>Open Access </td></tr><tr><td>c398684270543e97e3194674d9cce20acaef3db3</td><td>Chapter 2 <br/>Comparative Face Soft Biometrics for <br/>Human Identification -</td></tr><tr><td>c3418f866a86dfd947c2b548cbdeac8ca5783c15</td><td></td></tr><tr><td>c32383330df27625592134edd72d69bb6b5cff5c</td><td>422 +</td></tr><tr><td>c3285a1d6ec6972156fea9e6dc9a8d88cd001617</td><td></td></tr><tr><td>c3418f866a86dfd947c2b548cbdeac8ca5783c15</td><td></td></tr><tr><td>c32383330df27625592134edd72d69bb6b5cff5c</td><td>422 <br/>IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012 <br/>Intrinsic Illumination Subspace for Lighting <br/>Insensitive Face Recognition -</td></tr><tr><td>c3a3f7758bccbead7c9713cb8517889ea6d04687</td><td></td></tr><tr><td>c37a971f7a57f7345fdc479fa329d9b425ee02be</td><td>A Novice Guide towards Human Motion Analysis and Understanding +</td></tr><tr><td>c3a3f7758bccbead7c9713cb8517889ea6d04687</td><td></td></tr><tr><td>c30e4e4994b76605dcb2071954eaaea471307d80</td><td></td></tr><tr><td>c37a971f7a57f7345fdc479fa329d9b425ee02be</td><td>A Novice Guide towards Human Motion Analysis and Understanding </td></tr><tr><td>c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af</td><td></td></tr><tr><td>c3fb2399eb4bcec22723715556e31c44d086e054</td><td>499 <br/>2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) <br/>978-1-4799-2893-4/14/$31.00 ©2014 IEEE <br/>1. INTRODUCTION +</td></tr><tr><td>c37de914c6e9b743d90e2566723d0062bedc9e6a</td><td>©2016 Society for Imaging Science and Technology +<br/>DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455 +<br/>Joint and Discriminative Dictionary Learning +<br/>Expression Recognition +<br/>for Facial </td></tr><tr><td>c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4</td><td>Int J Comput Vis (2014) 108:3–29 <br/>DOI 10.1007/s11263-014-0698-4 <br/>The Ignorant Led by the Blind: A Hybrid Human–Machine Vision @@ -6519,9 +8408,73 @@ <br/>approach, where understanding activity is centered on </td></tr><tr><td>c49aed65fcf9ded15c44f9cbb4b161f851c6fa88</td><td>Multiscale Facial Expression Recognition using Convolutional Neural Networks <br/>IDIAP, Martigny, Switzerland +</td></tr><tr><td>eac6aee477446a67d491ef7c95abb21867cf71fc</td><td>JOURNAL +<br/>A survey of sparse representation: algorithms and +<br/>applications </td></tr><tr><td>ea482bf1e2b5b44c520fc77eab288caf8b3f367a</td><td>Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) <br/>2592 -</td></tr><tr><td>ea85378a6549bb9eb9bcc13e31aa6a61b655a9af</td><td>Diplomarbeit +</td></tr><tr><td>eafda8a94e410f1ad53b3e193ec124e80d57d095</td><td>Jeffrey F. Cohn +<br/>13 +<br/>Observer-Based Measurement of Facial Expression +<br/>With the Facial Action Coding System +<br/>Facial expression has been a focus of emotion research for over +<br/>a hundred years (Darwin, 1872/1998). It is central to several +<br/>leading theories of emotion (Ekman, 1992; Izard, 1977; +<br/>Tomkins, 1962) and has been the focus of at times heated +<br/>debate about issues in emotion science (Ekman, 1973, 1993; +<br/>Fridlund, 1992; Russell, 1994). Facial expression figures +<br/>prominently in research on almost every aspect of emotion, +<br/>including psychophysiology (Levenson, Ekman, & Friesen, +<br/>1990), neural bases (Calder et al., 1996; Davidson, Ekman, +<br/>Saron, Senulis, & Friesen, 1990), development (Malatesta, +<br/>Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993), +<br/>perception (Ambadar, Schooler, & Cohn, 2005), social pro- +<br/>cesses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac, +<br/>2000), and emotion disorder (Kaiser, 2002; Sloan, Straussa, +<br/>Quirka, & Sajatovic, 1997), to name a few. +<br/>Because of its importance to the study of emotion, a num- +<br/>ber of observer-based systems of facial expression measure- +<br/>ment have been developed (Ekman & Friesen, 1978, 1982; +<br/>Ekman, Friesen, & Tomkins, 1971; Izard, 1979, 1983; Izard +<br/>& Dougherty, 1981; Kring & Sloan, 1991; Tronick, Als, & +<br/>Brazelton, 1980). Of these various systems for describing +<br/>facial expression, the Facial Action Coding System (FACS; +<br/>Ekman & Friesen, 1978; Ekman, Friesen, & Hager, 2002) is +<br/>the most comprehensive, psychometrically rigorous, and +<br/>widely used (Cohn & Ekman, 2005; Ekman & Rosenberg, +<br/>2005). Using FACS and viewing video-recorded facial behav- +<br/>ior at frame rate and slow motion, coders can manually code +<br/>nearly all possible facial expressions, which are decomposed +<br/>into action units (AUs). Action units, with some qualifica- +<br/>tions, are the smallest visually discriminable facial move- +<br/>ments. By comparison, other systems are less thorough +<br/>(Malatesta et al., 1989), fail to differentiate between some +<br/>anatomically distinct movements (Oster, Hegley, & Nagel, +<br/>1992), consider movements that are not anatomically dis- +<br/>tinct as separable (Oster et al., 1992), and often assume a one- +<br/>to-one mapping between facial expression and emotion (for +<br/>a review of these systems, see Cohn & Ekman, in press). +<br/>Unlike systems that use emotion labels to describe ex- +<br/>pression, FACS explicitly distinguishes between facial actions +<br/>and inferences about what they mean. FACS itself is descrip- +<br/>tive and includes no emotion-specified descriptors. Hypoth- +<br/>eses and inferences about the emotional meaning of facial +<br/>actions are extrinsic to FACS. If one wishes to make emo- +<br/>tion-based inferences from FACS codes, a variety of related +<br/>resources exist. These include the FACS Investigators’ Guide +<br/>(Ekman et al., 2002), the FACS interpretive database (Ekman, +<br/>Rosenberg, & Hager, 1998), and a large body of empirical +<br/>research.(Ekman & Rosenberg, 2005). These resources sug- +<br/>gest combination rules for defining emotion-specified expres- +<br/>sions from FACS action units, but this inferential step remains +<br/>extrinsic to FACS. Because of its descriptive power, FACS +<br/>is regarded by many as the standard measure for facial be- +<br/>havior and is used widely in diverse fields. Beyond emo- +<br/>tion science, these include facial neuromuscular disorders +<br/>(Van Swearingen & Cohn, 2005), neuroscience (Bruce & +<br/>Young, 1998; Rinn, 1984, 1991), computer vision (Bartlett, +<br/>203 +<br/>UNPROOFED PAGES</td></tr><tr><td>ea85378a6549bb9eb9bcc13e31aa6a61b655a9af</td><td>Diplomarbeit <br/>Template Protection for PCA-LDA-based 3D <br/>Face Recognition System <br/>von @@ -6543,7 +8496,16 @@ <br/>Sabbir Ahmmed <br/>TU Berlin <br/>TU Berlin -</td></tr><tr><td>e16efd2ae73a325b7571a456618bfa682b51aef8</td><td></td></tr><tr><td>e13360cda1ebd6fa5c3f3386c0862f292e4dbee4</td><td></td></tr><tr><td>e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2</td><td>TSINGHUA SCIENCE AND TECHNOLOGY +</td></tr><tr><td>e16efd2ae73a325b7571a456618bfa682b51aef8</td><td></td></tr><tr><td>e19ebad4739d59f999d192bac7d596b20b887f78</td><td>Learning Gating ConvNet for Two-Stream based Methods in Action +<br/>Recognition +</td></tr><tr><td>e13360cda1ebd6fa5c3f3386c0862f292e4dbee4</td><td></td></tr><tr><td>e1d726d812554f2b2b92cac3a4d2bec678969368</td><td>J Electr Eng Technol.2015; 10(?): 30-40 +<br/>http://dx.doi.org/10.5370/JEET.2015.10.2.030 +<br/>ISSN(Print) +<br/>1975-0102 +<br/>ISSN(Online) 2093-7423 +<br/>Human Action Recognition Bases on Local Action Attributes +<br/>and Mohan S Kankanhalli** +</td></tr><tr><td>e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2</td><td>TSINGHUA SCIENCE AND TECHNOLOGY <br/>ISSNll1007-0214 <br/>0?/?? pp???–??? <br/>DOI: 10.26599/TST.2018.9010000 @@ -6585,6 +8547,8 @@ </td></tr><tr><td>cda4fb9df653b5721ad4fe8b4a88468a410e55ec</td><td>Gabor wavelet transform and its application </td></tr><tr><td>cd3005753012409361aba17f3f766e33e3a7320d</td><td>Multilinear Biased Discriminant Analysis: A Novel Method for Facial <br/>Action Unit Representation +</td></tr><tr><td>cd7a7be3804fd217e9f10682e0c0bfd9583a08db</td><td>Women also Snowboard: +<br/>Overcoming Bias in Captioning Models </td></tr><tr><td>ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011 <br/>A Dynamic Appearance Descriptor Approach to <br/>Facial Actions Temporal Modelling @@ -6604,9 +8568,28 @@ <br/>Cinema and other aspects of film and video creation. <br/>PROJECT DATE 2014 <br/>URL http://misharabinovich.com/soyummy.html +</td></tr><tr><td>cc8e378fd05152a81c2810f682a78c5057c8a735</td><td>International Journal of Computer Sciences and Engineering Open Access +<br/> Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693 +<br/>Expression Invariant Face Recognition System based on Topographic +<br/>Independent Component Analysis and Inner Product Classifier +<br/> +<br/>Department of Electrical Engineering, IIT Delhi, New Delhi, India +<br/>Available online at: www.ijcseonline.org +<br/>Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017 +</td></tr><tr><td>cc31db984282bb70946f6881bab741aa841d3a7c</td><td>ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV +<br/>Learning Grimaces by Watching TV +<br/>http://www.robots.ox.ac.uk/~albanie +<br/>http://www.robots.ox.ac.uk/~vedaldi +<br/>Engineering Science Department +<br/>Univeristy of Oxford +<br/>Oxford, UK </td></tr><tr><td>cc8bf03b3f5800ac23e1a833447c421440d92197</td><td></td></tr><tr><td>cc96eab1e55e771e417b758119ce5d7ef1722b43</td><td>An Empirical Study of Recent <br/>Face Alignment Methods </td></tr><tr><td>e64b683e32525643a9ddb6b6af8b0472ef5b6a37</td><td>Face Recognition and Retrieval in Video +</td></tr><tr><td>e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227</td><td>Pairwise Relational Networks for Face +<br/>Recognition +<br/>1 Department of Creative IT Engineering, POSTECH, Korea +<br/>2 Department of Computer Science and Engineering, POSTECH, Korea </td></tr><tr><td>e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec</td><td>Chapter 15. The critical role of the <br/>cold-start problem and incentive systems <br/>in emotional Web 2.0 services @@ -6616,10 +8599,55 @@ <br/>Dimension Reduction <br/>0 = <br/>, the linear regression function ( -</td></tr><tr><td>e6540d70e5ffeed9f447602ea3455c7f0b38113e</td><td></td></tr><tr><td>e6ee36444038de5885473693fb206f49c1369138</td><td></td></tr><tr><td>f913bb65b62b0a6391ffa8f59b1d5527b7eba948</td><td></td></tr><tr><td>f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1</td><td></td></tr><tr><td>f06b015bb19bd3c39ac5b1e4320566f8d83a0c84</td><td></td></tr><tr><td>f0a3f12469fa55ad0d40c21212d18c02be0d1264</td><td>Sparsity Sharing Embedding for Face +</td></tr><tr><td>e6e5a6090016810fb902b51d5baa2469ae28b8a1</td><td>Title +<br/>Energy-Efficient Deep In-memory Architecture for NAND +<br/>Flash Memories +<br/>Archived version +<br/>Accepted manuscript: the content is same as the published +<br/>paper but without the final typesetting by the publisher +<br/>Published version +<br/>DOI +<br/>Published paper +<br/>URL +<br/>Authors (contact) +<br/>10.1109/ISCAS.2018.8351458 +</td></tr><tr><td>e6540d70e5ffeed9f447602ea3455c7f0b38113e</td><td></td></tr><tr><td>e6ee36444038de5885473693fb206f49c1369138</td><td></td></tr><tr><td>f913bb65b62b0a6391ffa8f59b1d5527b7eba948</td><td></td></tr><tr><td>f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1</td><td></td></tr><tr><td>f0cee87e9ecedeb927664b8da44b8649050e1c86</td><td></td></tr><tr><td>f0f4f16d5b5f9efe304369120651fa688a03d495</td><td>Temporal Generative Adversarial Nets +<br/>Preferred Networks inc., Japan +</td></tr><tr><td>f06b015bb19bd3c39ac5b1e4320566f8d83a0c84</td><td></td></tr><tr><td>f0a3f12469fa55ad0d40c21212d18c02be0d1264</td><td>Sparsity Sharing Embedding for Face <br/>Verification <br/>Department of Electrical Engineering, KAIST, Daejeon, Korea -</td></tr><tr><td>f7452a12f9bd927398e036ea6ede02da79097e6e</td><td></td></tr><tr><td>f7de943aa75406fe5568fdbb08133ce0f9a765d4</td><td>Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross +</td></tr><tr><td>f7dea4454c2de0b96ab5cf95008ce7144292e52a</td><td></td></tr><tr><td>f7b422df567ce9813926461251517761e3e6cda0</td><td>FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS +<br/>(cid:63) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +<br/>† Eurecom, 450 route des Chappes, 06410 Biot, France +</td></tr><tr><td>f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f</td><td>Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +<br/>version when available. +<br/>Title +<br/>On color texture normalization for active appearance models +<br/>Author(s) +<br/>Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +<br/>Publication +<br/>Date +<br/>2009-05-12 +<br/>Publication +<br/>Information +<br/>Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +<br/>Texture Normalization for Active Appearance Models. Image +<br/>Processing, IEEE Transactions on, 18(6), 1372-1378. +<br/>Publisher +<br/>IEEE +<br/>Link to +<br/>publisher's +<br/>version +<br/>http://dx.doi.org/10.1109/TIP.2009.2017163 +<br/>Item record +<br/>http://hdl.handle.net/10379/1350 +<br/>Some rights reserved. For more information, please see the item record link above. +<br/>Downloaded 2017-06-17T22:38:27Z +</td></tr><tr><td>f7452a12f9bd927398e036ea6ede02da79097e6e</td><td></td></tr><tr><td>f7dcadc5288653ec6764600c7c1e2b49c305dfaa</td><td>Copyright +<br/>by +<br/>Adriana Ivanova Kovashka +<br/>2014 +</td></tr><tr><td>f7de943aa75406fe5568fdbb08133ce0f9a765d4</td><td>Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross <br/>Project 1.5 <br/>Biometric Identification and Surveillance1 <br/>Year 5 Deliverable @@ -6677,9 +8705,63 @@ <br/> </td></tr><tr><td>f78863f4e7c4c57744715abe524ae4256be884a9</td><td></td></tr><tr><td>f77c9bf5beec7c975584e8087aae8d679664a1eb</td><td>Local Deep Neural Networks for Age and Gender Classification <br/>March 27, 2017 -</td></tr><tr><td>e8410c4cd1689829c15bd1f34995eb3bd4321069</td><td></td></tr><tr><td>e8b2a98f87b7b2593b4a046464c1ec63bfd13b51</td><td>CMS-RCNN: Contextual Multi-Scale +</td></tr><tr><td>e8410c4cd1689829c15bd1f34995eb3bd4321069</td><td></td></tr><tr><td>e8fdacbd708feb60fd6e7843b048bf3c4387c6db</td><td>Deep Learning +<br/>Hinnerup Net A/S +<br/>www.hinnerup.net +<br/>July 4, 2014 +<br/>Introduction +<br/>Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively +<br/>new research area although based on the popular artificial neural networks (supposedly +<br/>mirroring brain function). With the development of the perceptron in the 1950s and +<br/>1960s by Frank RosenBlatt, research began on artificial neural networks. To further +<br/>mimic the architectural depth of the brain, researchers wanted to train a deep multi- +<br/>layer neural network – this, however, did not happen until Geoffrey Hinton in 2006 +<br/>introduced Deep Belief Networks [1]. +<br/>Recently, the topic of deep learning has gained public interest. Large web companies such +<br/>as Google and Facebook have a focused research on AI and an ever increasing amount +<br/>of compute power, which has led to researchers finally being able to produce results +<br/>that are of interest to the general public. In July 2012 Google trained a deep learning +<br/>network on YouTube videos with the remarkable result that the network learned to +<br/>recognize humans as well as cats [6], and in January this year Google successfully used +<br/>deep learning on Street View images to automatically recognize house numbers with +<br/>an accuracy comparable to that of a human operator [5]. In March this year Facebook +<br/>announced their DeepFace algorithm that is able to match faces in photos with Facebook +<br/>users almost as accurately as a human can do [9]. +<br/>Deep learning and other AI are here to stay and will become more and more present in +<br/>our daily lives, so we had better make ourselves acquainted with the technology. Let’s +<br/>dive into the deep water and try not to drown! +<br/>Data Representations +<br/>Before presenting data to an AI algorithm, we would normally prepare the data to make +<br/>it feasible to work with. For instance, if the data consists of images, we would take each +</td></tr><tr><td>e8b2a98f87b7b2593b4a046464c1ec63bfd13b51</td><td>CMS-RCNN: Contextual Multi-Scale <br/>Region-based CNN for Unconstrained Face <br/>Detection +</td></tr><tr><td>e8c6c3fc9b52dffb15fe115702c6f159d955d308</td><td>13 +<br/>Linear Subspace Learning for +<br/>Facial Expression Analysis +<br/>Philips Research +<br/>The Netherlands +<br/>1. Introduction +<br/>Facial expression, resulting from movements of the facial muscles, is one of the most +<br/>powerful, natural, and immediate means for human beings to communicate their emotions +<br/>and intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was +<br/>the first to describe in detail the specific facial expressions associated with emotions in +<br/>animals and humans; he argued that all mammals show emotions reliably in their faces. +<br/>Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial +<br/>expressions, with other non-verbal cues, play a major and fundamental role in face-to-face +<br/>communication. +<br/>Fig. 1. Facial expressions of George W. Bush. +<br/>Machine analysis of facial expressions, enabling computers to analyze and interpret facial +<br/>expressions as humans do, has many important applications including intelligent human- +<br/>computer interaction, computer animation, surveillance and security, medical diagnosis, +<br/>law enforcement, and awareness system (Shan, 2007). Driven by its potential applications +<br/>and theoretical interests of cognitive and psychological scientists, automatic facial +<br/>expression analysis has attracted much attention in last two decades (Pantic & Rothkrantz, +<br/>2000a; Fasel & Luettin, 2003; Tian et al, 2005; Pantic & Bartlett, 2007). It has been studied in +<br/>multiple disciplines such as psychology, cognitive science, computer vision, pattern +<br/>Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira, +<br/> ISBN 978-3-902613-56-1, pp. 450, February 2009, I-Tech, Vienna, Austria +<br/>www.intechopen.com </td></tr><tr><td>fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6</td><td>Draft: Evaluation Guidelines for Gender <br/>Classification and Age Estimation <br/>July 1, 2011 @@ -6744,13 +8826,23 @@ <br/>each of spatial size 4×4. All layers except the last one are batch normalized followed by a ReLU activation. <br/>The last layer is followed by Tanh activation, generating an RGB image with values in range [−1, 1]. All <br/>the layers use a stride of 2 and padding of 1, excluding the first one which does not use stride or padding. -</td></tr><tr><td>faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b</td><td></td></tr><tr><td>ff8315c1a0587563510195356c9153729b533c5b</td><td>432 +</td></tr><tr><td>faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b</td><td></td></tr><tr><td>faf5583063682e70dedc4466ac0f74eeb63169e7</td><td></td></tr><tr><td>fad895771260048f58d12158a4d4d6d0623f4158</td><td>Audio-Visual Emotion +<br/>Recognition For Natural +<br/>Human-Robot Interaction +<br/>Dissertation zur Erlangung des akademischen Grades +<br/>Doktor der Ingenieurwissenschaften (Dr.-Ing.) +<br/>vorgelegt von +<br/>an der Technischen Fakultät der Universität Bielefeld +<br/>15. März 2010 +</td></tr><tr><td>ff8315c1a0587563510195356c9153729b533c5b</td><td>432 <br/>Zapping Index:Using Smile to Measure <br/>Advertisement Zapping Likelihood </td></tr><tr><td>ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a</td><td>Towards Video Captioning with Naming: a <br/>Novel Dataset and a Multi-Modal Approach <br/>Dipartimento di Ingegneria “Enzo Ferrari” <br/>Universit`a degli Studi di Modena e Reggio Emilia +</td></tr><tr><td>fffefc1fb840da63e17428fd5de6e79feb726894</td><td>Fine-Grained Age Estimation in the wild with +<br/>Attention LSTM Networks </td></tr><tr><td>ff398e7b6584d9a692e70c2170b4eecaddd78357</td><td></td></tr><tr><td>ffd81d784549ee51a9b0b7b8aaf20d5581031b74</td><td>Performance Analysis of Retina and DoG <br/>Filtering Applied to Face Images for Training <br/>Correlation Filters @@ -6762,7 +8854,9 @@ <br/>2 Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja <br/>California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia <br/>Playitas, Ensenada, Baja California, C.P. 22860 -</td></tr><tr><td>ff60d4601adabe04214c67e12253ea3359f4e082</td><td></td></tr><tr><td>ffcbedb92e76fbab083bb2c57d846a2a96b5ae30</td><td></td></tr><tr><td>c50d73557be96907f88b59cfbd1ab1b2fd696d41</td><td>JournalofElectronicImaging13(3),474–485(July2004). +</td></tr><tr><td>ff60d4601adabe04214c67e12253ea3359f4e082</td><td></td></tr><tr><td>ff8ef43168b9c8dd467208a0b1b02e223b731254</td><td>BreakingNews: Article Annotation by +<br/>Image and Text Processing +</td></tr><tr><td>ffcbedb92e76fbab083bb2c57d846a2a96b5ae30</td><td></td></tr><tr><td>c50d73557be96907f88b59cfbd1ab1b2fd696d41</td><td>JournalofElectronicImaging13(3),474–485(July2004). <br/>Semiconductor sidewall shape estimation <br/>Oak Ridge National Laboratory <br/>Oak Ridge, Tennessee 37831-6010 @@ -6797,18 +8891,23 @@ </td></tr><tr><td>c220f457ad0b28886f8b3ef41f012dd0236cd91a</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 <br/>Crystal Loss and Quality Pooling for <br/>Unconstrained Face Verification and Recognition +</td></tr><tr><td>c254b4c0f6d5a5a45680eb3742907ec93c3a222b</td><td>A Fusion-based Gender Recognition Method +<br/>Using Facial Images </td></tr><tr><td>c28461e266fe0f03c0f9a9525a266aa3050229f0</td><td>Automatic Detection of Facial Feature Points via <br/>HOGs and Geometric Prior Models <br/>1 Computer Vision Center , Universitat Aut`onoma de Barcelona <br/>2 Universitat Oberta de Catalunya <br/>3 Dept. de Matem`atica Aplicada i An`alisi <br/>Universitat de Barcelona -</td></tr><tr><td>c29e33fbd078d9a8ab7adbc74b03d4f830714cd0</td><td></td></tr><tr><td>f6ca29516cce3fa346673a2aec550d8e671929a6</td><td>International Journal of Engineering and Advanced Technology (IJEAT) +</td></tr><tr><td>c29e33fbd078d9a8ab7adbc74b03d4f830714cd0</td><td></td></tr><tr><td>f68ed499e9d41f9c3d16d843db75dc12833d988d</td><td></td></tr><tr><td>f6ca29516cce3fa346673a2aec550d8e671929a6</td><td>International Journal of Engineering and Advanced Technology (IJEAT) <br/>ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 <br/>Algorithm for Face Matching Using Normalized <br/>Cross-Correlation <br/> -</td></tr><tr><td>f6c70635241968a6d5fd5e03cde6907022091d64</td><td></td></tr><tr><td>f6abecc1f48f6ec6eede4143af33cc936f14d0d0</td><td></td></tr><tr><td>f6fa97fbfa07691bc9ff28caf93d0998a767a5c1</td><td>k2-means for fast and accurate large scale clustering +</td></tr><tr><td>f6c70635241968a6d5fd5e03cde6907022091d64</td><td></td></tr><tr><td>f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca</td><td>Cross-label Suppression: A Discriminative and Fast +<br/>Dictionary Learning with Group Regularization +<br/>April 24, 2017 +</td></tr><tr><td>f6abecc1f48f6ec6eede4143af33cc936f14d0d0</td><td></td></tr><tr><td>f6fa97fbfa07691bc9ff28caf93d0998a767a5c1</td><td>k2-means for fast and accurate large scale clustering <br/>Computer Vision Lab <br/>D-ITET <br/>ETH Zurich @@ -6822,6 +8921,11 @@ <br/>Cognitive Learning for Social Robot through <br/>Facial Expression from Video Input <br/>1Department of Automation & Robotics, 2Department of Computer Science & Engg. +</td></tr><tr><td>e988be047b28ba3b2f1e4cdba3e8c94026139fcf</td><td>Multi-Task Convolutional Neural Network for +<br/>Pose-Invariant Face Recognition +</td></tr><tr><td>e9d43231a403b4409633594fa6ccc518f035a135</td><td>Deformable Part Models with CNN Features +<br/>Kokkinos1,2 +<br/>1 Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63) </td></tr><tr><td>e9fcd15bcb0f65565138dda292e0c71ef25ea8bb</td><td>Repositorio Institucional de la Universidad Autónoma de Madrid <br/>https://repositorio.uam.es <br/>Esta es la versión de autor de la comunicación de congreso publicada en: @@ -6833,6 +8937,10 @@ <br/>Copyright: © 2013 Springer-Verlag <br/>El acceso a la versión del editor puede requerir la suscripción del recurso <br/>Access to the published version may require subscription +</td></tr><tr><td>e9363f4368b04aeaa6d6617db0a574844fc59338</td><td>BENCHIP: Benchmarking Intelligence +<br/>Processors +<br/>1ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group +<br/>4IFLYTEK,5JD,6RDA Microelectronics,7AMD </td></tr><tr><td>f16a605abb5857c39a10709bd9f9d14cdaa7918f</td><td>Fast greyscale road sign model matching <br/>and recognition <br/>Centre de Visió per Computador @@ -6856,6 +8964,8 @@ <br/>reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009 <br/>angenommen. </td></tr><tr><td>e76798bddd0f12ae03de26b7c7743c008d505215</td><td></td></tr><tr><td>e726acda15d41b992b5a41feabd43617fab6dc23</td><td></td></tr><tr><td>e7b6887cd06d0c1aa4902335f7893d7640aef823</td><td>Modelling of Facial Aging and Kinship: A Survey +</td></tr><tr><td>cb004e9706f12d1de83b88c209ac948b137caae0</td><td>Face Aging Effect Simulation using Hidden Factor +<br/>Analysis Joint Sparse Representation </td></tr><tr><td>cb9092fe74ea6a5b2bb56e9226f1c88f96094388</td><td></td></tr><tr><td>cb08f679f2cb29c7aa972d66fe9e9996c8dfae00</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 <br/>Action Understanding <br/>with Multiple Classes of Actors @@ -6999,10 +9109,30 @@ <br/>and convert all the natural language descriptions <br/>to lower case and tokenize the sentences and <br/>remove punctuations. +</td></tr><tr><td>e096b11b3988441c0995c13742ad188a80f2b461</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>DeepProposals: Hunting Objects and Actions by Cascading +<br/>Deep Convolutional Layers +<br/>Van Gool +<br/>Received: date / Accepted: date </td></tr><tr><td>e0c081a007435e0c64e208e9918ca727e2c1c44e</td><td></td></tr><tr><td>e00d4e4ba25fff3583b180db078ef962bf7d6824</td><td>Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 March 2017 doi:10.20944/preprints201703.0152.v1 <br/>Article <br/>Face Verification with Multi-Task and Multi-Scale <br/>Features Fusion +</td></tr><tr><td>e0939b4518a5ad649ba04194f74f3413c793f28e</td><td>Technical Report +<br/>UCAM-CL-TR-636 +<br/>ISSN 1476-2986 +<br/>Number 636 +<br/>Computer Laboratory +<br/>Mind-reading machines: +<br/>automated inference +<br/>of complex mental states +<br/>July 2005 +<br/>15 JJ Thomson Avenue +<br/>Cambridge CB3 0FD +<br/>United Kingdom +<br/>phone +44 1223 763500 +<br/>http://www.cl.cam.ac.uk/ </td></tr><tr><td>e0765de5cabe7e287582532456d7f4815acd74c1</td><td></td></tr><tr><td>e013c650c7c6b480a1b692bedb663947cd9d260f</td><td>860 <br/>Robust Image Analysis With Sparse Representation <br/>on Quantized Visual Features @@ -7040,7 +9170,12 @@ <br/>Seattle, Washington, May 26-30, 2015 <br/>978-1-4799-6922-7/15/$31.00 ©2015 IEEE <br/>3039 -</td></tr><tr><td>2c61a9e26557dd0fe824909adeadf22a6a0d86b0</td><td></td></tr><tr><td>2c2786ea6386f2d611fc9dbf209362699b104f83</td><td></td></tr><tr><td>2c848cc514293414d916c0e5931baf1e8583eabc</td><td>An automatic facial expression recognition system +</td></tr><tr><td>2c61a9e26557dd0fe824909adeadf22a6a0d86b0</td><td></td></tr><tr><td>2c93c8da5dfe5c50119949881f90ac5a0a4f39fe</td><td>Advanced local motion patterns for macro and micro facial +<br/>expression recognition +<br/>B. Allaerta,∗, IM. Bilascoa, C. Djerabaa +<br/>aUniv. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - +<br/>Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +</td></tr><tr><td>2c2786ea6386f2d611fc9dbf209362699b104f83</td><td></td></tr><tr><td>2c848cc514293414d916c0e5931baf1e8583eabc</td><td>An automatic facial expression recognition system <br/>evaluated by different classifiers <br/>∗Programa de P´os-Graduac¸˜ao em Mecatrˆonica <br/>Universidade Federal da Bahia, @@ -7068,6 +9203,8 @@ <br/>redistribution to servers or lists, or to reuse any copyrighted <br/>component of this work in other works must be obtained from <br/>the IEEE. +</td></tr><tr><td>2c5d1e0719f3ad7f66e1763685ae536806f0c23b</td><td>AENet: Learning Deep Audio Features for Video +<br/>Analysis </td></tr><tr><td>2c8f24f859bbbc4193d4d83645ef467bcf25adc2</td><td>845 <br/>Classification in the Presence of <br/>Label Noise: a Survey @@ -7081,7 +9218,10 @@ <br/>Unit detection <br/>1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222 <br/>4 place Jussieu 75005 Paris -</td></tr><tr><td>795ea140df2c3d29753f40ccc4952ef24f46576c</td><td></td></tr><tr><td>79b669abf65c2ca323098cf3f19fa7bdd837ff31</td><td> Deakin Research Online +</td></tr><tr><td>79f6a8f777a11fd626185ab549079236629431ac</td><td>Copyright +<br/>by +<br/>2013 +</td></tr><tr><td>795ea140df2c3d29753f40ccc4952ef24f46576c</td><td></td></tr><tr><td>79dc84a3bf76f1cb983902e2591d913cee5bdb0e</td><td></td></tr><tr><td>79b669abf65c2ca323098cf3f19fa7bdd837ff31</td><td> Deakin Research Online <br/>This is the published version: <br/>Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor <br/>based face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on @@ -7095,7 +9235,7 @@ <br/>resale or redistribution to servers or lists, or to reuse any copyrighted component of this work <br/>in other works must be obtained from the IEEE. <br/>Copyright : 2008, IEEE -</td></tr><tr><td>79dd787b2877cf9ce08762d702589543bda373be</td><td>Face Detection Using SURF Cascade +</td></tr><tr><td>79c3a7131c6c176b02b97d368cd0cd0bc713ff7e</td><td></td></tr><tr><td>79dd787b2877cf9ce08762d702589543bda373be</td><td>Face Detection Using SURF Cascade <br/>Intel Labs China </td></tr><tr><td>793e7f1ba18848908da30cbad14323b0389fd2a8</td><td></td></tr><tr><td>2dd6c988b279d89ab5fb5155baba65ce4ce53c1e</td><td></td></tr><tr><td>2d294c58b2afb529b26c49d3c92293431f5f98d0</td><td>4413 <br/>Maximum Margin Projection Subspace Learning @@ -7130,6 +9270,9 @@ <br/>analysis <br/>for <br/>information +</td></tr><tr><td>2d8d089d368f2982748fde93a959cf5944873673</td><td>Proceedings of NAACL-HLT 2018, pages 788–794 +<br/>New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +<br/>788 </td></tr><tr><td>2df4d05119fe3fbf1f8112b3ad901c33728b498a</td><td>Facial landmark detection using structured output deep <br/>neural networks <br/>Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien @@ -7145,6 +9288,9 @@ <br/>1P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. <br/>2Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.), <br/>India +</td></tr><tr><td>414715421e01e8c8b5743c5330e6d2553a08c16d</td><td>PoTion: Pose MoTion Representation for Action Recognition +<br/>1Inria∗ +<br/>2NAVER LABS Europe </td></tr><tr><td>41ab4939db641fa4d327071ae9bb0df4a612dc89</td><td>Interpreting Face Images by Fitting a Fast <br/>Illumination-Based 3D Active Appearance <br/>Model @@ -7208,6 +9354,13 @@ <br/>Computer Science Depatment, Universit¨at Karlsruhe (TH) <br/>Am Fasanengarten 5, Karlsruhe 76131, Germany <br/>http://isl.ira.uka.de/cvhci +</td></tr><tr><td>1b55c4e804d1298cbbb9c507497177014a923d22</td><td>Incremental Class Representation +<br/>Learning for Face Recognition +<br/>Degree’s Thesis +<br/>Audiovisual Systems Engineering +<br/>Author: +<br/>Universitat Politècnica de Catalunya (UPC) +<br/>2016 - 2017 </td></tr><tr><td>1bd50926079e68a6e32dc4412e9d5abe331daefb</td><td></td></tr><tr><td>1b150248d856f95da8316da868532a4286b9d58e</td><td>Analyzing 3D Objects in Cluttered Images <br/>UC Irvine <br/>UC Irvine @@ -7285,7 +9438,9 @@ <br/>DECISION TREES <br/>Commission II, WG II/5 <br/>KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees. -</td></tr><tr><td>1b79628af96eb3ad64dbb859dae64f31a09027d5</td><td></td></tr><tr><td>1bc23c771688109bed9fd295ce82d7e702726327</td><td></td></tr><tr><td>1b589016fbabe607a1fb7ce0c265442be9caf3a9</td><td></td></tr><tr><td>1b27ca161d2e1d4dd7d22b1247acee5c53db5104</td><td></td></tr><tr><td>7711a7404f1f1ac3a0107203936e6332f50ac30c</td><td>Action Classification and Highlighting in Videos +</td></tr><tr><td>1b79628af96eb3ad64dbb859dae64f31a09027d5</td><td></td></tr><tr><td>1b4f6f73c70353869026e5eec1dd903f9e26d43f</td><td>Robust Subjective Visual Property Prediction +<br/>from Crowdsourced Pairwise Labels +</td></tr><tr><td>1bc23c771688109bed9fd295ce82d7e702726327</td><td></td></tr><tr><td>1b589016fbabe607a1fb7ce0c265442be9caf3a9</td><td></td></tr><tr><td>1b27ca161d2e1d4dd7d22b1247acee5c53db5104</td><td></td></tr><tr><td>7711a7404f1f1ac3a0107203936e6332f50ac30c</td><td>Action Classification and Highlighting in Videos <br/>Disney Research Pittsburgh <br/>Disney Research Pittsburgh </td></tr><tr><td>778c9f88839eb26129427e1b8633caa4bd4d275e</td><td>Pose Pooling Kernels for Sub-category Recognition @@ -7293,6 +9448,9 @@ <br/>ICSI & UC Berkeley <br/>Trever Darrell <br/>ICSI & UC Berkeley +</td></tr><tr><td>7789a5d87884f8bafec8a82085292e87d4e2866f</td><td>A Unified Tensor-based Active Appearance Face +<br/>Model +<br/>Member, IEEE </td></tr><tr><td>776835eb176ed4655d6e6c308ab203126194c41e</td><td></td></tr><tr><td>778bff335ae1b77fd7ec67404f71a1446624331b</td><td>Hough Forest-based Facial Expression Recognition from <br/>Video Sequences <br/>BIWI, ETH Zurich http://www.vision.ee.ethz.ch @@ -7302,6 +9460,13 @@ <br/>†ETH Zurich </td></tr><tr><td>7754b708d6258fb8279aa5667ce805e9f925dfd0</td><td>Facial Action Unit Recognition by Exploiting <br/>Their Dynamic and Semantic Relationships +</td></tr><tr><td>77db171a523fc3d08c91cea94c9562f3edce56e1</td><td>Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17 +<br/>http://jivp.eurasipjournals.com/content/2012/1/17 +<br/>R ES EAR CH +<br/>Open Access +<br/>Gauss–Laguerre wavelet textural feature fusion +<br/>with geometrical information for facial expression +<br/>identification </td></tr><tr><td>77037a22c9b8169930d74d2ce6f50f1a999c1221</td><td>Robust Face Recognition With Kernelized <br/>Locality-Sensitive Group Sparsity Representation </td></tr><tr><td>77d31d2ec25df44781d999d6ff980183093fb3de</td><td>The Multiverse Loss for Robust Transfer Learning @@ -7437,6 +9602,17 @@ <br/>skills <br/>1Laboratoire LIRIS, ´Ecole centrale de Lyon, 69134 Ecully, France. <br/>2Safran Identity & Security, 92130 Issy-les-Moulineaux, France. +</td></tr><tr><td>48186494fc7c0cc664edec16ce582b3fcb5249c0</td><td>P-CNN: Pose-based CNN Features for Action Recognition +<br/>Guilhem Ch´eron∗ † +<br/>INRIA +</td></tr><tr><td>48499deeaa1e31ac22c901d115b8b9867f89f952</td><td>Interim Report of Final Year Project +<br/>HKU-Face: A Large Scale Dataset for +<br/>Deep Face Recognition +<br/>3035140108 +<br/>Haoyu Li +<br/>3035141841 +<br/>COMP4801 Final Year Project +<br/>Project Code: 17007 </td></tr><tr><td>486a82f50835ea888fbc5c6babf3cf8e8b9807bc</td><td>MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 <br/>Face Search at Scale: 80 Million Gallery </td></tr><tr><td>4866a5d6d7a40a26f038fc743e16345c064e9842</td><td></td></tr><tr><td>487df616e981557c8e1201829a1d0ec1ecb7d275</td><td>Acoustic Echo Cancellation Using a Vector-Space-Based @@ -7450,6 +9626,10 @@ <br/>Feature Extraction and Kernel Fisher Analysis </td></tr><tr><td>70f189798c8b9f2b31c8b5566a5cf3107050b349</td><td>The Challenge of Face Recognition from Digital Point-and-Shoot Cameras <br/>David Bolme‡ +</td></tr><tr><td>70109c670471db2e0ede3842cbb58ba6be804561</td><td>Noname manuscript No. +<br/>(will be inserted by the editor) +<br/>Zero-Shot Visual Recognition via Bidirectional Latent Embedding +<br/>Received: date / Accepted: date </td></tr><tr><td>703890b7a50d6535900a5883e8d2a6813ead3a03</td><td></td></tr><tr><td>706236308e1c8d8b8ba7749869c6b9c25fa9f957</td><td>Crowdsourced Data Collection of Facial Responses <br/>MIT Media Lab <br/>Cambridge @@ -7614,6 +9794,10 @@ <br/>EXPRESSION RECOGNITION <br/>USING C-SUPPORT VECTOR <br/>CLASSIFICATION +</td></tr><tr><td>1e21b925b65303ef0299af65e018ec1e1b9b8d60</td><td>Under review as a conference paper at ICLR 2017 +<br/>UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION +<br/>Facebook AI Research +<br/>Tel-Aviv, Israel </td></tr><tr><td>1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9</td><td>Entropy Regularization <br/>The problem of semi-supervised induction consists in learning a decision rule from <br/>labeled and unlabeled data. This task can be undertaken by discriminative methods, @@ -7642,6 +9826,26 @@ <br/>examples. The problem di(cid:11)ers in the respect that the supervisor’s responses are <br/>missing for some training examples. This characteristic is shared with transduction, <br/>which has however a di(cid:11)erent goal, that is, of predicting labels on a set of prede(cid:12)ned +</td></tr><tr><td>1ee3b4ba04e54bfbacba94d54bf8d05fd202931d</td><td>Indonesian Journal of Electrical Engineering and Computer Science +<br/>Vol. 12, No. 2, November 2018, pp. 476~481 +<br/>ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481 +<br/> 476 +<br/>Celebrity Face Recognition using Deep Learning +<br/>1,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +<br/>4Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +<br/> Shah Alam, Selangor, Malaysia +<br/>Campus Jasin, Melaka, Malaysia +<br/>Article Info +<br/>Article history: +<br/>Received May 29, 2018 +<br/>Revised Jul 30, 2018 +<br/>Accepted Aug 3, 2018 +<br/>Keywords: +<br/>AlexNet +<br/>Convolutional neural network +<br/>Deep learning +<br/>Face recognition +<br/>GoogLeNet </td></tr><tr><td>1e41a3fdaac9f306c0ef0a978ae050d884d77d2a</td><td>411 <br/>Robust Object Recognition with <br/>Cortex-Like Mechanisms @@ -7650,6 +9854,16 @@ <br/>FROM FACE IMAGES <br/>VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan <br/>Keywords: +</td></tr><tr><td>1efaa128378f988965841eb3f49d1319a102dc36</td><td>JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +<br/>Hierarchical binary CNNs for landmark +<br/>localization with limited resources +</td></tr><tr><td>8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2</td><td>Consensual and Privacy-Preserving Sharing of +<br/>Multi-Subject and Interdependent Data +<br/>EPFL, UNIL–HEC Lausanne +<br/>K´evin Huguenin +<br/>UNIL–HEC Lausanne +<br/>EPFL +<br/>EPFL </td></tr><tr><td>84fe5b4ac805af63206012d29523a1e033bc827e</td><td></td></tr><tr><td>84e4b7469f9c4b6c9e73733fa28788730fd30379</td><td>Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 <br/>DOI 10.1186/s13634-017-0521-9 <br/>EURASIP Journal on Advances @@ -7658,13 +9872,22 @@ <br/>Projective complex matrix factorization for <br/>facial expression recognition <br/>Open Access -</td></tr><tr><td>84dcf04802743d9907b5b3ae28b19cbbacd97981</td><td></td></tr><tr><td>841a5de1d71a0b51957d9be9d9bebed33fb5d9fa</td><td>5017 +</td></tr><tr><td>84dcf04802743d9907b5b3ae28b19cbbacd97981</td><td></td></tr><tr><td>84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1</td><td>Improved Boosting Performance by Explicit +<br/>Handling of Ambiguous Positive Examples +</td></tr><tr><td>841a5de1d71a0b51957d9be9d9bebed33fb5d9fa</td><td>5017 <br/>PCANet: A Simple Deep Learning Baseline for <br/>Image Classification? +</td></tr><tr><td>849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b</td><td>Detecting Faces Using Region-based Fully +<br/>Convolutional Networks +<br/>Tencent AI Lab, China </td></tr><tr><td>4adca62f888226d3a16654ca499bf2a7d3d11b71</td><td>Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582, <br/>Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics <br/>572 </td></tr><tr><td>4a2d54ea1da851151d43b38652b7ea30cdb6dfb2</td><td>Direct Recognition of Motion Blurred Faces +</td></tr><tr><td>4a3758f283b7c484d3f164528d73bc8667eb1591</td><td>Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial +<br/>Networks +<br/>Center for Research on Intelligent Perception and Computing, CASIA +<br/>National Laboratory of Pattern Recognition, CASIA </td></tr><tr><td>4abd49538d04ea5c7e6d31701b57ea17bc349412</td><td>Recognizing Fine-Grained and Composite Activities <br/>using Hand-Centric Features and Script Data </td></tr><tr><td>4a0f98d7dbc31497106d4f652968c708f7da6692</td><td>Real-time Eye Gaze Direction Classification Using @@ -7680,6 +9903,8 @@ <br/>3D Morphable Shape Model </td></tr><tr><td>4a6fcf714f663618657effc341ae5961784504c7</td><td>Scaling up Class-Specific Kernel Discriminant <br/>Analysis for large-scale Face Verification +</td></tr><tr><td>24115d209e0733e319e39badc5411bbfd82c5133</td><td>Long-term Recurrent Convolutional Networks for +<br/>Visual Recognition and Description </td></tr><tr><td>24c442ac3f6802296d71b1a1914b5d44e48b4f29</td><td>Pose and expression-coherent face recovery in the wild <br/>Technicolor, Cesson-S´evign´e, France <br/>Franc¸ois Le Clerc @@ -7698,7 +9923,10 @@ <br/>4, rue du Clos Courtel <br/>35512 Cesson-S´evign´e, France </td></tr><tr><td>244b57cc4a00076efd5f913cc2833138087e1258</td><td>Warped Convolutions: Efficient Invariance to Spatial Transformations -</td></tr><tr><td>24d376e4d580fb28fd66bc5e7681f1a8db3b6b78</td><td></td></tr><tr><td>24bf94f8090daf9bda56d54e42009067839b20df</td><td></td></tr><tr><td>230527d37421c28b7387c54e203deda64564e1b7</td><td>Person Re-identification: System Design and +</td></tr><tr><td>24869258fef8f47623b5ef43bd978a525f0af60e</td><td><b>UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur</b></td></tr><tr><td>24d376e4d580fb28fd66bc5e7681f1a8db3b6b78</td><td></td></tr><tr><td>24ff832171cb774087a614152c21f54589bf7523</td><td>Beat-Event Detection in Action Movie Franchises +<br/>Jerome Revaud +<br/>Zaid Harchaoui +</td></tr><tr><td>24bf94f8090daf9bda56d54e42009067839b20df</td><td></td></tr><tr><td>230527d37421c28b7387c54e203deda64564e1b7</td><td>Person Re-identification: System Design and <br/>Evaluation Overview </td></tr><tr><td>23fdbef123bcda0f07d940c72f3b15704fd49a98</td><td></td></tr><tr><td>23ebbbba11c6ca785b0589543bf5675883283a57</td><td></td></tr><tr><td>23172f9a397f13ae1ecb5793efd81b6aba9b4537</td><td>Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17, <br/>Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics. @@ -7808,7 +10036,9 @@ <br/>Influence of low resolution of images on reliability <br/>of face detection and recognition <br/>© The Author(s) 2013. This article is published with open access at SpringerLink.com -</td></tr><tr><td>4fd29e5f4b7186e349ba34ea30738af7860cf21f</td><td></td></tr><tr><td>4f6adc53798d9da26369bea5a0d91ed5e1314df2</td><td>IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016 +</td></tr><tr><td>4fd29e5f4b7186e349ba34ea30738af7860cf21f</td><td></td></tr><tr><td>4f051022de100241e5a4ba8a7514db9167eabf6e</td><td>Face Parsing via a Fully-Convolutional Continuous +<br/>CRF Neural Network +</td></tr><tr><td>4f6adc53798d9da26369bea5a0d91ed5e1314df2</td><td>IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016 <br/>Online Nonnegative Matrix Factorization with <br/>General Divergences </td></tr><tr><td>4fbef7ce1809d102215453c34bf22b5f9f9aab26</td><td></td></tr><tr><td>4fa0d73b8ba114578744c2ebaf610d2ca9694f45</td><td></td></tr><tr><td>4f591e243a8f38ee3152300bbf42899ac5aae0a5</td><td>SUBMITTED TO TPAMI @@ -7818,7 +10048,20 @@ <br/>Robotics and Embedded Systems Lab, Department of Computer Science <br/>Image Understanding and Knowledge-Based Systems, Department of Computer Science <br/>Technische Universit¨at M¨unchen, Germany -</td></tr><tr><td>4f0bf2508ae801aee082b37f684085adf0d06d23</td><td></td></tr><tr><td>8d71872d5877c575a52f71ad445c7e5124a4b174</td><td></td></tr><tr><td>8de06a584955f04f399c10f09f2eed77722f6b1c</td><td>Author manuscript, published in "International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)" +</td></tr><tr><td>4f0bf2508ae801aee082b37f684085adf0d06d23</td><td></td></tr><tr><td>4f4f920eb43399d8d05b42808e45b56bdd36a929</td><td>International Journal of Computer Applications (0975 – 8887) +<br/>Volume 123 – No.4, August 2015 +<br/>A Novel Method for 3D Image Segmentation with Fusion +<br/>of Two Images using Color K-means Algorithm +<br/>Neelam Kushwah +<br/>Dept. of CSE +<br/>ITM Universe +<br/>Gwalior +<br/>Priusha Narwariya +<br/>Dept. of CSE +<br/>ITM Universe +<br/>Gwalior +<br/>two +</td></tr><tr><td>8d71872d5877c575a52f71ad445c7e5124a4b174</td><td></td></tr><tr><td>8de06a584955f04f399c10f09f2eed77722f6b1c</td><td>Author manuscript, published in "International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)" </td></tr><tr><td>8d4f0517eae232913bf27f516101a75da3249d15</td><td>ARXIV SUBMISSION, MARCH 2018 <br/>Event-based Dynamic Face Detection and <br/>Tracking Based on Activity @@ -8002,6 +10245,8 @@ </td></tr><tr><td>153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4</td><td>Overview of algorithms for face detection and <br/>tracking <br/>Nenad Markuˇs +</td></tr><tr><td>15136c2f94fd29fc1cb6bedc8c1831b7002930a6</td><td>Deep Learning Architectures for Face +<br/>Recognition in Video Surveillance </td></tr><tr><td>153e5cddb79ac31154737b3e025b4fb639b3c9e7</td><td>PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS <br/>Active Dictionary Learning in Sparse <br/>Representation Based Classification @@ -8015,7 +10260,7 @@ <br/>The OU-ISIR Gait Database comprising the <br/>Large Population Dataset with Age and <br/>performance evaluation of age estimation -</td></tr><tr><td>15f3d47b48a7bcbe877f596cb2cfa76e798c6452</td><td>Automatic face analysis tools for interactive digital games +</td></tr><tr><td>15aa6c457678e25f6bc0e818e5fc39e42dd8e533</td><td></td></tr><tr><td>15f3d47b48a7bcbe877f596cb2cfa76e798c6452</td><td>Automatic face analysis tools for interactive digital games <br/>Anonymised for blind review <br/>Anonymous <br/>Anonymous @@ -8026,7 +10271,7 @@ <br/>Technical Report <br/>TU M¨unchen <br/>April 5, 2007 -</td></tr><tr><td>12cb3bf6abf63d190f849880b1703ccc183692fe</td><td>Guess Who?: A game to crowdsource the labeling of affective facial +</td></tr><tr><td>1287bfe73e381cc8042ac0cc27868ae086e1ce3b</td><td></td></tr><tr><td>12cb3bf6abf63d190f849880b1703ccc183692fe</td><td>Guess Who?: A game to crowdsource the labeling of affective facial <br/>expressions is comparable to expert ratings. <br/>Graduation research project, june 2012 <br/>Supervised by: Dr. Joost Broekens @@ -8037,6 +10282,27 @@ <br/>Multiview Facial Landmark Localization in RGB-D <br/>Images via Hierarchical Regression <br/>With Binary Patterns +</td></tr><tr><td>120785f9b4952734818245cc305148676563a99b</td><td>Diagnostic automatique de l’état dépressif +<br/>S. Cholet +<br/>H. Paugam-Moisy +<br/>Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540) +<br/>Université des Antilles, Campus de Fouillole - Guadeloupe +<br/>Résumé +<br/>Les troubles psychosociaux sont un problème de santé pu- +<br/>blique majeur, pouvant avoir des conséquences graves sur +<br/>le court ou le long terme, tant sur le plan professionnel que +<br/>personnel ou familial. Le diagnostic de ces troubles doit +<br/>être établi par un professionnel. Toutefois, l’IA (l’Intelli- +<br/>gence Artificielle) peut apporter une contribution en four- +<br/>nissant au praticien une aide au diagnostic, et au patient +<br/>un suivi permanent rapide et peu coûteux. Nous proposons +<br/>une approche vers une méthode de diagnostic automatique +<br/>de l’état dépressif à partir d’observations du visage en +<br/>temps réel, au moyen d’une simple webcam. A partir de +<br/>vidéos du challenge AVEC’2014, nous avons entraîné un +<br/>classifieur neuronal à extraire des prototypes de visages +<br/>selon différentes valeurs du score de dépression de Beck +<br/>(BDI-II). </td></tr><tr><td>12c713166c46ac87f452e0ae383d04fb44fe4eb2</td><td></td></tr><tr><td>12150d8b51a2158e574e006d4fbdd3f3d01edc93</td><td>Deep End2End Voxel2Voxel Prediction <br/>Presented by: Ahmed Osman <br/>Ahmed Osman @@ -8051,6 +10317,9 @@ <br/>Tom 53(67), Fascicola 1-2, 2008 <br/>Facial Expression Recognition under Noisy Environment <br/>Using Gabor Filters +</td></tr><tr><td>8ce9b7b52d05701d5ef4a573095db66ce60a7e1c</td><td>Structured Sparse Subspace Clustering: A Joint +<br/>Affinity Learning and Subspace Clustering +<br/>Framework </td></tr><tr><td>8c6c0783d90e4591a407a239bf6684960b72f34e</td><td>SESSION <br/>KNOWLEDGE ENGINEERING AND <br/>MANAGEMENT + KNOWLEDGE ACQUISITION @@ -8082,6 +10351,9 @@ <br/>GREYC, CNRS UMR 6072, ENSICAEN <br/>Université de Caen Basse-Normandie <br/>France +</td></tr><tr><td>1d776bfe627f1a051099997114ba04678c45f0f5</td><td>Deployment of Customized Deep Learning based +<br/>Video Analytics On Surveillance Cameras +<br/>AitoeLabs (www.aitoelabs.com) </td></tr><tr><td>1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb</td><td></td></tr><tr><td>1de8f38c35f14a27831130060810cf9471a62b45</td><td>Int J Comput Vis <br/>DOI 10.1007/s11263-017-0989-7 <br/>A Branch-and-Bound Framework for Unsupervised Common @@ -8098,6 +10370,9 @@ <br/>Kuntzmann, <br/>655 avenue de l'Europe, Montbonnot 38330, France </td></tr><tr><td>71b376dbfa43a62d19ae614c87dd0b5f1312c966</td><td>The Temporal Connection Between Smiles and Blinks +</td></tr><tr><td>714d487571ca0d676bad75c8fa622d6f50df953b</td><td>eBear: An Expressive Bear-Like Robot +</td></tr><tr><td>710011644006c18291ad512456b7580095d628a2</td><td>Learning Residual Images for Face Attribute Manipulation +<br/>Fujitsu Research & Development Center, Beijing, China. </td></tr><tr><td>76fd801981fd69ff1b18319c450cb80c4bc78959</td><td>Proceedings of the 11th International Conference on Computational Semantics, pages 76–81, <br/>London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics <br/>76 @@ -8192,6 +10467,32 @@ <br/>from a fixed amount of training data. Unless a lot <br/>EEE A&E SYSTEMS MAGAZINE VOL. 19, NO. 1 JANUARY 2004 PART 2: TUTORIALS-BAGGENSTOSS <br/>37 +</td></tr><tr><td>766728bac030b169fcbc2fbafe24c6e22a58ef3c</td><td>A survey of deep facial landmark detection +<br/>Yongzhe Yan1,2 +<br/>Thierry Chateau1 +<br/>1 Université Clermont Auvergne, France +<br/>2 Wisimage, France +<br/>3 Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France +<br/>Résumé +<br/>La détection de landmarks joue un rôle crucial dans de +<br/>nombreuses applications d’analyse du visage comme la +<br/>reconnaissance de l’identité, des expressions, l’animation +<br/>d’avatar, la reconstruction 3D du visage, ainsi que pour +<br/>les applications de réalité augmentée comme la pose de +<br/>masque ou de maquillage virtuel. L’avènement de l’ap- +<br/>prentissage profond a permis des progrès très importants +<br/>dans ce domaine, y compris sur les corpus non contraints +<br/>(in-the-wild). Nous présentons ici un état de l’art cen- +<br/>tré sur la détection 2D dans une image fixe, et les mé- +<br/>thodes spécifiques pour la vidéo. Nous présentons ensuite +<br/>les corpus existants pour ces trois tâches, ainsi que les mé- +<br/>triques d’évaluations associées. Nous exposons finalement +<br/>quelques résultats, ainsi que quelques pistes de recherche. +<br/>Mots Clef +<br/>Détection de landmark facial, Alignement de visage, Deep +<br/>learning +</td></tr><tr><td>7697295ee6fc817296bed816ac5cae97644c2d5b</td><td>Detecting and Recognizing Human-Object Interactions +<br/>Facebook AI Research (FAIR) </td></tr><tr><td>1c80bc91c74d4984e6422e7b0856cf3cf28df1fb</td><td>Noname manuscript No. <br/>(will be inserted by the editor) <br/>Hierarchical Adaptive Structural SVM for Domain Adaptation @@ -8296,7 +10597,9 @@ <br/>Hybrid networks are particularly adapted to our client- </td></tr><tr><td>1c3073b57000f9b6dbf1c5681c52d17c55d60fd7</td><td>THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE</td></tr><tr><td>1c93b48abdd3ef1021599095a1a5ab5e0e020dd5</td><td>JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009 <br/>A Compositional and Dynamic Model for Face Aging -</td></tr><tr><td>1c6be6874e150898d9db984dd546e9e85c85724e</td><td></td></tr><tr><td>1c65f3b3c70e1ea89114f955624d7adab620a013</td><td></td></tr><tr><td>82bef8481207de9970c4dc8b1d0e17dced706352</td><td></td></tr><tr><td>82d2af2ffa106160a183371946e466021876870d</td><td>A Novel Space-Time Representation on the Positive Semidefinite Cone +</td></tr><tr><td>1c6be6874e150898d9db984dd546e9e85c85724e</td><td></td></tr><tr><td>1c65f3b3c70e1ea89114f955624d7adab620a013</td><td></td></tr><tr><td>1c6e22516ceb5c97c3caf07a9bd5df357988ceda</td><td></td></tr><tr><td>82bef8481207de9970c4dc8b1d0e17dced706352</td><td></td></tr><tr><td>825f56ff489cdd3bcc41e76426d0070754eab1a8</td><td>Making Convolutional Networks Recurrent for Visual Sequence Learning +<br/>NVIDIA +</td></tr><tr><td>82d2af2ffa106160a183371946e466021876870d</td><td>A Novel Space-Time Representation on the Positive Semidefinite Cone <br/>for Facial Expression Recognition <br/>1IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL – <br/>Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France @@ -8340,9 +10643,16 @@ <br/>Journal Computer Vision, Vol. 25, No. 1, pp. 23-48, 1997. <br/>10. <br/>Recognition using a State-Based Model of Spatially-Localized Facial +</td></tr><tr><td>82417d8ec8ac6406f2d55774a35af2a1b3f4b66e</td><td>Some faces are more equal than others: +<br/>Hierarchical organization for accurate and +<br/>efficient large-scale identity-based face retrieval +<br/>GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1 +<br/>Technicolor, Rennes, France2 </td></tr><tr><td>826c66bd182b54fea3617192a242de1e4f16d020</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>1602 <br/>ICASSP 2017 +</td></tr><tr><td>4972aadcce369a8c0029e6dc2f288dfd0241e144</td><td>Multi-target Unsupervised Domain Adaptation +<br/>without Exactly Shared Categories </td></tr><tr><td>49dd4b359f8014e85ed7c106e7848049f852a304</td><td></td></tr><tr><td>49e85869fa2cbb31e2fd761951d0cdfa741d95f3</td><td>253 <br/>Adaptive Manifold Learning </td></tr><tr><td>49659fb64b1d47fdd569e41a8a6da6aa76612903</td><td></td></tr><tr><td>49a7949fabcdf01bbae1c2eb38946ee99f491857</td><td>A CONCATENATING FRAMEWORK OF SHORTCUT @@ -8352,6 +10662,10 @@ <br/>Support Vector Machine for age classification <br/>1Assistant Professor, CSE, RSR RCET, Kohka Bhilai <br/>2,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai +</td></tr><tr><td>49df381ea2a1e7f4059346311f1f9f45dd997164</td><td>2018 +<br/>On the Use of Client-Specific Information for Face +<br/>Presentation Attack Detection Based on Anomaly +<br/>Detection </td></tr><tr><td>40205181ed1406a6f101c5e38c5b4b9b583d06bc</td><td>Using Context to Recognize People in Consumer Images </td></tr><tr><td>40dab43abef32deaf875c2652133ea1e2c089223</td><td>Noname manuscript No. <br/>(will be inserted by the editor) @@ -8405,6 +10719,11 @@ <br/>2 Environment Perception, Group Research, Daimler AG, Ulm, Germany <br/>3 Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands </td></tr><tr><td>40cd062438c280c76110e7a3a0b2cf5ef675052c</td><td></td></tr><tr><td>40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a</td><td>80 +</td></tr><tr><td>40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd</td><td>Bridging Heterogeneous Domains With Parallel Transport For Vision and +<br/>Multimedia Applications +<br/>Dept. of Video and Multimedia Technologies Research +<br/>AT&T Labs-Research +<br/>San Francisco, CA 94108 </td></tr><tr><td>40389b941a6901c190fb74e95dc170166fd7639d</td><td>Automatic Facial Expression Recognition <br/>Emotient <br/>http://emotient.com @@ -8433,6 +10752,9 @@ <br/>detectors embedded in digital cameras [62]. Nonetheless, considerable progress has yet to be <br/>made: Methods for face detection and tracking (the first step of automated face analysis) <br/>work well for frontal views of adult Caucasian and Asian faces [50], but their performance +</td></tr><tr><td>40273657e6919455373455bd9a5355bb46a7d614</td><td>Anonymizing k-Facial Attributes via Adversarial Perturbations +<br/>1 IIIT Delhi, New Delhi, India +<br/>2 Ministry of Electronics and Information Technology, New Delhi, India </td></tr><tr><td>40b10e330a5511a6a45f42c8b86da222504c717f</td><td>Implementing the Viola-Jones <br/>Face Detection Algorithm <br/>Kongens Lyngby 2008 @@ -8448,7 +10770,11 @@ </td></tr><tr><td>401e6b9ada571603b67377b336786801f5b54eee</td><td>Active Image Clustering: Seeking Constraints from <br/>Humans to Complement Algorithms <br/>November 22, 2011 -</td></tr><tr><td>2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9</td><td></td></tr><tr><td>2eb37a3f362cffdcf5882a94a20a1212dfed25d9</td><td>4 +</td></tr><tr><td>2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9</td><td></td></tr><tr><td>2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87</td><td>International Journal of Computer Vision manuscript No. +<br/>(will be inserted by the editor) +<br/>Pointly-Supervised Action Localization +<br/>Received: date / Accepted: date +</td></tr><tr><td>2eb37a3f362cffdcf5882a94a20a1212dfed25d9</td><td>4 <br/>Local Feature Based Face Recognition <br/>R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded <br/>India @@ -8485,10 +10811,13 @@ <br/>region as a input to face recognition system and constructs a lower dimensional subspace <br/>using principal component analysis (PCA) (Turk & Pentland, 1991), linear discriminant <br/>www.intechopen.com -</td></tr><tr><td>2e0e056ed5927a4dc6e5c633715beb762628aeb0</td><td></td></tr><tr><td>2e68190ebda2db8fb690e378fa213319ca915cf8</td><td>Generating Videos with Scene Dynamics +</td></tr><tr><td>2e5cfa97f3ecc10ae8f54c1862433285281e6a7c</td><td></td></tr><tr><td>2e0e056ed5927a4dc6e5c633715beb762628aeb0</td><td></td></tr><tr><td>2e68190ebda2db8fb690e378fa213319ca915cf8</td><td>Generating Videos with Scene Dynamics <br/>MIT <br/>UMBC <br/>MIT +</td></tr><tr><td>2e0d56794379c436b2d1be63e71a215dd67eb2ca</td><td>Improving precision and recall of face recognition in SIPP with combination of +<br/>modified mean search and LSH +<br/>Xihua.Li </td></tr><tr><td>2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd</td><td></td></tr><tr><td>2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522</td><td>Leveraging Billions of Faces to Overcome <br/>Performance Barriers in Unconstrained Face <br/>Recognition @@ -8636,7 +10965,7 @@ </td></tr><tr><td>47f8b3b3f249830b6e17888df4810f3d189daac1</td><td></td></tr><tr><td>47e8db3d9adb79a87c8c02b88f432f911eb45dc5</td><td>MAGMA: Multi-level accelerated gradient mirror descent algorithm for <br/>large-scale convex composite minimization <br/>July 15, 2016 -</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td></td></tr><tr><td>477811ff147f99b21e3c28309abff1304106dbbe</td><td></td></tr><tr><td>78a4cabf0afc94da123e299df5b32550cd638939</td><td></td></tr><tr><td>78f08cc9f845dc112f892a67e279a8366663e26d</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +</td></tr><tr><td>47aeb3b82f54b5ae8142b4bdda7b614433e69b9a</td><td></td></tr><tr><td>477811ff147f99b21e3c28309abff1304106dbbe</td><td></td></tr><tr><td>47e14fdc6685f0b3800f709c32e005068dfc8d47</td><td></td></tr><tr><td>782188821963304fb78791e01665590f0cd869e8</td><td></td></tr><tr><td>78a4cabf0afc94da123e299df5b32550cd638939</td><td></td></tr><tr><td>78f08cc9f845dc112f892a67e279a8366663e26d</td><td>TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN <br/>Lehrstuhl f¨ur Mensch-Maschine-Kommunikation <br/>Semi-Autonomous Data Enrichment and <br/>Optimisation for Intelligent Speech Analysis @@ -8732,7 +11061,10 @@ </td></tr><tr><td>78fdf2b98cf6380623b0e20b0005a452e736181e</td><td></td></tr><tr><td>788a7b59ea72e23ef4f86dc9abb4450efefeca41</td><td></td></tr><tr><td>8b7191a2b8ab3ba97423b979da6ffc39cb53f46b</td><td>Search Pruning in Video Surveillance Systems: Efficiency-Reliability Tradeoff <br/>EURECOM <br/>Sophia Antipolis, France -</td></tr><tr><td>8b8728edc536020bc4871dc66b26a191f6658f7c</td><td></td></tr><tr><td>8bf647fed40bdc9e35560021636dfb892a46720e</td><td>Learning to Hash-tag Videos with Tag2Vec +</td></tr><tr><td>8b8728edc536020bc4871dc66b26a191f6658f7c</td><td></td></tr><tr><td>8b744786137cf6be766778344d9f13abf4ec0683</td><td>978-1-4799-9988-0/16/$31.00 ©2016 IEEE +<br/>2697 +<br/>ICASSP 2016 +</td></tr><tr><td>8bf647fed40bdc9e35560021636dfb892a46720e</td><td>Learning to Hash-tag Videos with Tag2Vec <br/>CVIT, KCIS, IIIT Hyderabad, India <br/>P J Narayanan <br/>http://cvit.iiit.ac.in/research/projects/tag2vec @@ -8878,6 +11210,17 @@ <br/>Sparse Output Coding for Scalable Visual Recognition <br/>Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015 <br/>© Springer Science+Business Media New York 2015 +</td></tr><tr><td>7f4bc8883c3b9872408cc391bcd294017848d0cf</td><td> +<br/> +<br/>Computer +<br/>Sciences +<br/>Department +<br/>The Multimodal Focused Attribute Model: A Nonparametric +<br/>Bayesian Approach to Simultaneous Object Classification and +<br/>Attribute Discovery +<br/>Technical Report #1697 +<br/>January 2012 +<br/> </td></tr><tr><td>7f6061c83dc36633911e4d726a497cdc1f31e58a</td><td>YouTube-8M: A Large-Scale Video Classification <br/>Benchmark <br/>Paul Natsev @@ -8940,12 +11283,18 @@ <br/>way aia <br/> ea whi <br/>de deve +</td></tr><tr><td>7a81967598c2c0b3b3771c1af943efb1defd4482</td><td>Do We Need More Training Data? </td></tr><tr><td>7ad77b6e727795a12fdacd1f328f4f904471233f</td><td>Supervised Local Descriptor Learning <br/>for Human Action Recognition -</td></tr><tr><td>7aa4c16a8e1481629f16167dea313fe9256abb42</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE +</td></tr><tr><td>7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b</td><td></td></tr><tr><td>7aa4c16a8e1481629f16167dea313fe9256abb42</td><td>978-1-5090-4117-6/17/$31.00 ©2017 IEEE <br/>2981 <br/>ICASSP 2017 </td></tr><tr><td>7a85b3ab0efb6b6fcb034ce13145156ee9d10598</td><td></td></tr><tr><td>7ab930146f4b5946ec59459f8473c700bcc89233</td><td></td></tr><tr><td>7ad7897740e701eae455457ea74ac10f8b307bed</td><td>Random Subspace Two-dimensional LDA for Face Recognition* +</td></tr><tr><td>7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697</td><td>Attend and Rectify: a Gated Attention +<br/>Mechanism for Fine-Grained Recovery +<br/>†Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB), +<br/>Campus UAB, 08193 Bellaterra, Catalonia Spain +<br/>‡Visual Tagging Services, Parc de Recerca, Campus UAB </td></tr><tr><td>1451e7b11e66c86104f9391b80d9fb422fb11c01</td><td>IET Signal Processing <br/>Research Article <br/>Image privacy protection with secure JPEG @@ -9132,6 +11481,14 @@ </td></tr><tr><td>14a5feadd4209d21fa308e7a942967ea7c13b7b6</td><td>978-1-4673-0046-9/12/$26.00 ©2012 IEEE <br/>1025 <br/>ICASSP 2012 +</td></tr><tr><td>14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b</td><td>Modeling Spatio-Temporal Human Track Structure for Action +<br/>Localization +</td></tr><tr><td>14ee4948be56caeb30aa3b94968ce663e7496ce4</td><td>Jang, Y; Gunes, H; Patras, I +<br/>© Copyright 2018 IEEE +<br/>For additional information about this publication click this link. +<br/>http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405 +<br/>Information about this research object was correct at the time of download; we occasionally +<br/>make corrections to records, please therefore check the published record when citing. For </td></tr><tr><td>8ee62f7d59aa949b4a943453824e03f4ce19e500</td><td>Robust Head-Pose Estimation Based on <br/>Partially-Latent Mixture of Linear Regression <br/>∗INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France @@ -9171,6 +11528,7 @@ <br/>[11]. This could indicate that image manipulations tend to equalize face recognition abilities, and <br/>we investigate whether this is the case with the manipulations and face recognition algorithms we <br/>test. +</td></tr><tr><td>8e3d0b401dec8818cd0245c540c6bc032f169a1d</td><td>McGan: Mean and Covariance Feature Matching GAN </td></tr><tr><td>8e94ed0d7606408a0833e69c3185d6dcbe22bbbe</td><td>© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE <br/>must be obtained for all other uses, in any current or future media, including <br/>reprinting/republishing this material for advertising or promotional purposes, @@ -9186,7 +11544,7 @@ <br/>Institut Eur´ecom <br/>Multimedia Communications Department <br/>BP 193, 06904 Sophia Antipolis Cedex, France -</td></tr><tr><td>8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125</td><td>in any current or +</td></tr><tr><td>8ed32c8fad924736ebc6d99c5c319312ba1fa80b</td><td></td></tr><tr><td>8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125</td><td>in any current or <br/>future media, <br/>for all other uses, <br/> 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be @@ -9217,6 +11575,15 @@ <br/>am 18.09.2008 angenommen. </td></tr><tr><td>8ed051be31309a71b75e584bc812b71a0344a019</td><td>Class-based feature matching across unrestricted <br/>transformations +</td></tr><tr><td>8e36100cb144685c26e46ad034c524b830b8b2f2</td><td>Modeling Facial Geometry using Compositional VAEs +<br/>1 ´Ecole Polytechnique F´ed´erale de Lausanne +<br/>2Facebook Reality Labs, Pittsburgh +</td></tr><tr><td>8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b</td><td>International Journal of Computer Vision manuscript No. +<br/>(will be inserted by the editor) +<br/>Learning from Longitudinal Face Demonstration - +<br/>Where Tractable Deep Modeling Meets Inverse Reinforcement Learning +<br/>Savvides · Tien D. Bui +<br/>Received: date / Accepted: date </td></tr><tr><td>225fb9181545f8750061c7693661b62d715dc542</td><td></td></tr><tr><td>22043cbd2b70cb8195d8d0500460ddc00ddb1a62</td><td>Separability-Oriented Subclass Discriminant <br/>Analysis </td></tr><tr><td>22137ce9c01a8fdebf92ef35407a5a5d18730dde</td><td></td></tr><tr><td>22dada4a7ba85625824489375184ba1c3f7f0c8f</td><td></td></tr><tr><td>223ec77652c268b98c298327d42aacea8f3ce23f</td><td>TR-CS-11-02 @@ -9226,6 +11593,14 @@ <br/>ANU Computer Science Technical Report Series </td></tr><tr><td>227b18fab568472bf14f9665cedfb95ed33e5fce</td><td>Compositional Dictionaries for Domain Adaptive <br/>Face Recognition +</td></tr><tr><td>227b1a09b942eaf130d1d84cdcabf98921780a22</td><td>Yang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:51 +<br/>https://doi.org/10.1186/s13634-018-0572-6 +<br/>EURASIP Journal on Advances +<br/>in Signal Processing +<br/>R ES EAR CH +<br/>Multi-feature shape regression for face +<br/>alignment +<br/>Open Access </td></tr><tr><td>22dabd4f092e7f3bdaf352edd925ecc59821e168</td><td> Deakin Research Online <br/>This is the published version: <br/>An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in @@ -9284,7 +11659,7 @@ <br/>2016 </td></tr><tr><td>25d3e122fec578a14226dc7c007fb1f05ddf97f7</td><td>The First Facial Expression Recognition and Analysis Challenge </td></tr><tr><td>2597b0dccdf3d89eaffd32e202570b1fbbedd1d6</td><td>Towards predicting the likeability of fashion images -</td></tr><tr><td>25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8</td><td>Label Distribution Learning +</td></tr><tr><td>25982e2bef817ebde7be5bb80b22a9864b979fb0</td><td></td></tr><tr><td>25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8</td><td>Label Distribution Learning </td></tr><tr><td>2559b15f8d4a57694a0a33bdc4ac95c479a3c79a</td><td>570 <br/>Contextual Object Localization With Multiple <br/>Kernel Nearest Neighbor diff --git a/reports/map.js b/reports/map.js new file mode 100644 index 00000000..bf268d26 --- /dev/null +++ b/reports/map.js @@ -0,0 +1,35 @@ +let mymap = L.map('mapid').setView([25, 0], 2); +L.tileLayer('https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_token=pk.eyJ1IjoiZmFuc2FsY3kiLCJhIjoiY2pvN3I1czJwMHF5NDNrbWRoMWpteHlrdCJ9.kMpM5syQUhVjKkn1iVx9fg', { + attribution: 'Map data © <a href="https://www.openstreetmap.org/">OpenStreetMap</a> contributors, <a href="https://creativecommons.org/licenses/by-sa/2.0/">CC-BY-SA</a>, Imagery © <a href="https://www.mapbox.com/">Mapbox</a>', + maxZoom: 18, + id: 'mapbox.streets', + accessToken: 'your.mapbox.access.token' +}).addTo(mymap); +let points; +try { + points = JSON.parse(document.querySelector('script[type="text/json"]').innerText) +} catch(e) { + console.log("json error!") + points = [] +} +points.forEach(point => { + /* + [ + "Face Alignment by Local Deep Descriptor Regression", + "Rutgers University", + [ + "Rutgers University", + "40.47913175", + "-74.431688684404", + "Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA" + ] + ] + */ + + var marker = L.marker(point[2].slice(1,3)).addTo(mymap); + marker.bindPopup([ + "<b>",point[0], "</b>", + "<br>", + point[1], + ].join('')) +})
\ No newline at end of file diff --git a/reports/reports.css b/reports/reports.css index 1cdb88c1..b3441f81 100644 --- a/reports/reports.css +++ b/reports/reports.css @@ -4,3 +4,7 @@ td { max-width: 500px; overflow: hidden; } +#mapid { + width: 100vw; + height: 30vw; +}
\ No newline at end of file diff --git a/reports/stats/empty_papers.csv b/reports/stats/empty_papers.csv new file mode 100644 index 00000000..19507314 --- /dev/null +++ b/reports/stats/empty_papers.csv @@ -0,0 +1,579 @@ +61084a25ebe736e8f6d7a6e53b2c20d9723c4608,Face recognition for web-scale datasets,Computer Vision and Image Understanding,2014
+0d467adaf936b112f570970c5210bdb3c626a717,"""FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks""",,2016
+0db8e6eb861ed9a70305c1839eaef34f2c85bbaf,Towards Large-Pose Face Frontalization in the Wild,2017 IEEE International Conference on Computer Vision (ICCV),2017
+0dbf4232fcbd52eb4599dc0760b18fcc1e9546e9,Early facial expression recognition using early RankBoost,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+0d087aaa6e2753099789cd9943495fbbd08437c0,Folded Recurrent Neural Networks for Future Video Prediction,CoRR,2017
+0d8415a56660d3969449e77095be46ef0254a448,Nonlinear Discriminant Analysis on Embedded Manifold,IEEE Transactions on Circuits and Systems for Video Technology,2007
+0d735e7552af0d1dcd856a8740401916e54b7eee,EMPATH: a neural network that categorizes facial expressions.,Journal of cognitive neuroscience,2002
+0d06b3a4132d8a2effed115a89617e0a702c957a,Achieving stable subspace clustering by post-processing generic clustering results,2016 International Joint Conference on Neural Networks (IJCNN),2016
+0d2dd4fc016cb6a517d8fb43a7cc3ff62964832e,Large Age-Gap face verification by feature injection in deep networks,Pattern Recognition Letters,2017
+590628a9584e500f3e7f349ba7e2046c8c273fcf,Generating Natural Questions About an Image,CoRR,2016
+92fada7564d572b72fd3be09ea3c39373df3e27c,Feature selection in the independent component subspace for face recognition,Pattern Recognition Letters,2004
+0cccf576050f493c8b8fec9ee0238277c0cfd69a,Incremental Tube Construction for Human Action Detection,CoRR,2017
+0c54e9ac43d2d3bab1543c43ee137fc47b77276e,Spontaneous subtle expression detection and recognition based on facial strain,Sig. Proc.: Image Comm.,2016
+0c60eebe10b56dbffe66bb3812793dd514865935,Exploiting Feature and Class Relationships in Video Categorization with Regularized Deep Neural Networks,IEEE Transactions on Pattern Analysis and Machine Intelligence,2018
+66886997988358847615375ba7d6e9eb0f1bb27f,Prototype-Based Discriminative Feature Learning for Kinship Verification,IEEE Transactions on Cybernetics,2015
+66837add89caffd9c91430820f49adb5d3f40930,"A New Face Recognition Method using PCA , LDA and Neural Network",Unknown,2012
+3ee7a8107a805370b296a53e355d111118e96b7c,Bayesian Learning of Sparse Gaussian Graphical Models,,2011
+500b92578e4deff98ce20e6017124e6d2053b451,Incremental Face Alignment in the Wild,2014 IEEE Conference on Computer Vision and Pattern Recognition,2014
+68a3f12382003bc714c51c85fb6d0557dcb15467,Learning the Visual Interpretation of Sentences,2013 IEEE International Conference on Computer Vision,2013
+68cf263a17862e4dd3547f7ecc863b2dc53320d8,A comparative study on illumination preprocessing in face recognition,Pattern Recognition,2013
+68bf34e383092eb827dd6a61e9b362fcba36a83a,"Multi-view, High-resolution Face Image Analysis",,2014
+574751dbb53777101502419127ba8209562c4758,Gender classification from unaligned facial images using support subspaces,Inf. Sci.,2013
+57b8b28f8748d998951b5a863ff1bfd7ca4ae6a5,Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches (Supplementary Material),,2016
+57101b29680208cfedf041d13198299e2d396314,Oxytocin differentially modulates eye gaze to naturalistic social signals of happiness and anger.,Psychoneuroendocrinology,2013
+57893403f543db75d1f4e7355283bdca11f3ab1b,A Dynamic Texture-Based Approach to Recognition of Facial Actions and Their Temporal Models,IEEE Transactions on Pattern Analysis and Machine Intelligence,2010
+5721216f2163d026e90d7cd9942aeb4bebc92334,Objective Micro-Facial Movement Detection Using FACS-Based Regions and Baseline Evaluation,CoRR,2016
+5753b2b5e442eaa3be066daa4a2ca8d8a0bb1725,Merging Pose Estimates Across Space and Time,,2013
+3b1260d78885e872cf2223f2c6f3d6f6ea254204,Face Tracking and Recognition at a Distance: A Coaxial & Concentric PTZ Camera System,,2011
+3b80bf5a69a1b0089192d73fa3ace2fbb52a4ad5,"""Magic Mirror in my Hand, what is the Sentiment in the Lens?"": an Action Unit based Approach for Mining Sentiments from Multimedia Contents",,2014
+3be7b7eb11714e6191dd301a696c734e8d07435f,Capturing the Visual Language of Social Media Exploiting Web Image Search for User Interest Profiling,,2015
+6f2dc51d607f491dbe6338711c073620c85351ac,Capturing correlations of local features for image representation,Neurocomputing,2016
+6f75697a86d23d12a14be5466a41e5a7ffb79fad,Recognition and intensity estimation of facial expression using ensemble classifiers,2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS),2016
+03d9ccce3e1b4d42d234dba1856a9e1b28977640,"Facial Affect ""In-the-Wild"": A Survey and a New Database",,2016
+03104f9e0586e43611f648af1132064cadc5cc07,Subspace clustering using a symmetric low-rank representation,Knowl.-Based Syst.,2017
+0334cc0374d9ead3dc69db4816d08c917316c6c4,Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition,CoRR,2017
+03e88bf3c5ddd44ebf0e580d4bd63072566613ad,How intelligent are convolutional neural networks?,CoRR,2017
+9b000ccc04a2605f6aab867097ebf7001a52b459,PCANet: An energy perspective,CoRR,2016
+9bc01fa9400c231e41e6a72ec509d76ca797207c,Emotion Classification using Adaptive SVMs,Unknown,2012
+9e5c2d85a1caed701b68ddf6f239f3ff941bb707,Facial Expression Recognition Based on Significant Face Components Using Steerable Pyramid Transform,,2013
+04bb3fa0824d255b01e9db4946ead9f856cc0b59,Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition,CoRR,2017
+04470861408d14cc860f24e73d93b3bb476492d0,Face Recognition using Features Combination and a New Non-linear Kernel,,2011
+04250e037dce3a438d8f49a4400566457190f4e2,A direct LDA algorithm for high-dimensional data - with application to face recognition,Pattern Recognition,2001
+6ad107c08ac018bfc6ab31ec92c8a4b234f67d49,Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors,CoRR,2018
+6a184f111d26787703f05ce1507eef5705fdda83,Mu desynchronization during observation and execution of facial expressions in 30-month-old children,,2016
+6aa43f673cc42ed2fa351cbc188408b724cb8d50,Field Studies with Multimedia Big Data: Opportunities and Challenges (Extended Ver,CoRR,2017
+6a1beb34a2dfcdf36ae3c16811f1aef6e64abff2,Cardiac vagal tone predicts inhibited attention to fearful faces.,Emotion,2012
+32b8c9fd4e3f44c371960eb0074b42515f318ee7,Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition,CoRR,2017
+357963a46dfc150670061dbc23da6ba7d6da786e,Online Regression with Model Selection,,2018
+35f1bcff4552632419742bbb6e1927ef5e998eb4,Unsupervised Visual-Linguistic Reference Resolution in Instructional Videos,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017
+35c973dba6e1225196566200cfafa150dd231fa8,A graphical model based solution to the facial feature point tracking problem,Image Vision Comput.,2011
+697b0b9630213ca08a1ae1d459fabc13325bdcbb,Learning to Invert Local Binary Patterns,,2016
+69de532d93ad8099f4d4902c4cad28db958adfea,Face Attention Network: An Effective Face Detector for the Occluded Faces,CoRR,2017
+69a9da55bd20ce4b83e1680fbc6be2c976067631,"""Here's looking at you, kid"". Detecting people looking at each other in videos",,2011
+6974449ce544dc208b8cc88b606b03d95c8fd368,Local Evidence Aggregation for Regression-Based Facial Point Detection,IEEE Transactions on Pattern Analysis and Machine Intelligence,2013
+3c03d95084ccbe7bf44b6d54151625c68f6e74d0,Contextual constraints based linear discriminant analysis,Pattern Recognition Letters,2011
+3ce2ecf3d6ace8d80303daf67345be6ec33b3a93,Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model,Int. J. Approx. Reasoning,2007
+3cb64217ca2127445270000141cfa2959c84d9e7,Can body expressions contribute to automatic depression analysis?,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+3cd5da596060819e2b156e8b3a28331ef633036b,Dynamic composite faces are processed holistically,Vision Research,2015
+51528cdce7a92835657c0a616c0806594de7513b,Visual Comparison of Images Using Multiple Kernel Learning for Ranking,,2015
+51dc127f29d1bb076d97f515dca4cc42dda3d25b,3D Corpus of Spontaneous Complex Mental States,,2011
+3db75962857a602cae65f60f202d311eb4627b41,Deep Embedding Network for Clustering,2014 22nd International Conference on Pattern Recognition,2014
+3dc522a6576c3475e4a166377cbbf4ba389c041f,The iNaturalist Challenge 2017 Dataset,CoRR,2017
+3dda181be266950ba1280b61eb63ac11777029f9,When Celebrities Endorse Politicians: Analyzing the Behavior of Celebrity Followers in the 2016 U.S. Presidential Election,CoRR,2017
+3d6ee995bc2f3e0f217c053368df659a5d14d5b5,Learning a Two-Dimensional Fuzzy Discriminant Locality Preserving Subspace for Visual Recognition,IEICE Transactions,2014
+3dd906bc0947e56d2b7bf9530b11351bbdff2358,"The THUMOS challenge on action recognition for videos ""in the wild""",Computer Vision and Image Understanding,2017
+3d6943f1573f992d6897489b73ec46df983d776c,Unifying Low-Rank Models for Visual Learning,,2015
+5859774103306113707db02fe2dd3ac9f91f1b9e,"Generalization to Novel Views: Universal, Class-based, and Model-based Processing",International Journal of Computer Vision,1998
+5850aab97e1709b45ac26bb7d205e2accc798a87,Multimodal learning for facial expression recognition,Pattern Recognition,2015
+58cb1414095f5eb6a8c6843326a6653403a0ee17,Face recognition using multiple facial features,Pattern Recognition Letters,2007
+677477e6d2ba5b99633aee3d60e77026fb0b9306,Multi-View Dynamic Facial Action Unit Detection,CoRR,2017
+679b72d23a9cfca8a7fe14f1d488363f2139265f,A New Approach to Face Recognition Using Dual Dimension Reduction,Unknown,2006
+67a50752358d5d287c2b55e7a45cc39be47bf7d0,Correction: Low-Rank and Eigenface Based Sparse Representation for Face Recognition,,2015
+0ba64f4157d80720883a96a73e8d6a5f5b9f1d9b,Convolutional Point-set Representation: A Convolutional Bridge Between a Densely Annotated Image and 3D Face Alignment,,2018
+0b5bd3ce90bf732801642b9f55a781e7de7fdde0,Face recognition using Histograms of Oriented Gradients,Pattern Recognition Letters,2011
+0ba449e312894bca0d16348f3aef41ca01872383,A Unified Framework for Stochastic Matrix Factorization via Variance Reduction,CoRR,2017
+0ba99a709cd34654ac296418a4f41a9543928149,Image Clustering Using Local Discriminant Models and Global Integration,IEEE Transactions on Image Processing,2010
+0b3f354e6796ef7416bf6dde9e0779b2fcfabed2,Color Face Recognition using Quaternionic Gabor Filters,,2005
+94aa8a3787385b13ee7c4fdd2b2b2a574ffcbd81,Real-time generic face tracking in the wild with CUDA,,2014
+94325522c9be8224970f810554611d6a73877c13,Comparator Networks,CoRR,2018
+94ac3008bf6be6be6b0f5140a0bea738d4c75579,Accelerating Convolutional Neural Networks for Continuous Mobile Vision via Cache Reuse,CoRR,2017
+0e8760fc198a7e7c9f4193478c0e0700950a86cd,"Brute-Force Facial Landmark Analysis With A 140, 000-Way Classifier",CoRR,2018
+0e3840ea3227851aaf4633133dd3cbf9bbe89e5b,ChaLearn Looking at People: Events and Resources,CoRR,2017
+0e5dad0fe99aed6978c6c6c95dc49c6dca601e6a,LATCH: Learned arrangements of three patch codes,2016 IEEE Winter Conference on Applications of Computer Vision (WACV),2016
+6080f26675e44f692dd722b61905af71c5260af8,Descriptor transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device,2016 International Joint Conference on Neural Networks (IJCNN),2016
+60d765f2c0a1a674b68bee845f6c02741a49b44e,An efficient illumination normalization method for face recognition,Pattern Recognition Letters,2006
+6097ea6fd21a5f86a10a52e6e4dd5b78a436d5bf,Multi-Region bilinear convolutional neural networks for person re-identification,2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),2017
+60643bdab1c6261576e6610ea64ea0c0b200a28d,Multi-manifold metric learning for face recognition based on image sets,J. Visual Communication and Image Representation,2014
+34a41ec648d082270697b9ee264f0baf4ffb5c8d,Integration of multi-feature fusion and dictionary learning for face recognition,Image Vision Comput.,2013
+34b7e826db49a16773e8747bc8dfa48e344e425d,Learning sign language by watching TV (using weakly aligned subtitles),2009 IEEE Conference on Computer Vision and Pattern Recognition,2009
+5a029a0b0ae8ae7fc9043f0711b7c0d442bfd372,Autoencoder Feature Selector,CoRR,2017
+5f64a2a9b6b3d410dd60dc2af4a58a428c5d85f9,Scalable Object Detection for Stylized Objects,CoRR,2017
+5fa0e6da81acece7026ac1bc6dcdbd8b204a5f0a,On applying linear discriminant analysis for multi-labeled problems,Pattern Recognition Letters,2008
+5fa932be4d30cad13ea3f3e863572372b915bec8,Orthogonal vs. uncorrelated least squares discriminant analysis for feature extraction,Pattern Recognition Letters,2012
+33aa980544a9d627f305540059828597354b076c,Face Recognition Using Eigen face Coefficients and Principal Component Analysis,Unknown,2010
+33403e9b4bbd913ae9adafc6751b52debbd45b0e,Pose Invariant Affect Analysis using Thin - Plate Splines,,
+0562fc7eca23d47096472a1d42f5d4d086e21871,On the Integration of Optical Flow and Action Recognition,CoRR,2017
+056294ff40584cdce81702b948f88cebd731a93e,Unsupervised Semantic Parsing of Video Collections,2015 IEEE International Conference on Computer Vision (ICCV),2015
+05f4d907ee2102d4c63a3dc337db7244c570d067,Face recognition from a single image per person: A survey,Pattern Recognition,2006
+05e96d76ed4a044d8e54ef44dac004f796572f1a,Three-Dimensional Face Recognition,International Journal of Computer Vision,2005
+9cfb3a68fb10a59ec2a6de1b24799bf9154a8fd1,Semi-supervised learning in Spectral Dimensionality Reduction,,2016
+029b53f32079063047097fa59cfc788b2b550c4b,Continuous Conditional Neural Fields for Structured Regression,,2014
+02bd665196bd50c4ecf05d6852a4b9ba027cd9d0,Feature Selection with Annealing for Computer Vision and Big Data Learning,IEEE Transactions on Pattern Analysis and Machine Intelligence,2016
+02c993d361dddba9737d79e7251feca026288c9c,Automatic player detection and recognition in images using AdaBoost,Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST),2012
+a46283e90bcdc0ee35c680411942c90df130f448,Moment-based local binary patterns: A novel descriptor for invariant pattern recognition applications,Neurocomputing,2013
+a4cc626da29ac48f9b4ed6ceb63081f6a4b304a2,KCRC-LCD: Discriminative kernel collaborative representation with locality constrained dictionary for visual categorization,Pattern Recognition,2015
+a33f20773b46283ea72412f9b4473a8f8ad751ae,ISTANBUL TECHNICAL UNIVERSITY F INFORMATICS INSTITUTE ROBUST FACE RECOGNITION ON NONLINEAR MANIFOLDS Ph.D. THESIS,,2012
+b562def2624f59f7d3824e43ecffc990ad780898,Autoencoder Inspired Unsupervised Feature Selection,"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",2018
+b59f441234d2d8f1765a20715e227376c7251cd7,Deep Continuous Clustering,CoRR,2018
+d9739d1b4478b0bf379fe755b3ce5abd8c668f89,Unsupervised approach for the accurate localization of the pupils in near-frontal facial images,J. Electronic Imaging,2013
+d9a1dd762383213741de4c1c1fd9fccf44e6480d,Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction,Pattern Recognition,2004
+aca273a9350b10b6e2ef84f0e3a327255207d0f5,On soft biometrics,Pattern Recognition Letters,2015
+ac0d3f6ed5c42b7fc6d7c9e1a9bb80392742ad5e,ViCom: Benchmark and Methods for Video Comprehension,CoRR,2016
+ac820d67b313c38b9add05abef8891426edd5afb,Fuzzy human motion analysis: A review,Pattern Recognition,2015
+ad6745dd793073f81abd1f3246ba4102046da022,A Coupled Hidden Markov Random Field model for simultaneous face clustering and tracking in videos,Pattern Recognition,2017
+bb557f4af797cae9205d5c159f1e2fdfe2d8b096,A distributed framework for trimmed Kernel k-Means clustering,Pattern Recognition,2015
+bbe1332b4d83986542f5db359aee1fd9b9ba9967,Convolutional neural network on three orthogonal planes for dynamic texture classification,Pattern Recognition,2018
+bbf01aa347982592b3e4c9e4f433e05d30e71305,Markov network-based multiple classifier for face image retrieval,2013 IEEE International Conference on Image Processing,2013
+bbf1396eb826b3826c5a800975047beabde2f0de,Illumination insensitive recognition using eigenspaces,Computer Vision and Image Understanding,2004
+d78077a7aa8a302d4a6a09fb9737ab489ae169a6,Robust face recognition with structural binary gradient patterns,Pattern Recognition,2017
+d7312149a6b773d1d97c0c2b847609c07b5255ec,An Experimentation Engine for Data-Driven Fashion Systems,,2017
+d78373de773c2271a10b89466fe1858c3cab677f,Pain intensity estimation by a self-taught selection of histograms of topographical features,Image Vision Comput.,2016
+d0eb3fd1b1750242f3bb39ce9ac27fc8cc7c5af0,Minimalistic CNN-based ensemble model for gender prediction from face images,Pattern Recognition Letters,2016
+d03baf17dff5177d07d94f05f5791779adf3cd5f,Real time face and mouth recognition using radial basis function neural networks,Expert Syst. Appl.,2009
+bef503cdfe38e7940141f70524ee8df4afd4f954,Improving class separability using extended pixel planes: a comparative study,Machine Vision and Applications,2011
+b3afa234996f44852317af382b98f5f557cab25a,A Closer Look at Spatiotemporal Convolutions for Action Recognition,CoRR,2017
+dfabe7ef245ca68185f4fcc96a08602ee1afb3f7,Group-aware deep feature learning for facial age estimation,Pattern Recognition,2017
+da15344a4c10b91d6ee2e9356a48cb3a0eac6a97,Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition,Computer Communications,2016
+da5bfddcfe703ca60c930e79d6df302920ab9465,An analysis of facial expression recognition under partial facial image occlusion,Image Vision Comput.,2008
+daba8f0717f3f47c272f018d0a466a205eba6395,Neither Global Nor Local: Regularized Patch-Based Representation for Single Sample Per Person Face Recognition,International Journal of Computer Vision,2014
+b4d7ca26deb83cec1922a6964c1193e8dd7270e7,Learning to score and summarize figure skating sport videos,CoRR,2018
+a2d9c9ed29bbc2619d5e03320e48b45c15155195,Facial expression recognition based on anatomy,Computer Vision and Image Understanding,2014
+a2b54f4d73bdb80854aa78f0c5aca3d8b56b571d,Computer Recognition of Facial Actions: A study of co-articulation effects,,2001
+a5c04f2ad6a1f7c50b6aa5b1b71c36af76af06be,Combined Support Vector Machines and Hidden Markov Models for Modeling Facial Action Temporal Dynamics,,2007
+a503eb91c0bce3a83bf6f524545888524b29b166,A Generative Approach to Zero-Shot and Few-Shot Action Recognition,CoRR,2018
+bd9eb65d9f0df3379ef96e5491533326e9dde315,Graph Distillation for Action Detection with Privileged Information,CoRR,2017
+bd8e2d27987be9e13af2aef378754f89ab20ce10,Facial feature points detecting based on Gaussian Mixture Models,Pattern Recognition Letters,2015
+d6fb606e538763282e3942a5fb45c696ba38aee6,Affective Body Expression Perception and Recognition: A Survey,IEEE Transactions on Affective Computing,2013
+bcc346f4a287d96d124e1163e4447bfc47073cd8,Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition,Unknown,2016
+bcfeac1e5c31d83f1ed92a0783501244dde5a471,Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant,Pattern Recognition,2013
+bc2852fa0a002e683aad3fb0db5523d1190d0ca5,Learning from Ambiguously Labeled Face Images,IEEE transactions on pattern analysis and machine intelligence,2017
+bcb99d5150d792001a7d33031a3bd1b77bea706b,Facial descriptors for human interaction recognition in still images,Pattern Recognition Letters,2016
+aed321909bb87c81121c841b21d31509d6c78f69,"Unfamiliar Sides , Video , Image Enhancement in Face Recognition",,2016
+ae936628e78db4edb8e66853f59433b8cc83594f,Person Re-identification via Structured Prediction,CoRR,2014
+ae4e2c81c8a8354c93c4b21442c26773352935dd,On the kernel Extreme Learning Machine classifier,Pattern Recognition Letters,2015
+ab1dfcd96654af0bf6e805ffa2de0f55a73c025d,Higher order orthogonal moments for invariant facial expression recognition,Digital Signal Processing,2010
+ab1900b5d7cf3317d17193e9327d57b97e24d2fc,Expression transfer for facial sketch animation,Signal Processing,2011
+e5737ffc4e74374b0c799b65afdbf0304ff344cb,A literature survey on robust and efficient eye localization in real-life scenarios,Pattern Recognition,2013
+e5dfd17dbfc9647ccc7323a5d62f65721b318ba9,Using Correlated Regression Models to Calculate Cumulative Attributes for Age Estimation,IEICE Transactions,2015
+e27c92255d7ccd1860b5fb71c5b1277c1648ed1e,Multilinear class-specific discriminant analysis,Pattern Recognition Letters,2017
+e200c3f2849d56e08056484f3b6183aa43c0f13a,The C-loss function for pattern classification,Pattern Recognition,2014
+f4c01fc79c7ead67899f6fe7b79dd1ad249f71b0,Pose-invariant face recognition by matching on multi-resolution MRFs linked by supercoupling transform,Computer Vision and Image Understanding,2011
+f3fcaae2ea3e998395a1443c87544f203890ae15,Robust part-based face matching with multiple templates,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+f355e54ca94a2d8bbc598e06e414a876eb62ef99,"A survey on heterogeneous face recognition: Sketch, infra-red, 3D and low-resolution",Image Vision Comput.,2016
+ebedc841a2c1b3a9ab7357de833101648281ff0e,Facial landmarking for in-the-wild images with local inference based on global appearance,Image Vision Comput.,2015
+ebb9d53668205c5797045ba130df18842e3eadef,Fully Context-Aware Video Prediction,CoRR,2017
+c0d5c3aab87d6e8dd3241db1d931470c15b9e39d,Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice,Computer Vision and Image Understanding,2016
+ee461d060da58d6053d2f4988b54eff8655ecede,Modelling facial colour and identity with Gaussian mixtures,Pattern Recognition,1998
+c903af0d69edacf8d1bff3bfd85b9470f6c4c243,Nyström-based approximate kernel subspace learning,Pattern Recognition,2016
+fc516a492cf09aaf1d319c8ff112c77cfb55a0e5,"XBadges. Identifying and training soft skills with commercial video games. Improving persistence, risk taking & spatial reasoning with commercial video games and facial and emotional recognition system",,2017
+f2c568fe945e5743635c13fe5535af157b1903d1,Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods,,2018
+f26097a1a479fb6f32b27a93f8f32609cfe30fdc,What is the best way for extracting meaningful attributes from pictures?,Pattern Recognition,2017
+f214bcc6ecc3309e2efefdc21062441328ff6081,Speaker verification in score-ageing-quality classification space,Computer Speech & Language,2013
+e3657ab4129a7570230ff25ae7fbaccb4ba9950c,Recovering Joint and Individual Components in Facial Data,,2018
+cfa572cd6ba8dfc2ee8ac3cc7be19b3abff1a8a2,Toward Use of Facial Thermal Features in Dynamic Assessment of Affect and Arousal Level,IEEE Transactions on Affective Computing,2017
+cfb8bc66502fb5f941ecdb22aec1fdbfdb73adce,Git Loss for Deep Face Recognition,Unknown,2018
+cf54a133c89f730adc5ea12c3ac646971120781c,A comparative study for feature integration strategies in dynamic saliency estimation,Sig. Proc.: Image Comm.,2017
+cac8bb0e393474b9fb3b810c61efdbc2e2c25c29,Visual Segmentation of Simple Objects for Robots,,2011
+e465f596d73f3d2523dbf8334d29eb93a35f6da0,"On Face Segmentation, Face Swapping, and Face Perception",CoRR,2017
+e4aeaf1af68a40907fda752559e45dc7afc2de67,Exponential Discriminative Metric Embedding in Deep Learning,,2018
+e4c3d5d43cb62ac5b57d74d55925bdf76205e306,Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval,,2018
+e476cbcb7c1de73a7bcaeab5d0d59b8b3c4c1cbf,Robust Kernel Representation With Statistical Local Features for Face Recognition,IEEE Transactions on Neural Networks and Learning Systems,2013
+fe7c0bafbd9a28087e0169259816fca46db1a837,Seeing Voices and Hearing Faces: Cross-modal biometric matching,CoRR,2018
+fe48f0e43dbdeeaf4a03b3837e27f6705783e576,Supervised Transformer Network for Efficient Face Detection,Unknown,2016
+fe108803ee97badfa2a4abb80f27fa86afd9aad9,Kernel discriminant transformation for image set-based face recognition,Pattern Recognition,2011
+c82c147c4f13e79ad49ef7456473d86881428b89,Facial Expression Recognition and Analysis: A Comparison Study of Feature Descriptors,IPSJ Trans. Computer Vision and Applications,2015
+fb5280b80edcf088f9dd1da769463d48e7b08390,The impact of weak ground truth and facial expressiveness on affect detection accuracy from time-continuous videos of facial expressions,Inf. Sci.,2013
+c178a86f4c120eca3850a4915134fff44cbccb48,Normalization Discriminant Independent Component Analysis,,2013
+c1fc70e0952f6a7587b84bf3366d2e57fc572fd7,Efficient clustering on Riemannian manifolds: A kernelised random projection approach,Pattern Recognition,2016
+c1482491f553726a8349337351692627a04d5dbe,When Follow is Just One Click Away: Understanding Twitter Follow Behavior in the 2016 U.S. Presidential Election,,2017
+c1e76c6b643b287f621135ee0c27a9c481a99054,Multi-point Regression Voting for Shape Model Matching,,2016
+ec22eaa00f41a7f8e45ed833812d1ac44ee1174e,A novel phase congruency based descriptor for dynamic facial expression analysis,Pattern Recognition Letters,2014
+4e444db884b5272f3a41e4b68dc0d453d4ec1f4c,Learning without Prejudice: Avoiding Bias in Webly-Supervised Action Recognition,CoRR,2017
+4e7ebf3c4c0c4ecc48348a769dd6ae1ebac3bf1b,"Towards the automatic detection of spontaneous agreement and disagreement based on nonverbal behaviour: A survey of related cues, databases, and tools",Image Vision Comput.,2013
+4e4e8fc9bbee816e5c751d13f0d9218380d74b8f,Tone-aware sparse representation for face recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+20a88cc454a03d62c3368aa1f5bdffa73523827b,Face recognition using a kernel fractional-step discriminant analysis algorithm,Pattern Recognition,2007
+20767ca3b932cbc7b8112db21980d7b9b3ea43a3,Dynamic Concept Composition for Zero-Example Event Detection,,2016
+20c2a5166206e7ffbb11a23387b9c5edf42b5230,Examining visible articulatory features in clear and plain speech,Speech Communication,2015
+2098983dd521e78746b3b3fa35a22eb2fa630299,Second-order Temporal Pooling for Action Recognition,CoRR,2017
+206fbe6ab6a83175a0ef6b44837743f8d5f9b7e8,Unsupervised learning of object frames by dense equivariant image labelling,Unknown,2017
+18206e1b988389eaab86ef8c852662accf3c3663,Compressed Video Action Recognition,CoRR,2017
+184750382fe9b722e78d22a543e852a6290b3f70,Projection functions for eye detection,Pattern Recognition,2004
+18dfc2434a95f149a6cbb583cca69a98c9de9887,Hough Networks for Head Pose Estimation and Facial Feature Localization,,2014
+27d709f7b67204e1e5e05fe2cfac629afa21699d,"Learning the Latent ""Look"": Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images",,2017
+27da432cf2b9129dce256e5bf7f2f18953eef5a5,Face Recognition in Low Quality Images: A Survey,CoRR,2018
+274f87ad659cd90382ef38f7c6fafc4fc7f0d74d,Latent Tensor Transfer Learning for RGB-D Action Recognition,,2014
+4bbbee93519a4254736167b31be69ee1e537f942,Learning to Score Olympic Events,2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2017
+4b6be933057d939ddfa665501568ec4704fabb39,Graph Transduction as a Non-cooperative Game,,2011
+11367581c308f4ba6a32aac1b4a7cdb32cd63137,3D face shape approximation from intensities using Partial Least Squares,2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,2008
+112780a7fe259dc7aff2170d5beda50b2bfa7bda,Learnable PINs: Cross-Modal Embeddings for Person Identity,CoRR,2018
+29c1f733a80c1e07acfdd228b7bcfb136c1dff98,Discriminatively Trained Latent Ordinal Model for Video Classification,IEEE transactions on pattern analysis and machine intelligence,2017
+29f27448e8dd843e1c4d2a78e01caeaea3f46a2d,Similar gait action recognition using an inertial sensor,Pattern Recognition,2015
+29156e4fe317b61cdcc87b0226e6f09e416909e0,Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach,IEEE transactions on pattern analysis and machine intelligence,2017
+293ade202109c7f23637589a637bdaed06dc37c9,Material for : Adaptive Cascaded Regression,,2016
+7ce03597b703a3b6754d1adac5fbc98536994e8f,On the Intrinsic Dimensionality of Face Representation,,2018
+16de1324459fe8fdcdca80bba04c3c30bb789bdf,Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs,CoRR,2017
+16892074764386b74b6040fe8d6946b67a246a0b,Virtual Faces Expressing Emotions: An Initial Concomitant and Construct Validity Study,,2014
+1679943d22d60639b4670eba86665371295f52c3,Facial feature extraction using complex dual-tree wavelet transform,Computer Vision and Image Understanding,2008
+169076ffe5e7a2310e98087ef7da25aceb12b62d,Emotional restraint is good for men only: The influence of emotional restraint on perceptions of competence.,Emotion,2016
+429c3588ce54468090cc2cf56c9b328b549a86dc,Thermal and reflectance based personal identification methodology under variable illumination,Pattern Recognition,2010
+424259e9e917c037208125ccc1a02f8276afb667,Walk and Learn: Facial Attribute Representation Learning from Egocentric Video and Contextual Data,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016
+42e0127a3fd6a96048e0bc7aab6d0ae88ba00fb0,AU-aware Deep Networks for facial expression recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+89de30a75d3258816c2d4d5a733d2bef894b66b9,Relative Hidden Markov Models for Video-Based Evaluation of Motion Skills in Surgical Training,IEEE Transactions on Pattern Analysis and Machine Intelligence,2015
+45f3bf505f1ce9cc600c867b1fb2aa5edd5feed8,Fully automatic facial feature point detection using Gabor feature based boosted classifiers,"2005 IEEE International Conference on Systems, Man and Cybernetics",2005
+45fbeed124a8956477dbfc862c758a2ee2681278,Pose Invariant Approach for Face Recognition at Distance,,2012
+4511e09ee26044cb46073a8c2f6e1e0fbabe33e8,A Graph Based Approach for Finding People in News,,2007
+1fd2ed45fb3ba77f10c83f0eef3b66955645dfe0,Generalized Unsupervised Manifold Alignment,,2014
+1f2d12531a1421bafafe71b3ad53cb080917b1a7,Joint optimization of manifold learning and sparse representations for face and gesture analysis,,2015
+80193dd633513c2d756c3f568ffa0ebc1bb5213e,Wavelet Subspace Method for Real-Time Face Tracking,,2001
+747d5fe667519acea1bee3df5cf94d9d6f874f20,Transferring Common-Sense Knowledge for Object Detection,,2018
+745b42050a68a294e9300228e09b5748d2d20b81,Temporal Human Action Segmentation via Dynamic Clustering,,2018
+1a9337d70a87d0e30966ecd1d7a9b0bbc7be161f,"A novel binary adaptive weight GSA based feature selection for face recognition using local gradient patterns, modified census transform, and local binary patterns",Eng. Appl. of AI,2014
+1a1118cd4339553ad0544a0a131512aee50cf7de,Semantic Image Retrieval via Active Grounding of Visual Situations,CoRR,2017
+28e0ed749ebe7eb778cb13853c1456cb6817a166,C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons,Neural networks : the official journal of the International Neural Network Society,2012
+28b9d92baea72ec665c54d9d32743cf7bc0912a7,Parametric temporal alignment for the detection of facial action temporal segments,,2014
+282a3ee79a08486f0619caf0ada210f5c3572367,Accelerated Training for Massive Classification via Dynamic Class Selection,CoRR,2018
+288dbc40c027af002298b38954d648fddd4e2fd3,Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis,,2012
+28312c3a47c1be3a67365700744d3d6665b86f22,Face Recognition: A Literature Survey1,,2000
+287900f41dd880802aa57f602e4094a8a9e5ae56,Expressive deformation profiles for cross expression face recognition,Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012),2012
+28d4e027c7e90b51b7d8908fce68128d1964668a,Level Playing Field for Million Scale Face Recognition,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017
+17035089959a14fe644ab1d3b160586c67327db2,VLAD: Encoding Dynamics of Deep Features for Action Recognition,,
+17aa78bd4331ef490f24bdd4d4cd21d22a18c09c,Appendix: Building high-level features using large scale unsupervised learning,,2012
+17c0d99171efc957b88c31a465c59485ab033234,"To learn image super-resolution, use a GAN to learn how to do image degradation first",CoRR,2018
+1791f790b99471fc48b7e9ec361dc505955ea8b1,"A motion capture library for the study of identity, gender, and emotion perception from biological motion.",Behavior research methods,2006
+17fad2cc826d2223e882c9fda0715fcd5475acf3,Human facial expressions as adaptations: Evolutionary questions in facial expression research.,American journal of physical anthropology,2001
+7ba0bf9323c2d79300f1a433ff8b4fe0a00ad889,ViCom: Benchmark and Methods for Video Comprehension,CoRR,2016
+7bfe085c10761f5b0cc7f907bdafe1ff577223e0,Adaptive Semi-Supervised Learning with Discriminative Least Squares Regression,,2017
+8fb611aca3bd8a3a0527ac0f38561a5a9a5b8483,Human Face Identification via,,
+8f9f599c05a844206b1bd4947d0524234940803d,Efficient 3D reconstruction for face recognition,,2004
+8a40b6c75dd6392ee0d3af73cdfc46f59337efa9,Feature-Based Facial Expression Recognition: Sensitivity Analysis and Experiments with A Multilayer Perceptron,IJPRAI,1999
+7e600faee0ba11467d3f7aed57258b0db0448a72,Robust Face Recognition using AAM and Gabor Features,Unknown,2007
+1056347fc5e8cd86c875a2747b5f84fd570ba232,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,2017 IEEE Winter Conference on Applications of Computer Vision (WACV),2017
+10ab1b48b2a55ec9e2920a5397febd84906a7769,I-Pic: A Platform for Privacy-Compliant Image Capture,,2016
+10195a163ab6348eef37213a46f60a3d87f289c5,Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks,International Journal of Computer Vision,2016
+10e704c82616fb5d9c48e0e68ee86d4f83789d96,INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK Gabor Wavelet Networks for Object Representation,,2000
+10e70a34d56258d10f468f8252a7762950830d2b,New Parallel Models for Face Recognition,2007 International Conference on Computational Intelligence and Security (CIS 2007),2007
+190b3caa2e1a229aa68fd6b1a360afba6f50fde4,"VideoLSTM convolves, attends and flows for action recognition",Computer Vision and Image Understanding,2018
+19808134b780b342e21f54b60095b181dfc7a600,SIFTing Through Scales,IEEE Transactions on Pattern Analysis and Machine Intelligence,2016
+19eb486dcfa1963c6404a9f146c378fc7ae3a1df,A probabilistic model of face mapping with local transformations and its application to person recognition,IEEE Transactions on Pattern Analysis and Machine Intelligence,2005
+4c6daffd092d02574efbf746d086e6dc0d3b1e91,Informedia@trecvid 201 4 Med and Mer Med System,,2015
+4c29e1f31660ba33e46d7e4ffdebb9b8c6bd5adc,Multicolumn Networks for Face Recognition,Unknown,2018
+267c6e8af71bab68547d17966adfaab3b4711e6b,Two-stream Collaborative Learning with Spatial-Temporal Attention for Video Classification,CoRR,2017
+26a89701f4d41806ce8dbc8ca00d901b68442d45,Eigenspace updating for non-stationary process and its application to face recognition,Pattern Recognition,2003
+21e828071249d25e2edaca0596e27dcd63237346,Scalable Face Image Retrieval with Identity-Based Quantization and Multireference Reranking,IEEE Transactions on Pattern Analysis and Machine Intelligence,2010
+4df889b10a13021928007ef32dc3f38548e5ee56,Multi-Stage Optimal Component Analysis,2007 International Joint Conference on Neural Networks,2007
+4d423acc78273b75134e2afd1777ba6d3a398973,"International Conference on Automatic Face and Gesture Recognition The CMU Pose , Illumination , and Expression ( PIE ) Database",,2002
+4dd6d511a8bbc4d9965d22d79ae6714ba48c8e41,Automatic Pixel Boosting for Face Enhancement in Dim Light,,2008
+4d90bab42806d082e3d8729067122a35bbc15e8d,Towards a dynamic expression recognition system under facial occlusion,Pattern Recognition Letters,2012
+75e9a141b85d902224f849ea61ab135ae98e7bfb,Quantifying human sensitivity to spatio-temporal information in dynamic faces,Vision Research,2014
+75cd81d2513b7e41ac971be08bbb25c63c37029a,Human action recognition using Pose-based discriminant embedding,Sig. Proc.: Image Comm.,2012
+75e5ba7621935b57b2be7bf4a10cad66a9c445b9,Equidistant prototypes embedding for single sample based face recognition with generic learning and incremental learning,Pattern Recognition,2014
+81831ed8e5b304e9d28d2d8524d952b12b4cbf55,Discriminative histograms of local dominant orientation (D-HLDO) for biometric image feature extraction,Pattern Recognition,2013
+86b985b285c0982046650e8d9cf09565a939e4f9,Facial Micro-Expression Detection in Hi-Speed Video Based on Facial Action Coding System (FACS),IEICE Transactions,2013
+86b51bd0c80eecd6acce9fc538f284b2ded5bcdd,Learning with Privileged Information for Multi-Label Classification,CoRR,2017
+8699268ee81a7472a0807c1d3b1db0d0ab05f40d,Channel-Recurrent Autoencoding for Image Modeling,,2017
+869583b700ecf33a9987447aee9444abfe23f343,Intrinsic Grassmann Averages for Online Linear and Robust Subspace Learning,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017
+726b8aba2095eef076922351e9d3a724bb71cb51,3DFaceNet: Real-time Dense Face Reconstruction via Synthesizing Photo-realistic Face Images,,2017
+721b109970bf5f1862767a1bec3f9a79e815f79a,A Fast Implementation of PCA-L1 Using Gram-Schmidt Orthogonalization,IEICE Transactions,2013
+729dbe38538fbf2664bc79847601f00593474b05,Complementary effects of gaze direction and early saliency in guiding fixations during free-viewing,,2014
+442f09ddb5bb7ba4e824c0795e37cad754967208,Learning from Partial Labels,Journal of Machine Learning Research,2011
+449b1b91029e84dab14b80852e35387a9275870e,Dimensional emotion driven facial expression synthesis based on the multi-stream DBN model,Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference,2012
+44078d0daed8b13114cffb15b368acc467f96351,Triplet probabilistic embedding for face verification and clustering,"2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS)",2016
+44eb4d128b60485377e74ffb5facc0bf4ddeb022,Database independent human emotion recognition with Meta-Cognitive Neuro-Fuzzy Inference System,"2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)",2014
+448ed201f6fceaa6533d88b0b29da3f36235e131,A generative restricted Boltzmann machine based method for high-dimensional motion data modeling,Computer Vision and Image Understanding,2015
+2aaa6969c03f435b3ea8431574a91a0843bd320b,Face Recognition using Radial Basis Function Network based on LDA,,
+2ad7cef781f98fd66101fa4a78e012369d064830,Neural Aggregation Network for Video Face Recognition,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017
+2ad29b2921aba7738c51d9025b342a0ec770c6ea,Where is my puppy? Retrieving lost dogs by facial features,Multimedia Tools and Applications,2016
+2a6bba2e81d5fb3c0fd0e6b757cf50ba7bf8e924,Compare and Contrast: Learning Prominent Differences in Relative Attributes,,2017
+2a02355c1155f2d2e0cf7a8e197e0d0075437b19,On Face Recognition using Gabor Filters,,2009
+2aea27352406a2066ddae5fad6f3f13afdc90be9,Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016
+2fdce3228d384456ea9faff108b9c6d0cf39e7c7,The motion in emotion - A CERT based approach to the FERA emotion challenge,,2011
+2f16459e2e24dc91b3b4cac7c6294387d4a0eacf,Fast Deep Convolutional Face Detection in the Wild Exploiting Hard Sample Mining,Big Data Research,2018
+2fa057a20a2b4a4f344988fee0a49fce85b0dc33,eHeritage of shadow puppetry: creation and manipulation,,2013
+2f9c173ccd8c1e6b88d7fb95d6679838bc9ca51d,Gaussian Process Domain Experts for Model Adaptation in Facial Behavior Analysis,2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2016
+2f8183b549ec51b67f7dad717f0db6bf342c9d02,3D Face Reconstruction from a Single Image Using a Single Reference Face Shape,IEEE Transactions on Pattern Analysis and Machine Intelligence,2011
+2fea258320c50f36408032c05c54ba455d575809,Recurrent Mixture Density Network for Spatiotemporal Visual Attention,CoRR,2016
+4300fa1221beb9dc81a496cd2f645c990a7ede53,A comparison of generalized linear discriminant analysis algorithms,Pattern Recognition,2008
+43aa40eaa59244c233f83d81f86e12eba8d74b59,Fast pose invariant face recognition using super coupled multiresolution Markov Random Fields on a GPU,Pattern Recognition Letters,2014
+43e268c118ac25f1f0e984b57bc54f0119ded520,Generalized Conditional Gradient for Sparse Estimation,Journal of Machine Learning Research,2017
+437a720c6f6fc1959ba95e48e487eb3767b4e508,Full interpretation of minimal images.,Cognition,2018
+436d80cc1b52365ed7b2477c0b385b6fbbb51d3b,Probabilistic Knowledge Transfer for Deep Representation Learning,,2018
+430c4d7ad76e51d83bbd7ec9d3f856043f054915,Two decades of local binary patterns: A survey,CoRR,2016
+6b333b2c6311e36c2bde920ab5813f8cfcf2b67b,Pain Level Detection From Facial Image Captured by Smartphone,JIP,2016
+6b9aa288ce7740ec5ce9826c66d059ddcfd8dba9,BNU-LSVED 2.0: Spontaneous multimodal student affect database with multi-dimensional labels,Sig. Proc.: Image Comm.,2017
+6b1b43d58faed7b457b1d4e8c16f5f7e7d819239,A multi-task model for simultaneous face identification and facial expression recognition,Neurocomputing,2016
+6b35b15ceba2f26cf949f23347ec95bbbf7bed64,"RSILC: Rotation- and Scale-Invariant, Line-based Color-aware descriptor",Image Vision Comput.,2015
+6bb630dfa797168e6627d972560c3d438f71ea99,Sequential Deep Trajectory Descriptor for Action Recognition With Three-Stream CNN,IEEE Transactions on Multimedia,2017
+071af21377cc76d5c05100a745fb13cb2e40500f,Structured Prediction for Event Detection,,2016
+073eaa49ccde15b62425cda1d9feab0fea03a842,Delft University of Technology On detecting the playing/non-playing activity of musicians in symphonic music videos,,2017
+380dd0ddd5d69adc52defc095570d1c22952f5cc,Improving Smiling Detection with Race and Gender Diversity,CoRR,2017
+385750bcf95036c808d63db0e0b14768463ff4c6,Autoencoding beyond pixels using a learned similarity metric,,2016
+38861d0d3a0292c1f54153b303b0d791cbba1d50,Making risk minimization tolerant to label noise,Neurocomputing,2015
+38192a0f9261d9727b119e294a65f2e25f72d7e6,Facial feature point detection: A comprehensive survey,Neurocomputing,2018
+0004f72a00096fa410b179ad12aa3a0d10fc853c,Visual Interpretation of Human Body Language for Interactive Scenarios,Unknown,2012
+0059b3dfc7056f26de1eabaafd1ad542e34c2c2e,Can Help You Change! An Empathic Virtual Agent Delivers Behavior Change Health Interventions,,2014
+6eaf446dec00536858548fe7cc66025b70ce20eb,GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks,CoRR,2017
+6eaeac9ae2a1697fa0aa8e394edc64f32762f578,Constraint Score: A new filter method for feature selection with pairwise constraints,Pattern Recognition,2008
+6ee2ea416382d659a0dddc7a88fc093accc2f8ee,Graph-Preserving Sparse Nonnegative Matrix Factorization With Application to Facial Expression Recognition,"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)",2011
+6e12ba518816cbc2d987200c461dc907fd19f533,A computational approach to body mass index prediction from face images,Image Vision Comput.,2013
+36b40c75a3e53c633c4afb5a9309d10e12c292c7,Facial Expression Recognition Based on Fusion of Multiple Gabor Features,18th International Conference on Pattern Recognition (ICPR'06),2006
+365f67fe670bf55dc9ccdcd6888115264b2a2c56,Improving facial analysis and performance driven animation through disentangling identity and expression,Image Vision Comput.,2016
+366d20f8fd25b4fe4f7dc95068abc6c6cabe1194,Are facial attributes adversarially robust?,2016 23rd International Conference on Pattern Recognition (ICPR),2016
+362ba8317aba71c78dafca023be60fb71320381d,Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching,Pattern Recognition,2014
+5c4ce36063dd3496a5926afd301e562899ff53ea,A Survey on Content-Aware Video Analysis for Sports,CoRR,2017
+5c2a7518fb26a37139cebff76753d83e4da25159,De-identification for privacy protection in multimedia content: A survey,Sig. Proc.: Image Comm.,2016
+5c473cfda1d7c384724fbb139dfe8cb39f79f626,Facial expression recognition based on meta probability codes,Pattern Analysis and Applications,2012
+0952ac6ce94c98049d518d29c18d136b1f04b0c0,Incremental Kernel PCA for Efficient Non-linear Feature Extraction,,2006
+097104fc731a15fad07479f4f2c4be2e071054a2,Texture and shape information fusion for facial expression and facial action unit recognition,Pattern Recognition,2008
+09111da0aedb231c8484601444296c50ca0b5388,"Joint estimation of age, gender and ethnicity: CCA vs. PLS",2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+5d485501f9c2030ab33f97972aa7585d3a0d59a7,Learning Bayesian network parameters under incomplete data with domain knowledge,Pattern Recognition,2009
+5dc056fe911a3e34a932513abe637076250d96da,Real-time facial feature detection using conditional regression forests,2012 IEEE Conference on Computer Vision and Pattern Recognition,2012
+5dcf78de4d3d867d0fd4a3105f0defae2234b9cb,A method for improving consistency in photometric databases,,2012
+5d01283474b73a46d80745ad0cc0c4da14aae194,Classification schemes based on Partial Least Squares for face identification,J. Visual Communication and Image Representation,2015
+31aa20911cc7a2b556e7d273f0bdd5a2f0671e0a,Patch-based Face Recognition using a Hierarchical Multi-label Matcher,,2018
+31b05f65405534a696a847dd19c621b7b8588263,UMDFaces: An annotated face dataset for training deep networks,2017 IEEE International Joint Conference on Biometrics (IJCB),2017
+31e57fa83ac60c03d884774d2b515813493977b9,Face alignment with cascaded semi-parametric deep greedy neural forests,Pattern Recognition Letters,2018
+31b58ced31f22eab10bd3ee2d9174e7c14c27c01,Nonparametric Object and Scene Recognition,,2008
+312afff739d1e0fcd3410adf78be1c66b3480396,Facial Attributes: Accuracy and Adversarial Robustness,CoRR,2018
+31bb49ba7df94b88add9e3c2db72a4a98927bb05,Static and dynamic 3D facial expression recognition: A comprehensive survey,Image Vision Comput.,2012
+91883dabc11245e393786d85941fb99a6248c1fb,Face alignment in-the-wild: A Survey,Computer Vision and Image Understanding,2017
+919d0e681c4ef687bf0b89fe7c0615221e9a1d30,Fractal Techniques for Face Recognition,,2009
+912a6a97af390d009773452814a401e258b77640,An on-line variational Bayesian model for multi-person tracking from cluttered scenes,Computer Vision and Image Understanding,2016
+918b72a47b7f378bde0ba29c908babf6dab6f833,Uncorrelated trace ratio linear discriminant analysis for undersampled problems,Pattern Recognition Letters,2011
+91d2fe6fdf180e8427c65ffb3d895bf9f0ec4fa0,Tensor reduction error analysis - Applications to video compression and classification,,2008
+620339aef06aed07a78f9ed1a057a25433faa58b,Human Action Recognition and Prediction: A Survey,CoRR,2018
+62b3598b401c807288a113796f424612cc5833ca,"X2Face: A network for controlling face generation by using images, audio, and pose codes",CoRR,2018
+6257a622ed6bd1b8759ae837b50580657e676192,Unsupervised Learning aids Prediction: Using Future Representation Learning Variantial Autoencoder for Human Action Prediction,CoRR,2017
+620e1dbf88069408b008347cd563e16aeeebeb83,FaceDCAPTCHA: Face detection based color image CAPTCHA,Future Generation Comp. Syst.,2014
+964a3196d44f0fefa7de3403849d22bbafa73886,Uncorrelated slow feature discriminant analysis using globality preserving projections for feature extraction,Neurocomputing,2015
+9636c7d3643fc598dacb83d71f199f1d2cc34415,Automatic facial attribute analysis via adaptive sparse representation of random patches,Pattern Recognition Letters,2015
+98b2f21db344b8b9f7747feaf86f92558595990c,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,CoRR,2017
+982fed5c11e76dfef766ad9ff081bfa25e62415a,Undersampled Face Recognition via Robust Auxiliary Dictionary Learning,IEEE Transactions on Image Processing,2015
+5334ac0a6438483890d5eef64f6db93f44aacdf4,Minh Hoai: Regularizedmax Pooling for Image Categorization,,2014
+53dd25350d3b3aaf19beb2104f1e389e3442df61,Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition,Unknown,2009
+530243b61fa5aea19b454b7dbcac9f463ed0460e,ReenactGAN: Learning to Reenact Faces via Boundary Transfer,CoRR,2018
+539ca9db570b5e43be0576bb250e1ba7a727d640,A Large-Scale Database of Images and Captions for Automatic Face Naming,,2011
+53c8cbc4a3a3752a74f79b74370ed8aeed97db85,Learning person-specific models for facial expression and action unit recognition,Pattern Recognition Letters,2013
+530ce1097d0681a0f9d3ce877c5ba31617b1d709,A component based approach for classifying the seven universal facial expressions of emotion,2013 IEEE Symposium on Computational Intelligence for Creativity and Affective Computing (CICAC),2013
+3f5cf3771446da44d48f1d5ca2121c52975bb3d3,All the Images of an Outdoor Scene,,2002
+303065c44cf847849d04da16b8b1d9a120cef73a,"3D Face Morphable Models ""In-the-Wild""",,2017
+304a306d2a55ea41c2355bd9310e332fa76b3cb0,Variable-state Latent Conditional Random Field models for facial expression analysis,Image Vision Comput.,2017
+5e821cb036010bef259046a96fe26e681f20266e,The Local Binary Pattern Approach and its Applications to Face Analysis,"2008 First Workshops on Image Processing Theory, Tools and Applications",2008
+5b2cfee6e81ef36507ebf3c305e84e9e0473575a,GoDP: Globally Optimized Dual Pathway deep network architecture for facial landmark localization in-the-wild,Image Vision Comput.,2018
+5b0ebb8430a04d9259b321fc3c1cc1090b8e600e,The One-Shot similarity kernel,2009 IEEE 12th International Conference on Computer Vision,2009
+3765c26362ad1095dfe6744c6d52494ea106a42c,I know what you did last summer: object-level auto-annotation of holiday snaps,2009 IEEE 12th International Conference on Computer Vision,2009
+3727ac3d50e31a394b200029b2c350073c1b69e3,Facial Expression Recognition from World Wild Web,2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2016
+377c6563f97e76a4dc836a0bd23d7673492b1aae,Motion deblurring of faces,,2018
+081a431107eb38812b74a8cd036ca5e97235b499,Nonnegative Matrix Factorization in Polynomial Feature Space,IEEE Transactions on Neural Networks,2008
+0831a511435fd7d21e0cceddb4a532c35700a622,Structured occlusion coding for robust face recognition,Neurocomputing,2016
+08c1f8f0e69c0e2692a2d51040ef6364fb263a40,Beyond Eigenfaces: Probabilistic Matching for Face Recognition,,1998
+0830c9b9f207007d5e07f5269ffba003235e4eff,Jointly Learning Multiple Measures of Similarities from Triplet Comparisons,,2015
+081fb4e97d6bb357506d1b125153111b673cc128,Island Loss for Learning Discriminative Features in Facial Expression Recognition,CoRR,2017
+082ad50ac59fc694ba4369d0f9b87430553b11db,Discriminative dictionary learning with low-rank regularization for face recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+6de18708218988b0558f6c2f27050bb4659155e4,Learning Long-Term Dependencies for Action Recognition with a Biologically-Inspired Deep Network,2017 IEEE International Conference on Computer Vision (ICCV),2017
+6d91da37627c05150cb40cac323ca12a91965759,Gender Politics in the 2016 U.S. Presidential Election: A Computer Vision Approach,,2017
+016cbf0878db5c40566c1fbc237686fbad666a33,Efficient illumination independent appearance-based face tracking,Image Vision Comput.,2009
+01e12be4097fa8c94cabeef0ad61498c8e7762f2,Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback,,2013
+01beab8f8293a30cf48f52caea6ca0fb721c8489,Face alignment using local hough voting,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+0178929595f505ef7655272cc2c339d7ed0b9507,Label distribution based facial attractiveness computation by deep residual learning,CoRR,2016
+01b4b32c5ef945426b0396d32d2a12c69c282e29,Blockwise Linear Regression for Face Alignment,,2013
+06526c52a999fdb0a9fd76e84f9795a69480cecf,IMOTION - A Content-Based Video Retrieval Engine,,2015
+0653dcdff992ad980cd5ea5bc557efb6e2a53ba1,Regularized Robust Coding and Dictionary Learning for Face Recognition,,2012
+39ce143238ea1066edf0389d284208431b53b802,Facial expression transfer method based on frequency analysis,Pattern Recognition,2016
+39ce2232452c0cd459e32a19c1abe2a2648d0c3f,Neural computation as a tool to differentiate perceptual from emotional processes: the case of anger superiority effect.,Cognition,2009
+397aeaea61ecdaa005b09198942381a7a11cd129,Multi-Scale Video Frame-Synthesis Network with Transitive Consistency Loss,CoRR,2017
+39b22bcbd452d5fea02a9ee63a56c16400af2b83,Multi-task Learning of Facial Landmarks and Expression,2014 Canadian Conference on Computer and Robot Vision,2014
+399a2c23bd2592ebe20aa35a8ea37d07c14199da,Inferring facial expressions from videos: Tool and application,Sig. Proc.: Image Comm.,2007
+392425be1c9d9c2ee6da45de9df7bef0d278e85f,Vision for Intelligent Vehicles & Applications (VIVA): Face Detection and Head Pose Challenge,,2016
+3947b64dcac5bcc1d3c8e9dcb50558efbb8770f1,Action Recognition with Dynamic Image Networks,IEEE transactions on pattern analysis and machine intelligence,2017
+3965d61c4f3b72044f43609c808f8760af8781a2,Diverse Conditional Image Generation by Stochastic Regression with Latent Drop-Out Codes,CoRR,2018
+395bf182983e0917f33b9701e385290b64e22f9a,Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model,Unknown,2004
+39b452453bea9ce398613d8dd627984fd3a0d53c,Spatiotemporal Residual Networks for Video Action Recognition,Unknown,2016
+39b5f6d6f8d8127b2b97ea1a4987732c0db6f9df,An evaluation of bi-modal facial appearance+facial expression face biometrics,2008 19th International Conference on Pattern Recognition,2008
+9931c6b050e723f5b2a189dd38c81322ac0511de,From pose to activity: Surveying datasets and introducing CONVERSE,Computer Vision and Image Understanding,2016
+521482c2089c62a59996425603d8264832998403,Landmark localization on 3D/4D range data using a shape index-based statistical shape model with global and local constraints,Computer Vision and Image Understanding,2015
+521b625eebea73b5deb171a350e3709a4910eebf,Improving Human Action Recognition by Non-action Classification,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016
+527dda77a3864d88b35e017d542cb612f275a4ec,Facial 3D model registration under occlusions with sensiblepoints-based reinforced hypothesis refinement,2017 IEEE International Joint Conference on Biometrics (IJCB),2017
+52f23e1a386c87b0dab8bfdf9694c781cd0a3984,DropELM: Fast neural network regularization with Dropout and DropConnect,Neurocomputing,2015
+550858b7f5efaca2ebed8f3969cb89017bdb739f,"""Wii Using Only 'We'"": Using background subtraction and human pose recognition to eliminate game controllers",,2011
+5506a1a1e1255353fde05d9188cb2adc20553af5,Dictionary Integration using 3D Morphable Face Models for Pose-invariant Collaborative-representation-based Classification,CoRR,2016
+55c81f15c89dc8f6eedab124ba4ccab18cf38327,Discriminative Training of Hyper-feature Models for Object Identification,,2006
+97540905e4a9fdf425989a794f024776f28a3fa9,NDDR-CNN: Layer-wise Feature Fusing in Multi-Task CNN by Neural Discriminative Dimensionality Reduction,CoRR,2018
+635158d2da146e9de559d2742a2fa234e06b52db,Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns,,2015
+63d8d69e90e79806a062cb8654ad78327c8957bb,A efficient and practical 3D face scanner using near infrared and visible photometric stereo,,2010
+63eefc775bcd8ccad343433fc7a1dd8e1e5ee796,Correlation Metric for Generalized Feature Extraction,IEEE Transactions on Pattern Analysis and Machine Intelligence,2008
+0f9bf5d8f9087fcba419379600b86ae9e9940013,Hybrid human detection and recognition in surveillance,Neurocomputing,2016
+0a511058edae582e8327e8b9d469588c25152dc6,Memory Constrained Face Recognition Ashish Kapoor,,
+0a4f3a423a37588fde9a2db71f114b293fc09c50,Computer analysis of face beauty: A survey,Computer Vision and Image Understanding,2014
+0ad90118b4c91637ee165f53d557da7141c3fde0,Face recognition with radial basis function (RBF) neural networks,IEEE transactions on neural networks,2002
+0ad4a814b30e096ad0e027e458981f812c835aa0,Leveraging mid-level deep representations for predicting face attributes in the wild,2016 IEEE International Conference on Image Processing (ICIP),2016
+6448d23f317babb8d5a327f92e199aaa45f0efdc,Classifying Facial Attributes using a 2-D Gabor Wavelet Representation and Discriminant Analysis,,1999
+642c66df8d0085d97dc5179f735eed82abf110d0,Coupled kernel-based subspace learning,2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),2005
+641f34deb3bdd123c6b6e7b917519c3e56010cb7,Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary,IEEE Transactions on Pattern Analysis and Machine Intelligence,2012
+6462ef39ca88f538405616239471a8ea17d76259,Long range iris recognition: A survey,Pattern Recognition,2017
+90ac0f32c0c29aa4545ed3d5070af17f195d015f,An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition,Unknown,2012
+90b11e095c807a23f517d94523a4da6ae6b12c76,Blind Facial Image Quality Enhancement Using Non-Rigid Semantic Patches,IEEE Transactions on Image Processing,2017
+d4c7d1a7a03adb2338704d2be7467495f2eb6c7b,Towards a Neural,,2017
+d4ebf0a4f48275ecd8dbc2840b2a31cc07bd676d,A Fusion of Appearance based CNNs and Temporal evolution of Skeleton with LSTM for Daily Living Action Recognition,CoRR,2018
+d44a93027208816b9e871101693b05adab576d89,On the Capacity of Face Representation,CoRR,2017
+ba788365d70fa6c907b71a01d846532ba3110e31,Robust Conditional Generative Adversarial Networks,CoRR,2018
+ba29ba8ec180690fca702ad5d516c3e43a7f0bb8,Do less and achieve more: Training CNNs for action recognition utilizing action images from the Web,Pattern Recognition,2017
+bab88235a30e179a6804f506004468aa8c28ce4f,Joint discriminative dimensionality reduction and dictionary learning for face recognition,Pattern Recognition,2013
+a0fb5b079dd1ee5ac6ac575fe29f4418fdb0e670,On the initialization of the DNMF algorithm,2006 IEEE International Symposium on Circuits and Systems,2006
+a74251efa970b92925b89eeef50a5e37d9281ad0,"Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization",2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),2011
+b8378ab83bc165bc0e3692f2ce593dcc713df34a,"A 3D Approach to Facial Landmarks: Detection, Refinement, and Tracking",2014 22nd International Conference on Pattern Recognition,2014
+b171f9e4245b52ff96790cf4f8d23e822c260780,ROBOTICS INSTITUTE Summer Scholars ( RISS ) Working Papers JOURNAL VOLUME 2 FALL 2014,,2014
+b1301c722886b6028d11e4c2084ee96466218be4,Facial Aging and Rejuvenation by Conditional Multi-Adversarial Autoencoder with Ordinal Regression,,2018
+b1c5581f631dba78927aae4f86a839f43646220c,A scalable metric learning-based voting method for expression recognition,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+dd0760bda44d4e222c0a54d41681f97b3270122b,Recognition of facial expressions using Gabor wavelets and learning vector quantization,Eng. Appl. of AI,2008
+dd2f6a1ba3650075245a422319d86002e1e87808,"PD2T: Person-specific Detection, Deformable Tracking",,2018
+dd600e7d6e4443ebe87ab864d62e2f4316431293,Improving facial expression analysis using histograms of Log-Transformed Nonnegative Sparse Representation with a Spatial Pyramid Structure,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+b6c047ab10dd86b1443b088029ffe05d79bbe257,Using robust dispersion estimation in support vector machines,Pattern Recognition,2013
+b6c53891dff24caa1f2e690552a1a5921554f994,Deeply Learning Deformable Facial Action Parts Model for Dynamic Expression Analysis,,2014
+b656abc4d1e9c8dc699906b70d6fcd609fae8182,Integrating monolithic and free-parts representations for improved face verification in the presence of pose mismatch,Pattern Recognition Letters,2007
+a92adfdd8996ab2bd7cdc910ea1d3db03c66d34f,ConvNet Architecture Search for Spatiotemporal Feature Learning,CoRR,2017
+d50751da2997e7ebc89244c88a4d0d18405e8507,Real time 3D face alignment with Random Forests-based Active Appearance Models,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+d511e903a882658c9f6f930d6dd183007f508eda,Privileged information-based conditional regression forest for facial feature detection,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+d5e1173dcb2a51b483f86694889b015d55094634,PCA and LDA in DCT domain,Pattern Recognition Letters,2005
+aafb271684a52a0b23debb3a5793eb618940c5dd,Supplementary Material: Hierarchical Semantic Indexing for Large Scale Image Retrieval,,2011
+aa331fe378056b6d6031bb8fe6676e035ed60d6d,Object detection using boosted local binaries,Pattern Recognition,2016
+af8fe1b602452cf7fc9ecea0fd4508ed4149834e,A pose-wise linear illumination manifold model for face recognition using video,Computer Vision and Image Understanding,2009
+af6cae71f24ea8f457e581bfe1240d5fa63faaf7,Multi-Task Zipping via Layer-wise Neuron Sharing,CoRR,2018
+af54dd5da722e104740f9b6f261df9d4688a9712,Portability: A New Challenge on Designing Family Image Database,,2010
+b75cee96293c11fe77ab733fc1147950abbe16f9,A Single Classifier for View-Invariant Multiple Object Class Recognition,,2006
+b747fcad32484dfbe29530a15776d0df5688a7db,Background suppressing Gabor energy filtering,Pattern Recognition Letters,2015
+dbab6ac1a9516c360cdbfd5f3239a351a64adde7,Cascaded regression with sparsified feature covariance matrix for facial landmark detection,Pattern Recognition Letters,2016
+ded41c9b027c8a7f4800e61b7cfb793edaeb2817,DYAN: A Dynamical Atoms Network for Video Prediction,,2018
+b0c512fcfb7bd6c500429cbda963e28850f2e948,A Fast and Accurate Unconstrained Face Detector,IEEE Transactions on Pattern Analysis and Machine Intelligence,2016
+b03d6e268cde7380e090ddaea889c75f64560891,Automatic Acquisition of High-fidelity Facial Performances Using Monocular Videos: Supplementary Material,,2014
+a6583c8daa7927eedb3e892a60fc88bdfe89a486,Toward semantic attributes in dictionary learning and non-negative matrix factorization,Pattern Recognition Letters,2016
+a6db73f10084ce6a4186363ea9d7475a9a658a11,ActionFlowNet: Learning Motion Representation for Action Recognition,CoRR,2016
+a6634ff2f9c480e94ed8c01d64c9eb70e0d98487,PalmHashing: a novel approach for cancelable biometrics,Inf. Process. Lett.,2005
+c3418f866a86dfd947c2b548cbdeac8ca5783c15,Disentangling the Modes of Variation in Unlabelled Data,,2018
+c3a3f7758bccbead7c9713cb8517889ea6d04687,Funnel-structured cascade for multi-view face detection with alignment-awareness,Neurocomputing,2017
+c3638b026c7f80a2199b5ae89c8fcbedfc0bd8af,Shape Matching and Object Recognition,,2005
+ea96bc017fb56593a59149e10d5f14011a3744a0,Local coordinate based graph-regularized NMF for image representation,Signal Processing,2016
+e10a257f1daf279e55f17f273a1b557141953ce2,A survey of approaches and trends in person re-identification,Image Vision Comput.,2014
+e171fba00d88710e78e181c3e807c2fdffc6798a,Pose-invariant face recognition using a 3D deformable model,Pattern Recognition,2003
+e16efd2ae73a325b7571a456618bfa682b51aef8,Semi-Supervised Adaptive Label Distribution Learning for Facial Age Estimation,,2017
+e13360cda1ebd6fa5c3f3386c0862f292e4dbee4,Range Loss for Deep Face Recognition with Long-tail,CoRR,2016
+cd4c047f4d4df7937aff8fc76f4bae7718004f40,Background modeling for generative image models,Computer Vision and Image Understanding,2015
+ccbfc004e29b3aceea091056b0ec536e8ea7c47e,Tensor-based factor decomposition for relighting,IEEE International Conference on Image Processing 2005,2005
+cc8bf03b3f5800ac23e1a833447c421440d92197,Improving mixture of experts for view-independent face recognition using teacher-directed learning,Machine Vision and Applications,2009
+e6540d70e5ffeed9f447602ea3455c7f0b38113e,Video pornography detection through deep learning techniques and motion information,Neurocomputing,2017
+e6ee36444038de5885473693fb206f49c1369138,SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction,CoRR,2018
+f913bb65b62b0a6391ffa8f59b1d5527b7eba948,On improving robustness of LDA and SRDA by using tangent vectors,Pattern Recognition Letters,2013
+f96bdd1e2a940030fb0a89abbe6c69b8d7f6f0c1,Comparison of human and computer performance across face recognition experiments,Image Vision Comput.,2014
+f06b015bb19bd3c39ac5b1e4320566f8d83a0c84,Classification and weakly supervised pain localization using multiple segment representation,Image and vision computing,2014
+f7dea4454c2de0b96ab5cf95008ce7144292e52a,Facial Landmark Detection: A Literature Survey,International Journal of Computer Vision,2018
+f7452a12f9bd927398e036ea6ede02da79097e6e,Attributes as Operators,,2018
+f78863f4e7c4c57744715abe524ae4256be884a9,Differential optical flow applied to automatic facial expression recognition,Neurocomputing,2011
+e8410c4cd1689829c15bd1f34995eb3bd4321069,Decoding mixed emotions from expression map of face images,2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),2013
+faead8f2eb54c7bc33bc7d0569adc7a4c2ec4c3b,Combining Data-driven and Model-driven Methods for Robust Facial Landmark Detection,CoRR,2016
+faf5583063682e70dedc4466ac0f74eeb63169e7,Holistic person processing: faces with bodies tell the whole story.,Journal of personality and social psychology,2012
+ff60d4601adabe04214c67e12253ea3359f4e082,Video-based emotion recognition in the wild using deep transfer learning and score fusion,Image Vision Comput.,2017
+c54f9f33382f9f656ec0e97d3004df614ec56434,Automatic edge-based localization of facial features from images with complex facial expressions,Pattern Recognition Letters,2010
+c5fe40875358a286594b77fa23285fcfb7bda68e,Face identification using reference-based features with message passing model,Neurocomputing,2013
+c29e33fbd078d9a8ab7adbc74b03d4f830714cd0,3D shape constraint for facial feature localization using probabilistic-like output,"Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings.",2004
+f68ed499e9d41f9c3d16d843db75dc12833d988d,Multi-view Common Component Discriminant Analysis for Cross-view Classification,CoRR,2018
+f6abecc1f48f6ec6eede4143af33cc936f14d0d0,Adaptive Detrending to Accelerate Convolutional Gated Recurrent Unit Training for Contextual Video Recognition,CoRR,2017
+f1748303cc02424704b3a35595610890229567f9,Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions,Image Vision Comput.,2012
+e726acda15d41b992b5a41feabd43617fab6dc23,Evolutionary feature synthesis for facial expression recognition,Pattern Recognition Letters,2006
+cb9092fe74ea6a5b2bb56e9226f1c88f96094388,A distributed perception infrastructure for robot assisted living,Robotics and Autonomous Systems,2014
+f869601ae682e6116daebefb77d92e7c5dd2cb15,Regularized Diffusion Process for Visual Retrieval,,2017
+cef841f27535c0865278ee9a4bc8ee113b4fb9f3,Fusion of feature sets and classifiers for facial expression recognition,Expert Syst. Appl.,2013
+ce691a37060944c136d2795e10ed7ba751cd8394,"Unsupervised Depth Estimation, 3D Face Rotation and Replacement",,2018
+ce3f3088d0c0bf236638014a299a28e492069753,Online Action Recognition Using Covariance of Shape and Motion,,2014
+e0c081a007435e0c64e208e9918ca727e2c1c44e,Universidad De Las Palmas,,2005
+e0765de5cabe7e287582532456d7f4815acd74c1,Representing images of a rotating object with cyclic permutation for view-based pose estimation,Computer Vision and Image Understanding,2009
+46e86cdb674440f61b6658ef3e84fea95ea51fb4,Robust Face Recognition Using Eigen Faces and Karhunen-Loeve Algorithm,,2010
+464de30d3310123644ab81a1f0adc51598586fd2,Covariance descriptor based on bio-inspired features for person re-identification and face verification,Image Vision Comput.,2014
+46196735a201185db3a6d8f6e473baf05ba7b68f,Principal Component Analysis by $L_{p}$ -Norm Maximization,IEEE transactions on cybernetics,2014
+2cbb4a2f8fd2ddac86f8804fd7ffacd830a66b58,Age and gender classification using convolutional neural networks,2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2015
+2c61a9e26557dd0fe824909adeadf22a6a0d86b0,Convolutional Channel Features: Tailoring CNN to Diverse Tasks,,2015
+2c7c3a74da960cc76c00965bd3e343958464da45,Interactive Facial-Geometric-Feature Animation for Generating Expressions of Novel Faces,IEICE Transactions,2011
+79581c364cefe53bff6bdd224acd4f4bbc43d6d4,Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild,Image Vision Comput.,2017
+795ea140df2c3d29753f40ccc4952ef24f46576c,Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection,CoRR,2017
+79dc84a3bf76f1cb983902e2591d913cee5bdb0e,Grounded Compositional Semantics for Finding and Describing Images with Sentences,TACL,2014
+79c3a7131c6c176b02b97d368cd0cd0bc713ff7e,A New Weighted LDA Method in Comparison to Some Versions of LDA,Unknown,2006
+793e7f1ba18848908da30cbad14323b0389fd2a8,End-to-end Face Detection and Cast Grouping in Movies Using Erdős-Rényi Clustering: Supplementary Material,,2017
+2dd6c988b279d89ab5fb5155baba65ce4ce53c1e,Learning deformable shape manifolds,Pattern recognition,2012
+2d1f86e2c7ba81392c8914edbc079ac64d29b666,Deep Heterogeneous Feature Fusion for Template-Based Face Recognition,2017 IEEE Winter Conference on Applications of Computer Vision (WACV),2017
+41b997f6cec7a6a773cd09f174cb6d2f036b36cd,Local binary patterns for multi-view facial expression recognition,Computer Vision and Image Understanding,2011
+830e5b1043227fe189b3f93619ef4c58868758a7,"A survey on face detection in the wild: Past, present and future",Computer Vision and Image Understanding,2015
+83ac942d71ba908c8d76fc68de6173151f012b38,Class dependent factor analysis and its application to face recognition,Pattern Recognition,2012
+1bd50926079e68a6e32dc4412e9d5abe331daefb,Fisher Discrimination Dictionary Learning for sparse representation,2011 International Conference on Computer Vision,2011
+1bc214c39536c940b12c3a2a6b78cafcbfddb59a,Leveraging Gabor Phase for Face Identification in Controlled Scenarios,,2016
+1b79628af96eb3ad64dbb859dae64f31a09027d5,Modeling Recognition Memory Using the Similarity Structure of Natural Input,,2006
+1b589016fbabe607a1fb7ce0c265442be9caf3a9,Development of perceptual expertise in emotion recognition.,Cognition,2009
+1b27ca161d2e1d4dd7d22b1247acee5c53db5104,Facial soft biometric features for forensic face recognition.,Forensic science international,2015
+776835eb176ed4655d6e6c308ab203126194c41e,Audio-Visual Affective Expression Recognition Through Multistream Fused HMM,IEEE Trans. Multimedia,2008
+4866a5d6d7a40a26f038fc743e16345c064e9842,Stratified sampling for feature subspace selection in random forests for high dimensional data,Pattern Recognition,2013
+48f211a9764f2bf6d6dda4a467008eda5680837a,Predicting occupation via human clothing and contexts,2011 International Conference on Computer Vision,2011
+4858d014bb5119a199448fcd36746c413e60f295,Deformable Part Models with Individual Part Scaling,,2013
+703890b7a50d6535900a5883e8d2a6813ead3a03,A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences,Pattern Recognition,2015
+1ea8085fe1c79d12adffb02bd157b54d799568e4,Eigenfaces vs. Fisherfaces: Recognition Using Class Speciic Linear Projection,,1996
+1ebdfceebad642299e573a8995bc5ed1fad173e3,Fisher Kernel Temporal Variation-based Relevance Feedback for video retrieval,Computer Vision and Image Understanding,2016
+1ef4aac0ebc34e76123f848c256840d89ff728d0,Rapid Synthesis of Massive Face Sets for Improved Face Recognition,2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017),2017
+84fe5b4ac805af63206012d29523a1e033bc827e,Ear recognition: More than a survey,Neurocomputing,2017
+84dcf04802743d9907b5b3ae28b19cbbacd97981,Face Detection using Deep Learning: An Improved Faster RCNN Approach,CoRR,2017
+24aac045f1e1a4c13a58eab4c7618dccd4c0e671,Video Imagination from a Single Image with Transformation Generation,,2017
+240d5390af19bb43761f112b0209771f19bfb696,Towards an intelligent framework for multimodal affective data analysis,Neural networks : the official journal of the International Neural Network Society,2015
+24d376e4d580fb28fd66bc5e7681f1a8db3b6b78,Multi-Branch Fully Convolutional Network for Face Detection,CoRR,2017
+24bf94f8090daf9bda56d54e42009067839b20df,"Automatic Analysis of Facial Affect: A Survey of Registration, Representation, and Recognition",IEEE Transactions on Pattern Analysis and Machine Intelligence,2015
+23fdbef123bcda0f07d940c72f3b15704fd49a98,Matrix Completion for Multi-label Image Classification,,2011
+23ebbbba11c6ca785b0589543bf5675883283a57,Spatio-Temporal Tube data representation and Kernel design for SVM-based video object retrieval system,Multimedia Tools and Applications,2010
+4fd29e5f4b7186e349ba34ea30738af7860cf21f,Circulant Temporal Encoding for Video Retrieval and Temporal Alignment,International Journal of Computer Vision,2015
+4fbef7ce1809d102215453c34bf22b5f9f9aab26,Robust Face Recognition for Data Mining,,2009
+4fa0d73b8ba114578744c2ebaf610d2ca9694f45,Rethinking Spatiotemporal Feature Learning For Video Understanding,CoRR,2017
+4f0bf2508ae801aee082b37f684085adf0d06d23,Max-margin Non-negative Matrix Factorization,Image Vision Comput.,2012
+8d71872d5877c575a52f71ad445c7e5124a4b174,Shadow compensation in 2D images for face recognition,Pattern Recognition,2007
+8dbe79830713925affc48d0afa04ed567c54724b,Automatic facial age estimation,,2015
+8d712cef3a5a8a7b1619fb841a191bebc2a17f15,Non-verbal communication analysis in Victim-Offender Mediations,Pattern Recognition Letters,2015
+1513949773e3a47e11ab87d9a429864716aba42d,Demographic classification from face videos using manifold learning,Neurocomputing,2013
+1287bfe73e381cc8042ac0cc27868ae086e1ce3b,Computational Mid-Level Vision: From Border Ownership to Categorical Object Recognition,Unknown,2015
+12c713166c46ac87f452e0ae383d04fb44fe4eb2,Fusion Classifier for Open-Set Face Recognition with Pose Variations,,2009
+8cb3f421b55c78e56c8a1c1d96f23335ebd4a5bf,Facial expression recognition and synthesis based on an appearance model,Sig. Proc.: Image Comm.,2004
+855bfc17e90ec1b240efba9100fb760c068a8efa,Facial expression recognition using tracked facial actions: Classifier performance analysis,Eng. Appl. of AI,2013
+1dbbec4ad8429788e16e9f3a79a80549a0d7ac7b,Global Sensitivity Analysis for MAP Inference in Graphical Models,,2014
+1d846934503e2bd7b8ea63b2eafe00e29507f06a,Manifold Based Analysis of Facial Expression,2004 Conference on Computer Vision and Pattern Recognition Workshop,2004
+1d3e01d5e2721dcfafe5a3b39c54ee1c980350bb,Face Alignment by Explicit Shape Regression,2012 IEEE Conference on Computer Vision and Pattern Recognition,2012
+1d6068631a379adbcff5860ca2311b790df3a70f,Efficient smile detection by Extreme Learning Machine,Neurocomputing,2015
+760a712f570f7a618d9385c0cee7e4d0d6a78ed2,Sparse Representation with Kernels,,2012
+76b9fe32d763e9abd75b427df413706c4170b95c,Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary,Pattern Recognition,2013
+7644d90efef157e61fe4d773d8a3b0bad5feccec,Linear local tangent space alignment and application to face recognition,Neurocomputing,2007
+1c6be6874e150898d9db984dd546e9e85c85724e,Generalized quotient image,"Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.",2004
+1c65f3b3c70e1ea89114f955624d7adab620a013,Local Polynomial Approximation-Local Binary Pattern (LPA-LBP) based Face Classification,,2011
+82bef8481207de9970c4dc8b1d0e17dced706352,Motion History for Facial Action Detection,,2004
+49dd4b359f8014e85ed7c106e7848049f852a304,Feature extraction by learning Lorentzian metric tensor and its extensions,Pattern Recognition,2010
+49659fb64b1d47fdd569e41a8a6da6aa76612903,Dogs Can Discriminate Emotional Expressions of Human Faces,Current Biology,2015
+40cd062438c280c76110e7a3a0b2cf5ef675052c,Distance Maps: a Robust Illumination Preprocessing for Active Appearance Models,,2006
+40a1935753cf91f29ffe25f6c9dde2dc49bf2a3a,Generating a Diverse Set of High-Quality Clusterings,,2011
+4042bbb4e74e0934f4afbedbe92dd3e37336b2f4,WND-CHARM: Multi-purpose image classification using compound image transforms,Pattern recognition letters,2008
+2e20ed644e7d6e04dd7ab70084f1bf28f93f75e9,DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification,,2008
+2e0e056ed5927a4dc6e5c633715beb762628aeb0,Multilinear Supervised Neighborhood Preserving Embedding Analysis of Local Descriptor Tensor,,2012
+2ee8900bbde5d3c81b7ed4725710ed46cc7e91cd,Graph embedding: a general framework for dimensionality reduction,2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),2005
+2e19371a2d797ab9929b99c80d80f01a1fbf9479,"L2, 1-based regression and prediction accumulation across views for robust facial landmark detection",Image Vision Comput.,2016
+2e3d081c8f0e10f138314c4d2c11064a981c1327,A Comprehensive Performance Evaluation of Deformable Face Tracking “In-the-Wild”,International Journal of Computer Vision,2017
+2e86402b354516d0a8392f75430156d629ca6281,Joint Unsupervised Learning of Deep Representations and Image Clusters,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016
+2e1b1969ded4d63b69a5ec854350c0f74dc4de36,Comparative evaluation of 3D vs. 2D modality for automatic detection of facial action units,Pattern Recognition,2012
+2b3ceb40dced78a824cf67054959e250aeaa573b,Differentially private subspace clustering,,2015
+2baec98c19804bf19b480a9a0aa814078e28bb3d,Multi-conditional Latent Variable Model for Joint Facial Action Unit Detection,2015 IEEE International Conference on Computer Vision (ICCV),2015
+47f8b3b3f249830b6e17888df4810f3d189daac1,Translational photometric alignment of single-view image sequences,Computer Vision and Image Understanding,2012
+47aeb3b82f54b5ae8142b4bdda7b614433e69b9a,"Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected ""In-the-Wild""",,2013
+477811ff147f99b21e3c28309abff1304106dbbe,Learning by expansion: Exploiting social media for image classification with few training examples,Neurocomputing,2012
+47e14fdc6685f0b3800f709c32e005068dfc8d47,Secure Face Matching Using Fully Homomorphic Encryption,CoRR,2018
+78a4cabf0afc94da123e299df5b32550cd638939,Multi-view face recognition from single RGBD models of the faces,Computer Vision and Image Understanding,2017
+7897c8a9361b427f7b07249d21eb9315db189496,Feature selection via simultaneous sparse approximation for person specific face verification,2011 18th IEEE International Conference on Image Processing,2011
+78a11b7d2d7e1b19d92d2afd51bd3624eca86c3c,Improved Deep Metric Learning with Multi-class N-pair Loss Objective,,2016
+788a7b59ea72e23ef4f86dc9abb4450efefeca41,Robust Statistical Face Frontalization,2015 IEEE International Conference on Computer Vision (ICCV),2015
+8b8728edc536020bc4871dc66b26a191f6658f7c,Robust gender recognition by exploiting facial attributes dependencies,Pattern Recognition Letters,2014
+131e395c94999c55c53afead65d81be61cd349a4,A Functional Regression approach to Facial Landmark Tracking,IEEE transactions on pattern analysis and machine intelligence,2017
+1384a83e557b96883a6bffdb8433517ec52d0bea,CSVideoNet: A Recurrent Convolutional Neural Network for Compressive Sensing Video Reconstruction,CoRR,2016
+13fd0a4d06f30a665fc0f6938cea6572f3b496f7,Regularized Extreme Learning Machine for Large-scale Media Content Analysis,,2015
+7a9ef21a7f59a47ce53b1dff2dd49a8289bb5098,"Principles of Appearance Acquisition and Representation By Tim Weyrich , Jason Lawrence , Hendrik",,2009
+7a85b3ab0efb6b6fcb034ce13145156ee9d10598,Inter-image outliers and their application to image classification,Pattern Recognition,2010
+7ab930146f4b5946ec59459f8473c700bcc89233,Feature ranking for multi-label classification using Markov networks,Neurocomputing,2016
+14fa27234fa2112014eda23da16af606db7f3637,Unified formulation of linear discriminant analysis methods and optimal parameter selection,Pattern Recognition,2011
+14e949f5754f9e5160e8bfa3f1364dd92c2bb8d6,Multi-subregion based correlation filter bank for robust face recognition,Pattern Recognition,2014
+14fdce01c958043140e3af0a7f274517b235adf3,Discriminant analysis via support vectors,Neurocomputing,2010
+141eab5f7e164e4ef40dd7bc19df9c31bd200c5e,Local Linear Regression (LLR) for Pose Invariant Face Recognition,7th International Conference on Automatic Face and Gesture Recognition (FGR06),2006
+1473a233465ea664031d985e10e21de927314c94,Exploiting Spatio-Temporal Structure with Recurrent Winner-Take-All Networks,IEEE transactions on neural networks and learning systems,2016
+8ed32c8fad924736ebc6d99c5c319312ba1fa80b,Centralized Gradient Pattern for Face Recognition,IEICE Transactions,2013
+225fb9181545f8750061c7693661b62d715dc542,Multi-Level ResNets with Stacked SRUs for Action Recognition,CoRR,2017
+22dada4a7ba85625824489375184ba1c3f7f0c8f,EventNet: A Large Scale Structured Concept Library for Complex Event Detection in Video,,2015
+22f656d0f8426c84a33a267977f511f127bfd7f3,From Facial Expression Recognition to Interpersonal Relation Prediction,International Journal of Computer Vision,2017
+22ec256400e53cee35f999244fb9ba6ba11c1d06,Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems,CoRR,2017
+22a7f1aebdb57eecd64be2a1f03aef25f9b0e9a7,Attribute-restricted latent topic model for person re-identification,Pattern Recognition,2012
+2574860616d7ffa653eb002bbaca53686bc71cdd,Culture shapes 7-month-olds’ perceptual strategies in discriminating facial expressions of emotion,Current Biology,2016
+25728e08b0ee482ee6ced79c74d4735bb5478e29,Thermal spatio-temporal data for stress recognition,EURASIP J. Image and Video Processing,2014
diff --git a/reports/stats/geocoded_papers.csv b/reports/stats/geocoded_papers.csv new file mode 100644 index 00000000..5d20a3f0 --- /dev/null +++ b/reports/stats/geocoded_papers.csv @@ -0,0 +1,4580 @@ +611961abc4dfc02b67edd8124abb08c449f5280a,Exploiting Image-trained CNN Architectures for Unconstrained Video Classification,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+611961abc4dfc02b67edd8124abb08c449f5280a,Exploiting Image-trained CNN Architectures for Unconstrained Video Classification,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,Complex Bingham Distribution for Facial Feature Detection,University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2167565,-85.7572502291168
+6156eaad00aad74c90cbcfd822fa0c9bd4eb14c2,Complex Bingham Distribution for Facial Feature Detection,Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.9131456239399
+61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,Greedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering,Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,Greedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+61ffedd8a70a78332c2bbdc9feba6c3d1fd4f1b8,Greedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering,Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+61f93ed515b3bfac822deed348d9e21d5dffe373,Deep Image Set Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+61f93ed515b3bfac822deed348d9e21d5dffe373,Deep Image Set Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+612075999e82596f3b42a80e6996712cc52880a3,CNNs with cross-correlation matching for face recognition in video surveillance using a single training sample per person,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,Merging datasets through deep learning,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,Merging datasets through deep learning,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+61e9e180d3d1d8b09f1cc59bdd9f98c497707eff,Semi-supervised Learning of Facial Attributes in Video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+6193c833ad25ac27abbde1a31c1cabe56ce1515b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+614079f1a0d0938f9c30a1585f617fa278816d53,Automatic Detection of ADHD and ASD from Expressive Behaviour in RGBD Data,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+614079f1a0d0938f9c30a1585f617fa278816d53,Automatic Detection of ADHD and ASD from Expressive Behaviour in RGBD Data,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+0d746111135c2e7f91443869003d05cde3044beb,Partial face detection for continuous authentication,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+0d746111135c2e7f91443869003d05cde3044beb,Partial face detection for continuous authentication,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+0da75b0d341c8f945fae1da6c77b6ec345f47f2a,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People With Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+0da75b0d341c8f945fae1da6c77b6ec345f47f2a,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People With Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+0db43ed25d63d801ce745fe04ca3e8b363bf3147,Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,Unsupervised discovery of facial events,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,Unsupervised discovery of facial events,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+0daf696253a1b42d2c9d23f1008b32c65a9e4c1e,Unsupervised discovery of facial events,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+0de91641f37b0a81a892e4c914b46d05d33fd36e,RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+0de91641f37b0a81a892e4c914b46d05d33fd36e,RAPS: Robust and Efficient Automatic Construction of Person-Specific Deformable Models,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+0df0d1adea39a5bef318b74faa37de7f3e00b452,Appearance-based gaze estimation in the wild,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0d3bb75852098b25d90f31d2f48fd0cb4944702b,A data-driven approach to cleaning large face datasets,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+0d0b880e2b531c45ee8227166a489bf35a528cb9,Structure Preserving Object Tracking,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+0d3068b352c3733c9e1cc75e449bf7df1f7b10a4,Context Based Facial Expression Analysis in the Wild,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+0dfa460a35f7cab4705726b6367557b9f7842c65,Modeling Spatial-Temporal Clues in a Hybrid Deep Learning Framework for Video Classification,Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+0d14261e69a4ad4140ce17c1d1cea76af6546056,Adding Facial Actions into 3D Model Search to Analyse Behaviour in an Unconstrained Environment,The University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+0dbacb4fd069462841ebb26e1454b4d147cd8e98,Recent advances in discriminant non-negative Matrix Factorization,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+0db36bf08140d53807595b6313201a7339470cfe,Moving vistas: Exploiting motion for describing scenes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+0d781b943bff6a3b62a79e2c8daf7f4d4d6431ad,EmotiW 2016: video and group-level emotion recognition challenges,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.8174723,-96.7044468
+0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+951368a1a8b3c5cd286726050b8bdf75a80f7c37,A family of online boosting algorithms,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+951368a1a8b3c5cd286726050b8bdf75a80f7c37,A family of online boosting algorithms,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+951368a1a8b3c5cd286726050b8bdf75a80f7c37,A family of online boosting algorithms,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+956e9b69b3366ed3e1670609b53ba4a7088b8b7e,Semi-supervised dimensionality reduction for image retrieval,Tsinghua University,"Tsinghua University, Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+95f26d1c80217706c00b6b4b605a448032b93b75,New Robust Face Recognition Methods Based on Linear Regression,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+95f12d27c3b4914e0668a268360948bce92f7db3,Interactive Facial Feature Localization,University of Illinois at Urbana Champaign,"University of Illinois at Urbana Champaign, Urbana, IL 61801, USA","University of Illinois at Urbana-Champaign, South Goodwin Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.1066501,-88.2240260725426
+955e2a39f51c0b6f967199942d77625009e580f9,Naming Faces on the Web,of bilkent university,of bilkent university,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+950171acb24bb24a871ba0d02d580c09829de372,Speeding up 2 D-Warping for Pose-Invariant Face Recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+59be98f54bb4ed7a2984dc6a3c84b52d1caf44eb,A deep-learning approach to facial expression recognition with candid images,CUNY City College,CUNY City College,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France",45.5546608,5.4065255
+591a737c158be7b131121d87d9d81b471c400dba,Affect valence inference from facial action unit spectrograms,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+593234ba1d2e16a887207bf65d6b55bbc7ea2247,Combining Language Sources and Robust Semantic Relatedness for Attribute-Based Knowledge Transfer,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+59e2037f5079794cb9128c7f0900a568ced14c2a,Clothing and People - A Social Signal Processing Perspective,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+59dac8b460a89e03fa616749a08e6149708dcc3a,A Convergent Solution to Matrix Bidirectional Projection Based Feature Extraction with Application to Face Recognition,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+59e9934720baf3c5df3a0e1e988202856e1f83ce,UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking,Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.5557271,127.0436642
+59420fd595ae745ad62c26ae55a754b97170b01f,Objects as Attributes for Scene Classification,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+599adc0dcd4ebcc2a868feedd243b5c3c1bd1d0a,How Robust is 3D Human Pose Estimation to Occlusion?,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+5922e26c9eaaee92d1d70eae36275bb226ecdb2e,Boosting Classification Based Similarity Learning by using Standard Distances,Universitat de València,Universitat de València,"Campus dels Tarongers, Plaza de Manuel Broseta i Pont, Ciutat Jardí, Algirós, València, Comarca de València, València / Valencia, Comunitat Valenciana, 46022, España",39.47787665,-0.342577110177694
+59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,The Menpo Facial Landmark Localisation Challenge: A Step Towards the Solution,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+59e75aad529b8001afc7e194e21668425119b864,Membrane Nonrigid Image Registration,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9574,-75.1902670552555
+59d45281707b85a33d6f50c6ac6b148eedd71a25,Rank Minimization across Appearance and Shape for AAM Ensemble Fitting,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+59319c128c8ac3c88b4ab81088efe8ae9c458e07,Effective Computer Model For Recognizing Nationality From Frontal Image,The University of the Humanities,The University of the Humanities,"Хүмүүнлэгийн ухааны их сургууль, Ж.Самбуугийн гудамж, Гандан, Улаанбаатар, 975, Монгол улс",47.9218937,106.919552402206
+59a6c9333c941faf2540979dcfcb5d503a49b91e,Sampling Clustering,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+9264b390aa00521f9bd01095ba0ba4b42bf84d7e,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,University of Northern British Columbia,"University of Northern British Columbia, Canada","UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529
+9264b390aa00521f9bd01095ba0ba4b42bf84d7e,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,Aberystwyth University,"Aberystwyth University, UK","Aberystwyth University, Llanbadarn Campus, Cefn Esgair, Waun Fawr, Comins Coch, Ceredigion, Wales, SY23 3JG, UK",52.4107358,-4.05295500914411
+92be73dffd3320fe7734258961fe5a5f2a43390e,Transferring Face Verification Nets To Pain and Expression Regression,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+924b14a9e36d0523a267293c6d149bca83e73f3b,Development and Evaluation of a Method Employed to Identify Internal State Utilizing Eye Movement Data,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184
+924b14a9e36d0523a267293c6d149bca83e73f3b,Development and Evaluation of a Method Employed to Identify Internal State Utilizing Eye Movement Data,Keio University,"Information, Keio University","綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184
+926e97d5ce2a6e070f8ec07c5aa7f91d3df90ba0,Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural Networks,University of Denver,"University of Denver, Denver, CO","University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+92e464a5a67582d5209fa75e3b29de05d82c7c86,Reconstruction for Feature Disentanglement in Pose-invariant Face Recognition,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+922838dd98d599d1d229cc73896d55e7a769aa7c,Learning hierarchical representations for face verification with convolutional deep belief networks,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+922838dd98d599d1d229cc73896d55e7a769aa7c,Learning hierarchical representations for face verification with convolutional deep belief networks,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+922838dd98d599d1d229cc73896d55e7a769aa7c,Learning hierarchical representations for face verification with convolutional deep belief networks,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+9294739e24e1929794330067b84f7eafd286e1c8,Expression Recognition Using Elastic Graph Matching,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+9294739e24e1929794330067b84f7eafd286e1c8,Expression Recognition Using Elastic Graph Matching,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+923ec0da8327847910e8dd71e9d801abcbc93b08,Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,Facial Age Estimation by Learning from Label Distributions,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.958674326093
+0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,Facial Age Estimation by Learning from Label Distributions,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,Facial Age Estimation by Learning from Label Distributions,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+0c435e7f49f3e1534af0829b7461deb891cf540a,Capturing Global Semantic Relationships for Facial Action Unit Recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+0c435e7f49f3e1534af0829b7461deb891cf540a,Capturing Global Semantic Relationships for Facial Action Unit Recognition,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+0c435e7f49f3e1534af0829b7461deb891cf540a,Capturing Global Semantic Relationships for Facial Action Unit Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+0c30f6303dc1ff6d05c7cee4f8952b74b9533928,Pareto discriminant analysis,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+0ccc535d12ad2142a8310d957cc468bbe4c63647,Better Exploiting OS-CNNs for Better Event Recognition in Images,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+0c79a39a870d9b56dc00d5252d2a1bfeb4c295f1,Face Recognition in Videos by Label Propagation,"International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+0cdb49142f742f5edb293eb9261f8243aee36e12,Combined Learning of Salient Local Descriptors and Distance Metrics for Image Set Face Verification,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+0cf2eecf20cfbcb7f153713479e3206670ea0e9c,Privacy-Protective-GAN for Face De-identification,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+0c1d85a197a1f5b7376652a485523e616a406273,Joint Registration and Representation Learning for Unconstrained Face Identification,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+0c1d85a197a1f5b7376652a485523e616a406273,Joint Registration and Representation Learning for Unconstrained Face Identification,Khalifa University,"Khalifa University, Abu Dhabi, United Arab Emirates","Khalifa University, شارع طَوِي مُوَيلِح, قصر الشاطئ, حدبة الزَّعْفرانة, أبوظبي, أبو ظبي, 31757, الإمارات العربية المتحدة",24.4469025,54.3942563
+0ca66283f4fb7dbc682f789fcf6d6732006befd5,Active Dictionary Learning for Image Representation,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+0c7f27d23a162d4f3896325d147f412c40160b52,Models and Algorithms for Vision through the Atmosphere,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,A Monte Carlo Strategy to Integrate Detection and Model-Based Face Analysis,University of Basel,"University of Basel, Switzerland","Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+0c2875bb47db3698dbbb3304aca47066978897a4,Recurrent Models for Situation Recognition,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+0cbc4dcf2aa76191bbf641358d6cecf38f644325,Visage: A Face Interpretation Engine for Smartphone Applications,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+0ce8a45a77e797e9d52604c29f4c1e227f604080,Zernike Moment-based Feature Extraction for Facial Recognition of Identical Twins,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+0ce3a786aed896d128f5efdf78733cc675970854,Learning the Face Prior for Bayesian Face Recognition,The Chinese University of Hong Kong,"The Chinese University of Hong Kong, China","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+0c59071ddd33849bd431165bc2d21bbe165a81e0,Person Recognition in Personal Photo Collections,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,Memory-Augmented Attribute Manipulation Networks for Interactive Fashion Search,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,Memory-Augmented Attribute Manipulation Networks for Interactive Fashion Search,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+0c12cbb9b9740dfa2816b8e5cde69c2f5a715c58,Memory-Augmented Attribute Manipulation Networks for Interactive Fashion Search,AI Institute,AI Institute,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina",-34.6102167,-58.3752244291708
+0c6e29d82a5a080dc1db9eeabbd7d1529e78a3dc,Learning Bayesian Network Classifiers for Facial Expression Recognition using both Labeled and Unlabeled Data,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+0c05f60998628884a9ac60116453f1a91bcd9dda,Optimizing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+66aad5b42b7dda077a492e5b2c7837a2a808c2fa,A Novel PCA-Based Bayes Classifier and Face Analysis,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+66b9d954dd8204c3a970d86d91dd4ea0eb12db47,Evaluation of Gabor-Wavelet-Based Facial Action Unit Recognition in Image Sequences of Increasing Complexity,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+66b9d954dd8204c3a970d86d91dd4ea0eb12db47,Evaluation of Gabor-Wavelet-Based Facial Action Unit Recognition in Image Sequences of Increasing Complexity,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+66dcd855a6772d2731b45cfdd75f084327b055c2,Quality Classified Image Analysis with Application to Face Detection and Recognition,Shenzhen University,"Shenzhen University, Shenzhen, China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+666939690c564641b864eed0d60a410b31e49f80,What Visual Attributes Characterize an Object Class?,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+666939690c564641b864eed0d60a410b31e49f80,What Visual Attributes Characterize an Object Class?,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+66330846a03dcc10f36b6db9adf3b4d32e7a3127,Polylingual Multimodal Learning,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+666300af8ffb8c903223f32f1fcc5c4674e2430b,Changing Fashion Cultures,Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+66029f1be1a5cee9a4e3e24ed8fcb65d5d293720,HWANG AND GRAUMAN: ACCOUNTING FOR IMPORTANCE IN IMAGE RETRIEVAL 1 Accounting for the Relative Importance of Objects in Image Retrieval,The University of Texas,The University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+6691dfa1a83a04fdc0177d8d70e3df79f606b10f,Illumination Modeling and Normalization for Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+6691dfa1a83a04fdc0177d8d70e3df79f606b10f,Illumination Modeling and Normalization for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,"Using Co-Captured Face, Gaze and Verbal Reactions to Images of Using Co-Captured Face, Gaze and Verbal Reactions to Images of",Muhlenberg College,Muhlenberg College,"Muhlenberg College, 2400, West Chew Street, Rose Garden, Allentown, Lehigh County, Pennsylvania, 18104, USA",40.5967637,-75.5124062
+66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,"Using Co-Captured Face, Gaze and Verbal Reactions to Images of Using Co-Captured Face, Gaze and Verbal Reactions to Images of",Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+66f02fbcad13c6ee5b421be2fc72485aaaf6fcb5,"Using Co-Captured Face, Gaze and Verbal Reactions to Images of Using Co-Captured Face, Gaze and Verbal Reactions to Images of",Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+66e9fb4c2860eb4a15f713096020962553696e12,A New Urban Objects Detection Framework Using Weakly Annotated Sets,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.9962539360963
+3e69ed088f588f6ecb30969bc6e4dbfacb35133e,Improving Performance of Texture Based Face Recognition Systems by Segmenting Face Region,Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+3e0a1884448bfd7f416c6a45dfcdfc9f2e617268,Understanding and Controlling User Linkability in Decentralized Learning,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+3ebce6710135d1f9b652815e59323858a7c60025,Component-based Face Detection,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058
+3e51d634faacf58e7903750f17111d0d172a0bf1,A compressible template protection scheme for face recognition based on sparse representation,Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.6200925,139.38296706394
+3e40991ab1daa2a4906eb85a5d6a01a958b6e674,LipNet: End-to-End Sentence-level Lipreading,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+3e3a87eb24628ab075a3d2bde3abfd185591aa4c,Effects of sparseness and randomness of pairwise distance matrix on t-SNE results,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+3e207c05f438a8cef7dd30b62d9e2c997ddc0d3f,Objects as context for detecting their semantic parts,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+5040f7f261872a30eec88788f98326395a44db03,Generalised Scalable Robust Principal Component Analysis,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+500fbe18afd44312738cab91b4689c12b4e0eeee,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,University of Venezia,University of Venezia,"University, Fondamenta Toffetti, Dorsoduro, Venezia-Murano-Burano, Venezia, VE, VEN, 30123, Italia",45.4312742,12.3265377
+506c2fbfa9d16037d50d650547ad3366bb1e1cde,Convolutional Channel Features : Tailoring CNN to Diverse Tasks,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+504028218290d68859f45ec686f435f473aa326c,Multi-Fiber Networks for Video Recognition,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+5050807e90a925120cbc3a9cd13431b98965f4b9,Unsupervised Learning of Discriminative Relative Visual Attributes,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+5050807e90a925120cbc3a9cd13431b98965f4b9,Unsupervised Learning of Discriminative Relative Visual Attributes,Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.86742125,32.7351907206768
+508702ed2bf7d1b0655ea7857dd8e52d6537e765,Saliency-Informed Spatio-Temporal Vector of Locally Aggregated Descriptors and Fisher Vectors for Visual Action Recognition,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+5003754070f3a87ab94a2abb077c899fcaf936a6,Evaluation of LC - KSVD on UCF 101 Action Dataset,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+503db524b9a99220d430e741c44cd9c91ce1ddf8,"Who's Better, Who's Best: Skill Determination in Video using Deep Ranking",University of Bristol,"University of Bristol, Bristol, UK","Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+50c0de2cccf7084a81debad5fdb34a9139496da0,"The Influence of Annotation, Corpus Design, and Evaluation on the Outcome of Automatic Classification of Human Emotions",Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,"Y. Li, University of Maryland","Penn Street Garage, 120, Penn Street, Ridgleys Delight, Baltimore, Maryland, 21201, USA",39.2864694,-76.6263409932124
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+68f89c1ee75a018c8eff86e15b1d2383c250529b,Final Report for Project Localizing Objects and Actions in Videos Using Accompanying Text,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+68c5238994e3f654adea0ccd8bca29f2a24087fc,pLSA-based zero-shot learning,University of Malaya,"University of Malaya, 50603 Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394
+68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,Enhancing Concept Detection by Pruning Data with MCA-Based Transaction Weights,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+68f69e6c6c66cfde3d02237a6918c9d1ee678e1b,Enhancing Concept Detection by Pruning Data with MCA-Based Transaction Weights,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+682760f2f767fb47e1e2ca35db3becbb6153756f,The Effect of Pets on Happiness: A Large-Scale Multi-Factor Analysis Using Social Multimedia,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+682760f2f767fb47e1e2ca35db3becbb6153756f,The Effect of Pets on Happiness: A Large-Scale Multi-Factor Analysis Using Social Multimedia,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+682760f2f767fb47e1e2ca35db3becbb6153756f,The Effect of Pets on Happiness: A Large-Scale Multi-Factor Analysis Using Social Multimedia,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+683ec608442617d11200cfbcd816e86ce9ec0899,Dual Linear Regression Based Classification for Face Cluster Recognition,University of Northern British Columbia,University of Northern British Columbia,"UNBC, Campus Ring Road, College Heights, Prince George, Regional District of Fraser-Fort George, British Columbia, V2M 5K7, Canada",53.8925662,-122.814715920529
+6821113166b030d2123c3cd793dd63d2c909a110,Acquisition and Indexing of Rgb-d Recordings for Facial Expressions and Emotion Recognition1,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.6171601574695
+68a04a3ae2086986877fee2c82ae68e3631d0356,Thermal & Reflectance Based Identification in Challenging Variable Illuminations,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+57f5711ca7ee5c7110b7d6d12c611d27af37875f,Illumination invariance for face verification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+57f5711ca7ee5c7110b7d6d12c611d27af37875f,Illumination invariance for face verification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+570308801ff9614191cfbfd7da88d41fb441b423,Unsupervised Synchrony Discovery in Human Interaction,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+570308801ff9614191cfbfd7da88d41fb441b423,Unsupervised Synchrony Discovery in Human Interaction,Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+570308801ff9614191cfbfd7da88d41fb441b423,Unsupervised Synchrony Discovery in Human Interaction,University of Miami,"University of Miami, USA","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,Robust Facial Expression Recognition Based on Local Directional Pattern,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+57ebeff9273dea933e2a75c306849baf43081a8c,Deep Convolutional Network Cascade for Facial Point Detection,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+57ebeff9273dea933e2a75c306849baf43081a8c,Deep Convolutional Network Cascade for Facial Point Detection,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+57ebeff9273dea933e2a75c306849baf43081a8c,Deep Convolutional Network Cascade for Facial Point Detection,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+5778d49c8d8d127351eee35047b8d0dc90defe85,Probabilistic Subpixel Temporal Registration for Facial Expression Analysis,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,Modeling the joint density of two images under a variety of transformations,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,Modeling the joint density of two images under a variety of transformations,University of Frankfurt,University of Frankfurt,"Frankfurt University of Applied Sciences, Kleiststraße, Nordend West, Frankfurt, Regierungsbezirk Darmstadt, Hessen, 60318, Deutschland",50.13053055,8.69234223934388
+57ee3a8b0cafe211d1e9b477d210bb78b9d43bc1,Modeling the joint density of two images under a variety of transformations,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+57fd229097e4822292d19329a17ceb013b2cb648,Fast Structural Binary Coding,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+57fd229097e4822292d19329a17ceb013b2cb648,Fast Structural Binary Coding,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+574b62c845809fd54cc168492424c5fac145bc83,Learning Warped Guidance for Blind Face Restoration,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+574b62c845809fd54cc168492424c5fac145bc83,Learning Warped Guidance for Blind Face Restoration,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+574b62c845809fd54cc168492424c5fac145bc83,Learning Warped Guidance for Blind Face Restoration,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+575141e42740564f64d9be8ab88d495192f5b3bc,Age Estimation Based on Multi-Region Convolutional Neural Network,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+575141e42740564f64d9be8ab88d495192f5b3bc,Age Estimation Based on Multi-Region Convolutional Neural Network,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+5789f8420d8f15e7772580ec373112f864627c4b,Efficient Global Illumination for Morphable Models,University of Basel,"University of Basel, Switzerland","Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+57b052cf826b24739cd7749b632f85f4b7bcf90b,Fast Fashion Guided Clothing Image Retrieval: Delving Deeper into What Feature Makes Fashion,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+57f7d8c6ec690bd436e70d7761bc5f46e993be4c,Facial expression recognition using histogram variances faces,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+57f7d8c6ec690bd436e70d7761bc5f46e993be4c,Facial expression recognition using histogram variances faces,University of Aizu,"University of Aizu, Japan","会津大学, 磐越自動車道, 会津若松市, 福島県, 東北地方, 965-8580, 日本",37.5236728,139.938072464124
+3b092733f428b12f1f920638f868ed1e8663fe57,On the size of Convolutional Neural Networks and generalization performance,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+3b73f8a2b39751efb7d7b396bf825af2aaadee24,Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+3b2d5585af59480531616fe970cb265bbdf63f5b,Robust Face Recognition under Varying Light Based on 3D Recovery,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+3b2d5585af59480531616fe970cb265bbdf63f5b,Robust Face Recognition under Varying Light Based on 3D Recovery,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+3b64efa817fd609d525c7244a0e00f98feacc8b4,A Comprehensive Survey on Pose-Invariant Face Recognition,University of Technology,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+3b7f6035a113b560760c5e8000540fc46f91fed5,Coupling Alignments with Recognition for Still-to-Video Face Recognition,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+3b2a2357b12cf0a5c99c8bc06ef7b46e40dd888e,Learning Person Trajectory Representations for Team Activity Analysis,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+3bd1d41a656c8159305ba2aa395f68f41ab84f31,Entity-Based Opinion Mining from Text and Multimedia,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+3bcd72be6fbc1a11492df3d36f6d51696fd6bdad,Multi-Task Zero-Shot Action Recognition with Prioritised Data Augmentation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+3b9c08381282e65649cd87dfae6a01fe6abea79b,CUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+3b9c08381282e65649cd87dfae6a01fe6abea79b,CUHK & ETHZ & SIAT Submission to ActivityNet Challenge 2016,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+3b84d074b8622fac125f85ab55b63e876fed4628,End-to-End Localization and Ranking for Relative Attributes,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+3b4fd2aec3e721742f11d1ed4fa3f0a86d988a10,"Demo: Glimpse - Continuous, Real-Time Object Recognition on Mobile Devices",Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+3be8f1f7501978287af8d7ebfac5963216698249,Deep Cascaded Regression for Face Alignment,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+3be8f1f7501978287af8d7ebfac5963216698249,Deep Cascaded Regression for Face Alignment,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+3bc376f29bc169279105d33f59642568de36f17f,Active shape models with SIFT descriptors and MARS,University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018
+3b38c06caf54f301847db0dd622a6622c3843957,Gender differences in emotion perception and self-reported emotional intelligence: A test of the emotion sensitivity hypothesis,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+3b9b200e76a35178da940279d566bbb7dfebb787,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+3b408a3ca6fb39b0fda4d77e6a9679003b2dc9ab,Improving Classification by Improving Labelling: Introducing Probabilistic Multi-Label Object Interaction Recognition,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+3b02aaccc9f063ae696c9d28bb06a8cd84b2abb8,"Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study",University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225
+3bb6570d81685b769dc9e74b6e4958894087f3f1,Hu-Fu: Hardware and Software Collaborative Attack Framework Against Neural Networks,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+3b3482e735698819a6a28dcac84912ec01a9eb8a,Individual recognition using gait energy image,University of California,"University of California, Riverside, California 92521, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636
+3b37d95d2855c8db64bd6b1ee5659f87fce36881,Adversarially Optimizing Intersection over Union for Object Localization Tasks,University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.6485625597018
+3b37d95d2855c8db64bd6b1ee5659f87fce36881,Adversarially Optimizing Intersection over Union for Object Localization Tasks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3b37d95d2855c8db64bd6b1ee5659f87fce36881,Adversarially Optimizing Intersection over Union for Object Localization Tasks,University of Illinois at Chicago,University of Illinois at Chicago,"University of Illinois at Chicago, West Taylor Street, Greektown, Chicago, Cook County, Illinois, 60607, USA",41.86898915,-87.6485625597018
+3be027448ad49a79816cd21dcfcce5f4e1cec8a8,Actively selecting annotations among objects and attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+3bd56f4cf8a36dd2d754704bcb71415dcbc0a165,Robust Regression,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+3b470b76045745c0ef5321e0f1e0e6a4b1821339,Consensus of Regression for Occlusion-Robust Facial Feature Localization,Rutgers University,"Rutgers University, Piscataway, NJ 08854, USA","The Rock Cafe, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.5234675,-74.436975
+6fa0c206873dcc5812f7ea74a48bb4bf4b273494,Real-Time Mobile Facial Expression Recognition System -- A Case Study,The University of Texas at Dallas,The University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278
+6f9824c5cb5ac08760b08e374031cbdabc953bae,Unconstrained human identification using comparative facial soft biometrics,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+6fed504da4e192fe4c2d452754d23d3db4a4e5e3,Learning Deep Features via Congenerous Cosine Loss for Person Recognition,The Chinese University of Hong Kong,"The Chinese University of Hong Kong, New Territories, Hong Kong","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.413656,114.2099405
+6f26ab7edd971148723d9b4dc8ddf71b36be9bf7,Differences in Abundances of Cell-Signalling Proteins in Blood Reveal Novel Biomarkers for Early Detection Of Clinical Alzheimer's Disease,The University of Newcastle,The University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231
+6f0900a7fe8a774a1977c5f0a500b2898bcbe149,Quotient Based Multiresolution Image Fusion of Thermal and Visual Images Using Daubechies Wavelet Transform for Human Face Recognition,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334
+6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+6fea198a41d2f6f73e47f056692f365c8e6b04ce,Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+6fbb179a4ad39790f4558dd32316b9f2818cd106,Input Aggregated Network for Face Video Representation,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+6f84e61f33564e5188136474f9570b1652a0606f,Dual Motion GAN for Future-Flow Embedded Video Prediction,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6fda12c43b53c679629473806c2510d84358478f,A Training Model for Fuzzy Classification System,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+6fef65bd7287b57f0c3b36bf8e6bc987fd161b7d,Deep Discriminative Model for Video Classification,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+036c41d67b49e5b0a578a401eb31e5f46b3624e0,The Tower Game Dataset: A multimodal dataset for analyzing social interaction predicates,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+036c41d67b49e5b0a578a401eb31e5f46b3624e0,The Tower Game Dataset: A multimodal dataset for analyzing social interaction predicates,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+03b03f5a301b2ff88ab3bb4969f54fd9a35c7271,Pillar Networks for action recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+03ce2ff688f9b588b6f264ca79c6857f0d80ceae,Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+03b99f5abe0e977ff4c902412c5cb832977cf18e,Of Gods and Goats: Weakly Supervised Learning of Figurative Art,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+0334a8862634988cc684dacd4279c5c0d03704da,FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+03f98c175b4230960ac347b1100fbfc10c100d0c,Supervised Descent Method and Its Applications to Face Alignment,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+03264e2e2709d06059dd79582a5cc791cbef94b1,Convolutional Neural Networks for Facial Attribute-based Active Authentication on Mobile Devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+03264e2e2709d06059dd79582a5cc791cbef94b1,Convolutional Neural Networks for Facial Attribute-based Active Authentication on Mobile Devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+03c48d8376990cff9f541d542ef834728a2fcda2,Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+0319332ded894bf1afe43f174f5aa405b49305f0,Shearlet Network-based Sparse Coding Augmented by Facial Texture Features for Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+03baf00a3d00887dd7c828c333d4a29f3aacd5f5,Entropy Based Feature Selection for 3D Facial Expression Recognition,Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318497
+0359f7357ea8191206b9da45298902de9f054c92,Going deeper in facial expression recognition using deep neural networks,University of Denver,"University of Denver, Denver, CO","University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+03bd58a96f635059d4bf1a3c0755213a51478f12,Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+03bd58a96f635059d4bf1a3c0755213a51478f12,Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+9be94fa0330dd493f127d51e4ef7f9fd64613cfc,Effects of pose and image resolution on automatic face recognition,North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.897155,-96.8182760282419
+9be94fa0330dd493f127d51e4ef7f9fd64613cfc,Effects of pose and image resolution on automatic face recognition,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+9bd35145c48ce172b80da80130ba310811a44051,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+9bd35145c48ce172b80da80130ba310811a44051,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.6740869545263
+9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,Visual Data Augmentation through Learning,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,Visual Data Augmentation through Learning,Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,Close the loop: Joint blind image restoration and recognition with sparse representation prior,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+9b928c0c7f5e47b4480cb9bfdf3d5b7a29dfd493,Close the loop: Joint blind image restoration and recognition with sparse representation prior,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+9b2c359c36c38c289c5bacaeb5b1dd06b464f301,Dense Face Alignment,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+9b1bcef8bfef0fb5eb5ea9af0b699aa0534fceca,Position-Squeeze and Excitation Block for Facial Attribute Analysis,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+9b07084c074ba3710fee59ed749c001ae70aa408,Computational Models of Face Perception.,The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+9be653e1bc15ef487d7f93aad02f3c9552f3ee4a,Computer Vision for Head Pose Estimation: Review of a Competition,Tampere University of Technology,"Tampere University of Technology, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,PiCoDes: Learning a Compact Code for Novel-Category Recognition,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+9b246c88a0435fd9f6d10dc88f47a1944dd8f89e,PiCoDes: Learning a Compact Code for Novel-Category Recognition,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+9b93406f3678cf0f16451140ea18be04784faeee,A Bayesian Approach to Alignment-Based Image Hallucination,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+9b684e2e2bb43862f69b12c6be94db0e7a756187,Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+9b684e2e2bb43862f69b12c6be94db0e7a756187,Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+9b684e2e2bb43862f69b12c6be94db0e7a756187,Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+9ea223c070ec9a00f4cb5ca0de35d098eb9a8e32,Exploring Temporal Preservation Networks for Precise Temporal Action Localization,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+9e42d44c07fbd800f830b4e83d81bdb9d106ed6b,Learning Discriminative Aggregation Network for Video-Based Face Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+9eb86327c82b76d77fee3fd72e2d9eff03bbe5e0,Max-Margin Invariant Features from Transformed Unlabelled Data,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+9eeada49fc2cba846b4dad1012ba8a7ee78a8bb7,A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+9ed943f143d2deaac2efc9cf414b3092ed482610,Independent Subspace of Dynamic Gabor Features for Facial Expression Classification,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+9e1c3b8b1653337094c1b9dba389e8533bc885b0,Demographic Classification with Local Binary Patterns,Tsinghua University,"Tsinghua University, Beijing 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+9ed4ad41cbad645e7109e146ef6df73f774cd75d,RPM: Random Points Matching for Pair wise Face-Similarity,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+9ed4ad41cbad645e7109e146ef6df73f774cd75d,RPM: Random Points Matching for Pair wise Face-Similarity,Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.3764534,8.54770931489751
+9e182e0cd9d70f876f1be7652c69373bcdf37fb4,Talking Face Generation by Adversarially Disentangled Audio-Visual Representation,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+9e8d87dc5d8a6dd832716a3f358c1cdbfa97074c,What makes an image popular?,Massachusetts Institute,Massachusetts Institute,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+044d9a8c61383312cdafbcc44b9d00d650b21c70,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+044d9a8c61383312cdafbcc44b9d00d650b21c70,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+044d9a8c61383312cdafbcc44b9d00d650b21c70,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+04f0292d9a062634623516edd01d92595f03bd3f,Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+04f0292d9a062634623516edd01d92595f03bd3f,Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+04f0292d9a062634623516edd01d92595f03bd3f,Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+04522dc16114c88dfb0ebd3b95050fdbd4193b90,Minimum Bayes error features for visual recognition by sequential feature selection and extraction,University of British Columbia,University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019
+04522dc16114c88dfb0ebd3b95050fdbd4193b90,Minimum Bayes error features for visual recognition by sequential feature selection and extraction,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+0486214fb58ee9a04edfe7d6a74c6d0f661a7668,Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+043efe5f465704ced8d71a067d2b9d5aa5b59c29,Occlusion-aware 3D Morphable Face Models,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+04661729f0ff6afe4b4d6223f18d0da1d479accf,From Facial Parts Responses to Face Detection: A Deep Learning Approach,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+04661729f0ff6afe4b4d6223f18d0da1d479accf,From Facial Parts Responses to Face Detection: A Deep Learning Approach,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+04c2cda00e5536f4b1508cbd80041e9552880e67,Hipster Wars: Discovering Elements of Fashion Styles,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+04c2cda00e5536f4b1508cbd80041e9552880e67,Hipster Wars: Discovering Elements of Fashion Styles,Tohoku University,"Tohoku University, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+04ff69aa20da4eeccdabbe127e3641b8e6502ec0,Sequential Face Alignment via Person-Specific Modeling in the Wild,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+04ff69aa20da4eeccdabbe127e3641b8e6502ec0,Sequential Face Alignment via Person-Specific Modeling in the Wild,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+04ff69aa20da4eeccdabbe127e3641b8e6502ec0,Sequential Face Alignment via Person-Specific Modeling in the Wild,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+046a694bbb3669f2ff705c6c706ca3af95db798c,Conditional Convolutional Neural Network for Modality-Aware Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+046a694bbb3669f2ff705c6c706ca3af95db798c,Conditional Convolutional Neural Network for Modality-Aware Face Recognition,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+046865a5f822346c77e2865668ec014ec3282033,Discovering informative social subgraphs and predicting pairwise relationships from group photos,National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+047bb1b1bd1f19b6c8d7ee7d0324d5ecd1a3efff,Unsupervised Training for 3D Morphable Model Regression,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+6a67e6fbbd9bcd3f724fe9e6cecc9d48d1b6ad4d,Cooperative Learning with Visual Attributes,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,Top Rank Supervised Binary Coding for Visual Search,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,Top Rank Supervised Binary Coding for Visual Search,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+6a2b83c4ae18651f1a3496e48a35b0cd7a2196df,Top Rank Supervised Binary Coding for Visual Search,Research Center,Research Center,"مركز البحوث, طريق تركي الأول بن عبدالعزيز آل سعود, المحمدية, Al Muhammadiyah District حي المحمدية, Al Maather Municipality, الرياض, منطقة الرياض, 12371, السعودية",24.7261991,46.6365468966391
+6a5fe819d2b72b6ca6565a0de117c2b3be448b02,Supervised and Projected Sparse Coding for Image Classification,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,Robust Principal Component Analysis with Complex Noise,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+6afeb764ee97fbdedfa8f66810dfc22feae3fa1f,Robust Principal Component Analysis with Complex Noise,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+6aa61d28750629febe257d1cb69379e14c66c67f,Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis,Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.5369125,9.05922532743396
+6ae96f68187f1cdb9472104b5431ec66f4b2470f,Improving Task Performance in an Affect-mediated Computing System,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6ae96f68187f1cdb9472104b5431ec66f4b2470f,Improving Task Performance in an Affect-mediated Computing System,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6a4419ce2338ea30a570cf45624741b754fa52cb,Statistical transformer networks: learning shape and appearance models via self supervision,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+6af65e2a1eba6bd62843e7bf717b4ccc91bce2b8,A New Weighted Sparse Representation Based on MSLBP and Its Application to Face Recognition,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+6a657995b02bc9dee130701138ea45183c18f4ae,The Timing of Facial Motion in posed and Spontaneous Smiles,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+6a0368b4e132f4aa3bbdeada8d894396f201358a,One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery,Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881
+6ab33fa51467595f18a7a22f1d356323876f8262,Ordinal hyperplanes ranker with cost sensitivities for age estimation,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+6ab33fa51467595f18a7a22f1d356323876f8262,Ordinal hyperplanes ranker with cost sensitivities for age estimation,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+6ab33fa51467595f18a7a22f1d356323876f8262,Ordinal hyperplanes ranker with cost sensitivities for age estimation,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+6a2ac4f831bd0f67db45e7d3cdaeaaa075e7180a,Excitation Dropout: Encouraging Plasticity in Deep Neural Networks,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+6a4ebd91c4d380e21da0efb2dee276897f56467a,HOG active appearance models,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+32d8e555441c47fc27249940991f80502cb70bd5,Machine Learning Models that Remember Too Much,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+3294e27356c3b1063595885a6d731d625b15505a,Illumination Face Spaces Are Idiosyncratic,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+324f39fb5673ec2296d90142cf9a909e595d82cf,Relationship Matrix Nonnegative Decomposition for Clustering,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+3240c9359061edf7a06bfeb7cc20c103a65904c2,PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,Shenzhen University,"Shenzhen University, Shenzhen, China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+32ecbbd76fdce249f9109594eee2d52a1cafdfc7,Object Specific Deep Learning Feature and Its Application to Face Detection,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+32c20afb5c91ed7cdbafb76408c3a62b38dd9160,Viewing Real-World Faces in 3D,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,Lighting Aware Preprocessing for Face Recognition across Varying Illumination,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+32a40c43a9bc1f1c1ed10be3b9f10609d7e0cb6b,Lighting Aware Preprocessing for Face Recognition across Varying Illumination,Institute of Digital Media,Institute of Digital Media,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India",20.28907925,85.84232125
+329394480fc5e9e96de4250cc1a2b060c3677c94,Improved Dense Trajectory with Cross Streams,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+329394480fc5e9e96de4250cc1a2b060c3677c94,Improved Dense Trajectory with Cross Streams,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+329394480fc5e9e96de4250cc1a2b060c3677c94,Improved Dense Trajectory with Cross Streams,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+32c9ebd2685f522821eddfc19c7c91fd6b3caf22,Finding Correspondence from Multiple Images via Sparse and Low-Rank Decomposition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+3270b2672077cc345f188500902eaf7809799466,Multibiometric Systems: Fusion Strategies and Template Security,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+321c8ba38db118d8b02c0ba209be709e6792a2c7,Learn to Combine Multiple Hypotheses for Accurate Face Alignment,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+353b6c1f431feac6edde12b2dde7e6e702455abd,Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+353b6c1f431feac6edde12b2dde7e6e702455abd,Multi-scale Patch Based Collaborative Representation for Face Recognition with Margin Distribution Optimization,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+350da18d8f7455b0e2920bc4ac228764f8fac292,Automatic Detecting Neutral Face for Face Authentication and Facial Expression Analysis,IBM Thomas J. Watson Research Center,IBM Thomas J. Watson Research Center,"IBM Yorktown research lab, Adams Road, Millwood, Town of New Castle, Westchester County, New York, 10562, USA",41.21002475,-73.8040705573196
+35f03f5cbcc21a9c36c84e858eeb15c5d6722309,Placing Broadcast News Videos in their Social Media Context Using Hashtags,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+356b431d4f7a2a0a38cf971c84568207dcdbf189,Recognize complex events from static images by fusing deep channels,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+356b431d4f7a2a0a38cf971c84568207dcdbf189,Recognize complex events from static images by fusing deep channels,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+35f921def890210dda4b72247849ad7ba7d35250,Exemplar-Based Graph Matching for Robust Facial Landmark Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+35ec9b8811f2d755c7ad377bdc29741b55b09356,"Efficient, Robust and Accurate Fitting of a 3D Morphable Model",University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+3505c9b0a9631539e34663310aefe9b05ac02727,A Joint Discriminative Generative Model for Deformable Model Construction and Classification,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+3505c9b0a9631539e34663310aefe9b05ac02727,A Joint Discriminative Generative Model for Deformable Model Construction and Classification,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+3506518d616343d3083f4fe257a5ee36b376b9e1,Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+3506518d616343d3083f4fe257a5ee36b376b9e1,Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition,University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.2622421,-123.2450052
+3506518d616343d3083f4fe257a5ee36b376b9e1,Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+35e0256b33212ddad2db548484c595334f15b4da,Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+35e87e06cf19908855a16ede8c79a0d3d7687b5c,Strategies for Multi-View Face Recognition for Identification of Human Faces: A Review,Dr. Babasaheb Ambedkar Marathwada University,Dr. Babasaheb Ambedkar Marathwada University,"Boys Hostel No. 3, Shantipura road, Cantonment, Bidri workshop, Aurangabad, Maharashtra, 431004, India",19.8960918,75.3089470267316
+69adbfa7b0b886caac15ebe53b89adce390598a3,Face hallucination using cascaded super-resolution and identity priors,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+69adbfa7b0b886caac15ebe53b89adce390598a3,Face hallucination using cascaded super-resolution and identity priors,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+69a68f9cf874c69e2232f47808016c2736b90c35,Learning Deep Representation for Imbalanced Classification,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+69a68f9cf874c69e2232f47808016c2736b90c35,Learning Deep Representation for Imbalanced Classification,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+69b18d62330711bfd7f01a45f97aaec71e9ea6a5,M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice,State University of New York Polytechnic Institute,State University of New York Polytechnic Institute,"State University of New York Polytechnic Institute, 100, Seymour Road, Maynard, Town of Marcy, Oneida County, New York, 13502, USA",43.13800205,-75.2294359077068
+6993bca2b3471f26f2c8a47adfe444bfc7852484,The Do’s and Don’ts for CNN-Based Face Verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+69eb6c91788e7c359ddd3500d01fb73433ce2e65,CAMGRAPH: Distributed Graph Processing for Camera Networks,College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862
+69eb6c91788e7c359ddd3500d01fb73433ce2e65,CAMGRAPH: Distributed Graph Processing for Camera Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+691964c43bfd282f6f4d00b8b0310c554b613e3b,Temporal Hallucinating for Action Recognition with Few Still Images,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+69c2ac04693d53251500557316c854a625af84ee,"50 years of biometric research: Accomplishments, challenges, and opportunities",Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+69fb98e11df56b5d7ec7d45442af274889e4be52,Harnessing the Deep Net Object Models for Enhancing Human Action Recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+69fb98e11df56b5d7ec7d45442af274889e4be52,Harnessing the Deep Net Object Models for Enhancing Human Action Recognition,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+3c78b642289d6a15b0fb8a7010a1fb829beceee2,Analysis of Facial Dynamics Using a Tensor Framework,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+3c78b642289d6a15b0fb8a7010a1fb829beceee2,Analysis of Facial Dynamics Using a Tensor Framework,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+3cc3cf57326eceb5f20a02aefae17108e8c8ab57,Benchmark for Evaluating Biological Image Analysis Tools,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+3cb488a3b71f221a8616716a1fc2b951dd0de549,Facial Age Estimation by Adaptive Label Distribution Learning,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+3c563542db664321aa77a9567c1601f425500f94,TV-GAN: Generative Adversarial Network Based Thermal to Visible Face Recognition,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,Robust facial landmark detection in the wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,Robust facial landmark detection in the wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,Defeating Image Obfuscation with Deep Learning,The University of Texas at,The University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,Distance Metric Learning with Eigenvalue Optimization,college of Engineering,college of Engineering,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0110912,80.2354520862161
+3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,Distance Metric Learning with Eigenvalue Optimization,University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167
+3cd9b0a61bdfa1bb8a0a1bf0369515a76ecd06e3,Distance Metric Learning with Eigenvalue Optimization,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+3c97c32ff575989ef2869f86d89c63005fc11ba9,Face Detection with the Faster R-CNN,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+3c97c32ff575989ef2869f86d89c63005fc11ba9,Face Detection with the Faster R-CNN,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+3c1aef7c2d32a219bdbc89a44d158bc2695e360a,Adversarial Attack Type I: Generating False Positives,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,Simulating Pareidolia of Faces for Architectural Image Analysis,The University of Newcastle,"The University of Newcastle, Callaghan 2308, Australia","University of Newcastle, Huxley Library, University Drive, Callaghan, Newcastle-Maitland, Newcastle, NSW, 2308, Australia",-32.8930923,151.705656
+3c11a1f2bd4b9ce70f699fb6ad6398171a8ad3bd,Simulating Pareidolia of Faces for Architectural Image Analysis,The University of Newcastle,The University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231
+3cd8ab6bb4b038454861a36d5396f4787a21cc68,Video-Based Facial Expression Recognition Using Hough Forest,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+3ca5d3b8f5f071148cb50f22955fd8c1c1992719,Evaluating race and sex diversity in the world's largest companies using deep neural networks,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+3ca5d3b8f5f071148cb50f22955fd8c1c1992719,Evaluating race and sex diversity in the world's largest companies using deep neural networks,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+3ca5d3b8f5f071148cb50f22955fd8c1c1992719,Evaluating race and sex diversity in the world's largest companies using deep neural networks,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+3cc46bf79fb9225cf308815c7d41c8dd5625cc29,Age interval and gender prediction using PARAFAC2 applied to speech utterances,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+3cc46bf79fb9225cf308815c7d41c8dd5625cc29,Age interval and gender prediction using PARAFAC2 applied to speech utterances,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597
+56c700693b63e3da3b985777da6d9256e2e0dc21,Global refinement of random forest,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+56c700693b63e3da3b985777da6d9256e2e0dc21,Global refinement of random forest,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+56e079f4eb40744728fd1d7665938b06426338e5,Bayesian Approaches to Distribution Regression,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+56e6f472090030a6f172a3e2f46ef9daf6cad757,Asian Face Image Database PF 01 Intelligent Multimedia Lab,Pohang University of Science and Technology,Pohang University of Science and Technology,"포스텍, 77, 청암로, 효곡동, 남구, 포항시, 경북, 37673, 대한민국",36.01773095,129.321075092352
+56f86bef26209c85f2ef66ec23b6803d12ca6cd6,Pyramidal RoR for image classification,North China Electric Power University,North China Electric Power University,"华北电力大学, 永华北大街, 莲池区, 保定市, 莲池区 (Lianchi), 保定市, 河北省, 071000, 中国",38.8760446,115.4973873
+566a39d753c494f57b4464d6bde61bf3593f7ceb,A Critical Review of Action Recognition Benchmarks,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883
+56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883
+56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883
+56c2fb2438f32529aec604e6fc3b06a595ddbfcc,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883
+56f231fc40424ed9a7c93cbc9f5a99d022e1d242,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+56f231fc40424ed9a7c93cbc9f5a99d022e1d242,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+56f231fc40424ed9a7c93cbc9f5a99d022e1d242,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,Macau University of Science and Technology,"Macau University of Science and Technology, Macau","Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.568032061523
+561ae67de137e75e9642ab3512d3749b34484310,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+561ae67de137e75e9642ab3512d3749b34484310,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,Rheinische-Friedrich-Wilhelms University,"Rheinische-Friedrich-Wilhelms University, Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+561ae67de137e75e9642ab3512d3749b34484310,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+568cff415e7e1bebd4769c4a628b90db293c1717,Concepts Not Alone: Exploring Pairwise Relationships for Zero-Shot Video Activity Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+568cff415e7e1bebd4769c4a628b90db293c1717,Concepts Not Alone: Exploring Pairwise Relationships for Zero-Shot Video Activity Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+568cff415e7e1bebd4769c4a628b90db293c1717,Concepts Not Alone: Exploring Pairwise Relationships for Zero-Shot Video Activity Recognition,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+560e0e58d0059259ddf86fcec1fa7975dee6a868,Face recognition in unconstrained videos with matched background similarity,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+560e0e58d0059259ddf86fcec1fa7975dee6a868,Face recognition in unconstrained videos with matched background similarity,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+56a677c889e0e2c9f68ab8ca42a7e63acf986229,Mining Spatial and Spatio-Temporal ROIs for Action Recognition,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+56ae6d94fc6097ec4ca861f0daa87941d1c10b70,Distance Estimation of an Unknown Person from a Portrait,"California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,University of Illinois at,University of Illinois at,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1006938,-88.2313043272112
+56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+56f812661c3248ed28859d3b2b39e033b04ae6ae,Multiple feature fusion by subspace learning,University of Illinois at,University of Illinois at,"University of Illinois at Urbana-Champaign, West Pennsylvania Avenue, West Urbana Residential Area, Urbana, Champaign County, Illinois, 61801, USA",40.1006938,-88.2313043272112
+512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,University of California,"University of California, San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Ritsumeikan University,"Ritsumeikan University, Kyoto, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154
+512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Kogakuin University,"Kogakuin University, Tokyo, Japan","工学院大学, 東通り, 新宿区, 東京都, 関東地方, 163-8677, 日本",35.6902784,139.695400958171
+512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Tohoku University,"Tohoku University, Sendai, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,University of California,"University of California, San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+516d0d9eb08825809e4618ca73a0697137ebabd5,Regularizing Long Short Term Memory with 3D Human-Skeleton Sequences for Action Recognition,Oregon State University,Oregon State University,"OSU Beaver Store, 538, Southwest 6th Avenue, Portland Downtown, Portland, Multnomah County, Oregon, 97204, USA",45.5198289,-122.677979643331
+519a724426b5d9ad384d38aaf2a4632d3824f243,Learning Models for Object Recognition from Natural Language Descriptions,University of Leeds,University of Leeds,"University of Leeds, Inner Ring Road, Woodhouse, Leeds, Yorkshire and the Humber, England, LS2 9NS, UK",53.80387185,-1.55245712031677
+5180df9d5eb26283fb737f491623395304d57497,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+518edcd112991a1717856841c1a03dd94a250090,Rice University Endogenous Sparse Recovery by Eva L . Dyer,Rice University,Rice University,"Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+518edcd112991a1717856841c1a03dd94a250090,Rice University Endogenous Sparse Recovery by Eva L . Dyer,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+51683eac8bbcd2944f811d9074a74d09d395c7f3,"Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks",The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+51683eac8bbcd2944f811d9074a74d09d395c7f3,"Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+51683eac8bbcd2944f811d9074a74d09d395c7f3,"Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks",Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+51faacfa4fb1e6aa252c6970e85ff35c5719f4ff,Zoom-Net: Mining Deep Feature Interactions for Visual Relationship Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+51cb09ee04831b95ae02e1bee9b451f8ac4526e3,Beyond short snippets: Deep networks for video classification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+51cb09ee04831b95ae02e1bee9b451f8ac4526e3,Beyond short snippets: Deep networks for video classification,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+514a74aefb0b6a71933013155bcde7308cad2b46,Carnegie Mellon University Optimal Classifier Ensembles for Improved Biometric Verification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+514a74aefb0b6a71933013155bcde7308cad2b46,Carnegie Mellon University Optimal Classifier Ensembles for Improved Biometric Verification,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+514a74aefb0b6a71933013155bcde7308cad2b46,Carnegie Mellon University Optimal Classifier Ensembles for Improved Biometric Verification,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+51a8dabe4dae157aeffa5e1790702d31368b9161,Face recognition under generic illumination based on harmonic relighting,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+512b4c8f0f3fb23445c0c2dab768bcd848fa8392,Analysis and Synthesis of Facial Expressions by Feature- Points Tracking and Deformable Model,University of Tabriz,"University of Tabriz, Tabriz, Iran","دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ایران",38.0612553,46.3298484
+51eba481dac6b229a7490f650dff7b17ce05df73,Situation Recognition: Visual Semantic Role Labeling for Image Understanding,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+5173a20304ea7baa6bfe97944a5c7a69ea72530f,Best Basis Selection Method Using Learning Weights for Face Recognition,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248
+51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6,"A Survey of Face Detection, Extraction and Recognition",Huazhong University of Science and Technology,Huazhong University of Science and Technology,"华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881
+5141cf2e59fb2ec9bb489b9c1832447d3cd93110,Learning Person Trajectory Representations for Team Activity Analysis,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+5185f2a40836a754baaa7419a1abdd1e7ffaf2ad,A Multimodality Framework for Creating Speaker/Non-Speaker Profile Databases for Real-World Video,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,A Community Detection Approach to Cleaning Extremely Large Face Database,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+51d048b92f6680aca4a8adf07deb380c0916c808,"State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications",Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+51d048b92f6680aca4a8adf07deb380c0916c808,"State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+5134353bd01c4ea36bd007c460e8972b1541d0ad,Face Recognition with Multi-Resolution Spectral Feature Images,Anhui University,Anhui University,"安徽大学(磬苑校区), 111, 九龙路, 弘泰苑, 合肥国家级经济技术开发区, 芙蓉社区, 合肥经济技术开发区, 合肥市区, 合肥市, 安徽省, 230601, 中国",31.76909325,117.17795091346
+5134353bd01c4ea36bd007c460e8972b1541d0ad,Face Recognition with Multi-Resolution Spectral Feature Images,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+5134353bd01c4ea36bd007c460e8972b1541d0ad,Face Recognition with Multi-Resolution Spectral Feature Images,Nanyang Technological University,"Nanyang Technological University, Singapore, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+5160569ca88171d5fa257582d161e9063c8f898d,Local binary patterns as an image preprocessing for face authentication,"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,Face Alignment in Full Pose Range: A 3D Total Solution,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,Face Alignment in Full Pose Range: A 3D Total Solution,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+3d143cfab13ecd9c485f19d988242e7240660c86,Discriminative Collaborative Representation for Classification,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+3d143cfab13ecd9c485f19d988242e7240660c86,Discriminative Collaborative Representation for Classification,Osaka university,Osaka university,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218408
+3dabf7d853769cfc4986aec443cc8b6699136ed0,Data Mining Spontaneous Facial Behavior with Automatic Expression Coding,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+3dabf7d853769cfc4986aec443cc8b6699136ed0,Data Mining Spontaneous Facial Behavior with Automatic Expression Coding,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+3dabf7d853769cfc4986aec443cc8b6699136ed0,Data Mining Spontaneous Facial Behavior with Automatic Expression Coding,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582
+3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,Bimodal Human Emotion Classification in the Speaker-Dependent Scenario,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+3d1a6a5fd5915e0efb953ede5af0b23debd1fc7f,Bimodal Human Emotion Classification in the Speaker-Dependent Scenario,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+3d0379688518cc0e8f896e30815d0b5e8452d4cd,Autotagging Facebook: Social network context improves photo annotation,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+3d0379688518cc0e8f896e30815d0b5e8452d4cd,Autotagging Facebook: Social network context improves photo annotation,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+3d24b386d003bee176a942c26336dbe8f427aadd,Sequential Person Recognition in Photo Albums with a Recurrent Network,The University of Adelaide,"The University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+3d0f9a3031bee4b89fab703ff1f1d6170493dc01,SVDD-Based Illumination Compensation for Face Recognition,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+3d0f9a3031bee4b89fab703ff1f1d6170493dc01,SVDD-Based Illumination Compensation for Face Recognition,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318
+3d0c21d4780489bd624a74b07e28c16175df6355,Deep or Shallow Facial Descriptors? A Case for Facial Attribute Classification and Face Retrieval,Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+3d0c21d4780489bd624a74b07e28c16175df6355,Deep or Shallow Facial Descriptors? A Case for Facial Attribute Classification and Face Retrieval,Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+3df8cc0384814c3fb05c44e494ced947a7d43f36,The Pose Knows: Video Forecasting by Generating Pose Futures,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,University of Malta,University of Malta,"University of Malta, Ring Road, Japanese Garden, L-Imsida, Malta, MSD 9027, Malta",35.9023226,14.4834189
+3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,University of Copenhagen,University of Copenhagen,"Københavns Universitet, Krystalgade, Kødbyen, Vesterbro, København, Københavns Kommune, Region Hovedstaden, 1165, Danmark",55.6801502,12.5723270014063
+3dbfd2fdbd28e4518e2ae05de8374057307e97b3,Improving Face Detection,University of Coimbra,University of Coimbra,"Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816
+3d68cedd80babfbb04ab197a0b69054e3c196cd9,Bimodal information analysis for emotion recognition,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+3dfb822e16328e0f98a47209d7ecd242e4211f82,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+3d948e4813a6856e5b8b54c20e50cc5050e66abe,A Smart Phone Image Database for Single Image Recapture Detection,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+3d948e4813a6856e5b8b54c20e50cc5050e66abe,A Smart Phone Image Database for Single Image Recapture Detection,"New Jersey Institute of Technology, USA","New Jersey Institute of Technology, USA","New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,The University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,The University of Sydney,"School, The University of Sydney, Sydney, NSW, Australia","Royal Prince Alfred Hospital School, 57-59, Grose Street, Camperdown, Sydney, NSW, 2050, Australia",-33.8893229,151.180068
+3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,Istanbul Technical University,"Istanbul Technical University, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.768469187426
+580f86f1ace1feed16b592d05c2b07f26c429b4b,Dense-Captioning Events in Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+58d47c187b38b8a2bad319c789a09781073d052d,Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+58d47c187b38b8a2bad319c789a09781073d052d,Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,The University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+582edc19f2b1ab2ac6883426f147196c8306685a,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+584909d2220b52c0d037e8761d80cb22f516773f,OCR-Free Transcript Alignment,The Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.709274809394501
+584909d2220b52c0d037e8761d80cb22f516773f,OCR-Free Transcript Alignment,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+584909d2220b52c0d037e8761d80cb22f516773f,OCR-Free Transcript Alignment,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+580e48d3e7fe1ae0ceed2137976139852b1755df,THE EFFECTS OF MOTION AND ORIENTATION ON PERCEPTION OF FACIAL EXPRESSIONS AND FACE RECOGNITION by,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+585260468d023ffc95f0e539c3fa87254c28510b,Cardea: Context-Aware Visual Privacy Protection from Pervasive Cameras,Hong Kong University of Science and Technology,"Hong Kong University of Science and Technology, Hong Kong","香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+58628e64e61bd2776a2a7258012eabe3c79ca90c,Active Grounding of Visual Situations,Portland State University,Portland State University,"Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.684929993829
+58628e64e61bd2776a2a7258012eabe3c79ca90c,Active Grounding of Visual Situations,Santa Fe Institute,Santa Fe Institute,"Santa Fe Institute, Hyde Park Road, Santa Fe, Santa Fe County, New Mexico, 87501, USA",35.7002878,-105.908648471331
+676a136f5978783f75b5edbb38e8bb588e8efbbe,Matrix completion for resolving label ambiguity,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+676f9eabf4cfc1fd625228c83ff72f6499c67926,Face Identification and Clustering,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+679b7fa9e74b2aa7892eaea580def6ed4332a228,Communication and automatic interpretation of affect from facial expressions,University of Amsterdam,"University of Amsterdam, the Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+679b7fa9e74b2aa7892eaea580def6ed4332a228,Communication and automatic interpretation of affect from facial expressions,University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+679b7fa9e74b2aa7892eaea580def6ed4332a228,Communication and automatic interpretation of affect from facial expressions,University of Amsterdam,"University of Amsterdam, the Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+67c3c1194ee72c54bc011b5768e153a035068c43,Street Scenes: towards scene understanding in still images,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+673d4885370b27c863e11a4ece9189a6a45931cc,Recurrent Residual Module for Fast Inference in Videos,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+6754c98ba73651f69525c770fb0705a1fae78eb5,Joint Cascade Face Detection and Alignment,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+6754c98ba73651f69525c770fb0705a1fae78eb5,Joint Cascade Face Detection and Alignment,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+677ebde61ba3936b805357e27fce06c44513a455,Facial Expression Recognition Based on Facial Components Detection and HOG Features,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,Loglet SIFT for Part Description in Deformable Part Models: Application to Face Alignment,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252
+0b8b8776684009e537b9e2c0d87dbd56708ddcb4,Adversarial Discriminative Heterogeneous Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+0b78fd881d0f402fd9b773249af65819e48ad36d,Analysis and Modeling of Affective Audio Visual Speech Based on PAD Emotion Space,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+0b835284b8f1f45f87b0ce004a4ad2aca1d9e153,Cartooning for Enhanced Privacy in Lifelogging and Streaming Videos,Indiana University Bloomington,Indiana University Bloomington,"Indiana University Bloomington, East 17th Street, Bloomington, Monroe County, Indiana, 47408, USA",39.17720475,-86.5154003022128
+0b51197109813d921835cb9c4153b9d1e12a9b34,The University of Chicago Jointly Learning Multiple Similarity Metrics from Triplet Constraints a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Master of Science Department of Computer Science By,THE UNIVERSITY OF CHICAGO,THE UNIVERSITY OF CHICAGO,"University of Chicago, South Ellis Avenue, Woodlawn, Chicago, Cook County, Illinois, 60637, USA",41.78468745,-87.6007493265106
+0be2245b2b016de1dcce75ffb3371a5e4b1e731b,On the Variants of the Self-Organizing Map That Are Based on Order Statistics,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,Is there a dynamic advantage for facial expressions?,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+0b84f07af44f964817675ad961def8a51406dd2e,Person Re-identification in the Wild,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+0b242d5123f79defd5f775d49d8a7047ad3153bc,How Important Is Weight Symmetry in Backpropagation?,McGovern Institute,McGovern Institute,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481
+0ba1d855cd38b6a2c52860ae4d1a85198b304be4,Variable-state latent conditional random fields for facial expression recognition and action unit detection,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+0ba1d855cd38b6a2c52860ae4d1a85198b304be4,Variable-state latent conditional random fields for facial expression recognition and action unit detection,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,Implicit elastic matching with random projections for pose-variant face recognition,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+0b50e223ad4d9465bb92dbf17a7b79eccdb997fb,Implicit elastic matching with random projections for pose-variant face recognition,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,Facial Expression Recognition Using Deep Belief Network,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+0badf61e8d3b26a0d8b60fe94ba5c606718daf0b,Facial Expression Recognition Using Deep Belief Network,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+0b2966101fa617b90510e145ed52226e79351072,Beyond verbs: Understanding actions in videos with text,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072
+0b2966101fa617b90510e145ed52226e79351072,Beyond verbs: Understanding actions in videos with text,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072
+0ba0f000baf877bc00a9e144b88fa6d373db2708,Facial Expression Recognition Based on Local Directional Pattern Using SVM Decision-level Fusion,Normal University,"Normal University, Kunming, China","云南师范大学, 一二一大街, 志城家园, 五华区, 五华区 (Wuhua), 昆明市 (Kunming), 云南省, 650030, 中国",25.0580509,102.6955241
+0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,Weighted Feature Gaussian Kernel SVM for Emotion Recognition,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+0b183f5260667c16ef6f640e5da50272c36d599b,Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+0b183f5260667c16ef6f640e5da50272c36d599b,Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+0b183f5260667c16ef6f640e5da50272c36d599b,Spatio-temporal Event Classification Using Time-Series Kernel Based Structured Sparsity,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+0be764800507d2e683b3fb6576086e37e56059d1,Learning from Geometry,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+0b642f6d48a51df64502462372a38c50df2051b1,A domain adaptation approach to improve speaker turn embedding using face representation,"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+0b7d1386df0cf957690f0fe330160723633d2305,Learning American English Accents Using Ensemble Learning with GMMs,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+0b7d1386df0cf957690f0fe330160723633d2305,Learning American English Accents Using Ensemble Learning with GMMs,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,Rectifying Self Organizing Maps for Automatic Concept Learning from Web Images,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+0b6616f3ebff461e4b6c68205fcef1dae43e2a1a,Rectifying Self Organizing Maps for Automatic Concept Learning from Web Images,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+0bf0029c9bdb0ac61fda35c075deb1086c116956,Modelling of Orthogonal Craniofacial Profiles,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+935a7793cbb8f102924fa34fce1049727de865c2,Age estimation under changes in image quality: An experimental study,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+9326d1390e8601e2efc3c4032152844483038f3f,Landmark Based Facial Component Reconstruction for Recognition across Pose,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+93971a49ef6cc88a139420349a1dfd85fb5d3f5c,Scalable Probabilistic Models: Applied to Face Identification in the Wild,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+93420d9212dd15b3ef37f566e4d57e76bb2fab2f,An All-In-One Convolutional Neural Network for Face Analysis,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+93af36da08bf99e68c9b0d36e141ed8154455ac2,A Dditive M Argin S Oftmax for F Ace V Erification,College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862
+93af36da08bf99e68c9b0d36e141ed8154455ac2,A Dditive M Argin S Oftmax for F Ace V Erification,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+937ffb1c303e0595317873eda5ce85b1a17f9943,Eyes do not lie: spontaneous versus posed smiles,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+93f37c69dd92c4e038710cdeef302c261d3a4f92,Compressed Video Action Recognition,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+93f37c69dd92c4e038710cdeef302c261d3a4f92,Compressed Video Action Recognition,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+936227f7483938097cc1cdd3032016df54dbd5b6,Learning to generalize to new compositions in image understanding,Bar Ilan University,Bar Ilan University,"אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.8433433861531
+936227f7483938097cc1cdd3032016df54dbd5b6,Learning to generalize to new compositions in image understanding,Tel Aviv University,"Tel Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+939123cf21dc9189a03671484c734091b240183e,Within- and cross- database evaluations for face gender classification via befit protocols,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+938ae9597f71a21f2e47287cca318d4a2113feb2,Classifier Learning with Prior Probabilities for Facial Action Unit Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+938ae9597f71a21f2e47287cca318d4a2113feb2,Classifier Learning with Prior Probabilities for Facial Action Unit Recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+946017d5f11aa582854ac4c0e0f1b18b06127ef1,Tracking Persons-of-Interest via Adaptive Discriminative Features,Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.5557271,127.0436642
+946017d5f11aa582854ac4c0e0f1b18b06127ef1,Tracking Persons-of-Interest via Adaptive Discriminative Features,University of Illinois,"University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+946017d5f11aa582854ac4c0e0f1b18b06127ef1,Tracking Persons-of-Interest via Adaptive Discriminative Features,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+94eeae23786e128c0635f305ba7eebbb89af0023,On the Emergence of Invariance and Disentangling in Deep Representations,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+94eeae23786e128c0635f305ba7eebbb89af0023,On the Emergence of Invariance and Disentangling in Deep Representations,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+9487cea80f23afe9bccc94deebaa3eefa6affa99,"Fast, Dense Feature SDM on an iPhone",Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+9487cea80f23afe9bccc94deebaa3eefa6affa99,"Fast, Dense Feature SDM on an iPhone",Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+949699d0b865ef35b36f11564f9a4396f5c9cddb,"Processing of facial identity and expression: a psychophysical, physiological, and computational perspective.",Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.5369125,9.05922532743396
+949699d0b865ef35b36f11564f9a4396f5c9cddb,"Processing of facial identity and expression: a psychophysical, physiological, and computational perspective.",University of Zurich,University of Zurich,"ZHAW, Rosenstrasse, Heiligberg, Altstadt, Winterthur, Bezirk Winterthur, Zürich, 8400, Schweiz/Suisse/Svizzera/Svizra",47.4968476,8.72981767380829
+94e259345e82fa3015a381d6e91ec6cded3971b4,Classification of Photometric Factors Based on Photometric Linearization,Osaka university,Osaka university,"大阪大学清明寮, 服部西町四丁目, 豊中市, 大阪府, 近畿地方, 日本",34.80809035,135.45785218408
+94e259345e82fa3015a381d6e91ec6cded3971b4,Classification of Photometric Factors Based on Photometric Linearization,Okayama University,Okayama University,"岡山大学, 津高法界院停車場線, 津島東2, 津島東, 北区, 岡山市, 岡山県, 中国地方, 700-0081, 日本",34.6893393,133.9222272
+0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,Pareto Models for Multiclass Discriminative Linear Dimensionality Reduction,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346
+0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,Pareto Models for Multiclass Discriminative Linear Dimensionality Reduction,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+0e5dcc6ae52625fd0637c6bba46a973e46d58b9c,Pareto Models for Multiclass Discriminative Linear Dimensionality Reduction,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+0e73d2b0f943cf8559da7f5002414ccc26bc77cd,Similarity Comparisons for Interactive Fine-Grained Categorization,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+0e73d2b0f943cf8559da7f5002414ccc26bc77cd,Similarity Comparisons for Interactive Fine-Grained Categorization,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+0ed0e48b245f2d459baa3d2779bfc18fee04145b,Semi-Supervised Dimensionality Reduction,Nanjing University,"Nanjing University, Nanjing 210093, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+0ed0e48b245f2d459baa3d2779bfc18fee04145b,Semi-Supervised Dimensionality Reduction,Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+0ef96d97365899af797628e80f8d1020c4c7e431,Improving the Speed of Kernel PCA on Large Scale Datasets,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.958674326093
+0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,University of,"Statistics, University of","Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, پاکستان",32.0731522,72.6814703364947
+0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709
+0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,University of,"Statistics, University of","Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, پاکستان",32.0731522,72.6814703364947
+0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,University of,"Statistics, University of","Department Of Statistics, University Road, Satellite Town, Cantonment, سرگودھا, Sargodha District, پنجاب, 40100, پاکستان",32.0731522,72.6814703364947
+0e7f277538142fb50ce2dd9179cffdc36b794054,Combining image captions and visual analysis for image concept classification,Queen Mary University,Queen Mary University,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709
+0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Tech Carilion Research Institute,Virginia Tech Carilion Research Institute,"Virginia Tech Carilion Research Institute, South Jefferson Street, Crystal Spring, Roanoke, Virginia, 24016, USA",37.2579548,-79.9423329131356
+0ec0fc9ed165c40b1ef4a99e944abd8aa4e38056,The Role of Perspective-Taking on Ability to Recognize Fear,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+0e652a99761d2664f28f8931fee5b1d6b78c2a82,Making a Science of Model Search,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+0ea7b7fff090c707684fd4dc13e0a8f39b300a97,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+0ea7b7fff090c707684fd4dc13e0a8f39b300a97,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+0ea7b7fff090c707684fd4dc13e0a8f39b300a97,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,Beijing Institute of Technology University,"Beijing Institute of Technology University, P. R. China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+0e36ada8cb9c91f07c9dcaf196d036564e117536,Much Ado About Time: Exhaustive Annotation of Temporal Data,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+0e986f51fe45b00633de9fd0c94d082d2be51406,"Face detection, pose estimation, and landmark localization in the wild",University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+0ebc50b6e4b01eb5eba5279ce547c838890b1418,Similarity-Preserving Binary Signature for Linear Subspaces,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+0ebc50b6e4b01eb5eba5279ce547c838890b1418,Similarity-Preserving Binary Signature for Linear Subspaces,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+0ebc50b6e4b01eb5eba5279ce547c838890b1418,Similarity-Preserving Binary Signature for Linear Subspaces,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+0ec1673609256b1e457f41ede5f21f05de0c054f,Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+0ea38a5ba0c8739d1196da5d20efb13406bb6550,Relative attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+0e21c9e5755c3dab6d8079d738d1188b03128a31,Constrained Clustering and Its Application to Face Clustering in Videos,"Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Troy, NY 12180, USA","Rensselaer Polytechnic Institute, Tibbits Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.73280325,-73.6622354488153
+0e93a5a7f6dbdb3802173dca05717d27d72bfec0,Attribute Recognition by Joint Recurrent Learning of Context and Correlation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+0ed1c1589ed284f0314ed2aeb3a9bbc760dcdeb5,Max-Margin Early Event Detectors,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,Fast Subspace Search via Grassmannian Based Hashing,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941
+0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,Fast Subspace Search via Grassmannian Based Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+0ec2049a1dd7ae14c7a4c22c5bcd38472214f44d,Fast Subspace Search via Grassmannian Based Hashing,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941
+0ec67c69e0975cfcbd8ba787cc0889aec4cc5399,Locating Salient Object Features,Manchester University,"Manchester University, UK","Manchester Metropolitan University – All Saints Campus, Lower Ormond Street, Hulme, Manchester, Greater Manchester, North West England, England, M15 6BX, UK",53.47020165,-2.23932183309859
+0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,Estimating illumination parameters in real space with application to image relighting,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+0ee5c4112208995bf2bb0fb8a87efba933a94579,Fashion is Taking Shape: Understanding Clothing Preference Based on Body Shape From Online Sources,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0e1a18576a7d3b40fe961ef42885101f4e2630f8,Automated Detection and Identification of Persons in Video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,A reference-based framework for pose invariant face recognition,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,A reference-based framework for pose invariant face recognition,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+6043006467fb3fd1e9783928d8040ee1f1db1f3a,Face recognition with learning-based descriptor,"Chinese Academy of Sciences, China","Chinese Academy of Sciences, China","中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+60542b1a857024c79db8b5b03db6e79f74ec8f9f,Learning to Detect Human-Object Interactions,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+60d4cef56efd2f5452362d4d9ac1ae05afa970d1,Learning End-to-end Video Classification with Rank-Pooling,The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+60d4cef56efd2f5452362d4d9ac1ae05afa970d1,Learning End-to-end Video Classification with Rank-Pooling,The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+60c699b9ec71f7dcbc06fa4fd98eeb08e915eb09,Long-term video interpolation with bidirectional predictive network,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+60970e124aa5fb964c9a2a5d48cd6eee769c73ef,Subspace Clustering for Sequential Data,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.0636071,147.3552234
+60040e4eae81ab6974ce12f1c789e0c05be00303,Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation,University of Texas at,University of Texas at,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+60737db62fb5fab742371709485e4b2ddf64b7b2,Crowdsourced Selection on Multi-Attribute Data,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+34bb11bad04c13efd575224a5b4e58b9249370f3,Towards Good Practices for Action Video Encoding,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+34bb11bad04c13efd575224a5b4e58b9249370f3,Towards Good Practices for Action Video Encoding,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+34bb11bad04c13efd575224a5b4e58b9249370f3,Towards Good Practices for Action Video Encoding,Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+3411ef1ff5ad11e45106f7863e8c7faf563f4ee1,Image Retrieval and Ranking via Consistently Reconstructing Multi-attribute Queries,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+345cc31c85e19cea9f8b8521be6a37937efd41c2,Deep Manifold Traversal: Changing Labels with Convolutional Features,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+34ce703b7e79e3072eed7f92239a4c08517b0c55,What impacts skin color in digital photos?,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+345bea5f7d42926f857f395c371118a00382447f,Transfiguring portraits,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+3463f12ad434d256cd5f94c1c1bfd2dd6df36947,Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+346c9100b2fab35b162d7779002c974da5f069ee,Photo search by face positions and facial attributes on touch devices,National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+34863ecc50722f0972e23ec117f80afcfe1411a9,An efficient face recognition algorithm based on robust principal component analysis,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+34863ecc50722f0972e23ec117f80afcfe1411a9,An efficient face recognition algorithm based on robust principal component analysis,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+34108098e1a378bc15a5824812bdf2229b938678,Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+348a16b10d140861ece327886b85d96cce95711e,Finding Good Features for Object Recognition,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+3419af6331e4099504255a38de6f6b7b3b1e5c14,Modified Eigenimage Algorithm for Painting Image Retrieval,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+34c8de02a5064e27760d33b861b7e47161592e65,Video Action Recognition Based on Deeper Convolution Networks with Pair-Wise Frame Motion Concatenation,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+34c8de02a5064e27760d33b861b7e47161592e65,Video Action Recognition Based on Deeper Convolution Networks with Pair-Wise Frame Motion Concatenation,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+34b42bcf84d79e30e26413f1589a9cf4b37076f9,Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+5a87bc1eae2ec715a67db4603be3d1bb8e53ace2,A Novel Convergence Scheme for Active Appearance Models,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+5aad56cfa2bac5d6635df4184047e809f8fecca2,A visual dictionary attack on Picture Passwords,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+5a8ca0cfad32f04449099e2e3f3e3a1c8f6541c0,Automatic Frontal Face Reconstruction Approach for Pose Invariant Face Recognition,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+5ac80e0b94200ee3ecd58a618fe6afd077be0a00,Unifying Geometric Features and Facial Action Units for Improved Performance of Facial Expression Analysis,Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1443525,-81.3398283284572
+5aadd85e2a77e482d44ac2a215c1f21e4a30d91b,Face Recognition using Principle Components and Linear Discriminant Analysis,King Saud University,"King Saud University, Riyadh","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+5a5f9e0ed220ce51b80cd7b7ede22e473a62062c,Videos as Space-Time Region Graphs,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+5ac946fc6543a445dd1ee6d5d35afd3783a31353,Featureless: Bypassing feature extraction in action categorization,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+5ae970294aaba5e0225122552c019eb56f20af74,Establishing Dense Correspondence of High Resolution 3D Faces via Möbius Transformations,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+5aa57a12444dbde0f5645bd9bcec8cb2f573c6a0,Face recognition using adaptive margin fisher's criterion and linear discriminant analysis (AMFC-LDA),COMSATS Institute of Information Technology,COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان",31.4006332,74.2137296
+5a07945293c6b032e465d64f2ec076b82e113fa6,Pulling Actions out of Context: Explicit Separation for Effective Combination,Stony Brook University,"Stony Brook University, Stony Brook, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+5f771fed91c8e4b666489ba2384d0705bcf75030,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+5f771fed91c8e4b666489ba2384d0705bcf75030,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+5fa04523ff13a82b8b6612250a39e1edb5066521,Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container,College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862
+5fa04523ff13a82b8b6612250a39e1edb5066521,Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+5f6ab4543cc38f23d0339e3037a952df7bcf696b,Video2vec: Learning semantic spatio-temporal embeddings for video representation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+5f6ab4543cc38f23d0339e3037a952df7bcf696b,Video2vec: Learning semantic spatio-temporal embeddings for video representation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+5f6ab4543cc38f23d0339e3037a952df7bcf696b,Video2vec: Learning semantic spatio-temporal embeddings for video representation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+5f7c4c20ae2731bfb650a96b69fd065bf0bb950e,A new fuzzy membership assignment and model selection approach based on dynamic class centers for fuzzy SVM family using the firefly algorithm,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+5f94969b9491db552ffebc5911a45def99026afe,Multimodal Learning and Reasoning for Visual Question Answering,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+5f94969b9491db552ffebc5911a45def99026afe,Multimodal Learning and Reasoning for Visual Question Answering,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+5f94969b9491db552ffebc5911a45def99026afe,Multimodal Learning and Reasoning for Visual Question Answering,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+5feb1341a49dd7a597f4195004fe9b59f67e6707,A Deep Ranking Model for Spatio-Temporal Highlight Detection from a 360 Video,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,Shanghai university,Shanghai university,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929
+5f57a1a3a1e5364792b35e8f5f259f92ad561c1f,Implicit Sparse Code Hashing,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+5f27ed82c52339124aa368507d66b71d96862cb7,"Semi-supervised Learning of Classifiers : Theory , Algorithms and Their Application to Human-Computer Interaction",University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+5f27ed82c52339124aa368507d66b71d96862cb7,"Semi-supervised Learning of Classifiers : Theory , Algorithms and Their Application to Human-Computer Interaction",University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+5fea26746f3140b12317fcf3bc1680f2746e172e,Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+5fea26746f3140b12317fcf3bc1680f2746e172e,Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+5f676d6eca4c72d1a3f3acf5a4081c29140650fb,To skip or not to skip? A dataset of spontaneous affective response of online advertising (SARA) for audience behavior analysis,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+5f676d6eca4c72d1a3f3acf5a4081c29140650fb,To skip or not to skip? A dataset of spontaneous affective response of online advertising (SARA) for audience behavior analysis,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+5f453a35d312debfc993d687fd0b7c36c1704b16,A Training Assistant Tool for the Automated Visual Inspection System,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078
+5f453a35d312debfc993d687fd0b7c36c1704b16,A Training Assistant Tool for the Automated Visual Inspection System,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078
+5fac62a3de11125fc363877ba347122529b5aa50,AMTnet: Action-Micro-Tube Regression by End-to-end Trainable Deep Architecture,Oxford Brookes University,"Oxford Brookes University, Oxford, United Kingdom","Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+5fba1b179ac80fee80548a0795d3f72b1b6e49cd,Virtual U: Defeating Face Liveness Detection by Building Virtual Models from Your Public Photos,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+33f7e78950455c37236b31a6318194cfb2c302a4,Parameterizing Object Detectors in the Continuous Pose Space,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,Facial Expression Recognition in Video using Adaboost and SVM,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,Facial Expression Recognition in Video using Adaboost and SVM,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+33548531f9ed2ce6f87b3a1caad122c97f1fd2e9,Facial Expression Recognition in Video using Adaboost and SVM,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,Building an On-Demand Avatar-Based Health Intervention for Behavior Change,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+33ac7fd3a622da23308f21b0c4986ae8a86ecd2b,Building an On-Demand Avatar-Based Health Intervention for Behavior Change,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,University of Aberdeen,University of Aberdeen,"University of Aberdeen, High Street, Old Aberdeen, Aberdeen, Aberdeen City, Scotland, AB24 3EJ, UK",57.1646143,-2.10186013407315
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+33030c23f6e25e30b140615bb190d5e1632c3d3b,Toward a General Framework for Words and Pictures,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+33ba256d59aefe27735a30b51caf0554e5e3a1df,Early Active Learning via Robust Representation and Structured Sparsity,University of Texas at Arlington,"University of Texas at Arlington, Arlington, Texas 76019, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+33c3702b0eee6fc26fc49f79f9133f3dd7fa3f13,Machine learning techniques for automated analysis of facial expressions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+33aff42530c2fd134553d397bf572c048db12c28,From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning,Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949251166
+33aff42530c2fd134553d397bf572c048db12c28,From Emotions to Action Units with Hidden and Semi-Hidden-Task Learning,Universitat Pompeu Fabra,Universitat Pompeu Fabra,"Dipòsit de les Aigües, Carrer de Wellington, la Vila Olímpica del Poblenou, Ciutat Vella, Barcelona, BCN, CAT, 08071, España",41.39044285,2.18891949251166
+334e65b31ad51b1c1f84ce12ef235096395f1ca7,2 Emotion in Human - Computer Interaction Acknowledgements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+3328413ee9944de1cc7c9c1d1bf2fece79718ba1,Co-Training of Audio and Video Representations from Self-Supervised Temporal Synchronization,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+3328413ee9944de1cc7c9c1d1bf2fece79718ba1,Co-Training of Audio and Video Representations from Self-Supervised Temporal Synchronization,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+33402ee078a61c7d019b1543bb11cc127c2462d2,Self-Supervised Video Representation Learning with Odd-One-Out Networks,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+33f2b44742cc828347ccc5ec488200c25838b664,Pooling the Convolutional Layers in Deep ConvNets for Action Recognition,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+33f2b44742cc828347ccc5ec488200c25838b664,Pooling the Convolutional Layers in Deep ConvNets for Action Recognition,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+334ac2a459190b41923be57744aa6989f9a54a51,Apples to Oranges: Evaluating Image Annotations from Natural Language Processing Systems,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+33ad23377eaead8955ed1c2b087a5e536fecf44e,Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+33ad23377eaead8955ed1c2b087a5e536fecf44e,Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+053b263b4a4ccc6f9097ad28ebf39c2957254dfb,Cost-Effective HITs for Relative Similarity Comparisons,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+053b263b4a4ccc6f9097ad28ebf39c2957254dfb,Cost-Effective HITs for Relative Similarity Comparisons,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+053b263b4a4ccc6f9097ad28ebf39c2957254dfb,Cost-Effective HITs for Relative Similarity Comparisons,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+056d5d942084428e97c374bb188efc386791e36d,Temporally Robust Global Motion Compensation by Keypoint-Based Congealing,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+0595d18e8d8c9fb7689f636341d8a55cc15b3e6a,Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+0573f3d2754df3a717368a6cbcd940e105d67f0b,Emotion recognition in the wild challenge 2013,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+05a0d04693b2a51a8131d195c68ad9f5818b2ce1,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,University of East Anglia,University of East Anglia,"Arts (Lower Walkway Level), The Square, Westfield View, Earlham, Norwich, Norfolk, East of England, England, NR4 7TJ, UK",52.6221571,1.2409136
+05a0d04693b2a51a8131d195c68ad9f5818b2ce1,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+05a312478618418a2efb0a014b45acf3663562d7,Accelerated sampling for the Indian Buffet Process,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748
+055de0519da7fdf27add848e691087e0af166637,Joint Unsupervised Face Alignment and Behaviour Analysis,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+0515e43c92e4e52254a14660718a9e498bd61cf5,Machine Learning Systems for Detecting Driver Drowsiness,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582
+0515e43c92e4e52254a14660718a9e498bd61cf5,Machine Learning Systems for Detecting Driver Drowsiness,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+0515e43c92e4e52254a14660718a9e498bd61cf5,Machine Learning Systems for Detecting Driver Drowsiness,Institute of,Institute of,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+05891725f5b27332836cf058f04f18d74053803f,One-shot Action Localization by Learning Sequence Matching Network,The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+05891725f5b27332836cf058f04f18d74053803f,One-shot Action Localization by Learning Sequence Matching Network,The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+0568fc777081cbe6de95b653644fec7b766537b2,Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+0568fc777081cbe6de95b653644fec7b766537b2,Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition,University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+0568fc777081cbe6de95b653644fec7b766537b2,Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+05d80c59c6fcc4652cfc38ed63d4c13e2211d944,On sampling-based approximate spectral decomposition,"Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, New York, NY","Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286484,-73.9956863
+055530f7f771bb1d5f352e2758d1242408d34e4d,A Facial Expression Recognition System from Depth Video,Sungkyunkwan University,Sungkyunkwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123
+050eda213ce29da7212db4e85f948b812a215660,Combining Models and Exemplars for Face Recognition: An Illuminating Example,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+050eda213ce29da7212db4e85f948b812a215660,Combining Models and Exemplars for Face Recognition: An Illuminating Example,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+05e3acc8afabc86109d8da4594f3c059cf5d561f,Actor-Action Semantic Segmentation with Grouping Process Models,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+052f994898c79529955917f3dfc5181586282cf8,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+05318a267226f6d855d83e9338eaa9e718b2a8dd,Age estimation from face images: challenging problem for audience measurement systems,Yaroslavl State University,Yaroslavl State University,"ЯрГУ им. Демидова (Экономический факультет), 3, Комсомольская улица, Кировский район, Ярославль, городской округ Ярославль, Ярославская область, ЦФО, 150000, РФ",57.6252103,39.8845656
+057d5f66a873ec80f8ae2603f937b671030035e6,Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+050a3346e44ca720a54afbf57d56b1ee45ffbe49,Multi-cue Zero-Shot Learning with Strong Supervision,Max-Planck Institute for Informatics,Max-Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0517d08da7550241fb2afb283fc05d37fce5d7b7,Combination of Local Multiple Patterns and Exponential Discriminant Analysis for Facial Recognition,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028
+053931267af79a89791479b18d1b9cde3edcb415,Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+05f3d1e9fb254b275354ca69018e9ed321dd8755,Face Recognition using Optimal Representation Ensemble,University of Adelaide,"University of Adelaide, SA, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+051f03bc25ec633592aa2ff5db1d416b705eac6c,Partial face recognition: An alignment free approach,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,Improved Pseudoinverse Linear Discriminant Analysis Method for Dimensionality Reduction,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+9d55ec73cab779403cd933e6eb557fb04892b634,Kernel principal component analysis network for image classification,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+9d66de2a59ec20ca00a618481498a5320ad38481,POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mobile Devices,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+9d66de2a59ec20ca00a618481498a5320ad38481,POP: Privacy-Preserving Outsourced Photo Sharing and Searching for Mobile Devices,Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8361963,-87.6265591274291
+9dcc6dde8d9f132577290d92a1e76b5decc6d755,Facial Expression Analysis Based on Optimized Gabor Features,Istanbul University,Istanbul University,"İstanbul Üniversitesi, Besim Ömerpaşa Caddesi, Süleymaniye, Fatih, İstanbul, Marmara Bölgesi, 34116, Türkiye",41.0132424,28.9637609
+9dcc6dde8d9f132577290d92a1e76b5decc6d755,Facial Expression Analysis Based on Optimized Gabor Features,Bahcesehir University,Bahcesehir University,"BAU Galata, 24, Kemeraltı Caddesi, Müeyyedzade, Beyoğlu, İstanbul, Marmara Bölgesi, 34425, Türkiye",41.02451875,28.9769795349346
+9d57c4036a0e5f1349cd11bc342ac515307b6720,Landmark Weighting for 3DMM Shape Fitting,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+9d57c4036a0e5f1349cd11bc342ac515307b6720,Landmark Weighting for 3DMM Shape Fitting,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+9d941a99e6578b41e4e32d57ece580c10d578b22,Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+9d896605fbf93315b68d4ee03be0770077f84e40,Baby Talk: Understanding and Generating Image Descriptions,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+9d896605fbf93315b68d4ee03be0770077f84e40,Baby Talk: Understanding and Generating Image Descriptions,Stony Brook University,"Stony Brook University, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+9d61b0beb3c5903fc3032655dc0fd834ec0b2af3,Learning a Locality Preserving Subspace for Visual Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+9d24179aa33a94c8c61f314203bf9e906d6b64de,Searching for People through Textual and Visual Attributes,Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375
+9d3aa3b7d392fad596b067b13b9e42443bbc377c,Facial Biometric Templates and Aging: Problems and Challenges for Artificial Intelligence,Cyprus University of Technology,Cyprus University of Technology,"Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597
+9db4b25df549555f9ffd05962b5adf2fd9c86543,Nonlinear 3D Face Morphable Model,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+9d06d43e883930ddb3aa6fe57c6a865425f28d44,Clustering Appearances of Objects Under Varying Illumination Conditions,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+9c9ef6a46fb6395702fad622f03ceeffbada06e5,Exchanging Faces in Images,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+9c1cdb795fd771003da4378f9a0585730d1c3784,Stacked Deformable Part Model with Shape Regression for Object Part Localization,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+9c25e89c80b10919865b9c8c80aed98d223ca0c6,Gender Prediction by Gait Analysis Based on Time Series Variation of Joint Positions,Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.6975029,139.761391749285
+9c25e89c80b10919865b9c8c80aed98d223ca0c6,Gender Prediction by Gait Analysis Based on Time Series Variation of Joint Positions,Meiji University,Meiji University,"明治大学, 錦華坂, 猿楽町1, 猿楽町, 東京, 千代田区, 東京都, 関東地方, 101-0051, 日本",35.6975029,139.761391749285
+9c7444c6949427994b430787a153d5cceff46d5c,Boosting Kernel Discriminative Common Vectors for Face Recognition,Bharathidasan University,"Bharathidasan University, Trichy, India","Bharathidasan University Road, Kajamalai, Ponmalai, Ponmalai Zone, Tiruchchirāppalli, Tiruchchirappalli district, Tamil Nadu, 620020, India",10.7778845,78.6966319
+9c373438285101d47ab9332cdb0df6534e3b93d1,Occupancy Detection in Vehicles Using Fisher Vector Image Representation,Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.5129109,-79.6664076152913
+9c373438285101d47ab9332cdb0df6534e3b93d1,Occupancy Detection in Vehicles Using Fisher Vector Image Representation,Xerox Research Center,Xerox Research Center,"Xerox Research Centre of Canada, 2660, Speakman Drive, Sheridan Park, Erin Mills, Ont., Peel Region, Ontario, L5J 2M4, Canada",43.5129109,-79.6664076152913
+9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,Expression Recognition with Ri-HOG Cascade,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+9cbb6e42a35f26cf1d19f4875cd7f6953f10b95d,Expression Recognition with Ri-HOG Cascade,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+9c4cc11d0df2de42d6593f5284cfdf3f05da402a,Enhanced Fisher linear discriminant models for face recognition,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+9c4cc11d0df2de42d6593f5284cfdf3f05da402a,Enhanced Fisher linear discriminant models for face recognition,University Drive,University Drive,"University Drive, Ooralea, Mackay, QLD, 4740, Australia",-21.1753214,149.1432747
+9cd6a81a519545bf8aa9023f6e879521f85d4cd1,Domain-invariant Face Recognition using Learned Low-rank Transformation,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+9cd6a81a519545bf8aa9023f6e879521f85d4cd1,Domain-invariant Face Recognition using Learned Low-rank Transformation,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+9cd6a81a519545bf8aa9023f6e879521f85d4cd1,Domain-invariant Face Recognition using Learned Low-rank Transformation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+9cadd166893f1b8aaecb27280a0915e6694441f5,Multi-Modal Emotion Recognition Fusing Video and Audio,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+9cadd166893f1b8aaecb27280a0915e6694441f5,Multi-Modal Emotion Recognition Fusing Video and Audio,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+02cc96ad997102b7c55e177ac876db3b91b4e72c,"MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+023ed32ac3ea6029f09b8c582efbe3866de7d00a,Discriminative learning from partially annotated examples,UNIVERSITY IN PRAGUE,UNIVERSITY IN PRAGUE,"Business Institut EDU, Kodaňská, Vršovice, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 10100, Česko",50.0714761,14.4542642
+023ed32ac3ea6029f09b8c582efbe3866de7d00a,Discriminative learning from partially annotated examples,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.0764296,14.418023122743
+0290523cabea481e3e147b84dcaab1ef7a914612,Generated Motion Maps,Tokyo Denki University,Tokyo Denki University,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+0229829e9a1eed5769a2b5eccddcaa7cd9460b92,Pooled motion features for first-person videos,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+025720574ef67672c44ba9e7065a83a5d6075c36,Unsupervised Learning of Video Representations using LSTMs,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+026e4ee480475e63ae68570d73388f8dfd4b4cde,Evaluating gender portrayal in Bangladeshi TV,Eastern University,Eastern University,"Eastern University, Huston Road, Radnor Township, Delaware County, Pennsylvania, 19087, USA",40.0505672,-75.3710932636663
+026e4ee480475e63ae68570d73388f8dfd4b4cde,Evaluating gender portrayal in Bangladeshi TV,Dhaka University,Dhaka University,"Faculty of Social Welfare, Dhaka University, Azimpur Koborsthan Road, বস্তি, হাজারীবাগ, ঢাকা, ঢাকা বিভাগ, 1950, বাংলাদেশ",23.7317915,90.3805625
+026e4ee480475e63ae68570d73388f8dfd4b4cde,Evaluating gender portrayal in Bangladeshi TV,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+02e628e99f9a1b295458cb453c09863ea1641b67,Two-Stage Convolutional Part Heatmap Regression for the 1st 3D Face Alignment in the Wild (3DFAW) Challenge,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+02f4b900deabbe7efa474f2815dc122a4ddb5b76,Local and Global Optimization Techniques in Graph-based Clustering,The University of Tokyo,"The University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+026b5b8062e5a8d86c541cfa976f8eee97b30ab8,MDLFace: Memorability augmented deep learning for video face recognition,"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+0235b2d2ae306b7755483ac4f564044f46387648,Recognition of Facial Attributes Using Adaptive Sparse Representations of Random Patches,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+02467703b6e087799e04e321bea3a4c354c5487d,Grouper: Optimizing Crowdsourced Face Annotations,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+02e39f23e08c2cb24d188bf0ca34141f3cc72d47,Removing illumination artifacts from face images using the nuisance attribute projection,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+023be757b1769ecb0db810c95c010310d7daf00b,Face Alignment Assisted by Head Pose Estimation,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+023be757b1769ecb0db810c95c010310d7daf00b,Face Alignment Assisted by Head Pose Estimation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+023be757b1769ecb0db810c95c010310d7daf00b,Face Alignment Assisted by Head Pose Estimation,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+0209389b8369aaa2a08830ac3b2036d4901ba1f1,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+0209389b8369aaa2a08830ac3b2036d4901ba1f1,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,University College London,"University College London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+02239ae5e922075a354169f75f684cad8fdfd5ab,Commonly Uncommon: Semantic Sparsity in Situation Recognition,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+02239ae5e922075a354169f75f684cad8fdfd5ab,Commonly Uncommon: Semantic Sparsity in Situation Recognition,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0353682,-78.5035322
+02d650d8a3a9daaba523433fbe93705df0a7f4b1,How Does Aging Affect Facial Components?,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+0294f992f8dfd8748703f953925f9aee14e1b2a2,Blur-Robust Face Recognition via Transformation Learning,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+02820c1491b10a1ff486fed32c269e4077c36551,Active user authentication for smartphones: A challenge data set and benchmark results,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+02820c1491b10a1ff486fed32c269e4077c36551,Active user authentication for smartphones: A challenge data set and benchmark results,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+a40edf6eb979d1ddfe5894fac7f2cf199519669f,Improving Facial Attribute Prediction Using Semantic Segmentation,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+a4876b7493d8110d4be720942a0f98c2d116d2a0,Multi-velocity neural networks for gesture recognition in videos,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+a46086e210c98dcb6cb9a211286ef906c580f4e8,Fusing Multi-Stream Deep Networks for Video Classification,Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+a472d59cff9d822f15f326a874e666be09b70cfd,Visual Learning with Weakly Labeled Video a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,OF STANFORD UNIVERSITY,OF STANFORD UNIVERSITY,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+a481e394f58f2d6e998aa320dad35c0d0e15d43c,Selectively guiding visual concept discovery,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+a322479a6851f57a3d74d017a9cb6d71395ed806,Towards Pose Invariant Face Recognition in the Wild,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+a301ddc419cbd900b301a95b1d9e4bb770afc6a3,DECK: Discovering Event Composition Knowledge from Web Images for Zero-Shot Event Detection and Recounting in Videos,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+a3f684930c5c45fcb56a2b407d26b63879120cbf,LPM for Fast Action Recognition with Large Number of Classes,University of Ottawa,"University of Ottawa, Ottawa, On, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+a32d4195f7752a715469ad99cb1e6ebc1a099de6,The Potential of Using Brain Images for Authentication,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+a308077e98a611a977e1e85b5a6073f1a9bae6f0,Intelligent Screening Systems for Cervical Cancer,University of Malaya,University of Malaya,"UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394
+a35dd69d63bac6f3296e0f1d148708cfa4ba80f6,Audio Visual Emotion Recognition with Temporal Alignment and Perception Attention,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+a36c8a4213251d3fd634e8893ad1b932205ad1ca,Videos from the 2013 Boston Marathon : An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+a3a2f3803bf403262b56ce88d130af15e984fff0,Building a Compact Relevant Sample Coverage for Relevance Feedback in Content-Based Image Retrieval,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae,Harvesting Motion Patterns in Still Images from the Internet,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+b56f3a7c50bfcd113d0ba84e6aa41189e262d7ae,Harvesting Motion Patterns in Still Images from the Internet,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+b5968e7bb23f5f03213178c22fd2e47af3afa04c,Multiple-Human Parsing in the Wild,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+b5968e7bb23f5f03213178c22fd2e47af3afa04c,Multiple-Human Parsing in the Wild,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,Tag-based video retrieval by embedding semantic content in a continuous word space,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+b5cd9e5d81d14868f1a86ca4f3fab079f63a366d,Tag-based video retrieval by embedding semantic content in a continuous word space,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+b506aa23949b6d1f0c868ad03aaaeb5e5f7f6b57,Modeling Social and Temporal Context for Video Analysis,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+b5f2846a506fc417e7da43f6a7679146d99c5e96,UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+b5da4943c348a6b4c934c2ea7330afaf1d655e79,Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+b5da4943c348a6b4c934c2ea7330afaf1d655e79,Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network,"Microsoft Research Asia, Beijing, China","Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+b5402c03a02b059b76be829330d38db8e921e4b5,Hybridized KNN and SVM for gene expression data classification,Zhengzhou University,Zhengzhou University,"科学大道, 中原区 (Zhongyuan), 郑州市 / Zhengzhou, 河南省, 450001, 中国",34.8088168,113.5352664
+b56530be665b0e65933adec4cc5ed05840c37fc4,Reducing correspondence ambiguity in loosely labeled training data,University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648
+b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,Hierarchical Wavelet Networks for Facial Feature Localization,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+b5f4e617ac3fc4700ec8129fcd0dcf5f71722923,Hierarchical Wavelet Networks for Facial Feature Localization,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+b51b4ef97238940aaa4f43b20a861eaf66f67253,Unsupervised Modeling of Objects and Their Hierarchical Contextual Interactions,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+b5d7c5aba7b1ededdf61700ca9d8591c65e84e88,Data pruning for template-based automatic speech recognition,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.8830686,4.7019503
+b5c749f98710c19b6c41062c60fb605e1ef4312a,Evaluating Two-Stream CNN for Video Classification,Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+b503f481120e69b62e076dcccf334ee50559451e,Recognition of Facial Action Units with Action Unit Classifiers and an Association Network,University,"University, Hong Kong","Hong-Kong, Feldstraße, Greifswald, Südliche Mühlenvorstadt, Greifswald, Vorpommern-Greifswald, Mecklenburg-Vorpommern, 17489, Deutschland",54.0856448,13.389089
+b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,Shandong University of Science and Technology,Shandong University of Science and Technology,"山东科技大学, 579, 前湾港路, 牛王庙, 北下庄, 黄岛区 (Huangdao), 青岛市, 山东省, 266500, 中国",36.00146435,120.116240565627
+b59c8b44a568587bc1b61d130f0ca2f7a2ae3b88,An Enhanced Intelligent Agent with Image Description Generation,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+b59cee1f647737ec3296ccb3daa25c890359c307,Continuously Reproducing Toolchains in Pattern Recognition and Machine Learning Experiments,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+b59cee1f647737ec3296ccb3daa25c890359c307,Continuously Reproducing Toolchains in Pattern Recognition and Machine Learning Experiments,University of Colorado,University of Colorado,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621
+b249f10a30907a80f2a73582f696bc35ba4db9e2,Improved graph-based SFA: Information preservation complements the slowness principle,Ruhr-University Bochum,"Ruhr-University Bochum, Germany","RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078
+b2a0e5873c1a8f9a53a199eecae4bdf505816ecb,Hybrid VAE: Improving Deep Generative Models using Partial Observations,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+b216040f110d2549f61e3f5a7261cab128cab361,Weighted Voting of Discriminative Regions for Face Recognition,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+b234cd7788a7f7fa410653ad2bafef5de7d5ad29,Unsupervised Temporal Ensemble Alignment for Rapid Annotation,Queensland University of Technology,"Queensland University of Technology, Brisbane, QLD, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+b234cd7788a7f7fa410653ad2bafef5de7d5ad29,Unsupervised Temporal Ensemble Alignment for Rapid Annotation,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+b2c60061ad32e28eb1e20aff42e062c9160786be,Diverse and Controllable Image Captioning with Part-of-Speech Guidance,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+b2e5df82c55295912194ec73f0dca346f7c113f6,CUHK&SIAT Submission for THUMOS15 Action Recognition Challenge,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+b2e5df82c55295912194ec73f0dca346f7c113f6,CUHK&SIAT Submission for THUMOS15 Action Recognition Challenge,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+b2e6944bebab8e018f71f802607e6e9164ad3537,Mixed Error Coding for Face Recognition with Mixed Occlusions,Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.2931534,120.1620458
+b239a756f22201c2780e46754d06a82f108c1d03,Robust multimodal recognition via multitask multivariate low-rank representations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,Learning with Ambiguous Label Distribution for Apparent Age Estimation,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+d949fadc9b6c5c8b067fa42265ad30945f9caa99,Rethinking Feature Discrimination and Polymerization for Large-scale Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+d93baa5ecf3e1196b34494a79df0a1933fd2b4ec,Precise Temporal Action Localization by Evolving Temporal Proposals,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+d961617db4e95382ba869a7603006edc4d66ac3b,Experimenting Motion Relativity for Action Recognition with a Large Number of Classes,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+d9c4586269a142faee309973e2ce8cde27bda718,Contextual Visual Similarity,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+d9c4586269a142faee309973e2ce8cde27bda718,Contextual Visual Similarity,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+d912b8d88d63a2f0cb5d58164e7414bfa6b41dfa,Facial identification problem: A tracking based approach,University of Milan,University of Milan,"Milan Avenue, Ray Mar Terrace, University City, St. Louis County, Missouri, 63130, USA",38.6796662,-90.3262816
+d963e640d0bf74120f147329228c3c272764932b,Image Processing for Face Recognition Rate Enhancement,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+d963e640d0bf74120f147329228c3c272764932b,Image Processing for Face Recognition Rate Enhancement,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+d915e634aec40d7ee00cbea96d735d3e69602f1a,Two-Stream convolutional nets for action recognition in untrimmed video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+d915e634aec40d7ee00cbea96d735d3e69602f1a,Two-Stream convolutional nets for action recognition in untrimmed video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+ac1d97a465b7cc56204af5f2df0d54f819eef8a6,A Look at Eye Detection for Unconstrained Environments,Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375
+ac2e44622efbbab525d4301c83cb4d5d7f6f0e55,"A 3D Morphable Model Learnt from 10,000 Faces",University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,Deep Cascaded Bi-Network for Face Hallucination,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,Deep Cascaded Bi-Network for Face Hallucination,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+ac6c3b3e92ff5fbcd8f7967696c7aae134bea209,Deep Cascaded Bi-Network for Face Hallucination,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+ac855f0de9086e9e170072cb37400637f0c9b735,Fast Geometrically-Perturbed Adversarial Faces,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+ac21c8aceea6b9495574f8f9d916e571e2fc497f,Pose-Independent Identity-based Facial Image Retrieval using Contextual Similarity,King Abdullah University of Science and Technology 4700,"King Abdullah University of Science and Technology 4700, Thuwal, Saudi Arabia","KAUST, Collaboration Avenue, ثول, منطقة مكة المكرمة, 23955, السعودية",22.31055485,39.1051548637793
+aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,Co-Regularized Ensemble for Feature Selection,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+aca75c032cfb0b2eb4c0ae56f3d060d8875e43f9,Co-Regularized Ensemble for Feature Selection,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+ac51d9ddbd462d023ec60818bac6cdae83b66992,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,National University of Defense Technology,"National University of Defense Technology, Changsha 410073, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+ac51d9ddbd462d023ec60818bac6cdae83b66992,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8411007,4.32377555279953
+acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8411007,4.32377555279953
+acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8411007,4.32377555279953
+acee2201f8a15990551804dd382b86973eb7c0a8,To boost or not to boost? On the limits of boosted trees for object detection,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+ac9a331327cceda4e23f9873f387c9fd161fad76,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.1664858,-73.1920564
+ac9a331327cceda4e23f9873f387c9fd161fad76,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.1664858,-73.1920564
+ac86ccc16d555484a91741e4cb578b75599147b2,Morphable Face Models - An Open Framework,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+ac75c662568cbb7308400cc002469a14ff25edfd,Regularization studies on LDA for face recognition,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,From Gabor Magnitude to Gabor Phase Features: Tackling the Problem of Face Recognition under Severe Illumination Changes,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+ad8540379884ec03327076b562b63bc47e64a2c7,Bee royalty offspring algorithm for improvement of facial expressions classification model,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,"Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction",Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+adce9902dca7f4e8a9b9cf6686ec6a7c0f2a0ba6,"Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction",University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+add50a7d882eb38e35fe70d11cb40b1f0059c96f,High-fidelity Pose and Expression Normalization for face recognition in the wild,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+ad784332cc37720f03df1c576e442c9c828a587a,Face recognition based on face-specific subspace,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+ad784332cc37720f03df1c576e442c9c828a587a,Face recognition based on face-specific subspace,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+ada42b99f882ba69d70fff68c9ccbaff642d5189,Semantic Image Segmentation and Web-Supervised Visual Learning,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff,Weakly Supervised Action Localization by Sparse Temporal Pooling Network,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ad0d4d5c61b55a3ab29764237cd97be0ebb0ddff,Weakly Supervised Action Localization by Sparse Temporal Pooling Network,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+adfaf01773c8af859faa5a9f40fb3aa9770a8aa7,Large Scale Visual Recognition,OF PRINCETON UNIVERSITY,OF PRINCETON UNIVERSITY,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+ad9cb522cc257e3c5d7f896fe6a526f6583ce46f,Real-Time Recognition of Facial Expressions for Affective Computing Applications,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447511707098
+ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447511707098
+ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447511707098
+ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,University of Abertay,University of Abertay,"Abertay University, Bell Street, City Centre, Dundee, Dundee City, Scotland, DD1 1HG, UK",56.46323375,-2.97447511707098
+ad2339c48ad4ffdd6100310dcbb1fb78e72fac98,Video Fill In the Blank Using LR/RL LSTMs with Spatial-Temporal Attentions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+ad247138e751cefa3bb891c2fe69805da9c293d7,A Novel Hybrid Method for Face Recognition Based on 2d Wavelet and Singular Value Decomposition,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+bbc4b376ebd296fb9848b857527a72c82828fc52,Attributes for Improved Attributes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+bbc4b376ebd296fb9848b857527a72c82828fc52,Attributes for Improved Attributes,"College Park, MD","College Park, MD","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+bbf28f39e5038813afd74cf1bc78d55fcbe630f1,Style Aggregated Network for Facial Landmark Detection,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+bbe949c06dc4872c7976950b655788555fe513b8,Automatic Frequency Band Selection for Illumination Robust Face Recognition,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+bbcb4920b312da201bf4d2359383fb4ee3b17ed9,Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+bb6bf94bffc37ef2970410e74a6b6dc44a7f4feb,Situation Recognition with Graph Neural Networks Supplementary Material,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,Nonlinear Hierarchical Part-Based Regression for Unconstrained Face Alignment,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+bbfe0527e277e0213aafe068113d719b2e62b09c,Dog Breed Classification Using Part Localization,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+bbfe0527e277e0213aafe068113d719b2e62b09c,Dog Breed Classification Using Part Localization,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+bb451dc2420e1a090c4796c19716f93a9ef867c9,A Review on: Automatic Movie Character Annotation by Robust Face-Name Graph Matching,Sinhgad College of,Sinhgad College of,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India",19.0993293,74.7691424
+bb451dc2420e1a090c4796c19716f93a9ef867c9,A Review on: Automatic Movie Character Annotation by Robust Face-Name Graph Matching,Sinhgad College of,Sinhgad College of,"SINHGAD, NH61, Foi, Ahmadnagar, Ahmednagar, Maharashtra, 414001, India",19.0993293,74.7691424
+d794ffece3533567d838f1bd7f442afee13148fd,Hand Detection and Tracking in Videos for Fine-Grained Action Recognition,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+d7593148e4319df7a288180d920f2822eeecea0b,A Differential Approach for Gaze Estimation with Calibration,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+d7cbedbee06293e78661335c7dd9059c70143a28,MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,Automating Image Analysis by Annotating Landmarks with Deep Neural Networks,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+d7d9c1fa77f3a3b3c2eedbeb02e8e7e49c955a2f,Automating Image Analysis by Annotating Landmarks with Deep Neural Networks,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+d78734c54f29e4474b4d47334278cfde6efe963a,Exploring Disentangled Feature Representation Beyond Face Identification,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+d785fcf71cb22f9c33473cba35f075c1f0f06ffc,Learning active facial patches for expression analysis,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+d785fcf71cb22f9c33473cba35f075c1f0f06ffc,Learning active facial patches for expression analysis,Nanjing University of Information Science and Technology,Nanjing University of Information Science and Technology,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2068102,118.718472893883
+d785fcf71cb22f9c33473cba35f075c1f0f06ffc,Learning active facial patches for expression analysis,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+d79365336115661b0e8dbbcd4b2aa1f504b91af6,Variational methods for conditional multimodal deep learning,Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+d78fbd11f12cbc194e8ede761d292dc2c02d38a2,Enhancing Gray Scale Images for Face Detection under Unstable Lighting Condition,University of Dschang,"University of Dschang, Cameroon","Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4409448,10.0712056113589
+d78fbd11f12cbc194e8ede761d292dc2c02d38a2,Enhancing Gray Scale Images for Face Detection under Unstable Lighting Condition,University of Dschang,"University of Dschang, Cameroon","Université de Dschang, Départementale 65, Fokoué, Menoua, OU, Cameroun",5.4409448,10.0712056113589
+d72973a72b5d891a4c2d873daeb1bc274b48cddf,A New Supervised Dimensionality Reduction Algorithm Using Linear Discriminant Analysis and Locality Preserving Projection,Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.1294489,113.343761097683
+d72973a72b5d891a4c2d873daeb1bc274b48cddf,A New Supervised Dimensionality Reduction Algorithm Using Linear Discriminant Analysis and Locality Preserving Projection,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+d700aedcb22a4be374c40d8bee50aef9f85d98ef,Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+d0e895a272d684a91c1b1b1af29747f92919d823,Classification of Mouth Action Units using Local Binary Patterns,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+d0e895a272d684a91c1b1b1af29747f92919d823,Classification of Mouth Action Units using Local Binary Patterns,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+d082f35534932dfa1b034499fc603f299645862d,"TAMING WILD FACES: WEB-SCALE, OPEN-UNIVERSE FACE IDENTIFICATION IN STILL AND VIDEO IMAGERY by ENRIQUE",B.S. University of Central Florida,B.S. University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+d0ac9913a3b1784f94446db2f1fb4cf3afda151f,Exploiting Multi-modal Curriculum in Noisy Web Data for Large-scale Concept Learning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+d0471d5907d6557cf081edf4c7c2296c3c221a38,A Constrained Deep Neural Network for Ordinal Regression,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,Role for 2D image generated 3D face models in the rehabilitation of facial palsy,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+d04d5692461d208dd5f079b98082eda887b62323,Subspace learning with frequency regularizer: Its application to face recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+d05513c754966801f26e446db174b7f2595805ba,Everything is in the Face? Represent Faces with Object Bank,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+d05513c754966801f26e446db174b7f2595805ba,Everything is in the Face? Represent Faces with Object Bank,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+d05513c754966801f26e446db174b7f2595805ba,Everything is in the Face? Represent Faces with Object Bank,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+d0509afe9c2c26fe021889f8efae1d85b519452a,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+d0509afe9c2c26fe021889f8efae1d85b519452a,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+d02e27e724f9b9592901ac1f45830341d37140fe,DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials),Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+d02e27e724f9b9592901ac1f45830341d37140fe,DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials),Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+d02b32b012ffba2baeb80dca78e7857aaeececb0,Human Pose Estimation: Extension and Application,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+d0d7671c816ed7f37b16be86fa792a1b29ddd79b,Exploring Semantic Inter-Class Relationships (SIR) for Zero-Shot Action Recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+d01303062b21cd9ff46d5e3ff78897b8499480de,Multi-task Learning by Maximizing Statistical Dependence,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+d01303062b21cd9ff46d5e3ff78897b8499480de,Multi-task Learning by Maximizing Statistical Dependence,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+d01303062b21cd9ff46d5e3ff78897b8499480de,Multi-task Learning by Maximizing Statistical Dependence,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5,Towards Universal Representation for Unseen Action Recognition,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+d0f54b72e3a3fe7c0e65d7d5a3b30affb275f4c5,Towards Universal Representation for Unseen Action Recognition,Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949
+be86d88ecb4192eaf512f29c461e684eb6c35257,Automatic Attribute Discovery and Characterization from Noisy Web Data,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+be86d88ecb4192eaf512f29c461e684eb6c35257,Automatic Attribute Discovery and Characterization from Noisy Web Data,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+be86d88ecb4192eaf512f29c461e684eb6c35257,Automatic Attribute Discovery and Characterization from Noisy Web Data,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+beb49072f5ba79ed24750108c593e8982715498e,GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+beb49072f5ba79ed24750108c593e8982715498e,GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+beb49072f5ba79ed24750108c593e8982715498e,GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+becd5fd62f6301226b8e150e1a5ec3180f748ff8,Robust and Practical Face Recognition via Structured Sparsity,"Microsoft Research Asia, Beijing, China","Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+becd5fd62f6301226b8e150e1a5ec3180f748ff8,Robust and Practical Face Recognition via Structured Sparsity,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+bebb8a97b2940a4e5f6e9d3caf6d71af21585eda,Mapping Emotional Status to Facial Expressions,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+be4f7679797777f2bc1fd6aad8af67cce5e5ce87,Interestingness Prediction by Robust Learning to Rank,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+be4f7679797777f2bc1fd6aad8af67cce5e5ce87,Interestingness Prediction by Robust Learning to Rank,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+be28ed1be084385f5d389db25fd7f56cd2d7f7bf,Exploring computation-communication tradeoffs in camera systems,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+be28ed1be084385f5d389db25fd7f56cd2d7f7bf,Exploring computation-communication tradeoffs in camera systems,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+bed06e7ff0b510b4a1762283640b4233de4c18e0,Face Interpretation Problems on Low Quality Images,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+bec31269632c17206deb90cd74367d1e6586f75f,Large-scale Datasets: Faces with Partial Occlusions and Pose Variations in the Wild,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.357757,-83.0628671134125
+be5276e9744c4445fe5b12b785650e8f173f56ff,Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos,University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+be5276e9744c4445fe5b12b785650e8f173f56ff,Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos,University Politehnica of Bucharest,"University Politehnica of Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+be5276e9744c4445fe5b12b785650e8f173f56ff,Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos,University of Tokyo,"University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,Automatic Analysis of Naturalistic Hand-Over-Face Gestures,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+be4f18e25b06f430e2de0cc8fddcac8585b00beb,A New Face Recognition Algorithm based on Dictionary Learning for a Single Training Sample per Person,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+b3b532e8ea6304446b1623e83b0b9a96968f926c,Joint Network based Attention for Action Recognition,Peking University,"Peking University, Beijing, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+b3b532e8ea6304446b1623e83b0b9a96968f926c,Joint Network based Attention for Action Recognition,"Beijing Institute of Technology, Beijing, China","Beijing Institute of Technology, Beijing, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+b3154d981eca98416074538e091778cbc031ca29,Pedestrian Attribute Analysis Using a Top-View Camera in a Public Space,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+b3154d981eca98416074538e091778cbc031ca29,Pedestrian Attribute Analysis Using a Top-View Camera in a Public Space,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+b3200539538eca54a85223bf0ec4f3ed132d0493,Action Anticipation with RBF Kernelized Feature Mapping RNN,The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+b3b467961ba66264bb73ffe00b1830d7874ae8ce,Finding Tiny Faces,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+b3b467961ba66264bb73ffe00b1830d7874ae8ce,Finding Tiny Faces,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+b3ba7ab6de023a0d58c741d6abfa3eae67227caf,Zero-Shot Activity Recognition with Verb Attribute Induction,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+b3330adb131fb4b6ebbfacce56f1aec2a61e0869,Emotion recognition using facial images,SASTRA University,"SASTRA University, Thanjavur, Tamil Nadu, India","SASTRA University, SRC Campus, Big Bazaar Street, கும்பகோணம், Thanjavur district, Tamil Nadu, 612001, India",10.9628655,79.3853065130097
+b3f3d6be11ace907c804c2d916830c85643e468d,A Logical Framework for Trust - Related Emotions : Formal and Behavioral Results by Manh Hung NGUYEN Co - supervisors,University of Toulouse,University of Toulouse,"Toulouse, Lake Charles, Calcasieu Parish, Louisiana, 70605, USA",30.1781816,-93.2360581
+b3c398da38d529b907b0bac7ec586c81b851708f,Face recognition under varying lighting conditions using self quotient image,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+b3658514a0729694d86a8b89c875a66cde20480c,Improving the Robustness of Subspace Learning Techniques for Facial Expression Recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+b3b4a7e29b9186e00d2948a1d706ee1605fe5811,Image Preprocessing for Illumination Invariant Face Verification,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511
+b33e8db8ccabdfc49211e46d78d09b14557d4cba,Face Expression Recognition and Analysis: The State of the Art,College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862
+dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,University of Plymouth,"University of Plymouth, UK","Charles Seale-Hayne Library, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3752501,-4.13927692297343
+dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,Bournemouth University,"Bournemouth University, UK","Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,University of York,"University of York, UK","University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+dfd934ae448a1b8947d404b01303951b79b13801,The importance of internal facial features in learning new faces.,Plymouth University,Plymouth University,"Plymouth University, Portland Square, Barbican, Plymouth, South West England, England, PL4 6AP, UK",50.3755269,-4.13937687442817
+df0e280cae018cebd5b16ad701ad101265c369fa,Deep Attributes from Context-Aware Regional Neural Codes,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+df0e280cae018cebd5b16ad701ad101265c369fa,Deep Attributes from Context-Aware Regional Neural Codes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb,SREFI: Synthesis of realistic example face images,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+dfd8602820c0e94b624d02f2e10ce6c798193a25,Structured Analysis Dictionary Learning for Image Classification,North Carolina State University,North Carolina State University,"North Carolina State University, Oval Drive, West Raleigh, Raleigh, Wake County, North Carolina, 27695, USA",35.77184965,-78.6740869545263
+dff838ba0567ef0a6c8fbfff9837ea484314efc6,"Progress Report, MSc. Dissertation: On-line Random Forest for Face Detection",The University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+df71a00071d5a949f9c31371c2e5ee8b478e7dc8,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+df71a00071d5a949f9c31371c2e5ee8b478e7dc8,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+df71a00071d5a949f9c31371c2e5ee8b478e7dc8,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+df9269657505fcdc1e10cf45bbb8e325678a40f5,Open-Domain Audio-Visual Speech Recognition: A Deep Learning Approach,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+dfb6aa168177d4685420fcb184def0aa7db7cddb,The Effect of Lighting Direction/Condition on the Performance of Face Recognition Algorithms,West Virginia University,"West Virginia University, Morgantown, WV","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+dfb6aa168177d4685420fcb184def0aa7db7cddb,The Effect of Lighting Direction/Condition on the Performance of Face Recognition Algorithms,University of Miami,"University of Miami, Coral Gables, FL","University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+df2841a1d2a21a0fc6f14fe53b6124519f3812f9,Learning Image Attributes using the Indian Buffet Process,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+df2841a1d2a21a0fc6f14fe53b6124519f3812f9,Learning Image Attributes using the Indian Buffet Process,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+daf05febbe8406a480306683e46eb5676843c424,Robust Subspace Segmentation with Block-Diagonal Prior,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+daf05febbe8406a480306683e46eb5676843c424,Robust Subspace Segmentation with Block-Diagonal Prior,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+daf05febbe8406a480306683e46eb5676843c424,Robust Subspace Segmentation with Block-Diagonal Prior,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+daa02cf195818cbf651ef81941a233727f71591f,Face recognition system on Raspberry Pi,Institute of Electronics and Computer Science,Institute of Electronics and Computer Science,"EDI, 14, Dzērbenes iela, Biķerziedi, Teika, Ozolkalni, Rīga, Vidzeme, LV-1006, Latvija",56.97734805,24.1951425550775
+daa52dd09b61ee94945655f0dde216cce0ebd505,Recognizing Micro-Actions and Reactions from Paired Egocentric Videos,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+daa52dd09b61ee94945655f0dde216cce0ebd505,Recognizing Micro-Actions and Reactions from Paired Egocentric Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+daa52dd09b61ee94945655f0dde216cce0ebd505,Recognizing Micro-Actions and Reactions from Paired Egocentric Videos,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,Rapid face recognition using hashing,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+b4d694961d3cde43ccef7d8fcf1061fe0d8f97f3,Rapid face recognition using hashing,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,A short review and primer on electromyography in human computer interaction applications,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,A short review and primer on electromyography in human computer interaction applications,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+b4ee1b468bf7397caa7396cfee2ab5f5ed6f2807,A short review and primer on electromyography in human computer interaction applications,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+b446bcd7fb78adfe346cf7a01a38e4f43760f363,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+b446bcd7fb78adfe346cf7a01a38e4f43760f363,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,Face Aging with Contextual Generative Adversarial Nets,University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+b417b90fa0c288bbaab1aceb8ebc7ec1d3f33172,Face Aging with Contextual Generative Adversarial Nets,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+b42a97fb47bcd6bfa72e130c08960a77ee96f9ab,Based on Graph-preserving Sparse Non-negative Matrix Factorization,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+b42a97fb47bcd6bfa72e130c08960a77ee96f9ab,Based on Graph-preserving Sparse Non-negative Matrix Factorization,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+b4d209845e1c67870ef50a7c37abaf3770563f3e,"Video Time: Properties, Encoders and Evaluation",University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+b4362cd87ad219790800127ddd366cc465606a78,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+b4362cd87ad219790800127ddd366cc465606a78,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+b4362cd87ad219790800127ddd366cc465606a78,A Smartphone-Based Automatic Diagnosis System for Facial Nerve Palsy,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+b4f4b0d39fd10baec34d3412d53515f1a4605222,Every Picture Tells a Story: Generating Sentences from Images,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+b43b6551ecc556557b63edb8b0dc39901ed0343b,ICA and Gabor representation for facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+a255a54b8758050ea1632bf5a88a201cd72656e1,Nonparametric Facial Feature Localization,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+a2b9cee7a3866eb2db53a7d81afda72051fe9732,Reconstructing a Fragmented Face from an Attacked Secure Identification Protocol,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+a2bd81be79edfa8dcfde79173b0a895682d62329,Multi-Objective Vehicle Routing Problem Applied to Large Scale Post Office Deliveries,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.5953995,-48.6154218
+a2eb90e334575d9b435c01de4f4bf42d2464effc,A new sparse image representation algorithm applied to facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+a25106a76af723ba9b09308a7dcf4f76d9283589,Local Octal Pattern: A Proficient Feature Extraction for Face Recognition,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+a29a22878e1881d6cbf6acff2d0b209c8d3f778b,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+a29a22878e1881d6cbf6acff2d0b209c8d3f778b,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+a29a22878e1881d6cbf6acff2d0b209c8d3f778b,Benchmarking Still-to-Video Face Recognition via Partial and Local Linear Discriminant Analysis on COX-S2V Dataset,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+a2429cc2ccbabda891cc5ae340b24ad06fcdbed5,Discovering the Signatures of Joint Attention in Child-Caregiver Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+a2bcfba155c990f64ffb44c0a1bb53f994b68a15,The Photoface database,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+a2bcfba155c990f64ffb44c0a1bb53f994b68a15,The Photoface database,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+a59cdc49185689f3f9efdf7ee261c78f9c180789,A New Approach for Learning Discriminative Dictionary for Pattern Classification,Hanoi University of Science and Technology,Hanoi University of Science and Technology,"HUST, Trần Đại Nghĩa, Hai Bà Trưng, Hà Nội, 10999, Việt Nam",21.003952,105.843601832826
+a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+a5c8fc1ca4f06a344b53dc81ebc6d87f54896722,Learning to see people like people,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+a5ade88747fa5769c9c92ffde9b7196ff085a9eb,Why is facial expression analysis in the wild challenging?,"Karlsruhe Institute of Technology, Germany","Karlsruhe Institute of Technology, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+a5ade88747fa5769c9c92ffde9b7196ff085a9eb,Why is facial expression analysis in the wild challenging?,Istanbul Technical University,"Istanbul Technical University, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+a5ade88747fa5769c9c92ffde9b7196ff085a9eb,Why is facial expression analysis in the wild challenging?,"Karlsruhe Institute of Technology, Germany","Karlsruhe Institute of Technology, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+a5f11c132eaab258a7cea2d681875af09cddba65,A spatiotemporal model with visual attention for video classification,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+a546fd229f99d7fe3cf634234e04bae920a2ec33,Fast Fight Detection,IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869
+a538b05ebb01a40323997629e171c91aa28b8e2f,Rectified Linear Units Improve Restricted Boltzmann Machines,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,Fringe Projection Techniques: Whither we are?,Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.3764534,8.54770931489751
+a5ae7fe2bb268adf0c1cd8e3377f478fca5e4529,Exemplar Hidden Markov Models for classification of facial expressions in videos,National University,National University,"National University, M.F. Jocson, Royal Plaza, Sampaloc, Fourth District, Manila, Metro Manila, 1008, Philippines",14.6042947,120.994285201104
+a51882cfd0706512bf50e12c0a7dd0775285030d,Cross-Modal Face Matching: Beyond Viewed Sketches,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+a52581a7b48138d7124afc7ccfcf8ec3b48359d0,Pose and Illumination Invariant Face Recognition Based on 3D Face Reconstruction,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+bd0265ba7f391dc3df9059da3f487f7ef17144df,Data-Driven Sparse Sensor Placement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+bd0265ba7f391dc3df9059da3f487f7ef17144df,Data-Driven Sparse Sensor Placement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+bd0265ba7f391dc3df9059da3f487f7ef17144df,Data-Driven Sparse Sensor Placement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4,Deep Learning for Computer Vision: A Brief Review,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.7317973260904
+bd6099429bb7bf248b1fd6a1739e744512660d55,"Regularized Discriminant Analysis, Ridge Regression and Beyond",Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+bd6099429bb7bf248b1fd6a1739e744512660d55,"Regularized Discriminant Analysis, Ridge Regression and Beyond",University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+bd8f3fef958ebed5576792078f84c43999b1b207,BUAA-iCC at ImageCLEF 2015 Scalable Concept Image Annotation Challenge,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+bd0201b32e7eca7818468f2b5cb1fb4374de75b9,Facial Emotion Expressions Recognition with Brain Activites Using Kinect Sensor V2,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+bd0201b32e7eca7818468f2b5cb1fb4374de75b9,Facial Emotion Expressions Recognition with Brain Activites Using Kinect Sensor V2,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+bd0201b32e7eca7818468f2b5cb1fb4374de75b9,Facial Emotion Expressions Recognition with Brain Activites Using Kinect Sensor V2,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+bd236913cfe07896e171ece9bda62c18b8c8197e,Deep Learning with Energy-efficient Binary Gradient Cameras,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+bd379f8e08f88729a9214260e05967f4ca66cd65,Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+bd379f8e08f88729a9214260e05967f4ca66cd65,Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+bd21109e40c26af83c353a3271d0cd0b5c4b4ade,Attentive Sequence to Sequence Translation for Localizing Clips of Interest by Natural Language Descriptions,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+bd8b7599acf53e3053aa27cfd522764e28474e57,Learning long term face aging patterns from partially dense aging databases,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+bd8b7599acf53e3053aa27cfd522764e28474e57,Learning long term face aging patterns from partially dense aging databases,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,SphereFace: Deep Hypersphere Embedding for Face Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,SphereFace: Deep Hypersphere Embedding for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,SphereFace: Deep Hypersphere Embedding for Face Recognition,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+bd26dabab576adb6af30484183c9c9c8379bf2e0,SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+bd9c9729475ba7e3b255e24e7478a5acb393c8e9,Interpretable Partitioned Embedding for Customized Fashion Outfit Composition,Zhejiang University,"Zhejiang University, Hangzhou, China","浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+bd9c9729475ba7e3b255e24e7478a5acb393c8e9,Interpretable Partitioned Embedding for Customized Fashion Outfit Composition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+bd9157331104a0708aa4f8ae79b7651a5be797c6,SLAC: A Sparsely Labeled Dataset for Action Classification and Localization,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+bd70f832e133fb87bae82dfaa0ae9d1599e52e4b,Combining Classifier for Face Identification at Unknown Views with a Single Model Image,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+d185f4f05c587e23c0119f2cdfac8ea335197ac0,"Facial Expression Analysis, Modeling and Synthesis: Overcoming the Limitations of Artificial Intelligence with the Art of the Soluble",Eindhoven University of Technology,"Eindhoven University of Technology, The Netherlands","Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805
+d185f4f05c587e23c0119f2cdfac8ea335197ac0,"Facial Expression Analysis, Modeling and Synthesis: Overcoming the Limitations of Artificial Intelligence with the Art of the Soluble",Ritsumeikan University,"Ritsumeikan University, Japan","立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154
+d140c5add2cddd4a572f07358d666fe00e8f4fe1,Statistically Learned Deformable Eye Models,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+d115c4a66d765fef596b0b171febca334cea15b5,Combining Stacked Denoising Autoencoders and Random Forests for Face Detection,Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6091578,-3.97934429228629
+d122d66c51606a8157a461b9d7eb8b6af3d819b0,Automated Recognition of Facial Expressions,METs Institute of Engineering,METs Institute of Engineering,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल",28.2140454,83.9607104993073
+d122d66c51606a8157a461b9d7eb8b6af3d819b0,Automated Recognition of Facial Expressions,METs Institute of Engineering,METs Institute of Engineering,"Dihiko Paton, Pokhara Lekhnath Metropolitan Ward No. 6, Pokhara, Pokhara Lekhnath Metropolitan, कास्की, गण्डकी अञ्चल, पश्चिमाञ्चल विकास क्षेत्र, नेपाल",28.2140454,83.9607104993073
+d142e74c6a7457e77237cf2a3ded4e20f8894e1a,Human Emotion Estimation from Eeg and Face Using Statistical Features and Svm,University of telecommunications and post,"University of telecommunications and post, Sofia, Bulgaria","Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия",42.6560524,23.3476108351659
+d142e74c6a7457e77237cf2a3ded4e20f8894e1a,Human Emotion Estimation from Eeg and Face Using Statistical Features and Svm,University of telecommunications and post,"University of telecommunications and post, Sofia, Bulgaria","Висше Училище по Телекомуникации и Пощи, 1, бул. Акад. Стефан Младенов, ж.к. Студентски град, район Студентски, Столична, София-град, 1700, Бългaрия",42.6560524,23.3476108351659
+d1959ba4637739dcc6cc6995e10fd41fd6604713,Deep Learning for Semantic Video Understanding,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+d1881993c446ea693bbf7f7d6e750798bf958900,Large-Scale YouTube-8M Video Understanding with Deep Neural Networks,Institute for System Programming,Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.7449881,37.6645042069876
+d1881993c446ea693bbf7f7d6e750798bf958900,Large-Scale YouTube-8M Video Understanding with Deep Neural Networks,Institute for System Programming,Institute for System Programming,"ИСП РАН, 25, улица Александра Солженицына, Швивая горка, Таганский район, Центральный административный округ, Москва, ЦФО, 109004, РФ",55.7449881,37.6645042069876
+d69719b42ee53b666e56ed476629a883c59ddf66,Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+d69719b42ee53b666e56ed476629a883c59ddf66,Learning Facial Action Units from Web Images with Scalable Weakly Supervised Clustering,The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+d647099e571f9af3a1762f895fd8c99760a3916e,Exploring facial expressions with compositional features,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+d69271c7b77bc3a06882884c21aa1b609b3f76cc,FaceBoxes: A CPU real-time face detector with high accuracy,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+d69271c7b77bc3a06882884c21aa1b609b3f76cc,FaceBoxes: A CPU real-time face detector with high accuracy,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+d6ca3dc01de060871839d5536e8112b551a7f9ff,Sleep-deprived fatigue pattern analysis using large-scale selfies from social media,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+d61e794ec22a4d4882181da17316438b5b24890f,Detecting Sensor Level Spoof Attacks Using Joint Encoding of Temporal and Spatial Features,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+d65b82b862cf1dbba3dee6541358f69849004f30,2.5D Elastic graph matching,IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869
+d67dcaf6e44afd30c5602172c4eec1e484fc7fb7,Illumination Normalization for Robust Face Recognition Using Discrete Wavelet Transform,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.856208183836
+d68dbb71b34dfe98dee0680198a23d3b53056394,VIVA Face-off Challenge: Dataset Creation and Balancing Privacy,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+d666ce9d783a2d31550a8aa47da45128a67304a7,On Relating Visual Elements to City Statistics,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+d666ce9d783a2d31550a8aa47da45128a67304a7,On Relating Visual Elements to City Statistics,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+d666ce9d783a2d31550a8aa47da45128a67304a7,On Relating Visual Elements to City Statistics,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,Using deep autoencoders for facial expression recognition,"COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Islamabad","COMSATS Institute of Information Technology, Fence, Chak Shehzad, وفاقی دارالحکومت اسلام آباد, 45550, پاکستان",33.65010145,73.1551494914791
+bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,Using deep autoencoders for facial expression recognition,Information Technology University (ITU),"Information Technology University (ITU), Punjab, Lahore, Pakistan","Information Technology University (ITU), Ferozepur Road, Sher Shah Block, Garden Town, Al Noor Town, Lahore District, پنجاب, 54600, پاکستان",31.4760299,74.3427526
+bc15a2fd09df7046e7e8c7c5b054d7f06c3cefe9,Using deep autoencoders for facial expression recognition,National University of Sciences and Technology (NUST),"National University of Sciences and Technology (NUST), Islamabad, Pakistan","National University of Sciences and Technology (NUST), Kashmir Highway, جی - 10, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان",33.644347,72.9885079
+bc27434e376db89fe0e6ef2d2fabc100d2575ec6,Faceless Person Recognition; Privacy Implications in Social Media,Max-Planck Institute for Informatics,Max-Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,Technical University Munich,"Technical University Munich, Germany","TUM, 21, Arcisstraße, Bezirksteil Königsplatz, Stadtbezirk 03 Maxvorstadt, München, Obb, Bayern, 80333, Deutschland",48.14955455,11.5677531417838
+bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,University of Adelaide,"University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+bc910ca355277359130da841a589a36446616262,Conditional High-Order Boltzmann Machine: A Supervised Learning Model for Relation Learning,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+bc866c2ced533252f29cf2111dd71a6d1724bd49,A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+bc8e11b8cdf0cfbedde798a53a0318e8d6f67e17,Deep Learning for Fixed Model Reuse,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+ae0765ebdffffd6e6cc33c7705df33b7e8478627,Self-Reinforced Cascaded Regression for Face Alignment,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+ae0765ebdffffd6e6cc33c7705df33b7e8478627,Self-Reinforced Cascaded Regression for Face Alignment,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+aefc7c708269b874182a5c877fb6dae06da210d4,Deep Learning of Invariant Features via Simulated Fixations in Video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+aefc7c708269b874182a5c877fb6dae06da210d4,Deep Learning of Invariant Features via Simulated Fixations in Video,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+aeaf5dbb3608922246c7cd8a619541ea9e4a7028,Weakly Supervised Facial Action Unit Recognition through Adversarial Training,University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+ae836e2be4bb784760e43de88a68c97f4f9e44a1,Semi-SupervisedDimensionalityReduction ∗,Nanjing University,"Nanjing University, Nanjing 210093, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+ae836e2be4bb784760e43de88a68c97f4f9e44a1,Semi-SupervisedDimensionalityReduction ∗,Nanjing University of Aeronautics and Astronautics,"Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China","南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,"Analysis of Recognition Algorithms using Linear, Generalized Linear, and Generalized Linear Mixed Models",Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+ae5bb02599244d6d88c4fe466a7fdd80aeb91af4,"Analysis of Recognition Algorithms using Linear, Generalized Linear, and Generalized Linear Mixed Models",Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+ae18ccb35a1a5d7b22f2a5760f706b1c11bf39a9,Sensing Highly Non-Rigid Objects with RGBD Sensors for Robotic Systems,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078
+ae1de0359f4ed53918824271c888b7b36b8a5d41,Low-cost Automatic Inpainting for Artifact Suppression in Facial Images,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+ae4390873485c9432899977499c3bf17886fa149,Facial Expression Recognition Using Digitalised Facial Features Based on Active Shape Model,Glyndwr University,Glyndwr University,"Glyndŵr University, Mold Road, Rhosrobin, Wrexham, Wales, LL11 2AW, UK",53.05373795,-3.00482075353073
+aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+aea4128ba18689ff1af27b90c111bbd34013f8d5,Efficient k-Support Matrix Pursuit,South China Normal University,South China Normal University,"华师, 五山路, 华南理工大学南新村, 天河区, 广州市, 广东省, 510630, 中国",23.143197,113.34009651145
+ae2c71080b0e17dee4e5a019d87585f2987f0508,Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+ae2c71080b0e17dee4e5a019d87585f2987f0508,Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+ae5f32e489c4d52e7311b66060c7381d932f4193,Appearance-and-Relation Networks for Video Classification,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,That personal profile image might jeopardize your rental opportunity! On the relative impact of the seller's facial expressions upon buying behavior on Airbnb™,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+d893f75206b122973cdbf2532f506912ccd6fbe0,Facial Expressions with Some Mixed Expressions Recognition Using Neural Networks,Pondicherry Engineering College,Pondicherry Engineering College,"Pondicherry Engineering College, PEC MAIN ROAD, Sri Ma, Puducherry, Puducherry district, Puducherry, 605001, India",12.0148693,79.8480910431981
+d84a48f7d242d73b32a9286f9b148f5575acf227,Global and Local Consistent Age Generative Adversarial Networks,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+d8f0bda19a345fac81a1d560d7db73f2b4868836,Online Activity Understanding and Labeling in Natural Videos,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+d8722ffbca906a685abe57f3b7b9c1b542adfa0c,Facial Expression Analysis for Human Computer Interaction,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+d8896861126b7fd5d2ceb6fed8505a6dff83414f,In-plane Rotational Alignment of Faces by Eye and Eye-pair Detection,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+d8bf148899f09a0aad18a196ce729384a4464e2b,Facial Expression Recognition and Expression Intensity Estimation,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+d80a3d1f3a438e02a6685e66ee908446766fefa9,Quantifying Facial Age by Posterior of Age Comparisons,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+d850aff9d10a01ad5f1d8a1b489fbb3998d0d80e,Recognizing and Segmenting Objects in the Presence of Occlusion and Clutter,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ab734bac3994b00bf97ce22b9abc881ee8c12918,Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+ab734bac3994b00bf97ce22b9abc881ee8c12918,Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+ab0f9bc35b777eaefff735cb0dd0663f0c34ad31,Semi-supervised Learning of Geospatial Objects through Multi-modal Data Integration,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+abb396490ba8b112f10fbb20a0a8ce69737cd492,Robust Face Recognition Using Color Information,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+abac0fa75281c9a0690bf67586280ed145682422,Describable Visual Attributes for Face Images,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+abba1bf1348a6f1b70a26aac237338ee66764458,Facial Action Unit Detection Using Attention and Relation Learning,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+abdd17e411a7bfe043f280abd4e560a04ab6e992,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+ab427f0c7d4b0eb22c045392107509451165b2ba,Learning scale ranges for the extraction of regions of interest,Western Kentucky University,Western Kentucky University,"Western Kentucky University, Avenue of Champions, Bowling Green, Warren County, Kentucky, 42101, USA",36.9845317,-86.4576443016944
+e5e5f31b81ed6526c26d277056b6ab4909a56c6c,Revisit Multinomial Logistic Regression in Deep Learning: Data Dependent Model Initialization for Image Recognition,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+e506cdb250eba5e70c5147eb477fbd069714765b,Heterogeneous Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+e572c42d8ef2e0fadedbaae77c8dfe05c4933fbf,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+e59813940c5c83b1ce63f3f451d03d34d2f68082,A Real-Time Facial Expression Recognition System for Online Games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+e5b301ee349ba8e96ea6c71782295c4f06be6c31,The Case for Onloading Continuous High-Datarate Perception to the Phone,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+e5b301ee349ba8e96ea6c71782295c4f06be6c31,The Case for Onloading Continuous High-Datarate Perception to the Phone,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+e569f4bd41895028c4c009e5b46b935056188e91,"FISHER VECTOR FACES IN THE WILD 3 Facial landmark detection Aligned and cropped face Dense SIFT , GMM , and FV Discriminative dim",University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+e5fbffd3449a2bfe0acb4ec339a19f5b88fff783,Self-supervised learning of a facial attribute embedding from video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+e5d53a335515107452a30b330352cad216f88fc3,Generalized Loss-Sensitive Adversarial Learning with Manifold Margins,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+e293a31260cf20996d12d14b8f29a9d4d99c4642,LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+e20e2db743e8db1ff61279f4fda32bf8cf381f8e,Deep Cross Polarimetric Thermal-to-Visible Face Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+f43eeb578e0ca48abfd43397bbd15825f94302e4,Optical computer recognition of facial expressions associated with stress induced by performance demands.,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+f4f9697f2519f1fe725ee7e3788119ed217dca34,Selfie-Presentation in Everyday Life: A Large-Scale Characterization of Selfie Contexts on Instagram,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+f4210309f29d4bbfea9642ecadfb6cf9581ccec7,An Agreement and Sparseness-based Learning Instance Selection and its Application to Subjective Speech Phenomena,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+f4d30896c5f808a622824a2d740b3130be50258e,"DS++: A flexible, scalable and provably tight relaxation for matching problems",Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+f4aed1314b2d38fd8f1b9d2bc154295bbd45f523,Subspace Clustering using Ensembles of $K$-Subspaces,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+f3ca2c43e8773b7062a8606286529c5bc9b3ce25,Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+f3015be0f9dbc1a55b6f3dc388d97bb566ff94fe,A Study on the Effective Approach to Illumination-Invariant Face Recognition Based on a Single Image,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+f3a59d85b7458394e3c043d8277aa1ffe3cdac91,Query-Free Attacks on Industry-Grade Face Recognition Systems under Resource Constraints,Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.8795690544362
+f3f77b803b375f0c63971b59d0906cb700ea24ed,Feature Extraction for Facial Expression Recognition based on Hybrid Face Regions,RMIT University,"RMIT University, Australia","RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+f3df296de36b7c114451865778e211350d153727,Spatio-Temporal Facial Expression Recognition Using Convolutional Neural Networks and Conditional Random Fields,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+f3fed71cc4fc49b02067b71c2df80e83084b2a82,Learning Sparse Latent Representations with the Deep Copula Information Bottleneck,University of Basel,"University of Basel, Switzerland","Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+f35a493afa78a671b9d2392c69642dcc3dd2cdc2,Automatic Attribute Discovery with Neural Activations,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+f35a493afa78a671b9d2392c69642dcc3dd2cdc2,Automatic Attribute Discovery with Neural Activations,Tohoku University,"Tohoku University, Japan","Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+eb100638ed73b82e1cce8475bb8e180cb22a09a2,Temporal Action Detection with Structured Segment Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+eb6ee56e085ebf473da990d032a4249437a3e462,Age/gender classification with whole-component convolutional neural networks (WC-CNN),University of Southern California,"University of Southern California, Los Angeles, CA 90089, USA","University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+eb8519cec0d7a781923f68fdca0891713cb81163,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+eb8519cec0d7a781923f68fdca0891713cb81163,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+ebb1c29145d31c4afa3c9be7f023155832776cd3,CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+ebb1c29145d31c4afa3c9be7f023155832776cd3,CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+ebb1c29145d31c4afa3c9be7f023155832776cd3,CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.2662887,82.9927969
+eb70c38a350d13ea6b54dc9ebae0b64171d813c9,"On Graph-Structured Discrete Labelling Problems in Computer Vision : Learning , Inference and Applications",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+eb027969f9310e0ae941e2adee2d42cdf07d938c,VGGFace2: A Dataset for Recognising Faces across Pose and Age,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+eb7b387a3a006609b89ca5ed0e6b3a1d5ecb5e5a,Facial Expression Recognition using Neural Network,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909
+c71f36c9376d444075de15b1102b4974481be84d,"3D morphable models : data pre-processing, statistical analysis and fitting",The University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+c7c53d75f6e963b403057d8ba5952e4974a779ad,Aging effects in automated face recognition,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+c7c53d75f6e963b403057d8ba5952e4974a779ad,Aging effects in automated face recognition,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+c79cf7f61441195404472102114bcf079a72138a,Pose-Invariant 2 D Face Recognition by Matching Using Graphical Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+c79cf7f61441195404472102114bcf079a72138a,Pose-Invariant 2 D Face Recognition by Matching Using Graphical Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+c73dd452c20460f40becb1fd8146239c88347d87,Manifold Constrained Low-Rank Decomposition,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+c72e6992f44ce75a40f44be4365dc4f264735cfb,Story Understanding in Video Advertisements,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+c72e6992f44ce75a40f44be4365dc4f264735cfb,Story Understanding in Video Advertisements,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+c74aba9a096379b3dbe1ff95e7af5db45c0fd680,Neuro-Fuzzy Analysis of Facial Action Units and Expressions,Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران",35.7036227,51.351250969544
+c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,The Impact of Product Photo on Online Consumer Purchase Intention: an Image-Processing Enabled Empirical Study,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,The Impact of Product Photo on Online Consumer Purchase Intention: an Image-Processing Enabled Empirical Study,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+c7c5f0fe1fcaf3787c7f78f7dc62f3497dcfdf3c,The Impact of Product Photo on Online Consumer Purchase Intention: an Image-Processing Enabled Empirical Study,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+c71217b2b111a51a31cf1107c71d250348d1ff68,One Network to Solve Them All — Solving Linear Inverse Problems Using Deep Projection Models,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+c76f64e87f88475069f7707616ad9df1719a6099,T-RECS: Training for Rate-Invariant Embeddings by Controlling Speed for Action Recognition,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+c7f0c0636d27a1d45b8fcef37e545b902195d937,Towards Around-Device Interaction using Corneal Imaging,Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.9519648264628
+c7f0c0636d27a1d45b8fcef37e545b902195d937,Towards Around-Device Interaction using Corneal Imaging,Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.9519648264628
+c74b1643a108939c6ba42ae4de55cb05b2191be5,Non-negative Matrix Factorization for Face Illumination Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+c74b1643a108939c6ba42ae4de55cb05b2191be5,Non-negative Matrix Factorization for Face Illumination Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+c74b1643a108939c6ba42ae4de55cb05b2191be5,Non-negative Matrix Factorization for Face Illumination Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+c75e6ce54caf17b2780b4b53f8d29086b391e839,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+c0723e0e154a33faa6ff959d084aebf07770ffaf,Interpolation Between Eigenspaces Using Rotation in Multiple Dimensions,Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282
+c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,Locality-Constrained Active Appearance Model,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,Locality-Constrained Active Appearance Model,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+c035c193eed5d72c7f187f0bc880a17d217dada0,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+c035c193eed5d72c7f187f0bc880a17d217dada0,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+c0cdaeccff78f49f4604a6d263dc6eb1bb8707d5,MLP Neural Network Based Approach for Facial Expression Analysis,Kent State University,Kent State University,"Kent State University, Lester A. Lefton Esplanade, Whitehall Terrace, Kent, Portage County, Ohio, 44242-0001, USA",41.1443525,-81.3398283284572
+c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,Learning deep representation from coarse to fine for face alignment,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+c089c7d8d1413b54f59fc410d88e215902e51638,TVParser: An automatic TV video parsing method,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+c089c7d8d1413b54f59fc410d88e215902e51638,TVParser: An automatic TV video parsing method,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+c0ee89dc2dad76147780f96294de9e421348c1f4,Efficiently detecting outlying behavior in video-game players,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318
+c0ee89dc2dad76147780f96294de9e421348c1f4,Efficiently detecting outlying behavior in video-game players,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318
+c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774,A Two-Layer Representation For Large-Scale Action Recognition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+c0ca6b992cbe46ea3003f4e9b48f4ef57e5fb774,A Two-Layer Representation For Large-Scale Action Recognition,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+c00df53bd46f78ae925c5768d46080159d4ef87d,Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+c05441dd1bc418fb912a6fafa84c0659a6850bf0,Face recognition under varying illumination based on adaptive homomorphic eight local directional patterns,Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309
+ee6b503ab512a293e3088fdd7a1c893a77902acb,Automatic Name-Face Alignment to Enable Cross-Media News Retrieval,The University of North Carolina at Charlotte,The University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+ee6b503ab512a293e3088fdd7a1c893a77902acb,Automatic Name-Face Alignment to Enable Cross-Media News Retrieval,Fudan University,"Fudan University, Shanghai, China","复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+eeb6d084f9906c53ec8da8c34583105ab5ab8284,Generation of Facial Expression Map using Supervised and Unsupervised Learning,Akita Prefectural University,Akita Prefectural University,"秋田県立大学, 秋田天王線, 潟上市, 秋田県, 東北地方, 011-0946, 日本",39.8011499,140.045911602376
+eeb6d084f9906c53ec8da8c34583105ab5ab8284,Generation of Facial Expression Map using Supervised and Unsupervised Learning,Akita University,Akita University,"秋田大学手形キャンパス, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-0864, 日本",39.7278142,140.133225661449
+ee815f60dc4a090fa9fcfba0135f4707af21420d,EAC-Net: A Region-Based Deep Enhancing and Cropping Approach for Facial Action Unit Detection,CUNY City College,CUNY City College,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France",45.5546608,5.4065255
+eed7920682789a9afd0de4efd726cd9a706940c8,Computers to Help with Conversations : Affective Framework to Enhance Human Nonverbal Skills,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+ee7093e91466b81d13f4d6933bcee48e4ee63a16,Discovering Person Identity via Large-Scale Observations,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+ee7093e91466b81d13f4d6933bcee48e4ee63a16,Discovering Person Identity via Large-Scale Observations,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+ee418372b0038bd3b8ae82bd1518d5c01a33a7ec,CSE 255 Winter 2015 Assignment 1: Eye Detection using Histogram of Oriented Gradients and Adaboost Classifier,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+eee06d68497be8bf3a8aba4fde42a13aa090b301,CR-GAN: Learning Complete Representations for Multi-view Generation,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+eee06d68497be8bf3a8aba4fde42a13aa090b301,CR-GAN: Learning Complete Representations for Multi-view Generation,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+eee2d2ac461f46734c8e674ae14ed87bbc8d45c6,Generalized Rank Pooling for Activity Recognition,The Australian National University,"The Australian National University, Canberra, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+eed93d2e16b55142b3260d268c9e72099c53d5bc,ICFVR 2017: 3rd international competition on finger vein recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+c94b3a05f6f41d015d524169972ae8fd52871b67,The Fastest Deformable Part Model for Object Detection,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+c9424d64b12a4abe0af201e7b641409e182babab,"Which, When, and How: Hierarchical Clustering with Human-Machine Cooperation",Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+c97a5f2241cc6cd99ef0c4527ea507a50841f60b,Person Search in Videos with One Portrait Through Visual and Temporal Links,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+c97a5f2241cc6cd99ef0c4527ea507a50841f60b,Person Search in Videos with One Portrait Through Visual and Temporal Links,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+c95cd36779fcbe45e3831ffcd3314e19c85defc5,Face recognition using multi-modal low-rank dictionary learning,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346
+c9e955cb9709f16faeb0c840f4dae92eb875450a,Proposal of Novel Histogram Features for Face Detection,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+c92bb26238f6e30196b0c4a737d8847e61cfb7d4,Beyond Context: Exploring Semantic Similarity for Tiny Face Detection,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+c92bb26238f6e30196b0c4a737d8847e61cfb7d4,Beyond Context: Exploring Semantic Similarity for Tiny Face Detection,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+c92bb26238f6e30196b0c4a737d8847e61cfb7d4,Beyond Context: Exploring Semantic Similarity for Tiny Face Detection,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+c9bbd7828437e70cc3e6863b278aa56a7d545150,Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+c9f588d295437009994ddaabb64fd4e4c499b294,Predicting Professions through Probabilistic Model under Social Context,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+c92da368a6a886211dc759fe7b1b777a64d8b682,Face Recognition System based on Face Pose Estimation and Frontal Face Pose Synthesis,National Chiao-Tung University,National Chiao-Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+c92da368a6a886211dc759fe7b1b777a64d8b682,Face Recognition System based on Face Pose Estimation and Frontal Face Pose Synthesis,National Chiao-Tung University,National Chiao-Tung University,"NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+c98983592777952d1751103b4d397d3ace00852d,Face Synthesis from Facial Identity Features,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+c9367ed83156d4d682cefc59301b67f5460013e0,Geometry-Contrastive Generative Adversarial Network for Facial Expression Synthesis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+fc5bdb98ff97581d7c1e5eb2d24d3f10714aa192,Initialization Strategies of Spatio-Temporal Convolutional Neural Networks,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+fc20149dfdff5fdf020647b57e8a09c06e11434b,Local Discriminant Wavelet Packet Coordinates for Face Recognition,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+fc0f5859a111fb17e6dcf6ba63dd7b751721ca61,Design of an Automatic Facial Expression Detector,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+fcbec158e6a4ace3d4311b26195482b8388f0ee9,Face Recognition from Still Images and Videos,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+fcf91995dc4d9b0cee84bda5b5b0ce5b757740ac,Asymmetric Discrete Graph Hashing,University of Florida,"University of Florida, Gainesville, FL, 32611, USA","University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA",29.6447739,-82.3575193392276
+fc798314994bf94d1cde8d615ba4d5e61b6268b6,"Face Recognition : face in video , age invariance , and facial marks",Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+fc23a386c2189f221b25dbd0bb34fcd26ccf60fa,A Discriminative Latent Model of Object Classes and Attributes,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+fc68c5a3ab80d2d31e6fd4865a7ff2b4ab66ca9f,Evaluation Criteria for Affect-Annotated Databases,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.6171601574695
+fc2bad3544c7c8dc7cd182f54888baf99ed75e53,Efficient Retrieval for Large Scale Metric Learning,Graz University of Technology,"Graz University of Technology, Austria","TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,Continuous Supervised Descent Method for Facial Landmark Localisation,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,Continuous Supervised Descent Method for Facial Landmark Localisation,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+fdff2da5bdca66e0ab5874ef58ac2205fb088ed7,Continuous Supervised Descent Method for Facial Landmark Localisation,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+fdfd57d4721174eba288e501c0c120ad076cdca8,An Analysis of Action Recognition Datasets for Language and Vision Tasks,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+fd33df02f970055d74fbe69b05d1a7a1b9b2219b,Single Shot Temporal Action Detection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+fd33df02f970055d74fbe69b05d1a7a1b9b2219b,Single Shot Temporal Action Detection,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+fd15e397629e0241642329fc8ee0b8cd6c6ac807,Semi-Supervised Clustering with Neural Networks,"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248
+fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f,Deep Verification Learning,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,Apparent Age Estimation Using Ensemble of Deep Learning Models,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+fd71ae9599e8a51d8a61e31e6faaaf4a23a17d81,Action Detection from a Robot-Car Perspective,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+fd10b0c771a2620c0db294cfb82b80d65f73900d,Identifying The Most Informative Features Using A Structurally Interacting Elastic Net,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+fd10b0c771a2620c0db294cfb82b80d65f73900d,Identifying The Most Informative Features Using A Structurally Interacting Elastic Net,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+fd7b6c77b46420c27725757553fcd1fb24ea29a8,MEXSVMs: Mid-level Features for Scalable Action Recognition,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e,Recognizing Frustration of Drivers From Face Video Recordings and Brain Activation Measurements With Functional Near-Infrared Spectroscopy,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+fd892e912149e3f5ddd82499e16f9ea0f0063fa3,Isyn Initialization Minimizing E ( Φ ) Analysis Synthesis Fitted model Redirection optical ow Warp eyelids Overlay eyeballs Stage 1 : Eye region tracking Stage 2 : Eye gaze redirection Input image Iobs New gaze target g ’ Iobs,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+fd892e912149e3f5ddd82499e16f9ea0f0063fa3,Isyn Initialization Minimizing E ( Φ ) Analysis Synthesis Fitted model Redirection optical ow Warp eyelids Overlay eyeballs Stage 1 : Eye region tracking Stage 2 : Eye gaze redirection Input image Iobs New gaze target g ’ Iobs,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+fde0180735699ea31f6c001c71eae507848b190f,Face Detection and Sex Identification from Color Images using AdaBoost with SVM based Component Classifier,University of Information,University of Information,"Information, University Parkway, San Bernardino, San Bernardino County, California, 92407, USA",34.17980475,-117.325843648456
+fde0180735699ea31f6c001c71eae507848b190f,Face Detection and Sex Identification from Color Images using AdaBoost with SVM based Component Classifier,International University of,International University of,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រកម្ពុជា",11.5744201,104.8775841
+fde0180735699ea31f6c001c71eae507848b190f,Face Detection and Sex Identification from Color Images using AdaBoost with SVM based Component Classifier,International University of,International University of,"International University, ផ្លូវ ១៩៨៤, ភូមិភ្នំពេញថ្មី, ខណ្ឌសែនសុខ, រាជធានីភ្នំពេញ, 12101, ព្រះរាជាណាចក្រកម្ពុជា",11.5744201,104.8775841
+fdf8e293a7618f560e76bd83e3c40a0788104547,Interspecies Knowledge Transfer for Facial Keypoint Detection,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+fdf8e293a7618f560e76bd83e3c40a0788104547,Interspecies Knowledge Transfer for Facial Keypoint Detection,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+fdf8e293a7618f560e76bd83e3c40a0788104547,Interspecies Knowledge Transfer for Facial Keypoint Detection,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+f22d6d59e413ee255e5e0f2104f1e03be1a6722e,Lattice Long Short-Term Memory for Human Action Recognition,The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+f22d6d59e413ee255e5e0f2104f1e03be1a6722e,Lattice Long Short-Term Memory for Human Action Recognition,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+f22d6d59e413ee255e5e0f2104f1e03be1a6722e,Lattice Long Short-Term Memory for Human Action Recognition,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+f2b13946d42a50fa36a2c6d20d28de2234aba3b4,Adaptive facial expression recognition using inter-modal top-down context,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+f2b13946d42a50fa36a2c6d20d28de2234aba3b4,Adaptive facial expression recognition using inter-modal top-down context,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+f2c30594d917ea915028668bc2a481371a72a14d,Scene Understanding Using Internet Photo Collections,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces,Nanjing University,"Nanjing University, Nanjing 210093, P.R.China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces,North Dakota State University,North Dakota State University,"North Dakota State University, 15th Avenue North, Fargo, Cass County, North Dakota, 58102, USA",46.897155,-96.8182760282419
+f257300b2b4141aab73f93c146bf94846aef5fa1,Eigen Evolution Pooling for Human Action Recognition,Stony Brook University,"Stony Brook University, Stony Brook, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+f20e0eefd007bc310d2a753ba526d33a8aba812c,Accurate and robust face recognition from RGB-D images with a deep learning approach,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,Harbin Institute of Technology;Shenzhen University,Harbin Institute of Technology;Shenzhen University,"哈工大(深圳), 平山一路, 深圳大学城, 珠光村, 南山区, 深圳市, 广东省, 518000, 中国",22.5895016,113.965710495775
+f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,The University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+f5149fb6b455a73734f1252a96a9ce5caa95ae02,Low-Rank-Sparse Subspace Representation for Robust Regression,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+f58d584c4ac93b4e7620ef6e5a8f20c6f6da295e,Feature Selection Guided Auto-Encoder,Northeastern University,"Northeastern University, Boston, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+f5eb0cf9c57716618fab8e24e841f9536057a28a,Rethinking Feature Distribution for Loss Functions in Image Classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+f571fe3f753765cf695b75b1bd8bed37524a52d2,Submodular Attribute Selection for Action Recognition in Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+f571fe3f753765cf695b75b1bd8bed37524a52d2,Submodular Attribute Selection for Action Recognition in Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+f571fe3f753765cf695b75b1bd8bed37524a52d2,Submodular Attribute Selection for Action Recognition in Video,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+f5fae7810a33ed67852ad6a3e0144cb278b24b41,Multilingual Gender Classification with Multi-view Deep Learning: Notebook for PAN at CLEF 2018,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+f5af4e9086b0c3aee942cb93ece5820bdc9c9748,Enhancing Person Annotation,DUBLIN CITY UNIVERSITY,DUBLIN CITY UNIVERSITY,"Dublin City University Glasnevin Campus, Lower Car Park, Wad, Whitehall A ED, Dublin 9, Dublin, County Dublin, Leinster, D09 FW22, Ireland",53.38522185,-6.25740874081493
+f5aee1529b98136194ef80961ba1a6de646645fe,Large-scale learning of discriminative image representations,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+f52efc206432a0cb860155c6d92c7bab962757de,Mugshot Database Acquisition in Video Surveillance Networks Using Incremental Auto-Clustering Quality Measures,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+f5eb411217f729ad7ae84bfd4aeb3dedb850206a,Tackling Low Resolution for Better Scene Understanding,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+e35b09879a7df814b2be14d9102c4508e4db458b,Optimal Sensor Placement and Enhanced Sparsity for Classification,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+e35b09879a7df814b2be14d9102c4508e4db458b,Optimal Sensor Placement and Enhanced Sparsity for Classification,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+e3b324101157daede3b4d16bdc9c2388e849c7d4,"Robust Real-Time 3 D Face Tracking from RGBD Videos under Extreme Pose , Depth , and Expression Variations",Rutgers University,"Rutgers University, USA","Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+e3c011d08d04c934197b2a4804c90be55e21d572,How to Train Triplet Networks with 100K Identities?,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+e3c011d08d04c934197b2a4804c90be55e21d572,How to Train Triplet Networks with 100K Identities?,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+e3c011d08d04c934197b2a4804c90be55e21d572,How to Train Triplet Networks with 100K Identities?,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+e3bb83684817c7815f5005561a85c23942b1f46b,Face Verification using Correlation Filters,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e3bb83684817c7815f5005561a85c23942b1f46b,Face Verification using Correlation Filters,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e3bb83684817c7815f5005561a85c23942b1f46b,Face Verification using Correlation Filters,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e30dc2abac4ecc48aa51863858f6f60c7afdf82a,Facial Signs and Psycho-physical Status Estimation for Well-being Assessment,Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+e379e73e11868abb1728c3acdc77e2c51673eb0d,Face Databases,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,Weakly Supervised Learning for Unconstrained Face Processing,University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,Weakly Supervised Learning for Unconstrained Face Processing,University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+e3a6e9ddbbfc4c5160082338d46808cea839848a,Vision-Based Classification of Developmental Disorders Using Eye-Movements,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+e3c8e49ffa7beceffca3f7f276c27ae6d29b35db,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+e38371b69be4f341baa95bc854584e99b67c6d3a,DYAN: A Dynamical Atoms-Based Network for Video Prediction,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+e328d19027297ac796aae2470e438fe0bd334449,Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex,University of Malaya,"University of Malaya, Kuala Lumpur, Malaysia","UM, Lingkaran Wawasan, Bukit Pantai, Bangsar, KL, 50603, Malaysia",3.12267405,101.65356103394
+e328d19027297ac796aae2470e438fe0bd334449,Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex,Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+e328d19027297ac796aae2470e438fe0bd334449,Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex,Multimedia University,"Multimedia University, Cyberjaya, Malaysia","Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+e3a6e5a573619a97bd6662b652ea7d088ec0b352,Compare and Contrast: Learning Prominent Visual Differences,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+cfeb26245b57dd10de8f187506d4ed5ce1e2b7dd,CapsNet comparative performance evaluation for image classification,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+cffebdf88e406c27b892857d1520cb2d7ccda573,Learning from Large-scale Visual Data for Robots,of Cornell University,of Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+cfd933f71f4a69625390819b7645598867900eab,Person Authentication Using Face And Palm Vein: A Survey Of Recognition And Fusion Techniques,college of Engineering,college of Engineering,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0110912,80.2354520862161
+cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,Towards Arbitrary-View Face Alignment by Recommendation Trees,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,Towards Arbitrary-View Face Alignment by Recommendation Trees,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+cfa931e6728a825caada65624ea22b840077f023,Deformable Generator Network: Unsupervised Disentanglement of Appearance and Geometry,Harbin Engineering University,Harbin Engineering University,"哈尔滨工程大学, 文庙街 - Wenmiao Street, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.77445695,126.676849168143
+cfa931e6728a825caada65624ea22b840077f023,Deformable Generator Network: Unsupervised Disentanglement of Appearance and Geometry,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+cff911786b5ac884bb71788c5bc6acf6bf569eff,Multi-task Learning of Cascaded CNN for Facial Attribute Classification,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+cf09e2cb82961128302b99a34bff91ec7d198c7c,Office Entrance Control with Face Recognition,National Taiwan University,"National Taiwan University, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+cf09e2cb82961128302b99a34bff91ec7d198c7c,Office Entrance Control with Face Recognition,National Taiwan University,"National Taiwan University, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,"University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video",University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,"University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video",Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+cfc4aa456d9da1a6fabd7c6ca199332f03e35b29,"University of Amsterdam and Renmin University at TRECVID 2016: Searching Video, Detecting Events and Describing Video","Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,Quaero at TRECVID 2010: Semantic Indexing,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+ca54d0a128b96b150baef392bf7e498793a6371f,Improve Pedestrian Attribute Classification by Weighted Interactions from Other Attributes,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+e48fb3ee27eef1e503d7ba07df8eb1524c47f4a6,Illumination invariant face recognition and impostor rejection using different MINACE filter algorithms,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e4bc529ced68fae154e125c72af5381b1185f34e,Perceptual Goal Specifications for Reinforcement Learning,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,Generic Active Appearance Models Revisited,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,Generic Active Appearance Models Revisited,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+e42998bbebddeeb4b2bedf5da23fa5c4efc976fa,Generic Active Appearance Models Revisited,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+e4df83b7424842ff5864c10fa55d38eae1c45fac,Locally Linear Discriminate Embedding for Face Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+e4e3faa47bb567491eaeaebb2213bf0e1db989e1,Empirical Risk Minimization for Metric Learning Using Privileged Information,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+e4e3faa47bb567491eaeaebb2213bf0e1db989e1,Empirical Risk Minimization for Metric Learning Using Privileged Information,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+e43045a061421bd79713020bc36d2cf4653c044d,A New Representation of Skeleton Sequences for 3D Action Recognition,The University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+fe7e3cc1f3412bbbf37d277eeb3b17b8b21d71d5,Performance Evaluation of Gabor Wavelet Features for Face Representation and Recognition,Technological University,Technological University,"UBDT College of Engineering, College Private Road, K.T. Jambanna Nagara, Davanagere, Davanagere taluku, Davanagere district, Karnataka, 577000, India",14.4525199,75.9179512
+fe5df5fe0e4745d224636a9ae196649176028990,Using Context to Enhance the Understanding of Face Images,University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+fe5df5fe0e4745d224636a9ae196649176028990,Using Context to Enhance the Understanding of Face Images,University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+fe961cbe4be0a35becd2d722f9f364ec3c26bd34,"Computer-based Tracking, Analysis, and Visualization of Linguistically Significant Nonmanual Events in American Sign Language (ASL)",Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+fe961cbe4be0a35becd2d722f9f364ec3c26bd34,"Computer-based Tracking, Analysis, and Visualization of Linguistically Significant Nonmanual Events in American Sign Language (ASL)",Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936
+feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,King Saud University,"King Saud University, Riyadh 11543, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,King Saud University,"King Saud University, Riyadh 11543, Saudi Arabia","King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+c87f7ee391d6000aef2eadb49f03fc237f4d1170,A real-time and unsupervised face Re-Identification system for Human-Robot Interaction,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,Track Facial Points in Unconstrained Videos,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+c8292aa152a962763185e12fd7391a1d6df60d07,Camera Distance from Face Images,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+c829be73584966e3162f7ccae72d9284a2ebf358,shuttleNet: A biologically-inspired RNN with loop connection and parameter sharing,Peking University,"Peking University, Beijing, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+c829be73584966e3162f7ccae72d9284a2ebf358,shuttleNet: A biologically-inspired RNN with loop connection and parameter sharing,"Beijing Institute of Technology, Beijing, China","Beijing Institute of Technology, Beijing, China","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+c87d5036d3a374c66ec4f5870df47df7176ce8b9,Temporal Dynamics of Natural Static Emotional Facial Expressions Decoding: A Study Using Event- and Eye Fixation-Related Potentials,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+c8e84cdff569dd09f8d31e9f9ba3218dee65e961,Dictionaries for image and video-based face recognition [Invited].,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+c8e84cdff569dd09f8d31e9f9ba3218dee65e961,Dictionaries for image and video-based face recognition [Invited].,"National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Gaithersburg, MD 20899, USA","National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+c8829013bbfb19ccb731bd54c1a885c245b6c7d7,Flexible Template and Model Matching Using Image Intensity,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+c88ce5ef33d5e544224ab50162d9883ff6429aa3,Face Match for Family Reunification: Real-World Face Image Retrieval,Central Washington University,Central Washington University,"Central Washington University, Dean Nicholson Boulevard, Ellensburg, Kittitas County, Washington, 98926, USA",47.00646895,-120.53673039883
+c822bd0a005efe4ec1fea74de534900a9aa6fb93,Face recognition committee machines: dynamic vs. static structures,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+c88c21eb9a8e08b66c981db35f6556f4974d27a8,Attribute Learning using Joint Human and Machine Computation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+c88c21eb9a8e08b66c981db35f6556f4974d27a8,Attribute Learning using Joint Human and Machine Computation,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+fb2cc3501fc89f92f5ee130d66e69854f8a9ddd1,Learning Discriminative Features via Label Consistent Neural Network,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+fbb6ee4f736519f7231830a8e337b263e91f06fe,Illumination Robust Facial Feature Detection via Decoupled Illumination and Texture Features,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+fb87045600da73b07f0757f345a937b1c8097463,Reflective Regression of 2D-3D Face Shape Across Large Pose,The University of Hong Kong,The University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+fb85867c989b9ee6b7899134136f81d6372526a9,Learning to Align Images using Weak Geometric Supervision,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+fb85867c989b9ee6b7899134136f81d6372526a9,Learning to Align Images using Weak Geometric Supervision,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a,Beauty and the Burst: Remote Identification of Encrypted Video Streams,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+fb54d3c37dc82891ff9dc7dd8caf31de00c40d6a,Beauty and the Burst: Remote Identification of Encrypted Video Streams,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+fb084b1fe52017b3898c871514cffcc2bdb40b73,Illumination Normalization of Face Image Based on Illuminant Direction Estimation and Improved Retinex,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+fb084b1fe52017b3898c871514cffcc2bdb40b73,Illumination Normalization of Face Image Based on Illuminant Direction Estimation and Improved Retinex,University POLITEHNICA Timisoara,University POLITEHNICA Timisoara,"UPT, Bulevardul Vasile Pârvan, Elisabetin, Timișoara, Timiș, 300223, România",45.746189,21.2275507517647
+ed0cf5f577f5030ac68ab62fee1cf065349484cc,Revisiting data normalization for appearance-based gaze estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+ed0cf5f577f5030ac68ab62fee1cf065349484cc,Revisiting data normalization for appearance-based gaze estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+ed0cf5f577f5030ac68ab62fee1cf065349484cc,Revisiting data normalization for appearance-based gaze estimation,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+edde81b2bdd61bd757b71a7b3839b6fef81f4be4,Part Localization using Multi-Proposal Consensus for Fine-Grained Categorization,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+edf98a925bb24e39a6e6094b0db839e780a77b08,Simplex Representation for Subspace Clustering,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+ed9d11e995baeec17c5d2847ec1a8d5449254525,Efficient Gender Classification Using a Deep LDA-Pruned Net,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+ed07856461da6c7afa4f1782b5b607b45eebe9f6,D Morphable Models as Spatial Transformer Networks,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+ed07856461da6c7afa4f1782b5b607b45eebe9f6,D Morphable Models as Spatial Transformer Networks,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+ed1886e233c8ecef7f414811a61a83e44c8bbf50,Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment,Warsaw University of Technology,Warsaw University of Technology,"Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511
+edd7504be47ebc28b0d608502ca78c0aea6a65a2,Recurrent Residual Learning for Action Recognition,University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+ed388878151a3b841f95a62c42382e634d4ab82e,DenseImage Network: Video Spatial-Temporal Evolution Encoding and Understanding,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+ed388878151a3b841f95a62c42382e634d4ab82e,DenseImage Network: Video Spatial-Temporal Evolution Encoding and Understanding,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+edbb8cce0b813d3291cae4088914ad3199736aa0,Efficient Subspace Segmentation via Quadratic Programming,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+edbb8cce0b813d3291cae4088914ad3199736aa0,Efficient Subspace Segmentation via Quadratic Programming,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+edbb8cce0b813d3291cae4088914ad3199736aa0,Efficient Subspace Segmentation via Quadratic Programming,Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.849092139632
+edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+edff76149ec44f6849d73f019ef9bded534a38c2,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+ed96f2eb1771f384df2349879970065a87975ca7,Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+ed96f2eb1771f384df2349879970065a87975ca7,Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+c180f22a9af4a2f47a917fd8f15121412f2d0901,Facial Expression Recognition by ICA with Selective Prior,"Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","Japan Advanced Institute of Science and Technology, Ishikawa-ken 923-1211, Japan","JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+c146aa6d56233ce700032f1cb179700778557601,3D Morphable Models as Spatial Transformer Networks,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+c146aa6d56233ce700032f1cb179700778557601,3D Morphable Models as Spatial Transformer Networks,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+c1f07ec629be1c6fe562af0e34b04c54e238dcd1,A Novel Facial Feature Localization Method Using Probabilistic-like Output,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+c17a332e59f03b77921942d487b4b102b1ee73b6,Learning an appearance-based gaze estimator from one million synthesised images,University of Cambridge,"University of Cambridge, United Kingdom","Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+c17a332e59f03b77921942d487b4b102b1ee73b6,Learning an appearance-based gaze estimator from one million synthesised images,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+c17a332e59f03b77921942d487b4b102b1ee73b6,Learning an appearance-based gaze estimator from one million synthesised images,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+c10b0a6ba98aa95d740a0d60e150ffd77c7895ad,Deep Fisher Faces,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+c1298120e9ab0d3764512cbd38b47cd3ff69327b,Disguised Faces in the Wild,"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+c1298120e9ab0d3764512cbd38b47cd3ff69327b,Disguised Faces in the Wild,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+c696c9bbe27434cb6279223a79b17535cd6e88c8,Facial Expression Recognition with Pyramid Gabor Features and Complete Kernel Fisher Linear Discriminant Analysis,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,Recurrent Neural Networks for Facial Action Unit Recognition from Image Sequences,University of Witwatersrand,University of Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205
+c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,Recurrent Neural Networks for Facial Action Unit Recognition from Image Sequences,University of the Western Cape,University of the Western Cape,"University of the Western Cape, Park Road, Cape Town Ward 9, Bellville, City of Cape Town, Western Cape, 7493, South Africa",-33.9327762,18.6291540714825
+c65e4ffa2c07a37b0bb7781ca4ec2ed7542f18e3,Recurrent Neural Networks for Facial Action Unit Recognition from Image Sequences,Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.7855350558467
+c6096986b4d6c374ab2d20031e026b581e7bf7e9,A Framework for Using Context to Understand Images of People,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+c6608fdd919f2bc4f8d7412bab287527dcbcf505,Unsupervised Alignment of Natural Language with Video,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+c62c910264658709e9bf0e769e011e7944c45c90,Recent Progress of Face Image Synthesis,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+c678920facffd35853c9d185904f4aebcd2d8b49,Learning to Anonymize Faces for Privacy Preserving Action Detection,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+c660500b49f097e3af67bb14667de30d67db88e3,Facial Asymmetry Quantification for Expression Invariant Human Identification,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+c660500b49f097e3af67bb14667de30d67db88e3,Facial Asymmetry Quantification for Expression Invariant Human Identification,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+c660500b49f097e3af67bb14667de30d67db88e3,Facial Asymmetry Quantification for Expression Invariant Human Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+c6241e6fc94192df2380d178c4c96cf071e7a3ac,Action recognition with trajectory-pooled deep-convolutional descriptors,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+c6241e6fc94192df2380d178c4c96cf071e7a3ac,Action recognition with trajectory-pooled deep-convolutional descriptors,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+c65a394118d34beda5dd01ae0df163c3db88fceb,Finding the Best Picture: Cross-Media Retrieval of Content,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.8830686,4.7019503
+ec8ec2dfd73cf3667f33595fef84c95c42125945,Pose-Invariant Face Alignment with a Single CNN,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Carnegie Mellon University Pittsburgh,"Carnegie Mellon University Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+ec05078be14a11157ac0e1c6b430ac886124589b,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+4e7ed13e541b8ed868480375785005d33530e06d,Face recognition using deep multi-pose representations,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+4e7ed13e541b8ed868480375785005d33530e06d,Face recognition using deep multi-pose representations,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+4e7ed13e541b8ed868480375785005d33530e06d,Face recognition using deep multi-pose representations,The Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.709274809394501
+4e30107ee6a2e087f14a7725e7fc5535ec2f5a5f,Представление новостных сюжетов с помощью событийных фотографий (News Stories Representation Using Event Photos),Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.5317977694291
+4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+4e6c17966efae956133bf8f22edeffc24a0470c1,Face Classification: A Specialized Benchmark Study,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+4e6c17966efae956133bf8f22edeffc24a0470c1,Face Classification: A Specialized Benchmark Study,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+4e6c17966efae956133bf8f22edeffc24a0470c1,Face Classification: A Specialized Benchmark Study,Macau University of Science and Technology,Macau University of Science and Technology,"Universidade de Ciência e Tecnologia de Macau 澳門科技大學 Macau University of Science and Technology, 偉龍馬路 Avenida Wai Long, 氹仔Taipa, 氹仔舊城區 Vila de Taipa, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, 澳門 Macau, 853, 中国",22.15263985,113.568032061523
+4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,Dynamic Facial Expression Recognition Using Boosted Component-Based Spatiotemporal Features and Multi-classifier Fusion,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+4e1836914bbcf94dc00e604b24b1b0d6d7b61e66,Dynamic Facial Expression Recognition Using Boosted Component-Based Spatiotemporal Features and Multi-classifier Fusion,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+4e4fa167d772f34dfffc374e021ab3044566afc3,Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+4e4fa167d772f34dfffc374e021ab3044566afc3,Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+4e4fa167d772f34dfffc374e021ab3044566afc3,Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4ed54d5093d240cc3644e4212f162a11ae7d1e3b,Learning Visual Compound Models from Parallel Image-Text Datasets,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.0280421,8.51148270115395
+4ed54d5093d240cc3644e4212f162a11ae7d1e3b,Learning Visual Compound Models from Parallel Image-Text Datasets,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,How Related Exemplars Help Complex Event Detection in Web Videos?,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,How Related Exemplars Help Complex Event Detection in Web Videos?,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+4e8c608fc4b8198f13f8a68b9c1a0780f6f50105,How Related Exemplars Help Complex Event Detection in Web Videos?,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4ed2d7ecb34a13e12474f75d803547ad2ad811b2,Common Action Discovery and Localization in Unconstrained Videos,Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+4e8168fbaa615009d1618a9d6552bfad809309e9,Deep Convolutional Neural Network Features and the Original Image,The University of Texas at Dallas,The University of Texas at Dallas,"University of Texas at Dallas, Richardson, Dallas County, Texas, 78080, USA",32.9820799,-96.7566278
+4e8168fbaa615009d1618a9d6552bfad809309e9,Deep Convolutional Neural Network Features and the Original Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4e0636a1b92503469b44e2807f0bb35cc0d97652,Adversarial Localization Network,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+4e0636a1b92503469b44e2807f0bb35cc0d97652,Adversarial Localization Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+4e0636a1b92503469b44e2807f0bb35cc0d97652,Adversarial Localization Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+4ea4116f57c5d5033569690871ba294dc3649ea5,Multi-View Face Alignment Using 3D Shape Model for View Estimation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+4e4d034caa72dce6fca115e77c74ace826884c66,Sex differences in facial emotion recognition across varying expression intensity levels from videos,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+20b994a78cd1db6ba86ea5aab7211574df5940b3,Enriched Long-Term Recurrent Convolutional Network for Facial Micro-Expression Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+20b994a78cd1db6ba86ea5aab7211574df5940b3,Enriched Long-Term Recurrent Convolutional Network for Facial Micro-Expression Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+20b994a78cd1db6ba86ea5aab7211574df5940b3,Enriched Long-Term Recurrent Convolutional Network for Facial Micro-Expression Recognition,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+209324c152fa8fab9f3553ccb62b693b5b10fb4d,Visual Genome Crowdsourced Visual Knowledge Representations a Thesis Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Masters of Science,OF STANFORD UNIVERSITY,OF STANFORD UNIVERSITY,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+2050847bc7a1a0453891f03aeeb4643e360fde7d,Accio: A Data Set for Face Track Retrieval in Movies Across Age,Istanbul Technical University,"Istanbul Technical University, Istanbul, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+2050847bc7a1a0453891f03aeeb4643e360fde7d,Accio: A Data Set for Face Track Retrieval in Movies Across Age,"Karlsruhe Institute of Technology, Karlsruhe, Germany","Karlsruhe Institute of Technology, Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+20a16efb03c366fa4180659c2b2a0c5024c679da,Screening Rules for Overlapping Group Lasso,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+20e505cef6d40f896e9508e623bfc01aa1ec3120,Fast Online Incremental Attribute-based Object Classification using Stochastic Gradient Descent and Self- Organizing Incremental Neural Network,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406
+205e4d6e0de81c7dd6c83b737ffdd4519f4f7ffa,A model-based facial expression recognition algorithm using Principal Components Analysis,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+20b437dc4fc44c17f131713ffcbb4a8bd672ef00,Head Pose Tracking from RGBD Sensor Based on Direct Motion Estimation,Warsaw University of Technology,"Warsaw University of Technology, Poland","Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511
+206e24f7d4b3943b35b069ae2d028143fcbd0704,Learning Structure and Strength of CNN Filters for Small Sample Size Training,"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+208a2c50edb5271a050fa9f29d3870f891daa4dc,The resolution of facial expressions of emotion.,The Ohio State University,"The Ohio State University, Columbus, OH, USA","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+208a2c50edb5271a050fa9f29d3870f891daa4dc,The resolution of facial expressions of emotion.,The Ohio State University,"The Ohio State University, Columbus, OH, USA","The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+207798603e3089a1c807c93e5f36f7767055ec06,Modeling the correlation between modality semantics and facial expressions,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+207798603e3089a1c807c93e5f36f7767055ec06,Modeling the correlation between modality semantics and facial expressions,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+207798603e3089a1c807c93e5f36f7767055ec06,Modeling the correlation between modality semantics and facial expressions,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+20be15dac7d8a5ba4688bf206ad24cab57d532d6,Face Shape Recovery and Recognition Using a Surface Gradient Based Statistical Model,The University of York,"The University of York, Heslington, York YO10 5DD, United Kingdom","Campus Central Car Park, University Road, Heslington, York, Yorkshire and the Humber, England, YO10 5NH, UK",53.94830175,-1.05154975017361
+2042aed660796b14925db17c0a8b9fbdd7f3ebac,Saliency in Crowd,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+202dc3c6fda654aeb39aee3e26a89340fb06802a,Spatio-Temporal Instance Learning: Action Tubes from Class Supervision,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6,Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+20ebbcb6157efaacf7a1ceb99f2f3e2fdf1384e6,Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition,University Drive,University Drive,"University Drive, Ooralea, Mackay, QLD, 4740, Australia",-21.1753214,149.1432747
+20cfb4136c1a984a330a2a9664fcdadc2228b0bc,Sparse Coding Trees with application to emotion classification,Harvard University,"Harvard University, Cambridge, MA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+20c02e98602f6adf1cebaba075d45cef50de089f,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+20c02e98602f6adf1cebaba075d45cef50de089f,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+20c02e98602f6adf1cebaba075d45cef50de089f,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+2020e8c0be8fa00d773fd99b6da55029a6a83e3d,An Evaluation of the Invariance Properties of a Biologically-Inspired System for Unconstrained Face Recognition,"Massachusetts Institute of Technology, Cambridge, MA 02139, USA","Massachusetts Institute of Technology, Cambridge, MA 02139, USA","MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+189b1859f77ddc08027e1e0f92275341e5c0fdc6,Sparse Representations and Distance Learning for Attribute Based Category Recognition,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+18a9f3d855bd7728ed4f988675fa9405b5478845,An Illumination Invariant Texture Based Face Recognition,Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+18166432309000d9a5873f989b39c72a682932f5,Learning a Warped Subspace Model of Faces with Images of Unknown Pose and Illumination,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,Learning invariant representations and applications to face verification,McGovern Institute for Brain Research,McGovern Institute for Brain Research,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481
+18c6c92c39c8a5a2bb8b5673f339d3c26b8dcaae,Learning invariant representations and applications to face verification,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+185263189a30986e31566394680d6d16b0089772,Efficient Annotation of Objects for Video Analysis,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+18b9dc55e5221e704f90eea85a81b41dab51f7da,Attention-based Temporal Weighted Convolutional Neural Network for Action Recognition,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+182470fd0c18d0c5979dff75d089f1da176ceeeb,A Multimodal Annotation Schema for Non-Verbal Affective Analysis in the Health-Care Domain,Institute of Communications Engineering,Institute of Communications Engineering,"Institut für Nachrichtentechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1718573,12.0784417
+182470fd0c18d0c5979dff75d089f1da176ceeeb,A Multimodal Annotation Schema for Non-Verbal Affective Analysis in the Health-Care Domain,Ulm University,"Ulm University, Germany","HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362
+182470fd0c18d0c5979dff75d089f1da176ceeeb,A Multimodal Annotation Schema for Non-Verbal Affective Analysis in the Health-Care Domain,Information Technologies Institute,Information Technologies Institute,"公益財団法人九州先端科学技術研究所, Fukuoka SRP Center Building 7F, 百道ランプ下り入り口, 早良区, 福岡市, 福岡県, 九州地方, 814-0001, 日本",33.5934539,130.3557837
+1862cb5728990f189fa91c67028f6d77b5ac94f6,Speeding Up Tracking by Ignoring Features,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+1862bfca2f105fddfc79941c90baea7db45b8b16,Annotator rationales for visual recognition,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+187d4d9ba8e10245a34f72be96dd9d0fb393b1aa,Mining Visual Actions from Movies,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+182f3aa4b02248ff9c0f9816432a56d3c8880706,Sparse Coding for Classification via Discrimination Ensemble,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+18941b52527e6f15abfdf5b86a0086935706e83b,DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model,University of Trento,"University of Trento, Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+27a00f2490284bc0705349352d36e9749dde19ab,VoxCeleb2: Deep Speaker Recognition,University of Oxford,"University of Oxford, UK","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+271e2856e332634eccc5e80ba6fa9bbccf61f1be,3D Spatio-Temporal face recognition using dynamic range model sequences,State University of New York at Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486
+27846b464369095f4909f093d11ed481277c8bba,Real-Time Face Detection and Recognition in Complex Background,Illinois Institute of Technology,Illinois Institute of Technology,"Illinois Institute of Technology, South State Street, Bronzeville, Chicago, Cook County, Illinois, 60616, USA",41.8361963,-87.6265591274291
+27eb7a6e1fb6b42516041def6fe64bd028b7614d,Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences,University of Twente,"University of Twente, The Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+27eb7a6e1fb6b42516041def6fe64bd028b7614d,Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+2717998d89d34f45a1cca8b663b26d8bf10608a9,Real-Time Action Recognition with Enhanced Motion Vector CNNs,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+2717998d89d34f45a1cca8b663b26d8bf10608a9,Real-Time Action Recognition with Enhanced Motion Vector CNNs,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,Fast Simplex-HMM for One-Shot Learning Activity Recognition,Zaragoza University,Zaragoza University,"Colegio Mayor Universitario Santa Isabel, Calle de Domingo Miral, Romareda, Zaragoza, Aragón, 50009, España",41.6406218,-0.900793992168927
+27c66b87e0fbb39f68ddb783d11b5b7e807c76e8,Fast Simplex-HMM for One-Shot Learning Activity Recognition,Kingston University,Kingston University,"Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4293086,-0.2684044
+271df16f789bd2122f0268c3e2fa46bc0cb5f195,Mining discriminative co-occurrence patterns for visual recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+271df16f789bd2122f0268c3e2fa46bc0cb5f195,Mining discriminative co-occurrence patterns for visual recognition,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+27218ff58c3f0e7d7779fba3bb465d746749ed7c,Active Learning for Image Ranking Over Relative Visual Attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+27c6cd568d0623d549439edc98f6b92528d39bfe,Regressive Tree Structured Model for Facial Landmark Localization,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,Recognition of facial expressions based on salient geometric features and support vector machines,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058
+273b0511588ab0a81809a9e75ab3bd93d6a0f1e3,Recognition of facial expressions based on salient geometric features and support vector machines,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+27961bc8173ac84fdbecacd01e5ed6f7ed92d4bd,Automatic multi-view face recognition via 3D model based pose regularization,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+2784d9212dee2f8a660814f4b85ba564ec333720,Learning class-specific image transformations with higher-order Boltzmann machines,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+2717b044ae9933f9ab87f16d6c611352f66b2033,GNAS: A Greedy Neural Architecture Search Method for Multi-Attribute Learning,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+27883967d3dac734c207074eed966e83afccb8c3,Two-Dimensional Maximum Local Variation Based on Image Euclidean Distance for Face Recognition,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+27883967d3dac734c207074eed966e83afccb8c3,Two-Dimensional Maximum Local Variation Based on Image Euclidean Distance for Face Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+270e5266a1f6e76954dedbc2caf6ff61a5fbf8d0,EmotioNet Challenge: Recognition of facial expressions of emotion in the wild,The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+2742a61d32053761bcc14bd6c32365bfcdbefe35,Learning transformations for clustering and classification,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+2742a61d32053761bcc14bd6c32365bfcdbefe35,Learning transformations for clustering and classification,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+27dafedccd7b049e87efed72cabaa32ec00fdd45,Unsupervised visual alignment with similarity graphs,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+27a299b834a18e45d73e0bf784bbb5b304c197b3,Social Role Discovery in Human Events,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+27a299b834a18e45d73e0bf784bbb5b304c197b3,Social Role Discovery in Human Events,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+4bb03b27bc625e53d8d444c0ba3ee235d2f17e86,Reading between the Lines: Object Localization Using Implicit Cues from Image Tags,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+4bc9a767d7e63c5b94614ebdc24a8775603b15c9,Understanding Visual Information: from Unsupervised Discovery to Minimal Effort Domain Adaptation,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+4b519e2e88ccd45718b0fc65bfd82ebe103902f7,A Discriminative Model for Age Invariant Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+4b519e2e88ccd45718b0fc65bfd82ebe103902f7,A Discriminative Model for Age Invariant Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+4b519e2e88ccd45718b0fc65bfd82ebe103902f7,A Discriminative Model for Age Invariant Face Recognition,Korea University,Korea University,"고려대, 안암로, 제기동, 동대문구, 서울특별시, 02796, 대한민국",37.5901411,127.0362318
+4b3f425274b0c2297d136f8833a31866db2f2aec,Toward Open-Set Face Recognition,University of Colorado Colorado Springs,University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.8920756,-104.797163894584
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,University of Nevada,University of Nevada,"Orange 1, Evans Avenue, Reno, Washoe County, Nevada, 89557, USA",39.5469449,-119.813465660936
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,"Neurological Institute, USA","Neurological Institute, USA","Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA",40.84211085,-73.9428460313244
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,"Neurological Institute, USA","Neurological Institute, USA","Neurological Institute of New York, Haven Avenue, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10032, USA",40.84211085,-73.9428460313244
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193
+4bd088ba3f42aa1e43ae33b1988264465a643a1f,"IDE 0852 , May 2008 Multiview Face Detection Using Gabor Filters and Support Vector Machine",Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712
+4bfce41cc72be315770861a15e467aa027d91641,Active Annotation Translation,University of Iceland,University of Iceland,"Háskóli Íslands, Sturlugata, Háskóli, Reykjavík, Reykjavíkurborg, Höfuðborgarsvæðið, 121, Ísland",64.137274,-21.9456145356869
+4b61d8490bf034a2ee8aa26601d13c83ad7f843a,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+4b61d8490bf034a2ee8aa26601d13c83ad7f843a,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4bd3de97b256b96556d19a5db71dda519934fd53,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+4bd3de97b256b96556d19a5db71dda519934fd53,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375
+4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.5953995,-48.6154218
+4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,Rowland Institute,Rowland Institute,"Rowland Research Institute, Land Boulevard, East Cambridge, Cambridge, Middlesex County, Massachusetts, 02142, USA",42.3639862,-71.0778293
+4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,McGovern Institute,McGovern Institute,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481
+4b74f2d56cd0dda6f459319fec29559291c61bff,Person-Specific Subspace Analysis for Unconstrained Familiar Face Identification,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+4ba38262fe20fab3e4c80215147b498f83843b93,Obtaining the Shape of a Moving Object with a Specular Surface,Cambridge Research Laboratory,Cambridge Research Laboratory,"Strangeways Research Laboratory, Babraham Road, Romsey, Cambridge, Cambridgeshire, East of England, England, CB1 8RN, UK",52.17333465,0.149899463173698
+4ba38262fe20fab3e4c80215147b498f83843b93,Obtaining the Shape of a Moving Object with a Specular Surface,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+4bbe460ab1b279a55e3c9d9f488ff79884d01608,GAGAN: Geometry-Aware Generative Adversarial Networks,Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+4bbe460ab1b279a55e3c9d9f488ff79884d01608,GAGAN: Geometry-Aware Generative Adversarial Networks,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,Fast Newton active appearance models,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+4b3eaedac75ac419c2609e131ea9377ba8c3d4b8,Fast Newton active appearance models,University of Twente,"University of Twente, The Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+4b507a161af8a7dd41e909798b9230f4ac779315,A Theory of Multiplexed Illumination,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+4b02387c2db968a70b69d98da3c443f139099e91,Detecting facial landmarks in the video based on a hybrid framework,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+4b02387c2db968a70b69d98da3c443f139099e91,Detecting facial landmarks in the video based on a hybrid framework,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+4b71d1ff7e589b94e0f97271c052699157e6dc4a,Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4b0a2937f64df66cadee459a32ad7ae6e9fd7ed2,"Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset",University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+4b4ecc1cb7f048235605975ab37bb694d69f63e5,Nonlinear Embedding Transform for Unsupervised Domain Adaptation,Arizona State University,"Arizona State University, AZ, USA","Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+4be774af78f5bf55f7b7f654f9042b6e288b64bd,Variational methods for Conditional Multimodal Learning: Generating Human Faces from Attributes,Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+4b321065f6a45e55cb7f9d7b1055e8ac04713b41,Affective Computing Models for Character Animation,Liverpool John Moores University,Liverpool John Moores University,"John Lennon Art and Design Building, Duckinfield Street, Knowledge Quarter, Liverpool, North West England, England, L3 5YD, UK",53.4050747,-2.97030028586709
+4b605e6a9362485bfe69950432fa1f896e7d19bf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+4b3dd18882ff2738aa867b60febd2b35ab34dffc,Facial Feature Analysis of Spontaneous Facial Expression,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+4b3dd18882ff2738aa867b60febd2b35ab34dffc,Facial Feature Analysis of Spontaneous Facial Expression,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+11a2ef92b6238055cf3f6dcac0ff49b7b803aee3,Towards reduction of the training and search running time complexities for non-rigid object segmentation,The University of Adelaide,The University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+11dc744736a30a189f88fa81be589be0b865c9fa,A Unified Multiplicative Framework for Attribute Learning,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+11dc744736a30a189f88fa81be589be0b865c9fa,A Unified Multiplicative Framework for Attribute Learning,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+11a210835b87ccb4989e9ba31e7559bb7a9fd292,A fuzzy approximator with Gaussian membership functions to estimate a human's head pose,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+11a210835b87ccb4989e9ba31e7559bb7a9fd292,A fuzzy approximator with Gaussian membership functions to estimate a human's head pose,Ferdowsi University of Mashhad,Ferdowsi University of Mashhad,"دانشگاه فردوسی مشهد, بولوار دانش, رضاشهر, منطقه ۹, مشهد, شهرستان مشهد, استان خراسان رضوی, 9177146164, ایران",36.3076616,59.5269051097667
+118ca3b2e7c08094e2a50137b1548ada7935e505,A Dataset To Evaluate The Representations Learned By Video Prediction Models,Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.116551067984
+11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+113c22eed8383c74fe6b218743395532e2897e71,MODEC: Multimodal Decomposable Models for Human Pose Estimation,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+11408af8861fb0a977412e58c1a23d61b8df458c,A robust learning algorithm based on SURF and PSM for facial expression recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+11408af8861fb0a977412e58c1a23d61b8df458c,A robust learning algorithm based on SURF and PSM for facial expression recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+11cc0774365b0cc0d3fa1313bef3d32c345507b1,Face Recognition Using Active Near-IR Illumination,University of Surrey,"University of Surrey, United Kingdom","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+11269e98f072095ff94676d3dad34658f4876e0e,Facial expression recognition with multithreaded cascade of rotation-invariant HOG,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+11269e98f072095ff94676d3dad34658f4876e0e,Facial expression recognition with multithreaded cascade of rotation-invariant HOG,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+11269e98f072095ff94676d3dad34658f4876e0e,Facial expression recognition with multithreaded cascade of rotation-invariant HOG,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+113e5678ed8c0af2b100245057976baf82fcb907,Facing Imbalanced Data--Recommendations for the Use of Performance Metrics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+113e5678ed8c0af2b100245057976baf82fcb907,Facing Imbalanced Data--Recommendations for the Use of Performance Metrics,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+11c04c4f0c234a72f94222efede9b38ba6b2306c,Real-time human action recognition by luminance field trajectory analysis,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+11c04c4f0c234a72f94222efede9b38ba6b2306c,Real-time human action recognition by luminance field trajectory analysis,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,Action Recognition by Learning Deep Multi-Granular Spatio-Temporal Video Representation,University of Science and Technology of China,"University of Science and Technology of China, Hefei 230026, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,Action Recognition by Learning Deep Multi-Granular Spatio-Temporal Video Representation,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+1128a4f57148cec96c0ef4ae3b5a0fbf07efbad9,Action Recognition by Learning Deep Multi-Granular Spatio-Temporal Video Representation,University of Rochester,"University of Rochester, NY 14627, USA","Central Utilities Lot, Firemans, Rochester, Monroe County, New York, 14627, USA",43.1242954,-77.6288352530005
+11a47a91471f40af5cf00449954474fd6e9f7694,NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification,Southwest University,"Southwest University, Chongqing 400715, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445
+11b3877df0213271676fa8aa347046fd4b1a99ad,Unsupervised Identification of Multiple Objects of Interest from Multiple Images: dISCOVER,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1130c38e88108cf68b92ecc61a9fc5aeee8557c9,Dynamically encoded actions based on spacetime saliency,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+11b89011298e193d9e6a1d99302221c1d8645bda,Structured Feature Selection,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+1177977134f6663fff0137f11b81be9c64c1f424,Multi-manifold deep metric learning for image set classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+117f164f416ea68e8b88a3005e55a39dbdf32ce4,Neuroaesthetics in fashion: Modeling the perception of fashionability,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+7dda2eb0054eb1aeda576ed2b27a84ddf09b07d4,Face Recognition and Representation by Tensor-based MPCA Approach,Chosun University,Chosun University,"조선대역, 서남로, 남동, 동구, 광주, 61473, 대한민국",35.1441031,126.9257858
+7d2556d674ad119cf39df1f65aedbe7493970256,Now You Shake Me : Towards Automatic 4 D Cinema,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+7d94fd5b0ca25dd23b2e36a2efee93244648a27b,Convolutional Network for Attribute-driven and Identity-preserving Human Face Generation,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+7d94fd5b0ca25dd23b2e36a2efee93244648a27b,Convolutional Network for Attribute-driven and Identity-preserving Human Face Generation,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+7d8c2d29deb80ceed3c8568100376195ce0914cb,Identity-Aware Textual-Visual Matching with Latent Co-attention,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+7d306512b545df98243f87cb8173df83b4672b18,Flag Manifolds for the Characterization of Geometric Structure in Large Data Sets,Colorado State University,"Colorado State University, Fort Collins, Colorado, USA","Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+7d41b67a641426cb8c0f659f0ba74cdb60e7159a,Soft biometric retrieval to describe and identify surveillance images,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+7d1688ce0b48096e05a66ead80e9270260cb8082,Real vs. Fake Emotion Challenge: Learning to Rank Authenticity from Facial Activity Descriptors,Otto von Guericke University,Otto von Guericke University,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347
+7d53678ef6009a68009d62cd07c020706a2deac3,Facial Feature Point Extraction Using the Adaptive Mean Shape in Active Shape Model,Hanyang University,Hanyang University,"한양대, 206, 왕십리로, 사근동, 성동구, 서울특별시, 04763, 대한민국",37.5557271,127.0436642
+7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0490047,113.3971571
+7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0490047,113.3971571
+7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,The Education University of Hong Kong,The Education University of Hong Kong,"香港教育大學 The Education University of Hong Kong, 露屏路 Lo Ping Road, 鳳園 Fung Yuen, 下坑 Ha Hang, 新界 New Territories, HK, DD5 1119, 中国",22.46935655,114.19474193618
+7d7be6172fc2884e1da22d1e96d5899a29831ad2,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,South China University of China,South China University of China,"华工站, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0490047,113.3971571
+7df4f96138a4e23492ea96cf921794fc5287ba72,A Jointly Learned Deep Architecture for Facial Attribute Analysis and Face Detection in the Wild,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+7dd578878e84337d6d0f5eb593f22cabeacbb94c,Classifiers for Driver Activity Monitoring,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941
+7df268a3f4da7d747b792882dfb0cbdb7cc431bc,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+7df268a3f4da7d747b792882dfb0cbdb7cc431bc,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+7de386bf2a1b2436c836c0cc1f1f23fccb24aad6,Finding What the Driver Does Final Report Prepared by : Harini Veeraraghavan,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941
+2914e8c62f0432f598251fae060447f98141e935,Activity Analysis of Spectator Performer Videos Using Motion Trajectories,University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.8174723,-96.7044468
+2902f62457fdf7e8e8ee77a9155474107a2f423e,Non-rigid 3D Shape Registration using an Adaptive Template,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,Parametric Dictionaries and Feature Augmentation for Continuous Domain Adaptation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+29d3ed0537e9ef62fd9ccffeeb72c1beb049e1ea,Parametric Dictionaries and Feature Augmentation for Continuous Domain Adaptation,"College Park, USA","College Park, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+292c6b743ff50757b8230395c4a001f210283a34,Fast violence detection in video,IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869
+29fc4de6b680733e9447240b42db13d5832e408f,Recognition of Facial Expressions Based on Tracking and Selection of Discriminative Geometric Features,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058
+29fc4de6b680733e9447240b42db13d5832e408f,Recognition of Facial Expressions Based on Tracking and Selection of Discriminative Geometric Features,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+2912c3ea67678a1052d7d5cbe734a6ad90fc360e,Facial Feature Detection using a Virtual Structuring Element,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+29f4ac49fbd6ddc82b1bb697820100f50fa98ab6,The benefits and challenges of collecting richer object annotations,University of Illinois Urbana Champaign,University of Illinois Urbana Champaign,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+2910fcd11fafee3f9339387929221f4fc1160973,Evaluating Open-Universe Face Identification on the Web,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+2910fcd11fafee3f9339387929221f4fc1160973,Evaluating Open-Universe Face Identification on the Web,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+29479bb4fe8c04695e6f5ae59901d15f8da6124b,Multiple instance learning for labeling faces in broadcasting news video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+29479bb4fe8c04695e6f5ae59901d15f8da6124b,Multiple instance learning for labeling faces in broadcasting news video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+29479bb4fe8c04695e6f5ae59901d15f8da6124b,Multiple instance learning for labeling faces in broadcasting news video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+291f527598c589fb0519f890f1beb2749082ddfd,Seeing People in Social Context: Recognizing People and Social Relationships,University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, Urbana, IL","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+291265db88023e92bb8c8e6390438e5da148e8f5,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+29c340c83b3bbef9c43b0c50b4d571d5ed037cbd,Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+297d3df0cf84d24f7efea44f87c090c7d9be4bed,Appearance-Based 3-D Face Recognition from Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+297d3df0cf84d24f7efea44f87c090c7d9be4bed,Appearance-Based 3-D Face Recognition from Video,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+29b86534d4b334b670914038c801987e18eb5532,Total Cluster: A person agnostic clustering method for broadcast videos,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+29b86534d4b334b670914038c801987e18eb5532,Total Cluster: A person agnostic clustering method for broadcast videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+29b86534d4b334b670914038c801987e18eb5532,Total Cluster: A person agnostic clustering method for broadcast videos,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+29631ca6cff21c9199c70bcdbbcd5f812d331a96,Error Rates in Users of Automatic Face Recognition Software,The University of New South Wales,The University of New South Wales,"UNSW, International Square, UNSW, Kensington, Bay Gardens, Sydney, Randwick, NSW, 2033, Australia",-33.91758275,151.231240246527
+29631ca6cff21c9199c70bcdbbcd5f812d331a96,Error Rates in Users of Automatic Face Recognition Software,The University of Sydney,"The University of Sydney, Sydney, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+2983efadb1f2980ab5ef20175f488f77b6f059d7,Emotion in Human–computer Interaction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+2911e7f0fb6803851b0eddf8067a6fc06e8eadd6,Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition,Korea Advanced institute of Science and Technology,Korea Advanced institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+29921072d8628544114f68bdf84deaf20a8c8f91,Multi-task Curriculum Transfer Deep Learning of Clothing Attributes,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+2969f822b118637af29d8a3a0811ede2751897b5,Cascaded Shape Space Pruning for Robust Facial Landmark Detection,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+29f0414c5d566716a229ab4c5794eaf9304d78b6,Biometric Template Security,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+7c61d21446679776f7bdc7afd13aedc96f9acac1,Hierarchical Label Inference for Video Classification,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+7c61d21446679776f7bdc7afd13aedc96f9acac1,Hierarchical Label Inference for Video Classification,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+7c61d21446679776f7bdc7afd13aedc96f9acac1,Hierarchical Label Inference for Video Classification,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+7c7ab59a82b766929defd7146fd039b89d67e984,Improving multiview face detection with multi-task deep convolutional neural networks,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+7ca337735ec4c99284e7c98f8d61fb901dbc9015,Driver activity monitoring through supervised and unsupervised learning,University of Minnesota,University of Minnesota,"WeismanArt, 333, East River Parkway, Marcy-Holmes, Phillips, Minneapolis, Hennepin County, Minnesota, 55455, USA",44.97308605,-93.2370881262941
+7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,Shenzhen University,"Shenzhen University, Shenzhen China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+7c1cfab6b60466c13f07fe028e5085a949ec8b30,Deep Feature Consistent Variational Autoencoder,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+7c17280c9193da3e347416226b8713b99e7825b8,VideoCapsuleNet: A Simplified Network for Action Detection,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,University of Colorado Colorado Springs,University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.8920756,-104.797163894584
+7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+7cffcb4f24343a924a8317d560202ba9ed26cd0b,The unconstrained ear recognition challenge,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+7c4c442e9c04c6b98cd2aa221e9d7be15efd8663,Classifier learning with hidden information,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+7c2ec6f4ab3eae86e0c1b4f586e9c158fb1d719d,Dissimilarity-Based Classifications in Eigenspaces,Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.2381023,127.1903431
+7cf8a841aad5b7bdbea46a7bb820790e9ce12d0b,Supervised Heat Kernel Lpp Method for Face Recognition,Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309
+7c9622ad1d8971cd74cc9e838753911fe27ccac4,Representation Learning with Smooth Autoencoder,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+7c2c9b083817f7a779d819afee383599d2e97ed8,"Disentangling Motion, Foreground and Background Features in Videos",Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+7c2c9b083817f7a779d819afee383599d2e97ed8,"Disentangling Motion, Foreground and Background Features in Videos","Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+7c45339253841b6f0efb28c75f2c898c79dfd038,Unsupervised Joint Alignment of Complex Images,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+7c825562b3ff4683ed049a372cb6807abb09af2a,Finding Tiny Faces Supplementary Materials,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+7c825562b3ff4683ed049a372cb6807abb09af2a,Finding Tiny Faces Supplementary Materials,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+7c36afc9828379de97f226e131390af719dbc18d,Unsupervised face-name association via commute distance,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+7c36afc9828379de97f226e131390af719dbc18d,Unsupervised face-name association via commute distance,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+7ca7255c2e0c86e4adddbbff2ce74f36b1dc522d,Stereo Matching for Unconstrained Face Recognition Ph . D . Proposal,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+7c42371bae54050dbbf7ded1e7a9b4109a23a482,Optimized features selection using hybrid PSO-GA for multi-view gender classification,Foundation University Rawalpindi Campus,Foundation University Rawalpindi Campus,"Foundation University Rawalpindi Campus, Main Parking Road, Police Lines, راولپنڈی, Rawalpindi Cantt, پنجاب, 46600, پاکستان",33.5609504,73.0712596618793
+7c42371bae54050dbbf7ded1e7a9b4109a23a482,Optimized features selection using hybrid PSO-GA for multi-view gender classification,University of Central Punjab,University of Central Punjab,"University of Central Punjab, Khyaban-e-Jinnah, PECHS, Wapda Town, بحریہ ٹاؤن, Lahore District, پنجاب, 54000, پاکستان",31.4466149,74.2679762
+7c42371bae54050dbbf7ded1e7a9b4109a23a482,Optimized features selection using hybrid PSO-GA for multi-view gender classification,University of Dammam,University of Dammam,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.39793625,50.1980792430511
+7c953868cd51f596300c8231192d57c9c514ae17,Detecting and Aligning Faces by Image Retrieval,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+7c6dbaebfe14878f3aee400d1378d90d61373921,A Novel Biometric Feature Extraction Algorithm using Two Dimensional Fisherface in 2DPCA subspace for Face Recognition,University of Newcastle,University of Newcastle,"University of Newcastle Central Coast Campus, Technology Bridge, Ourimbah, Central Coast, NSW, 2258, Australia",-33.3578899,151.37834708231
+7c80d91db5977649487388588c0c823080c9f4b4,DocFace: Matching ID Document Photos to Selfies,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+7c30ea47f5ae1c5abd6981d409740544ed16ed16,Informed Democracy: Voting-based Novelty Detection for Action Recognition,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+16fdd6d842475e6fbe58fc809beabbed95f0642e,Learning Temporal Embeddings for Complex Video Analysis,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+16bce9f940bb01aa5ec961892cc021d4664eb9e4,Mutual Component Analysis for Heterogeneous Face Recognition,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+1677d29a108a1c0f27a6a630e74856e7bddcb70d,Efficient Misalignment-Robust Representation for Real-Time Face Recognition,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+162dfd0d2c9f3621d600e8a3790745395ab25ebc,Head Pose Estimation Based on Multivariate Label Distribution,Southeast University,"Southeast University, Nanjing, China","SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Miami,University of Miami,"University of Miami, Theo Dickenson Drive, Coral Gables, Miami-Dade County, Florida, 33124, USA",25.7173339,-80.2786688657706
+16f940b4b5da79072d64a77692a876627092d39c,A framework for automated measurement of the intensity of non-posed Facial Action Units,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+16572c545384174f8136d761d2b0866e968120a8,Sequential Max-Margin Event Detectors,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+16820ccfb626dcdc893cc7735784aed9f63cbb70,Real-time embedded age and gender classification in unconstrained video,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+164b0e2a03a5a402f66c497e6c327edf20f8827b,Sparse Deep Transfer Learning for Convolutional Neural Network,The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+164b0e2a03a5a402f66c497e6c327edf20f8827b,Sparse Deep Transfer Learning for Convolutional Neural Network,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+1667a77db764e03a87a3fd167d88b060ef47bb56,Alternative Semantic Representations for Zero-Shot Human Action Recognition,The University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+169618b8dc9b348694a31c6e9e17b989735b4d39,Unsupervised Representation Learning by Sorting Sequences,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,Beijing Union University,"Beijing Union University, 100101, China","北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.9890068,116.420677175386
+16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,Beijing Union University,Beijing Union University,"北京联合大学, 北四环东路, 飘亮阳光广场, 太阳宫乡, 朝阳区 / Chaoyang, 北京市, 100012, 中国",39.9890068,116.420677175386
+16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,Capital Normal University,"Capital Normal University, 100048, China","首都师范大学, 岭南路, 西冉村, 海淀区, 100048, 中国",39.92864575,116.30104052087
+16d6737b50f969247339a6860da2109a8664198a,Convolutional Neural Networks for Age and Gender Classification,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+1610d2d4947c03a89c0fda506a74ba1ae2bc54c2,"Robust Real-Time 3D Face Tracking from RGBD Videos under Extreme Pose, Depth, and Expression Variation",Rutgers University,"Rutgers University, USA","Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,Recent developments in social signal processing,University of Amsterdam,"University of Amsterdam, Amsterdam, The Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,Recent developments in social signal processing,"Imperial College London, London, UK","Imperial College London, London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+1659a8b91c3f428f1ba6aeba69660f2c9d0a85c6,Recent developments in social signal processing,University of Glasgow,University of Glasgow,"University of Glasgow, University Avenue, Yorkhill, Hillhead, Glasgow, Glasgow City, Scotland, G, UK",55.87231535,-4.28921783557444
+167736556bea7fd57cfabc692ec4ae40c445f144,Improved Motion Description for Action Classification,"Idiap Research Institute, Switzerland","Idiap Research Institute, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+167ea1631476e8f9332cef98cf470cb3d4847bc6,Visual Search at Pinterest,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+420782499f38c1d114aabde7b8a8104c9e40a974,Fashion Style in 128 Floats: Joint Ranking and Classification Using Weak Data for Feature Extraction,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+4217473596b978f13a211cdf47b7d3f6588c785f,An efficient approach for clustering face images,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+4223666d1b0b1a60c74b14c2980069905088edc6,A Convergent Incoherent Dictionary Learning Algorithm for Sparse Coding,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+42afe6d016e52c99e2c0d876052ade9c192d91e7,Spontaneous vs. posed facial behavior: automatic analysis of brow actions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+42afe6d016e52c99e2c0d876052ade9c192d91e7,Spontaneous vs. posed facial behavior: automatic analysis of brow actions,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+42afe6d016e52c99e2c0d876052ade9c192d91e7,Spontaneous vs. posed facial behavior: automatic analysis of brow actions,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+42765c170c14bd58e7200b09b2e1e17911eed42b,Feature Extraction Based on Wavelet Moments and Moment Invariants in Machine Vision Systems,Democritus University of Thrace,Democritus University of Thrace,"Δημοκρίτειο Πανεπιστήμιο Θράκης, Μάκρη - Αλεξανδρούπολη, Αλεξανδρούπολη, Δήμος Αλεξανδρούπολης, Περιφερειακή Ενότητα Έβρου, Περιφέρεια Ανατολικής Μακεδονίας και Θράκης, Μακεδονία - Θράκη, 68100, Ελλάδα",40.84941785,25.8344493892098
+4223917177405eaa6bdedca061eb28f7b440ed8e,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+4223917177405eaa6bdedca061eb28f7b440ed8e,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+4223917177405eaa6bdedca061eb28f7b440ed8e,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+42eda7c20db9dc0f42f72bb997dd191ed8499b10,Gaze Embeddings for Zero-Shot Image Classification,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+42eda7c20db9dc0f42f72bb997dd191ed8499b10,Gaze Embeddings for Zero-Shot Image Classification,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,Label Efficient Learning of Transferable Representations across Domains and Tasks,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+42c9394ca1caaa36f535721fa9a64b2c8d4e0dee,Label Efficient Learning of Transferable Representations across Domains and Tasks,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+4205cb47ba4d3c0f21840633bcd49349d1dc02c1,Action recognition with gradient boundary convolutional network,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+42ded74d4858bea1070dadb08b037115d9d15db5,Exigent: An Automatic Avatar Generation System,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+42ea8a96eea023361721f0ea34264d3d0fc49ebd,Parameterized Principal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+42f6f5454dda99d8989f9814989efd50fe807ee8,Conditional generative adversarial nets for convolutional face generation,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,Face Recognition From Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+89002a64e96a82486220b1d5c3f060654b24ef2a,PIEFA: Personalized Incremental and Ensemble Face Alignment,The University of North Carolina at Charlotte,The University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+89e7d23e0c6a1d636f2da68aaef58efee36b718b,Lucas-Kanade Scale Invariant Feature Transform for Uncontrolled Viewpoint Face Recognition,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058
+89f4bcbfeb29966ab969682eae235066a89fc151,A comparison of photometric normalisation algorithms for face verification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+892c911ca68f5b4bad59cde7eeb6c738ec6c4586,"The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English",Ryerson University,Ryerson University,"Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263
+8986585975c0090e9ad97bec2ba6c4b437419dae,Unsupervised Hard Example Mining from Videos for Improved Object Detection,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+89cabb60aa369486a1ebe586dbe09e3557615ef8,Bayesian Networks as Generative Models for Face Recognition,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+8983485996d5d9d162e70d66399047c5d01ac451,Deep feature-based face detection on mobile devices,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+8983485996d5d9d162e70d66399047c5d01ac451,Deep feature-based face detection on mobile devices,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+8981be3a69cd522b4e57e9914bf19f034d4b530c,Fast Automatic Video Retrieval using Web Images,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+896f4d87257abd0f628c1ffbbfdac38c86a56f50,Action and Gesture Temporal Spotting with Super Vector Representation,Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+896f4d87257abd0f628c1ffbbfdac38c86a56f50,Action and Gesture Temporal Spotting with Super Vector Representation,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+896f4d87257abd0f628c1ffbbfdac38c86a56f50,Action and Gesture Temporal Spotting with Super Vector Representation,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+451b6409565a5ad18ea49b063561a2645fa4281b,Action Sets: Weakly Supervised Action Segmentation without Ordering Constraints,University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+455204fa201e9936b42756d362f62700597874c4,A Region Based Methodology for Facial Expression Recognition,University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796
+455204fa201e9936b42756d362f62700597874c4,A Region Based Methodology for Facial Expression Recognition,University of Ioannina,"University of Ioannina, Ioannina, Greece","Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796
+4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,University of Pittsburgh,"University of Pittsburgh, PA, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,University of Pittsburgh,"University of Pittsburgh, PA, USA","University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+4552f4d46a2cc67ccc4dd8568e5c95aa2eedb4ec,Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+459960be65dd04317dd325af5b7cbb883d822ee4,The Meme Quiz: A Facial Expression Game Combining Human Agency and Machine Involvement,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+45f858f9e8d7713f60f52618e54089ba68dfcd6d,What Actions are Needed for Understanding Human Actions in Videos?,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+45215e330a4251801877070c85c81f42c2da60fb,Domain Adaptive Dictionary Learning,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+45215e330a4251801877070c85c81f42c2da60fb,Domain Adaptive Dictionary Learning,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+457cf73263d80a1a1338dc750ce9a50313745d1d,Decomposing Motion and Content for Natural Video Sequence Prediction,University of Michigan,"University of Michigan, Ann Arbor, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+457cf73263d80a1a1338dc750ce9a50313745d1d,Decomposing Motion and Content for Natural Video Sequence Prediction,Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+45e616093a92e5f1e61a7c6037d5f637aa8964af,Fine-grained evaluation on face detection in the wild,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+45c31cde87258414f33412b3b12fc5bec7cb3ba9,Coding Facial Expressions with Gabor Wavelets,Kyushu University,Kyushu University,"伊都ゲストハウス, 桜井太郎丸線, 西区, 福岡市, 福岡県, 九州地方, 819−0395, 日本",33.59914655,130.223598480987
+4542273a157bfd4740645a6129d1784d1df775d2,FaceRipper Automatic Face Indexer and Tagger for Personal Albums and Videos,Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+45513d0f2f5c0dac5b61f9ff76c7e46cce62f402,Face Discovery with Social Context,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,Towards Interpretable Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+1f9b2f70c24a567207752989c5bd4907442a9d0f,Deep Representations to Model User 'Likes',Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+1f9b2f70c24a567207752989c5bd4907442a9d0f,Deep Representations to Model User 'Likes',University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+1fe1bd6b760e3059fff73d53a57ce3a6079adea1,Fast-BoW: Scaling Bag-of-Visual-Words Generation,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+1f05473c587e2a3b587f51eb808695a1c10bc153,Towards Good Practices for Very Deep Two-Stream ConvNets,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1f05473c587e2a3b587f51eb808695a1c10bc153,Towards Good Practices for Very Deep Two-Stream ConvNets,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+1fa3948af1c338f9ae200038c45adadd2b39a3e4,Computational Explorations of Split Architecture in Modeling Face and Object Recognition,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+1fa3948af1c338f9ae200038c45adadd2b39a3e4,Computational Explorations of Split Architecture in Modeling Face and Object Recognition,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1fd6004345245daf101c98935387e6ef651cbb55,Learning Symmetry Features for Face Detection Based on Sparse Group Lasso,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+1fd6004345245daf101c98935387e6ef651cbb55,Learning Symmetry Features for Face Detection Based on Sparse Group Lasso,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+1fe59275142844ce3ade9e2aed900378dd025880,Facial Landmark Detection via Progressive Initialization,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+1fe121925668743762ce9f6e157081e087171f4c,Unsupervised learning of overcomplete face descriptors,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+1fefb2f8dd1efcdb57d5c2966d81f9ab22c1c58d,vExplorer: A Search Method to Find Relevant YouTube Videos for Health Researchers,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+1fdeba9c4064b449231eac95e610f3288801fd3e,Fine-Grained Head Pose Estimation Without Keypoints,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,Age interval and gender prediction using PARAFAC2 on speech recordings and face images,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+1f24cef78d1de5aa1eefaf344244dcd1972797e8,Outlier-Robust Tensor PCA,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+1fe990ca6df273de10583860933d106298655ec8,A Wavelet-Based Image Preprocessing Method or Illumination Insensitive Face Recognition,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.628506656425
+1feeab271621128fe864e4c64bab9b2e2d0ed1f1,Perception-Link Behavior Model: Supporting a Novel Operator Interface for a Customizable Anthropomorphic Telepresence Robot,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+73b90573d272887a6d835ace89bfaf717747c59b,Feature Disentangling Machine - A Novel Approach of Feature Selection and Disentangling in Facial Expression Analysis,University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225
+73b90573d272887a6d835ace89bfaf717747c59b,Feature Disentangling Machine - A Novel Approach of Feature Selection and Disentangling in Facial Expression Analysis,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+739d400cb6fb730b894182b29171faaae79e3f01,A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image Feature Extraction,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+732e4016225280b485c557a119ec50cffb8fee98,Are all training examples equally valuable?,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+7373c4a23684e2613f441f2236ed02e3f9942dd4,Feature extraction through Binary Pattern of Phase Congruency for facial expression recognition,University Library,University Library,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705
+738a985fba44f9f5acd516e07d0d9578f2ffaa4e,Machine Learning Techniques for Face Analysis,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+73fd7e74457e0606704c5c3d3462549f1b2de1ad,Learning Predictable and Discriminative Attributes for Visual Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+73c5bab5c664afa96b1c147ff21439135c7d968b,Whitened LDA for face recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+73c5bab5c664afa96b1c147ff21439135c7d968b,Whitened LDA for face recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+73c5bab5c664afa96b1c147ff21439135c7d968b,Whitened LDA for face recognition,Sungkyunkwan University,Sungkyunkwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123
+877100f430b72c5d60de199603ab5c65f611ce17,Within-person variability in men’s facial width-to-height ratio,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+870433ba89d8cab1656e57ac78f1c26f4998edfb,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,L2-constrained Softmax Loss for Discriminative Face Verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+8724fc4d6b91eebb79057a7ce3e9dfffd3b1426f,Ordered Pooling of Optical Flow Sequences for Action Recognition,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+87309bdb2b9d1fb8916303e3866eca6e3452c27d,Kernel Coding: General Formulation and Special Cases,Australian National University,"Australian National University, Canberra, ACT 0200, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+87147418f863e3d8ff8c97db0b42695a1c28195b,Attributes for Improved Attributes: A Multi-Task Network for Attribute Classification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+808b685d09912cbef4a009e74e10476304b4cccf,From Understanding to Controlling Privacy against Automatic Person Recognition in Social Media,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+80277fb3a8a981933533cf478245f262652a33b5,Synergy-Based Learning of Facial Identity,Graz University of Technology,"Graz University of Technology, Austria","TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+80840df0802399838fe5725cce829e1b417d7a2e,Fast Approximate L_infty Minimization: Speeding Up Robust Regression,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+80840df0802399838fe5725cce829e1b417d7a2e,Fast Approximate L_infty Minimization: Speeding Up Robust Regression,The University of Adelaide,The University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+809ea255d144cff780300440d0f22c96e98abd53,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+809ea255d144cff780300440d0f22c96e98abd53,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+80be8624771104ff4838dcba9629bacfe6b3ea09,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, IL USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+8000c4f278e9af4d087c0d0895fff7012c5e3d78,Multi-task warped Gaussian process for personalized age estimation,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+80bd795930837330e3ced199f5b9b75398336b87,Relative Forest for Attribute Prediction,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+74de03923a069ffc0fb79e492ee447299401001f,On Film Character Retrieval in Feature-Length Films,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+74de03923a069ffc0fb79e492ee447299401001f,On Film Character Retrieval in Feature-Length Films,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+74f643579949ccd566f2638b85374e7a6857a9fc,Monogenic Binary Pattern (MBP): A Novel Feature Extraction and Representation Model for Face Recognition,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+74ce7e5e677a4925489897665c152a352c49d0a2,SPG-Net: Segmentation Prediction and Guidance Network for Image Inpainting,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+740e095a65524d569244947f6eea3aefa3cca526,Towards Human-like Performance Face Detection: A Convolutional Neural Network Approach,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,Context and Subcategories for SlidingWindowObject Recognition,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,Context and Subcategories for SlidingWindowObject Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+74e869bc7c99093a5ff9f8cfc3f533ccf1b135d8,Context and Subcategories for SlidingWindowObject Recognition,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+741485741734a99e933dd0302f457158c6842adf,A Novel Automatic Facial Expression Recognition Method Based on AAM,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+74618fb4ce8ce0209db85cc6069fe64b1f268ff4,Rendering and animating expressive caricatures,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+74618fb4ce8ce0209db85cc6069fe64b1f268ff4,Rendering and animating expressive caricatures,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+74875368649f52f74bfc4355689b85a724c3db47,Object detection by labeling superpixels,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+7492c611b1df6bce895bee6ba33737e7fc7f60a6,The 3D Menpo Facial Landmark Tracking Challenge,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+7492c611b1df6bce895bee6ba33737e7fc7f60a6,The 3D Menpo Facial Landmark Tracking Challenge,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+7492c611b1df6bce895bee6ba33737e7fc7f60a6,The 3D Menpo Facial Landmark Tracking Challenge,University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167
+1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,Alignment-Free and High-Frequency Compensation in Face Hallucination,Ritsumeikan University,Ritsumeikan University,"立命館大学 (Ritsumeikan University), 衣笠宇多野線, 北区, 京都市, 京都府, 近畿地方, 6038577, 日本",35.0333281,135.7249154
+1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+1a65cc5b2abde1754b8c9b1d932a68519bcb1ada,Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,Online robust image alignment via iterative convex optimization,Temple University,"Temple University, Philadelphia, PA 19122, USA","Temple University, West Berks Street, Hartranft, Philadelphia, Philadelphia County, Pennsylvania, 19122, USA",39.9808569,-75.149594
+1a46d3a9bc1e4aff0ccac6403b49a13c8a89fc1d,Online robust image alignment via iterative convex optimization,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+1ac2882559a4ff552a1a9956ebeadb035cb6df5b,How much training data for facial action unit detection?,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+1ac2882559a4ff552a1a9956ebeadb035cb6df5b,How much training data for facial action unit detection?,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+1a7a17c4f97c68d68fbeefee1751d349b83eb14a,Iterative Hessian Sketch: Fast and Accurate Solution Approximation for Constrained Least-Squares,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+1aef6f7d2e3565f29125a4871cd60c4d86c48361,Subhashini VenugopalanProposal,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Tokyo,"University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Tokyo,"University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University Politehnica of Bucharest,"University Politehnica of Bucharest, Romania","Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+1a167e10fe57f6d6eff0bb9e45c94924d9347a3e,Boosting VLAD with double assignment using deep features for action recognition in videos,University of Trento,"University of Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+1a140d9265df8cf50a3cd69074db7e20dc060d14,Face Parts Localization Using Structured-Output Regression Forests,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+1a85956154c170daf7f15f32f29281269028ff69,Active Pictorial Structures,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,Deep Learning for Video Classification and Captioning,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+1af52c853ff1d0ddb8265727c1d70d81b4f9b3a9,Face Recognition Under Illumination Variation Using Shadow Compensation and Pixel Selection,Dankook University,Dankook University,"단국대학교 치과병원, 죽전로, 죽전동, 수지구, 용인시, 경기, 16900, 대한민국",37.3219575,127.1250723
+1a40092b493c6b8840257ab7f96051d1a4dbfeb2,Sports Videos in the Wild (SVW): A video dataset for sports analysis,Michigan State University,"Michigan State University, East Lansing, MI, USA","Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+1a6c9ef99bf0ab9835a91fe5f1760d98a0606243,ConceptMap: Mining Noisy Web Data for Concept Learning,Bilkent University,"Bilkent University, 06800 Cankaya, Turkey","Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+1afdedba774f6689eb07e048056f7844c9083be9,Markov Random Field Structures for Facial Action Unit Intensity Estimation,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+1afdedba774f6689eb07e048056f7844c9083be9,Markov Random Field Structures for Facial Action Unit Intensity Estimation,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43,Max-margin Latent Dirichlet Allocation for Image Classification and Annotation,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+1a2b3fa1b933042687eb3d27ea0a3fcb67b66b43,Max-margin Latent Dirichlet Allocation for Image Classification and Annotation,Fraser University,Fraser University,"Fraser, 3333, University Avenue Southeast, Prospect Park - East River Road, Minneapolis, Hennepin County, Minnesota, 55414, USA",44.9689836,-93.2094162948556
+2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,Two-Stage Optimal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,Two-Stage Optimal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+2878b06f3c416c98496aad6fc2ddf68d2de5b8f6,Two-Stage Optimal Component Analysis,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+28a900a07c7cbce6b6297e4030be3229e094a950,Local directional pattern variance (ldpv): a robust feature descriptor for facial expression recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+282503fa0285240ef42b5b4c74ae0590fe169211,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+282503fa0285240ef42b5b4c74ae0590fe169211,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+283d226e346ac3e7685dd9a4ba8ae55ee4f2fe43,Bayesian Data Association for Temporal Scene Understanding,THE UNIVERSITY OF ARIZONA,THE UNIVERSITY OF ARIZONA,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648
+28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,University of Technology,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,University of Technology,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+28f5138d63e4acafca49a94ae1dc44f7e9d84827,MahNMF: Manhattan Non-negative Matrix Factorization,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+28e1668d7b61ce21bf306009a62b06593f1819e3,"Correction: Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions",University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+286adff6eff2f53e84fe5b4d4eb25837b46cae23,Single-Image Depth Perception in the Wild,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+286812ade95e6f1543193918e14ba84e5f8e852e,Robust 3D Face Shape Reconstruction from Single Images via Two-Fold Coupled Structure Learning,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+28f311b16e4fe4cc0ff6560aae3bbd0cb6782966,Learning Language from Perceptual Context,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+28d06fd508d6f14cd15f251518b36da17909b79e,What's in a Name? First Names as Facial Attributes,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+28d06fd508d6f14cd15f251518b36da17909b79e,What's in a Name? First Names as Facial Attributes,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+28d06fd508d6f14cd15f251518b36da17909b79e,What's in a Name? First Names as Facial Attributes,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+281486d172cf0c78d348ce7d977a82ff763efccd,A Cost-Sensitive Visual Question-Answer Framework for Mining a Deep And-OR Object Semantics from Web Images,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+281486d172cf0c78d348ce7d977a82ff763efccd,A Cost-Sensitive Visual Question-Answer Framework for Mining a Deep And-OR Object Semantics from Web Images,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+288964068cd87d97a98b8bc927d6e0d2349458a2,Mean-Variance Loss for Deep Age Estimation from a Face,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+288964068cd87d97a98b8bc927d6e0d2349458a2,Mean-Variance Loss for Deep Age Estimation from a Face,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+28c0cb56e7f97046d6f3463378d084e9ea90a89a,Automatic face recognition for film character retrieval in feature-length films,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+28be652db01273289499bc6e56379ca0237506c0,FaLRR: A fast low rank representation solver,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+28be652db01273289499bc6e56379ca0237506c0,FaLRR: A fast low rank representation solver,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+2836d68c86f29bb87537ea6066d508fde838ad71,Personalized Age Progression with Aging Dictionary,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+2836d68c86f29bb87537ea6066d508fde838ad71,Personalized Age Progression with Aging Dictionary,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+28de411a5b3eb8411e7bcb0003c426aa91f33e97,Emotion Detection Using Facial Expressions -A Review,Kurukshetra University,"Kurukshetra University, Kurukshetra","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+28de411a5b3eb8411e7bcb0003c426aa91f33e97,Emotion Detection Using Facial Expressions -A Review,Kurukshetra University,"Kurukshetra University, Kurukshetra","Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+28b26597a7237f9ea6a9255cde4e17ee18122904,Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+28d99dc2d673d62118658f8375b414e5192eac6f,Using Ranking-CNN for Age Estimation,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.357757,-83.0628671134125
+28d99dc2d673d62118658f8375b414e5192eac6f,Using Ranking-CNN for Age Estimation,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.357757,-83.0628671134125
+280bc9751593897091015aaf2cab39805768b463,Gender Perception From Faces Using Boosted LBPH (Local Binary Patten Histograms),COMSATS Institute of Information Technology,COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان",31.4006332,74.2137296
+288d2704205d9ca68660b9f3a8fda17e18329c13,Studying Very Low Resolution Recognition Using Deep Networks,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+17b46e2dad927836c689d6787ddb3387c6159ece,GeoFaceExplorer: exploring the geo-dependence of facial attributes,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+17b46e2dad927836c689d6787ddb3387c6159ece,GeoFaceExplorer: exploring the geo-dependence of facial attributes,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+1768909f779869c0e83d53f6c91764f41c338ab5,A large-scale car dataset for fine-grained categorization and verification,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1768909f779869c0e83d53f6c91764f41c338ab5,A large-scale car dataset for fine-grained categorization and verification,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+1768909f779869c0e83d53f6c91764f41c338ab5,A large-scale car dataset for fine-grained categorization and verification,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+171ca25bc2cdfc79cad63933bcdd420d35a541ab,Calibration-Free Gaze Estimation Using Human Gaze Patterns,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,Investigating Spontaneous Facial Action Recognition through AAM Representations of the Face,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+17d01f34dfe2136b404e8d7f59cebfb467b72b26,Riemannian Similarity Learning,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+17479e015a2dcf15d40190e06419a135b66da4e0,Predicting First Impressions With Deep Learning,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+17fa1c2a24ba8f731c8b21f1244463bc4b465681,Deep multi-scale video prediction beyond mean square error,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.9962539360963
+17579791ead67262fcfb62ed8765e115fb5eca6f,Real-Time Fashion-guided Clothing Semantic Parsing: a Lightweight Multi-Scale Inception Neural Network and Benchmark,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, P.R. China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+17579791ead67262fcfb62ed8765e115fb5eca6f,Real-Time Fashion-guided Clothing Semantic Parsing: a Lightweight Multi-Scale Inception Neural Network and Benchmark,Sun Yat-Sen University,"Sun Yat-Sen University, Guangzhou, P.R. China","中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+177d1e7bbea4318d379f46d8d17720ecef3086ac,Learning Multi-channel Deep Feature Representations for Face Recognition,Wayne State University,Wayne State University,"Parking Structure 3, East Warren Avenue, New Center, Detroit, Wayne County, Michigan, 48236, USA",42.357757,-83.0628671134125
+177d1e7bbea4318d379f46d8d17720ecef3086ac,Learning Multi-channel Deep Feature Representations for Face Recognition,University of Illinois at Urbana Champaign,University of Illinois at Urbana Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+170a5f5da9ac9187f1c88f21a88d35db38b4111a,Online Real-Time Multiple Spatiotemporal Action Localisation and Prediction,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+170a5f5da9ac9187f1c88f21a88d35db38b4111a,Online Real-Time Multiple Spatiotemporal Action Localisation and Prediction,Oxford University,Oxford University,"University College, Logic Lane, Grandpont, Oxford, Oxon, South East, England, OX1 4EX, UK",51.7520849,-1.25166460220888
+17a8d1b1b4c23a630b051f35e47663fc04dcf043,Differential Angular Imaging for Material Recognition,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+17a8d1b1b4c23a630b051f35e47663fc04dcf043,Differential Angular Imaging for Material Recognition,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9574,-75.1902670552555
+171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+171d8a39b9e3d21231004f7008397d5056ff23af,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+17045163860fc7c38a0f7d575f3e44aaa5fa40d7,Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics,Hengyang Normal University,"Hengyang Normal University, Hengyang, China","衡阳师范学院, 黄白路, 雁峰区, 衡阳市 / Hengyang, 湖南省, 中国",26.8661136,112.620921219792
+17e563af203d469c456bb975f3f88a741e43fb71,Naming TV characters by watching and analyzing dialogs,"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+171389529df11cc5a8b1fbbe659813f8c3be024d,Manifold Estimation in View-Based Feature Space for Face Synthesis across Poses,University of Kentucky,"University of Kentucky, USA","University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+17d5e5c9a9ee4cf85dfbb9d9322968a6329c3735,Study on Parameter Selection Using SampleBoost,University of North Texas,"University of North Texas, Denton, Texas, USA","University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2098879,-97.1514748776857
+17cf6195fd2dfa42670dc7ada476e67b381b8f69,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,Chung-Ang University,"Chung-Ang University, Seoul, Korea","중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619
+17cf6195fd2dfa42670dc7ada476e67b381b8f69,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,The University of Tennessee,"The University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+174f46eccb5852c1f979d8c386e3805f7942bace,The Shape-Time Random Field for Semantic Video Labeling,University of Massachusetts,"University of Massachusetts, Amherst MA, USA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+17670b60dcfb5cbf8fdae0b266e18cf995f6014c,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+17670b60dcfb5cbf8fdae0b266e18cf995f6014c,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+17027a05c1414c9a06a1c5046899abf382a1142d,Articulated motion discovery using pairs of trajectories,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+17ded725602b4329b1c494bfa41527482bf83a6f,Compact Convolutional Neural Network Cascade for Face Detection,Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.46255985,84.955654946724
+17ded725602b4329b1c494bfa41527482bf83a6f,Compact Convolutional Neural Network Cascade for Face Detection,Tomsk Polytechnic University,Tomsk Polytechnic University,"Томский политехнический университет, улица Пирогова, Южная, Кировский район, Томск, городской округ Томск, Томская область, СФО, 634034, РФ",56.46255985,84.955654946724
+177bc509dd0c7b8d388bb47403f28d6228c14b5c,"Deep Learning Face Representation from Predicting 10,000 Classes",the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+177bc509dd0c7b8d388bb47403f28d6228c14b5c,"Deep Learning Face Representation from Predicting 10,000 Classes",the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+177bc509dd0c7b8d388bb47403f28d6228c14b5c,"Deep Learning Face Representation from Predicting 10,000 Classes",Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+7b63ed54345d8c06523f6b03c41a09b5c8f227e2,Facial expression recognition based on combination of spatio-temporal and spectral features in local facial regions,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+7bf0a1aa1d0228a51d24c0c3a83eceb937a6ae25,"Video-based Car Surveillance: License Plate, Make, and Model Recognition",University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+7b43326477795a772c08aee750d3e433f00f20be,Computational Methods for Behavior Analysis,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+7be60f8c34a16f30735518d240a01972f3530e00,Facial expression recognition with temporal modeling of shapes,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+8fe38962c24300129391f6d7ac24d7783e0fddd0,Visual Text Correction,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+8f3e120b030e6c1d035cb7bd9c22f6cc75782025,Bayesian Networks and the Imprecise Dirichlet Model Applied to Recognition Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+8fed5ea3b69ea441a8b02f61473eafee25fb2374,Two-Dimensional PCA with F-Norm Minimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+8fed5ea3b69ea441a8b02f61473eafee25fb2374,Two-Dimensional PCA with F-Norm Minimization,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+8f3da45ff0c3e1777c3a7830f79c10f5896bcc21,Riding Role Agent Vehicle Place Role Agent Vehicle Place Value Man Horse outside Value Dog Skateboard,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,Age Estimation Using Expectation of Label Distribution Learning,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,Age Estimation Using Expectation of Label Distribution Learning,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+8f08b2101d43b1c0829678d6a824f0f045d57da5,Supplementary Material for: Active Pictorial Structures,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+8fbec9105d346cd23d48536eb20c80b7c2bbbe30,The effectiveness of face detection algorithms in unconstrained crowd scenes,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+8f8a5be9dc16d73664285a29993af7dc6a598c83,Neural Network based Face Recognition with Gabor Filters,Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.883312,90.2693921
+8f5ce25e6e1047e1bf5b782d045e1dac29ca747e,A Novel Discriminant Non-Negative Matrix Factorization Algorithm With Applications to Facial Image Characterization Problems,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+8f92cccacf2c84f5d69db3597a7c2670d93be781,Facial expression synthesis through facial expressions statistical analysis,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+8f6263e4d3775757e804796e104631c7a2bb8679,Characterizing Visual Representations within Convolutional Neural Networks: Toward a Quantitative Approach,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+8f6263e4d3775757e804796e104631c7a2bb8679,Characterizing Visual Representations within Convolutional Neural Networks: Toward a Quantitative Approach,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+8f60c343f76913c509ce623467bf086935bcadac,Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+8f5facdc0a2a79283864aad03edc702e2a400346,Estimation Framework using Bio - Inspired Features for Facial Image,Bangalore Institute of Technology,Bangalore Institute of Technology,"Bangalore Institute of Technology, Krishna Rajendra Road, Mavalli, Vishveshwara Puram, South Zone, Bengaluru, Bangalore Urban, Karnataka, 560004, India",12.9551259,77.5741985
+8a3c5507237957d013a0fe0f082cab7f757af6ee,Facial Landmark Detection by Deep Multi-task Learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+8af411697e73f6cfe691fe502d4bfb42510b4835,Dynamic Local Ternary Pattern for Face Recognition and Verification,Institute of Information Technology,Institute of Information Technology,"Institute of Information Technology, Sir Sayed Road, ফকিরাপুল, সিদ্দিক বাজার, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7289899,90.3982682
+8af411697e73f6cfe691fe502d4bfb42510b4835,Dynamic Local Ternary Pattern for Face Recognition and Verification,University of Dhaka,"University of Dhaka, Bangladesh","World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275
+8af411697e73f6cfe691fe502d4bfb42510b4835,Dynamic Local Ternary Pattern for Face Recognition and Verification,Hankuk University of Foreign Studies,"Hankuk University of Foreign Studies, South Korea","외대앞, 휘경로, 이문동, 이문2동, 동대문구, 서울특별시, 02407, 대한민국",37.5953979,127.0630499
+8a1ed5e23231e86216c9bdd62419c3b05f1e0b4d,Facial Keypoint Detection,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+8a8861ad6caedc3993e31d46e7de6c251a8cda22,StreetStyle: Exploring world-wide clothing styles from millions of photos,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+8a0159919ee4e1a9f4cbfb652a1be212bf0554fd,"Application of power laws to biometrics, forensics and network traffic analysis",University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+8ad0d8cf4bcb5c7eccf09f23c8b7d25439c4ae2b,Predicting the Future with Transformational States,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,Animals on the Web,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+8a0d10a7909b252d0e11bf32a7f9edd0c9a8030b,Animals on the Web,University of Illinois,"University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+7ed2c84fdfc7d658968221d78e745dfd1def6332,Evaluation of linear combination of views for object recognition on real and synthetic datasets,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+7eaa97be59019f0d36aa7dac27407b004cad5e93,Sampling Generative Networks,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.768469187426
+7eb895e7de883d113b75eda54389460c61d63f67,Can You Tell a Face from a HEVC Bitstream?,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+7e467e686f9468b826133275484e0a1ec0f5bde6,Efficient On-the-fly Category Retrieval using ConvNets and GPUs,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+7e00fb79576fe213853aeea39a6bc51df9fdca16,Online multi-face detection and tracking using detector confidence and structured SVMs,Eindhoven University of Technology,"Eindhoven University of Technology, The Netherlands","Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805
+7e2cfbfd43045fbd6aabd9a45090a5716fc4e179,Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,Southwest University,"Southwest University, China","西南大学, 天生路, 北碚区 (Beibei), 北碚区, 北碚区 (Beibei), 重庆市, 400711, 中国",29.82366295,106.420500156445
+7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,Beijing Normal University,"Beijing Normal University, China","北京师范大学, 19, 新街口外大街, 西城区, 100875, 中国",39.96014155,116.359704380265
+7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,Columbia University,"Columbia University, United States","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+7eb85bcb372261bad707c05e496a09609e27fdb3,A Compute-Efficient Algorithm for Robust Eyebrow Detection,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+7ebb153704706e457ab57b432793d2b6e5d12592,Faces in Places: compound query retrieval,University of Oxford,"University of Oxford, UK","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922,Skiing and Thinking About It: Moment-to-Moment and Retrospective Analysis of Emotions in an Extreme Sport,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+7e0c75ce731131e613544e1a85ae0f2c28ee4c1f,Regression-based Estimation of Pain and Facial Expression Intensity,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+7ef44b7c2b5533d00001ae81f9293bdb592f1146,Détection des émotions à partir de vidéos dans un environnement non contrôlé Detection of emotions from video in non-controlled environment,Aalborg University,"Aalborg University, Denmark","AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991
+7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data,Ruhr University Bochum,Ruhr University Bochum,"RUB, 150, Universitätsstraße, Ruhr-Universität, Querenburg, Bochum-Süd, Bochum, Regierungsbezirk Arnsberg, Nordrhein-Westfalen, 44801, Deutschland",51.44415765,7.26096541306078
+10550ee13855bd7403946032354b0cd92a10d0aa,Accelerating neuromorphic vision algorithms for recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+10e12d11cb98ffa5ae82343f8904cfe321ae8004,A New Simplex Sparse Learning Model to Measure Data Similarity for Clustering,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+100105d6c97b23059f7aa70589ead2f61969fbc3,Frontal to profile face verification in the wild,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+100105d6c97b23059f7aa70589ead2f61969fbc3,Frontal to profile face verification in the wild,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+100da509d4fa74afc6e86a49352751d365fceee5,Multiclass recognition and part localization with humans in the loop,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+100da509d4fa74afc6e86a49352751d365fceee5,Multiclass recognition and part localization with humans in the loop,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+10af69f11301679b6fbb23855bf10f6af1f3d2e6,Beyond Gaussian Pyramid: Multi-skip Feature Stacking for action recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+100428708e4884300e4c1ac1f84cbb16e7644ccf,Regularized Shearlet Network for face recognition using single sample per person,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+10f17534dba06af1ddab96c4188a9c98a020a459,People-LDA: Anchoring Topics to People using Face Recognition,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+102b968d836177f9c436141e382915a4f8549276,Affective multimodal human-computer interaction,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+101d4cfbd6f8a7a10bd33505e2b183183f1d8770,The 2013 SESAME Multimedia Event Detection and Recounting System,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+106092fafb53e36077eba88f06feecd07b9e78e7,Attend and Interact: Higher-Order Object Interactions for Video Understanding,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+103c8eaca2a2176babab2cc6e9b25d48870d6928,Panning for gold: finding relevant semantic content for grounded language learning,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+10f66f6550d74b817a3fdcef7fdeba13ccdba51c,Benchmarking Face Alignment,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+107fc60a6c7d58a6e2d8572ad8c19cc321a9ef53,Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+10ca2e03ff995023a701e6d8d128455c6e8db030,Modeling Stylized Character Expressions via Deep Learning,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+1921e0a97904bdf61e17a165ab159443414308ed,Informatics Bachelor Thesis Retrieval of Web Images for Computer Vision Research,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.0280421,8.51148270115395
+1922ad4978ab92ce0d23acc4c7441a8812f157e5,Face alignment by coarse-to-fine shape searching,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1922ad4978ab92ce0d23acc4c7441a8812f157e5,Face alignment by coarse-to-fine shape searching,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+19e62a56b6772bbd37dfc6b8f948e260dbb474f5,Cross-Domain Metric Learning Based on Information Theory,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+19e62a56b6772bbd37dfc6b8f948e260dbb474f5,Cross-Domain Metric Learning Based on Information Theory,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+1989a1f9ce18d8c2a0cee3196fe6fa363aab80c2,Robust online face tracking-by-detection,Eindhoven University of Technology,"Eindhoven University of Technology, The Netherlands","Technische Universiteit Eindhoven, 2, De Rondom, Villapark, Eindhoven, Noord-Brabant, Nederland, 5600 MB, Nederland",51.4486602,5.49039956550805
+193debca0be1c38dabc42dc772513e6653fd91d8,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+193debca0be1c38dabc42dc772513e6653fd91d8,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+193debca0be1c38dabc42dc772513e6653fd91d8,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+190d8bd39c50b37b27b17ac1213e6dde105b21b8,Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation,University Library,University Library,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705
+198b6beb53e0e61357825d57938719f614685f75,Vaulted Verification: A Scheme for Revocable Face Recognition,University of Colorado,University of Colorado,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621
+1921795408345751791b44b379f51b7dd54ebfa2,From Face Recognition to Models of Identity: A Bayesian Approach to Learning about Unknown Identities from Unsupervised Data,"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+1921795408345751791b44b379f51b7dd54ebfa2,From Face Recognition to Models of Identity: A Bayesian Approach to Learning about Unknown Identities from Unsupervised Data,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+19e0cc41b9f89492b6b8c2a8a58d01b8242ce00b,Improving Heterogeneous Face Recognition with Conditional Adversarial Networks,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+19e7bdf8310f9038e1a9cf412b8dd2c77ff64c54,Facial Action Coding Using Multiple Visual Cues and a Hierarchy of Particle Filters,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+1938d85feafdaa8a65cb9c379c9a81a0b0dcd3c4,Monogenic Binary Coding: An Efficient Local Feature Extraction Approach to Face Recognition,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+195d331c958f2da3431f37a344559f9bce09c0f7,Parsing occluded people by flexible compositions,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+199c2df5f2847f685796c2523221c6436f022464,Self quotient image for face recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+199c2df5f2847f685796c2523221c6436f022464,Self quotient image for face recognition,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+19c0069f075b5b2d8ac48ad28a7409179bd08b86,Modifying the Memorability of Face Photographs,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+19a9f658ea14701502d169dc086651b1d9b2a8ea,Structural models for face detection,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+19d3b02185ad36fb0b792f2a15a027c58ac91e8e,Im2Text: Describing Images Using 1 Million Captioned Photographs,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+193ec7bb21321fcf43bbe42233aed06dbdecbc5c,Automatic 3D Facial Expression Analysis in Videos,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+19da9f3532c2e525bf92668198b8afec14f9efea,Challenge: Face verification across age progression using real-world data,University of Delaware,University of Delaware,"University of Delaware, South College Avenue, Newark, New Castle County, Delaware, 19713, USA",39.6810328,-75.7540184
+19868a469dc25ee0db00947e06c804b88ea94fd0,SP-SVM: Large Margin Classifier for Data on Multiple Manifolds,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+19868a469dc25ee0db00947e06c804b88ea94fd0,SP-SVM: Large Margin Classifier for Data on Multiple Manifolds,Santa Clara University,Santa Clara University,"Cowell Center, Accolti Way, Santa Clara, Santa Clara County, California, 95053, USA",37.34820285,-121.935635412063
+19868a469dc25ee0db00947e06c804b88ea94fd0,SP-SVM: Large Margin Classifier for Data on Multiple Manifolds,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+192235f5a9e4c9d6a28ec0d333e36f294b32f764,Reconfiguring the Imaging Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+192235f5a9e4c9d6a28ec0d333e36f294b32f764,Reconfiguring the Imaging Pipeline for Computer Vision,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+192235f5a9e4c9d6a28ec0d333e36f294b32f764,Reconfiguring the Imaging Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+19878141fbb3117d411599b1a74a44fc3daf296d,Eye-State Action Unit Detection by Gabor Wavelets,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+19878141fbb3117d411599b1a74a44fc3daf296d,Eye-State Action Unit Detection by Gabor Wavelets,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+19f076998ba757602c8fec04ce6a4ca674de0e25,Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+4cb8a691a15e050756640c0a35880cdd418e2b87,Class-Based Matching of Object Parts,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+4cc681239c8fda3fb04ba7ac6a1b9d85b68af31d,Mining Spatial and Spatio-Temporal ROIs for Action Recognition,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+4c87aafa779747828054cffee3125fcea332364d,View-Constrained Latent Variable Model for Multi-view Facial Expression Classification,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+4c87aafa779747828054cffee3125fcea332364d,View-Constrained Latent Variable Model for Multi-view Facial Expression Classification,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+4cdae53cebaeeebc3d07cf6cd36fecb2946f3e56,Photorealistic Facial Texture Inference Using Deep Neural Networks,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+4c8e5fc0877d066516bb63e6c31eb1b8b5f967eb,"MODI, KOVASHKA: CONFIDENCE AND DIVERSITY FOR ACTIVE SELECTION 1 Confidence and Diversity for Active Selection of Feedback in Image Retrieval",University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+4c8ef4f98c6c8d340b011cfa0bb65a9377107970,Sentiment Recognition in Egocentric Photostreams,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+4c8ef4f98c6c8d340b011cfa0bb65a9377107970,Sentiment Recognition in Egocentric Photostreams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+4c822785c29ceaf67a0de9c699716c94fefbd37d,A Key Volume Mining Deep Framework for Action Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+4c822785c29ceaf67a0de9c699716c94fefbd37d,A Key Volume Mining Deep Framework for Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+4ccf64fc1c9ca71d6aefdf912caf8fea048fb211,Light-weight Head Pose Invariant Gaze Tracking,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4cdb6144d56098b819076a8572a664a2c2d27f72,Face Synthesis for Eyeglass-Robust Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+4cdb6144d56098b819076a8572a664a2c2d27f72,Face Synthesis for Eyeglass-Robust Face Recognition,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+4c6233765b5f83333f6c675d3389bbbf503805e3,Real-time high performance deformable model for face detection in the wild,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+4c078c2919c7bdc26ca2238fa1a79e0331898b56,Unconstrained Facial Landmark Localization with Backbone-Branches Fully-Convolutional Networks,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,Efficient likelihood Bayesian constrained local model,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+4cac9eda716a0addb73bd7ffea2a5fb0e6ec2367,Representing Videos based on Scene Layouts for Recognizing Agent-in-Place Actions,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4cd0da974af9356027a31b8485a34a24b57b8b90,Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+4c170a0dcc8de75587dae21ca508dab2f9343974,FaceTracer: A Search Engine for Large Collections of Images with Faces,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+4c5b38ac5d60ab0272145a5a4d50872c7b89fe1b,Facial expression recognition with emotion-based feature fusion,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+4c523db33c56759255b2c58c024eb6112542014e,Patch-based within-object classification,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+4c523db33c56759255b2c58c024eb6112542014e,Patch-based within-object classification,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+261c3e30bae8b8bdc83541ffa9331b52fcf015e6,Shape-from-shading Driven 3D Morphable Models for Illumination Insensitive Face Recognition,The University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+26f03693c50eb50a42c9117f107af488865f3dc1,Eigenhill vs. Eigenface and Eigenedge,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+2609079d682998da2bc4315b55a29bafe4df414e,On rank aggregation for face recognition from videos,"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+26d407b911d1234e8e3601e586b49316f0818c95,[POSTER] Feasibility of Corneal Imaging for Handheld Augmented Reality,Coburg University,Coburg University,"Hochschule für angewandte Wissenschaften Coburg, 2, Friedrich-Streib-Straße, Callenberg, Coburg, Oberfranken, Bayern, 96450, Deutschland",50.26506145,10.9519648264628
+26a44feb7a64db7986473ca801c251aa88748477,Unsupervised Learning of Mixture Models with a Uniform Background Component,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+26a44feb7a64db7986473ca801c251aa88748477,Unsupervised Learning of Mixture Models with a Uniform Background Component,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+264f7ab36ff2e23a1514577a6404229d7fe1242b,Facial Expression Recognition by De-expression Residue Learning,State University of New York at Binghamton,"State University of New York at Binghamton, USA","State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486
+266ed43dcea2e7db9f968b164ca08897539ca8dd,Beyond Principal Components: Deep Boltzmann Machines for face modeling,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+266ed43dcea2e7db9f968b164ca08897539ca8dd,Beyond Principal Components: Deep Boltzmann Machines for face modeling,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+2642810e6c74d900f653f9a800c0e6a14ca2e1c7,Projection Bank: From High-Dimensional Data to Medium-Length Binary Codes,Northumbria University,"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK","Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK",54.9781026,-1.6067699
+2654ef92491cebeef0997fd4b599ac903e48d07a,Facial expression recognition from near-infrared video sequences,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+2679e4f84c5e773cae31cef158eb358af475e22f,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+2679e4f84c5e773cae31cef158eb358af475e22f,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+2679e4f84c5e773cae31cef158eb358af475e22f,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+217a21d60bb777d15cd9328970cab563d70b5d23,Hidden Factor Analysis for Age Invariant Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+217a21d60bb777d15cd9328970cab563d70b5d23,Hidden Factor Analysis for Age Invariant Face Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+21258aa3c48437a2831191b71cd069c05fb84cf7,A Robust and Efficient Doubly Regularized Metric Learning Approach,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+21104bcf07ef0269ab133471a3200b9bf94b2948,Beyond Comparing Image Pairs: Setwise Active Learning for Relative Attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+217de4ff802d4904d3f90d2e24a29371307942fe,"POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+217de4ff802d4904d3f90d2e24a29371307942fe,"POOF: Part-Based One-vs.-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44,Lessons from collecting a million biometric samples,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+2135a3d9f4b8f5771fa5fc7c7794abf8c2840c44,Lessons from collecting a million biometric samples,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+210b98394c3be96e7fd75d3eb11a391da1b3a6ca,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ایران",34.68092465,50.0534135183902
+210b98394c3be96e7fd75d3eb11a391da1b3a6ca,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+210b98394c3be96e7fd75d3eb11a391da1b3a6ca,Spatiotemporal Derivative Pattern: A Dynamic Texture Descriptor for Video Matching,The University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+21765df4c0224afcc25eb780bef654cbe6f0bc3a,Multi-channel Correlation Filters,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+21765df4c0224afcc25eb780bef654cbe6f0bc3a,Multi-channel Correlation Filters,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+21b16df93f0fab4864816f35ccb3207778a51952,Recognition of Static Gestures Applied to Brazilian Sign Language (Libras),Math Institute,Math Institute,"Fields Institute for Research in Math Science, 222, College Street, Kensington Market, Old Toronto, Toronto, Ontario, M5T 3A1, Canada",43.65879595,-79.3975504060101
+212608e00fc1e8912ff845ee7a4a67f88ba938fc,Coupled Deep Learning for Heterogeneous Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,The University of Tokyo,"The University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+4d625677469be99e0a765a750f88cfb85c522cce,Understanding Hand-Object Manipulation with Grasp Types and Object Attributes,The University of Tokyo,"The University of Tokyo, Japan","東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+4d15254f6f31356963cc70319ce416d28d8924a3,Quo vadis Face Recognition?,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+4d15254f6f31356963cc70319ce416d28d8924a3,Quo vadis Face Recognition?,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d15254f6f31356963cc70319ce416d28d8924a3,Quo vadis Face Recognition?,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+4d6462fb78db88afff44561d06dd52227190689c,Face-to-Face Social Activity Detection Using Data Collected with a Wearable Device,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+4de757faa69c1632066391158648f8611889d862,Review of Face Recognition Technology Using Feature Fusion Vector,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+4db0968270f4e7b3fa73e41c50d13d48e20687be,Fashion Forward: Forecasting Visual Style in Fashion,"Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany","KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+4db0968270f4e7b3fa73e41c50d13d48e20687be,Fashion Forward: Forecasting Visual Style in Fashion,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+4d9c02567e7b9e065108eb83ea3f03fcff880462,Towards Facial Expression Recognition in the Wild: A New Database and Deep Recognition System,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+4d3c4c3fe8742821242368e87cd72da0bd7d3783,Hybrid Deep Learning for Face Verification,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+4d3c4c3fe8742821242368e87cd72da0bd7d3783,Hybrid Deep Learning for Face Verification,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+4d3c4c3fe8742821242368e87cd72da0bd7d3783,Hybrid Deep Learning for Face Verification,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+4d01d78544ae0de3075304ff0efa51a077c903b7,ART Network based Face Recognition with Gabor Filters,Jahangirnagar University,Jahangirnagar University,"Jahangirnagar University, 1342, University Main Road, সাভার, সাভার উপজেলা, ঢাকা জেলা, ঢাকা বিভাগ, 1342, বাংলাদেশ",23.883312,90.2693921
+4dd2be07b4f0393995b57196f8fc79d666b3aec5,Sparse localized facial motion dictionary learning for facial expression recognition,Yeungnam University,Yeungnam University,"영남대, 대학로, 부적리, 경산시, 경북, 712-749, 대한민국",35.8365403,128.7534309
+4d8ce7669d0346f63b20393ffaa438493e7adfec,Similarity Features for Facial Event Analysis,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+4d8ce7669d0346f63b20393ffaa438493e7adfec,Similarity Features for Facial Event Analysis,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d16337cc0431cd43043dfef839ce5f0717c3483,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4d0b3921345ae373a4e04f068867181647d57d7d,Learning Attributes from Human Gaze,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+75fcbb01bc7e53e9de89cb1857a527f97ea532ce,"Detection of Facial Landmarks from Neutral, Happy, and Disgust Facial Images",University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.7792067776763
+757e4cb981e807d83539d9982ad325331cb59b16,Demographics versus Biometric Automatic Interoperability,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+75fd9acf5e5b7ed17c658cc84090c4659e5de01d,Project-Out Cascaded Regression with an application to face alignment,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+75bf3b6109d7a685236c8589f8ead7d769ea863f,Model Selection with Nonlinear Embedding for Unsupervised Domain Adaptation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+759cf57215fcfdd8f59c97d14e7f3f62fafa2b30,Real-time Distracted Driver Posture Classification,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+751970d4fb6f61d1b94ca82682984fd03c74f127,Array-based Electromyographic Silent Speech Interface,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+75ebe1e0ae9d42732e31948e2e9c03d680235c39,Hello! My name is... Buffy'' -- Automatic Naming of Characters in TV Video,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+751b26e7791b29e4e53ab915bfd263f96f531f56,Mood meter: counting smiles in the wild,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+75da1df4ed319926c544eefe17ec8d720feef8c0,FDDB: A Benchmark for Face Detection in Unconstrained Settings,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+75da1df4ed319926c544eefe17ec8d720feef8c0,FDDB: A Benchmark for Face Detection in Unconstrained Settings,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+75259a613285bdb339556ae30897cb7e628209fa,Unsupervised Domain Adaptation for Zero-Shot Learning,Queen Mary University of London,"Queen Mary University of London, London E1 4NS, UK","Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+754f7f3e9a44506b814bf9dc06e44fecde599878,Quantized Densely Connected U-Nets for Efficient Landmark Localization,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+754f7f3e9a44506b814bf9dc06e44fecde599878,Quantized Densely Connected U-Nets for Efficient Landmark Localization,Binghamton University,Binghamton University,"Binghamton University Downtown Center, Washington Street, Downtown, Binghamton, Broome County, New York, 13901, USA",42.0958077,-75.9145568939543
+75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,Capturing Subtle Facial Motions in 3D Face Tracking,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+75d2ecbbcc934563dff6b39821605dc6f2d5ffcc,Capturing Subtle Facial Motions in 3D Face Tracking,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+816bd8a7f91824097f098e4f3e0f4b69f481689d,Latent semantic analysis of facial action codes for automatic facial expression recognition,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+816bd8a7f91824097f098e4f3e0f4b69f481689d,Latent semantic analysis of facial action codes for automatic facial expression recognition,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+81706277ed180a92d2eeb94ac0560f7dc591ee13,Emotion based Contextual Semantic Relevance Feedback in Multimedia Information Retrieval,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+81706277ed180a92d2eeb94ac0560f7dc591ee13,Emotion based Contextual Semantic Relevance Feedback in Multimedia Information Retrieval,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+81e11e33fc5785090e2d459da3ac3d3db5e43f65,A Novel Face Recognition Approach Using a Multimodal Feature Vector,"National Institute of Technology, Durgapur, West Bengal, India","National Institute of Technology, Durgapur, West Bengal, India","National Institute Of Technology, Durgapur, Priyadarshini Indira Sarani, Durgapur, Bānkurā, West Bengal, 713209, India",23.54869625,87.291057119111
+81e366ed1834a8d01c4457eccae4d57d169cb932,Pose-Configurable Generic Tracking of Elongated Objects,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.6171601574695
+8164ebc07f51c9e0db4902980b5ac3f5a8d8d48c,Shuffle-Then-Assemble: Learning Object-Agnostic Visual Relationship Features,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+81fc86e86980a32c47410f0ba7b17665048141ec,Segment-based Methods for Facial Attribute Detection from Partial Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+861c650f403834163a2c27467a50713ceca37a3e,Probabilistic Elastic Part Model for Unsupervised Face Detector Adaptation,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949
+86f191616423efab8c0d352d986126a964983219,Visual to Sound: Generating Natural Sound for Videos in the Wild,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+869a2fbe42d3fdf40ed8b768edbf54137be7ac71,Relative Attributes for Enhanced Human-Machine Communication,University of Texas,University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,"Kernel Selection using Multiple Kernel Learning and Domain Adaptation in Reproducing Kernel Hilbert Space, for Face Recognition under Surveillance Scenario",Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+86ed5b9121c02bcf26900913f2b5ea58ba23508f,Actions ~ Transformations,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+86ed5b9121c02bcf26900913f2b5ea58ba23508f,Actions ~ Transformations,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,Attentional Alignment Networks,Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,Attentional Alignment Networks,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,Attentional Alignment Networks,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+862d17895fe822f7111e737cbcdd042ba04377e8,Semi-Latent GAN: Learning to generate and modify facial images from attributes,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+86d0127e1fd04c3d8ea78401c838af621647dc95,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,Hunan University,Hunan University,"Yejin University for Employees, 冶金西路, 和平乡, 珠晖区, 衡阳市 / Hengyang, 湖南省, 中国",26.88111275,112.628506656425
+86d0127e1fd04c3d8ea78401c838af621647dc95,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+86d0127e1fd04c3d8ea78401c838af621647dc95,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,University of Posts and Telecommunications,University of Posts and Telecommunications,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国",32.11527165,118.925956600436
+86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,University of Posts and Telecommunications,University of Posts and Telecommunications,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国",32.11527165,118.925956600436
+86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,University of Posts and Telecommunications,University of Posts and Telecommunications,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国",32.11527165,118.925956600436
+86b6de59f17187f6c238853810e01596d37f63cd,Competitive Representation Based Classification Using Facial Noise Detection,University of Posts and Telecommunications,University of Posts and Telecommunications,"南京邮电大学仙林校区, 9, 文苑路, 仙林大学城, 栖霞区, 南京市, 江苏省, 210023, 中国",32.11527165,118.925956600436
+86f3552b822f6af56cb5079cc31616b4035ccc4e,Towards Miss Universe automatic prediction: The evening gown competition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+86a8b3d0f753cb49ac3250fa14d277983e30a4b7,Exploiting Unlabeled Ages for Aging Pattern Analysis on a Large Database,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+860588fafcc80c823e66429fadd7e816721da42a,Unsupervised Discovery of Object Landmarks as Structural Representations,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+86374bb8d309ad4dbde65c21c6fda6586ae4147a,Detect-and-Track: Efficient Pose Estimation in Videos,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+86374bb8d309ad4dbde65c21c6fda6586ae4147a,Detect-and-Track: Efficient Pose Estimation in Videos,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+72282287f25c5419dc6fd9e89ec9d86d660dc0b5,A Rotation Invariant Latent Factor Model for Moveme Discovery from Static Poses,"California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, Pasadena, CA, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+727ecf8c839c9b5f7b6c7afffe219e8b270e7e15,Leveraging Geo-referenced Digital Photographs a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,OF STANFORD UNIVERSITY,OF STANFORD UNIVERSITY,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,Expression Recognition in Videos Using a Weighted Component-Based Feature Descriptor,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+72a5e181ee8f71b0b153369963ff9bfec1c6b5b0,Expression Recognition in Videos Using a Weighted Component-Based Feature Descriptor,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,Face alignment using cascade Gaussian process regression trees,Korea Advanced institute of Science and Technology,Korea Advanced institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+72160aae43cd9b2c3aae5574acc0d00ea0993b9e,Boosting Facial Expression Recognition in a Noisy Environment Using LDSP-Local Distinctive Star Pattern,Stamford University Bangladesh,"Stamford University Bangladesh, Dhaka-1209, Bangladesh","Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108
+72160aae43cd9b2c3aae5574acc0d00ea0993b9e,Boosting Facial Expression Recognition in a Noisy Environment Using LDSP-Local Distinctive Star Pattern,Stamford University Bangladesh,"Stamford University Bangladesh, Dhaka-1209, Bangladesh","Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108
+72160aae43cd9b2c3aae5574acc0d00ea0993b9e,Boosting Facial Expression Recognition in a Noisy Environment Using LDSP-Local Distinctive Star Pattern,Stamford University Bangladesh,"Stamford University Bangladesh, Dhaka-1209, Bangladesh","Stamford University Bangladesh, Siddeshwari Road, ফকিরাপুল, Paltan, ঢাকা, ঢাকা বিভাগ, 1217, বাংলাদেশ",23.7448166,90.4084351355108
+72cbbdee4f6eeee8b7dd22cea6092c532271009f,Masquer Hunter: Adversarial Occlusion-aware Face Detection,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 100190, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,"BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE 1 Convolutional aggregation of local evidence for large pose face alignment",University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+72450d7e5cbe79b05839c30a4f0284af5aa80053,Natural Facial Expression Recognition Using Dynamic and Static Schemes,University of the Basque Country,"University of the Basque Country, San Sebastian, Spain","Euskal Herriko Unibertsitatea, Ibaeta Campusa, Paseo Arriola pasealekua, Ibaeta, Donostia/San Sebastián, Donostialdea, Gipuzkoa, Euskadi, 20008, España",43.30927695,-2.01066784661227
+725c3605c2d26d113637097358cd4c08c19ff9e1,Deep Reasoning with Knowledge Graph for Social Relationship Understanding,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+445461a34adc4bcdccac2e3c374f5921c93750f8,Emotional Expression Classification Using Time-Series Kernels,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+445461a34adc4bcdccac2e3c374f5921c93750f8,Emotional Expression Classification Using Time-Series Kernels,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+443acd268126c777bc7194e185bec0984c3d1ae7,Retrieving relative soft biometrics for semantic identification,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+44f23600671473c3ddb65a308ca97657bc92e527,Convolutional Two-Stream Network Fusion for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+44f23600671473c3ddb65a308ca97657bc92e527,Convolutional Two-Stream Network Fusion for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+44f23600671473c3ddb65a308ca97657bc92e527,Convolutional Two-Stream Network Fusion for Video Action Recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition,University Drive,University Drive,"University Drive, Ooralea, Mackay, QLD, 4740, Australia",-21.1753214,149.1432747
+4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+4467a1ae8ddf0bc0e970c18a0cdd67eb83c8fd6f,Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition,University Drive,University Drive,"University Drive, Ooralea, Mackay, QLD, 4740, Australia",-21.1753214,149.1432747
+44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,Automatically Building Face Datasets of New Domains from Weakly Labeled Data with Pretrained Models,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+44aeda8493ad0d44ca1304756cc0126a2720f07b,Face Alive Icons,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+44d23df380af207f5ac5b41459c722c87283e1eb,Human Attribute Recognition by Deep Hierarchical Contexts,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+44c9b5c55ca27a4313daf3760a3f24a440ce17ad,Revisiting hand-crafted feature for action recognition: a set of improved dense trajectories,Hiroshima University,"Hiroshima University, Japan","Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4019766,132.7123195
+44c9b5c55ca27a4313daf3760a3f24a440ce17ad,Revisiting hand-crafted feature for action recognition: a set of improved dense trajectories,Hiroshima University,"Hiroshima University, Japan","Hiroshima University 広島大学 東広島キャンパス, 出会いの道 Deai-no-michi Str., 西条下見, 東広島市, 広島県, 中国地方, 739-0047, 日本",34.4019766,132.7123195
+44fbbaea6271e47ace47c27701ed05e15da8f7cf,Pupil Mimicry Correlates With Trust in In-Group Partners With Dilating Pupils.,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+44fbbaea6271e47ace47c27701ed05e15da8f7cf,Pupil Mimicry Correlates With Trust in In-Group Partners With Dilating Pupils.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,Head pose estimation in the wild using approximate view manifolds,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,Head pose estimation in the wild using approximate view manifolds,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+449808b7aa9ee6b13ad1a21d9f058efaa400639a,Recovering 3D facial shape via coupled 2D/3D space learning,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+449808b7aa9ee6b13ad1a21d9f058efaa400639a,Recovering 3D facial shape via coupled 2D/3D space learning,Institute of Digital Media,Institute of Digital Media,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India",20.28907925,85.84232125
+2a65d7d5336b377b7f5a98855767dd48fa516c0f,Fast Supervised LDA for Discovering Micro-Events in Large-Scale Video Datasets,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+2af2b74c3462ccff3a6881ff7cf4f321b3242fa9,"Name-Face Association in Web Videos: A Large-Scale Dataset, Baselines, and Open Issues",Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+2af620e17d0ed67d9ccbca624250989ce372e255,Meta-class features for large-scale object categorization on a budget,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+2a35d20b2c0a045ea84723f328321c18be6f555c,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,"Beijing Institute of Technology, Beijing 100081 CHINA","Beijing Institute of Technology, Beijing 100081 CHINA","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+2a35d20b2c0a045ea84723f328321c18be6f555c,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,"Beijing Institute of Technology, Beijing 100081 CHINA","Beijing Institute of Technology, Beijing 100081 CHINA","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+2a35d20b2c0a045ea84723f328321c18be6f555c,Boost Picking: A Universal Method on Converting Supervised Classification to Semi-supervised Classification,"Beijing Institute of Technology, Beijing 100081 CHINA","Beijing Institute of Technology, Beijing 100081 CHINA","北京理工大学, 5, 中关村南大街, 中关村, 稻香园南社区, 海淀区, 北京市, 100872, 中国",39.9586652,116.309712808455
+2a9b398d358cf04dc608a298d36d305659e8f607,Facial action unit recognition with sparse representation,University of Denver,University of Denver,"University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+2a9b398d358cf04dc608a298d36d305659e8f607,Facial action unit recognition with sparse representation,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+2ac21d663c25d11cda48381fb204a37a47d2a574,Interpreting Hand-Over-Face Gestures,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+2a4153655ad1169d482e22c468d67f3bc2c49f12,Face Alignment Across Large Poses: A 3D Solution,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+2a4153655ad1169d482e22c468d67f3bc2c49f12,Face Alignment Across Large Poses: A 3D Solution,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,Estimating Sheep Pain Level Using Facial Action Unit Detection,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+2a3e19d7c54cba3805115497c69069dd5a91da65,Looking at Hands in Autonomous Vehicles: A ConvNet Approach using Part Affinity Fields,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+2a14b6d9f688714dc60876816c4b7cf763c029a9,Combining multiple sources of knowledge in deep CNNs for action recognition,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+2a88541448be2eb1b953ac2c0c54da240b47dd8a,Discrete Graph Hashing,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+2a171f8d14b6b8735001a11c217af9587d095848,Learning Social Relation Traits from Face Images,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+2a0623ae989f2236f5e1fe3db25ab708f5d02955,3D Face Modelling for 2D+3D Face Recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+2a0623ae989f2236f5e1fe3db25ab708f5d02955,3D Face Modelling for 2D+3D Face Recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+2afdda6fb85732d830cea242c1ff84497cd5f3cb,Face image retrieval by using Haar features,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+2afdda6fb85732d830cea242c1ff84497cd5f3cb,Face image retrieval by using Haar features,Tamkang University,Tamkang University,"淡江大學, 151, 英專路, 中興里, 鬼仔坑, 淡水區, 新北市, 25137, 臺灣",25.17500615,121.450767514156
+2ab034e1f54c37bfc8ae93f7320160748310dc73,Siamese Capsule Networks,University of Liverpool,University of Liverpool,"Victoria Building, Brownlow Hill, Knowledge Quarter, Liverpool, North West England, England, L3, UK",53.406179,-2.96670818619252
+2ff9ffedfc59422a8c7dac418a02d1415eec92f1,Face Verification Using Boosted Cross-Image Features,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+2ff9ffedfc59422a8c7dac418a02d1415eec92f1,Face Verification Using Boosted Cross-Image Features,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+2ff9ffedfc59422a8c7dac418a02d1415eec92f1,Face Verification Using Boosted Cross-Image Features,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+2f53b97f0de2194d588bc7fb920b89cd7bcf7663,Facial Expression Recognition Using Sparse Gaussian Conditional Random Field,Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ایران",29.6385474,52.5245706
+2f53b97f0de2194d588bc7fb920b89cd7bcf7663,Facial Expression Recognition Using Sparse Gaussian Conditional Random Field,Shiraz University,Shiraz University,"دانشگاه شیراز, میدان ارم, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71348-34689, ایران",29.6385474,52.5245706
+2f16baddac6af536451b3216b02d3480fc361ef4,Web-scale training for face identification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+2f2aa67c5d6dbfaf218c104184a8c807e8b29286,Video analytics for surveillance camera networks,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+2fc43c2c3f7ad1ca7a1ce32c5a9a98432725fb9a,Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+2f13dd8c82f8efb25057de1517746373e05b04c4,Evaluation of state-of-the-art algorithms for remote face recognition,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+2f2406551c693d616a840719ae1e6ea448e2f5d3,Age estimation from face images: Human vs. machine performance,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+2f7fc778e3dec2300b4081ba2a1e52f669094fcd,Action Representation Using Classifier Decision Boundaries,The Australian National University,"The Australian National University, Canberra, Australia","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+2f0e5a4b0ef89dd2cf55a4ef65b5c78101c8bfa1,Facial Expression Recognition Using a Hybrid CNN-SIFT Aggregator,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+2f5e057e35a97278a9d824545d7196c301072ebf,Capturing Long-Tail Distributions of Object Subcategories,University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+2f5e057e35a97278a9d824545d7196c301072ebf,Capturing Long-Tail Distributions of Object Subcategories,University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+2f04ba0f74df046b0080ca78e56898bd4847898b,Aggregate channel features for multi-view face detection,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+43010792bf5cdb536a95fba16b8841c534ded316,Towards general motion-based face recognition,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+438c4b320b9a94a939af21061b4502f4a86960e3,Reconstruction-Based Disentanglement for Pose-Invariant Face Recognition,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+43e99b76ca8e31765d4571d609679a689afdc99e,Learning Dense Facial Correspondences in Unconstrained Images,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+4377b03bbee1f2cf99950019a8d4111f8de9c34a,Selective Encoding for Recognizing Unreliably Localized Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4307e8f33f9e6c07c8fc2aeafc30b22836649d8c,Supervised Earth Mover's Distance Learning and Its Computer Vision Applications,Stanford University,"Stanford University, CA, United States","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+435642641312364e45f4989fac0901b205c49d53,Face Model Compression by Distilling Knowledge from Neurons,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+435642641312364e45f4989fac0901b205c49d53,Face Model Compression by Distilling Knowledge from Neurons,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+435642641312364e45f4989fac0901b205c49d53,Face Model Compression by Distilling Knowledge from Neurons,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+434d6726229c0f556841fad20391c18316806f73,Detecting Visual Relationships with Deep Relational Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+435dc062d565ce87c6c20a5f49430eb9a4b573c4,Lighting Condition Adaptation for Perceived Age Estimation,"Tokyo Institute of Technology, Japan","Tokyo Institute of Technology, Japan","東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406
+433a6d6d2a3ed8a6502982dccc992f91d665b9b3,Transferring Landmark Annotations for Cross-Dataset Face Alignment,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+433a6d6d2a3ed8a6502982dccc992f91d665b9b3,Transferring Landmark Annotations for Cross-Dataset Face Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+438e7999c937b94f0f6384dbeaa3febff6d283b6,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+438e7999c937b94f0f6384dbeaa3febff6d283b6,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+43776d1bfa531e66d5e9826ff5529345b792def7,Automatic Critical Event Extraction and Semantic Interpretation by Looking-Inside,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+432d8cba544bf7b09b0455561fea098177a85db1,Towards a Neural Statistician,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+432d8cba544bf7b09b0455561fea098177a85db1,Towards a Neural Statistician,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+439647914236431c858535a2354988dde042ef4d,Face illumination normalization on large and small scale features,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+439647914236431c858535a2354988dde042ef4d,Face illumination normalization on large and small scale features,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+439647914236431c858535a2354988dde042ef4d,Face illumination normalization on large and small scale features,Hong Kong Baptist University,Hong Kong Baptist University,"香港浸會大學 Hong Kong Baptist University, 安明街 On Ming Street, 石門 Shek Mun, 石古壟 Shek Kwu Lung, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1132, 中国",22.3874201,114.2082222
+439ca6ded75dffa5ddea203dde5e621dc4a88c3e,Robust real-time performance-driven 3D face tracking,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+439ca6ded75dffa5ddea203dde5e621dc4a88c3e,Robust real-time performance-driven 3D face tracking,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+88e090ffc1f75eed720b5afb167523eb2e316f7f,Attribute-Based Transfer Learning for Object Categorization with Zero/One Training Example,University of Maryland,"University of Maryland, College Park, MD, USA","The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,Automatic facial expression recognition for affective computing based on bag of distances,National Chung Cheng University,National Chung Cheng University,"國立中正大學, 168, 鳳凰大道, 民雄鄉, 嘉義縣, 62102, 臺灣",23.56306355,120.475105312324
+8877e0b2dc3d2e8538c0cfee86b4e8657499a7c4,Automatic facial expression recognition for affective computing based on bag of distances,National Taichung University of science and Technology,National Taichung University of science and Technology,"臺中科大, 129, 三民路三段, 錦平里, 賴厝廍, 北區, 臺中市, 40401, 臺灣",24.15031065,120.683255008879
+88f7a3d6f0521803ca59fde45601e94c3a34a403,Semantic Aware Video Transcription Using Random Forest Classifiers,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+88bef50410cea3c749c61ed68808fcff84840c37,Sparse representations of image gradient orientations for visual recognition and tracking,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+88bef50410cea3c749c61ed68808fcff84840c37,Sparse representations of image gradient orientations for visual recognition and tracking,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+8820d1d3fa73cde623662d92ecf2e3faf1e3f328,Continuous Video to Simple Signals for Swimming Stroke Detection with Convolutional Neural Networks,La Trobe University,La Trobe University,"La Trobe University, Keck Street, Flora Hill, Bendigo, City of Greater Bendigo, Loddon Mallee, Victoria, 3550, Australia",-36.7784754,144.298047
+8820d1d3fa73cde623662d92ecf2e3faf1e3f328,Continuous Video to Simple Signals for Swimming Stroke Detection with Convolutional Neural Networks,Australian Institute of Sport,Australian Institute of Sport,"Australian Institute of Sport, Glenn McGrath Street, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.24737535,149.104454269689
+8862a573a42bbaedd392e9e634c1ccbfd177a01d,Real-Time 3D Face Fitting and Texture Fusion on In-the-Wild Videos,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+8862a573a42bbaedd392e9e634c1ccbfd177a01d,Real-Time 3D Face Fitting and Texture Fusion on In-the-Wild Videos,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682403998887
+8895d6ae9f095a8413f663cc83f5b7634b3dc805,BEHL ET AL: INCREMENTAL TUBE CONSTRUCTION FOR HUMAN ACTION DETECTION 1 Incremental Tube Construction for Human Action Detection,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+8895d6ae9f095a8413f663cc83f5b7634b3dc805,BEHL ET AL: INCREMENTAL TUBE CONSTRUCTION FOR HUMAN ACTION DETECTION 1 Incremental Tube Construction for Human Action Detection,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+887745c282edf9af40d38425d5fdc9b3fe139c08,FAME: Face Association through Model Evolution,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+887745c282edf9af40d38425d5fdc9b3fe139c08,FAME: Face Association through Model Evolution,Bilkent University,Bilkent University,"Bilkent Üniversitesi, 3. Cadde, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.8720489,32.7539515466323
+9f6d04ce617d24c8001a9a31f11a594bd6fe3510,Attentional bias towards angry faces in trait-reappraisal,University of Alberta,University of Alberta,"University of Alberta, 87 Avenue NW, University of Alberta, Edmonton, Alberta, T6G, Canada",53.5238572,-113.522826652346
+9f6d04ce617d24c8001a9a31f11a594bd6fe3510,Attentional bias towards angry faces in trait-reappraisal,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+9f499948121abb47b31ca904030243e924585d5f,Hierarchical Attention Network for Action Recognition in Videos,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+9f499948121abb47b31ca904030243e924585d5f,Hierarchical Attention Network for Action Recognition in Videos,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+9f499948121abb47b31ca904030243e924585d5f,Hierarchical Attention Network for Action Recognition in Videos,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+9fc04a13eef99851136eadff52e98eb9caac919d,Rethinking the Camera Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+9fc04a13eef99851136eadff52e98eb9caac919d,Rethinking the Camera Pipeline for Computer Vision,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+9fc04a13eef99851136eadff52e98eb9caac919d,Rethinking the Camera Pipeline for Computer Vision,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+9f4078773c8ea3f37951bf617dbce1d4b3795839,Leveraging Inexpensive Supervision Signals for Visual Learning,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+9f4078773c8ea3f37951bf617dbce1d4b3795839,Leveraging Inexpensive Supervision Signals for Visual Learning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+9f4078773c8ea3f37951bf617dbce1d4b3795839,Leveraging Inexpensive Supervision Signals for Visual Learning,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+9f65319b8a33c8ec11da2f034731d928bf92e29d,Taking Roll: a Pipeline for Face Recognition,Louisiana State University,Louisiana State University,"LSU, Gourrier Avenue, Baton Rouge, East Baton Rouge Parish, Louisiana, 70803, USA",30.40550035,-91.1862047410405
+9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,Active Tracking and Cloning of Facial Expressions Using Spatio-Temporal Information,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,Active Tracking and Cloning of Facial Expressions Using Spatio-Temporal Information,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+6b3e360b80268fda4e37ff39b7f303e3684e8719,Face Recognition from Sketches Using Advanced Correlation Filters Using Hybrid Eigenanalysis for Face Synthesis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6bca0d1f46b0f7546ad4846e89b6b842d538ee4e,Face Recognition from Surveillance - Quality Video,of the University of Notre Dame,of the University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+6b8d0569fffce5cc221560d459d6aa10c4db2f03,Interlinked Convolutional Neural Networks for Face Parsing,Tsinghua University,"Tsinghua University, Beijing 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+6bcee7dba5ed67b3f9926d2ae49f9a54dee64643,Assessment of Time Dependency in Face Recognition: An Initial Study,University of Notre Dame. Notre Dame,"University of Notre Dame. Notre Dame, IN 46556.USA","University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,Feature Extraction through Cross-Phase Congruency for Facial Expression Analysis,University of Oradea,University of Oradea,"Universitatea Creștină Partium - Clădirea Sulyok, 27, Strada Primăriei, Orașul Nou, Oradea, Bihor, 410209, România",47.0570222,21.922709
+6bb0425baac448297fbd29a00e9c9b9926ce8870,Facial Expression Recognition Using Log-Gabor Filters and Local Binary Pattern Operators,RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6b6ff9d55e1df06f8b3e6f257e23557a73b2df96,Survey of Threats to the Biometric Authentication Systems and Solutions,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+07377c375ac76a34331c660fe87ebd7f9b3d74c4,Detailed Human Avatars from Monocular Video,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0729628db4bb99f1f70dd6cb2353d7b76a9fce47,Separating pose and expression in face images: a manifold learning approach,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+07c90e85ac0f74b977babe245dea0f0abcf177e3,An Image Preprocessing Algorithm for Illumination Invariant Face Recognition,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+07ea3dd22d1ecc013b6649c9846d67f2bf697008,Human-centric Video Understanding with Weak Supervision a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,OF STANFORD UNIVERSITY,OF STANFORD UNIVERSITY,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+076d3fc800d882445c11b9af466c3af7d2afc64f,Face attribute classification using attribute-aware correlation map and gated convolutional neural networks,Korea Advanced institute of Science and Technology,Korea Advanced institute of Science and Technology,"카이스트, 291, 대학로, 온천2동, 온천동, 유성구, 대전, 34141, 대한민국",36.3697191,127.362537001151
+0773c320713dae62848fceac5a0ac346ba224eca,Digital facial augmentation for interactive entertainment,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling,Jacobs University,Jacobs University,"Liverpool Hope University, Shaw Street, Everton, Liverpool, North West England, England, L6 1HP, UK",53.4129148,-2.96897915394896
+070de852bc6eb275d7ca3a9cdde8f6be8795d1a3,A FACS valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+07a472ea4b5a28b93678a2dcf89028b086e481a2,Head Dynamic Analysis: A Multi-view Framework,University of California,"University of California, San Diego, USA","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+07fa153b8e6196ee6ef6efd8b743de8485a07453,Action Prediction From Videos via Memorizing Hard-to-Predict Samples,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+07fa153b8e6196ee6ef6efd8b743de8485a07453,Action Prediction From Videos via Memorizing Hard-to-Predict Samples,college of Engineering,college of Engineering,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0110912,80.2354520862161
+07fa153b8e6196ee6ef6efd8b743de8485a07453,Action Prediction From Videos via Memorizing Hard-to-Predict Samples,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+0708059e3bedbea1cbfae1c8cd6b7259d4b56b5b,Graph-regularized multi-class support vector machines for face and action recognition,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+074af31bd9caa61fea3c4216731420bd7c08b96a,Face verification using sparse representations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+074af31bd9caa61fea3c4216731420bd7c08b96a,Face verification using sparse representations,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+07f31bef7a7035792e3791473b3c58d03928abbf,Lessons from collecting a million biometric samples,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+07f31bef7a7035792e3791473b3c58d03928abbf,Lessons from collecting a million biometric samples,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+07de8371ad4901356145722aa29abaeafd0986b9,Towards Usable Multimedia Event Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+07e639abf1621ceff27c9e3f548fadfa2052c912,5-HTTLPR Expression Outside the Skin: An Experimental Test of the Emotional Reactivity Hypothesis in Children,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+07e639abf1621ceff27c9e3f548fadfa2052c912,5-HTTLPR Expression Outside the Skin: An Experimental Test of the Emotional Reactivity Hypothesis in Children,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+07da958db2e561cc7c24e334b543d49084dd1809,Dictionary learning based dimensionality reduction for classification,Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.3764534,8.54770931489751
+07d986b1005593eda1aeb3b1d24078db864f8f6a,Facial Expression Recognition Using Local Facial Features,National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.283497550993
+07d986b1005593eda1aeb3b1d24078db864f8f6a,Facial Expression Recognition Using Local Facial Features,National University of Kaohsiung,National University of Kaohsiung,"國立高雄大學, 中央廣場, 藍田, 藍田里, 楠梓區, 高雄市, 811, 臺灣",22.73424255,120.283497550993
+3802c97f925cb03bac91d9db13d8b777dfd29dcc,Non-parametric Bayesian Constrained Local Models,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8338371,10.7035939
+38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,Randomized Intraclass-Distance Minimizing Binary Codes for face recognition,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+38a2661b6b995a3c4d69e7d5160b7596f89ce0e6,Randomized Intraclass-Distance Minimizing Binary Codes for face recognition,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+38787338ba659f0bfbeba11ec5b7748ffdbb1c3d,Evaluation of the discrimination power of features extracted from 2-D and 3-D facial images for facial expression analysis,University of Piraeus,University of Piraeus,"Πανεπιστήμιο Πειραιώς, 80, Καραολή και Δημητρίου, Απόλλωνας, Νέο Φάληρο, Πειραιάς, Δήμος Πειραιώς, Περιφερειακή Ενότητα Πειραιώς, Περιφέρεια Αττικής, Αττική, 185 34, Ελλάδα",37.94173275,23.6530326182197
+38c901a58244be9a2644d486f9a1284dc0edbf8a,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+38c901a58244be9a2644d486f9a1284dc0edbf8a,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+38c901a58244be9a2644d486f9a1284dc0edbf8a,Multi-Camera Action Dataset for Cross-Camera Action Recognition Benchmarking,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+3852968082a16db8be19b4cb04fb44820ae823d4,Unsupervised Learning of Long-Term Motion Dynamics for Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+38cc2f1c13420170c7adac30f9dfac69b297fb76,Recognition of human activities and expressions in video sequences using shape context descriptor,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+38cbb500823057613494bacd0078aa0e57b30af8,Deep Face Deblurring,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+38cbb500823057613494bacd0078aa0e57b30af8,Deep Face Deblurring,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,Shrinkage Expansion Adaptive Metric Learning,Dalian University of Technology,"Dalian University of Technology, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,Shrinkage Expansion Adaptive Metric Learning,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+38f06a75eb0519ae1d4582a86ef4730cc8fb8d7f,Shrinkage Expansion Adaptive Metric Learning,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+384945abd53f6a6af51faf254ba8ef0f0fb3f338,Visual Recognition with Humans in the Loop,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+384945abd53f6a6af51faf254ba8ef0f0fb3f338,Visual Recognition with Humans in the Loop,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+38d8ff137ff753f04689e6b76119a44588e143f3,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+3896c62af5b65d7ba9e52f87505841341bb3e8df,Face Recognition from Still Images and Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+38bbca5f94d4494494860c5fe8ca8862dcf9676e,"Probabilistic , Features - based Object Recognition",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,"College Park, MD, 20740, USA","College Park, MD, 20740, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375
+38a9ca2c49a77b540be52377784b9f734e0417e4,Face verification using large feature sets and one shot similarity,University of Campinas,University of Campinas,"USJ, 97, Rua Sílvia Maria Fabro, Kobrasol, Campinas, São José, Microrregião de Florianópolis, Mesorregião da Grande Florianópolis, SC, Região Sul, 88102-130, Brasil",-27.5953995,-48.6154218
+00f7f7b72a92939c36e2ef9be97397d8796ee07c,3D ConvNets with Optical Flow Based Regularization,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0021f46bda27ea105d722d19690f5564f2b8869e,Deep Region and Multi-label Learning for Facial Action Unit Detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+0081e2188c8f34fcea3e23c49fb3e17883b33551,Training Deep Face Recognition Systems with Synthetic Data,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+00dc942f23f2d52ab8c8b76b6016d9deed8c468d,Advanced Correlation-Based Character Recognition Applied to the Archimedes Palimpsest,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+0055c7f32fa6d4b1ad586d5211a7afb030ca08cc,Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+009cd18ff06ff91c8c9a08a91d2516b264eee48e,Face and Automatic Target Recognition Based on Super-Resolved Discriminant Subspace,Chulalongkorn University,Chulalongkorn University,"จุฬาลงกรณ์มหาวิทยาลัย, 254, ถนนพญาไท, สยาม, แขวงปทุมวัน, เขตปทุมวัน, กรุงเทพมหานคร, 10330, ประเทศไทย",13.74311795,100.532879009091
+00b08d22abc85361e1c781d969a1b09b97bc7010,Who is the hero? semi-supervised person re-identification in videos,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+007250c2dce81dd839a55f9108677b4f13f2640a,Advances in Component Based Face Detection,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+00e3957212517a252258baef833833921dd308d4,Adaptively Weighted Multi-task Deep Network for Person Attribute Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+00e3957212517a252258baef833833921dd308d4,Adaptively Weighted Multi-task Deep Network for Person Attribute Classification,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+009a18d04a5e3ec23f8ffcfc940402fd8ec9488f,Action Recognition by Weakly-Supervised Discriminative Region Localization,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+0066caed1238de95a431d836d8e6e551b3cde391,Filtered Component Analysis to Increase Robustness to Local Minima in Appearance Models,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+00075519a794ea546b2ca3ca105e2f65e2f5f471,"Generating a Large, Freely-Available Dataset for Face-Related Algorithms",Amherst College,Amherst College,"Amherst College, Boltwood Avenue, Amherst, Hampshire, Massachusetts, 01004, USA",42.37289,-72.518814
+0019925779bff96448f0c75492717e4473f88377,Deep Heterogeneous Face Recognition Networks Based on Cross-Modal Distillation and an Equitable Distance Metric,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+00e9011f58a561500a2910a4013e6334627dee60,Facial expression recognition using angle-related information from facial meshes,University of Thessaloniki,University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+00a967cb2d18e1394226ad37930524a31351f6cf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+00a967cb2d18e1394226ad37930524a31351f6cf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+00a967cb2d18e1394226ad37930524a31351f6cf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+00f1e5e954f9eb7ffde3ca74009a8c3c27358b58,Unsupervised clustering for google searches of celebrity images,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,"Biswas, Jacobs: an Efficient Algorithm for Learning Distances",University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+0058cbe110933f73c21fa6cc9ae0cd23e974a9c7,"Biswas, Jacobs: an Efficient Algorithm for Learning Distances","College Park, USA","College Park, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+00ebc3fa871933265711558fa9486057937c416e,Collaborative Representation based Classification for Face Recognition,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+00ebc3fa871933265711558fa9486057937c416e,Collaborative Representation based Classification for Face Recognition,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+00b29e319ff8b3a521b1320cb8ab5e39d7f42281,Towards Transparent Systems: Semantic Characterization of Failure Modes,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+00b29e319ff8b3a521b1320cb8ab5e39d7f42281,Towards Transparent Systems: Semantic Characterization of Failure Modes,University of Washington,"University of Washington, Seattle, USA","University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+6e60536c847ac25dba4c1c071e0355e5537fe061,Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+6e60536c847ac25dba4c1c071e0355e5537fe061,Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+6e60536c847ac25dba4c1c071e0355e5537fe061,Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+6e173ad91b288418c290aa8891193873933423b3,Are you from North or South India? A hard race classification task reveals systematic representational differences between humans and machines,Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+6e91be2ad74cf7c5969314b2327b513532b1be09,Dimensionality Reduction with Subspace Structure Preservation,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.9336278,-78.8839447903448
+6ed738ff03fd9042965abdfaa3ed8322de15c116,K-MEAP: Generating Specified K Clusters with Multiple Exemplars by Efficient Affinity Propagation,University Library,University Library,"University Town, College Avenue East, Rochester Hill, Clementi, Southwest, 138608, Singapore",1.30604775,103.7728987705
+6eddea1d991e81c1c3024a6cea422bc59b10a1dc,Towards automatic analysis of gestures and body expressions in depression,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+6eddea1d991e81c1c3024a6cea422bc59b10a1dc,Towards automatic analysis of gestures and body expressions in depression,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+6e97a99b2879634ecae962ddb8af7c1a0a653a82,Towards Context-aware Interaction Recognition,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+6ee64c19efa89f955011531cde03822c2d1787b8,Table S1: Review of Existing Facial Expression Databases That Are Often Used in Social Psycholgy,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+6e00a406edb508312108f683effe6d3c1db020fb,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+6e00a406edb508312108f683effe6d3c1db020fb,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,National University of Defense Technology,"National University of Defense Technology, Changsha, China","国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+6e00a406edb508312108f683effe6d3c1db020fb,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,"Microsoft Research, Beijing, China","Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+6e94c579097922f4bc659dd5d6c6238a428c4d22,Graph Based Multi-class Semi-supervised Learning Using Gaussian Process,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+6eb1e006b7758b636a569ca9e15aafd038d2c1b1,Human Capabilities on Video-based Facial Expression Recognition,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,LEGO Pictorial Scales for Assessing Affective Responses,University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5240528,172.580306253669
+6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,LEGO Pictorial Scales for Assessing Affective Responses,Texas A&M University,"Texas A&M University, College Station, TX, USA","Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443
+6eb1b5935b0613a41b72fd9e7e53a3c0b32651e9,LEGO Pictorial Scales for Assessing Affective Responses,University of Canterbury,University of Canterbury,"University of Canterbury, Uni-Cycle, Ilam, Christchurch, Christchurch City, Canterbury, 8040, New Zealand/Aotearoa",-43.5240528,172.580306253669
+6e782073a013ce3dbc5b9b56087fd0300c510f67,Real Time Facial Emotion Recognition using Kinect V2 Sensor,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+9a0c7a4652c49a177460b5d2fbbe1b2e6535e50a,Automatic and quantitative evaluation of attribute discovery methods,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+9ac43a98fe6fde668afb4fcc115e4ee353a6732d,Survey of Face Detection on Low-Quality Images,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+9a4c45e5c6e4f616771a7325629d167a38508691,A facial features detector integrating holistic facial information and part-based model,University of Louisville,University of Louisville,"University of Louisville, South Brook Street, Louisville, Jefferson County, Kentucky, 40208, USA",38.2167565,-85.7572502291168
+9a4c45e5c6e4f616771a7325629d167a38508691,A facial features detector integrating holistic facial information and part-based model,Alexandria University,Alexandria University,"جامعة الإسكندرية, الكورنيش, إبراهيمية, الإسكندرية, 21522, مصر",31.21051105,29.9131456239399
+9a4c45e5c6e4f616771a7325629d167a38508691,A facial features detector integrating holistic facial information and part-based model,Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.1700949818453
+9af9a88c60d9e4b53e759823c439fc590a4b5bc5,Learning Deep Convolutional Embeddings for Face Representation Using Joint Sample- and Set-Based Supervision,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+9abd35b37a49ee1295e8197aac59bde802a934f3,Depth2Action: Exploring Embedded Depth for Large-Scale Action Recognition,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+9a1a9dd3c471bba17e5ce80a53e52fcaaad4373e,Automatic Recognition of Spontaneous Facial Actions,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+36a3a96ef54000a0cd63de867a5eb7e84396de09,Automatic Photo Orientation Detection with Convolutional Neural Networks,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+362bfeb28adac5f45b6ef46c07c59744b4ed6a52,Incorporating Scalability in Unsupervised Spatio- Temporal Feature Learning,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+360d66e210f7011423364327b7eccdf758b5fdd2,Local feature extraction methods for facial expression recognition,RMIT University,RMIT University,"RMIT University, 124, La Trobe Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.8087465,144.9638875
+361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,Deep Reinforcement Learning of Video Games,University of Groningen,"University of Groningen, The Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,Deep Reinforcement Learning of Video Games,ALICE Institute,ALICE Institute,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola",-8.82143045,13.2347076178375
+361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,Deep Reinforcement Learning of Video Games,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+368e99f669ea5fd395b3193cd75b301a76150f9d,One-to-many face recognition with bilinear CNNs,University of Massachusetts,"University of Massachusetts, Amherst","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+36df81e82ea5c1e5edac40b60b374979a43668a5,On-the-fly specific person retrieval,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+3619a9b46ad4779d0a63b20f7a6a8d3d49530339,Fisher Vector Faces in the Wild,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+36e8ef2e5d52a78dddf0002e03918b101dcdb326,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018
+36e8ef2e5d52a78dddf0002e03918b101dcdb326,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,University of Cape Town,University of Cape Town,"University of Cape Town, Engineering Mall, Cape Town Ward 59, Cape Town, City of Cape Town, Western Cape, CAPE TOWN, South Africa",-33.95828745,18.4599734888018
+367f2668b215e32aff9d5122ce1f1207c20336c8,Speaker-Dependent Human Emotion Recognition in Unimodal and Bimodal Scenarios,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+367f2668b215e32aff9d5122ce1f1207c20336c8,Speaker-Dependent Human Emotion Recognition in Unimodal and Bimodal Scenarios,University of Peshawar,University of Peshawar,"University of Peshawar, Road 2, JAHANGIR ABAD / جهانگیرآباد, پشاور, Peshāwar District, خیبر پختونخوا, 2500, پاکستان",34.0092004,71.4877494739102
+36c2db5ff76864d289781f93cbb3e6351f11984c,One colored image based 2.5D human face reconstruction,Newcastle University,"Newcastle University, Newcastle upon Tyne","Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949
+3661a34f302883c759b9fa2ce03de0c7173d2bb2,Peak-Piloted Deep Network for Facial Expression Recognition,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+3661a34f302883c759b9fa2ce03de0c7173d2bb2,Peak-Piloted Deep Network for Facial Expression Recognition,AI Institute,AI Institute,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina",-34.6102167,-58.3752244291708
+3661a34f302883c759b9fa2ce03de0c7173d2bb2,Peak-Piloted Deep Network for Facial Expression Recognition,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+3661a34f302883c759b9fa2ce03de0c7173d2bb2,Peak-Piloted Deep Network for Facial Expression Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+36c473fc0bf3cee5fdd49a13cf122de8be736977,Temporal Segment Networks: Towards Good Practices for Deep Action Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+36c473fc0bf3cee5fdd49a13cf122de8be736977,Temporal Segment Networks: Towards Good Practices for Deep Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+368d59cf1733af511ed8abbcbeb4fb47afd4da1c,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+368d59cf1733af511ed8abbcbeb4fb47afd4da1c,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+36b9f46c12240898bafa10b0026a3fb5239f72f3,Collaborative Deep Reinforcement Learning for Joint Object Search,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+361d6345919c2edc5c3ce49bb4915ed2b4ee49be,Models for supervised learning in sequence data,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+367a786cfe930455cd3f6bd2492c304d38f6f488,A Training Assistant Tool for the Automated Visual Inspection System,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078
+5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+5ca23ceb0636dfc34c114d4af7276a588e0e8dac,Texture representation in AAM using Gabor wavelet and local binary patterns,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+5c493c42bfd93e4d08517438983e3af65e023a87,Multimodal Keyless Attention Fusion for Video Classification,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+5cb83eba8d265afd4eac49eb6b91cdae47def26d,Face Recognition with Local Line Binary Pattern,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.856208183836
+5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,Robust Face Detection by Simple Means,Graz University of Technology,"Graz University of Technology, Austria","TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+5c3dce55c61ee86073575ac75cc882a215cb49e6,Neural Codes for Image Retrieval,"Moscow Institute of Physics and Technology, Russia","Moscow Institute of Physics and Technology, Russia","МФТИ, 9, Институтский переулок, Виноградовские Горки, Лихачёво, Долгопрудный, городской округ Долгопрудный, Московская область, ЦФО, 141700, РФ",55.929035,37.5186680829482
+5c820e47981d21c9dddde8d2f8020146e600368f,Extended Supervised Descent Method for Robust Face Alignment,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+5c7adde982efb24c3786fa2d1f65f40a64e2afbf,Ranking Domain-Specific Highlights by Analyzing Edited Videos,University of Washington,"University of Washington, Seattle, WA, USA","University of Washington, Northeast Walla Walla Road, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.65249975,-122.2998748
+5c36d8bb0815fd4ff5daa8351df4a7e2d1b32934,GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+5cfbeae360398de9e20e4165485837bd42b93217,Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches,Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.7275037,39.4712703382844
+5cfbeae360398de9e20e4165485837bd42b93217,Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches,Firat University,Firat University,"Erzincan Üniversitesi Hukuk Fakültesi Dekanlığı, Sivas-Erzincan yolu, Üçkonak, Erzincan, Erzincan merkez, Erzincan, Doğu Anadolu Bölgesi, 24000, Türkiye",39.7275037,39.4712703382844
+5ca14fa73da37855bfa880b549483ee2aba26669,Face Recognition under Varying Illuminations Using Local Binary Pattern And Local Ternary Pattern Fusion,Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.3568981,76.4551272
+5ca14fa73da37855bfa880b549483ee2aba26669,Face Recognition under Varying Illuminations Using Local Binary Pattern And Local Ternary Pattern Fusion,Punjabi University Patiala,Punjabi University Patiala,"Punjabi University Patiala, Rajpura Road, Patiala, Punjab, 147001, India",30.3568981,76.4551272
+5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+5c8ae37d532c7bb8d7f00dfde84df4ba63f46297,DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,Facial Expression Intensity Estimation Using Ordinal Information,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+5ce2cb4c76b0cdffe135cf24b9cda7ae841c8d49,Facial Expression Intensity Estimation Using Ordinal Information,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+5c4d4fd37e8c80ae95c00973531f34a6d810ea3a,The Open World of Micro-Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+09b80d8eea809529b08a8b0ff3417950c048d474,Adding Unlabeled Samples to Categories by Learned Attributes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+09b80d8eea809529b08a8b0ff3417950c048d474,Adding Unlabeled Samples to Categories by Learned Attributes,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+09f58353e48780c707cf24a0074e4d353da18934,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+09f58353e48780c707cf24a0074e4d353da18934,Unconstrained face recognition: Establishing baseline human performance via crowdsourcing,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+0969e0dc05fca21ff572ada75cb4b703c8212e80,Semi-Supervised Classification Based on Low Rank Representation,College of Computer and Information Science,College of Computer and Information Science,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA",42.3192923,-83.2343465549018
+09dd01e19b247a33162d71f07491781bdf4bfd00,Efficiently Scaling Up Video Annotation with Crowdsourced Marketplaces,University of California,"University of California, Irvine, USA","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+09cf3f1764ab1029f3a7d57b70ae5d5954486d69,Comparison of ICA approaches for facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,Where to Buy It: Matching Street Clothing Photos in Online Shops,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+09fa54f1ab7aaa83124d2415bfc6eb51e4b1f081,Where to Buy It: Matching Street Clothing Photos in Online Shops,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+09628e9116e7890bc65ebeabaaa5f607c9847bae,Semantically Consistent Regularization for Zero-Shot Recognition,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+09733129161ca7d65cf56a7ad63c17f493386027,Face Recognition under Varying Illumination,Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.19853965,16.3698616762866
+09733129161ca7d65cf56a7ad63c17f493386027,Face Recognition under Varying Illumination,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+09733129161ca7d65cf56a7ad63c17f493386027,Face Recognition under Varying Illumination,Vienna University of Technology,Vienna University of Technology,"TU Wien, Hauptgebäude, Hoftrakt, Freihausviertel, KG Wieden, Wieden, Wien, 1040, Österreich",48.19853965,16.3698616762866
+09507f1f1253101d04a975fc5600952eac868602,Motion Feature Network: Fixed Motion Filter for Action Recognition,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+098a1ccc13b8d6409aa333c8a1079b2c9824705b,Attribute Pivots for Guiding Relevance Feedback in Image Search,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+090ff8f992dc71a1125636c1adffc0634155b450,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+090ff8f992dc71a1125636c1adffc0634155b450,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+090ff8f992dc71a1125636c1adffc0634155b450,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,"Imperial College London, London, UK","Imperial College London, London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+09b43b59879d59493df2a93c216746f2cf50f4ac,Deep Transfer Metric Learning,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+09b0ef3248ff8f1a05b8704a1b4cf64951575be9,Recognizing Activities of Daily Living with a Wrist-Mounted Camera,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+094357c1a2ba3fda22aa6dd9e496530d784e1721,A Unified Probabilistic Approach Modeling Relationships between Attributes and Objects,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+09ce14b84af2dc2f76ae1cf227356fa0ba337d07,Face reconstruction in the wild,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+090e4713bcccff52dcd0c01169591affd2af7e76,What Do You Do? Occupation Recognition in a Photo via Social Context,College of Computer and Information Science,College of Computer and Information Science,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA",42.3192923,-83.2343465549018
+090e4713bcccff52dcd0c01169591affd2af7e76,What Do You Do? Occupation Recognition in a Photo via Social Context,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+5dd496e58cfedfc11b4b43c4ffe44ac72493bf55,Discriminative convolutional Fisher vector network for action recognition,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+5d88702cdc879396b8b2cc674e233895de99666b,Exploiting Feature Hierarchies with Convolutional Neural Networks for Cultural Event Recognition,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+5d88702cdc879396b8b2cc674e233895de99666b,Exploiting Feature Hierarchies with Convolutional Neural Networks for Cultural Event Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+5d479f77ecccfac9f47d91544fd67df642dfab3c,"Linking People in Videos with ""Their"" Names Using Coreference Resolution",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+5d479f77ecccfac9f47d91544fd67df642dfab3c,"Linking People in Videos with ""Their"" Names Using Coreference Resolution",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+5df376748fe5ccd87a724ef31d4fdb579dab693f,A Dashboard for Affective E-learning: Data Visualization for Monitoring Online Learner Emotions,Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.3860843,-75.6953926739404
+3167f415a861f19747ab5e749e78000179d685bc,RankBoost with l1 regularization for facial expression recognition and intensity estimation,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+3107316f243233d45e3c7e5972517d1ed4991f91,CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+313d5eba97fe064bdc1f00b7587a4b3543ef712a,Compact Deep Aggregation for Set Retrieval,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+3137a3fedf23717c411483c7b4bd2ed646258401,Joint Learning of Discriminative Prototypes and Large Margin Nearest Neighbor Classifiers,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+31c34a5b42a640b824fa4e3d6187e3675226143e,Shape and texture based facial action and emotion recognition,Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+31ea88f29e7f01a9801648d808f90862e066f9ea,Deep Multi-task Representation Learning: A Tensor Factorisation Approach,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+31835472821c7e3090abb42e57c38f7043dc3636,Flow Counting Using Realboosted Multi-sized Window Detectors,Lund University,Lund University,"TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7039571,13.1902011
+312b2566e315dd6e65bd42cfcbe4d919159de8a1,An Accurate Algorithm for Generating a Music Playlist based on Facial Expressions,Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,Exploring Stereotypes and Biased Data with the Crowd,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,Exploring Stereotypes and Biased Data with the Crowd,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+316d51aaa37891d730ffded7b9d42946abea837f,Unsupervised learning of clutter-resistant visual representations from natural videos,McGovern Institute,McGovern Institute,"McGovern Institute for Brain Research (MIT), Main Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3626295,-71.0914481
+31afdb6fa95ded37e5871587df38976fdb8c0d67,Quantized fuzzy LBP for face recognition,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+31afdb6fa95ded37e5871587df38976fdb8c0d67,Quantized fuzzy LBP for face recognition,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+31d60b2af2c0e172c1a6a124718e99075818c408,Robust Facial Expression Recognition Using Near Infrared Cameras,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+31f1e711fcf82c855f27396f181bf5e565a2f58d,Unconstrained Age Estimation with Deep Convolutional Neural Networks,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+31f1e711fcf82c855f27396f181bf5e565a2f58d,Unconstrained Age Estimation with Deep Convolutional Neural Networks,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+3107085973617bbfc434c6cb82c87f2a952021b7,Spatio-temporal human action localisation and instance segmentation in temporally untrimmed videos,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+3107085973617bbfc434c6cb82c87f2a952021b7,Spatio-temporal human action localisation and instance segmentation in temporally untrimmed videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+31182c5ffc8c5d8772b6db01ec98144cd6e4e897,3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for Virtual Reality Based Social Media,UNIVERSITY OF TARTU,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.7207808104523
+3146fabd5631a7d1387327918b184103d06c2211,Person-Independent 3D Gaze Estimation Using Face Frontalization,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3146fabd5631a7d1387327918b184103d06c2211,Person-Independent 3D Gaze Estimation Using Face Frontalization,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+91495c689e6e614247495c3f322d400d8098de43,A Deep-Learning Approach to Facial Expression Recognition with Candid Images,CUNY City College,CUNY City College,"Cuny, La Tour-du-Pin, Isère, Auvergne-Rhône-Alpes, France métropolitaine, 38110, France",45.5546608,5.4065255
+910524c0d0fe062bf806bb545627bf2c9a236a03,Master Thesis Improvement of Facial Expression Recognition through the Evaluation of Dynamic and Static Features in Video Sequences,Otto-von-Guericke University Magdeburg,Otto-von-Guericke University Magdeburg,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347
+910524c0d0fe062bf806bb545627bf2c9a236a03,Master Thesis Improvement of Facial Expression Recognition through the Evaluation of Dynamic and Static Features in Video Sequences,Otto-von-Guericke University Magdeburg,Otto-von-Guericke University Magdeburg,"Otto-von-Guericke-Universität Magdeburg, 2, Universitätsplatz, Krökentorviertel/Breiter Weg NA, Alte Neustadt, Magdeburg, Sachsen-Anhalt, 39106, Deutschland",52.14005065,11.6447124822347
+91df860368cbcebebd83d59ae1670c0f47de171d,"COCO Attributes: Attributes for People, Animals, and Objects",Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+91df860368cbcebebd83d59ae1670c0f47de171d,"COCO Attributes: Attributes for People, Animals, and Objects",Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+9110c589c6e78daf4affd8e318d843dc750fb71a,Facial Expression Synthesis Based on Emotion Dimensions for Affective Talking Avatar,Tsinghua University,"Tsinghua University, Beijing 100084, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+9110c589c6e78daf4affd8e318d843dc750fb71a,Facial Expression Synthesis Based on Emotion Dimensions for Affective Talking Avatar,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+9110c589c6e78daf4affd8e318d843dc750fb71a,Facial Expression Synthesis Based on Emotion Dimensions for Affective Talking Avatar,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+91e507d2d8375bf474f6ffa87788aa3e742333ce,Robust Face Recognition Using Probabilistic Facial Trait Code,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+91e507d2d8375bf474f6ffa87788aa3e742333ce,Robust Face Recognition Using Probabilistic Facial Trait Code,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+9103148dd87e6ff9fba28509f3b265e1873166c9,Face Analysis using 3D Morphable Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+9103148dd87e6ff9fba28509f3b265e1873166c9,Face Analysis using 3D Morphable Models,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+65126e0b1161fc8212643b8ff39c1d71d262fbc1,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+65b1760d9b1541241c6c0222cc4ee9df078b593a,Enhanced Pictorial Structures for Precise Eye Localization Under Uncontrolled Conditions,Nanjing University,"Nanjing University, Nanjing 210093, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+65d7f95fcbabcc3cdafc0ad38e81d1f473bb6220,Face Recognition for the Visually Impaired,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+65bba9fba03e420c96ec432a2a82521ddd848c09,Connectionist Temporal Modeling for Weakly Supervised Action Labeling,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+656531036cee6b2c2c71954bb6540ef6b2e016d0,Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+656531036cee6b2c2c71954bb6540ef6b2e016d0,Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+656531036cee6b2c2c71954bb6540ef6b2e016d0,Jointly Learning Non-negative Projection and Dictionary with Discriminative Graph Constraints for Classification,Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+65b1209d38c259fe9ca17b537f3fb4d1857580ae,Information Constraints on Auto-Encoding Variational Bayes,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+65b1209d38c259fe9ca17b537f3fb4d1857580ae,Information Constraints on Auto-Encoding Variational Bayes,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+652aac54a3caf6570b1c10c993a5af7fa2ef31ff,"Carnegie Mellon University Statistical Modeling for Networked Video : Coding Optimization , Error Concealment and Traffic Analysis",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+652aac54a3caf6570b1c10c993a5af7fa2ef31ff,"Carnegie Mellon University Statistical Modeling for Networked Video : Coding Optimization , Error Concealment and Traffic Analysis",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+652aac54a3caf6570b1c10c993a5af7fa2ef31ff,"Carnegie Mellon University Statistical Modeling for Networked Video : Coding Optimization , Error Concealment and Traffic Analysis",Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+656ef752b363a24f84cc1aeba91e4fa3d5dd66ba,Robust Open-Set Face Recognition for Small-Scale Convenience Applications,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+6577c76395896dd4d352f7b1ee8b705b1a45fa90,Towards computational models of kinship verification,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+6577c76395896dd4d352f7b1ee8b705b1a45fa90,Towards computational models of kinship verification,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+650bfe7acc3f03eb4ba91d9f93da8ef0ae8ba772,A Deep Learning Approach for Subject Independent Emotion Recognition from Facial Expressions,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,"Face , Age and Gender Recognition using Local Descriptors",Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,"Face , Age and Gender Recognition using Local Descriptors",University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+6515fe829d0b31a5e1f4dc2970a78684237f6edb,Constrained Maximum Likelihood Learning of Bayesian Networks for Facial Action Recognition,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+6515fe829d0b31a5e1f4dc2970a78684237f6edb,Constrained Maximum Likelihood Learning of Bayesian Networks for Facial Action Recognition,GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793
+6261eb75066f779e75b02209fbd3d0f02d3e1e45,Fudan-Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact in Movies with Deep Learning,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+622daa25b5e6af69f0dac3a3eaf4050aa0860396,Greedy feature selection for subspace clustering,Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+622daa25b5e6af69f0dac3a3eaf4050aa0860396,Greedy feature selection for subspace clustering,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+622daa25b5e6af69f0dac3a3eaf4050aa0860396,Greedy feature selection for subspace clustering,Rice University,"Rice University, Houston, TX, 77005, USA","Rice University, Stockton Drive, Houston, Harris County, Texas, 77005-1890, USA",29.71679145,-95.4047811339379
+626913b8fcbbaee8932997d6c4a78fe1ce646127,Learning from Millions of 3D Scans for Large-scale 3D Face Recognition,The University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,University of Groningen,"University of Groningen, Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Indian Institute of Science Bangalore,Indian Institute of Science Bangalore,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Kyoto University,"Kyoto University, Kyoto, Japan","京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+62e913431bcef5983955e9ca160b91bb19d9de42,Facial Landmark Detection with Tweaked Convolutional Neural Networks,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+624e9d9d3d941bab6aaccdd93432fc45cac28d4b,Object-Scene Convolutional Neural Networks for event recognition in images,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+624e9d9d3d941bab6aaccdd93432fc45cac28d4b,Object-Scene Convolutional Neural Networks for event recognition in images,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+624496296af19243d5f05e7505fd927db02fd0ce,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+624496296af19243d5f05e7505fd927db02fd0ce,Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild,"Imperial College London, U.K.","Imperial College London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+62fd622b3ca97eb5577fd423fb9efde9a849cbef,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+62fd622b3ca97eb5577fd423fb9efde9a849cbef,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+62fd622b3ca97eb5577fd423fb9efde9a849cbef,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+621ff353960d5d9320242f39f85921f72be69dc8,Explicit occlusion detection based deformable fitting for facial landmark localization,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+621e8882c41cdaf03a2c4a986a6404f0272ba511,On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+621f656fedda378ceaa9c0096ebb1556a42e5e0f,Single Sample Face Recognition from Video via Stacked Supervised Auto-Encoder,Rio de Janeiro State University,"Rio de Janeiro State University, Brazil","UERJ, 524, Rua São Francisco Xavier, Maracanã, Zona Norte do Rio de Janeiro, Rio de Janeiro, Microrregião Rio de Janeiro, Região Metropolitana do Rio de Janeiro, RJ, Região Sudeste, 20550-900, Brasil",-22.91117105,-43.2357797110467
+965f8bb9a467ce9538dec6bef57438964976d6d9,Recognizing human faces under disguise and makeup,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+96f0e7416994035c91f4e0dfa40fd45090debfc5,Unsupervised Learning of Face Representations,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+963d0d40de8780161b70d28d2b125b5222e75596,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+963d0d40de8780161b70d28d2b125b5222e75596,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+963d0d40de8780161b70d28d2b125b5222e75596,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+968b983fa9967ff82e0798a5967920188a3590a8,Children's recognition of disgust in others.,Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306
+968b983fa9967ff82e0798a5967920188a3590a8,Children's recognition of disgust in others.,Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306
+969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,End-To-End Face Detection and Recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,End-To-End Face Detection and Recognition,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+96a9ca7a8366ae0efe6b58a515d15b44776faf6e,Grid Loss: Detecting Occluded Faces,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+96e1ccfe96566e3c96d7b86e134fa698c01f2289,Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+96e1ccfe96566e3c96d7b86e134fa698c01f2289,Semi-adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images,"International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, India","International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+9627f28ea5f4c389350572b15968386d7ce3fe49,Load Balanced GANs for Multi-view Face Image Synthesis,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+96578785836d7416bf2e9c154f687eed8f93b1e4,Automated video-based facial expression analysis of neuropsychiatric disorders.,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+96e731e82b817c95d4ce48b9e6b08d2394937cf8,Unconstrained face verification using deep CNN features,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+3a27d164e931c422d16481916a2fa6401b74bcef,Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant Face Verification,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 100190, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+3af8d38469fb21368ee947d53746ea68cd64eeae,Multimodal Intelligent Affect Detection with Kinect (Doctoral Consortium),Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+3af8d38469fb21368ee947d53746ea68cd64eeae,Multimodal Intelligent Affect Detection with Kinect (Doctoral Consortium),Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+3af8d38469fb21368ee947d53746ea68cd64eeae,Multimodal Intelligent Affect Detection with Kinect (Doctoral Consortium),Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+3a3f75e0ffdc0eef07c42b470593827fcd4020b4,Normal Similarity Network for Generative Modelling,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2,End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+3a0ea368d7606030a94eb5527a12e6789f727994,Categorization by Learning and Combining Object Parts,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058
+3af130e2fd41143d5fc49503830bbd7bafd01f8b,How Do We Evaluate the Quality of Computational Editing Systems?,University of Wisconsin-Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+3a2cf589f5e11ca886417b72c2592975ff1d8472,Spontaneously Emerging Object Part Segmentation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3a2cf589f5e11ca886417b72c2592975ff1d8472,Spontaneously Emerging Object Part Segmentation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3ada7640b1c525056e6fcd37eea26cd638815cd6,Abnormal Object Recognition: A Comprehensive Study,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+3ada7640b1c525056e6fcd37eea26cd638815cd6,Abnormal Object Recognition: A Comprehensive Study,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+3acb6b3e3f09f528c88d5dd765fee6131de931ea,Novel representation for driver emotion recognition in motor vehicle videos,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+3af1a375c7c1decbcf5c3a29774e165cafce390c,Quantifying Facial Expression Abnormality in Schizophrenia by Combining 2D and 3D Features,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+3af1a375c7c1decbcf5c3a29774e165cafce390c,Quantifying Facial Expression Abnormality in Schizophrenia by Combining 2D and 3D Features,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+3a2a37ca2bdc82bba4c8e80b45d9f038fe697c7d,Handling Uncertain Tags in Visual Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+54948ee407b5d32da4b2eee377cc44f20c3a7e0c,Right for the Right Reason: Training Agnostic Networks,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+54bb25a213944b08298e4e2de54f2ddea890954a,"AgeDB: The First Manually Collected, In-the-Wild Age Database",Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+54bae57ed37ce50e859cbc4d94d70cc3a84189d5,Face recognition committee machine,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+54f442c7fa4603f1814ebd8eba912a00dceb5cb2,The Indian Buffet Process: Scalable Inference and Extensions,The University of Cambridge,The University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+54a9ed950458f4b7e348fa78a718657c8d3d0e05,Learning Neural Models for End-to-End Clustering,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362
+541f1436c8ffef1118a0121088584ddbfd3a0a8a,A Spatio-temporal Feature Based on Triangulation of Dense SURF,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7,Local Centroids Structured Non-Negative Matrix Factorization,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+54ce3ff2ab6e4465c2f94eb4d636183fa7878ab7,Local Centroids Structured Non-Negative Matrix Factorization,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+5495e224ac7b45b9edc5cfeabbb754d8a40a879b,Feature Reconstruction Disentangling for Pose-invariant Face Recognition Supplementary Material,The State University of New Jersey,The State University of New Jersey,"Rutgers New Brunswick: Livingston Campus, Joyce Kilmer Avenue, Piscataway Township, Middlesex County, New Jersey, 08854, USA",40.51865195,-74.4409980124119
+54204e28af73c7aca073835a14afcc5d8f52a515,Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks,New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.9962539360963
+98142103c311b67eeca12127aad9229d56b4a9ff,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+98142103c311b67eeca12127aad9229d56b4a9ff,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+9820920d4544173e97228cb4ab8b71ecf4548475,Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+9820920d4544173e97228cb4ab8b71ecf4548475,Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+9853136dbd7d5f6a9c57dc66060cab44a86cd662,"Improving the Neural Network Training for Face Recognition using Adaptive Learning Rate , Resilient Back Propagation and Conjugate Gradient Algorithm",university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+989332c5f1b22604d6bb1f78e606cb6b1f694e1a,Recurrent Face Aging,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+989332c5f1b22604d6bb1f78e606cb6b1f694e1a,Recurrent Face Aging,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+989332c5f1b22604d6bb1f78e606cb6b1f694e1a,Recurrent Face Aging,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+982f5c625d6ad0dac25d7acbce4dabfb35dd7f23,Facial Expression Recognition by SVM-based Two-stage Classifier on Gabor Features,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+98af221afd64a23e82c40fd28d25210c352e41b7,Exploring visual features through Gabor representations for facial expression detection,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+98af221afd64a23e82c40fd28d25210c352e41b7,Exploring visual features through Gabor representations for facial expression detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+98af221afd64a23e82c40fd28d25210c352e41b7,Exploring visual features through Gabor representations for facial expression detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+9893865afdb1de55fdd21e5d86bbdb5daa5fa3d5,Illumination Normalization Using Logarithm Transforms for Face Authentication,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+9887ab220254859ffc7354d5189083a87c9bca6e,Generic Image Classification Approaches Excel on Face Recognition,Nanjing University of Science and Technology,"Nanjing University of Science and Technology, China","南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+9887ab220254859ffc7354d5189083a87c9bca6e,Generic Image Classification Approaches Excel on Face Recognition,The University of Adelaide,"The University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+985cd420c00d2f53965faf63358e8c13d1951fa8,Pixel-Level Hand Detection with Shape-Aware Structured Forests,The University of Hong Kong,The University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+9821669a989a3df9d598c1b4332d17ae8e35e294,Minimal Correlation Classification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+9865fe20df8fe11717d92b5ea63469f59cf1635a,Wildest Faces: Face Detection and Recognition in Violent Settings,Hacettepe University,Hacettepe University,"Hacettepe Üniversitesi Beytepe Kampüsü, Hacettepe-Beytepe Kampüs Yolu, Üniversiteler Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.86742125,32.7351907206768
+9865fe20df8fe11717d92b5ea63469f59cf1635a,Wildest Faces: Face Detection and Recognition in Violent Settings,Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.7855350558467
+98c2053e0c31fab5bcb9ce5386335b647160cc09,A Distributed Framework for Spatio-Temporal Analysis on Large-Scale Camera Networks,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+98c2053e0c31fab5bcb9ce5386335b647160cc09,A Distributed Framework for Spatio-Temporal Analysis on Large-Scale Camera Networks,University of Stuttgart,University of Stuttgart,"Pädagogische Hochschule Ludwigsburg, 46, Reuteallee, Ludwigsburg-Nord, Ludwigsburg, Landkreis Ludwigsburg, Regierungsbezirk Stuttgart, Baden-Württemberg, 71634, Deutschland",48.9095338,9.1831892
+98c2053e0c31fab5bcb9ce5386335b647160cc09,A Distributed Framework for Spatio-Temporal Analysis on Large-Scale Camera Networks,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.9336278,-78.8839447903448
+98a660c15c821ea6d49a61c5061cd88e26c18c65,Face Databases for 2D and 3D Facial Recognition: A Survey,Institute of Road and,Institute of Road and,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+98fb3890c565f1d32049a524ec425ceda1da5c24,A Robust Learning Framework Using PSM and Ameliorated SVMs for Emotional Recognition,Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+9825c4dddeb2ed7eaab668b55403aa2c38bc3320,Aerial Imagery for Roof Segmentation: A Large-Scale Dataset towards Automatic Mapping of Buildings,University of Tokyo,University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+9825c4dddeb2ed7eaab668b55403aa2c38bc3320,Aerial Imagery for Roof Segmentation: A Large-Scale Dataset towards Automatic Mapping of Buildings,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+980266ad6807531fea94252e8f2b771c20e173b3,Continuous Regression for Non-rigid Image Alignment,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+53d78c8dbac7c9be8eb148c6a9e1d672f1dd72f9,"Discriminative vs . Generative Object Recognition : Objects , Faces , and the Web",California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+533d14e539ae5cdca0ece392487a2b19106d468a,Bidirectional Multirate Reconstruction for Temporal Modeling in Videos,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+53698b91709112e5bb71eeeae94607db2aefc57c,Two-Stream Convolutional Networks for Action Recognition in Videos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+5394d42fd27b7e14bd875ec71f31fdd2fcc8f923,Visual Recognition Using Directional Distribution Distance,Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+5397c34a5e396658fa57e3ca0065a2878c3cced7,Lighting normalization with generic intrinsic illumination subspace for face recognition,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+539287d8967cdeb3ef60d60157ee93e8724efcac,Learning Deep $\ell_0$ Encoders,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+539287d8967cdeb3ef60d60157ee93e8724efcac,Learning Deep $\ell_0$ Encoders,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+532f7ec8e0c8f7331417dd4a45dc2e8930874066,Semi-supervised dimensionality reduction on data with multiple representations for label propagation on facial images,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+53bfe2ab770e74d064303f3bd2867e5bf7b86379,Learning to Synthesize and Manipulate Natural Images,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+537d8c4c53604fd419918ec90d6ef28d045311d0,Active collaborative ensemble tracking,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+53ce84598052308b86ba79d873082853022aa7e9,Optimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine,Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+53ce84598052308b86ba79d873082853022aa7e9,Optimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+3fe4109ded039ac9d58eb9f5baa5327af30ad8b6,Spatio-Temporal GrabCut human segmentation for face and pose recovery,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+3fefc856a47726d19a9f1441168480cee6e9f5bb,Perceptually Valid Dynamics for Smiles and Blinks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3fefc856a47726d19a9f1441168480cee6e9f5bb,Perceptually Valid Dynamics for Smiles and Blinks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3f7cf52fb5bf7b622dce17bb9dfe747ce4a65b96,Person Identity Label Propagation in Stereo Videos,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9,Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-Spectral Hallucination and Low-Rank Embedding,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+3fb26f3abcf0d287243646426cd5ddeee33624d4,Joint Training of Cascaded CNN for Face Detection,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+3f9ca2526013e358cd8caeb66a3d7161f5507cbc,Improving Sparse Representation-Based Classification Using Local Principal Component Analysis,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+3f57c3fc2d9d4a230ccb57eed1d4f0b56062d4d5,Face Recognition across Poses Using a Single 3D Reference Model,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+3feb69531653e83d0986a0643e4a6210a088e3e5,Using Group Prior to Identify People in Consumer Images,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3feb69531653e83d0986a0643e4a6210a088e3e5,Using Group Prior to Identify People in Consumer Images,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+3feb69531653e83d0986a0643e4a6210a088e3e5,Using Group Prior to Identify People in Consumer Images,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+3feb69531653e83d0986a0643e4a6210a088e3e5,Using Group Prior to Identify People in Consumer Images,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+3f12701449a82a5e01845001afab3580b92da858,Joint Object Class Sequencing and Trajectory Triangulation (JOST),The University of North Carolina,"The University of North Carolina, Chapel Hill","University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511
+3fde656343d3fd4223e08e0bc835552bff4bda40,Character Identification Using Graph Matching Algorithm,Anna University Chennai,Anna University Chennai,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+3f957142ef66f2921e7c8c7eadc8e548dccc1327,Merging SVMs with Linear Discriminant Analysis: A Combined Model,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+3f957142ef66f2921e7c8c7eadc8e548dccc1327,Merging SVMs with Linear Discriminant Analysis: A Combined Model,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,Intensity-Depth Face Alignment Using Cascade Shape Regression,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,Intensity-Depth Face Alignment Using Cascade Shape Regression,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+3f540faf85e1f8de6ce04fb37e556700b67e4ad3,Face Verification with Multi-Task and Multi-Scale Feature Fusion,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,Dr. B. C. Roy Engineering College,Dr. B. C. Roy Engineering College,"Dr. B. C. Roy Engineering College, Lenin Sarani, Durgapur, Bānkurā, West Bengal, 713200, India",23.54409755,87.342697070434
+3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,National Institute of Technology Rourkela,National Institute of Technology Rourkela,"National Institute of Technology, inside the department, Koel Nagar, Rourkela, Sundargarh, Odisha, 769002, India",22.2501589,84.9066855698087
+3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,Indian Institute of Technology Kanpur,Indian Institute of Technology Kanpur,"Indian Institute of Technology Kanpur, 4th Avenue, Panki, Kanpur, Kanpur Nagar, Uttar Pradesh, 208016, India",26.513188,80.2365194538339
+3f4bfa4e3655ef392eb5ad609d31c05f29826b45,Robust multi-camera view face recognition,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334
+3fb4bf38d34f7f7e5b3df36de2413d34da3e174a,Persuasive Faces: Generating Faces in Advertisements,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+3f623bb0c9c766a5ac612df248f4a59288e4d29f,"Genetic Programming for Region Detection, Feature Extraction, Feature Construction and Classification in Image Data",Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.768469187426
+3f4798c7701da044bdb7feb61ebdbd1d53df5cfe,Vector quantization with constrained likelihood for face recognition,University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.57054745,-88.5557862661765
+3f4c262d836b2867a53eefb959057350bf7219c9,Recognizing Faces under Facial Expression Variations and Partial Occlusions,Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318497
+3f5e8f884e71310d7d5571bd98e5a049b8175075,Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+3f5693584d7dab13ffc12122d6ddbf862783028b,Ranking CGANs: Subjective Control over Semantic Image Attributes,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+3039627fa612c184228b0bed0a8c03c7f754748c,Robust regression on image manifolds for ordered label denoising,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+303a7099c01530fa0beb197eb1305b574168b653,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+303a7099c01530fa0beb197eb1305b574168b653,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,Deep Cascaded Regression for Face Alignment,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,Deep Cascaded Regression for Face Alignment,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+303517dfc327c3004ae866a6a340f16bab2ee3e3,Using Locality Preserving Projections in Face Recognition,DIT UNIVERSITY,"DIT UNIVERSITY, DEHRADUN","DIT University, Dehradun-Mussoorie Road, Rājpur, Kincraig, Dehra Dūn, Uttarakhand, 248009, India",30.3983396,78.0753455
+30fd1363fa14965e3ab48a7d6235e4b3516c1da1,A Deep Semi-NMF Model for Learning Hidden Representations,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+3026722b4cbe9223eda6ff2822140172e44ed4b1,Jointly estimating demographics and height with a calibrated camera,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+304b1f14ca6a37552dbfac443f3d5b36dbe1a451,Collaborative Low-Rank Subspace Clustering,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.0636071,147.3552234
+304b1f14ca6a37552dbfac443f3d5b36dbe1a451,Collaborative Low-Rank Subspace Clustering,The University of Sydney,"The University of Sydney, NSW 2006, Australia","USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+304b1f14ca6a37552dbfac443f3d5b36dbe1a451,Collaborative Low-Rank Subspace Clustering,Western Sydney University,"Western Sydney University, Parramatta, NSW 2150, Australia","Western Sydney University, Parramatta City Campus, Smith Street, Parramatta, Sydney, Parramatta, NSW, 2150, Australia",-33.8160848,151.00560034186
+306127c3197eb5544ab1e1bf8279a01e0df26120,Sparse Coding and Dictionary Learning with Linear Dynamical Systems,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,Template Adaptation for Face Verification and Identification,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+3083d2c6d4f456e01cbb72930dc2207af98a6244,Perceived Age Estimation from Face Images,Tokyo Institute of Technology,Tokyo Institute of Technology,"東京工業大学, 厚木街道, 緑区, 町田市, 神奈川県, 関東地方, 226-0026, 日本",35.5167538,139.483422513406
+30cbd41e997445745b6edd31f2ebcc7533453b61,What Makes a Video a Video : Analyzing Temporal Information in Video Understanding Models and Datasets,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+5e59193a0fc22a0c37301fb05b198dd96df94266,Example-Based Modeling of Facial Texture from Deficient Data,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+5e7e055ef9ba6e8566a400a8b1c6d8f827099553,On the role of cortex-basal ganglia interactions for category learning: A neuro-computational approach.,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+5e16f10f2d667d17c029622b9278b6b0a206d394,Learning to Rank Binary Codes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+5e16f10f2d667d17c029622b9278b6b0a206d394,Learning to Rank Binary Codes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+5ef3e7a2c8d2876f3c77c5df2bbaea8a777051a7,Rendering or normalization? An analysis of the 3D-aided pose-invariant face recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+5ea165d2bbd305dc125415487ef061bce75dac7d,Efficient human action recognition by luminance field trajectory and geometry information,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+5ea9cba00f74d2e113a10c484ebe4b5780493964,Automated Drowsiness Detection For Improved Driving Safety,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582
+5ea9cba00f74d2e113a10c484ebe4b5780493964,Automated Drowsiness Detection For Improved Driving Safety,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+5ea9cba00f74d2e113a10c484ebe4b5780493964,Automated Drowsiness Detection For Improved Driving Safety,Institute of,Institute of,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+5e80e2ffb264b89d1e2c468fbc1b9174f0e27f43,Naming every individual in news video monologues,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+5e0e516226413ea1e973f1a24e2fdedde98e7ec0,The Invariance Hypothesis and the Ventral Stream,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+5e7cb894307f36651bdd055a85fdf1e182b7db30,A Comparison of Multi-class Support Vector Machine Methods for Face Recognition,The University of Maryland,The University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+5b693cb3bedaa2f1e84161a4261df9b3f8e77353,"Robust Face Localisation Using Motion, Colour and Fusion",Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+5b73b7b335f33cda2d0662a8e9520f357b65f3ac,Intensity Rank Estimation of Facial Expressions Based on a Single Image,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+5b73b7b335f33cda2d0662a8e9520f357b65f3ac,Intensity Rank Estimation of Facial Expressions Based on a Single Image,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+5b6d05ce368e69485cb08dd97903075e7f517aed,Robust Active Shape Model for Landmarking Frontal Faces,Carnegie Mellon University Pittsburgh,"Carnegie Mellon University Pittsburgh, PA - 15213, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+5b0bf1063b694e4b1575bb428edb4f3451d9bf04,Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression,Nanjing University of Information Science and Technology,Nanjing University of Information Science and Technology,"南京信息工程大学, 龙山北路, 第十六街区, 浦口区, 南京市, 江苏省, 210032, 中国",32.2068102,118.718472893883
+5bb53fb36a47b355e9a6962257dd465cd7ad6827,Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+5bb53fb36a47b355e9a6962257dd465cd7ad6827,Mask-off: Synthesizing Face Images in the Presence of Head-mounted Displays,North Carolina Central University,North Carolina Central University,"North Carolina Central University, George Street, Hayti, Durham, Durham County, North Carolina, 27707, USA",35.97320905,-78.897550537484
+5b89744d2ac9021f468b3ffd32edf9c00ed7fed7,Beyond Mahalanobis metric: Cayley-Klein metric learning,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+5b7cb9b97c425b52b2e6f41ba8028836029c4432,Smooth Representation Clustering,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+5b7cb9b97c425b52b2e6f41ba8028836029c4432,Smooth Representation Clustering,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+5b9d41e2985fa815c0f38a2563cca4311ce82954,Exploitation of 3D images for face authentication under pose and illumination variations,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+5b6593a6497868a0d19312952d2b753232414c23,Face Recognition by 3D Registration for the Visually Impaired Using a RGB-D Sensor,"The City College of New York, New York, NY 10031, USA","The City College of New York, New York, NY 10031, USA","CCNY, 160, Convent Avenue, Manhattanville, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10031, USA",40.81819805,-73.9510089793336
+5b6593a6497868a0d19312952d2b753232414c23,Face Recognition by 3D Registration for the Visually Impaired Using a RGB-D Sensor,Beihang University,"Beihang University, Beijing 100191, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+5b719410e7829c98c074bc2947697fac3b505b64,Active Appearance Models for Affect Recognition Using Facial Expressions,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+5b0008ba87667085912ea474025d2323a14bfc90,SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace Clustering Algorithms,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+5b0008ba87667085912ea474025d2323a14bfc90,SoS-RSC: A Sum-of-Squares Polynomial Approach to Robustifying Subspace Clustering Algorithms,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+5b97e997b9b654373bd129b3baf5b82c2def13d1,3D Face Tracking and Texture Fusion in the Wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+5b97e997b9b654373bd129b3baf5b82c2def13d1,3D Face Tracking and Texture Fusion in the Wild,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682403998887
+5bd3d08335bb4e444a86200c5e9f57fd9d719e14,3 D Face Morphable Models “ Inthe-Wild ”,"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+5bd3d08335bb4e444a86200c5e9f57fd9d719e14,3 D Face Morphable Models “ Inthe-Wild ”,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+5b01d4338734aefb16ee82c4c59763d3abc008e6,A Robust Face Recognition Algorithm Based on Kernel Regularized Relevance-Weighted Discriminant Analysis,College of Electrical and Information Engineering,College of Electrical and Information Engineering,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија",42.0049791,21.40834315
+5b4b84ce3518c8a14f57f5f95a1d07fb60e58223,Diagnosing Error in Object Detectors,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+5b6ecbf5f1eecfe1a9074d31fe2fb030d75d9a79,Improving 3D Face Details Based on Normal Map of Hetero-source Images,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+5b86c36e3eb59c347b81125d5dd57dd2a2c377a9,Name Identification of People in News Video by Face Matching,Nagoya University,Nagoya University,"SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282
+5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.0198630428453
+5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,Humboldt-University,Humboldt-University,"Humboldt-Universität zu Berlin, Dorotheenstraße, Spandauer Vorstadt, Mitte, Berlin, 10117, Deutschland",52.51875685,13.3935604936378
+5bde1718253ec28a753a892b0ba82d8e553b6bf3,Variational Relevance Vector Machine for Tabular Data,Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.5317977694291
+5bde1718253ec28a753a892b0ba82d8e553b6bf3,Variational Relevance Vector Machine for Tabular Data,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+5bde1718253ec28a753a892b0ba82d8e553b6bf3,Variational Relevance Vector Machine for Tabular Data,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+371f40f6d32ece05cc879b6954db408b3d4edaf3,Mining semantic affordances of visual object categories,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+37007af698b990a3ea8592b11d264b14d39c843f,DCMSVM: Distributed parallel training for single-machine multiclass classifiers,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+374a0df2aa63b26737ee89b6c7df01e59b4d8531,Temporal Action Localization with Pyramid of Score Distribution Features,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+378ae5ca649f023003021f5a63e393da3a4e47f0,Multi-class object localization by combining local contextual interactions,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+37619564574856c6184005830deda4310d3ca580,A deep pyramid Deformable Part Model for face detection,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+37ce1d3a6415d6fc1760964e2a04174c24208173,Pose-Invariant 3D Face Alignment,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+37ba12271d09d219dd1a8283bc0b4659faf3a6c6,Domain transfer for person re-identification,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+3773e5d195f796b0b7df1fca6e0d1466ad84b5e7,UNIVERSITY OF CALIFORNIA RIVERSIDE Learning from Time Series in the Presence of Noise: Unsupervised and Semi-Supervised Approaches,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+377f2b65e6a9300448bdccf678cde59449ecd337,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+370b6b83c7512419188f5373a962dd3175a56a9b,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,Bournemouth University,Bournemouth University,"Bournemouth University, BU footpaths, Poole, South West England, England, BH10 4HX, UK",50.74223495,-1.89433738695589
+372a8bf0ef757c08551d41e40cb7a485527b6cd7,Unsupervised Video Hashing by Exploiting Spatio-Temporal Feature,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+37ef18d71c1ca71c0a33fc625ef439391926bfbb,Extraction of Subject-Specific Facial Expression Categories and Generation of Facial Expression Feature Space using Self-Mapping,Akita Prefectural University,"Akita Prefectural University, Yurihonjo, Japan","秋田県立大学, 日本海東北自動車道(無料区間), 八幡前, 由利本荘市, 秋田県, 東北地方, 〒015-0836, 日本",39.39325745,140.073500465928
+37ef18d71c1ca71c0a33fc625ef439391926bfbb,Extraction of Subject-Specific Facial Expression Categories and Generation of Facial Expression Feature Space using Self-Mapping,Akita University,"Akita University, Akita, Japan","秋田大学鉱業博物館, 2, 秋田八郎潟線, 手形字扇田, 広面, 秋田市, 秋田県, 東北地方, 010-8502, 日本",39.7291921,140.136565773585
+081189493ca339ca49b1913a12122af8bb431984,Supplemental Material for Photorealistic Facial Texture Inference Using Deep Neural Networks,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+08ee541925e4f7f376538bc289503dd80399536f,Runtime Neural Pruning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+08f6ad0a3e75b715852f825d12b6f28883f5ca05,Face recognition: Some challenges in forensics,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+084bd02d171e36458f108f07265386f22b34a1ae,Face Alignment at 3000 FPS via Regressing Local Binary Features,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+084bd02d171e36458f108f07265386f22b34a1ae,Face Alignment at 3000 FPS via Regressing Local Binary Features,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+081cb09791e7ff33c5d86fd39db00b2f29653fa8,Square Loss based regularized LDA for face recognition using image sets,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+081cb09791e7ff33c5d86fd39db00b2f29653fa8,Square Loss based regularized LDA for face recognition using image sets,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+086131159999d79adf6b31c1e604b18809e70ba8,Deep Action Unit classification using a binned intensity loss and semantic context model,Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.0367774,-75.342023320028
+086131159999d79adf6b31c1e604b18809e70ba8,Deep Action Unit classification using a binned intensity loss and semantic context model,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+086131159999d79adf6b31c1e604b18809e70ba8,Deep Action Unit classification using a binned intensity loss and semantic context model,Villanova University,Villanova University,"Villanova University, East Lancaster Avenue, Radnor Township, Delaware County, Pennsylvania, 19010, USA",40.0367774,-75.342023320028
+086131159999d79adf6b31c1e604b18809e70ba8,Deep Action Unit classification using a binned intensity loss and semantic context model,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+089513ca240c6d672c79a46fa94a92cde28bd567,RNN Fisher Vectors for Action Recognition and Image Annotation,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+089513ca240c6d672c79a46fa94a92cde28bd567,RNN Fisher Vectors for Action Recognition and Image Annotation,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+089b5e8eb549723020b908e8eb19479ba39812f5,A Cross Benchmark Assessment of a Deep Convolutional Neural Network for Face Recognition,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+08a1fc55d03e4a73cad447e5c9ec79a6630f3e2d,Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+087002ab569e35432cdeb8e63b2c94f1abc53ea9,Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991
+087002ab569e35432cdeb8e63b2c94f1abc53ea9,Spatiotemporal analysis of RGB-D-T facial images for multimodal pain level recognition,Aalborg University,Aalborg University,"AAU, Pontoppidanstræde, Sønder Tranders, Aalborg, Aalborg Kommune, Region Nordjylland, 9220, Danmark",57.01590275,9.97532826658991
+08cb294a08365e36dd7ed4167b1fd04f847651a9,Examining visible articulatory features in clear and conversational speech,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+08cb294a08365e36dd7ed4167b1fd04f847651a9,Examining visible articulatory features in clear and conversational speech,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,University of Vienna,"University of Vienna, Austria","Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2131302,16.3606865338016
+081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,Ryerson University,"Ryerson University, Canada","Ryerson University, Gould Street, Downtown Yonge, Old Toronto, Toronto, Ontario, M5B 2G9, Canada",43.65815275,-79.3790801045263
+08e995c080a566fe59884a527b72e13844b6f176,A New KSVM + KFD Model for Improved Classification and Face Recognition,University of Windsor,University of Windsor,"Bridge AA, Ambassador Bridge, Windsor, Essex, Ontario, N9C 2J9, Canada",42.30791465,-83.0717691461703
+085ceda1c65caf11762b3452f87660703f914782,Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+08d55271589f989d90a7edce3345f78f2468a7e0,Quality Aware Network for Set to Set Recognition,University of Sydney,University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+08a98822739bb8e6b1388c266938e10eaa01d903,SensorSift: balancing sensor data privacy and utility in automated face understanding,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+084bebc5c98872e9307cd8e7f571d39ef9c1b81e,A Discriminative Feature Learning Approach for Deep Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+084bebc5c98872e9307cd8e7f571d39ef9c1b81e,A Discriminative Feature Learning Approach for Deep Face Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+08f1e9e14775757298afd9039f46ec56e80677f9,Attentional Push: Augmenting Salience with Shared Attention Modeling,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+08d41d2f68a2bf0091dc373573ca379de9b16385,Recursive Chaining of Reversible Image-to-image Translators For Face Aging,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,Robust Deep Appearance Models,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+6d0fe30444c6f4e4db3ad8b02fb2c87e2b33c58d,Robust Deep Appearance Models,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+6dbdb07ce2991db0f64c785ad31196dfd4dae721,Seeing Small Faces from Robust Anchor's Perspective,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+6d7a32f594d46f4087b71e2a2bb66a4b25da5e30,Towards Person Authentication by Fusing Visual and Thermal Face Biometrics,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+6d2ca1ddacccc8c865112bd1fbf8b931c2ee8e75,ROC speak: semi-automated personalized feedback on nonverbal behavior from recorded videos,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,Semi-supervised learning for facial expression recognition,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+6d97e69bbba5d1f5c353f9a514d62aff63bc0fb1,Semi-supervised learning for facial expression recognition,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,Webly-Supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+6dd2a0f9ca8a5fee12edec1485c0699770b4cfdf,Webly-Supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+6dc1f94b852538d572e4919238ddb10e2ee449a4,Objects as context for detecting their semantic parts,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+6d4e3616d0b27957c4107ae877dc0dd4504b69ab,Unsupervised Learning using Sequential Verification for Action Recognition,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+6d5125c9407c7762620eeea7570af1a8ee7d76f3,Video Frame Interpolation by Plug-and-Play Deep Locally Linear Embedding,Yonsei University,Yonsei University,"연세대, 연세로, 신촌동, 창천동, 서대문구, 서울특별시, 03789, 대한민국",37.5600406,126.9369248
+6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,Improving Text Recognition in Images of Natural Scenes,University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+6d8e3f3a83514381f890ab7cd2a1f1c5be597b69,Improving Text Recognition in Images of Natural Scenes,University of Massachusetts - Amherst,University of Massachusetts - Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19,Understanding Representations and Reducing their Redundancy in Deep Networks,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+016800413ebd1a87730a5cf828e197f43a08f4b3,Learning Attributes Equals Multi-Source Domain Generalization,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+016800413ebd1a87730a5cf828e197f43a08f4b3,Learning Attributes Equals Multi-Source Domain Generalization,University of Iowa,University of Iowa,"University of Iowa, Hawkeye Court, Iowa City, Johnson County, Iowa, 52246, USA",41.6659,-91.573103065
+01c9dc5c677aaa980f92c4680229db482d5860db,Temporal Action Detection Using a Statistical Language Model,University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+013909077ad843eb6df7a3e8e290cfd5575999d2,A Semi-automatic Methodology for Facial Landmark Annotation,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+013909077ad843eb6df7a3e8e290cfd5575999d2,A Semi-automatic Methodology for Facial Landmark Annotation,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+013909077ad843eb6df7a3e8e290cfd5575999d2,A Semi-automatic Methodology for Facial Landmark Annotation,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+01c7a778cde86ad1b89909ea809d55230e569390,A Supervised Low-Rank Method for Learning Invariant Subspaces,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+0115f260069e2e501850a14845feb400142e2443,"An On-Line Handwriting Recognizer with Fisher Matching, Hypotheses Propagation Network and Context Constraint Models",New York University,New York University,"NYU, West 4th Street, NoHo Historic District, NoHo, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.72925325,-73.9962539360963
+01cc8a712e67384f9ef9f30580b7415bfd71e980,Failing to ignore: paradoxical neural effects of perceptual load on early attentional selection in normal aging.,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+01cc8a712e67384f9ef9f30580b7415bfd71e980,Failing to ignore: paradoxical neural effects of perceptual load on early attentional selection in normal aging.,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+01dc1e03f39901e212bdf291209b7686266aeb13,Actionness Estimation Using Hybrid Fully Convolutional Networks,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+01dc1e03f39901e212bdf291209b7686266aeb13,Actionness Estimation Using Hybrid Fully Convolutional Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+016f49a54b79ec787e701cc8c7d0280273f9b1ef,Self Organizing Maps for Reducing the Number of Clusters by One on Simplex Subspaces,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,The University of Nottingham,"The University of Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,Kingston University,"Kingston University, UK","Kingston University, Kingston Hill, Kingston Vale, Kingston-upon-Thames, London, Greater London, England, KT2 7TF, UK",51.4293086,-0.2684044
+01c09acf0c046296643de4c8b55a9330e9c8a419,Manifold Learning Using Euclidean -nearest Neighbor Graphs,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+01d23cbac762b0e46251f5dbde08f49f2d13b9f8,Combining Face Verification Experts,University of Surrey,"University of Surrey, Guildford, Surrey GU2 7XH, UK","University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+014143aa16604ec3f334c1407ceaa496d2ed726e,Large-scale manifold learning,Courant Institute,Courant Institute,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286994,-73.9957151
+0182d090478be67241392df90212d6cd0fb659e6,Discovering localized attributes for fine-grained recognition,Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.8795690544362
+0182d090478be67241392df90212d6cd0fb659e6,Discovering localized attributes for fine-grained recognition,Indiana University,Indiana University,"Indiana University East, West Cart Road, Richmond, Wayne County, Indiana, 47374, USA",39.86948105,-84.8795690544362
+0182d090478be67241392df90212d6cd0fb659e6,Discovering localized attributes for fine-grained recognition,University of Texas,University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+016a8ed8f6ba49bc669dbd44de4ff31a79963078,Face relighting for face recognition under generic illumination,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+019e471667c72b5b3728b4a9ba9fe301a7426fb2,Cross-age face verification by coordinating with cross-face age verification,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+067126ce1f1a205f98e33db7a3b77b7aec7fb45a,On Improving Dissimilarity-Based Classifications Using a Statistical Similarity Measure,Myongji University,Myongji University,"명지대, 금학로, 역북동, 처인구, 용인시, 경기, 17144, 대한민국",37.2381023,127.1903431
+067126ce1f1a205f98e33db7a3b77b7aec7fb45a,On Improving Dissimilarity-Based Classifications Using a Statistical Similarity Measure,Delft University of Technology,"Delft University of Technology, The Netherlands","TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+06466276c4955257b15eff78ebc576662100f740,Where is who: large-scale photo retrieval by facial attributes and canvas layout,National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+06f585a3a05dd3371cd600a40dc35500e2f82f9b,Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+06f8aa1f436a33014e9883153b93581eea8c5c70,Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+061c84a4143e859a7caf6e6d283dfb30c23ee56e,DEEP-CARVING: Discovering visual attributes by carving deep neural nets,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748
+061e29eae705f318eee703b9e17dc0989547ba0c,Enhancing Expression Recognition in the Wild with Unlabeled Reference Data,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+06850b60e33baa4ea9473811d58c0d5015da079e,A Survey of the Trends in Facial and Expression Recognition Databases and Methods,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+06850b60e33baa4ea9473811d58c0d5015da079e,A Survey of the Trends in Facial and Expression Recognition Databases and Methods,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+06a6347ac14fd0c6bb3ad8190cbe9cdfa5d59efc,Active image clustering: Seeking constraints from humans to complement algorithms,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+06bad0cdda63e3fd054e7b334a5d8a46d8542817,Sharing features between objects and their attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+06bad0cdda63e3fd054e7b334a5d8a46d8542817,Sharing features between objects and their attributes,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+0641dbee7202d07b6c78a39eecd312c17607412e,Null space clustering with applications to motion segmentation and face clustering,Australian National University,"Australian National University, Canberra","Australian National University, Garran Road, Acton, Canberra, Canberra Central, Australian Capital Territory, 2601, Australia",-35.28121335,149.11665331324
+062d67af7677db086ef35186dc936b4511f155d7,They are Not Equally Reliable: Semantic Event Search Using Differentiated Concept Classifiers,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+062d67af7677db086ef35186dc936b4511f155d7,They are Not Equally Reliable: Semantic Event Search Using Differentiated Concept Classifiers,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+06c2086f7f72536bf970ca629151b16927104df3,Recurrent CNN for 3D Gaze Estimation using Appearance and Shape Cues,University of Calgary,University of Calgary,"University of Calgary, Service Tunnel, University Heights, Calgary, Alberta, T2N 1N7, Canada",51.0784038,-114.1287077
+060034b59275c13746413ca9c67d6304cba50da6,Ordered Trajectories for Large Scale Human Action Recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+060034b59275c13746413ca9c67d6304cba50da6,Ordered Trajectories for Large Scale Human Action Recognition,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+064cd41d323441209ce1484a9bba02a22b625088,Selective Transfer Machine for Personalized Facial Action Unit Detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+064cd41d323441209ce1484a9bba02a22b625088,Selective Transfer Machine for Personalized Facial Action Unit Detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+06c2dfe1568266ad99368fc75edf79585e29095f,Bayesian Active Appearance Models,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+06f39834e870278243dda826658319be2d5d8ded,Recognizing unseen actions in a domain-adapted embedding space,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+06d7ef72fae1be206070b9119fb6b61ce4699587,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+06d7ef72fae1be206070b9119fb6b61ce4699587,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,University of Patras,"University of Patras, Greece","Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469
+06d7ef72fae1be206070b9119fb6b61ce4699587,On One-Shot Similarity Kernels: Explicit Feature Maps and Properties,Middlesex University,"Middlesex University, London","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+062d0813815c2b9864cd9bb4f5a1dc2c580e0d90,Encouraging LSTMs to Anticipate Actions Very Early,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+06a9ed612c8da85cb0ebb17fbe87f5a137541603,Deep Learning of Player Trajectory Representations for Team Activity Analysis,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+6c66ae815e7e508e852ecb122fb796abbcda16a8,Expression Recognition Databases and Methods,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+6ca2c5ff41e91c34696f84291a458d1312d15bf2,LipNet: Sentence-level Lipreading,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+6c690af9701f35cd3c2f6c8d160b8891ad85822a,Multi-Task Learning with Low Rank Attribute Embedding for Person Re-Identification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+6c690af9701f35cd3c2f6c8d160b8891ad85822a,Multi-Task Learning with Low Rank Attribute Embedding for Person Re-Identification,University of Maryland College Park,University of Maryland College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+6c690af9701f35cd3c2f6c8d160b8891ad85822a,Multi-Task Learning with Low Rank Attribute Embedding for Person Re-Identification,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+6c5fbf156ef9fc782be0089309074cc52617b868,Controllable Video Generation with Sparse Trajectories,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+6ce23cf4f440021b7b05aa3c1c2700cc7560b557,Learning Local Convolutional Features for Face Recognition with 2D-Warping,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+6c80c834d426f0bc4acd6355b1946b71b50cbc0b,Pose-Based Two-Stream Relational Networks for Action Recognition in Videos,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+6c80c834d426f0bc4acd6355b1946b71b50cbc0b,Pose-Based Two-Stream Relational Networks for Action Recognition in Videos,University of Chinese Academy of Sciences (UCAS),University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+6c6bb85a08b0bdc50cf8f98408d790ccdb418798,Recognition of facial expressions in presence of partial occlusion,Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+6c705285c554985ecfe1117e854e1fe1323f8c21,DIY Human Action Data Set Generation,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+3991223b1dc3b87883cec7af97cf56534178f74a,A unified framework for context assisted face clustering,University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+392d35bb359a3b61cca1360272a65690a97a2b3f,Multi-Task Transfer Methods to Improve One-Shot Learning for Multimedia Event Detection,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+397085122a5cade71ef6c19f657c609f0a4f7473,Using Segmentation to Predict the Absence of Occluded Parts,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+39c48309b930396a5a8903fdfe781d3e40d415d0,Learning Spatial and Temporal Cues for Multi-Label Facial Action Unit Detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+39c48309b930396a5a8903fdfe781d3e40d415d0,Learning Spatial and Temporal Cues for Multi-Label Facial Action Unit Detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+39f525f3a0475e6bbfbe781ae3a74aca5b401125,Deep Joint Face Hallucination and Recognition,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+3946b8f862ecae64582ef0912ca2aa6d3f6f84dc,Who and Where: People and Location Co-Clustering,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+3933416f88c36023a0cba63940eb92f5cef8001a,Learning Robust Subspace Clustering,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+39150acac6ce7fba56d54248f9c0badbfaeef0ea,"Digital Signal Processing for in - Vehicle and mobile systems , Istanbul , Turkey , June 2007 . MACHINE LEARNING SYSTEMS FOR DETECTING DRIVER DROWSINESS",Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582
+39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,Simultaneous Local Binary Feature Learning and Encoding for Face Recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+39f03d1dfd94e6f06c1565d7d1bb14ab0eee03bc,Simultaneous Local Binary Feature Learning and Encoding for Face Recognition,Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+3983637022992a329f1d721bed246ae76bc934f7,Wide-baseline stereo for face recognition with large pose variation,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+39ecdbad173e45964ffe589b9ced9f1ebfe2d44e,Automatic recognition of lower facial action units,Vrije Universiteit Brussel,Vrije Universiteit Brussel,"Vrije Universiteit Brussel, 170, Quai de l'Industrie - Nijverheidskaai, Anderlecht, Brussel-Hoofdstad - Bruxelles-Capitale, Région de Bruxelles-Capitale - Brussels Hoofdstedelijk Gewest, 1070, België / Belgique / Belgien",50.8411007,4.32377555279953
+999289b0ef76c4c6daa16a4f42df056bf3d68377,The Role of Color and Contrast in Facial Age Estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+999289b0ef76c4c6daa16a4f42df056bf3d68377,The Role of Color and Contrast in Facial Age Estimation,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+995d55fdf5b6fe7fb630c93a424700d4bc566104,The One Triangle Three Parallelograms Sampling Strategy and Its Application in Shape Regression,Lund University,"Lund University, Lund, Sweden","TEM at Lund University, 9, Klostergatan, Stadskärnan, Centrum, Lund, Skåne, Götaland, 22222, Sverige",55.7039571,13.1902011
+993d189548e8702b1cb0b02603ef02656802c92b,Highly-Economized Multi-View Binary Compression for Scalable Image Clustering,The University of Queensland,"The University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+994b52bf884c71a28b4f5be4eda6baaacad1beee,Categorizing Big Video Data on the Web: Challenges and Opportunities,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+99001ac9fdaf7649c0d0bd8d2078719bafd216d9,General Tensor Discriminant Analysis and Gabor Features for Gait Recognition,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+99001ac9fdaf7649c0d0bd8d2078719bafd216d9,General Tensor Discriminant Analysis and Gabor Features for Gait Recognition,University of Vermont,University of Vermont,"University of Vermont, Colchester Avenue, Burlington, Chittenden County, Vermont, 05401, USA",44.48116865,-73.2002178989123
+9901f473aeea177a55e58bac8fd4f1b086e575a4,Human and sheep facial landmarks localisation by triplet interpolated features,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+99facca6fc50cc30f13b7b6dd49ace24bc94f702,VIPLFaceNet: an open source deep face recognition SDK,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+99facca6fc50cc30f13b7b6dd49ace24bc94f702,VIPLFaceNet: an open source deep face recognition SDK,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+523854a7d8755e944bd50217c14481fe1329a969,A Differentially Private Kernel Two-Sample Test,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+523854a7d8755e944bd50217c14481fe1329a969,A Differentially Private Kernel Two-Sample Test,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+521cfbc1949289a7ffc3ff90af7c55adeb43db2a,Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+521cfbc1949289a7ffc3ff90af7c55adeb43db2a,Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+521cfbc1949289a7ffc3ff90af7c55adeb43db2a,Action Recognition with Coarse-to-Fine Deep Feature Integration and Asynchronous Fusion,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+5253c94f955146ba7d3566196e49fe2edea1c8f4,Internet Based Morphable Model,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+529b1f33aed49dbe025a99ac1d211c777ad881ec,Fast and exact bi-directional fitting of active appearance models,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+529b1f33aed49dbe025a99ac1d211c777ad881ec,Fast and exact bi-directional fitting of active appearance models,University of Twente,"University of Twente, The Netherlands","University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+523b2cbc48decfabffb66ecaeced4fe6a6f2ac78,Photorealistic facial expression synthesis by the conditional difference adversarial autoencoder,The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+52472ec859131844f38fc7d57944778f01d109ac,Improving Speaker Turn Embedding by Crossmodal Transfer Learning from Face Embedding,"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+5287d8fef49b80b8d500583c07e935c7f9798933,Generative Adversarial Text to Image Synthesis,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+5287d8fef49b80b8d500583c07e935c7f9798933,Generative Adversarial Text to Image Synthesis,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,Structural similarity and distance in learning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,Structural similarity and distance in learning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+52c59f9f4993c8248dd3d2d28a4946f1068bcbbe,Structural similarity and distance in learning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+52bf00df3b970e017e4e2f8079202460f1c0e1bd,Learning High-level Prior with Convolutional Neural Networks for Semantic Segmentation,The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+52c91fcf996af72d191520d659af44e310f86ef9,Interactive Image Search with Attribute-based Guidance and Personalization,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+52885fa403efbab5ef21274282edd98b9ca70cbf,Discriminant Graph Structures for Facial Expression Recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+52885fa403efbab5ef21274282edd98b9ca70cbf,Discriminant Graph Structures for Facial Expression Recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+52d7eb0fbc3522434c13cc247549f74bb9609c5d,WIDER FACE: A Face Detection Benchmark,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+528069963f0bd0861f380f53270c96c269a3ea1c,4D (3D Dynamic) statistical models of conversational expressions and the synthesis of highly-realistic 4D facial expression sequences,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+556b9aaf1bc15c928718bc46322d70c691111158,Exploiting qualitative domain knowledge for learning Bayesian network parameters with incomplete data,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+55ea0c775b25d9d04b5886e322db852e86a556cd,DOCK: Detecting Objects by transferring Common-sense Knowledge,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,Efficient and Effective Solutions for Video Classification,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+558fc9a2bce3d3993a9c1f41b6c7f290cefcf92f,Efficient and Effective Solutions for Video Classification,University Politehnica of Bucharest,University Politehnica of Bucharest,"Universitatea Politehnica din București, Novum Invest, București, Militari, Sector 6, Municipiul București, 060042, România",44.43918115,26.0504456538413
+55138c2b127ebdcc508503112bf1d1eeb5395604,Ensemble Nystrom Method,Courant Institute of Mathematical Sciences,Courant Institute of Mathematical Sciences,"Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286484,-73.9956863
+55e18e0dde592258882134d2dceeb86122b366ab,Training a Multilingual Sportscaster: Using Perceptual Context to Learn Language,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+55966926e7c28b1eee1c7eb7a0b11b10605a1af0,Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+552c55c71bccfc6de7ce1343a1cd12208e9a63b3,Accurate eye center location and tracking using isophote curvature,University of Amsterdam,"University of Amsterdam, the Netherlands","Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+5517b28795d7a68777c9f3b2b46845dcdb425b2c,Deep video gesture recognition using illumination invariants,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+55e87050b998eb0a8f0b16163ef5a28f984b01fa,Can you Find a Face in a HEVC Bitstream?,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+55bc7abcef8266d76667896bbc652d081d00f797,Impact of facial cosmetics on automatic gender and age estimation algorithms,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+55bc7abcef8266d76667896bbc652d081d00f797,Impact of facial cosmetics on automatic gender and age estimation algorithms,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+55b4b1168c734eeb42882082bd131206dbfedd5b,Learning to Align from Scratch,University of Massachusetts,"University of Massachusetts, Amherst, MA","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+55b4b1168c734eeb42882082bd131206dbfedd5b,Learning to Align from Scratch,University of Michigan,"University of Michigan, Ann Arbor, MI","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+55804f85613b8584d5002a5b0ddfe86b0d0e3325,Data Complexity in Machine Learning,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+55eb7ec9b9740f6c69d6e62062a24bfa091bbb0c,CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+55b9b1c1c5487f5f62b44340104a9c4cc2ed7c96,The Color of the Cat is Gray: 1 Million Full-Sentences Visual Question Answering (FSVQA),The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+9788b491ddc188941dadf441fc143a4075bff764,LOGAN: Membership Inference Attacks Against Generative Models∗,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+970c0d6c0fd2ebe7c5921a45bc70f6345c844ff3,Discriminative Log-Euclidean Feature Learning for Sparse Representation-Based Recognition of Faces from Videos,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+9730b9cd998c0a549601c554221a596deda8af5b,Spatio-Temporal Person Retrieval via Natural Language Queries,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+978a219e07daa046244821b341631c41f91daccd,Emotional Intelligence: Giving Computers Effective Emotional Skills to Aid Interaction,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134052244
+976e0264bb57786952a987d4456850e274714fb8,Improving Semantic Concept Detection through the Dictionary of Visually-Distinct Elements,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+9758f3fd94239a8d974217fe12599f88fb413f3d,UC-HCC Submission to Thumos 2014,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+97e569159d5658760eb00ca9cb662e6882d2ab0e,Correlation Filters for Object Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+97e569159d5658760eb00ca9cb662e6882d2ab0e,Correlation Filters for Object Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+97e569159d5658760eb00ca9cb662e6882d2ab0e,Correlation Filters for Object Alignment,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072
+975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072
+975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,University of Manitoba,University of Manitoba,"University of Manitoba, Gillson Street, Normand Park, Saint Vital, Winnipeg, Manitoba, R3T 2N2, Canada",49.8091536,-97.133041790072
+975978ee6a32383d6f4f026b944099e7739e5890,Privacy-Preserving Age Estimation for Content Rating,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+63d8110ac76f57b3ba8a5947bc6bdbb86f25a342,On Modeling Variations for Face Authentication,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c,Real-Time Facial Segmentation and Performance Capture from RGB Input,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+6324fada2fb00bd55e7ff594cf1c41c918813030,Uncertainty Reduction for Active Image Clustering via a Hybrid Global-Local Uncertainty Model,State University of New York at Buffalo,State University of New York at Buffalo,"University at Buffalo, The State University of New York, South Campus, Norton Circle, University Heights, Buffalo, Erie County, New York, 14226, USA",42.95485245,-78.8178238693065
+6308e9c991125ee6734baa3ec93c697211237df8,Learning the sparse representation for classification,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+6342a4c54835c1e14159495373ab18b4233d2d9b,Towards Pose-robust Face Recognition on Video,Queensland University of Technology,Queensland University of Technology,"Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+63b29886577a37032c7e32d8899a6f69b11a90de,Image-Set Based Face Recognition Using Boosted Global and Local Principal Angles,University of Tsukuba,"University of Tsukuba, Japan","University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,Complexity of multiverse networks and their multilayer generalization,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+63213d080a43660ac59ea12e3c35e6953f6d7ce8,ActionVLAD: Learning Spatio-Temporal Aggregation for Action Classification,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+630d1728435a529d0b0bfecb0e7e335f8ea2596d,Facial Action Unit Detection by Cascade of Tasks,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+630d1728435a529d0b0bfecb0e7e335f8ea2596d,Facial Action Unit Detection by Cascade of Tasks,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+630d1728435a529d0b0bfecb0e7e335f8ea2596d,Facial Action Unit Detection by Cascade of Tasks,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+63a2e2155193dc2da9764ae7380cdbd044ff2b94,A Dense SURF and Triangulation Based Spatio-temporal Feature for Action Recognition,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+63d865c66faaba68018defee0daf201db8ca79ed,Deep Regression for Face Alignment,"Microsoft Research, Beijing, China","Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+63cff99eff0c38b633c8a3a2fec8269869f81850,Feature Correlation Filter for Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+6341274aca0c2977c3e1575378f4f2126aa9b050,A multi-scale cascade fully convolutional network face detector,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+632441c9324cd29489cee3da773a9064a46ae26b,Video-based Cardiac Physiological Measurements Using Joint Blind Source Separation Approaches,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+632441c9324cd29489cee3da773a9064a46ae26b,Video-based Cardiac Physiological Measurements Using Joint Blind Source Separation Approaches,The University of British Columbia,The University of British Columbia,"University of British Columbia, Eagles Drive, Hawthorn Place, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.25839375,-123.246581610019
+0fc254272db096a9305c760164520ad9914f4c9e,Unsupervised convolutional neural networks for motion estimation,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+0fae5d9d2764a8d6ea691b9835d497dd680bbccd,Face Recognition using Canonical Correlation Analysis,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+0fae5d9d2764a8d6ea691b9835d497dd680bbccd,Face Recognition using Canonical Correlation Analysis,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+0f32df6ae76402b98b0823339bd115d33d3ec0a0,Emotion recognition from embedded bodily expressions and speech during dyadic interactions,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0f32df6ae76402b98b0823339bd115d33d3ec0a0,Emotion recognition from embedded bodily expressions and speech during dyadic interactions,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0f829fee12e86f980a581480a9e0cefccb59e2c5,Bird Part Localization Using Exemplar-Based Models with Enforced Pose and Subcategory Consistency,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+0faee699eccb2da6cf4307ded67ba8434368257b,TAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION 1 Multiple One-Shots for Utilizing Class Label Information,Tel-Aviv University,"Tel-Aviv University, Israel","אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+0faee699eccb2da6cf4307ded67ba8434368257b,TAIGMAN: MULTIPLE ONE-SHOTS FOR UTILIZING CLASS LABEL INFORMATION 1 Multiple One-Shots for Utilizing Class Label Information,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+0fabb4a40f2e3a2502cd935e54e090a304006c1c,Regularized Robust Coding for Face Recognition,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+0fd3a7ee228bbc3dd4a111dae04952a1ee58a8cd,Hair style retrieval by semantic mapping on informative patches,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+0f533bc9fdfb75a3680d71c84f906bbd59ee48f1,Illumination invariant feature extraction based on natural images statistics — Taking face images as an example,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+0f4eb63402a4f3bae8f396e12133684fb760def1,"LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 1 Attribute Embedding with Visual-Semantic Ambiguity Removal for Zero-shot Learning",Northumbria University,Northumbria University,"Northumbria University, Birkdale Close, High Heaton, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE7 7TP, UK",55.0030632,-1.57463231052026
+0fba39bf12486c7684fd3d51322e3f0577d3e4e8,Task Specific Local Region Matching,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,Detecting Hands in Egocentric Videos: Towards Action Recognition,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0fe96806c009e8d095205e8f954d41b2b9fd5dcf,On-the-Job Learning with Bayesian Decision Theory,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0f940d2cdfefc78c92ec6e533a6098985f47a377,A hierarchical framework for simultaneous facial activity tracking,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Purdue University,"Purdue University, West Lafayette, IN, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,SUNY Buffalo,SUNY Buffalo,"SUNY College at Buffalo, Academic Drive, Elmwood Village, Buffalo, Erie County, New York, 14222, USA",42.9336278,-78.8839447903448
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Stanford University,"Stanford University, Stanford, CA, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+0faeec0d1c51623a511adb779dabb1e721a6309b,Seeing is Worse than Believing: Reading People's Minds Better than Computer-Vision Methods Recognize Actions,National University of Ireland Maynooth,National University of Ireland Maynooth,"National University of Ireland Maynooth, River Apartments, Maynooth, Maynooth ED, Maynooth Municipal District, County Kildare, Leinster, KILDARE, Ireland",53.3846975,-6.60039458177959
+0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,"Mirror, mirror on the wall, tell me, is the error small?",Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,"Mirror, mirror on the wall, tell me, is the error small?",Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+0f0241124d6092a0bb56259ac091467c2c6938ca,Associating Faces and Names in Japanese Photo News Articles on the Web,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+0a64f4fec592662316764283575d05913eb2135b,Joint Pixel and Feature-level Domain Adaptation in the Wild,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457,Learning Invariant Deep Representation for NIR-VIS Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,Patch-based models for visual object classes,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,Patch-based models for visual object classes,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+0a5ffc55b584da7918c2650f9d8602675d256023,Efficient Face Alignment via Locality-constrained Representation for Robust Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+0aeb5020003e0c89219031b51bd30ff1bceea363,Sparsifying Neural Network Connections for Face Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+0aeb5020003e0c89219031b51bd30ff1bceea363,Sparsifying Neural Network Connections for Face Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+0aeb5020003e0c89219031b51bd30ff1bceea363,Sparsifying Neural Network Connections for Face Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748
+0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748
+0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+0aa74ad36064906e165ac4b79dec298911a7a4db,Variational Inference for the Indian Buffet Process,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+0abf67e7bd470d9eb656ea2508beae13ca173198,Going Deeper into First-Person Activity Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+0af33f6b5fcbc5e718f24591b030250c6eec027a,Text Analysis for Automatic Image Annotation,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.8830686,4.7019503
+0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,FacePoseNet: Making a Case for Landmark-Free Face Alignment,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+0ad8149318912b5449085187eb3521786a37bc78,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+0a9d204db13d395f024067cf70ac19c2eeb5f942,Viewpoint-aware Video Summarization,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+0aae88cf63090ea5b2c80cd014ef4837bcbaadd8,3D Face Structure Extraction from Images at Arbitrary Poses and under Arbitrary Illumination Conditions,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9574,-75.1902670552555
+0a82860d11fcbf12628724333f1e7ada8f3cd255,Action Temporal Localization in Untrimmed Videos via Multi-stage CNNs,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+0a4fc9016aacae9cdf40663a75045b71e64a70c9,Illumination Normalization Based on Homomorphic Wavelet Filtering for Face Recognition,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,University of Hong Kong,University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+0ac442bb570b086d04c4d51a8410fcbfd0b1779d,WarpNet: Weakly Supervised Matching for Single-View Reconstruction,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+0ac664519b2b8abfb8966dafe60d093037275573,Facial action unit detection using kernel partial least squares,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+0a9345ea6e488fb936e26a9ba70b0640d3730ba7,Deep Bi-directional Cross-triplet Embedding for Cross-Domain Clothing Retrieval,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+0a9345ea6e488fb936e26a9ba70b0640d3730ba7,Deep Bi-directional Cross-triplet Embedding for Cross-Domain Clothing Retrieval,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+0a79d0ba1a4876086e64fc0041ece5f0de90fbea,Face Illumination Normalization with Shadow Consideration,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+0a11b82aa207d43d1b4c0452007e9388a786be12,Feature Level Multiple Model Fusion Using Multilinear Subspace Analysis with Incomplete Training Set and Its Application to Face Image Analysis,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+0a11b82aa207d43d1b4c0452007e9388a786be12,Feature Level Multiple Model Fusion Using Multilinear Subspace Analysis with Incomplete Training Set and Its Application to Face Image Analysis,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+6409b8879c7e61acf3ca17bcc62f49edca627d4c,Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+6409b8879c7e61acf3ca17bcc62f49edca627d4c,Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering,Concordia University,"Concordia University, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.4955911,-73.5775043
+6409b8879c7e61acf3ca17bcc62f49edca627d4c,Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering,Concordia University,"Concordia University, Canada","FOFA Gallery, 1515, Rue Sainte-Catherine Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3H 2T2, Canada",45.4955911,-73.5775043
+64ec0c53dd1aa51eb15e8c2a577701e165b8517b,Online Regression with Feature Selection in Stochastic Data Streams,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+64ec0c53dd1aa51eb15e8c2a577701e165b8517b,Online Regression with Feature Selection in Stochastic Data Streams,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+6459f1e67e1ea701b8f96177214583b0349ed964,Generalized subspace based high dimensional density estimation,University of California Santa Barbara,University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+6459f1e67e1ea701b8f96177214583b0349ed964,Generalized subspace based high dimensional density estimation,University of California Santa Barbara,University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+64cf86ba3b23d3074961b485c16ecb99584401de,Single Image 3D Interpreter Network,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+64cf86ba3b23d3074961b485c16ecb99584401de,Single Image 3D Interpreter Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,Deep Learning Face Attributes in the Wild,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+6424b69f3ff4d35249c0bb7ef912fbc2c86f4ff4,Deep Learning Face Attributes in the Wild,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+6479b61ea89e9d474ffdefa71f068fbcde22cc44,Some topics on similarity metric learning,University of Exeter,University of Exeter,"University of Exeter, Stocker Road, Exwick, Exeter, Devon, South West England, England, EX4 4QN, UK",50.7369302,-3.53647671702167
+64e75f53ff3991099c3fb72ceca55b76544374e5,Simultaneous Feature Selection and Classifier Training via Linear Programming: A Case Study for Face Expression Recognition,University of Wisconsin-Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+64f9519f20acdf703984f02e05fd23f5e2451977,Learning Temporal Alignment Uncertainty for Efficient Event Detection,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+64782a2bc5da11b1b18ca20cecf7bdc26a538d68,Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+64782a2bc5da11b1b18ca20cecf7bdc26a538d68,Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+64d5772f44efe32eb24c9968a3085bc0786bfca7,Morphable Displacement Field Based Image Matching for Face Recognition across Pose,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+64d7e62f46813b5ad08289aed5dc4825d7ec5cff,Mix and Match: Joint Model for Clothing and Attribute Recognition,Tohoku University,Tohoku University,"Tohoku University, 五橋通, 青葉区, 仙台市, 宮城県, 東北地方, 980-0811, 日本",38.2530945,140.8736593
+90298f9f80ebe03cb8b158fd724551ad711d4e71,A Pursuit of Temporal Accuracy in General Activity Detection,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+900207b3bc3a4e5244cae9838643a9685a84fee0,Reconstructing Geometry from Its Latent Structures,Drexel University,Drexel University,"Drexel University, Arch Street, Powelton Village, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9574,-75.1902670552555
+90498b95fe8b299ce65d5cafaef942aa58bd68b7,Face Recognition: Primates in the Wild,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+90cc2f08a6c2f0c41a9dd1786bae097f9292105e,Top-down Attention Recurrent VLAD Encoding for Action Recognition in Videos,University of Trento,"University of Trento, Trento, Italy","University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+90c4f15f1203a3a8a5bf307f8641ba54172ead30,A 2D Morphable Model of Craniofacial Profile and Its Application to Craniosynostosis,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+902114feaf33deac209225c210bbdecbd9ef33b1,Side-Information based Linear Discriminant Analysis for Face Recognition,Institute of Computing,Institute of Computing,"Institute for Quantum Computing, Wes Graham Way, Lakeshore Village, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 6R2, Canada",43.47878995,-80.5548480959375
+902114feaf33deac209225c210bbdecbd9ef33b1,Side-Information based Linear Discriminant Analysis for Face Recognition,University,"University, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+90ad0daa279c3e30b360f9fe9371293d68f4cebf,Spatio-temporal Framework and Algorithms for Video-based Face Recognition,Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,University of Ioannina,University of Ioannina,"Πανεπιστήμιο Ιωαννίνων, Πανεπιστημίου, Κάτω Νεοχωρόπουλο, Νεοχωρόπουλο, Δήμος Ιωαννιτών, Π.Ε. Ιωαννίνων, Περιφέρεια Ηπείρου, Ήπειρος - Δυτική Μακεδονία, 45110, Ελλάδα",39.6162306,20.8396301098796
+90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,"Indian Institute of Science, India","Indian Institute of Science, India","IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+90d9209d5dd679b159051a8315423a7f796d704d,Temporal Sequence Distillation: Towards Few-Frame Action Recognition in Videos,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+90dd2a53236b058c79763459b9d8a7ba5e58c4f1,Capturing Correlations Among Facial Parts for Facial Expression Analysis,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+90c2d4d9569866a0b930e91713ad1da01c2a6846,Dimensionality Reduction Based on Low Rank Representation,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+bf03f0fe8f3ba5b118bdcbb935bacb62989ecb11,Effect of Facial Expressions on Feature-Based Landmark Localization in Static Grey Scale Images,University of Tampere,University of Tampere,"Tampereen yliopisto, 4, Kalevantie, Ratinanranta, Tulli, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33100, Suomi",61.49412325,23.7792067776763
+bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+bf54b5586cdb0b32f6eed35798ff91592b03fbc4,Methodical Analysis of Western-Caucasian and East-Asian Basic Facial Expressions of Emotions Based on Specific Facial Regions,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,Emotion Regulation in Adolescent Males with Attention-Deficit Hyperactivity Disorder: Testing the Effects of Comorbid Conduct Disorder,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+bf0f0eb0fb31ee498da4ae2ca9b467f730ea9103,Emotion Regulation in Adolescent Males with Attention-Deficit Hyperactivity Disorder: Testing the Effects of Comorbid Conduct Disorder,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,Visual face scanning and emotion perception analysis between autistic and typically developing children,University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275
+bf3f8726f2121f58b99b9e7287f7fbbb7ab6b5f5,Visual face scanning and emotion perception analysis between autistic and typically developing children,University of Dhaka,University of Dhaka,"World War Memorial, Shahid Minar Rd, Jagannath Hall, DU, জিগাতলা, ঢাকা, ঢাকা বিভাগ, 1000, বাংলাদেশ",23.7316957,90.3965275
+bf4825474673246ae855979034c8ffdb12c80a98,"UNIVERSITY OF CALIFORNIA RIVERSIDE Active Learning in Multi-Camera Networks, With Applications in Person Re-Identification A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering",University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+bf8a520533f401347e2f55da17383a3e567ef6d8,Bounded-Distortion Metric Learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+bff567c58db554858c7f39870cff7c306523dfee,Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+bffbd04ee5c837cd919b946fecf01897b2d2d432,Facial Feature Tracking and Occlusion Recovery in American Sign Language,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+d35534f3f59631951011539da2fe83f2844ca245,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+d3edbfe18610ce63f83db83f7fbc7634dde1eb40,Large Graph Hashing with Spectral Rotation,Northwestern Polytechnical University,Northwestern Polytechnical University,"西北工业大学 友谊校区, 127号, 友谊西路, 长安路, 碑林区 (Beilin), 西安市, 陕西省, 710072, 中国",34.2469152,108.910619816771
+d3424761e06a8f5f3c1f042f1f1163a469872129,"Pose - invariant , model - based object recognition , using linear combination of views and Bayesian statistics . Vasileios",University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+d33b26794ea6d744bba7110d2d4365b752d7246f,Transfer Feature Representation via Multiple Kernel Learning,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+d3d5d86afec84c0713ec868cf5ed41661fc96edc,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,Sabanci University,Sabanci University,"Sabanci Universitesi, Preveze Cad., Orta Mahallesi, Tepeören, Tuzla, İstanbul, Marmara Bölgesi, 34953, Türkiye",40.8927159,29.3786332263582
+d3d5d86afec84c0713ec868cf5ed41661fc96edc,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,Istanbul Technical University,"Istanbul Technical University, Istanbul, Turkey","Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+d3e04963ff42284c721f2bc6a90b7a9e20f0242f,On Forensic Use of Biometrics,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+d35c82588645b94ce3f629a0b98f6a531e4022a3,Scalable Online Annotation & Object Localisation For Broadcast Media Production,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+d35c82588645b94ce3f629a0b98f6a531e4022a3,Scalable Online Annotation & Object Localisation For Broadcast Media Production,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+d394bd9fbaad1f421df8a49347d4b3fca307db83,Recognizing facial expressions at low resolution,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+d3b550e587379c481392fb07f2cbbe11728cf7a6,Small Sample Size Face Recognition using Random Quad-Tree based Ensemble Algorithm,Kyoto University,Kyoto University,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,College of Electrical and Information Engineering,College of Electrical and Information Engineering,"Факултет за електротехника и информациски технологии, Орце Николов, Карпош 2, Карпош, Скопје, Општина Карпош, Град Скопје, Скопски Регион, 1000, Македонија",42.0049791,21.40834315
+d307a766cc9c728a24422313d4c3dcfdb0d16dd5,Deep Keyframe Detection in Human Action Videos,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+d31af74425719a3840b496b7932e0887b35e9e0d,A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+d3b0839324d0091e70ce34f44c979b9366547327,Precise Box Score: Extract More Information from Datasets to Improve the Performance of Face Detection,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+d30050cfd16b29e43ed2024ae74787ac0bbcf2f7,Facial Expression Classification Using Convolutional Neural Network and Support Vector Machine,Marquette University,Marquette University,"Marquette University, West Wisconsin Avenue, University Hill, Milwaukee, Milwaukee County, Wisconsin, 53226, USA",43.03889625,-87.9315544990507
+d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+d4a5eaf2e9f2fd3e264940039e2cbbf08880a090,An Occluded Stacked Hourglass Approach to Facial Landmark Localization and Occlusion Estimation,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+d444e010049944c1b3438c9a25ae09b292b17371,Structure Preserving Video Prediction,Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai 200240, China","上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国",31.02775885,121.432219256081
+d46fda4b49bbc219e37ef6191053d4327e66c74b,Facial Expression Recognition Based on Complexity Perception Classification Algorithm,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+d448d67c6371f9abf533ea0f894ef2f022b12503,Weakly supervised collective feature learning from curated media,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+d46b4e6871fc9974542215f001e92e3035aa08d9,A Gabor Quotient Image for Face Recognition under Varying Illumination,Mahanakorn University of Technology,Mahanakorn University of Technology,"มหาวิทยาลัยเทคโนโลยีมหานคร, 140, ถนนเชื่อมสัมพันธ์, กรุงเทพมหานคร, เขตหนองจอก, กรุงเทพมหานคร, 10530, ประเทศไทย",13.84450465,100.856208183836
+d454ad60b061c1a1450810a0f335fafbfeceeccc,Deep Regression Forests for Age Estimation,Shanghai university,Shanghai university,"上海大学, 锦秋路, 大场镇, 宝山区 (Baoshan), 上海市, 201906, 中国",31.32235655,121.384009410929
+d40cd10f0f3e64fd9b0c2728089e10e72bea9616,Enhancing Face Identification Using Local Binary Patterns and K-Nearest Neighbors,Hangzhou Dianzi University,Hangzhou Dianzi University,"杭州电子科技大学, 2号大街, 白杨街道, 江干区 (Jianggan), 杭州市 Hangzhou, 浙江省, 310018, 中国",30.3125525,120.3430946
+d46e793b945c4f391031656357625e902c4405e8,Face-off: automatic alteration of facial features,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+d4c2d26523f577e2d72fc80109e2540c887255c8,Face-space Action Recognition by Face-Object Interactions,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+baaaf73ec28226d60d923bc639f3c7d507345635,Emotion Classification on face images,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+ba2bbef34f05551291410103e3de9e82fdf9dddd,A Study on Cross-Population Age Estimation,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+ba2bbef34f05551291410103e3de9e82fdf9dddd,A Study on Cross-Population Age Estimation,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+baa0fe4d0ac0c7b664d4c4dd00b318b6d4e09143,Facial Expression Analysis using Active Shape Model,University of Portsmouth,University of Portsmouth,"University of Portsmouth - North Zone, Portland Street, Portsea, Portsmouth, South East, England, PO1 3DE, UK",50.79805775,-1.09834911234691
+badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,The Application of Extended Geodesic Distance in Head Poses Estimation,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,The Application of Extended Geodesic Distance in Head Poses Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+badcfb7d4e2ef0d3e332a19a3f93d59b4f85668e,The Application of Extended Geodesic Distance in Head Poses Estimation,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+bac11ce0fb3e12c466f7ebfb6d036a9fe62628ea,Weakly Supervised Learning of Heterogeneous Concepts in Videos,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb,Natural and Effective Obfuscation by Head Inpainting,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+a065080353d18809b2597246bb0b48316234c29a,FHEDN: A based on context modeling Feature Hierarchy Encoder-Decoder Network for face detection,Chongqing University,Chongqing University,"重庆工商大学, 19, 翠林路, 重庆市, 重庆市中心, 南岸区 (Nan'an), 重庆市, 400067, 中国",29.5084174,106.578585515028
+a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,A New Classification Approach using Discriminant Functions,Sakarya University,Sakarya University,"Sakarya Üniversitesi Diş Hekimliği Fakültesi, Adnan Menderes Caddesi, Güneşler, Adapazarı, Sakarya, Marmara Bölgesi, 54050, Türkiye",40.76433515,30.3940787517111
+a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,Fusing with context: A Bayesian approach to combining descriptive attributes,Columbia University,"Columbia University, New York, NY, USA","Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,Fusing with context: A Bayesian approach to combining descriptive attributes,University of North Carolina Wilmington,"University of North Carolina Wilmington, Wilmington, NC, USA","Kenan House parking lot, Princess Street, Wilmington, New Hanover County, North Carolina, 28405, USA",34.2377352,-77.92673494788
+a0021e3bbf942a88e13b67d83db7cf52e013abfd,Human concerned object detecting in video,Shandong University,Shandong University,"山东大学, 泰安街, 鳌山卫街道, 即墨区, 青岛市, 山东省, 266200, 中国",36.3693473,120.673818
+a0d6390dd28d802152f207940c7716fe5fae8760,Bayesian Face Revisited: A Joint Formulation,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+a0d6390dd28d802152f207940c7716fe5fae8760,Bayesian Face Revisited: A Joint Formulation,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+a0d6390dd28d802152f207940c7716fe5fae8760,Bayesian Face Revisited: A Joint Formulation,"Microsoft Research Asia, Beijing, China","Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+a06b6d30e2b31dc600f622ab15afe5e2929581a7,Robust Joint and Individual Variance Explained,"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+a06b6d30e2b31dc600f622ab15afe5e2929581a7,Robust Joint and Individual Variance Explained,Middlesex University London,"Middlesex University London, UK","Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+a0b1990dd2b4cd87e4fd60912cc1552c34792770,Deep Constrained Local Models for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+a0b1990dd2b4cd87e4fd60912cc1552c34792770,Deep Constrained Local Models for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+a0b1990dd2b4cd87e4fd60912cc1552c34792770,Deep Constrained Local Models for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+a0e7f8771c7d83e502d52c276748a33bae3d5f81,Ensemble Nyström,Courant Institute,Courant Institute,"NYU Courant Institute of Mathematical Sciences, 251, Mercer Street, Washington Square Village, Greenwich Village, Manhattan, Manhattan Community Board 2, New York County, NYC, New York, 10012, USA",40.7286994,-73.9957151
+a0e7f8771c7d83e502d52c276748a33bae3d5f81,Ensemble Nyström,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+a0061dae94d916f60a5a5373088f665a1b54f673,Lensless computational imaging through deep learning,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+a0061dae94d916f60a5a5373088f665a1b54f673,Lensless computational imaging through deep learning,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+a0848d7b1bb43f4b4f1b4016e58c830f40944817,Face Matching for Post-Disaster Family Reunification,National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.1032777503325
+a70e36daf934092f40a338d61e0fe27be633f577,Enhanced facial feature tracking of spontaneous and continuous expressions,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+a7191958e806fce2505a057196ccb01ea763b6ea,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+a7191958e806fce2505a057196ccb01ea763b6ea,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,College of Engineering and Computer Science,College of Engineering and Computer Science,"ECS, University Drive, Sweetwater, Lil Abner Mobile Home Park, Miami-Dade County, Florida, 33199, USA",25.7589624,-80.3738881489383
+a7191958e806fce2505a057196ccb01ea763b6ea,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,The Australian National University,The Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+a7e1327bd76945a315f2869bfae1ce55bb94d165,Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition,Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.1294489,113.343761097683
+a7e1327bd76945a315f2869bfae1ce55bb94d165,Kernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition,Guangdong Medical College,Guangdong Medical College,"医学院, 真如路, 凤凰新村, 天河区, 广州市, 广东省, 510635, 中国",23.1294489,113.343761097683
+a7c39a4e9977a85673892b714fc9441c959bf078,Automated Individualization of Deformable Eye Region Model and Its Application to Eye Motion Analysis,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+a7c39a4e9977a85673892b714fc9441c959bf078,Automated Individualization of Deformable Eye Region Model and Its Application to Eye Motion Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+a75edf8124f5b52690c08ff35b0c7eb8355fe950,Authentic Emotion Detection in Real-Time Video,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+a75dfb5a839f0eb4b613d150f54a418b7812aa90,Multibiometric secure system based on deep learning,West Virginia University,"West Virginia University, Morgantown, USA","88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+b88ceded6467e9b286f048bb1b17be5998a077bd,Sparse Subspace Clustering via Diffusion Process,Curtin University,"Curtin University, Perth, Australia","Curtin University, B201 L2 Entry South, Waterford, Perth, Western Australia, 6102, Australia",-32.00574155,115.892864389257
+b8375ff50b8a6f1a10dd809129a18df96888ac8b,Natural Video Sequence Prediction,University of Michigan,"University of Michigan, Ann Arbor, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+b8375ff50b8a6f1a10dd809129a18df96888ac8b,Natural Video Sequence Prediction,Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+b88d5e12089f6f598b8c72ebeffefc102cad1fc0,Robust 2DPCA and Its Application,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+b88d5e12089f6f598b8c72ebeffefc102cad1fc0,Robust 2DPCA and Its Application,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+b84b7b035c574727e4c30889e973423fe15560d7,Human Age Estimation Using Ranking SVM,HoHai University,HoHai University,"河海大学, 河海路, 小市桥, 鼓楼区, 南京市, 江苏省, 210013, 中国",32.05765485,118.755000398628
+b84b7b035c574727e4c30889e973423fe15560d7,Human Age Estimation Using Ranking SVM,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+b8caf1b1bc3d7a26a91574b493c502d2128791f6,As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli,Cardiff University,Cardiff University,"Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+b8caf1b1bc3d7a26a91574b493c502d2128791f6,As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli,Swansea University,Swansea University,"Swansea University, University Footbridge, Sketty, Swansea, Wales, SA2 8PZ, UK",51.6091578,-3.97934429228629
+b8084d5e193633462e56f897f3d81b2832b72dff,DeepID3: Face Recognition with Very Deep Neural Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+b8084d5e193633462e56f897f3d81b2832b72dff,DeepID3: Face Recognition with Very Deep Neural Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+b8084d5e193633462e56f897f3d81b2832b72dff,DeepID3: Face Recognition with Very Deep Neural Networks,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+b8ebda42e272d3617375118542d4675a0c0e501d,Deep Hashing Network for Unsupervised Domain Adaptation,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+b87b0fa1ac0aad0ca563844daecaeecb2df8debf,Non-photorealistic rendering of portraits,Cardiff University,"Cardiff University, UK","Cardiff University, Park Place, Castle, Cardiff, Wales, CF, UK",51.4879961,-3.17969747443907
+b87db5ac17312db60e26394f9e3e1a51647cca66,Semi-definite Manifold Alignment,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+b87db5ac17312db60e26394f9e3e1a51647cca66,Semi-definite Manifold Alignment,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+b191aa2c5b8ece06c221c3a4a0914e8157a16129,Deep Spatio-temporal Manifold Network for Action Recognition,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+b191aa2c5b8ece06c221c3a4a0914e8157a16129,Deep Spatio-temporal Manifold Network for Action Recognition,Beihang University,"Beihang University, Beijing, China","北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+b191aa2c5b8ece06c221c3a4a0914e8157a16129,Deep Spatio-temporal Manifold Network for Action Recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+b13bf657ca6d34d0df90e7ae739c94a7efc30dc3,Attribute and Simile Classifiers for Face Verification (In submission please do not distribute.),Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+b13a882e6168afc4058fe14cc075c7e41434f43e,Recognition of Humans and Their Activities Using Video,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+b13a882e6168afc4058fe14cc075c7e41434f43e,Recognition of Humans and Their Activities Using Video,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,Emotion Recognition Using Facial Expressions with Active Appearance Models,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,Emotion Recognition Using Facial Expressions with Active Appearance Models,South College Road,South College Road,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA",39.2715228,-76.6936807
+b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,Emotion Recognition Using Facial Expressions with Active Appearance Models,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+b1665e1ddf9253dcaebecb48ac09a7ab4095a83e,Emotion Recognition Using Facial Expressions with Active Appearance Models,South College Road,South College Road,"South College Road, Beechfield, Baltimore, Maryland, 21229, USA",39.2715228,-76.6936807
+b16580d27bbf4e17053f2f91bc1d0be12045e00b,Pose-Invariant Face Recognition with a Two-Level Dynamic Programming Algorithm,RWTH Aachen University,"RWTH Aachen University, Aachen, Germany","RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+b1b993a1fbcc827bcb99c4cc1ba64ae2c5dcc000,Deep Variation-Structured Reinforcement Learning for Visual Relationship and Attribute Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+b11bb6bd63ee6f246d278dd4edccfbe470263803,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+b11bb6bd63ee6f246d278dd4edccfbe470263803,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,University of Chinese Academy of Sciences (UCAS),University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+b13e2e43672e66ba45d1b852a34737e4ce04226b,Face Painting: querying art with photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c,Conveying facial expressions to blind and visually impaired persons through a wearable vibrotactile device,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+b1e4f8c15ff30cc7d35ab25ff3eddaf854e0a87c,Conveying facial expressions to blind and visually impaired persons through a wearable vibrotactile device,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+b133b2d7df9b848253b9d75e2ca5c68e21eba008,"Kobe University, NICT and University of Siegen at TRECVID 2017 AVS Task",Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+b133b2d7df9b848253b9d75e2ca5c68e21eba008,"Kobe University, NICT and University of Siegen at TRECVID 2017 AVS Task",Kobe University,Kobe University,"神戸大学, 灘三田線, 灘区, 神戸市, 兵庫県, 近畿地方, 657-00027, 日本",34.7275714,135.237099997686
+b1df214e0f1c5065f53054195cd15012e660490a,Supplementary Material to Sparse Coding and Dictionary Learning with Linear Dynamical Systems,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+b185f0a39384ceb3c4923196aeed6d68830a069f,Describing Clothing by Semantic Attributes,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+b185f0a39384ceb3c4923196aeed6d68830a069f,Describing Clothing by Semantic Attributes,Cornell University,"Cornell University, Ithaca, New York","Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+b1429e4d3dd3412e92a37d2f9e0721ea719a9b9e,Person re-identification using multiple first-person-views on wearable devices,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+b1fdd4ae17d82612cefd4e78b690847b071379d3,Supervised Descent Method,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+b1fdd4ae17d82612cefd4e78b690847b071379d3,Supervised Descent Method,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+dd85b6fdc45bf61f2b3d3d92ce5056c47bd8d335,Unsupervised Learning and Segmentation of Complex Activities from Video,University of Bonn,"University of Bonn, Germany","Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+dda35768681f74dafd02a667dac2e6101926a279,Multi-layer temporal graphical model for head pose estimation in real-world videos,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+dd033d4886f2e687b82d893a2c14dae02962ea70,Facial Expression Recognition Using New Feature Extraction Algorithm,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909
+ddaa8add8528857712424fd57179e5db6885df7c,Localizing Actions from Video Labels and Pseudo-Annotations,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+ddaa8add8528857712424fd57179e5db6885df7c,Localizing Actions from Video Labels and Pseudo-Annotations,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+dcf71245addaf66a868221041aabe23c0a074312,S^3FD: Single Shot Scale-Invariant Face Detector,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+dcf71245addaf66a868221041aabe23c0a074312,S^3FD: Single Shot Scale-Invariant Face Detector,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+dcc38db6c885444694f515d683bbb50521ff3990,Learning to Hallucinate Face Images via Component Generation and Enhancement,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+dcc38db6c885444694f515d683bbb50521ff3990,Learning to Hallucinate Face Images via Component Generation and Enhancement,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+dcc38db6c885444694f515d683bbb50521ff3990,Learning to Hallucinate Face Images via Component Generation and Enhancement,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+dc5cde7e4554db012d39fc41ac8580f4f6774045,Video Segmentation by Non-Local Consensus voting,The Weizmann Institute of Science,The Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+dced05d28f353be971ea2c14517e85bc457405f3,Multimodal Priority Verification of Face and Speech Using Momentum Back-Propagation Neural Network,Chung-Ang University,Chung-Ang University,"중앙대학교, 서달로15길, 흑석동, 동작구, 서울특별시, 06981, 대한민국",37.50882,126.9619
+dce5e0a1f2cdc3d4e0e7ca0507592860599b0454,Facelet-Bank for Fast Portrait Manipulation,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+dc9d62087ff93a821e6bb8a15a8ae2da3e39dcdd,Learning with Confident Examples: Rank Pruning for Robust Classification with Noisy Labels,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+dcce3d7e8d59041e84fcdf4418702fb0f8e35043,Probabilistic identity characterization for face recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+dce3dff9216d63c4a77a2fcb0ec1adf6d2489394,Manifold Learning for Gender Classification from Face Sequences,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+b6f758be954d34817d4ebaa22b30c63a4b8ddb35,A Proximity-Aware Hierarchical Clustering of Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+b62571691a23836b35719fc457e093b0db187956,A Novel approach for securing biometric template,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+b62571691a23836b35719fc457e093b0db187956,A Novel approach for securing biometric template,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+b69b239217d4e9a20fe4fe1417bf26c94ded9af9,A Temporally-Aware Interpolation Network for Video Frame Inpainting,University of Michigan,"University of Michigan, Ann Arbor, USA","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+b6052dc718c72f2506cfd9d29422642ecf3992ef,A Survey on Human Motion Analysis from Depth Data,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+b6052dc718c72f2506cfd9d29422642ecf3992ef,A Survey on Human Motion Analysis from Depth Data,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+b6145d3268032da70edc9cfececa1f9ffa4e3f11,Face Recognition Using the Discrete Cosine Transform,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+b6ef158d95042f39765df04373c01546524c9ccd,Im 2 vid : Future Video Prediction for Static Image Action Recognition,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+b68150bfdec373ed8e025f448b7a3485c16e3201,Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+b64cfb39840969b1c769e336a05a30e7f9efcd61,CRF-Based Context Modeling for Person Identification in Broadcast Videos,Nagoya University,"Nagoya University, Japan","SuperDARN (Hokkaido West), 太辛第1支線林道, 陸別町, 足寄郡, 十勝総合振興局, 北海道, 北海道地方, 日本",43.53750985,143.60768225282
+b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3,Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks,University of Science and Technology of China,"University of Science and Technology of China, Hefei, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+b6d3caccdcb3fbce45ce1a68bb5643f7e68dadb3,Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks,"Microsoft Research, Beijing, China","Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+b6d0e461535116a675a0354e7da65b2c1d2958d4,Deep Directional Statistics: Pose Estimation with Uncertainty Quantification,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+b6a01cd4572b5f2f3a82732ef07d7296ab0161d3,Kernel-Based Supervised Discrete Hashing for Image Retrieval,University of Florida,"University of Florida, Gainesville, FL, 32611, USA","University of Florida, Museum Road, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32601, USA",29.6447739,-82.3575193392276
+a9fc23d612e848250d5b675e064dba98f05ad0d9,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,Benha University,"Benha University, Egypt","كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.0818727,31.2445484105016
+a9fc23d612e848250d5b675e064dba98f05ad0d9,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,Benha University,"Benha University, Egypt","كلية الهندسة بشبرا جامعة بنها, شارع اليازجي, روض الفرج, القاهرة, محافظة القاهرة, 2466, مصر",30.0818727,31.2445484105016
+a967426ec9b761a989997d6a213d890fc34c5fe3,Relative ranking of facial attractiveness,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+a9be20954e9177d8b2bc39747acdea4f5496f394,Event-Specific Image Importance,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+d5afd7b76f1391321a1340a19ba63eec9e0f9833,Statistical Analysis of Human Facial Expressions,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+d5afd7b76f1391321a1340a19ba63eec9e0f9833,Statistical Analysis of Human Facial Expressions,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+d5375f51eeb0c6eff71d6c6ad73e11e9353c1f12,Manifold Ranking-Based Locality Preserving Projections,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+d5d7e89e6210fcbaa52dc277c1e307632cd91dab,DOTA: A Large-scale Dataset for Object Detection in Aerial Images,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+d5fa9d98c8da54a57abf353767a927d662b7f026,Age Estimation based on Neural Networks using Face Features,Islamic University of Gaza - Palestine,Islamic University of Gaza - Palestine,"The Islamic University of Gaza, Mostafa Hafez Street, South Remal, محافظة غزة, قطاع غزة, PO BOX 108, الأراضي الفلسطينية",31.51368535,34.4401934143135
+d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,Macau University of Science and,Macau University of Science and,"HKUST, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3358031,114.265903983304
+d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+d5b0e73b584be507198b6665bcddeba92b62e1e5,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.45796755,-2.98214831353755
+d28d32af7ef9889ef9cb877345a90ea85e70f7f1,Local-Global Landmark Confidences for Face Recognition,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+d28d32af7ef9889ef9cb877345a90ea85e70f7f1,Local-Global Landmark Confidences for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+d28d697b578867500632b35b1b19d3d76698f4a9,Face Recognition Using Shape and Texture,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+d29eec5e047560627c16803029d2eb8a4e61da75,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+d280bcbb387b1d548173917ae82cb6944e3ceca6,Facial grid transformation: A novel face registration approach for improving facial action unit recognition,University of South Carolina,University of South Carolina,"University of South Carolina, Wheat Street, Columbia, Richland County, South Carolina, 29205, USA",33.9928298,-81.0268516781225
+d26b443f87df76034ff0fa9c5de9779152753f0c,A GPU-Oriented Algorithm Design for Secant-Based Dimensionality Reduction,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,Separability Oriented Preprocessing for Illumination-Insensitive Face Recognition,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,Separability Oriented Preprocessing for Illumination-Insensitive Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+d2cd9a7f19600370bce3ea29aba97d949fe0ceb9,Separability Oriented Preprocessing for Illumination-Insensitive Face Recognition,Institute of Digital Media,Institute of Digital Media,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India",20.28907925,85.84232125
+d22b378fb4ef241d8d210202893518d08e0bb213,Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition,College of Computer and Information Science,College of Computer and Information Science,"Computer & Information Science, John Montieth Boulevard, Dearborn, Wayne County, Michigan, 48128, USA",42.3192923,-83.2343465549018
+d22b378fb4ef241d8d210202893518d08e0bb213,Random Faces Guided Sparse Many-to-One Encoder for Pose-Invariant Face Recognition,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+aac39ca161dfc52aade063901f02f56d01a1693c,The Analysis of Parameters t and k of LPP on Several Famous Face Databases,Jilin University,Jilin University,"吉林大学珠海校区, 丹桂路, 圣堂村, 金湾区, 珠海市, 广东省, 中国",22.053565,113.39913285497
+aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,Advancing human pose and gesture recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+aa127e6b2dc0aaccfb85e93e8b557f83ebee816b,Advancing human pose and gesture recognition,Wolfson College,Wolfson College,"Wolfson College, Linton Road, Norham Manor, Oxford, Oxon, South East, England, OX2 6UD, UK",51.7711076,-1.25361700492597
+aa8ef6ba6587c8a771ec4f91a0dd9099e96f6d52,Improved face tracking thanks to local features correspondence,University of Brescia,University of Brescia,"Brescia University, West 7th Street, Owensboro, Daviess County, Kentucky, 42303, USA",37.7689374,-87.1113859
+aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,Tsinghua University,"Tsinghua University, Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong, China","香港中文大學 Chinese University of Hong Kong, 車站路 Station Road, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.413656,114.2099405
+aab3561acbd19f7397cbae39dd34b3be33220309,Quantization Mimic: Towards Very Tiny CNN for Object Detection,The University of Sydney,The University of Sydney,"USyd, Fisher Road, Camperdown, Sydney, NSW, 2006, Australia",-33.88890695,151.189433661925
+aa912375eaf50439bec23de615aa8a31a3395ad3,Implementation of a New Methodology to Reduce the Effects of Changes of Illumination in Face Recognition-based Authentication,Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.921525,-77.019535656678
+aa912375eaf50439bec23de615aa8a31a3395ad3,Implementation of a New Methodology to Reduce the Effects of Changes of Illumination in Face Recognition-based Authentication,Howard University,Howard University,"Howard University, College Street Northwest, Howard University, Washington, D.C., 20001, USA",38.921525,-77.019535656678
+aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,Facial Expression Recognition System: A Digital Printing Application,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334
+aaeb8b634bb96a372b972f63ec1dc4db62e7b62a,Facial Expression Recognition System: A Digital Printing Application,Jadavpur University,Jadavpur University,"Jadavpur University, Chingrighata Flyover, Basani Devi Colony, Kolkata, Hāora, West Bengal, 700098, India",22.5611537,88.4131019353334
+aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+aa0c30bd923774add6e2f27ac74acd197b9110f2,Dynamic Probabilistic Linear Discriminant Analysis for video classification,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+aac934f2eed758d4a27562dae4e9c5415ff4cdb7,TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+aa3c9de34ef140ec812be85bb8844922c35eba47,Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+aff92784567095ee526a705e21be4f42226bbaab,Face recognition in uncontrolled environments,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+aff8705fb2f2ae460cb3980b47f2e85c2e6dd41a,Attributes in Multiple Facial Images,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+af13c355a2a14bb74847aedeafe990db3fc9cbd4,Happy and agreeable?: multi-label classification of impressions in social video,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+af13c355a2a14bb74847aedeafe990db3fc9cbd4,Happy and agreeable?: multi-label classification of impressions in social video,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+afdf9a3464c3b015f040982750f6b41c048706f5,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+afdf9a3464c3b015f040982750f6b41c048706f5,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+afe9cfba90d4b1dbd7db1cf60faf91f24d12b286,Principal Directions of Synthetic Exact Filters for Robust Real-Time Eye Localization,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+afa84ff62c9f5b5c280de2996b69ad9fa48b7bc3,Two-Stream Flow-Guided Convolutional Attention Networks for Action Recognition,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+af278274e4bda66f38fd296cfa5c07804fbc26ee,A Novel Maximum Entropy Markov Model for Human Facial Expression Recognition,Sungkyunkwan University,Sungkyunkwan University,"성균관대, 덕영대로, 천천동, 장안구, 수원시, 경기, 16357, 대한민국",37.3003127,126.972123
+af278274e4bda66f38fd296cfa5c07804fbc26ee,A Novel Maximum Entropy Markov Model for Human Facial Expression Recognition,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+af654a7ec15168b16382bd604889ea07a967dac6,Face recognition committee machine,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+b7426836ca364603ccab0e533891d8ac54cf2429,A Review on Human Activity Recognition Using Vision-Based Method,Ocean University of China,Ocean University of China,"中国海洋大学, 238, 松岭路 Sōnglǐng Road, 朱家洼, 崂山区 (Laoshan), 青岛市, 山东省, 266100, 中国",36.16161795,120.493552763931
+b7426836ca364603ccab0e533891d8ac54cf2429,A Review on Human Activity Recognition Using Vision-Based Method,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+b73795963dc623a634d218d29e4a5b74dfbc79f1,Identity Preserving Face Completion for Large Ocular Region Occlusion,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+b73795963dc623a634d218d29e4a5b74dfbc79f1,Identity Preserving Face Completion for Large Ocular Region Occlusion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+b73795963dc623a634d218d29e4a5b74dfbc79f1,Identity Preserving Face Completion for Large Ocular Region Occlusion,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,Unified Solution to Nonnegative Data Factorization Problems,Huazhong University of Science and Technology,"Huazhong University of Science and Technology, Wuhan, China","华中大, 珞喻路, 东湖新技术开发区, 关东街道, 东湖新技术开发区(托管), 洪山区 (Hongshan), 武汉市, 湖北省, 430074, 中国",30.5097537,114.4062881
+b750b3d8c34d4e57ecdafcd5ae8a15d7fa50bc24,Unified Solution to Nonnegative Data Factorization Problems,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+b7820f3d0f43c2ce613ebb6c3d16eb893c84cf89,Visual Data Synthesis via GAN for Zero-Shot Video Classification,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+b7c5f885114186284c51e863b58292583047a8b4,GAdaBoost: Accelerating Adaboost Feature Selection with Genetic Algorithms,The American University in Cairo,The American University in Cairo,"الجامعة الأمريكية بالقاهرة, شارع القصر العينى, القاهرة القديمة, جاردن سيتي, القاهرة, محافظة القاهرة, 11582, مصر",30.04287695,31.2366413899265
+b73d9e1af36aabb81353f29c40ecdcbdf731dbed,Head Pose Estimation on Top of Haar-Like Face Detection: A Study Using the Kinect Sensor,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+db848c3c32464d12da33b2f4c3a29fe293fc35d1,Pose Guided Human Video Generation,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+db1f48a7e11174d4a724a4edb3a0f1571d649670,Joint Constrained Clustering and Feature Learning based on Deep Neural Networks,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+db1f48a7e11174d4a724a4edb3a0f1571d649670,Joint Constrained Clustering and Feature Learning based on Deep Neural Networks,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+dbb16032dd8f19bdfd045a1fc0fc51f29c70f70a,Deep Face Recognition,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+db5a00984fa54b9d2a1caad0067a9ff0d0489517,Supplementary Material for Multi-Task Adversarial Network for Disentangled Feature Learning,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+dbd958ffedc3eae8032be67599ec281310c05630,Automated Restyling of Human Portrait Based on Facial Expression Recognition and 3 D Reconstruction,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+dbed26cc6d818b3679e46677abc9fa8e04e8c6a6,A Hierarchical Generative Model for Eye Image Synthesis and Eye Gaze Estimation,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+db3545a983ffd24c97c18bf7f068783102548ad7,Enriching the Student Model in an Intelligent Tutoring System,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+db3545a983ffd24c97c18bf7f068783102548ad7,Enriching the Student Model in an Intelligent Tutoring System,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.958674326093
+dba493caf6647214c8c58967a8251641c2bda4c2,Automatic 3D Facial Expression Editing in Videos,University of California,"University of California, Santa Barbara","UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+db36e682501582d1c7b903422993cf8d70bb0b42,Deep Trans-layer Unsupervised Networks for Representation Learning,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+db36e682501582d1c7b903422993cf8d70bb0b42,Deep Trans-layer Unsupervised Networks for Representation Learning,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,"A Comprehensive Comparative Performance Analysis of Eigenfaces, Laplacianfaces and Orthogonal Laplacianfaces for Face Recognition",Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+dbe0e533d715f8543bcf197f3b8e5cffa969dfc0,"A Comprehensive Comparative Performance Analysis of Eigenfaces, Laplacianfaces and Orthogonal Laplacianfaces for Face Recognition",Amity University,Amity University,"Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+db82f9101f64d396a86fc2bd05b352e433d88d02,A Spatio-Temporal Probabilistic Framework for Dividing and Predicting Facial Action Units,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+db428d03e3dfd98624c23e0462817ad17ef14493,Oxford Trecvid 2006 – Notebook Paper 1 High-level Feature Extraction 1.1 Bag of Visual Word Representation,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+a896ddeb0d253739c9aaef7fc1f170a2ba8407d3,SSH: Single Stage Headless Face Detector,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+a820941eaf03077d68536732a4d5f28d94b5864a,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+a820941eaf03077d68536732a4d5f28d94b5864a,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+a803453edd2b4a85b29da74dcc551b3c53ff17f9,Pose Invariant Face Recognition Under Arbitrary Illumination Based on 3D Face Reconstruction,Harbin Institute of Technology,Harbin Institute of Technology,"哈尔滨工业大学, 司令街, 南岗区, 哈尔滨市 / Harbin, 黑龙江省, 150000, 中国",45.7413921,126.625527550394
+a8d52265649c16f95af71d6f548c15afc85ac905,Situation Recognition with Graph Neural Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+a8583e80a455507a0f146143abeb35e769d25e4e,A Distance-accuracy Hybrid Weighted Voting Scheme for Partial Face Recognition,Feng Chia University,"Feng Chia University, Taichung, Taiwan","逢甲大學, 100, 文華路, 西平里, 西屯區, 臺中市, 40724, 臺灣",24.18005755,120.648360719503
+a8583e80a455507a0f146143abeb35e769d25e4e,A Distance-accuracy Hybrid Weighted Voting Scheme for Partial Face Recognition,National Chiao Tung University,"National Chiao Tung University, Taiwan","NCTU;交大;交通大學;交大光復校區;交通大學光復校區, 1001, 大學路, 光明里, 赤土崎, 東區, 新竹市, 30010, 臺灣",24.78676765,120.997244116807
+a87e37d43d4c47bef8992ace408de0f872739efc,A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition,Lancaster University,Lancaster University,"Lancaster University, Library Avenue, Bowland College, Hala, Lancaster, Lancs, North West England, England, LA1 4AP, UK",54.00975365,-2.78757490881378
+a87e37d43d4c47bef8992ace408de0f872739efc,A Comprehensive Review on Handcrafted and Learning-Based Action Representation Approaches for Human Activity Recognition,COMSATS Institute of Information Technology,COMSATS Institute of Information Technology,"COMSATS Institute of Information Technology, Ali Akbar Road, Dawood Residency, بحریہ ٹاؤن, Lahore District, پنجاب, 54700, پاکستان",31.4006332,74.2137296
+a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,3D Human Action Recognition using Hu Moment Invariants and Euclidean Distance Classifier,University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.3383025526859
+a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,3D Human Action Recognition using Hu Moment Invariants and Euclidean Distance Classifier,University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.3383025526859
+a8c8a96b78e7b8e0d4a4a422fcb083e53ad06531,3D Human Action Recognition using Hu Moment Invariants and Euclidean Distance Classifier,University of Arkansas at Little Rock,University of Arkansas at Little Rock,"University of Arkansas At Little Rock (UALR), 2801, U A L R Campus Drive, Little Rock, Pulaski County, Arkansas, 72204, USA",34.72236805,-92.3383025526859
+a8748a79e8d37e395354ba7a8b3038468cb37e1f,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+a8748a79e8d37e395354ba7a8b3038468cb37e1f,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+a8a61badec9b8bc01f002a06e1426a623456d121,Joint Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+a8154d043f187c6640cb6aedeaa8385a323e46cf,Image Retrieval with Mixed Initiative and Multimodal Feedback,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+a812368fe1d4a186322bf72a6d07e1cf60067234,Gaussian processes for modeling of facial expressions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,Merge or Not? Learning to Group Faces via Imitation Learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+de8381903c579a4fed609dff3e52a1dc51154951,Shape and Appearance Based Analysis of Facial Images for Assessing ICAO Compliance,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+def569db592ed1715ae509644444c3feda06a536,Discovery and usage of joint attention in images,Weizmann Institute of Science,Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+de15af84b1257211a11889b6c2adf0a2bcf59b42,Anomaly detection in non-stationary and distributed environments,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+de15af84b1257211a11889b6c2adf0a2bcf59b42,Anomaly detection in non-stationary and distributed environments,Institute for Communication Systems,Institute for Communication Systems,"Institute for Communication Systems, Spine Road, Woodbridge Hill, Guildford, Surrey, South East, England, GU2 7XS, UK",51.2433692,-0.593220895014599
+de15af84b1257211a11889b6c2adf0a2bcf59b42,Anomaly detection in non-stationary and distributed environments,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+de3285da34df0262a4548574c2383c51387a24bf,Two-Stream Convolutional Networks for Dynamic Texture Synthesis,York University,"York University, Toronto","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+dec0c26855da90876c405e9fd42830c3051c2f5f,Supplementary Material: Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+dec0c26855da90876c405e9fd42830c3051c2f5f,Supplementary Material: Learning Compositional Visual Concepts with Mutual Consistency,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+b03b4d8b4190361ed2de66fcbb6fda0c9a0a7d89,Deep Alternative Neural Network: Exploring Contexts as Early as Possible for Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+b013cce42dd769db754a57351d49b7410b8e82ad,Automatic point-based facial trait judgments evaluation,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+b013cce42dd769db754a57351d49b7410b8e82ad,Automatic point-based facial trait judgments evaluation,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+b017963d83b3edf71e1673d7ffdec13a6d350a87,View Independent Face Detection Based on Combination of Local and Global Kernels,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+b084683e5bab9b2bc327788e7b9a8e049d5fff8f,Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks,the University of Queensland,the University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+b03446a2de01126e6a06eb5d526df277fa36099f,A Torch Library for Action Recognition and Detection Using CNNs and LSTMs,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+b018fa5cb9793e260b8844ae155bd06380988584,Project STAR IST - 2000 - 28764 Deliverable D 6 . 3 Enhanced face and arm / hand detector,Katholieke Universiteit Leuven,Katholieke Universiteit Leuven,"Laboratorium voor Bos, natuur en landschap, 102, Vital Decosterstraat, Sint-Maartensdal, Leuven, Vlaams-Brabant, Vlaanderen, 3000, België / Belgique / Belgien",50.8830686,4.7019503
+b073313325b6482e22032e259d7311fb9615356c,Robust and accurate cancer classification with gene expression profiling,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+b073313325b6482e22032e259d7311fb9615356c,Robust and accurate cancer classification with gene expression profiling,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+a6f81619158d9caeaa0863738ab400b9ba2d77c2,Face Recognition using Convolutional Neural Network and Simple Logistic Classifier,K.N. Toosi University of Technology,"K.N. Toosi University of Technology, Tehran, Iran","دانشکده مهندسی عمران و نقشه برداری, ولی عصر, کاووسیه, منطقه ۳ شهر تهران, تجریش, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 1968653111, ایران",35.76427925,51.409702762313
+a6d7cf29f333ea3d2aeac67cde39a73898e270b7,Gender Classification from Facial Images Using Texture Descriptors,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+a6d7cf29f333ea3d2aeac67cde39a73898e270b7,Gender Classification from Facial Images Using Texture Descriptors,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+a6d7cf29f333ea3d2aeac67cde39a73898e270b7,Gender Classification from Facial Images Using Texture Descriptors,King Saud University,King Saud University,"King Saud University جامعة الملك سعود, road_16, King Saud University District, Al Maather Municipality, الرياض, منطقة الرياض, 12393 4057, السعودية",24.7246403,46.623350123456
+a611c978e05d7feab01fb8a37737996ad6e88bd9,Benchmarking 3D Pose Estimation for Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+a6e8a8bb99e30a9e80dbf80c46495cf798066105,Ranking Generative Adversarial Networks: Subjective Control over Semantic Image Attributes,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+a6ffe238eaf8632b4a8a6f718c8917e7f3261546,Dynamic facial prosthetics for sufferers of facial paralysis.,Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.9577322,-1.15617099267709
+a6ffe238eaf8632b4a8a6f718c8917e7f3261546,Dynamic facial prosthetics for sufferers of facial paralysis.,Nottingham University Hospital,Nottingham University Hospital,"Nottingham University Hospital, Central Route, Dunkirk, Wollaton, City of Nottingham, East Midlands, England, NG7 2UH, UK",52.9434967,-1.18631123153121
+a6ffe238eaf8632b4a8a6f718c8917e7f3261546,Dynamic facial prosthetics for sufferers of facial paralysis.,Nottingham Trent University,Nottingham Trent University,"Nottingham Trent University, Waverley Terrace, Lace Market, The Park, City of Nottingham, East Midlands, England, NG1 5JD, UK",52.9577322,-1.15617099267709
+a660390654498dff2470667b64ea656668c98ecc,Facial expression recognition based on graph-preserving sparse non-negative matrix factorization,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+a660390654498dff2470667b64ea656668c98ecc,Facial expression recognition based on graph-preserving sparse non-negative matrix factorization,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+a60907b7ee346b567972074e3e03c82f64d7ea30,Head Motion Signatures from Egocentric Videos,The Hebrew University of Jerusalem,"The Hebrew University of Jerusalem, Israel","האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723
+a6e43b73f9f87588783988333997a81b4487e2d5,Facial Age Estimation by Total Ordering Preserving Projection,Nanjing University,"Nanjing University, Nanjing 210023, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+a6496553fb9ab9ca5d69eb45af1bdf0b60ed86dc,Semi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm,University of Western Australia,University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,One Shot Similarity Metric Learning for Action Recognition,The Weizmann Institute of,The Weizmann Institute of,"מכון ויצמן, הרצל, מעונות וולפסון, נווה עמית, רחובות, מחוז המרכז, NO, ישראל",31.904187,34.807378
+a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,One Shot Similarity Metric Learning for Action Recognition,The Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.709274809394501
+a6b5ffb5b406abfda2509cae66cdcf56b4bb3837,One Shot Similarity Metric Learning for Action Recognition,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+a6e25cab2251a8ded43c44b28a87f4c62e3a548a,Let's Dance: Learning From Online Dance Videos,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+a6270914cf5f60627a1332bcc3f5951c9eea3be0,Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+a6b1d79bc334c74cde199e26a7ef4c189e9acd46,Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.,Purdue University,"Purdue University, West Lafayette, Indiana, 47906, USA","Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+a6b1d79bc334c74cde199e26a7ef4c189e9acd46,Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.,college of Engineering,college of Engineering,"College of Engineering, Sardar Patel Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0110912,80.2354520862161
+a6e21438695dbc3a184d33b6cf5064ddf655a9ba,PKU-MMD: A Large Scale Benchmark for Continuous Multi-Modal Human Action Understanding,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+b9081856963ceb78dcb44ac410c6fca0533676a3,UntrimmedNets for Weakly Supervised Action Recognition and Detection,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+b93bf0a7e449cfd0db91a83284d9eba25a6094d8,Supplementary Material for : Active Pictorial Structures,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,Face Recognition under Varying Illumination,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+a1af7ec84472afba0451b431dfdb59be323e35b7,LikeNet: A Siamese Motion Estimation Network Trained in an Unsupervised Way,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+a1dd806b8f4f418d01960e22fb950fe7a56c18f1,Interactively building a discriminative vocabulary of nameable attributes,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+a14db48785d41cd57d4eac75949a6b79fc684e70,Fast High Dimensional Vector Multiplication Face Recognition,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1,Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+a1b7bb2a4970b7c479aff3324cc7773c1daf3fc1,Longitudinal Study of Child Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+a14ed872503a2f03d2b59e049fd6b4d61ab4d6ca,Attentional Pooling for Action Recognition,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+a125bc55bdf4bec7484111eea9ae537be314ec62,Real-time Facial Expression Recognition in Image Sequences Using an AdaBoost-based Multi-classifier,National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei 10607, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+a125bc55bdf4bec7484111eea9ae537be314ec62,Real-time Facial Expression Recognition in Image Sequences Using an AdaBoost-based Multi-classifier,National Taiwan University of Science and Technology,"National Taiwan University of Science and Technology, Taipei 10607, Taiwan","臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,Affective recommender systems: the role of emotions in recommender systems,University of Ljubljana Faculty,University of Ljubljana Faculty,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,Affective recommender systems: the role of emotions in recommender systems,University of Ljubljana Faculty,University of Ljubljana Faculty,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+a1ee0176a9c71863d812fe012b5c6b9c15f9aa8a,Affective recommender systems: the role of emotions in recommender systems,University of Ljubljana Faculty,University of Ljubljana Faculty,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+a1dd9038b1e1e59c9d564e252d3e14705872fdec,Attributes as Operators: Factorizing Unseen Attribute-Object Compositions,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+a16fb74ea66025d1f346045fda00bd287c20af0e,A Coupled Evolutionary Network for Age Estimation,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+efd28eabebb9815e34031316624e7f095c7dfcfe,Combining Face with Face-Part Detectors under Gaussian Assumption,University of Salzburg,University of Salzburg,"Universität Salzburg - Unipark, 1, Erzabt-Klotz-Straße, Nonntal, Salzburg, 5020, Österreich",47.79475945,13.0541752486067
+eff87ecafed67cc6fc4f661cb077fed5440994bb,Evaluation of Expression Recognition Techniques,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+eff87ecafed67cc6fc4f661cb077fed5440994bb,Evaluation of Expression Recognition Techniques,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+ef458499c3856a6e9cd4738b3e97bef010786adb,Learning Type-Aware Embeddings for Fashion Compatibility,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+ef2a5a26448636570986d5cda8376da83d96ef87,Recurrent Neural Networks and Transfer Learning for Action Recognition,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+ef2a5a26448636570986d5cda8376da83d96ef87,Recurrent Neural Networks and Transfer Learning for Action Recognition,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98,Fine-grained Activity Recognition with Holistic and Pose based Features,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+ef8de1bd92e9ee9d0d2dee73095d4d348dc54a98,Fine-grained Activity Recognition with Holistic and Pose based Features,Stanford University,"Stanford University, USA","Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,A 3D Morphable Eye Region Model for Gaze Estimation,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,A 3D Morphable Eye Region Model for Gaze Estimation,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+c34532fe6bfbd1e6df477c9ffdbb043b77e7804d,A 3D Morphable Eye Region Model for Gaze Estimation,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+c394a5dfe5bea5fbab4c2b6b90d2d03e01fb29c0,Person Reidentification and Recognition in Video,University of South Florida,University of South Florida,"University of South Florida, Leroy Collins Boulevard, Tampa, Hillsborough County, Florida, 33620, USA",28.0599999,-82.4138361902512
+c30982d6d9bbe470a760c168002ed9d66e1718a2,Multi-camera head pose estimation using an ensemble of exemplars,University City Blvd.,University City Blvd.,"University City Boulevard, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.312224,-80.7084736
+c30982d6d9bbe470a760c168002ed9d66e1718a2,Multi-camera head pose estimation using an ensemble of exemplars,University of North Carolina at Charlotte,University of North Carolina at Charlotte,"Lot 20, Poplar Terrace Drive, Charlotte, Mecklenburg County, North Carolina, 28223, USA",35.3103441,-80.732616166699
+c39ffc56a41d436748b9b57bdabd8248b2d28a32,Residual Attention Network for Image Classification,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+c32cd207855e301e6d1d9ddd3633c949630c793a,On the Effect of Illumination and Face Recognition,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+c317181fa1de2260e956f05cd655642607520a4f,Objective Classes for Micro-Facial Expression Recognition,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+c32c8bfadda8f44d40c6cd9058a4016ab1c27499,Unconstrained Face Recognition From a Single Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+c418a3441f992fea523926f837f4bfb742548c16,A Computer Approach for Face Aging Problems,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+c4fb2de4a5dc28710d9880aece321acf68338fde,Interactive Generative Adversarial Networks for Facial Expression Generation in Dyadic Interactions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+c44c84540db1c38ace232ef34b03bda1c81ba039,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+c44c84540db1c38ace232ef34b03bda1c81ba039,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+c46a4db7247d26aceafed3e4f38ce52d54361817,A CNN Cascade for Landmark Guided Semantic Part Segmentation,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+c41de506423e301ef2a10ea6f984e9e19ba091b4,Modeling Attributes from Category-Attribute Proportions,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+c41de506423e301ef2a10ea6f984e9e19ba091b4,Modeling Attributes from Category-Attribute Proportions,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+c4934d9f9c41dbc46f4173aad2775432fe02e0e6,Generalization to New Compositions of Known Entities in Image Understanding,Bar Ilan University,"Bar Ilan University, Israel","אוניברסיטת בר אילן, כביש גהה, גבעת שמואל, קריית מטלון, גבעת שמואל, מחוז תל אביב, NO, ישראל",32.06932925,34.8433433861531
+c4934d9f9c41dbc46f4173aad2775432fe02e0e6,Generalization to New Compositions of Known Entities in Image Understanding,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+c40c23e4afc81c8b119ea361e5582aa3adecb157,Coupled Marginal Fisher Analysis for Low-Resolution Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+c40c23e4afc81c8b119ea361e5582aa3adecb157,Coupled Marginal Fisher Analysis for Low-Resolution Face Recognition,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+c49aed65fcf9ded15c44f9cbb4b161f851c6fa88,Multiscale Facial Expression Recognition Using Convolutional Neural Networks,"IDIAP, Martigny, Switzerland","IDIAP, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+c466ad258d6262c8ce7796681f564fec9c2b143d,Pose-Invariant Face Recognition Using A Single 3D Reference Model,National Taiwan University of Science and Technology,National Taiwan University of Science and Technology,"臺科大, 43, 基隆路四段, 學府里, 下內埔, 大安區, 臺北市, 10607, 臺灣",25.01353105,121.541737363138
+ea46951b070f37ad95ea4ed08c7c2a71be2daedc,Using phase instead of optical flow for action recognition,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+ea46951b070f37ad95ea4ed08c7c2a71be2daedc,Using phase instead of optical flow for action recognition,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+ea80a050d20c0e24e0625a92e5c03e5c8db3e786,Face Verification and Face Image Synthesis under Illumination Changes using Neural Networks,The Hebrew University of Jerusalem,The Hebrew University of Jerusalem,"האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723
+eacba5e8fbafb1302866c0860fc260a2bdfff232,VOS-GAN: Adversarial Learning of Visual-Temporal Dynamics for Unsupervised Dense Prediction in Videos,University of Central Florida,"University of Central Florida, USA","University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+ea6f5c8e12513dbaca6bbdff495ef2975b8001bd,Applying a Set of Gabor Filter to 2D-Retinal Fundus Image to Detect the Optic Nerve Head (ONH),University of,"Electrical Engineering, University of","Electrical Engineering, 185, Loading Dock, Montlake, University District, Seattle, King County, Washington, 98195-2350, USA",47.6532412,-122.3061707
+ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,Institute of,Institute of,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+eaaed082762337e7c3f8a1b1dfea9c0d3ca281bf,Algebraic Simplification of Genetic Programs during Evolution,Victoria University of Wellington,Victoria University of Wellington,"Victoria University of Wellington, Waiteata Road, Aro Valley, Wellington, Wellington City, Wellington, 6040, New Zealand/Aotearoa",-41.29052775,174.768469187426
+ea218cebea2228b360680cb85ca133e8c2972e56,Recover Canonical-View Faces in the Wild with Deep Neural Networks,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+e1630014a5ae3d2fb7ff6618f1470a567f4d90f5,"Look, Listen and Learn - A Multimodal LSTM for Speaker Identification",The University of Hong Kong,The University of Hong Kong,"海洋科學研究所 The Swire Institute of Marine Science, 鶴咀道 Cape D'Aguilar Road, 鶴咀低電台 Cape D'Aguilar Low-Level Radio Station, 石澳 Shek O, 芽菜坑村 Nga Choy Hang Tsuen, 南區 Southern District, 香港島 Hong Kong Island, HK, 中国",22.2081469,114.259641148719
+e19fb22b35c352f57f520f593d748096b41a4a7b,"Modeling Context for Image Understanding : When , For What , and How ?",Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e1c59e00458b4dee3f0e683ed265735f33187f77,Spectral Rotation versus K-Means in Spectral Clustering,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+e1256ff535bf4c024dd62faeb2418d48674ddfa2,Towards Open-Set Identity Preserving Face Synthesis,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+e1256ff535bf4c024dd62faeb2418d48674ddfa2,Towards Open-Set Identity Preserving Face Synthesis,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+cdc7bd87a2c9983dab728dbc8aac74d8c9ed7e66,l 1 l 2 l 3 l 4 l 5 ( a ) Class-Agnostic Temporal,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+cd4941cbef1e27d7afdc41b48c1aff5338aacf06,MovieGraphs: Towards Understanding Human-Centric Situations from Videos,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+cdef0eaff4a3c168290d238999fc066ebc3a93e8,Contrastive-center loss for deep neural networks,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+cd444ee7f165032b97ee76b21b9ff58c10750570,Table of Contents.,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+cd23dc3227ee2a3ab0f4de1817d03ca771267aeb,Face Recognition via Deep Sparse Graph Neural Networks,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+cdb1d32bc5c1a9bb0d9a5b9c9222401eab3e9ca0,Functional Faces: Groupwise Dense Correspondence Using Functional Maps,The University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+cd687ddbd89a832f51d5510c478942800a3e6854,A game to crowdsource data for affective computing,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+cd436f05fb4aeeda5d1085f2fe0384526571a46e,Information Bottleneck Domain Adaptation with Privileged Information for Visual Recognition,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+cd2c54705c455a4379f45eefdf32d8d10087e521,A Hybrid Model for Identity Obfuscation by Face Replacement,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+cd023d2d067365c83d8e27431e83e7e66082f718,Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+cd023d2d067365c83d8e27431e83e7e66082f718,Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+cca9ae621e8228cfa787ec7954bb375536160e0d,Learning to Collaborate for User-Controlled Privacy,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+cca9ae621e8228cfa787ec7954bb375536160e0d,Learning to Collaborate for User-Controlled Privacy,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+cc589c499dcf323fe4a143bbef0074c3e31f9b60,A 3D facial expression database for facial behavior research,State University of New York at Binghamton,State University of New York at Binghamton,"State University of New York at Binghamton, East Drive, Hinman, Willow Point, Vestal Town, Broome County, New York, 13790, USA",42.08779975,-75.9706606561486
+cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+cc2eaa182f33defbb33d69e9547630aab7ed9c9c,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+ccdea57234d38c7831f1e9231efcb6352c801c55,Illumination Processing in Face Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+cc38942825d3a2c9ee8583c153d2c56c607e61a7,Database Cross Matching: A Novel Source of Fictitious Forensic Cases,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+cc7e66f2ba9ac0c639c80c65534ce6031997acd7,Facial Descriptors for Identity-Preserving Multiple People Tracking,Swiss Federal Institute of Technology,Swiss Federal Institute of Technology,"ETH Zürich, 101, Rämistrasse, Hochschulen, Altstadt, Zürich, Bezirk Zürich, Zürich, 8092, Schweiz/Suisse/Svizzera/Svizra",47.3764534,8.54770931489751
+cc9057d2762e077c53e381f90884595677eceafa,On the Exploration of Joint Attribute Learning for Person Re-identification,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+ccf16bcf458e4d7a37643b8364594656287f5bfc,Cascade for Landmark Guided Semantic Part Segmentation,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef,Addressing the illumination challenge in two-dimensional face recognition: a survey,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+e6f20e7431172c68f7fce0d4595100445a06c117,Searching Action Proposals via Spatial Actionness Estimation and Temporal Path Inference and Tracking,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+f963967e52a5fd97fa3ebd679fd098c3cb70340e,"Analysis, Interpretation, and Recognition of Facial Action Units and Expressions Using Neuro-Fuzzy Modeling",Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران",35.7036227,51.351250969544
+f9e0209dc9e72d64b290d0622c1c1662aa2cc771,Contributions to Biometric Recognition: Matching Identical Twins and Latent Fingerprints,to Michigan State University,to Michigan State University,"Red Cedar River, Small Acres Lane, Okemos, Ingham County, Michigan, 48864, USA",42.7231021,-84.4449848597663
+f92ade569cbe54344ffd3bb25efd366dcd8ad659,Effect of Super Resolution on High Dimensional Features for Unsupervised Face Recognition in the Wild,University of Bridgeport,University of Bridgeport,"University of Bridgeport, Park Avenue, Bridgeport Downtown South Historic District, Bridgeport, Fairfield County, Connecticut, 06825, USA",41.1664858,-73.1920564
+f94f366ce14555cf0d5d34248f9467c18241c3ee,Deep Convolutional Neural Network in Deformable Part Models for Face Detection,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+f909d04c809013b930bafca12c0f9a8192df9d92,Single Image Subspace for Face Recognition,Nanjing University of Aeronautics and Astronautics,Nanjing University of Aeronautics and Astronautics,"南京航空航天大学, 御道街, 白下区, 新世纪广场, 秦淮区, 南京市, 江苏省, 210016, 中国",32.0373496,118.8140686
+f909d04c809013b930bafca12c0f9a8192df9d92,Single Image Subspace for Face Recognition,Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+f9ccfe000092121a2016639732cdb368378256d5,Cognitive behaviour analysis based on facial information using depth sensors,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+f08e425c2fce277aedb51d93757839900d591008,Neural Motifs: Scene Graph Parsing with Global Context,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+f08e425c2fce277aedb51d93757839900d591008,Neural Motifs: Scene Graph Parsing with Global Context,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+f02f0f6fcd56a9b1407045de6634df15c60a85cd,Learning Low-shot facial representations via 2D warping,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+f0ca31fd5cad07e84b47d50dc07db9fc53482a46,Feature Patch Illumination Spaces and Karcher Compression for Face Recognition via Grassmannians,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+f074e86e003d5b7a3b6e1780d9c323598d93f3bc,Characteristic Number: Theory and Its Application to Shape Analysis,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+f074e86e003d5b7a3b6e1780d9c323598d93f3bc,Characteristic Number: Theory and Its Application to Shape Analysis,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+f0a4a3fb6997334511d7b8fc090f9ce894679faf,Generative Face Completion,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+f0681fc08f4d7198dcde803d69ca62f09f3db6c5,Spatiotemporal Features for Effective Facial Expression Recognition,Bogazici University,Bogazici University,"Boğaziçi Üniversitesi Kuzey Yerleşkesi, Okulaltı 1. Sokak, Rumelihisarı, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34467, Türkiye",41.0868841,29.0441316722649
+f0f501e1e8726148d18e70c8e9f6feea9360d119,Jukka Komulainen SOFTWARE - BASED COUNTERMEASURES TO 2 D FACIAL,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+f0398ee5291b153b716411c146a17d4af9cb0edc,Learning Optical Flow via Dilated Networks and Occlusion Reasoning,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+f0f0e94d333b4923ae42ee195df17c0df62ea0b1,Scaling Manifold Ranking Based Image Retrieval,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+f05ad40246656a977cf321c8299158435e3f3b61,Face Recognition Using Face Patch Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+f02a6bccdaee14ab55ad94263539f4f33f1b15bb,Segment-Tube: Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+f781e50caa43be13c5ceb13f4ccc2abc7d1507c5,Towards Flexible and Intelligent Vision Systems -- From Thresholding to CHLAC --,y National Institute of Advanced Industrial Science and Technology,y National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+f7b4bc4ef14349a6e66829a0101d5b21129dcf55,Towards Light-weight Annotations: Fuzzy Interpolative Reasoning for Zero-shot Image Classificaiton,Newcastle University,Newcastle University,"Newcastle University, Claremont Walk, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 7RU, UK",54.98023235,-1.61452627035949
+f7824758800a7b1a386db5bd35f84c81454d017a,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,University of Maryland-College Park,University of Maryland-College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,The City College and the Graduate Center,The City College and the Graduate Center,"Graduate Center, 184, Hooper Street, Mission Bay, SF, California, 94158, USA",37.76799565,-122.400099572569
+f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,The City University of New York,The City University of New York,"Lehman College of the City University of New York, 250, Bedford Park Boulevard West, Bedford Park, The Bronx, Bronx County, NYC, New York, 10468, USA",40.8722825,-73.8948917141949
+f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+f74917fc0e55f4f5682909dcf6929abd19d33e2e,Gan Quality Index (gqi) by Gan-induced Classifier,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+f740bac1484f2f2c70777db6d2a11cf4280081d6,Soft Locality Preserving Map (SLPM) for Facial Expression Recognition,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+f78fe101b21be36e98cd3da010051bb9b9829a1e,Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+f78fe101b21be36e98cd3da010051bb9b9829a1e,Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+f7a271acccf9ec66c9b114d36eec284fbb89c7ef,Does attractiveness influence condom use intentions in heterosexual men? An experimental study,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+f7093b138fd31956e30d411a7043741dcb8ca4aa,Hierarchical Clustering in Face Similarity Score Space,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+f7c50d2be9fba0e4527fd9fbe3095e9d9a94fdd3,Large Margin Multi-metric Learning for Face and Kinship Verification in the Wild,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+f7ba77d23a0eea5a3034a1833b2d2552cb42fb7a,LOTS about attacking deep features,University of Colorado,University of Colorado,"Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621
+e82360682c4da11f136f3fccb73a31d7fd195694,Online Face Recognition with Application to Proactive Augmented Reality,Aalto University,Aalto University,"Aalto, 24, Otakaari, Otaniemi, Suur-Tapiola, Espoo, Helsingin seutukunta, Uusimaa, Etelä-Suomi, Manner-Suomi, 02150, Suomi",60.18558755,24.824273298775
+e8f0f9b74db6794830baa2cab48d99d8724e8cb6,Active Image Labeling and Its Application to Facial Action Labeling,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+e8f0f9b74db6794830baa2cab48d99d8724e8cb6,Active Image Labeling and Its Application to Facial Action Labeling,GE Global Research Center,GE Global Research Center,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793
+e87d6c284cdd6828dfe7c092087fbd9ff5091ee4,Unsupervised Creation of Parameterized Avatars,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,Toward End-to-End Face Recognition Through Alignment Learning,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+e8c9dcbf56714db53063b9c367e3e44300141ff6,Get the FACS fast: Automated FACS face analysis benefits from the addition of velocity,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0353682,-78.5035322
+e8c9dcbf56714db53063b9c367e3e44300141ff6,Get the FACS fast: Automated FACS face analysis benefits from the addition of velocity,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0353682,-78.5035322
+e8c9dcbf56714db53063b9c367e3e44300141ff6,Get the FACS fast: Automated FACS face analysis benefits from the addition of velocity,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+e8b3a257a0a44d2859862cdec91c8841dc69144d,Liquid Pouring Monitoring via Rich Sensory Inputs,National Tsing Hua University,National Tsing Hua University,"國立清華大學, 101, 克恭橋, 光明里, 赤土崎, 東區, 新竹市, 30013, 臺灣",24.7925484,120.9951183
+e8b3a257a0a44d2859862cdec91c8841dc69144d,Liquid Pouring Monitoring via Rich Sensory Inputs,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+fa90b825346a51562d42f6b59a343b98ea2e501a,Modeling Naive Psychology of Characters in Simple Commonsense Stories,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+fa90b825346a51562d42f6b59a343b98ea2e501a,Modeling Naive Psychology of Characters in Simple Commonsense Stories,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+faeefc5da67421ecd71d400f1505cfacb990119c,PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips,Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712
+faeefc5da67421ecd71d400f1505cfacb990119c,PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips,Brown University,"Brown University, United States","Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+fa4f59397f964a23e3c10335c67d9a24ef532d5c,"DAP3D-Net: Where, what and how actions occur in videos?",Northumbria University,"Northumbria University, Newcastle upon Tyne, NE1 8ST, UK","Northumbria University, Northumberland Road, Cradlewell, Haymarket, Newcastle upon Tyne, Tyne and Wear, North East England, England, NE1 8SG, UK",54.9781026,-1.6067699
+fab2fc6882872746498b362825184c0fb7d810e4,Right wing authoritarianism is associated with race bias in face detection,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+faa29975169ba3bbb954e518bc9814a5819876f6,Evolution-Preserving Dense Trajectory Descriptors,Stony Brook University,"Stony Brook University, Stony Brook, NY 11794, USA","Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+fae83b145e5eeda8327de9f19df286edfaf5e60c,Towards an Interactive E-learning System Based on Emotions and Affective Cognition,Ionian University,Ionian University,"Πανεπιστήμιο Πατρών, Λεωφ. Ιπποκράτους, κ. Ρίου (Αγίου Γεωργίου Ρίου), Πάτρα, Δήμος Πατρέων, Περιφερειακή Ενότητα Αχαΐας, Περιφέρεια Δυτικής Ελλάδας, Πελοπόννησος, Δυτική Ελλάδα και Ιόνιο, 26443, Ελλάδα",38.2899482,21.7886469
+ffea8775fc9c32f573d1251e177cd283b4fe09c9,Transformation on Computer-Generated Facial Image to Avoid Detection by Spoofing Detector,The University of Edinburgh,The University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+ffc5a9610df0341369aa75c0331ef021de0a02a9,Transferred Dimensionality Reduction,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+ff061f7e46a6213d15ac2eb2c49d9d3003612e49,Morphable Human Face Modelling,Monash University,Monash University,"Monash University, Mile Lane, Parkville, City of Melbourne, Victoria, 3000, Australia",-37.78397455,144.958674326093
+ff1f45bdad41d8b35435098041e009627e60d208,"NAGRANI, ZISSERMAN: FROM BENEDICT CUMBERBATCH TO SHERLOCK HOLMES 1 From Benedict Cumberbatch to Sherlock Holmes: Character Identification in TV series without a Script",University of Oxford,"University of Oxford, UK","Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,Assiut University,Assiut University,"Assiut University, El Shaheed Ellwaa Hasn Kamel street, الوليدية, أسيوط, مصر",27.18794105,31.1700949818453
+ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ffaad0204f4af763e3390a2f6053c0e9875376be,Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining,Donghua University,Donghua University,"东华大学, 新华路, 长宁区, 上海市, 210011, 中国",31.2061939,121.410471009388
+ffaad0204f4af763e3390a2f6053c0e9875376be,Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining,City University of Hong Kong,City University of Hong Kong,"香港城市大學 City University of Hong Kong, 達康路 Tat Hong Avenue, 大窩坪 Tai Wo Ping, 深水埗區 Sham Shui Po District, 九龍 Kowloon, HK, KIL 3348, 中国",22.34000115,114.169702912423
+fffa2943808509fdbd2fc817cc5366752e57664a,Combined Ordered and Improved Trajectories for Large Scale Human Action Recognition,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+fffa2943808509fdbd2fc817cc5366752e57664a,Combined Ordered and Improved Trajectories for Large Scale Human Action Recognition,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+c5468665d98ce7349d38afb620adbf51757ab86f,Pose-Encoded Spherical Harmonics for Robust Face Recognition Using a Single Image,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+c5d13e42071813a0a9dd809d54268712eba7883f,Face recognition robust to head pose changes based on the RGB-D sensor,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+c5935b92bd23fd25cae20222c7c2abc9f4caa770,Spatiotemporal Multiplier Networks for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+c5935b92bd23fd25cae20222c7c2abc9f4caa770,Spatiotemporal Multiplier Networks for Video Action Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+c5935b92bd23fd25cae20222c7c2abc9f4caa770,Spatiotemporal Multiplier Networks for Video Action Recognition,York University,"York University, Toronto","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+c5421a18583f629b49ca20577022f201692c4f5d,Facial Age Classification using Subpattern-based Approaches,Eastern Mediterranean University,Eastern Mediterranean University,"Eastern Mediterranean University (EMU) - Stadium, Nehir Caddesi, Gazimağusa, Αμμόχωστος - Mağusa, Kuzey Kıbrıs, 99450, Κύπρος - Kıbrıs",35.14479945,33.90492318497
+c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+c5be0feacec2860982fbbb4404cf98c654142489,Semi-Qualitative Probabilistic Networks in Computer Vision Problems,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+c58b7466f2855ffdcff1bebfad6b6a027b8c5ee1,Ultra-Resolving Face Images by Discriminative Generative Networks,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+c5f1ae9f46dc44624591db3d5e9f90a6a8391111,Application of non-negative and local non negative matrix factorization to facial expression recognition,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+c53352a4239568cc915ad968aff51c49924a3072,Transfer Representation-Learning for Anomaly Detection,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+c53352a4239568cc915ad968aff51c49924a3072,Transfer Representation-Learning for Anomaly Detection,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4,Affective Computing: A Review,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+c2c5206f6a539b02f5d5a19bdb3a90584f7e6ba4,Affective Computing: A Review,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+c2fa83e8a428c03c74148d91f60468089b80c328,Optimal Mean Robust Principal Component Analysis,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+c23153aade9be0c941390909c5d1aad8924821db,Efficient and Accurate Tracking for Face Diarization via Periodical Detection,"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+c207fd762728f3da4cddcfcf8bf19669809ab284,Face Alignment Using Boosting and Evolutionary Search,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+c207fd762728f3da4cddcfcf8bf19669809ab284,Face Alignment Using Boosting and Evolutionary Search,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+c207fd762728f3da4cddcfcf8bf19669809ab284,Face Alignment Using Boosting and Evolutionary Search,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+c2e03efd8c5217188ab685e73cc2e52c54835d1a,Deep tree-structured face: A unified representation for multi-task facial biometrics,University of Tennessee,"University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+c28461e266fe0f03c0f9a9525a266aa3050229f0,Automatic Detection of Facial Feature Points via HOGs and Geometric Prior Models,Universitat Oberta de Catalunya,Universitat Oberta de Catalunya,"Universitat Oberta de Catalunya, 156, Rambla del Poblenou, Provençals del Poblenou, Sant Martí, Barcelona, BCN, CAT, 08018, España",41.40657415,2.1945341
+f60a85bd35fa85739d712f4c93ea80d31aa7de07,VisDA: The Visual Domain Adaptation Challenge,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+f60a85bd35fa85739d712f4c93ea80d31aa7de07,VisDA: The Visual Domain Adaptation Challenge,University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+f6742010372210d06e531e7df7df9c01a185e241,Dimensional Affect and Expression in Natural and Mediated Interaction,University,"Ritsumeikan, University","Ritsumeikan House, Lower Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.26007165,-123.253442836235
+f69de2b6770f0a8de6d3ec1a65cb7996b3c99317,Face Recognition System Based on Sparse Codeword Analysis,Anna University,Anna University,"Anna University, Nuclear Physics Road, Srinagar Colony, Ward 171, Zone 13 Adyar, Chennai, Chennai district, Tamil Nadu, 600025, India",13.0105838,80.2353736
+f6149fc5b39fa6b33220ccee32a8ee3f6bbcaf4a,Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation,University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+f66f3d1e6e33cb9e9b3315d3374cd5f121144213,Top-down control of visual responses to fear by the amygdala.,University College London,"University College London, London WC1N 3BG, United Kingdom","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+f61d5f2a082c65d5330f21b6f36312cc4fab8a3b,Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+f6e00d6430cbbaa64789d826d093f7f3e323b082,Visual Object Recognition,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+f6e00d6430cbbaa64789d826d093f7f3e323b082,Visual Object Recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,A Bayesian Scene-Prior-Based Deep Network Model for Face Verification,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,A Bayesian Scene-Prior-Based Deep Network Model for Face Verification,Curtin University,Curtin University,"Curtin University, Brand Drive, Waterford, Perth, Western Australia, 6102, Australia",-32.00686365,115.89691775
+e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+e90e12e77cab78ba8f8f657db2bf4ae3dabd5166,Nonconvex Sparse Spectral Clustering by Alternating Direction Method of Multipliers and Its Convergence Analysis,AI Institute,AI Institute,"INDEC, 609, Avenida Presidente Julio A. Roca, Microcentro, Comuna 1, Monserrat, CABA, C1067ABB, Argentina",-34.6102167,-58.3752244291708
+e9c008d31da38d9eef67a28d2c77cb7daec941fb,Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+e9c008d31da38d9eef67a28d2c77cb7daec941fb,Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+e9e40e588f8e6510fa5537e0c9e083ceed5d07ad,Fast Face Detection Using Graphics Processor,National Institute of Technology Karnataka,National Institute of Technology Karnataka,"National Institute of Technology, Karnataka, NH66, ದಕ್ಷಿಣ ಕನ್ನಡ, Mangaluru taluk, Dakshina Kannada, Karnataka, 575025, India",13.01119095,74.7949882494716
+e9bb045e702ee38e566ce46cc1312ed25cb59ea7,Integrating Geometric and Textural Features for Facial Emotion Classification Using SVM Frameworks,"Indian Institute of Technology, Roorkee","Indian Institute of Technology, Roorkee","Indian Institute of Technology (IIT), Roorkee, LBS Jogging Track, Roorkee, Haridwar, Uttarakhand, 247667, India",29.8662461,77.8958708109136
+e9bb045e702ee38e566ce46cc1312ed25cb59ea7,Integrating Geometric and Textural Features for Facial Emotion Classification Using SVM Frameworks,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+e9f1cdd9ea95810efed306a338de9e0de25990a0,FEPS: An Easy-to-Learn Sensory Substitution System to Perceive Facial Expressions,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+e9f1cdd9ea95810efed306a338de9e0de25990a0,FEPS: An Easy-to-Learn Sensory Substitution System to Perceive Facial Expressions,University of Memphis,University of Memphis,"The University of Memphis, Desoto Avenue, Memphis, Shelby County, Tennessee, 38152, USA",35.1189387,-89.9372195996589
+f1250900074689061196d876f551ba590fc0a064,Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model,Purdue University,Purdue University,"Purdue University, West Stadium Avenue, West Lafayette, Tippecanoe County, Indiana, 47907, USA",40.4319722,-86.923893679845
+f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e793f8644c94b81b7a0f89395937a7f8ad428a89,LPM for Action Recognition in Temporally Untrimmed Videos,University of Ottawa,"University of Ottawa, Ottawa, On, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+e726174d516605f80ff359e71f68b6e8e6ec6d5d,3D Face Recognition Using Patched Locality Preserving Projections,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+e726174d516605f80ff359e71f68b6e8e6ec6d5d,3D Face Recognition Using Patched Locality Preserving Projections,Beijing Jiaotong University,Beijing Jiaotong University,"北京交通大学, 银杏大道, 稻香园南社区, 海淀区, 北京市, 100044, 中国",39.94976005,116.33629045844
+e7b2b0538731adaacb2255235e0a07d5ccf09189,Learning Deep Representations with Probabilistic Knowledge Transfer,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+e74816bc0803460e20edbd30a44ab857b06e288e,Semi-Automated Annotation of Discrete States in Large Video Datasets,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+e74816bc0803460e20edbd30a44ab857b06e288e,Semi-Automated Annotation of Discrete States in Large Video Datasets,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+e73b9b16adcf4339ff4d6723e61502489c50c2d9,Anefficient Featureextractionmethodwith Localregionzernikemoment for Facial Recognition of Identicaltwins,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+e73b9b16adcf4339ff4d6723e61502489c50c2d9,Anefficient Featureextractionmethodwith Localregionzernikemoment for Facial Recognition of Identicaltwins,Azad University,"Azad University, Qazvin, Iran","پل دانشگاه آزاد, باراجین, پونک ۳, قزوین, بخش مرکزی, شهرستان قزوین, استان قزوین, ایران",36.3173432,50.0367286
+cbbd13c29d042743f0139f1e044b6bca731886d0,Not-So-CLEVR: learning same-different relations strains feedforward neural networks.,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,"Emotion AI, Real-Time Emotion Detection using CNN",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+cba45a87fc6cf12b3b0b6f57ba1a5282ef7fee7a,"Emotion AI, Real-Time Emotion Detection using CNN",Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+cb2917413c9b36c3bb9739bce6c03a1a6eb619b3,MiCT: Mixed 3D/2D Convolutional Tube for Human Action Recognition,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Multimedia University,Multimedia University,"Universiti Multimedia, Persiaran Neuron, Bandar Nusaputra, Cyberjaya, Selangor, 63000, Malaysia",2.92749755,101.641853013536
+cb13e29fb8af6cfca568c6dc523da04d1db1fff5,"A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges",Monash University Malaysia,Monash University Malaysia,"Monash University Malaysia, Jalan Lagoon Selatan, Kampung Lembah Kinrara, SS13, Subang Jaya, Selangor, 47500, Malaysia",3.06405715,101.6005974
+cb1b5e8b35609e470ce519303915236b907b13b6,On the vulnerability of ECG verification to online presentation attacks,University of Connecticut,University of Connecticut,"University of Connecticut, Glenbrook Road, Storrs, Tolland County, Connecticut, 06269, USA",41.8093779,-72.2536414
+cb1b5e8b35609e470ce519303915236b907b13b6,On the vulnerability of ECG verification to online presentation attacks,University of Florida,University of Florida,"University of Florida, Southwest 16th Avenue, Diamond Village Apartments, City of Gainesville Municipal Boundaries, Alachua County, Florida, 32611, USA",29.6328784,-82.3490133048243
+cbb27980eb04f68d9f10067d3d3c114efa9d0054,An Attention Model for group-level emotion recognition,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+cbb27980eb04f68d9f10067d3d3c114efa9d0054,An Attention Model for group-level emotion recognition,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+cbb27980eb04f68d9f10067d3d3c114efa9d0054,An Attention Model for group-level emotion recognition,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+f86ddd6561f522d115614c93520faad122eb3b56,Visual Imagination from Texts,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+f8015e31d1421f6aee5e17fc3907070b8e0a5e59,Towards Usable Multimedia Event Detection from Web Videos,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+f83dd9ff002a40228bbe3427419b272ab9d5c9e4,Facial Features Matching using a Virtual Structuring Element,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+f8f2d2910ce8b81cb4bbf84239f9229888158b34,A Generative Model for Recognizing Mixed Group Activities in Still Images,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+f8ddb2cac276812c25021b5b79bf720e97063b1e,A Comprehensive Empirical Study on Linear Subspace Methods for Facial Expression Analysis,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443
+f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,University of Missouri,University of Missouri,"L1, Maguire Boulevard, Lemone Industrial Park, Columbia, Boone County, Missouri, 65201, USA",38.926761,-92.2919378337447
+f87b22e7f0c66225824a99cada71f9b3e66b5742,Robust emotion recognition from low quality and low bit rate video: A deep learning approach,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+ce6d60b69eb95477596535227958109e07c61e1e,Unconstrained face verification using fisher vectors computed from frontalized faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+ceb763d6657a07b47e48e8a2956bcfdf2cf10818,An Efficient Feature Extraction Method with Pseudo-zernike Moment for Facial Recognition of Identical Twins,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+ceb763d6657a07b47e48e8a2956bcfdf2cf10818,An Efficient Feature Extraction Method with Pseudo-zernike Moment for Facial Recognition of Identical Twins,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+ce5eac297174c17311ee28bda534faaa1d559bae,Automatic analysis of malaria infected red blood cell digitized microscope images,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+ce5eac297174c17311ee28bda534faaa1d559bae,Automatic analysis of malaria infected red blood cell digitized microscope images,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+ceaa5eb51f761b5f84bd88b58c8f484fcd2a22d6,UC San Diego UC San Diego Electronic Theses and Dissertations Title Interactive learning and prediction algorithms for computer vision applications,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+ce450e4849490924488664b44769b4ca57f1bc1a,Procedural Generation of Videos to Train Deep Action Recognition Networks,Toyota Research Institute,Toyota Research Institute,"Toyota Research Institute, 4440, West El Camino Real, Los Altos, Santa Clara County, California, 94022, USA",37.40253645,-122.116551067984
+ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+ceeb67bf53ffab1395c36f1141b516f893bada27,Face Alignment by Local Deep Descriptor Regression,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+ce032dae834f383125cdd852e7c1bc793d4c3ba3,Motion Interchange Patterns for Action Recognition in Unconstrained Videos,The Weizmann Institute of Science,The Weizmann Institute of Science,"מכון ויצמן למדע, שדרת מרכוס זיו, מעונות שיין, אחוזות הנשיא, רחובות, מחוז המרכז, NO, ישראל",31.9078499,34.8133409244421
+ce032dae834f383125cdd852e7c1bc793d4c3ba3,Motion Interchange Patterns for Action Recognition in Unconstrained Videos,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+ce032dae834f383125cdd852e7c1bc793d4c3ba3,Motion Interchange Patterns for Action Recognition in Unconstrained Videos,The Open University,The Open University,"The Open University, East Lane, Walton, Monkston, Milton Keynes, South East, England, MK7 6AE, UK",52.02453775,-0.709274809394501
+ce9e1dfa7705623bb67df3a91052062a0a0ca456,Deep Feature Interpolation for Image Content Changes,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+ce56be1acffda599dec6cc2af2b35600488846c9,Inferring Sentiment from Web Images with Joint Inference on Visual and Social Cues: A Regulated Matrix Factorization Approach,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+ce56be1acffda599dec6cc2af2b35600488846c9,Inferring Sentiment from Web Images with Joint Inference on Visual and Social Cues: A Regulated Matrix Factorization Approach,"IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San Jose CA","IBM Almaden Research Center, San José, Santa Clara County, California, USA",37.21095605,-121.807486683178
+e03bda45248b4169e2a20cb9124ae60440cad2de,"Learning a Dictionary of Shape-Components in Visual Cortex : Comparison with Neurons , Humans and Machines by Thomas Serre",Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+e03e86ac61cfac9148b371d75ce81a55e8b332ca,Unsupervised Learning using Sequential Verification for Action Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+e0638e0628021712ac76e3472663ccc17bd8838c,Sign Language Recognition: State of the Art,Sharda University,Sharda University,"Sharda University, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201308, India",28.4737512,77.4836148
+e0d878cc095eaae220ad1f681b33d7d61eb5e425,Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database,Keio University,Keio University,"綱島市民の森, けつわり坂, 港北区, 横浜市, 神奈川県, 関東地方, 223-0053, 日本",35.5416969,139.6347184
+e0d878cc095eaae220ad1f681b33d7d61eb5e425,Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database,Tokyo Metropolitan University,Tokyo Metropolitan University,"首都大学東京, 由木緑道, 八王子市, 東京都, 関東地方, 1920364, 日本",35.6200925,139.38296706394
+e00d4e4ba25fff3583b180db078ef962bf7d6824,Face Verification with Multi-Task and Multi-Scale Features Fusion,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+e01bb53b611c679141494f3ffe6f0b91953af658,FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+e01bb53b611c679141494f3ffe6f0b91953af658,FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+e01bb53b611c679141494f3ffe6f0b91953af658,FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+e0bfcf965b402f3f209f26ae20ee88bc4d0002ab,AI Thinking for Cloud Education Platform with Personalized Learning,University of Texas at San Antonio,University of Texas at San Antonio,"UTSA, Paseo Principal, San Antonio, Bexar County, Texas, 78249-1620, USA",29.58333105,-98.6194450505688
+e00d391d7943561f5c7b772ab68e2bb6a85e64c4,Robust continuous clustering.,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+e00d391d7943561f5c7b772ab68e2bb6a85e64c4,Robust continuous clustering.,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+e00241f00fb31c660df6c6f129ca38370e6eadb3,What have we learned from deep representations for action recognition?,York University,"York University, Toronto","York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+e00241f00fb31c660df6c6f129ca38370e6eadb3,What have we learned from deep representations for action recognition?,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Haifa,University of Haifa,"אוניברסיטת חיפה, חיפה, מחוז חיפה, ישראל",32.76162915,35.0198630428453
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,American University,American University,"American University, 4400, Massachusetts Avenue Northwest, Spring Valley, American University Park, D.C., 20016, USA",38.93804505,-77.0893922365193
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+e0dc6f1b740479098c1d397a7bc0962991b5e294,Face Detection: a Survey,Beijing University of Technology,Beijing University of Technology,"北京工业大学, 银杏大道, 大郊亭村, 朝阳区 / Chaoyang, 北京市, 3208, 中国",39.87391435,116.477222846574
+e0dc6f1b740479098c1d397a7bc0962991b5e294,Face Detection: a Survey,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,MSR-CNN: Applying motion salient region based descriptors for action recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+468c8f09d2ad8b558b65d11ec5ad49208c4da2f2,MSR-CNN: Applying motion salient region based descriptors for action recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,Extended Grassmann Kernels for Subspace-Based Learning,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+466184b10fb7ce9857e6b5bd6b4e5003e09a0b16,Extended Grassmann Kernels for Subspace-Based Learning,University of Pennsylvania,University of Pennsylvania,"Penn Museum, 3260, South Street, University City, Philadelphia, Philadelphia County, Pennsylvania, 19104, USA",39.9492344,-75.191989851901
+46b7ee97d7dfbd61cc3745e8dfdd81a15ab5c1d4,3D facial geometric features for constrained local model,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+46ae4d593d89b72e1a479a91806c39095cd96615,A conditional random field approach for face identification in broadcast news using overlaid text,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+467b602a67cfd7c347fe7ce74c02b38c4bb1f332,Large Margin Local Metric Learning,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+466f80b066215e85da63e6f30e276f1a9d7c843b,Joint Head Pose Estimation and Face Alignment Framework Using Global and Local CNN Features,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+465d5bb11912005f0a4f0569c6524981df18a7de,IMOTION - Searching for Video Sequences Using Multi-Shot Sketch Queries,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+46c87fded035c97f35bb991fdec45634d15f9df2,Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+46e72046a9bb2d4982d60bcf5c63dbc622717f0f,Learning Discriminative Features with Class Encoder,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+46f32991ebb6235509a6d297928947a8c483f29e,Recognizing Expression Variant Faces from a Single Sample Image per Class,The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+4641986af5fc8836b2c883ea1a65278d58fe4577,Scene Graph Generation by Iterative Message Passing,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+4641986af5fc8836b2c883ea1a65278d58fe4577,Scene Graph Generation by Iterative Message Passing,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a,Deep Adaptive Temporal Pooling for Activity Recognition,Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089
+464b3f0824fc1c3a9eaf721ce2db1b7dfe7cb05a,Deep Adaptive Temporal Pooling for Activity Recognition,Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089
+4657d87aebd652a5920ed255dca993353575f441,Image Normalization for Illumination Compensation in Facial Images,McGill University,"McGill University, Montreal, Canada","McGill University, Avenue Docteur Penfield, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 2T8, Canada",45.50691775,-73.5791162596496
+4622b82a8aff4ac1e87b01d2708a333380b5913b,Multi-label CNN based pedestrian attribute learning for soft biometrics,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+46e866f58419ff4259c65e8256c1d4f14927b2c6,On the Generalization Power of Face and Gait Gender Recognition Methods,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252
+46072f872eee3413f9d05482be6446f6b96b6c09,Trace Quotient Problems Revisited,The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+46072f872eee3413f9d05482be6446f6b96b6c09,Trace Quotient Problems Revisited,"Microsoft Research Asia, Beijing, China","Microsoft Research Asia, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+4698a599425c3a6bae1c698456029519f8f2befe,Transferring Rich Deep Features for Facial Beauty Prediction,College of Informatics,College of Informatics,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines",14.6173885,121.101327315511
+4698a599425c3a6bae1c698456029519f8f2befe,Transferring Rich Deep Features for Facial Beauty Prediction,College of Informatics,College of Informatics,"Informatics, F.P. Felix Avenue, Dela Paz, San Isidro, Cainta, Rizal, Metro Manila, 1900, Philippines",14.6173885,121.101327315511
+4698a599425c3a6bae1c698456029519f8f2befe,Transferring Rich Deep Features for Facial Beauty Prediction,University of North Texas,University of North Texas,"University of North Texas, West Highland Street, Denton, Denton County, Texas, 76201, USA",33.2098879,-97.1514748776857
+2c424f21607ff6c92e640bfe3da9ff105c08fac4,Learning Structured Output Representation using Deep Conditional Generative Models,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+2c258eec8e4da9e65018f116b237f7e2e0b2ad17,Deep Quantization: Encoding Convolutional Activations with Deep Generative Model,University of Science and Technology of China,"University of Science and Technology of China, Hefei, China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+2c258eec8e4da9e65018f116b237f7e2e0b2ad17,Deep Quantization: Encoding Convolutional Activations with Deep Generative Model,"Microsoft Research, Beijing, China","Microsoft Research, Beijing, China","微软亚洲研究院, 善缘街, 中关村, 稻香园南社区, 海淀区, 北京市, 100080, 中国",39.97834785,116.304119070565
+2c203050a6cca0a0bff80e574bda16a8c46fe9c2,Discriminative Deep Hashing for Scalable Face Image Retrieval,Nanjing University of Science and Technology,Nanjing University of Science and Technology,"南京理工大学, 友谊路, 余粮庄, 玄武区, 南京市, 江苏省, 210016, 中国",32.031826,118.852142742792
+2c3430e0cbe6c8d7be3316a88a5c13a50e90021d,Multi-feature Spectral Clustering with Minimax Optimization,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+2cde051e04569496fb525d7f1b1e5ce6364c8b21,Sparse 3D convolutional neural networks,University of Warwick,University of Warwick,"University of Warwick, University Road, Kirby Corner, Cannon Park, Coventry, West Midlands Combined Authority, West Midlands, England, CV4 7AL, UK",52.3793131,-1.5604252
+2c1ffb0feea5f707c890347d2c2882be0494a67a,The Variational Homoencoder: Learning to learn high capacity generative models from few examples,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,Real-time Convolutional Neural Networks for Emotion and Gender Classification,Heriot-Watt University,Heriot-Watt University,"Heriot-Watt University - Edinburgh Campus, Third Gait, Currie, Gogarbank, City of Edinburgh, Scotland, EH14 4AS, UK",55.91029135,-3.32345776559167
+2cac70f9c8140a12b6a55cef834a3d7504200b62,Reconstructing High Quality Face-Surfaces using Model Based Stereo,University of Basel,University of Basel,"Faculty of Psychology, University of Basel, 60-62, Missionsstrasse, Grossbasel, Am Ring, Basel, Basel-Stadt, 4055, Schweiz/Suisse/Svizzera/Svizra",47.5612651,7.5752961
+2cac70f9c8140a12b6a55cef834a3d7504200b62,Reconstructing High Quality Face-Surfaces using Model Based Stereo,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+2c1f8ddbfbb224271253a27fed0c2425599dfe47,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,Singapore University of Technology and Design,Singapore University of Technology and Design,"Singapore University of Technology and Design, Simpang Bedok, Changi Business Park, Southeast, 486041, Singapore",1.340216,103.965089
+2ca43325a5dbde91af90bf850b83b0984587b3cc,For Your Eyes Only – Biometric Protection of PDF Documents,Gdansk University of Technology,Gdansk University of Technology,"PG, Romualda Traugutta, Królewska Dolina, Wrzeszcz Górny, Gdańsk, pomorskie, 80-233, RP",54.37086525,18.6171601574695
+2cfc28a96b57e0817cc9624a5d553b3aafba56f3,P2F2: Privacy-preserving face finder,New Jersey Institute of Technology,New Jersey Institute of Technology,"New Jersey Institute of Technology, Warren Street, University Heights, Newark, Essex County, New Jersey, 07103, USA",40.7423025,-74.1792817237128
+2cdd5b50a67e4615cb0892beaac12664ec53b81f,Mirror mirror: crowdsourcing better portraits,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+2cae619d0209c338dc94593892a787ee712d9db0,Selective hidden random fields: Exploiting domain-specific saliency for event classification,University of Massachusetts Amherst,University of Massachusetts Amherst,"UMass Amherst, Commonwealth Avenue, Amherst, Hampshire, Massachusetts, 01003, USA",42.3869382,-72.5299147706745
+2c0acaec54ab2585ff807e18b6b9550c44651eab,Face Quality Assessment for Face Verification in Video,Lomonosov Moscow State University,Lomonosov Moscow State University,"МГУ, улица Академика Хохлова, Московский государственный университет им. М. В. Ломоносова, район Раменки, Западный административный округ, Москва, ЦФО, 119234, РФ",55.70229715,37.5317977694291
+2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+2c62b9e64aeddf12f9d399b43baaefbca8e11148,Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682403998887
+2c19d3d35ef7062061b9e16d040cebd7e45f281d,End-to-end Video-level Representation Learning for Action Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+2c19d3d35ef7062061b9e16d040cebd7e45f281d,End-to-end Video-level Representation Learning for Action Recognition,University of Chinese Academy of Sciences (UCAS),University of Chinese Academy of Sciences (UCAS),"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+2c17d36bab56083293456fe14ceff5497cc97d75,Unconstrained Face Alignment via Cascaded Compositional Learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+2c17d36bab56083293456fe14ceff5497cc97d75,Unconstrained Face Alignment via Cascaded Compositional Learning,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+2cd7821fcf5fae53a185624f7eeda007434ae037,Exploring the geo-dependence of human face appearance,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+2cd7821fcf5fae53a185624f7eeda007434ae037,Exploring the geo-dependence of human face appearance,University of Kentucky,University of Kentucky,"University of Kentucky, Columbia Avenue, Sorority Circle, Lexington, Fayette County, Kentucky, 40508, USA",38.0333742,-84.5017758
+794ddb1f3b7598985d4d289b5b0664be736a50c4,Exploiting Competition Relationship for Robust Visual Recognition,Temple University,Temple University,"Temple University School of Podiatric Medicine, Race Street, Chinatown, Philadelphia, Philadelphia County, Pennsylvania, 19103, USA",39.95472495,-75.1534690525548
+79744fc71bea58d2e1918c9e254b10047472bd76,Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment,University of Maryland-College Park,University of Maryland-College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,Odd Leaf Out: Improving Visual Recognition with Games,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+794c0dc199f0bf778e2d40ce8e1969d4069ffa7b,Odd Leaf Out: Improving Visual Recognition with Games,"College Park, United States","College Park, United States","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+799c02a3cde2c0805ea728eb778161499017396b,PersonRank: Detecting Important People in Images,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+799c02a3cde2c0805ea728eb778161499017396b,PersonRank: Detecting Important People in Images,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+7966146d72f9953330556baa04be746d18702047,Harnessing Human Manipulation,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+79fa57dedafddd3f3720ca26eb41c82086bfb332,Modeling facial expression space for recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+79db191ca1268dc88271abef3179c4fe4ee92aed,Facial Expression Based Automatic Album Creation,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+79db191ca1268dc88271abef3179c4fe4ee92aed,Facial Expression Based Automatic Album Creation,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+79db191ca1268dc88271abef3179c4fe4ee92aed,Facial Expression Based Automatic Album Creation,University of Canberra,University of Canberra,"University of Canberra, University Drive, Bruce, Belconnen, Australian Capital Territory, 2617, Australia",-35.23656905,149.084469935058
+2d990b04c2bd61d3b7b922b8eed33aeeeb7b9359,Discriminative Dictionary Learning with Pairwise Constraints,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+2d25045ec63f9132371841c0beccd801d3733908,Multi-Layer Sparse Representation for Weighted LBP-Patches Based Facial Expression Recognition,Dalian University of Technology,Dalian University of Technology,"大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+2d080662a1653f523321974a57518e7cb67ecb41,On Constrained Local Model Feature Normalization for Facial Expression Recognition,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+2d4b9fe3854ccce24040074c461d0c516c46baf4,Temporal Action Localization by Structured Maximal Sums,Nanjing University,Nanjing University,"NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+2d4b9fe3854ccce24040074c461d0c516c46baf4,Temporal Action Localization by Structured Maximal Sums,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+2d9e58ea582e054e9d690afca8b6a554c3687ce6,Learning local feature aggregation functions with backpropagation,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+2d164f88a579ba53e06b601d39959aaaae9016b7,Dynamic Facial Expression Recognition Using A Bayesian Temporal Manifold Model,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+2d8001ffee6584b3f4d951d230dc00a06e8219f8,Feature Agglomeration Networks for Single Stage Face Detection,Singapore Management University,Singapore Management University,"Singapore Management University, Fort Canning Tunnel, Clarke Quay, City Hall, Singapore, Central, 178895, Singapore",1.29500195,103.849092139632
+2d8001ffee6584b3f4d951d230dc00a06e8219f8,Feature Agglomeration Networks for Single Stage Face Detection,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+2d23fa205acca9c21e3e1a04674f1e5a9528550e,The Fast and the Flexible: Extended Pseudo Two-Dimensional Warping for Face Recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+2d244d70ed1a2ba03d152189f1f90ff2b4f16a79,An Analytical Mapping for LLE and Its Application in Multi-Pose Face Synthesis,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+2d88e7922d9f046ace0234f9f96f570ee848a5b5,Detection under Privileged Information,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+2d88e7922d9f046ace0234f9f96f570ee848a5b5,Detection under Privileged Information,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+2d88e7922d9f046ace0234f9f96f570ee848a5b5,Detection under Privileged Information,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+2d31ab536b3c8a05de0d24e0257ca4433d5a7c75,Materials discovery: Fine-grained classification of X-ray scattering images,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, NC, USA","University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+2dbde64ca75e7986a0fa6181b6940263bcd70684,Pose Independent Face Recognition by Localizing Local Binary Patterns via Deformation Components,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+2d0363a3ebda56d91d704d5ff5458a527775b609,Attribute2Image: Conditional Image Generation from Visual Attributes,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,Perceptual Reward Functions,College of Computing,College of Computing,"computing, Tunguu, Unguja Kusini, Zanzibar, 146, Tanzania",-6.1992922,39.3081862
+2d93a9aa8bed51d0d1b940c73ac32c046ebf1eb8,Perceptual Reward Functions,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+2dd2c7602d7f4a0b78494ac23ee1e28ff489be88,Large scale metric learning from equivalence constraints,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+2d84e30c61281d3d7cdd11676683d6e66a68aea6,Automatic Construction of Action Datasets Using Web Videos with Density-Based Cluster Analysis and Outlier Detection,The University of Electro-Communications,The University of Electro-Communications,"電気通信大学, 甲州街道, 調布市, 東京都, 関東地方, 182-0026, 日本",35.6572957,139.542558677257
+2d98a1cb0d1a37c79a7ebcb727066f9ccc781703,Coupled Support Vector Machines for Supervised Domain Adaptation,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976
+2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976
+2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,Qatar University,"Qatar University, Qatar","Qatar University, Roindabout 3, Al Tarfa (68), أم صلال, 24685, قطر",25.37461295,51.4898035392337
+2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,University of Pisa,University of Pisa,"Dipartimento di Fisica 'E. Fermi', 3, Largo Bruno Pontecorvo, San Francesco, Pisa, PI, TOS, 56127, Italia",43.7201299,10.4078976
+2dfe0e7e81f65716b09c590652a4dd8452c10294,Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+2dfe0e7e81f65716b09c590652a4dd8452c10294,Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,Machine Analysis of Facial Expressions,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,Machine Analysis of Facial Expressions,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+2d38fd1df95f5025e2cee5bc439ba92b369a93df,Scalable Object-Class Search via Sparse Retrieval Models and Approximate Ranking,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+2d83ba2d43306e3c0587ef16f327d59bf4888dc3,Large-Scale Video Classification with Convolutional Neural Networks,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+2d84c0d96332bb4fbd8acced98e726aabbf15591,UNIVERSITY OF CALIFORNIA RIVERSIDE Investigating the Role of Saliency for Face Recognition A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+2d79d338c114ece1d97cde1aa06ab4cf17d38254,iLab-20M: A Large-Scale Controlled Object Dataset to Investigate Deep Learning,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+2d79d338c114ece1d97cde1aa06ab4cf17d38254,iLab-20M: A Large-Scale Controlled Object Dataset to Investigate Deep Learning,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+2d3482dcff69c7417c7b933f22de606a0e8e42d4,Labeled Faces in the Wild : Updates and New Reporting Procedures,University of Massachusetts,University of Massachusetts,"University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+2d4a3e9361505616fa4851674eb5c8dd18e0c3cf,Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study,Texas A&M University,Texas A&M University,"Texas A&M University, Horticulture Street, Park West, College Station, Brazos County, Texas, 77841, USA",30.6108365,-96.3521280026443
+2d748f8ee023a5b1fbd50294d176981ded4ad4ee,Triplet Similarity Embedding for Face Verification,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+2d3c17ced03e4b6c4b014490fe3d40c62d02e914,Video-driven state-aware facial animation,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+41f26101fed63a8d149744264dd5aa79f1928265,Spot On: Action Localization from Pointly-Supervised Proposals,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+41f26101fed63a8d149744264dd5aa79f1928265,Spot On: Action Localization from Pointly-Supervised Proposals,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+416b559402d0f3e2b785074fcee989d44d82b8e5,Multi-view Super Vector for Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+416b559402d0f3e2b785074fcee989d44d82b8e5,Multi-view Super Vector for Action Recognition,The Chinese University of Hong Kong,"The Chinese University of Hong Kong, Hong Kong","中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+416364cfdbc131d6544582e552daf25f585c557d,Synthesis and recognition of facial expressions in virtual 3D views,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+411ee9236095f8f5ca3b9ef18fd3381c1c68c4b8,An Empirical Evaluation of the Local Texture Description Framework-Based Modified Local Directional Number Pattern with Various Classifiers for Face Recognition,Manonmaniam Sundaranar University,Manonmaniam Sundaranar University,"Manonmaniam Sundaranar University, Tenkasi-Tirunelveli, Gandhi Nagar, Tirunelveli, Tirunelveli Kattabo, Tamil Nadu, 627808, India",8.76554685,77.65100444813
+411318684bd2d42e4b663a37dcf0532a48f0146d,Improved Face Verification with Simple Weighted Feature Combination,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+4140498e96a5ff3ba816d13daf148fffb9a2be3f,Constrained Ensemble Initialization for Facial Landmark Tracking in Video,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+41f8477a6be9cd992a674d84062108c68b7a9520,An Automated System for Visual Biometrics,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+41aa8c1c90d74f2653ef4b3a2e02ac473af61e47,Compositional Structure Learning for Action Understanding,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+41971dfbf404abeb8cf73fea29dc37b9aae12439,Detection of Facial Feature Points Using Anthropometric Face Model,Concordia University,Concordia University,"Concordia University, 2811, Northeast Holman Street, Concordia, Portland, Multnomah County, Oregon, 97211, USA",45.57022705,-122.637093463826
+4157e45f616233a0874f54a59c3df001b9646cd7,Diagnostically relevant facial gestalt information from ordinary photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+4157e45f616233a0874f54a59c3df001b9646cd7,Diagnostically relevant facial gestalt information from ordinary photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+4157e45f616233a0874f54a59c3df001b9646cd7,Diagnostically relevant facial gestalt information from ordinary photos,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+4136a4c4b24c9c386d00e5ef5dffdd31ca7aea2c,Multi-Modal Person-Profiles from Broadcast News Video,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+41aa209e9d294d370357434f310d49b2b0baebeb,Beyond caption to narrative: Video captioning with multiple sentences,The University of Tokyo,The University of Tokyo,"東京大学 柏キャンパス, 学融合の道, 柏市, 千葉県, 関東地方, 277-8583, 日本",35.9020448,139.936220089117
+839a2155995acc0a053a326e283be12068b35cb8,Handcrafted Local Features are Convolutional Neural Networks,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm.,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm.,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+8356832f883207187437872742d6b7dc95b51fde,Adversarial Perturbations Against Real-Time Video Classification Systems,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+835e510fcf22b4b9097ef51b8d0bb4e7b806bdfd,Unsupervised Learning of Sequence Representations by Autoencoders,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+831d661d657d97a07894da8639a048c430c5536d,Weakly Supervised Facial Analysis with Dense Hyper-Column Features,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+83295bce2340cb87901499cff492ae6ff3365475,Deep Multi-Center Learning for Face Alignment,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+83295bce2340cb87901499cff492ae6ff3365475,Deep Multi-Center Learning for Face Alignment,East China Normal University,East China Normal University,"华东师范大学, 3663, 中山北路, 曹家渡, 普陀区, 普陀区 (Putuo), 上海市, 200062, 中国",31.2284923,121.402113889769
+83e96ed8a4663edaa3a5ca90b7ce75a1bb595b05,Recognition from Appearance Subspaces across Image Sets of Variable Scale,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+831226405bb255527e9127b84e8eaedd7eb8e9f9,A Motion-Based Feature for Event-Based Pattern Recognition,Portland State University,"Portland State University, USA","Portland State University, Southwest Park Avenue, University District, Portland Downtown, Portland, Multnomah County, Oregon, 97201, USA",45.51181205,-122.684929993829
+8384e104796488fa2667c355dd15b65d6d5ff957,A Discriminative Latent Model of Image Region and Object Tag Correspondence,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+8384e104796488fa2667c355dd15b65d6d5ff957,A Discriminative Latent Model of Image Region and Object Tag Correspondence,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+8334da483f1986aea87b62028672836cb3dc6205,Fully Associative Patch-Based 1-to-N Matcher for Face Recognition,University of Houston,University of Houston,"UH, 4800, Calhoun Road, Houston, Harris County, Texas, 77004, USA",29.7207902,-95.3440627149137
+831b4d8b0c0173b0bac0e328e844a0fbafae6639,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+831b4d8b0c0173b0bac0e328e844a0fbafae6639,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+1b635f494eff2e5501607ebe55eda7bdfa8263b8,USC at THUMOS 2014,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+1b5875dbebc76fec87e72cee7a5263d325a77376,Learnt Quasi-Transitive Similarity for Retrieval from Large Collections of Faces,University of St Andrews,"University of St Andrews, United Kingdom","University of St Andrews, North Street, Albany Park Student accommodation, Carngour, St Andrews, Fife, Scotland, KY16 9AJ, UK",56.3411984,-2.7930938
+1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9,Groupwise Constrained Reconstruction for Subspace Clustering,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+1bdfb3deae6e6c0df6537efcd1d7edcb4d7a96e9,Groupwise Constrained Reconstruction for Subspace Clustering,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+1b794b944fd462a2742b6c2f8021fecc663004c9,A Hierarchical Probabilistic Model for Facial Feature Detection,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,From Few to Many: Generative Models for Recognition Under Variable Pose and Illumination,Beckman Institute,Beckman Institute,"Beckman Institute, The Presidents' Walk, Urbana, Champaign County, Illinois, 61801-2341, USA",40.11571585,-88.2275077179639
+1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,From Few to Many: Generative Models for Recognition Under Variable Pose and Illumination,Yale University,Yale University,"Yale University, West Campus Drive, West Haven, New Haven County, Connecticut, 06516, USA",41.25713055,-72.9896696015223
+1b7ae509c8637f3c123cf6151a3089e6b8a0d5b2,From Few to Many: Generative Models for Recognition Under Variable Pose and Illumination,University of Illinois,"University of Illinois, Urbana-Champaign","B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification,Queensland University of Technology,"Queensland University of Technology, Australia","Queensland University of Technology, Macgregor Lane, Merthyr, South Brisbane, Brisbane, QLD, 4000, Australia",-27.47715625,153.028410039129
+1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification,University of Queensland,"University of Queensland, Australia","University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+1b41d4ffb601d48d7a07dbbae01343f4eb8cc38c,Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification,University of Adelaide,"University of Adelaide, Australia","University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+1b60b8e70859d5c85ac90510b370b501c5728620,Using Detailed Independent 3D Sub-models to Improve Facial Feature Localisation and Pose Estimation,The University of Manchester,The University of Manchester,"University of Manchester - Main Campus, Brunswick Street, Curry Mile, Ardwick, Manchester, Greater Manchester, North West England, England, M13 9NR, UK",53.46600455,-2.23300880782987
+1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+1bc9aaa41c08bbd0c01dd5d7d7ebf3e48ae78113,k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61,Recognizing facial expression: machine learning and application to spontaneous behavior,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+1bcbf2a4500d27d036e0f9d36d7af71c72f8ab61,Recognizing facial expression: machine learning and application to spontaneous behavior,Rutgers University,"Rutgers University, New Brunswick, NJ","Zimmerli Art Museum, 71, Hamilton Street, New Brunswick, Middlesex County, New Jersey, 08901-1248, USA",40.50007595,-74.4457915242934
+1bad8a9640cdbc4fe7de12685651f44c4cff35ce,THETIS: Three Dimensional Tennis Shots a Human Action Dataset,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.7317973260904
+1be0ce87bb5ba35fa2b45506ad997deef6d6a0a8,EXMOVES: Classifier-based Features for Scalable Action Recognition,Dartmouth College,Dartmouth College,"Dartmouth College, Tuck Mall, Hanover, Grafton County, New Hampshire, 03755, USA",43.7047927,-72.2925909
+1b4bc7447f500af2601c5233879afc057a5876d8,Facial Action Unit Classification with Hidden Knowledge under Incomplete Annotation,University of Science and,University of Science and,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia",5.35755715,100.303850375
+1b4bc7447f500af2601c5233879afc057a5876d8,Facial Action Unit Classification with Hidden Knowledge under Incomplete Annotation,University of Science and,University of Science and,"USM, Lengkok Sastera, The LIGHT, Batu Uban, George Town, PNG, 11700, Malaysia",5.35755715,100.303850375
+1badfeece64d1bf43aa55c141afe61c74d0bd25e,"OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning",Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+7735f63e5790006cb3d989c8c19910e40200abfc,Multispectral Imaging For Face Recognition Over Varying Illumination,The University of Tennessee,"The University of Tennessee, Knoxville","University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+77b1db2281292372c38926cc4aca32ef056011dc,Children’s Interpretation of Facial Expressions: The Long Path from Valence-Based to Specific Discrete Categories,Boston College,Boston College,"Boston College, 140, Commonwealth Avenue, Chestnut Hill, Newton, Middlesex County, Massachusetts, 02467, USA",42.3354481,-71.1681386402306
+77c53ec6ea448db4dad586e002a395c4a47ecf66,Face Recognition Based on Facial Features,National University of Science and Technology,National University of Science and Technology,"National University of Science and Technology, Indus Loop, H-11, ICT, وفاقی دارالحکومت اسلام آباد, 44000, پاکستان",33.6450855,72.9915892221655
+774cbb45968607a027ae4729077734db000a1ec5,From Bikers to Surfers: Visual Recognition of Urban Tribes,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+774cbb45968607a027ae4729077734db000a1ec5,From Bikers to Surfers: Visual Recognition of Urban Tribes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+7792fbc59f3eafc709323cdb63852c5d3a4b23e9,Pose from Action: Unsupervised Learning of Pose Features based on Motion,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+7792fbc59f3eafc709323cdb63852c5d3a4b23e9,Pose from Action: Unsupervised Learning of Pose Features based on Motion,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+77fbbf0c5729f97fcdbfdc507deee3d388cd4889,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,University of Wisconsin-Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+776362314f1479f5319aaf989624ac604ba42c65,Attribute Learning in Large-Scale Datasets,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+77fb9e36196d7bb2b505340b6b94ba552a58b01b,Detecting the Moment of Completion: Temporal Models for Localising Action Completion,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.2662887,82.9927969
+48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.2662887,82.9927969
+48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Indian Institute of Technology,Indian Institute of Technology,"Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+48463a119f67ff2c43b7c38f0a722a32f590dfeb,Intelligent Method for Face Recognition of Infant,Banaras Hindu University,Banaras Hindu University,"काशी हिन्दू विश्वविद्यालय, Semi Circle Road 2, ワーラーナシー, Jodhpur Colony, Vārānasi, Varanasi, Uttar Pradesh, 221005, India",25.2662887,82.9927969
+488d3e32d046232680cc0ba80ce3879f92f35cac,Facial Expression Recognition Using Texture Description of Displacement Image,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+488d3e32d046232680cc0ba80ce3879f92f35cac,Facial Expression Recognition Using Texture Description of Displacement Image,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+488d3e32d046232680cc0ba80ce3879f92f35cac,Facial Expression Recognition Using Texture Description of Displacement Image,Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران",35.7036227,51.351250969544
+48fea82b247641c79e1994f4ac24cad6b6275972,Mining discriminative components with low-rank and sparsity constraints for face recognition,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+48734cb558b271d5809286447ff105fd2e9a6850,Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural Networks,University of Denver,"University of Denver, Denver, CO","University of Denver, Driscoll Bridge, Denver, Denver County, Colorado, 80208, USA",39.6766541,-104.962203
+48a417cfeba06feb4c7ab30f06c57ffbc288d0b5,Robust Dictionary Learning by Error Source Decomposition,Northwestern University,Northwestern University,"Northwestern University, Northwestern Place, Downtown, Evanston, Cook County, Illinois, 60208, USA",42.0551164,-87.6758111348217
+48c41ffab7ff19d24e8df3092f0b5812c1d3fb6e,Multi-modal Embedding for Main Product Detection in Fashion,Waseda University,Waseda University,"早稲田大学 北九州キャンパス, 2-2, 有毛引野線, 八幡西区, 北九州市, 福岡県, 九州地方, 808-0135, 日本",33.8898728,130.708562047107
+488a61e0a1c3768affdcd3c694706e5bb17ae548,Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences,University of York,University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+48910f9b6ccc40226cd4f105ed5291571271b39e,Learning Discriminative Fisher Kernels,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+48a9241edda07252c1aadca09875fabcfee32871,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+48a9241edda07252c1aadca09875fabcfee32871,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+48a9241edda07252c1aadca09875fabcfee32871,Convolutional Experts Constrained Local Model for Facial Landmark Detection,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+48f0055295be7b175a06df5bc6fa5c6b69725785,Facial Action Unit Recognition from Video Streams with Recurrent Neural Networks,University of the Witwatersrand,University of the Witwatersrand,"University of the Witwatersrand, Empire Road, Johannesburg Ward 60, Johannesburg, City of Johannesburg Metropolitan Municipality, Gauteng, 2001, South Africa",-26.1888813,28.0247907319205
+48729e4de8aa478ee5eeeb08a72a446b0f5367d5,Compressed face hallucination,University of California,"University of California, Merced, CA 95344, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+48e6c6d981efe2c2fb0ae9287376fcae59da9878,Sidekick Policy Learning for Active Visual Exploration,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+48174c414cfce7f1d71c4401d2b3d49ba91c5338,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+48174c414cfce7f1d71c4401d2b3d49ba91c5338,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,Hong Kong Polytechnic University,Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+48174c414cfce7f1d71c4401d2b3d49ba91c5338,Robust Performance-driven 3D Face Tracking in Long Range Depth Scenes,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+488375ae857a424febed7c0347cc9590989f01f7,Convolutional neural networks for the analysis of broadcasted tennis games,Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+488375ae857a424febed7c0347cc9590989f01f7,Convolutional neural networks for the analysis of broadcasted tennis games,University of Crete,University of Crete,"House of Europe, Μακεδονίας, Ρέθυμνο, Δήμος Ρεθύμνης, Περιφερειακή Ενότητα Ρεθύμνου, Περιφέρεια Κρήτης, Κρήτη, 930100, Ελλάδα",35.3713024,24.4754408
+4836b084a583d2e794eb6a94982ea30d7990f663,Cascaded Face Alignment via Intimacy Definition Feature,the Hong Kong Polytechnic University,the Hong Kong Polytechnic University,"hong kong, 11, 育才道 Yuk Choi Road, 尖沙咀 Tsim Sha Tsui, 油尖旺區 Yau Tsim Mong District, 九龍 Kowloon, HK, 00000, 中国",22.304572,114.179762852269
+488e475eeb3bb39a145f23ede197cd3620f1d98a,Pedestrian Attribute Classification in Surveillance: Database and Evaluation,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,Non Binary Local Gradient Contours for Face Recognition,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+4896909796f9bd2f70a2cb24bf18daacd6a12128,Spatial Bag of Features Learning for Large Scale Face Image Retrieval,Aristotle University of Thessaloniki,"Aristotle University of Thessaloniki, Thessaloniki, Greece","Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+481fb0a74528fa7706669a5cce6a212ac46eaea3,Recognizing RGB Images by Learning from RGB-D Data,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+70580ed8bc482cad66e059e838e4a779081d1648,Gender Classification using Multi-Level Wavelets on Real World Face Images,Shaheed Zulfikar Ali Bhutto Institute of,Shaheed Zulfikar Ali Bhutto Institute of,"Shaheed Zulfikar Ali Bhutto Institute of Science and Technology - Karachi Campus, Block 5, Clifton Block 5, CBC, ڪراچي Karachi, Karāchi District, سنڌ, 75600, پاکستان",24.8186587,67.0316585
+703dc33736939f88625227e38367cfb2a65319fe,Trespassing the Boundaries: Labeling Temporal Bounds for Object Interactions in Egocentric Video,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+70db3a0d2ca8a797153cc68506b8650908cb0ada,An Overview of Research Activities in Facial Age Estimation Using the FG-NET Aging Database,Cyprus University of Technology,"Cyprus University of Technology, Cyprus","Mitropoli Building - Cyprus University of Technology, Anexartisias, Limasol - Λεμεσός, Limassol - Λεμεσός, Κύπρος - Kıbrıs, 3036, Κύπρος - Kıbrıs",34.67567405,33.0457764820597
+701f56f0eac9f88387de1f556acef78016b05d52,Direct Shape Regression Networks for End-to-End Face Alignment,University of Texas at Arlington,University of Texas at Arlington,"University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+701f56f0eac9f88387de1f556acef78016b05d52,Direct Shape Regression Networks for End-to-End Face Alignment,Xidian University,Xidian University,"Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+7002d6fc3e0453320da5c863a70dbb598415e7aa,Understanding Discrete Facial Expressions in Video Using an Emotion Avatar Image,University of California,"University of California, Riverside","University of California, Riverside, Linden Street, Riverside, Riverside County, California, 92521, USA",33.98071305,-117.332610354677
+7071cd1ee46db4bc1824c4fd62d36f6d13cad08a,Face Detection through Scale-Friendly Deep Convolutional Networks,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+70c58700eb89368e66a8f0d3fc54f32f69d423e1,In Unsupervised Spatio-temporal Feature Learning,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+707a542c580bcbf3a5a75cce2df80d75990853cc,Disentangled Variational Representation for Heterogeneous Face Recognition,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+704d88168bdfabe31b6ff484507f4a2244b8c52b,MLtuner: System Support for Automatic Machine Learning Tuning,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+703c9c8f20860a1b1be63e6df1622b2021b003ca,Flip-Invariant Motion Representation,National Institute of Advanced Industrial Science and Technology,National Institute of Advanced Industrial Science and Technology,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+70a69569ba61f3585cd90c70ca5832e838fa1584,Friendly Faces: Weakly Supervised Character Identification,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+70c9d11cad12dc1692a4507a97f50311f1689dbf,Video Frame Synthesis Using Deep Voxel Flow,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+70c9d11cad12dc1692a4507a97f50311f1689dbf,Video Frame Synthesis Using Deep Voxel Flow,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+1e5ca4183929929a4e6f09b1e1d54823b8217b8e,Classification in the Presence of Heavy Label Noise: A Markov Chain Sampling Framework,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,Rendering of Eyes for Eye-Shape Registration and Gaze Estimation,University of Cambridge,"University of Cambridge, United Kingdom","Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+1ef4815f41fa3a9217a8a8af12cc385f6ed137e1,Rendering of Eyes for Eye-Shape Registration and Gaze Estimation,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+1ea74780d529a458123a08250d8fa6ef1da47a25,Videos from the 2013 Boston Marathon,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1e19ea6e7f1c04a18c952ce29386252485e4031e,MATLAB Based Face Recognition System Using PCA and Neural Network,University Institute of Engineering and Technology,University Institute of Engineering and Technology,"Maharishi University Of Information Technology, NH230, Jankipuram, Lucknow, Uttar Pradesh, 226021, India",26.9302879,80.9278433
+1e19ea6e7f1c04a18c952ce29386252485e4031e,MATLAB Based Face Recognition System Using PCA and Neural Network,Kurukshetra University,Kurukshetra University,"Kurukshetra University, SH6, Kurukshetra, Haryana, 132118, India",29.95826275,76.8156304467532
+1ec98785ac91808455b753d4bc00441d8572c416,Curriculum Learning for Facial Expression Recognition,Carnegie Mellon University,"Carnegie Mellon University, USA","Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,Face Detection with a 3D Model,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,Face Detection with a 3D Model,National Institutes of Health,National Institutes of Health,"NIH, Pooks Hill, Bethesda, Montgomery County, Maryland, USA",39.00041165,-77.1032777503325
+1efacaa0eaa7e16146c34cd20814d1411b35538e,Action Completion: A Temporal Model for Moment Detection,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+1eba6fc35a027134aa8997413647b49685f6fbd1,Superpower glass: delivering unobtrusive real-time social cues in wearable systems,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,A Multi-level Contextual Model for Person Recognition in Photo Albums,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949
+1ef5ce743a44d8a454dbfc2657e1e2e2d025e366,Accurate Corner Detection Methods using Two Step Approach,Thapar University,Thapar University,"Thapar University, Hostel Road, Patiala, Punjab, 147001, India",30.35566105,76.3658164148513
+1e58d7e5277288176456c66f6b1433c41ca77415,Bootstrapping Fine-Grained Classifiers: Active Learning with a Crowd in the Loop,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+1e5a1619fe5586e5ded2c7a845e73f22960bbf5a,Group Membership Prediction,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+1e9f1bbb751fe538dde9f612f60eb946747defaa,Identity-aware convolutional neural networks for facial expression recognition,Tampere University of Technology,Tampere University of Technology,"TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+1e917fe7462445996837934a7e46eeec14ebc65f,Expression Classification using Wavelet Packet Method on Asymmetry Faces,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+1e917fe7462445996837934a7e46eeec14ebc65f,Expression Classification using Wavelet Packet Method on Asymmetry Faces,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1e917fe7462445996837934a7e46eeec14ebc65f,Expression Classification using Wavelet Packet Method on Asymmetry Faces,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+1e94cc91c5293c8fc89204d4b881552e5b2ce672,Unsupervised Alignment of Actions in Video with Text Descriptions,University of Rochester,University of Rochester,"Memorial Art Gallery, 500, University Avenue, East End, Rochester, Monroe County, New York, 14607, USA",43.1576969,-77.5882915756007
+1e94cc91c5293c8fc89204d4b881552e5b2ce672,Unsupervised Alignment of Actions in Video with Text Descriptions,"Indian Institute of Technology Delhi, New Delhi, India","Indian Institute of Technology Delhi, New Delhi, India","Indian Institute Of Technology, IIT Delhi Main Road, Adchini, Lado Sarai, Mehrauli, South Delhi, Delhi, 110066, India",28.5444176,77.1893001
+1e8eec6fc0e4538e21909ab6037c228547a678ba,enVisage : Face Recognition in Videos,IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869
+1e8eec6fc0e4538e21909ab6037c228547a678ba,enVisage : Face Recognition in Videos,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,Pooling Faces: Template Based Face Recognition with Pooled Face Images,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+841855205818d3a6d6f85ec17a22515f4f062882,Low Resolution Face Recognition in the Wild,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+84c0f814951b80c3b2e39caf3925b56a9b2e1733,16 Computation and Palaeography : Potentials and Limits,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+841bf196ee0086c805bd5d1d0bddfadc87e424ec,Locally Kernel-based Nonlinear Regression for Face Recognition,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+841bf196ee0086c805bd5d1d0bddfadc87e424ec,Locally Kernel-based Nonlinear Regression for Face Recognition,Amirkabir University of Technology,Amirkabir University of Technology,"دانشگاه صنعتی امیرکبیر, ولی عصر, میدان ولیعصر, منطقه ۶ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, نبش برادران مظفر, ایران",35.704514,51.4097205774739
+842d82081f4b27ca2d4bc05c6c7e389378f0c7b8,Usage of affective computing in recommender systems,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+84e6669b47670f9f4f49c0085311dce0e178b685,Face frontalization for Alignment and Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+84e6669b47670f9f4f49c0085311dce0e178b685,Face frontalization for Alignment and Recognition,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+847e07387142c1bcc65035109ccce681ef88362c,Feature Synthesis Using Genetic Programming for Face Expression Recognition,University of California,"University of California, Riverside CA 92521-0425, USA","UCR, North Campus Drive, Riverside, Riverside County, California, 92521, USA",33.9743275,-117.32558236636
+843e6f1e226480e8a6872d8fd7b7b2cd74b637a4,Palmprint Recognition Using Directional Representation and Compresses Sensing,Southwest Jiaotong University,Southwest Jiaotong University,"西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+84f904a71bee129a1cf00dc97f6cdbe1011657e6,Fashioning with Networks: Neural Style Transfer to Design Clothes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+84f904a71bee129a1cf00dc97f6cdbe1011657e6,Fashioning with Networks: Neural Style Transfer to Design Clothes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+84f904a71bee129a1cf00dc97f6cdbe1011657e6,Fashioning with Networks: Neural Style Transfer to Design Clothes,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+846c028643e60fefc86bae13bebd27341b87c4d1,Face Recognition Under Varying Illumination Based on MAP Estimation Incorporating Correlation Between Surface Points,Institute of Industrial Science,Institute of Industrial Science,"産業技術総合研究所;西事業所, 学園西大通り, Onogawa housing complex, つくば市, 茨城県, 関東地方, 305-0051, 日本",36.05238585,140.118523607658
+4a14a321a9b5101b14ed5ad6aa7636e757909a7c,Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+4a14a321a9b5101b14ed5ad6aa7636e757909a7c,Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+4aa286914f17cd8cefa0320e41800a99c142a1cd,Leveraging Context to Support Automated Food Recognition in Restaurants,"Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Institute of Technology, Atlanta, Georgia, USA","Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+4a9d906935c9de019c61aedc10b77ee10e3aec63,Cross Modal Distillation for Supervision Transfer,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+4ae59d2a28abd76e6d9fb53c9e7ece833dce7733,A Survey on Mobile Affective Computing,The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,Efficient Metric Learning for Real-World Face Recognition,Graz University of Technology,Graz University of Technology,"TU Graz, Inffeldgasse, Harmsdorf, Jakomini, Graz, Steiermark, 8010, Österreich",47.05821,15.460195677136
+4a484d97e402ed0365d6cf162f5a60a4d8000ea0,A Crowdsourcing Approach for Finding Misidentifications of Bibliographic Records,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+4aa093d1986b4ad9b073ac9edfb903f62c00e0b0,Facial Recognition with Encoded Local Projections,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+4aa093d1986b4ad9b073ac9edfb903f62c00e0b0,Facial Recognition with Encoded Local Projections,University of Waterloo,University of Waterloo,"University of Waterloo, 200, University Avenue West, Northdale, Beechwood, Waterloo, Regional Municipality of Waterloo, Ontario, N2L 3G1, Canada",43.47061295,-80.5472473165632
+4aabd6db4594212019c9af89b3e66f39f3108aac,The Mere Exposure Effect and Classical Conditioning,University of Colorado,"University of Colorado, Boulder","Naropa University, Arapahoe Avenue, The Hill, Boulder, Boulder County, Colorado, 80309, USA",40.01407945,-105.266959437621
+4adb97b096b700af9a58d00e45a2f980136fcbb5,Exploring Temporal Preservation Networks for Precise Temporal Action Localization,National University of Defense Technology,National University of Defense Technology,"国防科学技术大学, 三一大道, 开福区, 开福区 (Kaifu), 长沙市 / Changsha, 湖南省, 410073, 中国",28.2290209,112.994832044032
+4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,Multi-modal social signal analysis for predicting agreement in conversation settings,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+4a5592ae1f5e9fa83d9fa17451c8ab49608421e4,Multi-modal social signal analysis for predicting agreement in conversation settings,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+4ae291b070ad7940b3c9d3cb10e8c05955c9e269,Automatic Detection of Naturalistic Hand-over-Face Gesture Descriptors,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+4aa8db1a3379f00db2403bba7dade5d6e258b9e9,Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network,Sharif University of Technology,Sharif University of Technology,"دانشگاه صنعتی شریف, خیابان آزادی, زنجان, منطقه ۹ شهر تهران, تهران, بخش مرکزی شهرستان تهران, شهرستان تهران, استان تهران, 14588, ایران",35.7036227,51.351250969544
+4ac4e8d17132f2d9812a0088594d262a9a0d339b,Rank Constrained Recognition under Unknown Illuminations,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4acd683b5f91589002e6f50885df51f48bc985f4,Bridging computer vision and social science: A multi-camera vision system for social interaction training analysis,GE Global Research,GE Global Research,"GE Global Research Center, Aqueduct, Niskayuna, Schenectady County, New York, USA",42.8298248,-73.8771938492793
+4a1d640f5e25bb60bb2347d36009718249ce9230,Towards Multi-view and Partially-Occluded Face Alignment,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+4a1d640f5e25bb60bb2347d36009718249ce9230,Towards Multi-view and Partially-Occluded Face Alignment,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+24b37016fee57057cf403fe2fc3dda78476a8262,Automatic Recognition of Eye Blinking in Spontaneously Occurring Behavior,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+24b37016fee57057cf403fe2fc3dda78476a8262,Automatic Recognition of Eye Blinking in Spontaneously Occurring Behavior,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+247cab87b133bd0f4f9e8ce5e7fc682be6340eac,Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+247cab87b133bd0f4f9e8ce5e7fc682be6340eac,Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,Sun Yat-sen University,Sun Yat-sen University,"中大, 新港西路, 龙船滘, 康乐, 海珠区 (Haizhu), 广州市, 广东省, 510105, 中国",23.09461185,113.287889943975
+247cab87b133bd0f4f9e8ce5e7fc682be6340eac,Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns,"Joint Research Institute, Foshan, China","Joint Research Institute, Foshan, China","广东顺德中山大学卡内基梅隆大学国际联合研究院, 南国东路, 顺德区, 五村, 顺德区 (Shunde), 佛山市 / Foshan, 广东省, 0757, 中国",22.83388935,113.285418245471
+24cb375a998f4af278998f8dee1d33603057e525,Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+24cb375a998f4af278998f8dee1d33603057e525,Projection Metric Learning on Grassmann Manifold with Application to Video based Face Recognition,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+24f9248f01df3020351347c2a3f632e01de72090,Reconstructing a fragmented face from a cryptographic identification protocol,The University of Texas at Austin,The University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+24959d1a9c9faf29238163b6bcaf523e2b05a053,High Accuracy Head Pose Tracking Survey,Warsaw University of Technology,"Warsaw University of Technology, Poland","Politechnika Warszawska, 1, Plac Politechniki, VIII, Śródmieście, Warszawa, mazowieckie, 00-661, RP",52.22165395,21.0073577612511
+24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,Institute for Advanced,Institute for Advanced,"Institute for Advanced Biosciences, 鶴岡市, 山形県, 東北地方, 日本",38.7468877,139.824707282407
+24f1febcdf56cd74cb19d08010b6eb5e7c81c362,Synergistic methods for using language in robotics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+24cf9fe9045f50c732fc9c602358af89ae40a9f7,Attribute Recognition from Adaptive Parts,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+24f022d807352abf071880877c38e53a98254dcd,Are screening methods useful in feature selection? An empirical study,Florida State University,Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+241d2c517dbc0e22d7b8698e06ace67de5f26fdf,"Online, Real-Time Tracking Using a Category-to-Individual Detector","California Institute of Technology, USA","California Institute of Technology, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+24e6a28c133b7539a57896393a79d43dba46e0f6,Robust Bayesian method for simultaneous block sparse signal recovery with applications to face recognition,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+248db911e3a6a63ecd5ff6b7397a5d48ac15e77a,Enriching Texture Analysis with Semantic Data,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+24f1e2b7a48c2c88c9e44de27dc3eefd563f6d39,Recognition of Action Units in the Wild with Deep Nets and a New Global-Local Loss,The Ohio State University,The Ohio State University,"The Ohio State University, Woody Hayes Drive, Columbus, Franklin County, Ohio, 43210, USA",40.00471095,-83.0285936787604
+243e9d490fe98d139003bb8dc95683b366866c57,Distinctive Parts for Relative attributes,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+240eb0b34872c431ecf9df504671281f59e7da37,Cutout-search: Putting a name to the picture,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+240eb0b34872c431ecf9df504671281f59e7da37,Cutout-search: Putting a name to the picture,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+23aef683f60cb8af239b0906c45d11dac352fb4e,Incorporating Context Information into Deep Neural Network Acoustic Models,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+235d5620d05bb7710f5c4fa6fceead0eb670dec5,Who's Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation,Idiap Research Institute,Idiap Research Institute,"Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+23ce6f404c504592767b8bec7d844d87b462de71,A Deep Face Identification Network Enhanced by Facial Attributes Prediction,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+23fd653b094c7e4591a95506416a72aeb50a32b5,Emotion Recognition using Fuzzy Rule- based System,Amity University,"Amity University, Lucknow, India","Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+23fd653b094c7e4591a95506416a72aeb50a32b5,Emotion Recognition using Fuzzy Rule- based System,Amity University,"Amity University, Lucknow, India","Amity University, Faizabad Road, Uttardhauna, Gomti Nagar, Tiwariganj, Lucknow, Uttar Pradesh, 226010, India",26.85095965,81.0495096452828
+231a6d2ee1cc76f7e0c5912a530912f766e0b459,Shape Primitive Histogram: A Novel Low-Level Face Representation for Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+23fc83c8cfff14a16df7ca497661264fc54ed746,Comprehensive Database for Facial Expression Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+232b6e2391c064d483546b9ee3aafe0ba48ca519,Optimization Problems for Fast AAM Fitting in-the-Wild,University of Lincoln,University of Lincoln,"University of Lincoln, Brayford Way, Whitton Park, New Boultham, Lincoln, Lincolnshire, East Midlands, England, LN6 7TS, UK",53.22853665,-0.548734723802121
+232b6e2391c064d483546b9ee3aafe0ba48ca519,Optimization Problems for Fast AAM Fitting in-the-Wild,"Imperial College London, U.K.","Imperial College London, U.K.","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+237eba4822744a9eabb121fe7b50fd2057bf744c,Facial Expression Synthesis Using PAD Emotional Parameters for a Chinese Expressive Avatar,Tsinghua University,"Tsinghua University, 100084 Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+237eba4822744a9eabb121fe7b50fd2057bf744c,Facial Expression Synthesis Using PAD Emotional Parameters for a Chinese Expressive Avatar,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+23e75f5ce7e73714b63f036d6247fa0172d97cb6,Facial expression (mood) recognition from facial images using committee neural networks,University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.0789035,-81.5197127229943
+23e75f5ce7e73714b63f036d6247fa0172d97cb6,Facial expression (mood) recognition from facial images using committee neural networks,University of Akron,University of Akron,"University of Akron, East State Street, Stadium District, Cascade Valley, Akron, Summit County, Ohio, 44308, USA",41.0789035,-81.5197127229943
+23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f,A Domain Based Approach to Social Relation Recognition,Max Planck Institute for Informatics,Max Planck Institute for Informatics,"MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+23aba7b878544004b5dfa64f649697d9f082b0cf,Locality-constrained discriminative learning and coding,Northeastern University,"Northeastern University, Boston, MA, USA","Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+2303d07d839e8b20f33d6e2ec78d1353cac256cf,Squeeze-and-Excitation on Spatial and Temporal Deep Feature Space for Action Recognition,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+23c3eb6ad8e5f18f672f187a6e9e9b0d94042970,Deep domain adaptation for describing people based on fine-grained clothing attributes,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,Deep Density Clustering of Unconstrained Faces (Supplementary Material),University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4f9e00aaf2736b79e415f5e7c8dfebda3043a97d,"Machine Audition : Principles , Algorithms and Systems",University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+4f0d9200647042e41dea71c35eb59e598e6018a7,Experiments of Image Retrieval Using Weak Attributes,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+4f7967158b257e86d66bdabfdc556c697d917d24,Guaranteed Parameter Estimation of Discrete Energy Minimization for 3D Scene Parsing,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,Human Action Recognition Using Factorized Spatio-Temporal Convolutional Networks,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,Human Action Recognition Using Factorized Spatio-Temporal Convolutional Networks,Hong Kong University of Science and Technology,Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+4fcd19b0cc386215b8bd0c466e42934e5baaa4b7,Human Action Recognition Using Factorized Spatio-Temporal Convolutional Networks,University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1240187,113.545109009671
+4f773c8e7ca98ece9894ba3a22823127a70c6e6c,A Real-Time System for Head Tracking and Pose Estimation,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+4ff11512e4fde3d1a109546d9c61a963d4391add,Selecting Vantage Points for an Autonomous Quadcopter Videographer,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+4f028efe6708fc252851eee4a14292b7ce79d378,An integrated shape and intensity coding scheme for face recognition,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,University of Groningen,"University of Groningen, The Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+4fefd1bc8dc4e0ab37ee3324ddfa43ad9d6a04a7,Fashion Landmark Detection in the Wild,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+4f0b8f730273e9f11b2bfad2415485414b96299f,BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling,Georgia Institute of Technology,Georgia Institute of Technology,"Georgia Tech, Atlantic Drive Northwest, Bellwood, Rockdale, Atlanta, Fulton County, Georgia, 30318, USA",33.776033,-84.3988408600158
+4f0b8f730273e9f11b2bfad2415485414b96299f,BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,Deep Density Clustering of Unconstrained Faces,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,"College Park, USA","College Park, USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+8d4f12ed7b5a0eb3aa55c10154d9f1197a0d84f3,Cascaded pose regression,California Institute of Technology,California Institute of Technology,"California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+8de6deefb90fb9b3f7d451b9d8a1a3264b768482,Multibiometric Systems : Fusion Strategies and Template Security,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+8d2c0c9155a1ed49ba576ac0446ec67725468d87,A Study of Two Image Representations for Head Pose Estimation,Tsinghua University,"Tsinghua University, Beijing, China","清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+8d0243b8b663ca0ab7cbe613e3b886a5d1c8c152,Development of Optical Computer Recognition (OCR) for Monitoring Stress and Emotions in Space,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+8d6c4af9d4c01ff47fe0be48155174158a9a5e08,"Labeling, discovering, and detecting objects in images",Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+8dcc95debd07ebab1721c53fa50d846fef265022,MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Frontal Face Images,Middle East Technical University,Middle East Technical University,"ODTÜ, 1, 1591.sk(315.sk), Çiğdem Mahallesi, Ankara, Çankaya, Ankara, İç Anadolu Bölgesi, 06800, Türkiye",39.87549675,32.7855350558467
+8d91f06af4ef65193f3943005922f25dbb483ee4,Facial Expression Classification Using Rotation Slepian-based Moment Invariants,University of Macau,University of Macau,"研究生宿舍 Residência de Estudantes de Pós-Graduação da Universidade de Macau, 澳門大學 Universidade de Macau, 嘉模堂區 Nossa Senhora do Carmo, 氹仔 Taipa, Universidade de Macau em Ilha de Montanha 澳門大學橫琴校區, 中国",22.1240187,113.545109009671
+8dc9de0c7324d098b537639c8214543f55392a6b,Pose-Invariant 3D Object Recognition Using Linear Combination of 2D Views and Evolutionary Optimisation,University College London,University College London,"UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+155199d7f10218e29ddaee36ebe611c95cae68c4,Towards Scalable Visual Navigation of Micro Aerial Vehicles,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+155199d7f10218e29ddaee36ebe611c95cae68c4,Towards Scalable Visual Navigation of Micro Aerial Vehicles,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,Semi-Supervised Classification Using Linear Neighborhood Propagation,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,Semi-Supervised Classification Using Linear Neighborhood Propagation,The Hong Kong University of Science and Technology,The Hong Kong University of Science and Technology,"香港科技大學 Hong Kong University of Science and Technology, 大學道 University Road, 大埔仔 Tai Po Tsai, 大埔仔村 Tai Po Tsai Village, 新界 New Territories, HK, DD253 1209, 中国",22.3386304,114.2620337
+15d653972d176963ef0ad2cc582d3b35ca542673,CSVideoNet: A Real-Time End-to-End Learning Framework for High-Frame-Rate Video Compressive Sensing,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+159e792096756b1ec02ec7a980d5ef26b434ff78,Signed Laplacian Embedding for Supervised Dimension Reduction,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+159e792096756b1ec02ec7a980d5ef26b434ff78,Signed Laplacian Embedding for Supervised Dimension Reduction,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+1586871a1ddfe031b885b94efdbff647cf03eff1,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+1586871a1ddfe031b885b94efdbff647cf03eff1,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+1586871a1ddfe031b885b94efdbff647cf03eff1,A Century of Portraits: A Visual Historical Record of American High School Yearbooks,University of California Berkeley,University of California Berkeley,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+15cf7bdc36ec901596c56d04c934596cf7b43115,Face Extraction from Image based on K-Means Clustering Algorithms,Islamic Azad University,Islamic Azad University,"دانشگاه آزاد اسلامی, همدان, بخش مرکزی شهرستان همدان, شهرستان همدان, استان همدان, ایران",34.8452999,48.5596212013643
+1576ed0f3926c6ce65e0ca770475bca6adcfdbb4,Keep it accurate and diverse: Enhancing action recognition performance by ensemble learning,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+156cd2a0e2c378e4c3649a1d046cd080d3338bca,Exemplar based approaches on Face Fiducial Detection and Frontalization,International Institute of Information Technology,International Institute of Information Technology,"International Institute of Information Technology, Hyderabad, Campus Road, Ward 105 Gachibowli, Greater Hyderabad Municipal Corporation West Zone, Hyderabad, Rangareddy District, Telangana, 500032, India",17.4454957,78.3485469754447
+151481703aa8352dc78e2577f0601782b8c41b34,Appearance Manifold of Facial Expression,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+1565721ebdbd2518224f54388ed4f6b21ebd26f3,Face and landmark detection by using cascade of classifiers,Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.7487516,30.4765307102195
+1565721ebdbd2518224f54388ed4f6b21ebd26f3,Face and landmark detection by using cascade of classifiers,Czech Technical University,Czech Technical University,"České vysoké učení technické v Praze, Resslova, Nové Město, Praha, okres Hlavní město Praha, Hlavní město Praha, Praha, 11121, Česko",50.0764296,14.418023122743
+15252b7af081761bb00535aac6bd1987391f9b79,Estimation of eye gaze direction angles based on active appearance models,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.7317973260904
+15ee80e86e75bf1413dc38f521b9142b28fe02d1,Towards a deep learning framework for unconstrained face detection,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh, PA, USA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+15e27f968458bf99dd34e402b900ac7b34b1d575,Ranking 2DLDA features based on fisher discriminance,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+15f70a0ad8903017250927595ae2096d8b263090,Learning Robust Deep Face Representation,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+1564bf0a268662df752b68bee5addc4b08868739,With whom do I interact? Detecting social interactions in egocentric photo-streams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+1564bf0a268662df752b68bee5addc4b08868739,With whom do I interact? Detecting social interactions in egocentric photo-streams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+1564bf0a268662df752b68bee5addc4b08868739,With whom do I interact? Detecting social interactions in egocentric photo-streams,University of Barcelona,University of Barcelona,"Universitat de Barcelona, Carrer de la Diputació, l'Antiga Esquerra de l'Eixample, Eixample, Barcelona, BCN, CAT, 08013, España",41.3868913,2.16352384576632
+158e32579e38c29b26dfd33bf93e772e6211e188,Automated Real Time Emotion Recognition using Facial Expression Analysis,Carleton University,Carleton University,"Carleton University, 1125, Colonel By Drive, Billings Bridge, Capital, Ottawa, Ontario, K1S 5B7, Canada",45.3860843,-75.6953926739404
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+122f51cee489ba4da5ab65064457fbe104713526,Long Short Term Memory Recurrent Neural Network based Multimodal Dimensional Emotion Recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+121503705689f46546cade78ff62963574b4750b,We Don’t Need No Bounding-Boxes: Training Object Class Detectors Using Only Human Verification,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+125d82fee1b9fbcc616622b0977f3d06771fc152,Hierarchical face parsing via deep learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+125d82fee1b9fbcc616622b0977f3d06771fc152,Hierarchical face parsing via deep learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+125d82fee1b9fbcc616622b0977f3d06771fc152,Hierarchical face parsing via deep learning,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+1255afbf86423c171349e874b3ac297de19f00cd,Robust Face Recognition by Computing Distances From Multiple Histograms of Oriented Gradients,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+1275d6a800f8cf93c092603175fdad362b69c191,Deep Face Recognition: A Survey,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+126535430845361cd7a3a6f317797fe6e53f5a3b,Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+126535430845361cd7a3a6f317797fe6e53f5a3b,Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+121fe33daf55758219e53249cf8bcb0eb2b4db4b,An Empirical Camera Model for Internet Color Vision,Middlebury College,Middlebury College,"Middlebury College, Old Chapel Road, Middlebury, Addison County, Vermont, 05753, USA",44.0090777,-73.1767946
+12408baf69419409d228d96c6f88b6bcde303505,Temporal Tessellation: A Unified Approach for Video Analysis,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+12408baf69419409d228d96c6f88b6bcde303505,Temporal Tessellation: A Unified Approach for Video Analysis,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,Colorado State University,Colorado State University,"Colorado State University, West Pitkin Street, Woodwest, Fort Collins, Larimer County, Colorado, 80526-2002, USA",40.5709358,-105.086552556269
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, 100049, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,University of Technology,"University of Technology, Sydney","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+120bcc9879d953de7b2ecfbcd301f72f3a96fb87,Report on the FG 2015 Video Person Recognition Evaluation,National Institute of Standards and Technology,National Institute of Standards and Technology,"National Institute of Standards and Technology, Summer Walk Drive, Diamond Farms, Gaithersburg, Montgomery County, Maryland, 20878, USA",39.1254938,-77.2229347515
+12095f9b35ee88272dd5abc2d942a4f55804b31e,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,"Imperial College London, UK","Imperial College London, UK","Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+12095f9b35ee88272dd5abc2d942a4f55804b31e,DenseReg : Fully Convolutional Dense Shape Regression Inthe-Wild Rıza,University College London,"University College London, UK","UCL Institute of Education, 20, Bedford Way, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1H 0AL, UK",51.5231607,-0.1282037
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Nebraska - Lincoln,University of Nebraska - Lincoln,"Sheldon Museum of Art, North 12th Street, West Lincoln, Lincoln, Lancaster County, Nebraska, 68588-0300, USA",40.8174723,-96.7044468
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+126214ef0dcef2b456cb413905fa13160c73ec8e,Modelling human perception of static facial expressions,University of Siena,University of Siena,"大學 University, 澤祥街 Chak Cheung Street, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.4133862,114.210058
+12692fbe915e6bb1c80733519371bbb90ae07539,Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+12692fbe915e6bb1c80733519371bbb90ae07539,Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1251deae1b4a722a2155d932bdfb6fe4ae28dd22,A Large-scale Attribute Dataset for Zero-shot Learning,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+1251deae1b4a722a2155d932bdfb6fe4ae28dd22,A Large-scale Attribute Dataset for Zero-shot Learning,Fudan University,Fudan University,"复旦大学, 220, 邯郸路, 五角场街道, 杨浦区, 上海市, 200433, 中国",31.30104395,121.500454969435
+12ccfc188de0b40c84d6a427999239c6a379cd66,Sparse Adversarial Perturbations for Videos,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+1270044a3fa1a469ec2f4f3bd364754f58a1cb56,Video-Based Face Recognition Using Probabilistic Appearance Manifolds,University of Illinois,University of Illinois,"B-3, South Mathews Avenue, Urbana, Champaign County, Illinois, 61801, USA",40.11116745,-88.2258766477716
+12003a7d65c4f98fb57587fd0e764b44d0d10125,Face recognition in the wild with the Probabilistic Gabor-Fisher Classifier,University of Ljubljana,University of Ljubljana,"UL Fakulteta za računalništvo in informatiko, 113, Večna pot, Vrtača, Rožna dolina, Ljubljana, Upravna Enota Ljubljana, Osrednjeslovenska, 1000, Slovenija",46.0501558,14.4690732689076
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",University,"University, USA","University, South Dixie Highway, Coral Gables, Miami-Dade County, Florida, 33124-6310, USA",25.7147949,-80.276947
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",Brown University,Brown University,"Brown University, Waterman Street, College Hill, Providence, Bristol, Rhode Island, 02912, USA",41.8268682,-71.4012314581107
+8c8525e626c8857a4c6c385de34ffea31e7e41d1,Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+8c8525e626c8857a4c6c385de34ffea31e7e41d1,Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+8c66378df977606d332fc3b0047989e890a6ac76,Hierarchical-PEP model for real-world face recognition,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949
+8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8338371,10.7035939
+8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,University of Coimbra,"University of Coimbra, Portugal","Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816
+8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8338371,10.7035939
+8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,University of Coimbra,"University of Coimbra, Portugal","Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816
+8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,Institute of Systems and Robotics,Institute of Systems and Robotics,"Institut für Robotik und Kognitive Systeme, 160, Ratzeburger Allee, Strecknitz, Sankt Jürgen, Strecknitz, Lübeck, Schleswig-Holstein, 23562, Deutschland",53.8338371,10.7035939
+8c9c8111e18f8798a612e7386e88536dfe26455e,Comparing Bayesian Networks to Classify Facial Expressions,University of Coimbra,"University of Coimbra, Portugal","Reitoria da Universidade de Coimbra, Rua de Entre-Colégios, Almedina, Alta, Almedina, Sé Nova, Santa Cruz, Almedina e São Bartolomeu, CBR, Coimbra, Baixo Mondego, Centro, 3000-062, Portugal",40.2075951,-8.42566147540816
+8c81705e5e4a1e2068a5bd518adc6955d49ae434,3D Object Recognition with Enhanced Grassmann Discriminant Analysis,University of Tsukuba,"University of Tsukuba, Japan","University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+8cb403c733a5f23aefa6f583a17cf9b972e35c90,Learning the semantic structure of objects from Web supervision,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+8ccde9d80706a59e606f6e6d48d4260b60ccc736,RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+8ccde9d80706a59e606f6e6d48d4260b60ccc736,RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks,Duke University,Duke University,"Nasher Museum of Art, 2001, Campus Drive, Burch Avenue, Durham, Durham County, North Carolina, 27705, USA",35.9990522,-78.9290629011139
+8c6b9c9c26ead75ce549a57c4fd0a12b46142848,Facial expression recognition using shape and texture information,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+8c4ea76e67a2a99339a8c4decd877fe0aa2d8e82,Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing 101408, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+8cb55413f1c5b6bda943697bba1dc0f8fc880d28,Video-based Face Recognition on Real-World Data,University of Karlsruhe,"University of Karlsruhe, Germany","Karlshochschule International University, 36-38, Karlstraße, Innenstadt-West Westlicher Teil, Innenstadt-West, Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76133, Deutschland",49.00664235,8.39405151637065
+85041e48b51a2c498f22850ce7228df4e2263372,Subspace Regression: Predicting a Subspace from One Sample,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+85fd2bda5eb3afe68a5a78c30297064aec1361f6,"Are You Smiling, or Have I Seen You Before? Familiarity Makes Faces Look Happier.",University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+857ad04fca2740b016f0066b152bd1fa1171483f,Sample Images can be Independently Restored from Face Recognition Templates,University of Ottawa,University of Ottawa,"University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+858b51a8a8aa082732e9c7fbbd1ea9df9c76b013,Can Computer Vision Problems Benefit from Structured Hierarchical Classification?,Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+856317f27248cdb20226eaae599e46de628fb696,A Method Based on Convex Cone Model for Image-Set Classification with CNN Features,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+855184c789bca7a56bb223089516d1358823db0b,Automatic Procedure to Fix Closed-Eyes Image,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+853bd61bc48a431b9b1c7cab10c603830c488e39,Learning Face Representation from Scratch,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+85639cefb8f8deab7017ce92717674d6178d43cc,Automatic Analysis of Spontaneous Facial Behavior: A Final Project Report,University of California,"University of California, San Diego","UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+85674b1b6007634f362cbe9b921912b697c0a32c,Optimizing Facial Landmark Detection by Facial Attribute Learning,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1d21e5beef23eecff6fff7d4edc16247f0fd984a,Face Recognition from Video Using the Generic Shape-Illumination Manifold,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+1d19c6857e798943cd0ecd110a7a0d514c671fec,Do Deep Neural Networks Learn Facial Action Units When Doing Expression Recognition?,University of Illinois at Urbana-Champaign,University of Illinois at Urbana-Champaign,"Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+1d696a1beb42515ab16f3a9f6f72584a41492a03,"Deeply learned face representations are sparse, selective, and robust",the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1d696a1beb42515ab16f3a9f6f72584a41492a03,"Deeply learned face representations are sparse, selective, and robust",the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1d696a1beb42515ab16f3a9f6f72584a41492a03,"Deeply learned face representations are sparse, selective, and robust",Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+1d1caaa2312390260f7d20ad5f1736099818d358,Resource-Allocating Codebook for patch-based face recognition,University of Southampton,"University of Southampton, SO17 1BJ, UK","Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+1dc241ee162db246882f366644171c11f7aed96d,Deep Action- and Context-Aware Sequence Learning for Activity Recognition and Anticipation,Australian National University,Australian National University,"Australian National University, 52, Collins Street, Melbourne City, City of Melbourne, Victoria, 3000, Australia",-37.81354365,144.971791681654
+1d0128b9f96f4c11c034d41581f23eb4b4dd7780,Automatic construction Of robust spherical harmonic subspaces,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,University of,University of,"University of ..., University Road, بہاولپور, Bahāwalpur District, پنجاب, 63100, پاکستان",29.3758342,71.7528712910287
+1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1d3dd9aba79a53390317ec1e0b7cd742cba43132,A maximum entropy feature descriptor for age invariant face recognition,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+1d5aad4f7fae6d414ffb212cec1f7ac876de48bf,Face retriever: Pre-filtering the gallery via deep neural net,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+1db23a0547700ca233aef9cfae2081cd8c5a04d7,Comparative study and evaluation of various data classification techniques in data mining,Raipur institute of technology,Raipur institute of technology,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India",21.2262243,81.8013664
+1db23a0547700ca233aef9cfae2081cd8c5a04d7,Comparative study and evaluation of various data classification techniques in data mining,Raipur institute of technology,Raipur institute of technology,"Raipur institute of technology, NH53, Raipur, Chhattisgarh, 492101, India",21.2262243,81.8013664
+1d97735bb0f0434dde552a96e1844b064af08f62,Weber binary pattern and Weber ternary pattern for illumination-robust face recognition,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+1dacc2f4890431d867a038fd81c111d639cf4d7e,Using social outcomes to inform decision-making in schizophrenia: Relationships with symptoms and functioning.,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+1dacc2f4890431d867a038fd81c111d639cf4d7e,Using social outcomes to inform decision-making in schizophrenia: Relationships with symptoms and functioning.,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+1dacc2f4890431d867a038fd81c111d639cf4d7e,Using social outcomes to inform decision-making in schizophrenia: Relationships with symptoms and functioning.,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+1de690714f143a8eb0d6be35d98390257a3f4a47,Face detection using spectral histograms and SVMs,The Florida State University,The Florida State University,"Florida State University, 600, West College Avenue, Tallahassee, Leon County, Florida, 32306-1058, USA",30.44235995,-84.2974786716626
+1d7df3df839a6aa8f5392310d46b2a89080a3c25,Large-Margin Softmax Loss for Convolutional Neural Networks,South China University of Technology,South China University of Technology,"华南理工大学, 大学城中环东路, 广州大学城, 新造, 番禺区 (Panyu), 广州市, 广东省, 510006, 中国",23.0502042,113.398803226836
+1d7df3df839a6aa8f5392310d46b2a89080a3c25,Large-Margin Softmax Loss for Convolutional Neural Networks,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+1d6c09019149be2dc84b0c067595f782a5d17316,Encoding Video and Label Priors for Multi-label Video Classification on YouTube-8M dataset,Seoul National University,Seoul National University,"서울대학교, 서호동로, 서둔동, 권선구, 수원시, 경기, 16614, 대한민국",37.26728,126.9841151
+71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+71fd29c2ae9cc9e4f959268674b6b563c06d9480,End-to-end 3D shape inverse rendering of different classes of objects from a single input image,university,"university, Shiraz, Iran","دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+7142ac9e4d5498037aeb0f459f278fd28dae8048,Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+71f36c8e17a5c080fab31fce1ffea9551fc49e47,Predicting Failures of Vision Systems,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+7117ed0be436c0291bc6fb6ea6db18de74e2464a,Spatial Transformations,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+71e6a46b32a8163c9eda69e1badcee6348f1f56a,Visually Interpreting Names as Demographic Attributes by Exploiting Click-Through Data,National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+713594c18978b965be87651bb553c28f8501df0a,Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+713594c18978b965be87651bb553c28f8501df0a,Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+718d3137adba9e3078fa1f698020b666449f3336,Accuracy Based Feature Ranking Metric for Multi-Label Text Classification,University of Engineering and Technology,University of Engineering and Technology,"University of Engineering and Technology, Lahore Bypass, لاہور, Shekhūpura District, پنجاب, پاکستان",31.6914689,74.2465617
+718d3137adba9e3078fa1f698020b666449f3336,Accuracy Based Feature Ranking Metric for Multi-Label Text Classification,University of Gujrat,"University of Gujrat, Pakistan","University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, پاکستان",32.63744845,74.1617455759799
+718d3137adba9e3078fa1f698020b666449f3336,Accuracy Based Feature Ranking Metric for Multi-Label Text Classification,University of Gujrat,"University of Gujrat, Pakistan","University of Gujrat, University Road, Chandhar, Gujrāt District, پنجاب, 50700, پاکستان",32.63744845,74.1617455759799
+716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,University of Wisconsin-Madison,University of Wisconsin-Madison,"University of Wisconsin-Madison, Marsh Lane, Madison, Dane County, Wisconsin, 53705-2221, USA",43.07982815,-89.4306642542901
+7143518f847b0ec57a0ff80e0304c89d7e924d9a,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,Hefei University of Technology,Hefei University of Technology,"合肥工业大学(屯溪路校区), 193号, 南一环路, 航运南村, 包公街道, 合肥市区, 合肥市, 安徽省, 230009, 中国",31.846918,117.290533667908
+7143518f847b0ec57a0ff80e0304c89d7e924d9a,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+713db3874b77212492d75fb100a345949f3d3235,Deep Semantic Face Deblurring,University of California,"University of California, Merced","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools),Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools),University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools),Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+715b69575dadd7804b4f8ccb419a3ad8b7b7ca89,Testing Separability and Independence of Perceptual Dimensions with General Recognition Theory: A Tutorial and New R Package (grtools),University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+71e56f2aebeb3c4bb3687b104815e09bb4364102,Video Co-segmentation for Meaningful Action Extraction,National University of singapore,National University of singapore,"NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+7643861bb492bf303b25d0306462f8fb7dc29878,Speeding up 2D-warping for pose-invariant face recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+76ce3d35d9370f0e2e27cfd29ea0941f1462895f,Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU,Tianjin University,Tianjin University,"泰山航空港/天津大厦, 枣行路, 枣行 高王寺, 长城路, 大河, 岱岳区 (Daiyue), 泰安市, 山东省, 271000, 中国",36.20304395,117.058421125807
+768c332650a44dee02f3d1d2be1debfa90a3946c,Bayesian face recognition using support vector machine and face clustering,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+769461ff717d987482b28b32b1e2a6e46570e3ff,MIC-TJU in MediaEval 2017 Emotional Impact of Movies Task,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+764882e6779fbee29c3d87e00302befc52d2ea8d,Deep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+764882e6779fbee29c3d87e00302befc52d2ea8d,Deep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+764882e6779fbee29c3d87e00302befc52d2ea8d,Deep Approximately Orthogonal Nonnegative Matrix Factorization for Clustering,Guangdong University of Technology,Guangdong University of Technology,"广东工业大学, 东风东路, 黄花岗街道, 越秀区 (Yuexiu), 广州市, 广东省, 510080, 中国",23.1353836,113.294704958268
+76d939f73a327bf1087d91daa6a7824681d76ea1,A Thermal Facial Emotion Database and Its Analysis,Japan Advanced Institute of Science and Technology,Japan Advanced Institute of Science and Technology,"JAIST (北陸先端科学技術大学院大学), 石川県道55号小松辰口線, Ishikawa Science Park, 能美市, 石川県, 中部地方, 923-1206, 日本",36.4442949,136.5928587
+1c9efb6c895917174ac6ccc3bae191152f90c625,Unifying Identification and Context Learning for Person Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1c2724243b27a18a2302f12dea79d9a1d4460e35,Fisher+Kernel criterion for discriminant analysis,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+1c2724243b27a18a2302f12dea79d9a1d4460e35,Fisher+Kernel criterion for discriminant analysis,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1c2724243b27a18a2302f12dea79d9a1d4460e35,Fisher+Kernel criterion for discriminant analysis,University of Science and Technology of China,"University of Science and Technology of China, Hefei, Anhui, P. R. China","中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+1ca8c09abb73a02519d8db77e4fe107acfc589b6,Automatic Understanding of Image and Video Advertisements,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+1c4ceae745fe812d8251fda7aad03210448ae25e,Optimization of Color Conversion for Face Recognition,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+1c4ceae745fe812d8251fda7aad03210448ae25e,Optimization of Color Conversion for Face Recognition,Virginia Polytechnic Institute and State University,Virginia Polytechnic Institute and State University,"Virginia Polytechnic Institute and State University, Duck Pond Drive, Blacksburg, Montgomery County, Virginia, 24061-9517, USA",37.21872455,-80.4254251869494
+1cee993dc42626caf5dbc26c0a7790ca6571d01a,Optimal illumination for image and video relighting,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+1c147261f5ab1b8ee0a54021a3168fa191096df8,Face Recognition across Time Lapse Using Convolutional Neural Networks,George Mason University,George Mason University,"George Mason University, Aquia Creek Lane, Country Club View, Blue Oaks, Fairfax County, Virginia, 22030-9998, USA",38.83133325,-77.3079883887912
+1c17450c4d616e1e1eece248c42eba4f87de9e0d,Automatic Age Estimation from Face Images via Deep Ranking,Institute of Information Science,Institute of Information Science,"資訊科學研究所, 數理大道, 中研里, 南港子, 南港區, 臺北市, 11574, 臺灣",25.0410728,121.614756201755
+1c41965c5e1f97b1504c1bdde8037b5e0417da5e,Interaction-aware Spatio-temporal Pyramid Attention Networks for Action Classification,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+1c41965c5e1f97b1504c1bdde8037b5e0417da5e,Interaction-aware Spatio-temporal Pyramid Attention Networks for Action Classification,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+1cbd3f96524ca2258fd2d5c504c7ea8da7fb1d16,Fusion of Audio-visual Features using Hierarchical Classifier Systems for the Recognition of Affective States and the State of Depression,Ulm University,Ulm University,"HNU, John-F.-Kennedy-Straße, Vorfeld, Wiley, Neu-Ulm, Landkreis Neu-Ulm, Schwaben, Bayern, 89231, Deutschland",48.38044335,10.0101011516362
+1cad5d682393ffbb00fd26231532d36132582bb4,"ZHENHENG YANG, JIYANG GAO, RAM NEVATIA: SPATIO-TEMPORAL ACTION DETECTION WITH CASCADE PROPOSAL AND LOCATION ANTICIPATION1 Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation",University of Southern California,University of Southern California,"University of Southern California, Watt Way, Saint James Park, LA, Los Angeles County, California, 90089, USA",34.0224149,-118.286344073446
+1c1a98df3d0d5e2034ea723994bdc85af45934db,Guided Unsupervised Learning of Mode Specific Models for Facial Point Detection in the Wild,The University of Nottingham,The University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+1ca815327e62c70f4ee619a836e05183ef629567,Global supervised descent method,Carnegie Mellon University,"Carnegie Mellon University, Pittsburgh PA","Carnegie Mellon University, Forbes Avenue, Squirrel Hill North, PGH, Allegheny County, Pennsylvania, 15213, USA",40.4441619,-79.942728259225
+1c530de1a94ac70bf9086e39af1712ea8d2d2781,Sparsity Conditional Energy Label Distribution Learning for Age Estimation,Southeast University,Southeast University,"SEU, 体育馆路, 新街口, 月季园, 玄武区, 南京市, 江苏省, 210008, 中国",32.0575279,118.786822520439
+82f8652c2059187b944ce65e87bacb6b765521f6,Discriminative Object Categorization with External Semantic Knowledge,University of Texas at Austin,University of Texas at Austin,"University of Texas at Austin, 1, East 23rd Street, The Drag, Austin, Travis County, Texas, 78712, USA",30.284151,-97.7319559808022
+824d1db06e1c25f7681e46199fd02cb5fc343784,Representing Relative Visual Attributes with a Reference-Point-Based Decision Model,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+824d1db06e1c25f7681e46199fd02cb5fc343784,Representing Relative Visual Attributes with a Reference-Point-Based Decision Model,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+82ccd62f70e669ec770daf11d9611cab0a13047e,Sparse Variation Pattern for Texture Classification,Tafresh University,Tafresh University,"دانشگاه تفرش, پاسداران, خرازان, بخش مرکزی, شهرستان تفرش, استان مرکزی, ایران",34.68092465,50.0534135183902
+82ccd62f70e669ec770daf11d9611cab0a13047e,Sparse Variation Pattern for Texture Classification,The University of Western Australia,The University of Western Australia,"UWA, 35, Underwood Avenue, Daglish, Perth, Western Australia, 6009, Australia",-31.95040445,115.797900374251
+82ccd62f70e669ec770daf11d9611cab0a13047e,Sparse Variation Pattern for Texture Classification,Azad University,"Central Tehran Branch, Azad University","دانشگاه آزاد شعبه مرکزی تربیت بدنی, بلوار ایران زمین, شهرک غرب, منطقه ۲ شهر تهران, تهران, بخش رودبارقصران, شهرستان شمیرانات, استان تهران, 14658, ایران",35.753318,51.370631
+82a610a59c210ff77cfdde7fd10c98067bd142da,Human attention and intent analysis using robust visual cues in a Bayesian framework,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+82b43bc9213230af9db17322301cbdf81e2ce8cc,Attention-Set based Metric Learning for Video Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+82e66c4832386cafcec16b92ac88088ffd1a1bc9,OpenFace: A general-purpose face recognition library with mobile applications,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+82e66c4832386cafcec16b92ac88088ffd1a1bc9,OpenFace: A general-purpose face recognition library with mobile applications,Poznan University of Technology,Poznan University of Technology,"Dom Studencki nr 3, 3, Kórnicka, Święty Roch, Rataje, Poznań, wielkopolskie, 61-141, RP",52.4004837,16.9515808278647
+82eb267b8e86be0b444e841b4b4ed4814b6f1942,Single Image 3D Interpreter Network,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+82eb267b8e86be0b444e841b4b4ed4814b6f1942,Single Image 3D Interpreter Network,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+499f1d647d938235e9186d968b7bb2ab20f2726d,Face Recognition via Archetype Hull Ranking,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+49f70f707c2e030fe16059635df85c7625b5dc7e,Face recognition under illumination variations based on eight local directional patterns,Utah State University,Utah State University,"Utah State University, Champ Drive, Logan, Cache County, Utah, 84322, USA",41.7411504,-111.8122309
+49820ae612b3c0590a8a78a725f4f378cb605cd1,Evaluation of Smile Detection Methods with Images in Real-World Scenarios,Beijing University of Posts and Telecommunications,"Beijing University of Posts and Telecommunications, Beijing, China","北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+49e975a4c60d99bcc42c921d73f8d89ec7130916,Human and computer recognition of facial expressions of emotion.,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+49e975a4c60d99bcc42c921d73f8d89ec7130916,Human and computer recognition of facial expressions of emotion.,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+490a217a4e9a30563f3a4442a7d04f0ea34442c8,An SOM-based Automatic Facial Expression Recognition System,university,university,"دانشکده مهندسی دانشگاه شیراز, ملاصدرا, فلسطین, محدوده شهرداری منطقه یک - شهرداری شیراز, شیراز, بخش مرکزی شهرستان شیراز, شهرستان شیراز, استان فارس, 71936, ایران",29.6284395,52.5181728343761
+4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+4934d44aa89b6d871eb6709dd1d1eebf16f3aaf1,A Deep Sum-Product Architecture for Robust Facial Attributes Analysis,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+499f2b005e960a145619305814a4e9aa6a1bba6a,Robust human face recognition based on locality preserving sparse over complete block approximation,University of Geneva,University of Geneva,"University of Chicago-Yerkes Observatory, 373, West Geneva Street, Williams Bay, Walworth County, Wisconsin, 53191, USA",42.57054745,-88.5557862661765
+497bf2df484906e5430aa3045cf04a40c9225f94,Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems,Kyung Hee University,Kyung Hee University,"Kyung Hee Tae Kwon Do, Vons 2370 Truck Service Ramp, University City, San Diego, San Diego County, California, 92122, USA",32.8536333,-117.2035286
+497bf2df484906e5430aa3045cf04a40c9225f94,Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems,Ajou University,Ajou University,"아주대학교, 성호대교, 이의동, 영통구, 수원시, 경기, 16499, 대한민국",37.2830003,127.045484689222
+492f41e800c52614c5519f830e72561db205e86c,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+492f41e800c52614c5519f830e72561db205e86c,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+492f41e800c52614c5519f830e72561db205e86c,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+493ec9e567c5587c4cbeb5f08ca47408ca2d6571,Combining graph embedding and sparse regression with structure low-rank representation for semi-supervised learning,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+49570b41bd9574bd9c600e24b269d945c645b7bd,A Framework for Performance Evaluation of Face Recognition Algorithms,Arizona State University,Arizona State University,"Arizona State University Polytechnic campus, East Texas Avenue, Mesa, Maricopa County, Arizona, 85212, USA",33.30715065,-111.676531568996
+40a74eea514b389b480d6fe8b359cb6ad31b644a,Discrete Deep Feature Extraction: A Theory and New Architectures,University of Vienna,University of Vienna,"Uni Wien, 1, Universitätsring, Schottenviertel, KG Innere Stadt, Innere Stadt, Wien, 1010, Österreich",48.2131302,16.3606865338016
+403a108dec92363fd1f465340bd54dbfe65af870,Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns,"Max Planck Institute for Informatics, Germany","Max Planck Institute for Informatics, Germany","MPII, E1 4, Campus, Universität, Sankt Johann, Bezirk Mitte, Saarbrücken, Regionalverband Saarbrücken, Saarland, 66123, Deutschland",49.2579566,7.04577416640431
+40ee38d7ff2871761663d8634c3a4970ed1dc058,Three-Dimensional Face Recognition: A Fishersurface Approach,The University of York,The University of York,"University of York, Lakeside Way, Heslington, York, Yorkshire and the Humber, England, YO10 5FN, UK",53.94540365,-1.0313887829649
+404042a1dcfde338cf24bc2742c57c0fb1f48359,A Survey on Facial Features Localization,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+4015e8195db6edb0ef8520709ca9cb2c46f29be7,Smile Detector Based on the Motion of Face Reference Points,UNIVERSITY OF TARTU,UNIVERSITY OF TARTU,"Paabel, University of Tartu, 17, Ülikooli, Kesklinn, Tartu linn, Tartu, Tartu linn, Tartu maakond, 53007, Eesti",58.38131405,26.7207808104523
+4015e8195db6edb0ef8520709ca9cb2c46f29be7,Smile Detector Based on the Motion of Face Reference Points,Institute of Computer Science,Institute of Computer Science,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+407bb798ab153bf6156ba2956f8cf93256b6910a,Fisher Pruning of Deep Nets for Facial Trait Classification,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+407de9da58871cae7a6ded2f3a6162b9dc371f38,TraMNet - Transition Matrix Network for Efficient Action Tube Proposals,Oxford Brookes University,Oxford Brookes University,"Oxford Brookes University, Headington Road, Headington, Oxford, Oxon, South East, England, OX3 0BL, UK",51.7555205,-1.2261597
+405526dfc79de98f5bf3c97bf4aa9a287700f15d,MegaFace: A Million Faces for Recognition at Scale,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+40b7e590dfd1cdfa1e0276e9ca592e02c1bd2b5b,Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+40a5b32e261dc5ccc1b5df5d5338b7d3fe10370d,Feedback-Controlled Sequential Lasso Screening,Princeton University,Princeton University,"Lot 9, University Place, Princeton Township, Mercer County, New Jersey, 08540, USA",40.34829285,-74.66308325
+40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,Automatic Lip Tracking and Action Units Classification using Two-Step Active Contours and Probabilistic Neural Networks,University of Tabriz,"University of Tabriz, Tabriz, Iran","دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ایران",38.0612553,46.3298484
+40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,Automatic Lip Tracking and Action Units Classification using Two-Step Active Contours and Probabilistic Neural Networks,University of Ottawa,"University of Ottawa, Canada","University of Ottawa, 1, Stewart Street, Byward Market, Lowertown, Rideau-Vanier, Ottawa, Ontario, K1N 6N5, Canada",45.42580475,-75.6874011819989
+40a9f3d73c622cceee5e3d6ca8faa56ed6ebef60,Automatic Lip Tracking and Action Units Classification using Two-Step Active Contours and Probabilistic Neural Networks,University of Tabriz,"University of Tabriz, Tabriz, Iran","دانشگاه تبریز, شهید ایرج خلوتی, کوی انقلاب, تبریز, بخش مرکزی, شهرستان تبریز, استان آذربایجان شرقی, 5166616471, ایران",38.0612553,46.3298484
+40e1743332523b2ab5614bae5e10f7a7799161f4,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+40e1743332523b2ab5614bae5e10f7a7799161f4,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,Jiangnan University,Jiangnan University,"江南大学站, 蠡湖大道, 滨湖区, 南场村, 滨湖区 (Binhu), 无锡市 / Wuxi, 江苏省, 214121, 中国",31.4854255,120.2739581
+40c8cffd5aac68f59324733416b6b2959cb668fd,Pooling Facial Segments to Face: The Shallow and Deep Ends,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+40bb090a4e303f11168dce33ed992f51afe02ff7,Marginal Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+40bb090a4e303f11168dce33ed992f51afe02ff7,Marginal Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+40bb090a4e303f11168dce33ed992f51afe02ff7,Marginal Loss for Deep Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+406431d2286a50205a71f04e0b311ba858fc7b6c,3D facial expression classification using a statistical model of surface normals and a modular approach,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134052244
+406431d2286a50205a71f04e0b311ba858fc7b6c,3D facial expression classification using a statistical model of surface normals and a modular approach,University of Birmingham,University of Birmingham,"University of Birmingham Edgbaston Campus, Ring Road North, Bournbrook, Birmingham, West Midlands Combined Authority, West Midlands, England, B15 2TP, UK",52.45044325,-1.93196134052244
+40217a8c60e0a7d1735d4f631171aa6ed146e719,Part-Pair Representation for Part Localization,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+2e0addeffba4be98a6ad0460453fbab52616b139,Face View Synthesis Using A Single Image,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+2e0addeffba4be98a6ad0460453fbab52616b139,Face View Synthesis Using A Single Image,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+2e0addeffba4be98a6ad0460453fbab52616b139,Face View Synthesis Using A Single Image,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+2e8a0cc071017845ee6f67bd0633b8167a47abed,Spatio-temporal covariance descriptors for action and gesture recognition,University of Queensland,University of Queensland,"University of Queensland, University Drive, Hill End, St Lucia, Brisbane, QLD, 4072, Australia",-27.49741805,153.013169559836
+2e231f1e7e641dd3619bec59e14d02e91360ac01,Fusion Network for Face-Based Age Estimation,University of Bath,University of Bath,"University of Bath, Convocation Avenue, Claverton Down, Bath, Bath and North East Somerset, South West England, England, BA2 7PA, UK",51.3791442,-2.3252332
+2e231f1e7e641dd3619bec59e14d02e91360ac01,Fusion Network for Face-Based Age Estimation,Charles Sturt University,Charles Sturt University,"Charles Sturt University, Wagga Wagga, NSW, 2678, Australia",-35.0636071,147.3552234
+2e6cfeba49d327de21ae3186532e56cadeb57c02,Real Time Eye Gaze Tracking with 3D Deformable Eye-Face Model,Rensselaer Polytechnic Institute,Rensselaer Polytechnic Institute,"Rensselaer Polytechnic Institute, Sage Avenue, Downtown, City of Troy, Rensselaer County, New York, 12180, USA",42.7298459,-73.6795021620135
+2ee817981e02c4709d65870c140665ed25b005cc,Sparse representations and Random Projections for robust and cancelable biometrics,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+2ee817981e02c4709d65870c140665ed25b005cc,Sparse representations and Random Projections for robust and cancelable biometrics,"College Park, MD 20742 USA","College Park, MD 20742 USA","College Park, Prince George's County, Maryland, USA",38.980666,-76.9369189
+2e98329fdec27d4b3b9b894687e7d1352d828b1d,Using Affect Awareness to Modulate Task Experience: A Study Amongst Pre-elementary School Kids,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,Analysis by Synthesis: 3D Object Recognition by Object Reconstruction,University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+2e8eb9dc07deb5142a99bc861e0b6295574d1fbd,Analysis by Synthesis: 3D Object Recognition by Object Reconstruction,University of California,"University of California, Irvine","University of California, Irvine, East Peltason Drive, Turtle Rock, Irvine, Orange County, California, 92612, USA",33.6431901,-117.84016493553
+2e3c893ac11e1a566971f64ae30ac4a1f36f5bb5,Simultaneous Object Detection and Ranking with Weak Supervision,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+2ed3ce5cf9e262bcc48a6bd998e7fb70cf8a971c,Active AU Based Patch Weighting for Facial Expression Recognition,Shenzhen University,Shenzhen University,"深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+2edc6df161f6aadbef9c12408bdb367e72c3c967,Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild,University of Oulu,"University of Oulu, Finland","Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+2eb9f1dbea71bdc57821dedbb587ff04f3a25f07,Face for Ambient Interface,IMPERIAL COLLEGE,IMPERIAL COLLEGE,"国子监, 五道营胡同, Naga上院, 北京市, 东城区, 北京市, 100010, 中国",39.9458551,116.406973072869
+2e1fd8d57425b727fd850d7710d38194fa6e2654,Learning Structured Appearance Models from Captioned Images of Cluttered Scenes,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+2e1fd8d57425b727fd850d7710d38194fa6e2654,Learning Structured Appearance Models from Captioned Images of Cluttered Scenes,Bielefeld University,Bielefeld University,"Fachhochschule Bielefeld FB Gestaltung, 3, Lampingstraße, Mitte, Bielefeld, Regierungsbezirk Detmold, Nordrhein-Westfalen, 33615, Deutschland",52.0280421,8.51148270115395
+2be0ab87dc8f4005c37c523f712dd033c0685827,Relaxed local ternary pattern for face recognition,Institute of Media Innovation,Institute of Media Innovation,"Institute for Media Innovation, 50, Nanyang Drive, Pioneer, Southwest, 637553, Singapore",1.3433937,103.6793303
+2be0ab87dc8f4005c37c523f712dd033c0685827,Relaxed local ternary pattern for face recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+2be0ab87dc8f4005c37c523f712dd033c0685827,Relaxed local ternary pattern for face recognition,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,Image-Based Recommendations on Styles and Substitutes,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+2bb2ba7c96d40e269fc6a2d5384c739ff9fa16eb,Image-Based Recommendations on Styles and Substitutes,University of Adelaide,University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+2b339ece73e3787f445c5b92078e8f82c9b1c522,"Human Re-identification in Crowd Videos Using Personal, Social and Environmental Constraints",University of Central Florida,"University of Central Florida, Orlando, USA","Rosen College of Hospitality Management, 9907, Universal Boulevard, Orange County, Florida, 32819, USA",28.42903955,-81.4421617727936
+2bb53e66aa9417b6560e588b6235e7b8ebbc294c,Semantic embedding space for zero-shot action recognition,Queen Mary University of London,Queen Mary University of London,"Queen Mary (University of London), Mile End Road, Globe Town, Mile End, London Borough of Tower Hamlets, London, Greater London, England, E1 4NS, UK",51.5247272,-0.0393103466301624
+2be8e06bc3a4662d0e4f5bcfea45631b8beca4d0,Watch and learn: Semi-supervised learning of object detectors from videos,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+2bcec23ac1486f4106a3aa588b6589e9299aba70,An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+2b773fe8f0246536c9c40671dfa307e98bf365ad,Fast Discriminative Stochastic Neighbor Embedding Analysis,Zhejiang University of Technology,Zhejiang University of Technology,"浙江工业大学, 潮王路, 朝晖街道, 杭州市 Hangzhou, 浙江省, 310014, 中国",30.2931534,120.1620458
+2b0102d77d3d3f9bc55420d862075934f5c85bec,Slicing Convolutional Neural Network for Crowd Video Understanding,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+2b0102d77d3d3f9bc55420d862075934f5c85bec,Slicing Convolutional Neural Network for Crowd Video Understanding,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+2b435ee691718d0b55d057d9be4c3dbb8a81526e,SURF-Face: Face Recognition Under Viewpoint Consistency Constraints,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+2b64a8c1f584389b611198d47a750f5d74234426,Deblurring Face Images with Exemplars,Dalian University of Technology,"Dalian University of Technology, Dalian, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+2b64a8c1f584389b611198d47a750f5d74234426,Deblurring Face Images with Exemplars,University of California,"University of California, Merced, USA","University of California, Merced, Ansel Adams Road, Merced County, California, USA",37.36566745,-120.421588883632
+2b10a07c35c453144f22e8c539bf9a23695e85fc,Standardization of Face Image Sample Quality,University of Science and Technology of China,University of Science and Technology of China,"中国科学技术大学 东校区, 96号, 金寨路, 江淮化肥厂小区, 芜湖路街道, 合肥市区, 合肥市, 安徽省, 230026, 中国",31.83907195,117.264207478576
+2b10a07c35c453144f22e8c539bf9a23695e85fc,Standardization of Face Image Sample Quality,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+2b84630680e2c906f8d7ac528e2eb32c99ef203a,We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+2b84630680e2c906f8d7ac528e2eb32c99ef203a,We are not All Equal: Personalizing Models for Facial Expression Analysis with Transductive Parameter Transfer,University of Perugia,University of Perugia,"Caffe Perugia, 2350, Health Sciences Mall, University Endowment Lands, Metro Vancouver, British Columbia, V6T, Canada",49.2622421,-123.2450052
+2b7ef95822a4d577021df16607bf7b4a4514eb4b,Emergence of Object-Selective Features in Unsupervised Feature Learning,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,Ring loss: Convex Feature Normalization for Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+2b42f83a720bd4156113ba5350add2df2673daf0,Action Recognition and Detection by Combining Motion and Appearance Features,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+2b42f83a720bd4156113ba5350add2df2673daf0,Action Recognition and Detection by Combining Motion and Appearance Features,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+2b42f83a720bd4156113ba5350add2df2673daf0,Action Recognition and Detection by Combining Motion and Appearance Features,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+47fdbd64edd7d348713253cf362a9c21f98e4296,Facial point detection based on a convolutional neural network with optimal mini-batch procedure,Chubu University,Chubu University,"中部大学, 国道19号, 春日井市, 愛知県, 中部地方, 487-8501, 日本",35.2742655,137.013278412463
+47382cb7f501188a81bb2e10cfd7aed20285f376,Articulated Pose Estimation Using Hierarchical Exemplar-Based Models,Columbia University in the City of New York,Columbia University in the City of New York,"Columbia University In The City Of New York, College Walk, Morningside Heights, Manhattan, Manhattan Community Board 9, New York County, NYC, New York, 10027, USA",40.8071772,-73.9625279772072
+473366f025c4a6e0783e6174ca914f9cb328fe70,Review of Action Recognition and Detection Methods,York University,York University,"York University, Keele Campus, Campus Walk, North York, Toronto, Ontario, M3J 2S5, Canada",43.7743911,-79.5048108538813
+473031328c58b7461753e81251379331467f7a69,Exploring Fisher vector and deep networks for action spotting,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+473031328c58b7461753e81251379331467f7a69,Exploring Fisher vector and deep networks for action spotting,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+47638197d83a8f8174cdddc44a2c7101fa8301b7,Object-Centric Anomaly Detection by Attribute-Based Reasoning,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+47638197d83a8f8174cdddc44a2c7101fa8301b7,Object-Centric Anomaly Detection by Attribute-Based Reasoning,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+47638197d83a8f8174cdddc44a2c7101fa8301b7,Object-Centric Anomaly Detection by Attribute-Based Reasoning,Rutgers University,Rutgers University,"Rutgers Cook Campus - North, Biel Road, New Brunswick, Middlesex County, New Jersey, 08901, USA",40.47913175,-74.431688684404
+476f177b026830f7b31e94bdb23b7a415578f9a4,Intra-class multi-output regression based subspace analysis,University of California Santa Barbara,University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+476f177b026830f7b31e94bdb23b7a415578f9a4,Intra-class multi-output regression based subspace analysis,University of California Santa Barbara,University of California Santa Barbara,"UCSB, Santa Barbara County, California, 93106, USA",34.4145937,-119.84581949869
+472ba8dd4ec72b34e85e733bccebb115811fd726,Cosine Similarity Metric Learning for Face Verification,University of Nottingham,University of Nottingham,"University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+47ca2df3d657d7938d7253bed673505a6a819661,"Fields of Study Major Field: Computer Vision Minor Field: Pattern Recognition, Image Procession, Statistical Learning Ix Abstract Facial Expression Analysis on Manifolds",University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+47eba2f95679e106e463e8296c1f61f6ddfe815b,Deep Co-occurrence Feature Learning for Visual Object Recognition,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+47eba2f95679e106e463e8296c1f61f6ddfe815b,Deep Co-occurrence Feature Learning for Visual Object Recognition,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+47190d213caef85e8b9dd0d271dbadc29ed0a953,The Devil of Face Recognition is in the Noise,University of California San Diego,University of California San Diego,"UCSD, 9500, Gilman Drive, Sixth College, University City, San Diego, San Diego County, California, 92093, USA",32.87935255,-117.231100493855
+47190d213caef85e8b9dd0d271dbadc29ed0a953,The Devil of Face Recognition is in the Noise,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+47dabb566f2bdd6b3e4fa7efc941824d8b923a13,Probabilistic Temporal Head Pose Estimation Using a Hierarchical Graphical Model,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+47f5f740e225281c02c8a2ae809be201458a854f,Simultaneous Unsupervised Learning of Disparate Clusterings,University of Texas,University of Texas,"The University of Texas at Tyler, 3900, University Boulevard, Tyler, Smith County, Texas, 75799, USA",32.3163078,-95.2536994379459
+473cbc5ec2609175041e1410bc6602b187d03b23,Semantic Audio-Visual Data Fusion for Automatic Emotion Recognition,Delft University of Technology,Delft University of Technology,"TU Delft, Mekelweg, TU-wijk, Delft, Zuid-Holland, Nederland, 2628, Nederland",51.99882735,4.37396036815404
+78d645d5b426247e9c8f359694080186681f57db,Gender Classification by LUT Based Boosting of Overlapping Block Patterns,Tampere University of Technology,"Tampere University of Technology, Tampere, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+78d645d5b426247e9c8f359694080186681f57db,Gender Classification by LUT Based Boosting of Overlapping Block Patterns,"Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Martigny, Switzerland","Idiap Research Institute, Parking Centre du parc, Martigny, Valais/Wallis, 1920, Schweiz/Suisse/Svizzera/Svizra",46.109237,7.08453548522408
+7862d40da0d4e33cd6f5c71bbdb47377e4c6b95a,Demography-based facial retouching detection using subclass supervised sparse autoencoder,University of Notre Dame,University of Notre Dame,"University of Notre Dame du Lac, Holy Cross Drive, Notre Dame, Maple Lane, Saint Joseph County, Indiana, 46556, USA",41.70456775,-86.2382202601727
+7859667ed6c05a467dfc8a322ecd0f5e2337db56,Web-Scale Transfer Learning for Unconstrained 1:N Face Identification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+78c1ad33772237bf138084220d1ffab800e1200d,Decorrelated Batch Normalization,Beihang University,Beihang University,"北京航空航天大学, 37, 学院路, 五道口, 后八家, 海淀区, 100083, 中国",39.9808333,116.341012492788
+78c1ad33772237bf138084220d1ffab800e1200d,Decorrelated Batch Normalization,University of Michigan,"University of Michigan, Ann Arbor","University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+78436256ff8f2e448b28e854ebec5e8d8306cf21,Measuring and Understanding Sensory Representations within Deep Networks Using a Numerical Optimization Framework,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+78436256ff8f2e448b28e854ebec5e8d8306cf21,Measuring and Understanding Sensory Representations within Deep Networks Using a Numerical Optimization Framework,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+78436256ff8f2e448b28e854ebec5e8d8306cf21,Measuring and Understanding Sensory Representations within Deep Networks Using a Numerical Optimization Framework,Harvard University,Harvard University,"Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+78f79c83b50ff94d3e922bed392737b47f93aa06,The computer expression recognition toolbox (CERT),University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+78f79c83b50ff94d3e922bed392737b47f93aa06,The computer expression recognition toolbox (CERT),University of Arizona,University of Arizona,"University of Arizona, North Highland Avenue, Rincon Heights, Barrio Viejo, Tucson, Pima County, Arizona, 85721, USA",32.2351726,-110.950958317648
+78f79c83b50ff94d3e922bed392737b47f93aa06,The computer expression recognition toolbox (CERT),University of Buffalo,University of Buffalo,"University of Nebraska at Kearney, 2504, 9th Avenue, Kearney, Buffalo County, Nebraska, 68849, USA",40.7021766,-99.0985061173294
+78fede85d6595e7a0939095821121f8bfae05da6,Discriminant Metric Learning Approach for Face Verification,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909
+78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+78598e7005f7c96d64cc47ff47e6f13ae52245b8,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+7862f646d640cbf9f88e5ba94a7d642e2a552ec9,Being John Malkovich,University of Washington,University of Washington,"University of Washington, Rainier Vista, Montlake, University District, Seattle, King County, Washington, 98195, USA",47.6543238,-122.308008943203
+78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+78a4eb59ec98994bebcf3a5edf9e1d34970c45f6,Conveying shape and features with image-based relighting,Stanford University,Stanford University,"Stanford University, Memorial Way, Stanford, Santa Clara County, California, 94305-6015, USA",37.43131385,-122.169365354983
+78174c2be084e67f48f3e8ea5cb6c9968615a42c,Periocular Recognition Using CNN Features Off-the-Shelf,Halmstad University,Halmstad University,"Högskolan i Halmstad, 3, Kristian IV:s väg, Larsfrid, Nyhem, Halmstad, Hallands län, Götaland, 301 18, Sverige",56.66340325,12.8792972689712
+780557daaa39a445b24c41f637d5fc9b216a0621,"Large Video Event Ontology Browsing, Search and Tagging (EventNet Demo)",Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+8ba67f45fbb1ce47a90df38f21834db37c840079,People search and activity mining in large-scale community-contributed photos,National Taiwan University,"National Taiwan University, Taipei, Taiwan","臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+8b547b87fd95c8ff6a74f89a2b072b60ec0a3351,Initial perceptions of a casual game to crowdsource facial expressions in the wild,University of Technology,University of Technology,"الجامعة التكنلوجية, A86;N11;D383, محلة 103, Al Saadoom Park, Rusafa, بغداد, Al Resafa, محافظة بغداد, 3241, العراق",33.3120263,44.4471829434368
+8bf243817112ac0aa1348b40a065bb0b735cdb9c,Learning a Repression Network for Precise Vehicle Search,Institute of Digital Media,Institute of Digital Media,"Institute of Digital Media Technology, Way to Csa Odisha Office, Ward 35, South East Zone, Bhubaneswar Municipal Corporation, Khordha, Odisha, 751022, India",20.28907925,85.84232125
+8bf243817112ac0aa1348b40a065bb0b735cdb9c,Learning a Repression Network for Precise Vehicle Search,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+8bfada57140aa1aa22a575e960c2a71140083293,Can we match Ultraviolet Face Images against their Visible Counterparts?,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+8befcd91c24038e5c26df0238d26e2311b21719a,A Joint Sequence Fusion Model for Video Question Answering and Retrieval,Seoul National University,"Seoul National University, Seoul, Korea","서울대학교, 1, 관악로, 서림동, 신림동, 관악구, 서울특별시, 08825, 대한민국",37.46685,126.94892
+8bbbdff11e88327816cad3c565f4ab1bb3ee20db,Automatic Semantic Face Recognition,University of Southampton,University of Southampton,"Waterfront Campus, European Way, Port of Southampton, St Mary's, Southampton, South East, England, SO14 3JW, UK",50.89273635,-1.39464294664816
+8bdf6f03bde08c424c214188b35be8b2dec7cdea,Inference Attacks Against Collaborative Learning,Cornell University,Cornell University,"Cornell University, Forest Home Drive, Forest Home, Tompkins County, New York, 14853, USA",42.4505507,-76.4783512955428
+8b10383ef569ea0029a2c4a60cc2d8c87391b4db,Age classification using Radon transform and entropy based scaling SVM,The Institute of Electronics,The Institute of Electronics,"International Institute of Information Technology Bangalore - IIITB, Infosys Avenue, Konappana Agrahara, Electronics City Phase 1, Vittasandra, Bangalore Urban, Karnataka, 560100, India",12.8447999,77.6632389626693
+8b10383ef569ea0029a2c4a60cc2d8c87391b4db,Age classification using Radon transform and entropy based scaling SVM,University of Dundee,University of Dundee,"University of Dundee, Park Wynd, Law, Dundee, Dundee City, Scotland, DD1 4HN, UK",56.45796755,-2.98214831353755
+8b30259a8ab07394d4dac971f3d3bd633beac811,Representing Sets of Instances for Visual Recognition,Nanjing University,"Nanjing University, China","NJU, 三江路, 鼓楼区, 南京市, 江苏省, 210093, 中国",32.0565957,118.774088328078
+8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8,Temporal Perceptive Network for Skeleton-Based Action Recognition,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+8b61fdc47b5eeae6bc0a52523f519eaeaadbc8c8,Temporal Perceptive Network for Skeleton-Based Action Recognition,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+8b19efa16a9e73125ab973429eb769d0ad5a8208,SCAR: Dynamic Adaptation for Person Detection and Persistence Analysis in Unconstrained Videos,Stevens Institute of Technology,Stevens Institute of Technology,"Stevens Institute of Technology, River Terrace, Hoboken, Hudson County, New Jersey, 07030, USA",40.742252,-74.0270949
+8b6fded4d08bf0b7c56966b60562ee096af1f0c4,A Neural Network based Facial Expression Recognition using Fisherface,Semarang State University,Semarang State University,"Mandiri University, Jalan Tambora, RW 10, Tegalsari, Candisari, Semarang, Jawa Tengah, 50252, Indonesia",-7.00349485,110.417749486905
+8b2704a5218a6ef70e553eaf0a463bd55129b69d,Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines,Chonbuk National University,Chonbuk National University,"전북대학교, 567, 백제대로, 금암동, 덕진구, 전주시, 전북, 54896, 대한민국",35.84658875,127.135013303058
+8b2e3805b37c18618b74b243e7a6098018556559,Ariational a Utoencoder with D Eep F Eature C Onsistent and G Enerative a Dversar - Ial T Raining,University of Nottingham,"University of Nottingham, Nottingham, UK","University of Nottingham, Lenton Abbey, Wollaton, City of Nottingham, East Midlands, England, UK",52.9387428,-1.20029569274574
+8b2e3805b37c18618b74b243e7a6098018556559,Ariational a Utoencoder with D Eep F Eature C Onsistent and G Enerative a Dversar - Ial T Raining,Shenzhen University,"Shenzhen University, Shenzhen, China","深圳大学, 3688, 南海大道, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518060, 中国",22.53521465,113.931591101679
+8b74252625c91375f55cbdd2e6415e752a281d10,Using Convolutional 3D Neural Networks for User-independent continuous gesture recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+8b74252625c91375f55cbdd2e6415e752a281d10,Using Convolutional 3D Neural Networks for User-independent continuous gesture recognition,RWTH Aachen University,RWTH Aachen University,"RWTH Aachen, Mies-van-der-Rohe-Straße, Königshügel, Aachen-Mitte, Aachen, Städteregion Aachen, Regierungsbezirk Köln, Nordrhein-Westfalen, 52074, Deutschland",50.7791703,6.06728732851292
+8b74252625c91375f55cbdd2e6415e752a281d10,Using Convolutional 3D Neural Networks for User-independent continuous gesture recognition,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259,Real-time 3 D Face Fitting and Texture Fusion on Inthe-wild Videos,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+8b38124ff02a9cf8ad00de5521a7f8a9fa4d7259,Real-time 3 D Face Fitting and Texture Fusion on Inthe-wild Videos,Reutlingen University,Reutlingen University,"Campus Hohbuch, Campus Hochschule Reutlingen, Reutlingen, Landkreis Reutlingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72762, Deutschland",48.48187645,9.18682403998887
+134f1cee8408cca648d8b4ca44b38b0a7023af71,Partially Shared Multi-Task Convolutional Neural Network with Local Constraint for Face Attribute Learning,Zhejiang University,Zhejiang University,"浙江大学之江校区, 之江路, 转塘街道, 西湖区 (Xihu), 杭州市 Hangzhou, 浙江省, 310008, 中国",30.19331415,120.119308216677
+13719bbb4bb8bbe0cbcdad009243a926d93be433,Deep LDA-Pruned Nets for Efficient Facial Gender Classification,McGill University,McGill University,"McGill University, Rue Sherbrooke Ouest, Quartier des Spectacles, Ville-Marie, Montréal, Agglomération de Montréal, Montréal (06), Québec, H3A 3P8, Canada",45.5039761,-73.5749687
+1329206dbdb0a2b9e23102e1340c17bd2b2adcf5,Part-Based R-CNNs for Fine-Grained Category Detection,University of California,"University of California, Berkeley","Berkeley Art Museum and Pacific Film Archive, Bancroft Way, Southside, Berkeley, Alameda County, California, 94720-1076, USA",37.8687126,-122.255868148743
+13bda03fc8984d5943ed8d02e49a779d27c84114,Efficient object detection using cascades of nearest convex model classifiers,Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.7487516,30.4765307102195
+13a994d489c15d440c1238fc1ac37dad06dd928c,Learning Discriminant Face Descriptor for Face Recognition,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+131178dad3c056458e0400bed7ee1a36de1b2918,Visual Reranking through Weakly Supervised Multi-graph Learning,Xidian University,"Xidian University, Xi’an, China","Xidian University (New Campus), 266号, 银杏大道, 南雷村, 长安区 (Chang'an), 西安市, 陕西省, 710126, 中国",34.1235825,108.83546
+131178dad3c056458e0400bed7ee1a36de1b2918,Visual Reranking through Weakly Supervised Multi-graph Learning,Xiamen University,"Xiamen University, Xiamen, China","厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+131178dad3c056458e0400bed7ee1a36de1b2918,Visual Reranking through Weakly Supervised Multi-graph Learning,University of Technology,"University of Technology, Sydney, Australia","UTS, Thomas Street, Ultimo, Sydney, NSW, 2007, Australia",-33.8828784,151.200682779726
+132527383890565d18f1b7ad50d76dfad2f14972,Facial Expression Classification Using PCA and Hierarchical Radial Basis Function Network,National Taipei University,National Taipei University,"國立臺北大學, 151, 大學路, 龍恩里, 隆恩埔, 三峽區, 新北市, 23741, 臺灣",24.94314825,121.368629787836
+13604bbdb6f04a71dea4bd093794e46730b0a488,Robust Loss Functions under Label Noise for Deep Neural Networks,Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+13604bbdb6f04a71dea4bd093794e46730b0a488,Robust Loss Functions under Label Noise for Deep Neural Networks,Indian Institute of Science,Indian Institute of Science,"IISc, Gulmohar Marg, RMV Stage II - 1st Block, Aramane Nagara Ward, West Zone, Bengaluru, Bangalore Urban, Karnataka, 560012, India",13.0222347,77.5671832476811
+137aa2f891d474fce1e7a1d1e9b3aefe21e22b34,Is the eye region more reliable than the face? A preliminary study of face-based recognition on a transgender dataset,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+13b1b18b9cfa6c8c44addb9a81fe10b0e89db32a,A Hierarchical Deep Temporal Model for Group Activity Recognition,Simon Fraser University,Simon Fraser University,"SFU Burnaby, South Campus Road, Barnet, Burnaby, Metro Vancouver, British Columbia, V5A 4X6, Canada",49.2767454,-122.917773749103
+1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,University of Illinois at Urbana-Champaign,"University of Illinois at Urbana-Champaign, USA","Krannert Art Museum, 500, Peabody Drive, Urbana, Champaign County, Illinois, 61820, USA",40.101976,-88.2314378
+1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,Oxford University,"Oxford University, UK","James Mellon Hall, Rectory Road, New Marston, Oxford, Oxon, South East, England, OX4 1BU, UK",51.7488051,-1.23874457456279
+1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+1329bcac5ebd0b08ce33ae1af384bd3e7a0deaca,Dataset Issues in Object Recognition,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+13c250fb740cb5616aeb474869db6ab11560e2a6,A thesis submitted in conformity with the requirements,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+13940d0cc90dbf854a58f92d533ce7053aac024a,Local learning by partitioning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+13940d0cc90dbf854a58f92d533ce7053aac024a,Local learning by partitioning,Boston University,Boston University,"BU, Bay State Road, Fenway, Boston, Suffolk County, Massachusetts, 02215, USA",42.3504253,-71.1005611418395
+131bfa2ae6a04fd3b921ccb82b1c3f18a400a9c1,Elastic Graph Matching versus Linear Subspace Methods for Frontal Face Verification,Aristotle University of Thessaloniki,Aristotle University of Thessaloniki,"Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Εγνατία, Σαράντα Εκκλησίες, Ευαγγελίστρια, Θεσσαλονίκη, Δήμος Θεσσαλονίκης, Περιφερειακή Ενότητα Θεσσαλονίκης, Περιφέρεια Κεντρικής Μακεδονίας, Μακεδονία - Θράκη, 54124, Ελλάδα",40.62984145,22.9588934957528
+1389ba6c3ff34cdf452ede130c738f37dca7e8cb,A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection,University of Maryland-College Park,University of Maryland-College Park,"University of Maryland, College Park, Farm Drive, Acredale, College Park, Prince George's County, Maryland, 20742, USA",38.99203005,-76.9461029019905
+132f88626f6760d769c95984212ed0915790b625,Exploring Entity Resolution for Multimedia Person Identification,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+13aef395f426ca8bd93640c9c3f848398b189874,1 Image Preprocessing and Complete 2 DPCA with Feature Extraction for Gender Recognition NSF REU 2017 : Statistical Learning and Data Mining,University of North Carolina Wilmington,University of North Carolina Wilmington,"Kenan House, 1705, Market Street, Wilmington, New Hanover County, North Carolina, 28403, USA",34.2375581,-77.9270129
+13be4f13dac6c9a93f969f823c4b8c88f607a8c4,Families in the Wild (FIW): Large-Scale Kinship Image Database and Benchmarks,Northeastern University,Northeastern University,"Snell Library, 360, Huntington Avenue, Roxbury Crossing, Fenway, Boston, Suffolk County, Massachusetts, 02115, USA",42.3383668,-71.0879352428284
+1316296fae6485c1510f00b1b57fb171b9320ac2,FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+1316296fae6485c1510f00b1b57fb171b9320ac2,FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+7f57e9939560562727344c1c987416285ef76cda,Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,University of North Carolina,University of North Carolina,"University of North Carolina, Emergency Room Drive, Chapel Hill, Orange County, North Carolina, 27599, USA",35.90503535,-79.0477532652511
+7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+7fc5b6130e9d474dfb49d9612b6aa0297d481c8e,Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+7f21a7441c6ded38008c1fd0b91bdd54425d3f80,Real Time System for Facial Analysis,Tampere University of Technology,"Tampere University of Technology, Finland","TTY, 10, Korkeakoulunkatu, Finninmäki, Hervanta, Tampere, Tampereen seutukunta, Pirkanmaa, Länsi- ja Sisä-Suomen aluehallintovirasto, Länsi-Suomi, Manner-Suomi, 33720, Suomi",61.44964205,23.8587746189096
+7fce5769a7d9c69248178989a99d1231daa4fce9,Towards Face Recognition Using Eigenface,King Faisal University,King Faisal University,"University of Dammam, King Faisal Rd, العقربية, الخبر, المنطقة الشرقية, ٣١٩٥٢, السعودية",26.397778,50.183056
+7fa2605676c589a7d1a90d759f8d7832940118b5,A new approach to clothing classification using mid-level layers,Clemson University,Clemson University,"Clemson University, Old Stadium Road, Clemson Heights, Pickens County, South Carolina, 29631, USA",34.66869155,-82.837434756078
+7fb5006b6522436ece5bedf509e79bdb7b79c9a7,Multi-Task Convolutional Neural Network for Face Recognition,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,Efficient Online Spatio-Temporal Filtering for Video Event Detection,Shanghai Jiao Tong University,"Shanghai Jiao Tong University, Shanghai 200240, China","上海交通大学(闵行校区), 宣怀大道, 紫竹科技园区, 英武, 闵行区, 上海市, 200240, 中国",31.02775885,121.432219256081
+7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,Efficient Online Spatio-Temporal Filtering for Video Event Detection,Nanyang Technological University,"Nanyang Technological University, Singapore 639798, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+7fa3d4be12e692a47b991c0b3d3eba3a31de4d05,Efficient Online Spatio-Temporal Filtering for Video Event Detection,University of Michigan,University of Michigan,"University of Michigan, 500, Hayward Street, Ann Arbor, Washtenaw County, Michigan, 48109, USA",42.2942142,-83.710038935096
+7f445191fa0475ff0113577d95502a96dc702ef9,Towards an Unequivocal Representation of Actions,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+7f445191fa0475ff0113577d95502a96dc702ef9,Towards an Unequivocal Representation of Actions,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+7f445191fa0475ff0113577d95502a96dc702ef9,Towards an Unequivocal Representation of Actions,University of Bristol,University of Bristol,"Victoria Rooms, Whiteladies Road, Cliftonwood, Spike Island, Bristol, City of Bristol, South West England, England, BS8 2PY, UK",51.4584837,-2.60977519828372
+7f82f8a416170e259b217186c9e38a9b05cb3eb4,Multi-Attribute Robust Component Analysis for Facial UV Maps,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+7f82f8a416170e259b217186c9e38a9b05cb3eb4,Multi-Attribute Robust Component Analysis for Facial UV Maps,Middlesex University London,Middlesex University London,"Middlesex University, Greyhound Hill, Hendon, The Hyde, London Borough of Barnet, London, Greater London, England, NW4 4JP, UK",51.59029705,-0.229632209454029
+7f82f8a416170e259b217186c9e38a9b05cb3eb4,Multi-Attribute Robust Component Analysis for Facial UV Maps,University of London,University of London,"Birkbeck College, Malet Street, Holborn, Bloomsbury, London Borough of Camden, London, Greater London, England, WC1E 7HX, UK",51.5217668,-0.130190717056655
+7fab17ef7e25626643f1d55257a3e13348e435bd,Age Progression/Regression by Conditional Adversarial Autoencoder,The University of Tennessee,The University of Tennessee,"University of Tennessee, Melrose Avenue, Fort Sanders, Knoxville, Knox County, Tennessee, 37916, USA",35.9542493,-83.9307395
+7f6599e674a33ed64549cd512ad75bdbd28c7f6c,Kernel Alignment Inspired Linear Discriminant Analysis,University of Texas at Arlington,"University of Texas at Arlington, TX, USA","University of Texas at Arlington, South Nedderman Drive, Arlington, Tarrant County, Texas, 76010, USA",32.7283683,-97.112018348404
+7f9260c00a86a0d53df14469f1fa10e318ee2a3c,How iris recognition works,University of Cambridge,University of Cambridge,"Clifford Allbutt Lecture Theatre, Robinson Way, Romsey, Cambridge, Cambridgeshire, East of England, England, CB2 0QH, UK",52.17638955,0.143088815415187
+7f2a4cd506fe84dee26c0fb41848cb219305173f,Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection,Huazhong University of,Huazhong University of,"深圳市第六人民医院, 89号, 桃园路, 蛇口, 同乐村, 南山区, 深圳市, 广东省, 518000, 中国",22.53367445,113.917874206261
+7fd700f4a010d765c506841de9884df394c1de1c,Correlational spectral clustering,Max Planck Institute for Biological Cybernetics,Max Planck Institute for Biological Cybernetics,"Max-Planck-Institut für Biologische Kybernetik, 8, Max-Planck-Ring, Max-Planck-Institut, Wanne, Tübingen, Landkreis Tübingen, Regierungsbezirk Tübingen, Baden-Württemberg, 72076, Deutschland",48.5369125,9.05922532743396
+7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7f59657c883f77dc26393c2f9ed3d19bdf51137b,Facial expression recognition for multiplayer online games,University of Wollongong,University of Wollongong,"University of Wollongong, Admin Road, Keiraville, Wollongong, NSW, 2500, Australia",-34.40505545,150.878346547278
+7f23a4bb0c777dd72cca7665a5f370ac7980217e,Improving Person Re-identification by Attribute and Identity Learning,University of Technology Sydney,University of Technology Sydney,"University of Technology Sydney, Omnibus Lane, Ultimo, Sydney, NSW, 2007, Australia",-33.8809651,151.201072985483
+7fc3442c8b4c96300ad3e860ee0310edb086de94,Similarity Scores Based on Background Samples,Tel-Aviv University,Tel-Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+7fc3442c8b4c96300ad3e860ee0310edb086de94,Similarity Scores Based on Background Samples,The Open University of Israel,The Open University of Israel,"האוניברסיטה הפתוחה, 15, אבא חושי, חיפה, גבעת דאונס, חיפה, מחוז חיפה, NO, ישראל",32.77824165,34.9956567288188
+7f8d44e7fd2605d580683e47bb185de7f9ea9e28,Predicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information,The Hebrew University of Jerusalem,"The Hebrew University of Jerusalem, Israel","האוניברסיטה העברית בירושלים, Reagan Plaza, קרית מנחם בגין, הר הצופים, ירושלים, מחוז ירושלים, NO, ישראל",31.7918555,35.244723
+7f8d44e7fd2605d580683e47bb185de7f9ea9e28,Predicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+7f8d44e7fd2605d580683e47bb185de7f9ea9e28,Predicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information,Cambridge University,Cambridge University,"University, Cambridge Road, Old Portsmouth, Portsmouth, South East, England, PO1 2HB, UK",50.7944026,-1.0971748
+7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3a,Multi-subregion based probabilistic approach toward pose-invariant face recognition,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+7f205b9fca7e66ac80758c4d6caabe148deb8581,A A Survey on Mobile Social Signal Processing,University of Surrey,University of Surrey,"University of Surrey, Spine Road, Guildford Park, Guildford, Surrey, South East, England, GU2 7XH, UK",51.24303255,-0.590013824660236
+7fc76446d2b11fc0479df6e285723ceb4244d4ef,Laplacian MinMax Discriminant Projection and its Applications,Zhejiang Normal University,Zhejiang Normal University,"浙江师范大学, 688, 迎宾大道, 柳湖花园, 金华市, 婺城区 (Wucheng), 金华市 / Jinhua, 浙江省, 321004, 中国",29.13646725,119.637686517179
+7fc76446d2b11fc0479df6e285723ceb4244d4ef,Laplacian MinMax Discriminant Projection and its Applications,Shanghai Jiao Tong University,Shanghai Jiao Tong University,"上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+7a9c317734acaf4b9bd8e07dd99221c457b94171,Lorentzian Discriminant Projection and Its Applications,Dalian University of Technology,"Dalian University of Technology, Dalian 116024, China","大连理工大学, 红凌路, 甘井子区, 凌水镇, 甘井子区 / Ganjingzi, 大连市 / Dalian, 辽宁省, 116023, 中国",38.88140235,121.522810980755
+7a3d46f32f680144fd2ba261681b43b86b702b85,Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute Classification,Xiamen University,Xiamen University,"厦门大学, 思明南路 Siming South Road, 思明区, 思明区 (Siming), 厦门市 / Xiamen, 福建省, 361005, 中国",24.4399419,118.093017809127
+7a3d46f32f680144fd2ba261681b43b86b702b85,Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute Classification,The University of Adelaide,The University of Adelaide,"University of Adelaide, North Terrace, Adelaide, 5000, City of Adelaide, South Australia, 5000, Australia",-34.9189226,138.604236675404
+7a7f2403e3cc7207e76475e8f27a501c21320a44,Emotion recognition from multi-modal information,National Cheng Kung University,National Cheng Kung University,"成大, 1, 大學路, 大學里, 前甲, 東區, 臺南市, 70101, 臺灣",22.9991916,120.216251337909
+7aafeb9aab48fb2c34bed4b86755ac71e3f00338,Real Time 3D Facial Movement Tracking Using a Monocular Camera,Tongji University,Tongji University,"同济大学, 1239, 四平路, 江湾, 虹口区, 上海市, 200092, 中国",31.28473925,121.496949085887
+7aafeb9aab48fb2c34bed4b86755ac71e3f00338,Real Time 3D Facial Movement Tracking Using a Monocular Camera,Kumamoto University,Kumamoto University,"熊本大学黒髪キャンパス, 熊本菊陽線, 中央区, 熊本市, 熊本県, 九州地方, 860-0863, 日本",32.8164178,130.727039687562
+7a84368ebb1a20cc0882237a4947efc81c56c0c0,Robust and efficient parametric face alignment,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+7a84368ebb1a20cc0882237a4947efc81c56c0c0,Robust and efficient parametric face alignment,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+7a65fc9e78eff3ab6062707deaadde024d2fad40,A Study on Apparent Age Estimation,West Virginia University,West Virginia University,"88, Windsor Avenue, The Flatts, Morgantown, Monongalia County, West Virginia, 26505, USA",39.65404635,-79.96475355
+7a65fc9e78eff3ab6062707deaadde024d2fad40,A Study on Apparent Age Estimation,Institute of,Institute of,"Institute, Kanawha County, West Virginia, 25112, USA",38.3836097,-81.7654665
+7ac9aaafe4d74542832c273acf9d631cb8ea6193,Deep Micro-Dictionary Learning and Coding Network,University of Trento,University of Trento,"University of Trento, Via Giuseppe Verdi, Piedicastello, Trento, Territorio Val d'Adige, TN, TAA, 38122, Italia",46.0658836,11.1159894
+7ac9aaafe4d74542832c273acf9d631cb8ea6193,Deep Micro-Dictionary Learning and Coding Network,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+7a1ce696e260899688cb705f243adf73c679f0d9,Predicting Missing Demographic Information in Biometric Records Using Label Propagation Techniques,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+7a1ce696e260899688cb705f243adf73c679f0d9,Predicting Missing Demographic Information in Biometric Records Using Label Propagation Techniques,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+7a131fafa7058fb75fdca32d0529bc7cb50429bd,Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, Beijing, China","University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+14b87359f6874ff9b8ee234b18b418e57e75b762,Face Alignment Using a Ranking Model based on Regression Trees,Karlsruhe Institute of Technology,Karlsruhe Institute of Technology,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+14b87359f6874ff9b8ee234b18b418e57e75b762,Face Alignment Using a Ranking Model based on Regression Trees,Istanbul Technical University,Istanbul Technical University,"Istanbul Technical University, walking path from main road to Simit restaurant, İstanbul Teknik Üniversitesi, Maslak, F.S.M Mahallesi, Sarıyer, İstanbul, Marmara Bölgesi, 34469, Türkiye",41.10427915,29.022311592943
+142e5b4492bc83b36191be4445ef0b8b770bf4b0,Discriminative Analysis of Brain Function at Resting-State for Attention-Deficit/Hyperactivity Disorder,Institute of Automation,Institute of Automation,"Institut für Automatisierungstechnik, 31, Richard-Wagner-Straße, Warnemünde, Ortsbeirat 1 : Diedrichshagen,Seebad Warnemünde, Rostock, Mecklenburg-Vorpommern, 18119, Deutschland",54.1720834,12.0790983
+142e5b4492bc83b36191be4445ef0b8b770bf4b0,Discriminative Analysis of Brain Function at Resting-State for Attention-Deficit/Hyperactivity Disorder,Chinese Academy of Sciences,Chinese Academy of Sciences,"中国科学院心理研究所, 16, 林萃路, 朝阳区 / Chaoyang, 北京市, 100101, 中国",40.0044795,116.370238
+142e5b4492bc83b36191be4445ef0b8b770bf4b0,Discriminative Analysis of Brain Function at Resting-State for Attention-Deficit/Hyperactivity Disorder,Peking University,Peking University,"北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+14b016c7a87d142f4b9a0e6dc470dcfc073af517,Modest proposals for improving biometric recognition papers,San Jose State University,"San Jose State University, San Jose, CA","SJSU, El Paseo de Cesar E. Chavez, Downtown Historic District, Japantown, San José, Santa Clara County, California, 95113, USA",37.3351908,-121.881260081527
+14b66748d7c8f3752dca23991254fca81b6ee86c,A BoW-equivalent Recurrent Neural Network for Action Recognition,Institute of Computer Science III,Institute of Computer Science III,"Institute of Computer Science, 8, 내동로, 신율리, 진주시, 경남, 52669, 대한민국",35.15456615,128.098476040221
+14b66748d7c8f3752dca23991254fca81b6ee86c,A BoW-equivalent Recurrent Neural Network for Action Recognition,University of Bonn,University of Bonn,"Rheinische Friedrich-Wilhelms-Universität Bonn, Arkadenhof, Bonn-Zentrum, Stadtbezirk Bonn, Bonn, Regierungsbezirk Köln, Nordrhein-Westfalen, 53113, Deutschland",50.7338124,7.1022465
+14e8dbc0db89ef722c3c198ae19bde58138e88bf,HapFACS: An Open Source API/Software to Generate FACS-Based Expressions for ECAs Animation and for Corpus Generation,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+14e8dbc0db89ef722c3c198ae19bde58138e88bf,HapFACS: An Open Source API/Software to Generate FACS-Based Expressions for ECAs Animation and for Corpus Generation,Florida International University,Florida International University,"FIU, Southwest 14th Street, Sweetwater, University Park, Miami-Dade County, Florida, 33199, USA",25.75533775,-80.3762889746807
+146bbf00298ee1caecde3d74e59a2b8773d2c0fc,University of Groningen 4 D Unconstrained Real - time Face Recognition Using a Commodity Depthh Camera,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+14e9158daf17985ccbb15c9cd31cf457e5551990,ConvNets with Smooth Adaptive Activation Functions for Regression,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+14e9158daf17985ccbb15c9cd31cf457e5551990,ConvNets with Smooth Adaptive Activation Functions for Regression,Stony Brook University Hospital,Stony Brook University Hospital,"Stony Brook University Hospital, 101, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.90826665,-73.1152089127966
+14ce7635ff18318e7094417d0f92acbec6669f1c,DeepFace: Closing the Gap to Human-Level Performance in Face Verification,Tel Aviv University,Tel Aviv University,"אוניברסיטת תל אביב, כיכר מנדל, תל אביב - יפו, אפקה, תל אביב-יפו, מחוז תל אביב, NO, ישראל",32.1119889,34.8045970204252
+140438a77a771a8fb656b39a78ff488066eb6b50,Localizing Parts of Faces Using a Consensus of Exemplars,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+140438a77a771a8fb656b39a78ff488066eb6b50,Localizing Parts of Faces Using a Consensus of Exemplars,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+143bee9120bcd7df29a0f2ad6f0f0abfb23977b8,Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition,University of Twente,University of Twente,"University of Twente, De Achterhorst;Hallenweg, Enschede, Regio Twente, Overijssel, Nederland, 7522NH, Nederland",52.2380139,6.8566761
+14d72dc9f78d65534c68c3ed57305f14bd4b5753,Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles,Peking University,"Peking University, Beijing, China","北京大学, 5号, 颐和园路, 稻香园南社区, 海淀区, 北京市, 100871, 中国",39.9922379,116.303938156219
+14b162c2581aea1c0ffe84e7e9273ab075820f52,Training Object Class Detectors from Eye Tracking Data,University of Edinburgh,University of Edinburgh,"New College, New College Courtyard, The Mound, Old Town, Edinburgh, City of Edinburgh, Scotland, EH1 2LX, UK",55.94951105,-3.19534912525441
+14ff9c89f00dacc8e0c13c94f9fadcd90e4e604d,Correlation filter cascade for facial landmark localization,National University of Singapore,"National University of Singapore, Singapore","NUS, Former 1936 British Outpost, Nepal Hill, Clementi, Southwest, 117542, Singapore",1.2962018,103.776899437848
+14b69626b64106bff20e17cf8681790254d1e81c,Hybrid Super Vector with Improved Dense Trajectories for Action Recognition,Shenzhen Institutes of Advanced Technology,Shenzhen Institutes of Advanced Technology,"中国科学院深圳先进技术研究院, 1068, 科研路, 深圳大学城, 三坑村, 南山区, 深圳市, 广东省, 518000, 中国",22.59805605,113.985337841399
+14b69626b64106bff20e17cf8681790254d1e81c,Hybrid Super Vector with Improved Dense Trajectories for Action Recognition,Southwest Jiaotong University,"Southwest Jiaotong University, Chengdu, P.R. China","西南交通大学 - Xinan Jiaotong University, 二环高架路, 沁园小区, 金牛区, 金牛区 (Jinniu), 成都市 / Chengdu, 四川省, 610084, 中国",30.697847,104.0520811
+14b69626b64106bff20e17cf8681790254d1e81c,Hybrid Super Vector with Improved Dense Trajectories for Action Recognition,the Chinese University of Hong Kong,the Chinese University of Hong Kong,"中大 CUHK, NA梯 New Asia Stairs, 馬料水 Ma Liu Shui, 九肚村 Kau To Village, 沙田區 Sha Tin District, 新界 New Territories, HK, DD193 1191, 中国",22.42031295,114.207886442805
+14070478b8f0d84e5597c3e67c30af91b5c3a917,Detecting Social Actions of Fruit Flies,"California Institute of Technology, Pasadena, California, USA","California Institute of Technology, Pasadena, California, USA","California Institute of Technology, San Pasqual Walk, Madison Heights, Pasadena, Los Angeles County, California, 91126, USA",34.13710185,-118.125274866116
+14fb3283d4e37760b7dc044a1e2906e3cbf4d23a,Weak attributes for large-scale image retrieval,Columbia University,Columbia University,"Columbia University Medical Center, 630, West 168th Street, Washington Heights, Manhattan, Manhattan Community Board 12, New York County, NYC, New York, 10031, USA",40.8419836,-73.9436897071772
+14811696e75ce09fd84b75fdd0569c241ae02f12,Margin-based discriminant dimensionality reduction for visual recognition,Eskisehir Osmangazi University,Eskisehir Osmangazi University,"Eskişehir Osmangazi Üniversitesi Meşelik Yerleşkesi, Kütahya-Eskişehir yolu, Sazova Mahallesi, Karagözler, Tepebaşı, Eskişehir, İç Anadolu Bölgesi, 26160, Türkiye",39.7487516,30.4765307102195
+14811696e75ce09fd84b75fdd0569c241ae02f12,Margin-based discriminant dimensionality reduction for visual recognition,University of Caen,University of Caen,"京都大学, 今出川通, 吉田泉殿町, 左京区, 京都市, 京都府, 近畿地方, 606-8501, 日本",35.0274996,135.781545126193
+14811696e75ce09fd84b75fdd0569c241ae02f12,Margin-based discriminant dimensionality reduction for visual recognition,Rowan University,Rowan University,"Rowan University, Esbjornson Walk, Glassboro, Gloucester County, New Jersey, 08028, USA",39.7103526,-75.1193266647699
+14e759cb019aaf812d6ac049fde54f40c4ed1468,Subspace Methods,University of Tsukuba,University of Tsukuba,"University of Tsukuba, つばき通り, Kananemoto-satsukabe village, つくば市, 茨城県, 関東地方, 305-8377, 日本",36.1112058,140.1055176
+146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,AFFACT: Alignment-free facial attribute classification technique,University of Colorado Colorado Springs,University of Colorado Colorado Springs,"Main Hall, The Spine, Colorado Springs, El Paso County, Colorado, 80907, USA",38.8920756,-104.797163894584
+148eb413bede35487198ce7851997bf8721ea2d6,People Search in Surveillance Videos,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+148eb413bede35487198ce7851997bf8721ea2d6,People Search in Surveillance Videos,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+148eb413bede35487198ce7851997bf8721ea2d6,People Search in Surveillance Videos,IBM Research,IBM Research,"IBM, East Cornwallis Road, Research Triangle Park, Nelson, Durham County, North Carolina, 27709, USA",35.9042272,-78.8556576330566
+14014a1bdeb5d63563b68b52593e3ac1e3ce7312,Expression-Invariant Age Estimation,University of Amsterdam,University of Amsterdam,"Institute for Logic, Language and Computation (ILLC), 107, Science Park, Oost-Watergraafsmeer, Amsterdam, Oost, Amsterdam, Noord-Holland, Nederland, 1098XG, Nederland",52.3553655,4.9501644
+14418ae9a6a8de2b428acb2c00064da129632f3e,Discovering the Spatial Extent of Relative Attributes,University of California Davis,University of California Davis,"University of California, Davis, Apiary Drive, Yolo County, California, 95616-5270, USA",38.5336349,-121.790772639747
+14ba910c46d659871843b31d5be6cba59843a8b8,Face Recognition in Movie Trailers via Mean Sequence Sparse Representation-Based Classification,University of Central Florida,University of Central Florida,"University of Central Florida, Libra Drive, University Park, Orange County, Florida, 32816, USA",28.59899755,-81.1971250118395
+14318d2b5f2cf731134a6964d8193ad761d86942,FaceDNA: Intelligent Face Recognition System with Intel RealSense 3D Camera,National Taiwan University,National Taiwan University,"臺大;台大, 1, 羅斯福路四段, 學府里, 大安區, 臺北市, 10617, 臺灣",25.01682835,121.538469235773
+14c0f9dc9373bea1e27b11fa0594c86c9e632c8d,Adaptive Exponential Smoothing for Online Filtering of Pixel Prediction Maps,Nanyang Technological University,Nanyang Technological University,"NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+1439bf9ba7ff97df9a2da6dae4784e68794da184,LGE-KSVD: Flexible Dictionary Learning for Optimized Sparse Representation Classification,Rochester Institute of Technology,Rochester Institute of Technology,"Rochester Institute of Technology (RIT), 1, Lomb Memorial Drive, Bailey, Henrietta Town, Monroe County, New York, 14623, USA",43.08250655,-77.6712166264273
+141768ab49a5a9f5adcf0cf7e43a23471a7e5d82,Relative facial action unit detection,McMaster University,McMaster University,"McMaster University, Westdale, Hamilton, Ontario, Canada",43.26336945,-79.9180968401692
+14bca107bb25c4dce89210049bf39ecd55f18568,Emotion recognition from facial images with arbitrary views,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+8ec82da82416bb8da8cdf2140c740e1574eaf84f,Lip Reading in Profile,University of Oxford,University of Oxford,"Radcliffe Camera, Radcliffe Square, Grandpont, Oxford, Oxon, South East, England, OX1 4AJ, UK",51.7534538,-1.25400997048855
+8e0ede53dc94a4bfcf1238869bf1113f2a37b667,Joint patch and multi-label learning for facial action unit detection,Robotics Institute,Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+8e0ede53dc94a4bfcf1238869bf1113f2a37b667,Joint patch and multi-label learning for facial action unit detection,University of Pittsburgh,University of Pittsburgh,"University of Pittsburgh, Sutherland Drive, West Oakland, PGH, Allegheny County, Pennsylvania, 15240, USA",40.44415295,-79.9624399276271
+8e3c97e420e0112c043929087d6456d8ab61e95c,Robust Global Motion Compensation in Presence of Predominant Foreground,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+8e0ab1b08964393e4f9f42ca037220fe98aad7ac,UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+8e4808e71c9b9f852dc9558d7ef41566639137f3,Adversarial Generative Nets: Neural Network Attacks on State-of-the-Art Face Recognition,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+8e4808e71c9b9f852dc9558d7ef41566639137f3,Adversarial Generative Nets: Neural Network Attacks on State-of-the-Art Face Recognition,University of North Carolina at Chapel Hill,University of North Carolina at Chapel Hill,"University of North Carolina at Chapel Hill, East Cameron Avenue, Chapel Hill, Orange County, North Carolina, 27514, USA",35.9113971,-79.0504529
+8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,Segment-based SVMs for Time Series Analysis,The Robotics Institute,The Robotics Institute,"Institute for Field Robotics, ประชาอุทิศ, กรุงเทพมหานคร, เขตราษฎร์บูรณะ, กรุงเทพมหานคร, 10140, ประเทศไทย",13.65450525,100.494231705059
+8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,Segment-based SVMs for Time Series Analysis,Carnegie Mellon University,Carnegie Mellon University,"Carnegie Mellon University Silicon Valley, South Akron Road, ARC, Santa Clara County, California, 94035-0016, USA",37.4102193,-122.059654865858
+8e0ad1ccddc7ec73916eddd2b7bbc0019d8a7958,Segment-based SVMs for Time Series Analysis,Pennsylvania,Pennsylvania,"Pennsylvania, USA",40.9699889,-77.7278831
+8ed33184fccde677ec8413ae06f28ea9f2ca70f3,Multimodal Visual Concept Learning with Weakly Supervised Techniques,National Technical University of Athens,National Technical University of Athens,"Εθνικό Μετσόβιο Πολυτεχνείο, Στουρνάρη, Μουσείο, Αθήνα, Δήμος Αθηναίων, Π.Ε. Κεντρικού Τομέα Αθηνών, Περιφέρεια Αττικής, Αττική, 11250, Ελλάδα",37.98782705,23.7317973260904
+8ee5b1c9fb0bded3578113c738060290403ed472,Extending explicit shape regression with mixed feature channels and pose priors,Karlsruhe Institute of,Karlsruhe Institute of,"KIT, Leopoldshafener Allee, Linkenheim, Linkenheim-Hochstetten, Landkreis Karlsruhe, Regierungsbezirk Karlsruhe, Baden-Württemberg, 76351, Deutschland",49.10184375,8.43312559623876
+8efda5708bbcf658d4f567e3866e3549fe045bbb,Pre-trained Deep Convolutional Neural Networks for Face Recognition,University of Groningen,"University of Groningen, The Netherlands","Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+8efda5708bbcf658d4f567e3866e3549fe045bbb,Pre-trained Deep Convolutional Neural Networks for Face Recognition,ALICE Institute,ALICE Institute,"Instituto Superior de Ciências da Educação (ISCED), Rua Salvador Allende (Salvador Guillermo Allende Gossens), Maculusso, Maianga, Município de Luanda, Luanda, 927, Angola",-8.82143045,13.2347076178375
+8efda5708bbcf658d4f567e3866e3549fe045bbb,Pre-trained Deep Convolutional Neural Networks for Face Recognition,University of Groningen,University of Groningen,"Academiegebouw, Professorgang, Binnenstad, Groningen, Nederland, 9712EA, Nederland",53.21967825,6.56251482206542
+2227f978f084ebb18cb594c0cfaf124b0df6bf95,Pillar Networks for action recognition,Imperial College London,Imperial College London,"Imperial College London, Exhibition Road, Brompton, Royal Borough of Kensington and Chelsea, London, Greater London, England, SW7 2AZ, UK",51.49887085,-0.175607973937072
+22e2066acfb795ac4db3f97d2ac176d6ca41836c,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,Institute of Computing Technology,Institute of Computing Technology,"神戸情報大学院大学, フラワーロード, 中央区, 神戸市, 兵庫県, 近畿地方, 650-0001, 日本",34.6988529,135.1936779
+22e2066acfb795ac4db3f97d2ac176d6ca41836c,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,University of Chinese Academy of Sciences,University of Chinese Academy of Sciences,"University of Chinese Academy of Sciences, UCAS, Yuquanlu, 玉泉路, 田村, 海淀区, 100049, 中国",39.9082804,116.2458527
+22717ad3ad1dfcbb0fd2f866da63abbde9af0b09,A Learning-based Control Architecture for Socially Assistive Robots Providing Cognitive Interventions,University of Toronto,University of Toronto,"University of Toronto, St. George Street, Bloor Street Culture Corridor, Old Toronto, Toronto, Ontario, M5S 1A5, Canada",43.66333345,-79.3976997498952
+2288696b6558b7397bdebe3aed77bedec7b9c0a9,Action Recognition with Joint Attention on Multi-Level Deep Features,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+2288696b6558b7397bdebe3aed77bedec7b9c0a9,Action Recognition with Joint Attention on Multi-Level Deep Features,"Beijing, China","Beijing, China","北京市, 东城区, 北京市, 100010, 中国",39.906217,116.3912757
+221252be5d5be3b3e53b3bbbe7a9930d9d8cad69,Do We Need More Training Data or Better Models for Object Detection?,University of California,University of California,"UC Berkeley, Centennial Drive, Oakland, Alameda County, California, 94720-1076, USA",37.87631055,-122.238859269443
+221252be5d5be3b3e53b3bbbe7a9930d9d8cad69,Do We Need More Training Data or Better Models for Object Detection?,Massachusetts Institute of Technology,Massachusetts Institute of Technology,"MIT, Amherst Street, Cambridgeport, Cambridge, Middlesex County, Massachusetts, 02238, USA",42.3583961,-71.0956778766393
+22df6b6c87d26f51c0ccf3d4dddad07ce839deb0,Fast action proposals for human action detection and search,Nanyang Technological University,"Nanyang Technological University, Singapore","NTU, Faculty Avenue, Jurong West, Southwest, 637460, Singapore",1.3484104,103.682979653067
+22e678d3e915218a7c09af0d1602e73080658bb7,Adventures in archiving and using three years of webcam images,Washington University,"Washington University, St. Louis, MO, USA","Dero, Wallace Drive, St. Louis County, Missouri, MO 63130, USA",38.6480445,-90.3099667
+2201f187a7483982c2e8e2585ad9907c5e66671d,Joint Face Alignment and 3D Face Reconstruction,Michigan State University,Michigan State University,"Michigan State University, Farm Lane, East Lansing, Ingham County, Michigan, 48824, USA",42.718568,-84.4779157093052
+2241eda10b76efd84f3c05bdd836619b4a3df97e,One-to-many face recognition with bilinear CNNs,University of Massachusetts,"University of Massachusetts, Amherst","University of Massachusetts, Hicks Way, Amherst, Hampshire, Massachusetts, 01003, USA",42.3889785,-72.5286987
+22646cf884cc7093b0db2c1731bd52f43682eaa8,Human Action Adverb Recognition: ADHA Dataset and A Three-Stream Hybrid Model,Shanghai Jiao Tong University,"Shanghai Jiao Tong University, China","上海交通大学(徐汇校区), 淮海西路, 番禺小区, 平阴桥, 徐汇区, 上海市, 200052, 中国",31.20081505,121.428406809373
+22f94c43dd8b203f073f782d91e701108909690b,MovieScope: Movie trailer classification using Deep Neural Networks,University of Virginia,University of Virginia,"University of Virginia, Rotunda Alley, Carr's Hill, Albemarle County, Virginia, 22904-4119, USA",38.0353682,-78.5035322
+22143664860c6356d3de3556ddebe3652f9c912a,Facial Expression Recognition for Human-Robot Interaction - A Prototype,Electrical and Computer Engineering,Electrical and Computer Engineering,"Electrical and Computer Engineering, Boston Avenue, South Overton, Lubbock, Lubbock County, Texas, 79409, USA",33.5866784,-101.875392037548
+25ff865460c2b5481fa4161749d5da8501010aa0,Seeing What is Not There: Learning Context to Determine Where Objects are Missing,University of Maryland,University of Maryland,"The Grand Garage, 5, North Paca Street, Seton Hill, Baltimore, Maryland, 21201, USA",39.2899685,-76.6219610316858
+25d514d26ecbc147becf4117512523412e1f060b,Annotated crowd video face database,"IIIT-Delhi, India","IIIT-Delhi, India","IIIT-Delhi, Mathura Road, Friends Colony, South East Delhi, Delhi, 110020, India",28.54632595,77.2732550434418
+25c3cdbde7054fbc647d8be0d746373e7b64d150,ForgetMeNot: Memory-Aware Forensic Facial Sketch Matching,Beijing University of Posts and Telecommunications,Beijing University of Posts and Telecommunications,"北京邮电大学, 西土城路, 海淀区, 北京市, 100082, 中国",39.9601488,116.351939210403
+25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,Neural Networks with Smooth Adaptive Activation Functions for Regression,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,Neural Networks with Smooth Adaptive Activation Functions for Regression,Stony Brook University,Stony Brook University,"Stony Brook University, 100, Nicolls Road, Stony Brook, Suffolk County, New York, 11794, USA",40.9153196,-73.1270626
+25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,Neural Networks with Smooth Adaptive Activation Functions for Regression,"Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, USA","Oak Ridge National Laboratory, Oak Ridge, Roane County, Tennessee, USA",35.93006535,-84.3124003215133
+2588acc7a730d864f84d4e1a050070ff873b03d5,Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network,Microsoft Research,Microsoft Research,"Microsoft Research, 21, Station Road, Petersfield, Cambridge, Cambridgeshire, East of England, England, CB1 2FB, UK",52.19495145,0.135010835076038
+2594a77a3f0dd5073f79ba620e2f287804cec630,Regularizing face verification nets for pain intensity regression,Tsinghua University,Tsinghua University,"清华大学, 30, 双清路, 五道口, 后八家, 海淀区, 100084, 中国",40.00229045,116.320989081778
+25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,University of Oulu,University of Oulu,"Oulun yliopisto, Biologintie, Linnanmaa, Oulu, Oulun seutukunta, Pohjois-Pohjanmaa, Pohjois-Suomen aluehallintovirasto, Pohjois-Suomi, Manner-Suomi, 90540, Suomi",65.0592157,25.466326012507
+25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,Harvard University,"Harvard University, USA","Harvard University, Soldiers Field Road, Allston, Boston, Suffolk County, Massachusetts, 02163, USA",42.36782045,-71.1266665287448
+25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,Harvard and Massachusetts Institute,Harvard and Massachusetts Institute,"Massachusetts Correctional Institute Shirley Minimum Security Library, Harvard Road, Shaker Village, Shirley, Middlesex County, Massachusetts, 01464, USA",42.5268445,-71.6525446
diff --git a/reports/stats/no_separator_papers.csv b/reports/stats/no_separator_papers.csv new file mode 100644 index 00000000..ee3cef0d --- /dev/null +++ b/reports/stats/no_separator_papers.csv @@ -0,0 +1,344 @@ +0d1d9a603b08649264f6e3b6d5a66bf1e1ac39d2,Effects of emotional expressions on persuasion,,2016
+0da4c3d898ca2fff9e549d18f513f4898e960aca,The Headscarf Effect Revisited: Further Evidence for a Culture-Based Internal Face Processing Advantage.,Perception,2015
+92c2dd6b3ac9227fce0a960093ca30678bceb364,On Color Texture Normalization for Active Appearance Models,IEEE Transactions on Image Processing,2009
+927ba64123bd4a8a31163956b3d1765eb61e4426,Customer satisfaction measuring based on the most significant facial emotion,Unknown,2018
+927ad0dceacce2bb482b96f42f2fe2ad1873f37a,Interest-Point based Face Recognition System,,2012
+0c3f7272a68c8e0aa6b92d132d1bf8541c062141,Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition,,2014
+66533107f9abdc7d1cb8f8795025fc7e78eb1122,Visual Servoing for a User's Mouth with Effective Intention Reading in a Wheelchair-based Robotic Arm,,2001
+661da40b838806a7effcb42d63a9624fcd684976,An Illumination Invariant Accurate Face Recognition with Down Scaling of DCT Coefficients,CIT,2010
+3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,Facial Expression Recognition with Local Binary Patterns and Linear Programming,,2004
+3e04feb0b6392f94554f6d18e24fadba1a28b65f,Subspace Image Representation for Facial Expression Analysis and Face Recognition and its Relation to the Human Visual System,,2007
+50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,Emotion recognition based on texture analysis of facial expression,2011 International Conference on Image Information Processing,2011
+50e45e9c55c9e79aaae43aff7d9e2f079a2d787b,Unbiased Feature Selection in Learning Random Forests for High-Dimensional Data,,2015
+50c0de2cccf7084a81debad5fdb34a9139496da0,"The Influence of Annotation, Corpus Design, and Evaluation on the Outcome of Automatic Classification of Human Emotions",Front. ICT,2016
+688754568623f62032820546ae3b9ca458ed0870,Resting high frequency heart rate variability is not associated with the recognition of emotional facial expressions in healthy human adults,,2016
+68c17aa1ecbff0787709be74d1d98d9efd78f410,Gender Classification from Face Images Using Mutual Information and Feature Fusion,,2012
+68f61154a0080c4aae9322110c8827978f01ac2e,"Recognizing blurred , non-frontal , illumination and expression variant partially occluded faces",Unknown,2016
+6821113166b030d2123c3cd793dd63d2c909a110,Acquisition and Indexing of Rgb-d Recordings for Facial Expressions and Emotion Recognition1,,2015
+57bf9888f0dfcc41c5ed5d4b1c2787afab72145a,Robust Facial Expression Recognition Based on Local Directional Pattern,,
+57f8e1f461ab25614f5fe51a83601710142f8e88,Region Selection for Robust Face Verification using UMACE Filters,,2007
+57a1466c5985fe7594a91d46588d969007210581,A taxonomy of face-models for system evaluation,2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops,2010
+57a14a65e8ae15176c9afae874854e8b0f23dca7,Seeing Mixed Emotions: The Specificity of Emotion Perception From Static and Dynamic Facial Expressions Across Cultures,,2018
+3b7f6035a113b560760c5e8000540fc46f91fed5,Coupling Alignments with Recognition for Still-to-Video Face Recognition,2013 IEEE International Conference on Computer Vision,2013
+3bd1d41a656c8159305ba2aa395f68f41ab84f31,Entity-Based Opinion Mining from Text and Multimedia,,2015
+6f957df9a7d3fc4eeba53086d3d154fc61ae88df,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,,2007
+6f5151c7446552fd6a611bf6263f14e729805ec7,Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers,,2010
+03167776e17bde31b50f294403f97ee068515578,Chapter 11. Facial Expression Analysis,,2004
+030ef31b51bd4c8d0d8f4a9a32b80b9192fe4c3f,Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2015
+03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,A real time system for model-based interpretation of the dynamics of facial expressions,2008 8th IEEE International Conference on Automatic Face & Gesture Recognition,2008
+03f14159718cb495ca50786f278f8518c0d8c8c9,Performance evaluation of HOG and Gabor features for vision-based vehicle detection,"2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)",2015
+03ac1c694bc84a27621da6bfe73ea9f7210c6d45,Chapter 1 Introduction to information security foundations and applications,Unknown,2018
+03bd58a96f635059d4bf1a3c0755213a51478f12,Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization,IEEE Transactions on Image Processing,2015
+03fe3d031afdcddf38e5cc0d908b734884542eeb,Engagement with Artificial Intelligence through Natural Interaction Models,Unknown,2017
+9b474d6e81e3b94e0c7881210e249689139b3e04,VG-RAM Weightless Neural Networks for Face Recognition,,2009
+047d7cf4301cae3d318468fe03a1c4ce43b086ed,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"IEEE/ACM Transactions on Audio, Speech, and Language Processing",2015
+04317e63c08e7888cef480fe79f12d3c255c5b00,Face Recognition Using a Unified 3D Morphable Model,Unknown,2016
+0470b0ab569fac5bbe385fa5565036739d4c37f8,Automatic face naming with caption-based supervision,2008 IEEE Conference on Computer Vision and Pattern Recognition,2008
+6a657995b02bc9dee130701138ea45183c18f4ae,The Timing of Facial Motion in posed and Spontaneous Smiles,IJWMIP,2004
+324f39fb5673ec2296d90142cf9a909e595d82cf,Relationship Matrix Nonnegative Decomposition for Clustering,,2014
+32575ffa69d85bbc6aef5b21d73e809b37bf376d,Measuring Biometric Sample Quality in Terms of Biometric Information,2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference,2006
+35f084ddee49072fdb6e0e2e6344ce50c02457ef,A bilinear illumination model for robust face recognition,Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1,2005
+69c2ac04693d53251500557316c854a625af84ee,"50 years of biometric research: Accomplishments, challenges, and opportunities",Pattern Recognition Letters,2016
+3cb2841302af1fb9656f144abc79d4f3d0b27380,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,Unknown,2017
+3cc3cf57326eceb5f20a02aefae17108e8c8ab57,Benchmark for Evaluating Biological Image Analysis Tools,,2007
+3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,Measuring Gaze Orientation for Human-Robot Interaction,,2009
+3c8da376576938160cbed956ece838682fa50e9f,Aiding face recognition with social context association rule based re-ranking,IEEE International Joint Conference on Biometrics,2014
+512befa10b9b704c9368c2fbffe0dc3efb1ba1bf,Evidence and a computational explanation of cultural differences in facial expression recognition.,Emotion,2010
+51a8dabe4dae157aeffa5e1790702d31368b9161,Face recognition under generic illumination based on harmonic relighting,IJPRAI,2005
+511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,A Community Detection Approach to Cleaning Extremely Large Face Database,,2018
+3d9db1cacf9c3bb7af57b8112787b59f45927355,Improving Medical Students’ Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback,Front. ICT,2016
+587c48ec417be8b0334fa39075b3bfd66cc29dbe,Serial dependence in the perception of attractiveness,,2015
+67c3c1194ee72c54bc011b5768e153a035068c43,Street Scenes: towards scene understanding in still images,,2006
+0b85b50b6ff03a7886c702ceabad9ab8c8748fdc,Is there a dynamic advantage for facial expressions?,Journal of vision,2011
+0be80da851a17dd33f1e6ffdd7d90a1dc7475b96,Weighted Feature Gaussian Kernel SVM for Emotion Recognition,,2016
+93747de3d40376761d1ef83ffa72ec38cd385833,Team members' emotional displays as indicators of team functioning.,Cognition & emotion,2016
+0e73d2b0f943cf8559da7f5002414ccc26bc77cd,Similarity Comparisons for Interactive Fine-Grained Categorization,2014 IEEE Conference on Computer Vision and Pattern Recognition,2014
+0e1983e9d0e8cb4cbffef7af06f6bc8e3f191a64,Estimating illumination parameters in real space with application to image relighting,,2005
+60040e4eae81ab6974ce12f1c789e0c05be00303,Graphical Facial Expression Analysis and Design Method: An Approach to Determine Humanoid Skin Deformation,,2012
+60bffecd79193d05742e5ab8550a5f89accd8488,Proposal Classification using sparse representation and applications to skin lesion diagnosis,,
+346dbc7484a1d930e7cc44276c29d134ad76dc3f,Artists portray human faces with the Fourier statistics of complex natural scenes.,Network,2007
+34d484b47af705e303fc6987413dc0180f5f04a9,RI:Medium: Unsupervised and Weakly-Supervised Discovery of Facial Events,,2010
+5fea26746f3140b12317fcf3bc1680f2746e172e,Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images,2017 IEEE International Conference on Computer Vision (ICCV),2017
+050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,Spatio-Temporal Scale Selection in Video Data,Journal of Mathematical Imaging and Vision,2017
+05e3acc8afabc86109d8da4594f3c059cf5d561f,Actor-Action Semantic Segmentation with Grouping Process Models,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016
+0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,Facial Expression Recognition,,2011
+9d8ff782f68547cf72b7f3f3beda9dc3e8ecfce6,Improved Pseudoinverse Linear Discriminant Analysis Method for Dimensionality Reduction,IJPRAI,2012
+9ce0d64125fbaf625c466d86221505ad2aced7b1,Recognizing expressions of children in real life scenarios View project PhD ( Doctor of Philosophy ) View project,Unknown,2017
+023ed32ac3ea6029f09b8c582efbe3866de7d00a,Discriminative learning from partially annotated examples,,2016
+a4c430b7d849a8f23713dc283794d8c1782198b2,Video Concept Embedding,,2016
+a3f684930c5c45fcb56a2b407d26b63879120cbf,LPM for Fast Action Recognition with Large Number of Classes,,2013
+a32d4195f7752a715469ad99cb1e6ebc1a099de6,The Potential of Using Brain Images for Authentication,,2014
+a308077e98a611a977e1e85b5a6073f1a9bae6f0,Intelligent Screening Systems for Cervical Cancer,,2014
+a35d3ba191137224576f312353e1e0267e6699a1,Increasing security in DRM systems through biometric authentication,,2001
+b55d0c9a022874fb78653a0004998a66f8242cad,Hybrid Facial Representations for Emotion Recognition Woo,,2013
+b5930275813a7e7a1510035a58dd7ba7612943bc,Face Recognition Using L-Fisherfaces,J. Inf. Sci. Eng.,2010
+b216040f110d2549f61e3f5a7261cab128cab361,Weighted Voting of Discriminative Regions for Face Recognition,IEICE Transactions,2017
+ac1d97a465b7cc56204af5f2df0d54f819eef8a6,A Look at Eye Detection for Unconstrained Environments,,2010
+accbd6cd5dd649137a7c57ad6ef99232759f7544,Facial Expression Recognition with Local Binary Patterns and Linear Programming,Unknown,2004
+ac51d9ddbd462d023ec60818bac6cdae83b66992,An Efficient Robust Eye Localization by Learning the Convolution Distribution Using Eye Template,,2015
+acc548285f362e6b08c2b876b628efceceeb813e,Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study,,2014
+ac9dfbeb58d591b5aea13d13a83b1e23e7ef1fea,From Gabor Magnitude to Gabor Phase Features: Tackling the Problem of Face Recognition under Severe Illumination Changes,,2009
+ad08c97a511091e0f59fc6a383615c0cc704f44a,Towards the improvement of self-service systems via emotional virtual agents,,2012
+adf62dfa00748381ac21634ae97710bb80fc2922,ViFaI : A trained video face indexing scheme Harsh,Unknown,2011
+bb22104d2128e323051fb58a6fe1b3d24a9e9a46,Analyzing Facial Expression by Fusing Manifolds,,2007
+d73d2c9a6cef79052f9236e825058d5d9cdc1321,Cutting the visual world into bigger slices for improved video concept detection. (Amélioration de la détection des concepts dans les vidéos en coupant de plus grandes tranches du monde visuel),,2014
+d708ce7103a992634b1b4e87612815f03ba3ab24,FCVID: Fudan-Columbia Video Dataset,,2016
+d79f9ada35e4410cd255db39d7cc557017f8111a,Evaluation of accurate eye corner detection methods for gaze estimation,,2014
+d06c8e3c266fbae4026d122ec9bd6c911fcdf51d,Role for 2D image generated 3D face models in the rehabilitation of facial palsy,,2017
+d074b33afd95074d90360095b6ecd8bc4e5bb6a2,Human-Robot Collaboration: a Survey,I. J. Humanoid Robotics,2008
+be4a20113bc204019ea79c6557a0bece23da1121,DeepCache: Principled Cache for Mobile Deep Vision,Unknown,2017
+b37f57edab685dba5c23de00e4fa032a3a6e8841,Towards social interaction detection in egocentric photo-streams,,2015
+b32cf547a764a4efa475e9c99a72a5db36eeced6,Mimicry of ingroup and outgroup emotional expressions,Unknown,2018
+dff838ba0567ef0a6c8fbfff9837ea484314efc6,"Progress Report, MSc. Dissertation: On-line Random Forest for Face Detection",,2014
+a59cdc49185689f3f9efdf7ee261c78f9c180789,A New Approach for Learning Discriminative Dictionary for Pattern Classification,J. Inf. Sci. Eng.,2016
+a57ee5a8fb7618004dd1def8e14ef97aadaaeef5,Fringe Projection Techniques: Whither we are?,,2009
+bdbba95e5abc543981fb557f21e3e6551a563b45,Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks,CoRR,2018
+d68dbb71b34dfe98dee0680198a23d3b53056394,VIVA Face-off Challenge: Dataset Creation and Balancing Privacy,,2015
+bcf19b964e7d1134d00332cf1acf1ee6184aff00,Trajectory-Set Feature for Action Recognition,IEICE Transactions,2017
+ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,On evaluating face tracks in movies,2013 IEEE International Conference on Image Processing,2013
+ae2c71080b0e17dee4e5a019d87585f2987f0508,Emotional Face Recognition in Children With Attention Deficit/Hyperactivity Disorder: Evidence From Event Related Gamma Oscillation,,2017
+ae71f69f1db840e0aa17f8c814316f0bd0f6fbbf,That personal profile image might jeopardize your rental opportunity! On the relative impact of the seller's facial expressions upon buying behavior on Airbnb™,Computers in Human Behavior,2017
+aba770a7c45e82b2f9de6ea2a12738722566a149,Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels,IEEE Transactions on Information Forensics and Security,2016
+ab2b09b65fdc91a711e424524e666fc75aae7a51,Multi-modal Biomarkers to Discriminate Cognitive State *,Unknown,2015
+f412d9d7bc7534e7daafa43f8f5eab811e7e4148,Running Head : Anxiety and Emotional Faces in WS 2,Unknown,2014
+f43eeb578e0ca48abfd43397bbd15825f94302e4,Optical computer recognition of facial expressions associated with stress induced by performance demands.,"Aviation, space, and environmental medicine",2005
+f3cf10c84c4665a0b28734f5233d423a65ef1f23,Title Temporal Exemplar-based Bayesian Networks for facialexpression recognition,Unknown,2008
+c02847a04a99a5a6e784ab580907278ee3c12653,Fine Grained Video Classification for Endangered Bird Species Protection,,2017
+eee8a37a12506ff5df72c402ccc3d59216321346,Volume C,,2008
+eeb6d084f9906c53ec8da8c34583105ab5ab8284,Generation of Facial Expression Map using Supervised and Unsupervised Learning,,2012
+eed7920682789a9afd0de4efd726cd9a706940c8,Computers to Help with Conversations : Affective Framework to Enhance Human Nonverbal Skills,Unknown,2013
+fcbec158e6a4ace3d4311b26195482b8388f0ee9,Face Recognition from Still Images and Videos,,2004
+fdb33141005ca1b208a725796732ab10a9c37d75,A connectionist computational method for face recognition,Applied Mathematics and Computer Science,2016
+fdbacf2ff0fc21e021c830cdcff7d347f2fddd8e,Recognizing Frustration of Drivers From Face Video Recordings and Brain Activation Measurements With Functional Near-Infrared Spectroscopy,,2018
+f24e379e942e134d41c4acec444ecf02b9d0d3a9,Analysis of Facial Images across Age Progression by Humans,,2011
+f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,Perceived Age Estimation from Face Images,Unknown,2018
+f28b7d62208fdaaa658716403106a2b0b527e763,Clustering-driven Deep Embedding with Pairwise Constraints,CoRR,2018
+e379e73e11868abb1728c3acdc77e2c51673eb0d,Face Databases,,2005
+cf875336d5a196ce0981e2e2ae9602580f3f6243,"7 What 1 S It Mean for a Computer to ""have"" Emotions?",,
+cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),Unknown,2013
+e4df83b7424842ff5864c10fa55d38eae1c45fac,Locally Linear Discriminate Embedding for Face Recognition,,2010
+e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,Design of an Efficient Real-Time Algorithm Using Reduced Feature Dimension for Recognition of Speed Limit Signs,,2013
+fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,Unknown,2010
+feb6e267923868bff6e2108603d00fdfd65251ca,Unsupervised Discovery of Visual Face Categories,International Journal on Artificial Intelligence Tools,2013
+c87f7ee391d6000aef2eadb49f03fc237f4d1170,A real-time and unsupervised face Re-Identification system for Human-Robot Interaction,CoRR,2017
+c87d5036d3a374c66ec4f5870df47df7176ce8b9,Temporal Dynamics of Natural Static Emotional Facial Expressions Decoding: A Study Using Event- and Eye Fixation-Related Potentials,,2018
+c8e84cdff569dd09f8d31e9f9ba3218dee65e961,Dictionaries for image and video-based face recognition [Invited].,"Journal of the Optical Society of America. A, Optics, image science, and vision",2014
+edf98a925bb24e39a6e6094b0db839e780a77b08,Simplex Representation for Subspace Clustering,CoRR,2018
+c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,Unconstrained face identification with multi-scale block-based correlation,Unknown,2017
+c6526dd3060d63a6c90e8b7ff340383c4e0e0dd8,Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.,Scientific reports,2016
+4e5dc3b397484326a4348ccceb88acf309960e86,Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection,,2014
+2004afb2276a169cdb1f33b2610c5218a1e47332,Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition,,2018
+20a16efb03c366fa4180659c2b2a0c5024c679da,Screening Rules for Overlapping Group Lasso,CoRR,2014
+208a2c50edb5271a050fa9f29d3870f891daa4dc,The resolution of facial expressions of emotion.,Journal of vision,2011
+27a0a7837f9114143717fc63294a6500565294c2,Face Recognition in Unconstrained Environments: A Comparative Study,,2015
+270733d986a1eb72efda847b4b55bc6ba9686df4,Recognizing Facial Expressions Using Model-Based Image Interpretation,Unknown,2008
+27169761aeab311a428a9dd964c7e34950a62a6b,Face Recognition Using 3D Head Scan Data Based on Procrustes Distance,2008 International Conference on Intelligent Engineering Systems,2008
+27a299b834a18e45d73e0bf784bbb5b304c197b3,Social Role Discovery in Human Events,2013 IEEE Conference on Computer Vision and Pattern Recognition,2013
+4b7c110987c1d89109355b04f8597ce427a7cd72,Feature- and Face-Exchange illusions: new insights and applications for the study of the binding problem,,2014
+4b71d1ff7e589b94e0f97271c052699157e6dc4a,Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image,EURASIP J. Adv. Sig. Proc.,2008
+11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",Proceedings of the National Academy of Sciences of the United States of America,2015
+29ce6b54a87432dc8371f3761a9568eb3c5593b0,Age Sensitivity of Face Recognition Algorithms,2013 Fourth International Conference on Emerging Security Technologies,2013
+29c7dfbbba7a74e9aafb6a6919629b0a7f576530,Automatic Facial Expression Analysis and Emotional Classification,,2004
+2983efadb1f2980ab5ef20175f488f77b6f059d7,Emotion in Human–computer Interaction,,2011
+29f0414c5d566716a229ab4c5794eaf9304d78b6,Biometric Template Security,EURASIP J. Adv. Sig. Proc.,2008
+7c825562b3ff4683ed049a372cb6807abb09af2a,Finding Tiny Faces Supplementary Materials,Unknown,2017
+16c884be18016cc07aec0ef7e914622a1a9fb59d,Exploiting Multimodal Data for Image Understanding,,2010
+16e95a907b016951da7c9327927bb039534151da,3D Face Recognition Using Spherical Vector Norms Map,J. Inf. Sci. Eng.,2017
+167736556bea7fd57cfabc692ec4ae40c445f144,Improved Motion Description for Action Classification,Front. ICT,2016
+42765c170c14bd58e7200b09b2e1e17911eed42b,Feature Extraction Based on Wavelet Moments and Moment Invariants in Machine Vision Systems,,2012
+42dc36550912bc40f7faa195c60ff6ffc04e7cd6,Visible and Infrared Face Identification via Sparse Representation,,2013
+4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,Face Recognition From Video,,2008
+89c84628b6f63554eec13830851a5d03d740261a,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,,2010
+893239f17dc2d17183410d8a98b0440d98fa2679,UvA-DARE ( Digital Academic Repository ) Expression-Invariant Age Estimation,Unknown,2017
+4541c9b4b7e6f7a232bdd62ae653ba5ec0f8bbf6,The role of structural facial asymmetry in asymmetry of peak facial expressions.,Laterality,2006
+1f89439524e87a6514f4fbe7ed34bda4fd1ce286,Devising Face Authentication System and Performance Evaluation Based on Statistical Models,,2015
+1fe990ca6df273de10583860933d106298655ec8,A Wavelet-Based Image Preprocessing Method or Illumination Insensitive Face Recognition,J. Inf. Sci. Eng.,2015
+7373c4a23684e2613f441f2236ed02e3f9942dd4,Feature extraction through Binary Pattern of Phase Congruency for facial expression recognition,2012 12th International Conference on Control Automation Robotics & Vision (ICARCV),2012
+74de03923a069ffc0fb79e492ee447299401001f,On Film Character Retrieval in Feature-Length Films,,2005
+744fa8062d0ae1a11b79592f0cd3fef133807a03,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,IEEE transactions on cybernetics,2017
+1a41e5d93f1ef5b23b95b7163f5f9aedbe661394,Alignment-Free and High-Frequency Compensation in Face Hallucination,,2014
+1afd481036d57320bf52d784a22dcb07b1ca95e2,Automated Content Metadata Extraction Services Based on MPEG Standards,Comput. J.,2013
+1a4b6ee6cd846ef5e3030a6ae59f026e5f50eda6,Deep Learning for Video Classification and Captioning,CoRR,2016
+28b26597a7237f9ea6a9255cde4e17ee18122904,Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus,,2015
+28c9198d30447ffe9c96176805c1cd81615d98c8,No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample,,2016
+17a85799c59c13f07d4b4d7cf9d7c7986475d01c,Extending Procrustes Analysis: Building Multi-view 2-D Models from 3-D Human Shape Samples,,2015
+176bd61cc843d0ed6aa5af83c22e3feb13b89fe1,Investigating Spontaneous Facial Action Recognition through AAM Representations of the Face,,2007
+8f6d05b8f9860c33c7b1a5d704694ed628db66c7,Non-linear dimensionality reduction and sparse representation models for facial analysis. (Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l'analyse du visage),Unknown,2014
+8f08b2101d43b1c0829678d6a824f0f045d57da5,Supplementary Material for: Active Pictorial Structures,,2015
+8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,What do you think of my picture? Investigating factors of influence in profile images context perception,,2015
+7ed2c84fdfc7d658968221d78e745dfd1def6332,Evaluation of linear combination of views for object recognition on real and synthetic datasets,,2007
+7ef0cc4f3f7566f96f168123bac1e07053a939b2,Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarité triangulaire en utilisant des réseaux siamois),Unknown,2016
+7e18b5f5b678aebc8df6246716bf63ea5d8d714e,Increased Loss Aversion in Unmedicated Patients with Obsessive–Compulsive Disorder,,2017
+7ec7163ec1bc237c4c2f2841c386f2dbfd0cc922,Skiing and Thinking About It: Moment-to-Moment and Retrospective Analysis of Emotions in an Extreme Sport,,2018
+7ef44b7c2b5533d00001ae81f9293bdb592f1146,Détection des émotions à partir de vidéos dans un environnement non contrôlé Detection of emotions from video in non-controlled environment,Unknown,2003
+10ce3a4724557d47df8f768670bfdd5cd5738f95,Fisher Light-Fields for Face Recognition across Pose and Illumination,,2002
+190d8bd39c50b37b27b17ac1213e6dde105b21b8,Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation,IEEE Transactions on Knowledge and Data Engineering,2011
+19da9f3532c2e525bf92668198b8afec14f9efea,Challenge: Face verification across age progression using real-world data,,2011
+26c884829897b3035702800937d4d15fef7010e4,Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation,IEICE Transactions,2008
+21a2f67b21905ff6e0afa762937427e92dc5aa0b,Extra Facial Landmark Localization via Global Shape Reconstruction,,2017
+7574f999d2325803f88c4915ba8f304cccc232d1,Transfer Learning for Cross-Dataset Recognition: A Survey,Unknown,2017
+816eff5e92a6326a8ab50c4c50450a6d02047b5e,fLRR: Fast Low-Rank Representation Using Frobenius Norm,,2014
+86c5478f21c4a9f9de71b5ffa90f2a483ba5c497,"Kernel Selection using Multiple Kernel Learning and Domain Adaptation in Reproducing Kernel Hilbert Space, for Face Recognition under Surveillance Scenario",CoRR,2016
+72a87f509817b3369f2accd7024b2e4b30a1f588,Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints,Pattern Analysis and Applications,2011
+2a5903bdb3fdfb4d51f70b77f16852df3b8e5f83,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,PACMHCI,2017
+88e2574af83db7281c2064e5194c7d5dfa649846,A Robust Shape Reconstruction Method for Facial Feature Point Detection,,2017
+9f6d04ce617d24c8001a9a31f11a594bd6fe3510,Attentional bias towards angry faces in trait-reappraisal,,2011
+9fdfe1695adac2380f99d3d5cb6879f0ac7f2bfd,Active Tracking and Cloning of Facial Expressions Using Spatio-Temporal Information,Unknown,2002
+6b7f7817b2e5a7e7d409af2254a903fc0d6e02b6,Feature Extraction through Cross-Phase Congruency for Facial Expression Analysis,IJPRAI,2009
+6b17b219bd1a718b5cd63427032d93c603fcf24f,Videos from the 2013 Boston Marathon: An Event Reconstruction Dataset for Synchronization and Localization,,2017
+3896c62af5b65d7ba9e52f87505841341bb3e8df,Face Recognition from Still Images and Video,,2011
+009cd18ff06ff91c8c9a08a91d2516b264eee48e,Face and Automatic Target Recognition Based on Super-Resolved Discriminant Subspace,,2012
+6ed738ff03fd9042965abdfaa3ed8322de15c116,K-MEAP: Generating Specified K Clusters with Multiple Exemplars by Efficient Affinity Propagation,2014 IEEE International Conference on Data Mining,2014
+6ee64c19efa89f955011531cde03822c2d1787b8,Table S1: Review of Existing Facial Expression Databases That Are Often Used in Social Psycholgy,,
+6eece104e430829741677cadc1dfacd0e058d60f,Use of Automated Facial Image Analysis for Measurement of Emotion Expression,,2004
+6e93fd7400585f5df57b5343699cb7cda20cfcc2,Comparing a novel model based on the transferable belief model with humans during the recognition of partially occluded facial expressions.,Journal of vision,2009
+9ac82909d76b4c902e5dde5838130de6ce838c16,Recognizing Facial Expressions Automatically from Video,,2010
+9a3535cabf5d0f662bff1d897fb5b777a412d82e,Large-scale geo-facial image analysis,EURASIP J. Image and Video Processing,2015
+36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,Tracking von Gesichtsmimik mit Hilfe von Gitterstrukturen zur Klassifikation von schmerzrelevanten Action Units,,2010
+3674f3597bbca3ce05e4423611d871d09882043b,Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions,Journal of Multimedia,2012
+361d6345919c2edc5c3ce49bb4915ed2b4ee49be,Models for supervised learning in sequence data,Unknown,2018
+5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,Robust Face Detection by Simple Means,,2012
+5d09d5257139b563bd3149cfd5e6f9eae3c34776,Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization,,2014
+3152e89963b8a4028c4abf6e1dc19e91c4c5a8f4,Exploring Stereotypes and Biased Data with the Crowd,CoRR,2018
+65b737e5cc4a565011a895c460ed8fd07b333600,Transfer Learning for Cross-Dataset Recognition: A Survey,,2017
+628a3f027b7646f398c68a680add48c7969ab1d9,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,Unknown,2017
+6226f2ea345f5f4716ac4ddca6715a47162d5b92,Object Detection: Current and Future Directions,Front. Robotics and AI,2015
+968b983fa9967ff82e0798a5967920188a3590a8,Children's recognition of disgust in others.,Psychological bulletin,2013
+966e36f15b05ef8436afecf57a97b73d6dcada94,Dimensionality Reduction using Relative Attributes,,2014
+3acb6b3e3f09f528c88d5dd765fee6131de931ea,Novel representation for driver emotion recognition in motor vehicle videos,2017 IEEE International Conference on Image Processing (ICIP),2017
+5495e224ac7b45b9edc5cfeabbb754d8a40a879b,Feature Reconstruction Disentangling for Pose-invariant Face Recognition Supplementary Material,,2017
+54756f824befa3f0c2af404db0122f5b5bbf16e0,Computer Vision — Visual Recognition,,2009
+9820920d4544173e97228cb4ab8b71ecf4548475,Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets,,2015
+307a810d1bf6f747b1bd697a8a642afbd649613d,An affordable contactless security system access for restricted area,,2016
+3083d2c6d4f456e01cbb72930dc2207af98a6244,Perceived Age Estimation from Face Images,,2011
+5e0e516226413ea1e973f1a24e2fdedde98e7ec0,The Invariance Hypothesis and the Ventral Stream,,2013
+5bc0a89f4f73523967050374ed34d7bc89e4d9e1,The role of emotion transition for the perception of social dominance and affiliation.,Cognition & emotion,2016
+081189493ca339ca49b1913a12122af8bb431984,Supplemental Material for Photorealistic Facial Texture Inference Using Deep Neural Networks,,2017
+081286ede247c5789081502a700b378b6223f94b,Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions,,2018
+01cc8a712e67384f9ef9f30580b7415bfd71e980,Failing to ignore: paradoxical neural effects of perceptual load on early attentional selection in normal aging.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2010
+06f8aa1f436a33014e9883153b93581eea8c5c70,Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video,,2016
+066d71fcd997033dce4ca58df924397dfe0b5fd1,Iranian Face Database and Evaluation with a New Detection Algorithm,,2007
+6cfc337069868568148f65732c52cbcef963f79d,Audio-Visual Speaker Localization via Weighted Clustering Israel -,Unknown,2018
+992ebd81eb448d1eef846bfc416fc929beb7d28b,Exemplar-Based Face Parsing Supplementary Material,,2013
+978a219e07daa046244821b341631c41f91daccd,Emotional Intelligence: Giving Computers Effective Emotional Skills to Aid Interaction,,2008
+0f829fee12e86f980a581480a9e0cefccb59e2c5,Bird Part Localization Using Exemplar-Based Models with Enforced Pose and Subcategory Consistency,2013 IEEE International Conference on Computer Vision,2013
+0f395a49ff6cbc7e796656040dbf446a40e300aa,The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect,,2015
+0f21a39fa4c0a19c4a5b4733579e393cb1d04f71,Evaluation of optimization components of a 3D to 2D landmark fitting algorithm for head pose estimation,Unknown,2018
+0a4fc9016aacae9cdf40663a75045b71e64a70c9,Illumination Normalization Based on Homomorphic Wavelet Filtering for Face Recognition,J. Inf. Sci. Eng.,2013
+0a85afebaa19c80fddb660110a4352fd22eb2801,Neural Animation and Reenactment of Human Actor Videos,CoRR,2018
+0ac664519b2b8abfb8966dafe60d093037275573,Facial action unit detection using kernel partial least squares,2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops),2011
+0acf23485ded5cb9cd249d1e4972119239227ddb,Dual coordinate solvers for large-scale structural SVMs,CoRR,2013
+641f0989b87bf7db67a64900dcc9568767b7b50f,Reconstructing faces from their signatures using RBF regression,Unknown,2013
+64782a2bc5da11b1b18ca20cecf7bdc26a538d68,Facial Expression Recognition using Spectral Supervised Canonical Correlation Analysis,J. Inf. Sci. Eng.,2013
+90a754f597958a2717862fbaa313f67b25083bf9,A Review of Human Activity Recognition Methods,Front. Robotics and AI,2015
+bf961e4a57a8f7e9d792e6c2513ee1fb293658e9,Robust Face Image Matching under Illumination Variations,EURASIP J. Adv. Sig. Proc.,2004
+bffbd04ee5c837cd919b946fecf01897b2d2d432,Facial Feature Tracking and Occlusion Recovery in American Sign Language,,2006
+d3e04963ff42284c721f2bc6a90b7a9e20f0242f,On Forensic Use of Biometrics,,2014
+d3faed04712b4634b47e1de0340070653546deb2,Neural Best-Buddies: Sparse Cross-Domain Correspondence,ACM Trans. Graph.,2018
+d41c11ebcb06c82b7055e2964914b9af417abfb2,CDI-Type I: Unsupervised and Weakly-Supervised Discovery of Facial Events,,2011
+d4001826cc6171c821281e2771af3a36dd01ffc0,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),,2013
+ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,Uporaba emotivno pogojenega računalništva v priporočilnih sistemih,,2011
+a022eff5470c3446aca683eae9c18319fd2406d5,Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description sémantique des traits visuels humains),Unknown,2017
+a0f193c86e3dd7e0020c0de3ec1e24eaff343ce4,A New Classification Approach using Discriminant Functions,J. Inf. Sci. Eng.,2005
+a0e7f8771c7d83e502d52c276748a33bae3d5f81,Ensemble Nyström,,2012
+a0061dae94d916f60a5a5373088f665a1b54f673,Lensless computational imaging through deep learning,CoRR,2017
+a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,"Study on Human Face Recognition under Invariant Pose, Illumination and Expression using LBP, LoG and SVM",Unknown,2017
+b18858ad6ec88d8b443dffd3e944e653178bc28b,Trojaning Attack on Neural Networks,,2017
+b1df214e0f1c5065f53054195cd15012e660490a,Supplementary Material to Sparse Coding and Dictionary Learning with Linear Dynamical Systems,,2016
+b64cfb39840969b1c769e336a05a30e7f9efcd61,CRF-Based Context Modeling for Person Identification in Broadcast Videos,Front. ICT,2016
+b689d344502419f656d482bd186a5ee6b0140891,Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces.,Emotion,2009
+aa94f214bb3e14842e4056fdef834a51aecef39c,Reconhecimento de padrões faciais: Um estudo,,2015
+afa57e50570a6599508ee2d50a7b8ca6be04834a,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),Unknown,2016
+b7426836ca364603ccab0e533891d8ac54cf2429,A Review on Human Activity Recognition Using Vision-Based Method,,2017
+b7774c096dc18bb0be2acef07ff5887a22c2a848,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),Unknown,2015
+a8638a07465fe388ae5da0e8a68e62a4ee322d68,How to predict the global instantaneous feeling induced by a facial picture?,,2017
+dec0c26855da90876c405e9fd42830c3051c2f5f,Supplementary Material: Learning Compositional Visual Concepts with Mutual Consistency,Unknown,2018
+b018fa5cb9793e260b8844ae155bd06380988584,Project STAR IST - 2000 - 28764 Deliverable D 6 . 3 Enhanced face and arm / hand detector,,
+a6b1d79bc334c74cde199e26a7ef4c189e9acd46,Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.,Human brain mapping,2018
+b93bf0a7e449cfd0db91a83284d9eba25a6094d8,Supplementary Material for : Active Pictorial Structures,Unknown,2015
+b9c9c7ef82f31614c4b9226e92ab45de4394c5f6,Face Recognition under Varying Illumination,,
+a15c728d008801f5ffc7898568097bbeac8270a4,ForgetIT Deliverable Template,,2016
+a1132e2638a8abd08bdf7fc4884804dd6654fa63,Real-Time Video Face Recognition for Embedded Devices,Unknown,2012
+ef940b76e40e18f329c43a3f545dc41080f68748,A Face Recognition and Spoofing Detection Adapted to Visually- Impaired People,Unknown,2017
+c317181fa1de2260e956f05cd655642607520a4f,Objective Classes for Micro-Facial Expression Recognition,CoRR,2017
+c32c8bfadda8f44d40c6cd9058a4016ab1c27499,Unconstrained Face Recognition From a Single Image,,2008
+c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,Towards Unconstrained Face Recognition Using 3D Face Model,,2012
+eafda8a94e410f1ad53b3e193ec124e80d57d095,Observer-Based Measurement of Facial Expression With the Facial Action Coding System,Unknown,2006
+ea890846912f16a0f3a860fce289596a7dac575f,Benefits of social vs. non-social feedback on learning and generosity. Results from the Tipping Game,,2014
+cd596a2682d74bdfa7b7160dd070b598975e89d9,Mood Detection: Implementing a facial expression recognition system,,2009
+ccdea57234d38c7831f1e9231efcb6352c801c55,Illumination Processing in Face Recognition,IJPRAI,2014
+f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.,NeuroImage,2006
+f93606d362fcbe62550d0bf1b3edeb7be684b000,Nearest Neighbor Classifier Based on Nearest Feature Decisions,Comput. J.,2012
+f0f501e1e8726148d18e70c8e9f6feea9360d119,Jukka Komulainen SOFTWARE - BASED COUNTERMEASURES TO 2 D FACIAL,,2015
+f78fe101b21be36e98cd3da010051bb9b9829a1e,Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks,,2018
+f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,Title On color texture normalization for active appearance models,Unknown,2017
+e8fdacbd708feb60fd6e7843b048bf3c4387c6db,Deep Learning,Unknown,2014
+e8c6c3fc9b52dffb15fe115702c6f159d955d308,Linear Subspace Learning for Facial Expression Analysis,Unknown,2012
+fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,Draft: Evaluation Guidelines for Gender Classification and Age Estimation,,2011
+faeefc5da67421ecd71d400f1505cfacb990119c,PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips,Front. Robotics and AI,2017
+fa08a4da5f2fa39632d90ce3a2e1688d147ece61,Supplementary material for “ Unsupervised Creation of Parameterized Avatars ” 1 Summary of Notations,,
+fac8cff9052fc5fab7d5ef114d1342daba5e4b82,Modeling Phase Spectra Using Gaussian Mixture Models for Human Face Identification,Unknown,2005
+ff9195f99a1a28ced431362f5363c9a5da47a37b,Serial dependence in the perception of attractiveness,,2016
+f66f3d1e6e33cb9e9b3315d3374cd5f121144213,Top-down control of visual responses to fear by the amygdala.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2013
+f68f20868a6c46c2150ca70f412dc4b53e6a03c2,Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition,CIT,2015
+e726174d516605f80ff359e71f68b6e8e6ec6d5d,3D Face Recognition Using Patched Locality Preserving Projections,J. Inf. Sci. Eng.,2010
+e78394213ae07b682ce40dc600352f674aa4cb05,Expression-invariant three-dimensional face recognition,,2005
+f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,"KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces",,2017
+cefd9936e91885ba7af9364d50470f6cb54315a4,Expectation and surprise determine neural population responses in the ventral visual stream.,The Journal of neuroscience : the official journal of the Society for Neuroscience,2010
+e03bda45248b4169e2a20cb9124ae60440cad2de,"Learning a Dictionary of Shape-Components in Visual Cortex : Comparison with Neurons , Humans and Machines by Thomas Serre",Unknown,2006
+e0dedb6fc4d370f4399bf7d67e234dc44deb4333,Supplementary Material: Multi-Task Video Captioning with Video and Entailment Generation,,2017
+e00d391d7943561f5c7b772ab68e2bb6a85e64c4,Robust continuous clustering.,Proceedings of the National Academy of Sciences of the United States of America,2017
+e0244a8356b57a5721c101ead351924bcfb2eef4,Power as an emotional liability: Implications for perceived authenticity and trust after a transgression.,Journal of experimental psychology. General,2017
+2cc4ae2e864321cdab13c90144d4810464b24275,Face Recognition Using Optimized 3D Information from Stereo Images,,2005
+2c883977e4292806739041cf8409b2f6df171aee,Are Haar-Like Rectangular Features for Biometric Recognition Reducible?,,2013
+2cdd9e445e7259117b995516025fcfc02fa7eebb,Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition,2008 Seventh International Conference on Machine Learning and Applications,2008
+2cac70f9c8140a12b6a55cef834a3d7504200b62,Reconstructing High Quality Face-Surfaces using Model Based Stereo,2007 IEEE 11th International Conference on Computer Vision,2007
+2dced31a14401d465cd115902bf8f508d79de076,Can a Humanoid Face be Expressive? A Psychophysiological Investigation,,2015
+2dfe0e7e81f65716b09c590652a4dd8452c10294,Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli,,2018
+2dd5f1d69e0e8a95a10f3f07f2c0c7fa172994b3,Machine Analysis of Facial Expressions,,2007
+83fd2d2d5ad6e4e153672c9b6d1a3785f754b60e,Quantifying naturalistic social gaze in fragile X syndrome using a novel eye tracking paradigm.,"American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics",2015
+831226405bb255527e9127b84e8eaedd7eb8e9f9,A Motion-Based Feature for Event-Based Pattern Recognition,,2016
+1b02b9413b730b96b91d16dcd61b2420aef97414,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),Unknown,2015
+1b6394178dbc31d0867f0b44686d224a19d61cf4,EPML: Expanded Parts Based Metric Learning for Occlusion Robust Face Verification,,2014
+1bbec7190ac3ba34ca91d28f145e356a11418b67,Explorer Action Recognition with Dynamic Image Networks,Unknown,2017
+77d31d2ec25df44781d999d6ff980183093fb3de,The Multiverse Loss for Robust Transfer Learning,2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016
+48a5b6ee60475b18411a910c6084b3a32147b8cd,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,Unknown,2018
+48319e611f0daaa758ed5dcf5a6496b4c6ef45f2,Non Binary Local Gradient Contours for Face Recognition,CoRR,2014
+1ecb56e7c06a380b3ce582af3a629f6ef0104457,"A New Way of Discovery of Belief, Desire and Intention in the BDI Agent-Based Software Modeling",JACIII,2004
+1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,9 Entropy Regularization,,
+23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,Determining Mood from Facial Expressions,,2014
+23120f9b39e59bbac4438bf4a8a7889431ae8adb,Improved RGB-D-T based face recognition,IET Biometrics,2016
+23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,Deep Density Clustering of Unconstrained Faces (Supplementary Material),Unknown,2018
+8de2dbe2b03be8a99628ffa000ac78f8b66a1028,Action Recognition in Videos,,2008
+8d3fbdb9783716c1832a0b7ab1da6390c2869c14,Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition,,2008
+8d6c4af9d4c01ff47fe0be48155174158a9a5e08,"Labeling, discovering, and detecting objects in images",,2008
+8dffbb6d75877d7d9b4dcde7665888b5675deee1,Emotion Recognition with Deep-Belief Networks,,2010
+15affdcef4bb9d78b2d3de23c9459ee5b7a43fcb,Semi-Supervised Classification Using Linear Neighborhood Propagation,2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06),2006
+1297ee7a41aa4e8499c7ddb3b1fed783eba19056,Effects of emotional expressions on persuasion,Unknown,2017
+124538b3db791e30e1b62f81d4101be435ee12ef,"Basic level scene understanding: categories, attributes and structures",,2013
+8c6b9c9c26ead75ce549a57c4fd0a12b46142848,Facial expression recognition using shape and texture information,,2006
+1dff919e51c262c22630955972968f38ba385d8a,Toward an Affect-Sensitive Multimodal Human–Computer Interaction,,2001
+1dacc2f4890431d867a038fd81c111d639cf4d7e,Using social outcomes to inform decision-making in schizophrenia: Relationships with symptoms and functioning.,Journal of abnormal psychology,2016
+1d729693a888a460ee855040f62bdde39ae273af,Photorealistic Face De-Identification by Aggregating Donors' Face Components,Unknown,2014
+71b07c537a9e188b850192131bfe31ef206a39a0,300 Faces In-The-Wild Challenge: database and results,Image Vision Comput.,2016
+76ce3d35d9370f0e2e27cfd29ea0941f1462895f,Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU,,2014
+760ba44792a383acd9ca8bef45765d11c55b48d4,Class-specific classifier: avoiding the curse of dimensionality,IEEE Aerospace and Electronic Systems Magazine,2004
+1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,Deep fusion of visual signatures for client-server facial analysis,,2016
+1c4ceae745fe812d8251fda7aad03210448ae25e,Optimization of Color Conversion for Face Recognition,EURASIP J. Adv. Sig. Proc.,2004
+1cee993dc42626caf5dbc26c0a7790ca6571d01a,Optimal illumination for image and video relighting,,2005
+82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,Robust Facial Expression Recognition Using a State-based Model of Spatially-localized Facial,,
+40389b941a6901c190fb74e95dc170166fd7639d,Automatic Facial Expression Recognition,,2014
+2eb37a3f362cffdcf5882a94a20a1212dfed25d9,Local Feature Based Face Recognition,,2012
+2b4d092d70efc13790d0c737c916b89952d4d8c7,Robust Facial Expression Recognition using Local Haar Mean Binary Pattern,,2017
+2b773fe8f0246536c9c40671dfa307e98bf365ad,Fast Discriminative Stochastic Neighbor Embedding Analysis,,2013
+783f3fccde99931bb900dce91357a6268afecc52,Adapted Active Appearance Models,EURASIP J. Image and Video Processing,2009
+8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,Multimodal Interaction on a Social Robotic Platform,,2013
+132527383890565d18f1b7ad50d76dfad2f14972,Facial Expression Classification Using PCA and Hierarchical Radial Basis Function Network,J. Inf. Sci. Eng.,2006
+1394ca71fc52db972366602a6643dc3e65ee8726,EmoReact: a multimodal approach and dataset for recognizing emotional responses in children,,2016
+7f21a7441c6ded38008c1fd0b91bdd54425d3f80,Real Time System for Facial Analysis,CoRR,2018
+7fc76446d2b11fc0479df6e285723ceb4244d4ef,Laplacian MinMax Discriminant Projection and its Applications,Journal of Research and Practice in Information Technology,2010
+146bbf00298ee1caecde3d74e59a2b8773d2c0fc,University of Groningen 4 D Unconstrained Real - time Face Recognition Using a Commodity Depthh Camera,,2017
+14e759cb019aaf812d6ac049fde54f40c4ed1468,Subspace Methods,,2014
+14418ae9a6a8de2b428acb2c00064da129632f3e,Discovering the Spatial Extent of Relative Attributes,2015 IEEE International Conference on Computer Vision (ICCV),2015
+8e33183a0ed7141aa4fa9d87ef3be334727c76c0,Robustness of Face Recognition to Image Manipulations,,2018
+25e2d3122d4926edaab56a576925ae7a88d68a77,Communicative-Pragmatic Treatment in Schizophrenia: A Pilot Study,,2016
diff --git a/reports/stats/unknown_papers.csv b/reports/stats/unknown_papers.csv new file mode 100644 index 00000000..a5614922 --- /dev/null +++ b/reports/stats/unknown_papers.csv @@ -0,0 +1,17347 @@ +610a4451423ad7f82916c736cd8adb86a5a64c59,A Survey on Search Based Face Annotation Using Weakly Labelled Facial Images,"Volume 4, Issue 11, November 2014 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +A Survey on Search Based Face Annotation Using Weakly +Labelled Facial Images +Shital A. Shinde*, Prof. Archana Chaugule +Department of Computer Engg, DYPIET Pimpri, +Savitri Bai Phule Pune University, Maharashtra India"
+61542874efb0b4c125389793d8131f9f99995671,Fair comparison of skin detection approaches on publicly available datasets,"Fair comparison of skin detection approaches on publicly available datasets +Alessandra Luminia and Loris Nannib +. DISI, Università di Bologna, Via Sacchi 3, 47521 Cesena, Italy. +DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy."
+6180bc0816b1776ca4b32ced8ea45c3c9ce56b47,Fast Randomized Algorithms for Convex Optimization and Statistical Estimation,"Fast Randomized Algorithms for Convex Optimization and +Statistical Estimation +Mert Pilanci +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-147 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-147.html +August 14, 2016"
+61f04606528ecf4a42b49e8ac2add2e9f92c0def,Deep Deformation Network for Object Landmark Localization,"Deep Deformation Network for Object Landmark +Localization +Xiang Yu, Feng Zhou and Manmohan Chandraker +NEC Laboratories America, Department of Media Analytics"
+614a7c42aae8946c7ad4c36b53290860f6256441,Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,"Joint Face Detection and Alignment using +Multi-task Cascaded Convolutional Networks +Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Senior Member, IEEE, and Yu Qiao, Senior Member, IEEE"
+0d88ab0250748410a1bc990b67ab2efb370ade5d,Error handling in multimodal biometric systems using reliability measures,"Author(s) : +ERROR HANDLING IN MULTIMODAL BIOMETRIC SYSTEMS USING +RELIABILITY MEASURES (ThuPmOR6) +(EPFL, Switzerland) +(EPFL, Switzerland) +(EPFL, Switzerland) +(EPFL, Switzerland) +Krzysztof Kryszczuk +Jonas Richiardi +Plamen Prodanov +Andrzej Drygajlo"
+0d538084f664b4b7c0e11899d08da31aead87c32,Deformable Part Descriptors for Fine-Grained Recognition and Attribute Prediction,"Deformable Part Descriptors for +Fine-grained Recognition and Attribute Prediction +Ning Zhang1 +Ryan Farrell1,2 +Forrest Iandola1 +ICSI / UC Berkeley 2Brigham Young University +Trevor Darrell1"
+0dccc881cb9b474186a01fd60eb3a3e061fa6546,Effective face frontalization in unconstrained images,"Effective Face Frontalization in Unconstrained Images +Tal Hassner1, Shai Harel1 †, Eran Paz1 † and Roee Enbar2 +The open University of Israel. 2Adience. +Figure 1: Frontalized faces. Top: Input photos; bottom: our frontalizations, +obtained without estimating 3D facial shapes. +“Frontalization” is the process of synthesizing frontal facing views of faces +ppearing in single unconstrained photos. Recent reports have suggested +that this process may substantially boost the performance of face recogni- +tion systems. This, by transforming the challenging problem of recognizing +faces viewed from unconstrained viewpoints to the easier problem of rec- +ognizing faces in constrained, forward facing poses. Previous frontalization +methods did this by attempting to approximate 3D facial shapes for each +query image. We observe that 3D face shape estimation from unconstrained +photos may be a harder problem than frontalization and can potentially in- +troduce facial misalignments. Instead, we explore the simpler approach of +using a single, unmodified, 3D surface as an approximation to the shape of +ll input faces. We show that this leads to a straightforward, efficient and +easy to implement method for frontalization. More importantly, it produces +esthetic new frontal views and is surprisingly effective when used for face +recognition and gender estimation."
+0d6b28691e1aa2a17ffaa98b9b38ac3140fb3306,Review of Perceptual Resemblance of Local Plastic Surgery Facial Images using Near Sets,"Review of Perceptual Resemblance of Local +Plastic Surgery Facial Images using Near Sets +Prachi V. Wagde1, Roshni Khedgaonkar2 +,2 Department of Computer Technology, +YCCE Nagpur, India"
+0d3882b22da23497e5de8b7750b71f3a4b0aac6b,Context is routinely encoded during emotion perception.,"Research Article +Context Is Routinely Encoded +During Emotion Perception +1(4) 595 –599 +© The Author(s) 2010 +Reprints and permission: +sagepub.com/journalsPermissions.nav +DOI: 10.1177/0956797610363547 +http://pss.sagepub.com +Lisa Feldman Barrett1,2,3 and Elizabeth A. Kensinger1,3 +Boston College; 2Psychiatric Neuroimaging Program, Massachusetts General Hospital, Harvard Medical School; and 3Athinoula A. Martinos +Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School"
+0d760e7d762fa449737ad51431f3ff938d6803fe,LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems,"LCDet: Low-Complexity Fully-Convolutional Neural Networks for +Object Detection in Embedded Systems +Subarna Tripathi +UC San Diego ∗ +Gokce Dane +Qualcomm Inc. +Byeongkeun Kang +UC San Diego +Vasudev Bhaskaran +Qualcomm Inc. +Truong Nguyen +UC San Diego"
+0dd72887465046b0f8fc655793c6eaaac9c03a3d,Real-Time Head Orientation from a Monocular Camera Using Deep Neural Network,"Real-time Head Orientation from a Monocular +Camera using Deep Neural Network +Byungtae Ahn, Jaesik Park, and In So Kweon +KAIST, Republic of Korea"
+0d33b6c8b4d1a3cb6d669b4b8c11c2a54c203d1a,Detection and Tracking of Faces in Videos: A Review of Related Work,"Detection and Tracking of Faces in Videos: A Review +© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 +of Related Work +Seema Saini, 2 Parminder Sandal +Student, 2Assistant Professor +, 2Dept. of Electronics & Comm., S S I E T, Punjab, India +________________________________________________________________________________________________________"
+0da4c3d898ca2fff9e549d18f513f4898e960aca,The Headscarf Effect Revisited: Further Evidence for a Culture-Based Internal Face Processing Advantage.,"Wang, Y., Thomas, J., Weissgerber, S. C., Kazemini, S., Ul-Haq, I., & +Quadflieg, S. (2015). The Headscarf Effect Revisited: Further Evidence for a +36. 10.1068/p7940 +Peer reviewed version +Link to published version (if available): +0.1068/p7940 +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms.html +Take down policy +Explore Bristol Research is a digital archive and the intention is that deposited content should not be +removed. However, if you believe that this version of the work breaches copyright law please contact +nd include the following information in your message: +• Your contact details +• Bibliographic details for the item, including a URL +• An outline of the nature of the complaint"
+956317de62bd3024d4ea5a62effe8d6623a64e53,Lighting Analysis and Texture Modification of 3D Human Face Scans,"Lighting Analysis and Texture Modification of 3D Human +Face Scans +Author +Zhang, Paul, Zhao, Sanqiang, Gao, Yongsheng +Published +Conference Title +Digital Image Computing Techniques and Applications +https://doi.org/10.1109/DICTA.2007.4426825 +Copyright Statement +© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/ +republish this material for advertising or promotional purposes or for creating new collective +works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +this work in other works must be obtained from the IEEE. +Downloaded from +http://hdl.handle.net/10072/17889 +Link to published version +http://www.ieee.org/ +Griffith Research Online +https://research-repository.griffith.edu.au"
+959bcb16afdf303c34a8bfc11e9fcc9d40d76b1c,Temporal Coherency based Criteria for Predicting Video Frames using Deep Multi-stage Generative Adversarial Networks,"Temporal Coherency based Criteria for Predicting +Video Frames using Deep Multi-stage Generative +Adversarial Networks +Prateep Bhattacharjee1, Sukhendu Das2 +Visualization and Perception Laboratory +Department of Computer Science and Engineering +Indian Institute of Technology Madras, Chennai, India"
+951f21a5671a4cd14b1ef1728dfe305bda72366f,Use of l2/3-norm Sparse Representation for Facial Expression Recognition,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Impact Factor (2012): 3.358 +Use of ℓ2/3-norm Sparse Representation for Facial +Expression Recognition +Sandeep Rangari1, Sandeep Gonnade2 +MATS University, MATS School of Engineering and Technology, Arang, Raipur, India +MATS University, MATS School of Engineering and Technology, Arang, Raipur, India +three +to discriminate +represents emotion,"
+9547a7bce2b85ef159b2d7c1b73dea82827a449f,Facial expression recognition using Gabor motion energy filters,"Facial Expression Recognition Using Gabor Motion Energy Filters +Tingfan Wu +Dept. Computer Science Engineering +UC San Diego +Marian S. Bartlett +Javier R. Movellan +Institute for Neural Computation +UC San Diego"
+9513503867b29b10223f17c86e47034371b6eb4f,Comparison of Optimisation Algorithms for Deformable Template Matching,"Comparison of optimisation algorithms for +deformable template matching +Vasileios Zografos +Link¨oping University, Computer Vision Laboratory +ISY, SE-581 83 Link¨oping, SWEDEN"
+956c634343e49319a5e3cba4f2bd2360bdcbc075,A novel incremental principal component analysis and its application for face recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +A Novel Incremental Principal Component Analysis +nd Its Application for Face Recognition +Haitao Zhao, Pong Chi Yuen, Member, IEEE, and James T. Kwok, Member, IEEE"
+95ea564bd983129ddb5535a6741e72bb1162c779,Multi-Task Learning by Deep Collaboration and Application in Facial Landmark Detection,"Multi-Task Learning by Deep Collaboration and +Application in Facial Landmark Detection +Ludovic Trottier +Philippe Giguère +Brahim Chaib-draa +Laval University, Québec, Canada"
+958c599a6f01678513849637bec5dc5dba592394,Generalized Zero-Shot Learning for Action Recognition with Web-Scale Video Data,"Noname manuscript No. +(will be inserted by the editor) +Generalized Zero-Shot Learning for Action +Recognition with Web-Scale Video Data +Kun Liu · Wu Liu · Huadong Ma · +Wenbing Huang · Xiongxiong Dong +Received: date / Accepted: date"
+59fc69b3bc4759eef1347161e1248e886702f8f7,Final Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Final Report of Final Year Project +HKU-Face: A Large Scale Dataset for +Deep Face Recognition +Haoyu Li +035141841 +COMP4801 Final Year Project +Project Code: 17007"
+59bfeac0635d3f1f4891106ae0262b81841b06e4,Face Verification Using the LARK Face Representation,"Face Verification Using the LARK Face +Representation +Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
+59efb1ac77c59abc8613830787d767100387c680,DIF : Dataset of Intoxicated Faces for Drunk Person Identification,"DIF : Dataset of Intoxicated Faces for Drunk Person +Identification +Devendra Pratap Yadav +Indian Institute of Technology Ropar +Abhinav Dhall +Indian Institute of Technology Ropar"
+59eefa01c067a33a0b9bad31c882e2710748ea24,Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +Fast Landmark Localization +with 3D Component Reconstruction and CNN for +Cross-Pose Recognition +Gee-Sern (Jison) Hsu, Hung-Cheng Shie, Cheng-Hua Hsieh"
+59d225486161b43b7bf6919b4a4b4113eb50f039,Complex Event Recognition from Images with Few Training Examples,"Complex Event Recognition from Images with Few Training Examples +Unaiza Ahsan∗ +Chen Sun∗∗ +James Hays∗ +Irfan Essa∗ +*Georgia Institute of Technology +**University of Southern California1"
+5945464d47549e8dcaec37ad41471aa70001907f,Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos,"Noname manuscript No. +(will be inserted by the editor) +Every Moment Counts: Dense Detailed Labeling of Actions in Complex +Videos +Serena Yeung · Olga Russakovsky · Ning Jin · Mykhaylo Andriluka · Greg Mori · +Li Fei-Fei +Received: date / Accepted: date"
+59c9d416f7b3d33141cc94567925a447d0662d80,Matrix factorization over max-times algebra for data mining,"Universität des Saarlandes +Max-Planck-Institut für Informatik +Matrix factorization over max-times +lgebra for data mining +Masterarbeit im Fach Informatik +Master’s Thesis in Computer Science +von / by +Sanjar Karaev +ngefertigt unter der Leitung von / supervised by +Dr. Pauli Miettinen +egutachtet von / reviewers +Dr. Pauli Miettinen +Prof. Gerhard Weikum +November 2013 +UNIVERSITASSARAVIENSIS"
+59bece468ed98397d54865715f40af30221aa08c,Deformable part-based robust face detection under occlusion by using face decomposition into face components,"Deformable Part-based Robust Face Detection +under Occlusion by Using Face Decomposition +into Face Components +Darijan Marčetić, Slobodan Ribarić +University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia +{darijan.marcetic,"
+59a35b63cf845ebf0ba31c290423e24eb822d245,The FaceSketchID System: Matching Facial Composites to Mugshots,"The FaceSketchID System: Matching Facial +Composites to Mugshots +Scott J. Klum, Student Member, IEEE, Hu Han, Member, IEEE, Brendan F. Klare, Member, IEEE, +nd Anil K. Jain, Fellow, IEEE +tedious, and may not"
+59f325e63f21b95d2b4e2700c461f0136aecc171,Kernel sparse representation with local patterns for face recognition,"978-1-4577-1302-6/11/$26.00 ©2011 IEEE +FOR FACE RECOGNITION +. INTRODUCTION"
+59031a35b0727925f8c47c3b2194224323489d68,Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person,"Sparse Variation Dictionary Learning for Face Recognition with A Single +Training Sample Per Person +Meng Yang, Luc Van Gool +ETH Zurich +Switzerland"
+926c67a611824bc5ba67db11db9c05626e79de96,Enhancing Bilinear Subspace Learning by Element Rearrangement,"Enhancing Bilinear Subspace Learning +y Element Rearrangement +Dong Xu, Shuicheng Yan, Stephen Lin, +Thomas S. Huang, and +Shih-Fu Chang"
+923ede53b0842619831e94c7150e0fc4104e62f7,Masked correlation filters for partially occluded face recognition,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+92b61b09d2eed4937058d0f9494d9efeddc39002,BoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance,"Under review in IJCV manuscript No. +(will be inserted by the editor) +BoxCars: Improving Vehicle Fine-Grained Recognition using +D Bounding Boxes in Traffic Surveillance +Jakub Sochor · Jakub ˇSpaˇnhel · Adam Herout +Received: date / Accepted: date"
+920a92900fbff22fdaaef4b128ca3ca8e8d54c3e,Learning Pattern Transformation Manifolds with Parametric Atom Selection,"LEARNING PATTERN TRANSFORMATION MANIFOLDS WITH PARAMETRIC ATOM +SELECTION +Elif Vural and Pascal Frossard +Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +Signal Processing Laboratory (LTS4) +Switzerland-1015 Lausanne"
+9207671d9e2b668c065e06d9f58f597601039e5e,Face Detection Using a 3D Model on Face Keypoints,"Face Detection Using a 3D Model on +Face Keypoints +Adrian Barbu, Gary Gramajo"
+9282239846d79a29392aa71fc24880651826af72,Classification of extreme facial events in sign language videos,"Antonakos et al. EURASIP Journal on Image and Video Processing 2014, 2014:14 +http://jivp.eurasipjournals.com/content/2014/1/14 +RESEARCH +Open Access +Classification of extreme facial events in sign +language videos +Epameinondas Antonakos1,2*, Vassilis Pitsikalis1 and Petros Maragos1"
+92115b620c7f653c847f43b6c4ff0470c8e55dab,Training Deformable Object Models for Human Detection Based on Alignment and Clustering,"Training Deformable Object Models for Human +Detection Based on Alignment and Clustering +Benjamin Drayer and Thomas Brox +Department of Computer Science, +Centre of Biological Signalling Studies (BIOSS), +University of Freiburg, Germany"
+928b8eb47288a05611c140d02441660277a7ed54,Exploiting Images for Video Recognition with Hierarchical Generative Adversarial Networks,"Exploiting Images for Video Recognition with Hierarchical Generative +Adversarial Networks +Feiwu Yu1, Xinxiao Wu1 ∗, Yuchao Sun1, Lixin Duan2 +Beijing Laboratory of Intelligent Information Technology, School of Computer Science, +Big Data Research Center, University of Electronic Science and Technology of China +Beijing Institute of Technology"
+92c2dd6b3ac9227fce0a960093ca30678bceb364,On Color Texture Normalization for Active Appearance Models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +version when available. +Title +On color texture normalization for active appearance models +Author(s) +Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +Publication +009-05-12 +Publication +Information +Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +Texture Normalization for Active Appearance Models. Image +Processing, IEEE Transactions on, 18(6), 1372-1378. +Publisher +Link to +publisher's +version +http://dx.doi.org/10.1109/TIP.2009.2017163 +Item record +http://hdl.handle.net/10379/1350"
+927ba64123bd4a8a31163956b3d1765eb61e4426,Customer satisfaction measuring based on the most significant facial emotion,"Customer satisfaction measuring based on the most +significant facial emotion +Mariem Slim, Rostom Kachouri, Ahmed Atitallah +To cite this version: +Mariem Slim, Rostom Kachouri, Ahmed Atitallah. Customer satisfaction measuring based on the +most significant facial emotion. 15th IEEE International Multi-Conference on Systems, Signals +Devices (SSD 2018), Mar 2018, Hammamet, Tunisia. <hal-01790317> +HAL Id: hal-01790317 +https://hal-upec-upem.archives-ouvertes.fr/hal-01790317 +Submitted on 11 May 2018 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de"
+927ad0dceacce2bb482b96f42f2fe2ad1873f37a,Interest-Point based Face Recognition System,"Interest-Point based Face Recognition System +Interest-Point based Face Recognition System +Cesar Fernandez and Maria Asuncion Vicente +Miguel Hernandez University +Spain +. Introduction +Among all applications of face recognition systems, surveillance is one of the most +hallenging ones. In such an application, the goal is to detect known criminals in crowded +environments, like airports or train stations. Some attempts have been made, like those of +Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success. +The first task to be carried out in an automatic surveillance system involves the detection of +ll the faces in the images taken by the video cameras. Current face detection algorithms are +highly reliable and thus, they will not be the focus of our work. Some of the best performing +examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade +lgorithm (Schneiderman & Kanade, 2000). +The second task to be carried out involves the comparison of all detected faces among the +database of known criminals. The ideal behaviour of an automatic system performing this +task would be to get a 100% correct identification rate, but this behaviour is far from the +apabilities of current face recognition algorithms. Assuming that there will be false +identifications, supervised surveillance systems seem to be the most realistic option: the"
+929bd1d11d4f9cbc638779fbaf958f0efb82e603,"Improving the Performance of Facial Expression Recognition Using Dynamic, Subtle and Regional Features","This is the author’s version of a work that was submitted/accepted for pub- +lication in the following source: +Zhang, Ligang & Tjondronegoro, Dian W. (2010) Improving the perfor- +mance of facial expression recognition using dynamic, subtle and regional +features. +In Kok, WaiWong, B. Sumudu, U. Mendis, & Abdesselam , +Bouzerdoum (Eds.) Neural Information Processing. Models and Applica- +tions, Lecture Notes in Computer Science, Sydney, N.S.W, pp. 582-589. +This file was downloaded from: http://eprints.qut.edu.au/43788/ +(cid:13) Copyright 2010 Springer-Verlag +Conference proceedings published, by Springer Verlag, will be available +via Lecture Notes in Computer Science http://www.springer.de/comp/lncs/ +Notice: Changes introduced as a result of publishing processes such as +opy-editing and formatting may not be reflected in this document. For a +definitive version of this work, please refer to the published source: +http://dx.doi.org/10.1007/978-3-642-17534-3_72"
+0cb7e4c2f6355c73bfc8e6d5cdfad26f3fde0baf,F Acial E Xpression R Ecognition Based on Wapa and Oepa F Ast Ica,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 3, May 2014 +FACIAL EXPRESSION RECOGNITION BASED ON +WAPA AND OEPA FASTICA +Humayra Binte Ali1 and David M W Powers2 +Computer Science, Engineering and Mathematics School, Flinders University, Australia +Computer Science, Engineering and Mathematics School, Flinders University, Australia"
+0c8a0a81481ceb304bd7796e12f5d5fa869ee448,A Spatial Regularization of LDA for Face Recognition,"International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, June 2010, pp. 95-100 +A Spatial Regularization of LDA for Face Recognition +Lae-Jeong Park +Department of Electronics Engineering, Gangnung-Wonju National University +23 Chibyun-Dong, Kangnung, 210-702, Korea +Tel : +82-33-640-2389, Fax : +82-33-646-0740, E-mail :"
+0c36c988acc9ec239953ff1b3931799af388ef70,Face Detection Using Improved Faster RCNN,"Face Detection Using Improved Faster RCNN +Changzheng Zhang, Xiang Xu, Dandan Tu* +Huawei Cloud BU, China +{zhangzhangzheng, xuxiang12, +Figure1.Face detection results of FDNet1.0"
+0c5ddfa02982dcad47704888b271997c4de0674b,Model-driven and Data-driven Approaches for some Object Recognition Problems,
+0c069a870367b54dd06d0da63b1e3a900a257298,Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,"Author manuscript, published in ""ICANN 2011 - International Conference on Artificial Neural Networks (2011)"""
+0c75c7c54eec85e962b1720755381cdca3f57dfb,Face Landmark Fitting via Optimized Part Mixtures and Cascaded Deformable Model,"Face Landmark Fitting via Optimized Part +Mixtures and Cascaded Deformable Model +Xiang Yu, Member, IEEE, Junzhou Huang, Member, IEEE, +Shaoting Zhang, Senior Member, IEEE, and Dimitris N. Metaxas, Fellow, IEEE"
+0ca36ecaf4015ca4095e07f0302d28a5d9424254,Improving Bag-of-Visual-Words Towards Effective Facial Expressive Image Classification,"Improving Bag-of-Visual-Words Towards Effective Facial Expressive +Image Classification +Dawood Al Chanti1 and Alice Caplier1 +Univ. Grenoble Alpes, CNRS, Grenoble INP∗ , GIPSA-lab, 38000 Grenoble, France +Keywords: +BoVW, k-means++, Relative Conjunction Matrix, SIFT, Spatial Pyramids, TF.IDF."
+0cfca73806f443188632266513bac6aaf6923fa8,Predictive Uncertainty in Large Scale Classification using Dropout - Stochastic Gradient Hamiltonian Monte Carlo,"Predictive Uncertainty in Large Scale Classification +using Dropout - Stochastic Gradient Hamiltonian +Monte Carlo. +Vergara, Diego∗1, Hern´andez, Sergio∗2, Valdenegro-Toro, Mat´ıas∗∗3 and Jorquera, Felipe∗4. +Laboratorio de Procesamiento de Informaci´on Geoespacial, Universidad Cat´olica del Maule, Chile. +German Research Centre for Artificial Intelligence, Bremen, Germany. +Email:"
+0c3f7272a68c8e0aa6b92d132d1bf8541c062141,Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition,"Hindawi Publishing Corporation +e Scientific World Journal +Volume 2014, Article ID 672630, 6 pages +http://dx.doi.org/10.1155/2014/672630 +Research Article +Kruskal-Wallis-Based Computationally Efficient Feature +Selection for Face Recognition +Sajid Ali Khan,1,2 Ayyaz Hussain,3 Abdul Basit,1 and Sheeraz Akram1 +Department of Software Engineering, Foundation University, Rawalpindi 46000, Pakistan +Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology Islamabad, +Islamabad 44000, Pakistan +Department of Computer Science and Software Engineering, International Islamic University, Islamabad 44000, Pakistan +Correspondence should be addressed to Sajid Ali Khan; +Received 5 December 2013; Accepted 10 February 2014; Published 21 May 2014 +Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang +Copyright © 2014 Sajid Ali Khan et al. This is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +Face recognition in today’s technological world, and face recognition applications attain much more importance. Most of the +existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. +The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute"
+0c5afb209b647456e99ce42a6d9d177764f9a0dd,Recognizing Action Units for Facial Expression Analysis,"Recognizing Action Units for +Facial Expression Analysis +Ying-li Tian, Member, IEEE, Takeo Kanade, Fellow, IEEE, and Jeffrey F. Cohn, Member, IEEE"
+0c377fcbc3bbd35386b6ed4768beda7b5111eec6,A Unified Probabilistic Framework for Spontaneous Facial Action Modeling and Understanding,"A Unified Probabilistic Framework +for Spontaneous Facial Action Modeling +nd Understanding +Yan Tong, Member, IEEE, Jixu Chen, Student Member, IEEE, and Qiang Ji, Senior Member, IEEE"
+0cb2dd5f178e3a297a0c33068961018659d0f443,IARPA Janus Benchmark-B Face Dataset,"© 2017 Noblis, Inc. IARPA Janus Benchmark-B Face Dataset Cameron Whitelam, Emma Taborsky*, Austin Blanton, Brianna Maze*, Jocelyn Adams*, Tim Miller*, Nathan Kalka*, Anil K. Jain**, James A. Duncan*, Kristen Allen, Jordan Cheney*, Patrick Grother*** Noblis* Michigan State University** NIST*** 21 July 2017"
+0cd8895b4a8f16618686f622522726991ca2a324,Discrete Choice Models for Static Facial Expression Recognition,"Discrete Choice Models for Static Facial Expression +Recognition +Gianluca Antonini1, Matteo Sorci1, Michel Bierlaire2, and Jean-Philippe Thiran1 +Ecole Polytechnique Federale de Lausanne, Signal Processing Institute +Ecole Polytechnique Federale de Lausanne, Operation Research Group +Ecublens, 1015 Lausanne, Switzerland +Ecublens, 1015 Lausanne, Switzerland"
+0cf7da0df64557a4774100f6fde898bc4a3c4840,Shape matching and object recognition using low distortion correspondences,"Shape Matching and Object Recognition using Low Distortion Correspondences +Alexander C. Berg Tamara L. Berg +Jitendra Malik +Department of Electrical Engineering and Computer Science +U.C. Berkeley"
+0cbe059c181278a373292a6af1667c54911e7925,'Owl' and 'Lizard': patterns of head pose and eye pose in driver gaze classification,"Owl and Lizard: Patterns of Head Pose and Eye +Pose in Driver Gaze Classification +Lex Fridman1, Joonbum Lee1, Bryan Reimer1, and Trent Victor2 +Massachusetts Institute of Technology (MIT) +Chalmers University of Technology, SAFER"
+0c4659b35ec2518914da924e692deb37e96d6206,Registering a MultiSensor Ensemble of Images,"Registering a MultiSensor Ensemble of Images +Jeff Orchard, Member, IEEE, and Richard Mann"
+0ced7b814ec3bb9aebe0fcf0cac3d78f36361eae,Central Local Directional Pattern Value Flooding Co-occurrence Matrix based Features for Face Recognition,"Dr. P Chandra Sekhar Reddy, International Journal of Computer Science and Mobile Computing, Vol.6 Issue.1, January- 2017, pg. 221-227 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IMPACT FACTOR: 6.017 +IJCSMC, Vol. 6, Issue. 1, January 2017, pg.221 – 227 +Central Local Directional Pattern Value +Flooding Co-occurrence Matrix based +Features for Face Recognition +Dr. P Chandra Sekhar Reddy +Professor, CSE Department, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad"
+0c53ef79bb8e5ba4e6a8ebad6d453ecf3672926d,Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition,"SUBMITTED TO JOURNAL +Weakly Supervised PatchNets: Describing and +Aggregating Local Patches for Scene Recognition +Zhe Wang, Limin Wang, Yali Wang, Bowen Zhang, and Yu Qiao, Senior Member, IEEE"
+6601a0906e503a6221d2e0f2ca8c3f544a4adab7,Detection of Ancient Settlement Mounds : Archaeological Survey Based on the SRTM Terrain Model,"SRTM-2 2/9/06 3:27 PM Page 321 +Detection of Ancient Settlement Mounds: +Archaeological Survey Based on the +SRTM Terrain Model +B.H. Menze, J.A. Ur, and A.G. Sherratt"
+660b73b0f39d4e644bf13a1745d6ee74424d4a16,Constructing Kernel Machines in the Empirical Kernel Feature Space,",250+OPEN ACCESS BOOKS106,000+INTERNATIONALAUTHORS AND EDITORS113+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Reviews, Refinements and New Ideas in Face RecognitionDownloaded from: http://www.intechopen.com/books/reviews-refinements-and-new-ideas-in-face-recognitionPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
+66d512342355fb77a4450decc89977efe7e55fa2,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018 +LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +INATIVE AND MINIMUM INFORMATION LOSS PRIORS +Anonymous authors +Paper under double-blind review"
+6643a7feebd0479916d94fb9186e403a4e5f7cbf,Chapter 8 3 D Face Recognition,"Chapter 8 +D Face Recognition +Ajmal Mian and Nick Pears"
+661ca4bbb49bb496f56311e9d4263dfac8eb96e9,Datasheets for Datasets,"Datasheets for Datasets +Timnit Gebru 1 Jamie Morgenstern 2 Briana Vecchione 3 Jennifer Wortman Vaughan 1 Hanna Wallach 1 +Hal Daumé III 1 4 Kate Crawford 1 5"
+66d087f3dd2e19ffe340c26ef17efe0062a59290,Dog Breed Identification,"Dog Breed Identification +Whitney LaRow +Brian Mittl +Vijay Singh"
+6618cff7f2ed440a0d2fa9e74ad5469df5cdbe4c,Ordinal Regression with Multiple Output CNN for Age Estimation,"Ordinal Regression with Multiple Output CNN for Age Estimation +Zhenxing Niu1 +Gang Hua3 +Xidian University 2Xi’an Jiaotong University 3Microsoft Research Asia +Xinbo Gao1 +Mo Zhou1 +Le Wang2"
+66a2c229ac82e38f1b7c77a786d8cf0d7e369598,A Probabilistic Adaptive Search System for Exploring the Face Space,"Proceedings of the 2016 Industrial and Systems Engineering Research Conference +H. Yang, Z. Kong, and MD Sarder, eds. +A Probabilistic Adaptive Search System +for Exploring the Face Space +Andres G. Abad and Luis I. Reyes Castro +Escuela Superior Politecnica del Litoral (ESPOL) +Guayaquil-Ecuador"
+66a9935e958a779a3a2267c85ecb69fbbb75b8dc,Fast and Robust Fixed-Rank Matrix Recovery,"FAST AND ROBUST FIXED-RANK MATRIX RECOVERY +Fast and Robust Fixed-Rank Matrix +Recovery +German Ros*, Julio Guerrero, Angel Sappa, Daniel Ponsa and +Antonio Lopez"
+66533107f9abdc7d1cb8f8795025fc7e78eb1122,Visual Servoing for a User's Mouth with Effective Intention Reading in a Wheelchair-based Robotic Arm,"Vi a +i a Whee +W y g Sgy Dae i iy g S g iz ad Ze ga Biey +y EECS AST 373 1 g Dg Y g G Taej 305 701 REA +z VR Cee ETR 161 ajg Dg Y g G Taej 305 350 REA +Abac +Thee exi he c eaive aciviy bewee a h +a beig ad ehabi +a eae ehabi +e ad ha he bee(cid:12) f ehabi + ch a ai +eadig i e f he eeia +fied +f ad afey f a + +bic a ye ARES ad i h a b +ieaci ech +ech + +vi a +66810438bfb52367e3f6f62c24f5bc127cf92e56,Face Recognition of Illumination Tolerance in 2D Subspace Based on the Optimum Correlation Filter,"Face Recognition of Illumination Tolerance in 2D +Subspace Based on the Optimum Correlation +Filter +Xu Yi +Department of Information Engineering, Hunan Industry Polytechnic, Changsha, China +images will be tested to project"
+66af2afd4c598c2841dbfd1053bf0c386579234e,Context-assisted face clustering framework with human-in-the-loop,"Noname manuscript No. +(will be inserted by the editor) +Context Assisted Face Clustering Framework with +Human-in-the-Loop +Liyan Zhang · Dmitri V. Kalashnikov · +Sharad Mehrotra +Received: date / Accepted: date"
+66e6f08873325d37e0ec20a4769ce881e04e964e,The SUN Attribute Database: Beyond Categories for Deeper Scene Understanding,"Int J Comput Vis (2014) 108:59–81 +DOI 10.1007/s11263-013-0695-z +The SUN Attribute Database: Beyond Categories for Deeper Scene +Understanding +Genevieve Patterson · Chen Xu · Hang Su · +James Hays +Received: 27 February 2013 / Accepted: 28 December 2013 / Published online: 18 January 2014 +© Springer Science+Business Media New York 2014"
+661da40b838806a7effcb42d63a9624fcd684976,An Illumination Invariant Accurate Face Recognition with Down Scaling of DCT Coefficients,"An Illumination Invariant Accurate +Face Recognition with Down Scaling +of DCT Coefficients +Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta +Department of Computer Science and Engineering, Amity School of Engineering and Technology, New Delhi, India +In this paper, a novel approach for illumination normal- +ization under varying lighting conditions is presented. +Our approach utilizes the fact that discrete cosine trans- +form (DCT) low-frequency coefficients correspond to +illumination variations in a digital image. Under varying +illuminations, the images captured may have low con- +trast; initially we apply histogram equalization on these +for contrast stretching. Then the low-frequency DCT +oefficients are scaled down to compensate the illumi- +nation variations. The value of scaling down factor and +the number of low-frequency DCT coefficients, which +re to be rescaled, are obtained experimentally. The +lassification is done using k−nearest neighbor classi- +fication and nearest mean classification on the images +obtained by inverse DCT on the processed coefficients."
+66886f5af67b22d14177119520bd9c9f39cdd2e6,Learning Additive Kernel For Feature Transformation and Its Application to CNN Features,"T. KOBAYASHI: LEARNING ADDITIVE KERNEL +Learning Additive Kernel For Feature +Transformation and Its Application to CNN +Features +Takumi Kobayashi +National Institute of Advanced Industrial +Science and Technology +Tsukuba, Japan"
+3edb0fa2d6b0f1984e8e2c523c558cb026b2a983,Automatic Age Estimation Based on Facial Aging Patterns,"Automatic Age Estimation Based on +Facial Aging Patterns +Xin Geng, Zhi-Hua Zhou, Senior Member, IEEE, +Kate Smith-Miles, Senior Member, IEEE"
+3e4b38b0574e740dcbd8f8c5dfe05dbfb2a92c07,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +AND LINEAR PROGRAMMING +Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1 +Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +P. O. Box 4500 Fin-90014 University of Oulu, Finland +2 College of Electronics and Information, Northwestern Polytechnic University +710072 Xi’an, China +In this work, we propose a novel approach to recognize facial expressions from static +images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +images and then the Linear Programming (LP) technique is adopted to classify the seven +facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +database, which outperforms the rates of all other reported methods on the same database. +Introduction +Facial expression recognition from static +images is a more challenging problem +than from image sequences because less +information for expression actions +vailable. However, information in a +single image is sometimes enough for"
+3e4acf3f2d112fc6516abcdddbe9e17d839f5d9b,Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs,"Deep Value Networks Learn to +Evaluate and Iteratively Refine Structured Outputs +Michael Gygli 1 * Mohammad Norouzi 2 Anelia Angelova 2"
+3e3f305dac4fbb813e60ac778d6929012b4b745a,Feature sampling and partitioning for visual vocabulary generation on large action classification datasets,"Feature sampling and partitioning for visual vocabulary +generation on large action classification datasets. +Michael Sapienza1, Fabio Cuzzolin1, and Philip H.S. Torr2 +Department of Computing and Communications Technology, Oxford Brookes University. +Department of Engineering Science, University of Oxford."
+3ea8a6dc79d79319f7ad90d663558c664cf298d4,Automatic Facial Expression Recognition from Video Sequences,"(cid:13) Copyright by Ira Cohen, 2000"
+3e4f84ce00027723bdfdb21156c9003168bc1c80,A co-training approach to automatic face recognition,"© EURASIP, 2011 - ISSN 2076-1465 +9th European Signal Processing Conference (EUSIPCO 2011) +INTRODUCTION"
+3e04feb0b6392f94554f6d18e24fadba1a28b65f,Subspace Image Representation for Facial Expression Analysis and Face Recognition and its Relation to the Human Visual System,"Subspace Image Representation for Facial +Expression Analysis and Face Recognition +nd its Relation to the Human Visual System +Ioan Buciu1,2 and Ioannis Pitas1 +Department of Informatics, Aristotle University of Thessaloniki GR-541 24, +Thessaloniki, Box 451, Greece. +Electronics Department, Faculty of Electrical Engineering and Information +Technology, University of Oradea 410087, Universitatii 1, Romania. +Summary. Two main theories exist with respect to face encoding and representa- +tion in the human visual system (HVS). The first one refers to the dense (holistic) +representation of the face, where faces have “holon”-like appearance. The second one +laims that a more appropriate face representation is given by a sparse code, where +only a small fraction of the neural cells corresponding to face encoding is activated. +Theoretical and experimental evidence suggest that the HVS performs face analysis +(encoding, storing, face recognition, facial expression recognition) in a structured +nd hierarchical way, where both representations have their own contribution and +goal. According to neuropsychological experiments, it seems that encoding for face +recognition, relies on holistic image representation, while a sparse image represen- +tation is used for facial expression analysis and classification. From the computer +vision perspective, the techniques developed for automatic face and facial expres-"
+3e685704b140180d48142d1727080d2fb9e52163,Single Image Action Recognition by Predicting Space-Time Saliency,"Single Image Action Recognition by Predicting +Space-Time Saliency +Marjaneh Safaei and Hassan Foroosh"
+3e687d5ace90c407186602de1a7727167461194a,Photo Tagging by Collection-Aware People Recognition,"Photo Tagging by Collection-Aware People Recognition +Cristina Nader Vasconcelos +Vinicius Jardim +Asla S´a +Paulo Cezar Carvalho"
+50f0c495a214b8d57892d43110728e54e413d47d,Pairwise support vector machines and their application to large scale problems,"Submitted 8/11; Revised 3/12; Published 8/12 +Pairwise Support Vector Machines and their Application to Large +Scale Problems +Carl Brunner +Andreas Fischer +Institute for Numerical Mathematics +Technische Universit¨at Dresden +01062 Dresden, Germany +Klaus Luig +Thorsten Thies +Cognitec Systems GmbH +Grossenhainer Str. 101 +01127 Dresden, Germany +Editor: Corinna Cortes"
+501096cca4d0b3d1ef407844642e39cd2ff86b37,Illumination Invariant Face Image Representation Using Quaternions,"Illumination Invariant Face Image +Representation using Quaternions +Dayron Rizo-Rodr´ıguez, Heydi M´endez-V´azquez, and Edel Garc´ıa-Reyes +Advanced Technologies Application Center. 7a # 21812 b/ 218 and 222, +Rpto. Siboney, Playa, P.C. 12200, La Habana, Cuba."
+501eda2d04b1db717b7834800d74dacb7df58f91,Discriminative Sparse Representation for Expression Recognition,"Pedro Miguel Neves Marques Discriminative Sparse Representation for Expression Recognition Master Thesis in Electrical and Computer Engineering September, 2014"
+5083c6be0f8c85815ead5368882b584e4dfab4d1,Automated Face Analysis for Affective Computing Jeffrey,"Please do not quote. In press, Handbook of affective computing. New York, NY: Oxford +Automated Face Analysis for Affective Computing +Jeffrey F. Cohn & Fernando De la Torre"
+5058a7ec68c32984c33f357ebaee96c59e269425,A Comparative Evaluation of Regression Learning Algorithms for Facial Age Estimation,"A Comparative Evaluation of Regression Learning +Algorithms for Facial Age Estimation +Carles Fern´andez1, Ivan Huerta2, and Andrea Prati2 +Herta Security +Pau Claris 165 4-B, 08037 Barcelona, Spain +DPDCE, University IUAV +Santa Croce 1957, 30135 Venice, Italy"
+50ff21e595e0ebe51ae808a2da3b7940549f4035,Age Group and Gender Estimation in the Wild With Deep RoR Architecture,"IEEE TRANSACTIONS ON LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2017 +Age Group and Gender Estimation in the Wild with +Deep RoR Architecture +Ke Zhang, Member, IEEE, Ce Gao, Liru Guo, Miao Sun, Student Member, IEEE, Xingfang Yuan, Student +Member, IEEE, Tony X. Han, Member, IEEE, Zhenbing Zhao, Member, IEEE and Baogang Li"
+5042b358705e8d8e8b0655d07f751be6a1565482,Review on Emotion Detection in Image,"International Journal of +Emerging Research in Management &Technology +ISSN: 2278-9359 (Volume-4, Issue-8) +Research Article +August +Review on Emotion Detection in Image +Aswinder Kaur* Kapil Dewan +CSE & PCET, PTU HOD, CSE & PCET, PTU +Punjab, India Punj ab, India"
+50e47857b11bfd3d420f6eafb155199f4b41f6d7,3D Human Face Reconstruction Using a Hybrid of Photometric Stereo and Independent Component Analysis,"International Journal of Computer, Consumer and Control (IJ3C), Vol. 2, No.1 (2013) +D Human Face Reconstruction Using a Hybrid of Photometric +Stereo and Independent Component Analysis +*Cheng-Jian Lin, 2Shyi-Shiun Kuo, 1Hsueh-Yi Lin, 2Shye-Chorng Kuo and 1Cheng-Yi Yu"
+50eb75dfece76ed9119ec543e04386dfc95dfd13,Learning Visual Entities and Their Visual Attributes from Text Corpora,"Learning Visual Entities and their Visual Attributes from Text Corpora +Erik Boiy +Dept. of Computer Science +K.U.Leuven, Belgium +Koen Deschacht +Dept. of Computer Science +K.U.Leuven, Belgium +Marie-Francine Moens +Dept. of Computer Science +K.U.Leuven, Belgium"
+50a0930cb8cc353e15a5cb4d2f41b365675b5ebf,Robust Facial Landmark Detection and Face Tracking in Thermal Infrared Images using Active Appearance Models,
+50eb2ee977f0f53ab4b39edc4be6b760a2b05f96,Emotion recognition based on texture analysis of facial expression,"Australian Journal of Basic and Applied Sciences, 11(5) April 2017, Pages: 1-11 +AUSTRALIAN JOURNAL OF BASIC AND +APPLIED SCIENCES +ISSN:1991-8178 EISSN: 2309-8414 +Journal home page: www.ajbasweb.com +Emotion Recognition Based on Texture Analysis of Facial Expressions +Using Wavelets Transform +Suhaila N. Mohammed and 2Loay E. George +Assistant Lecturer, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq, +Assistant Professor, Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq, +Address For Correspondence: +Suhaila N. Mohammed, Baghdad University, Computer Science Department, College of Science, Baghdad, Iraq. +A R T I C L E I N F O +Article history: +Received 18 January 2017 +Accepted 28 March 2017 +Available online 15 April 2017 +Keywords: +Facial Emotion, Face Detection, +Template Based Methods, Texture"
+50d15cb17144344bb1879c0a5de7207471b9ff74,"Divide, Share, and Conquer: Multi-task Attribute Learning with Selective Sharing","Divide, Share, and Conquer: Multi-task +Attribute Learning with Selective Sharing +Chao-Yeh Chen*, Dinesh Jayaraman*, Fei Sha, and Kristen Grauman"
+50d961508ec192197f78b898ff5d44dc004ef26d,A Low Indexed Content Based Neural Network Approach for Natural Objects Recognition,"International Journal of Computer science & Information Technology (IJCSIT), Vol 1, No 2, November 2009 +A LOW INDEXED CONTENT BASED +NEURAL NETWORK APPROACH FOR +NATURAL OBJECTS RECOGNITION +G.Shyama Chandra Prasad1 and Dr. A.Govardhan 2 Dr. T.V.Rao 3 +Research Scholar, JNTUH, Hyderabad, AP. India +Principal, JNTUH College of Engineering, jagitial, Karimnagar, AP, India +Principal, Chaithanya Institute of Engineering and Technology, Kakinada, AP, India"
+50ccc98d9ce06160cdf92aaf470b8f4edbd8b899,Towards robust cascaded regression for face alignment in the wild,"Towards Robust Cascaded Regression for Face Alignment in the Wild +Chengchao Qu1,2 Hua Gao3 +Eduardo Monari2 +J¨urgen Beyerer2,1 +Jean-Philippe Thiran3 +Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT) +Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (Fraunhofer IOSB) +Signal Processing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL)"
+5028c0decfc8dd623c50b102424b93a8e9f2e390,Revisiting Classifier Two-sample Tests,"Published as a conference paper at ICLR 2017 +REVISITING CLASSIFIER TWO-SAMPLE TESTS +David Lopez-Paz1, Maxime Oquab1,2 +Facebook AI Research, 2WILLOW project team, Inria / ENS / CNRS"
+505e55d0be8e48b30067fb132f05a91650666c41,A Model of Illumination Variation for Robust Face Recognition,"A Model of Illumination Variation for Robust Face Recognition +Florent Perronnin and Jean-Luc Dugelay +Institut Eur´ecom +Multimedia Communications Department +BP 193, 06904 Sophia Antipolis Cedex, France +fflorent.perronnin,"
+507c9672e3673ed419075848b4b85899623ea4b0,Multi-View Facial Expression Classification,"Faculty of Informatics +Institute for Anthropomatics +Chair Prof. Dr.-Ing. R. Stiefelhagen +Facial Image Processing and Analysis Group +Multi-View Facial Expression +Classification +DIPLOMA THESIS OF +Nikolas Hesse +ADVISORS +Dr.-Ing. Hazım Kemal Ekenel +Dipl.-Inform. Hua Gao +Dipl.-Inform. Tobias Gehrig +MARCH 2011 +KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association +www.kit.edu"
+680d662c30739521f5c4b76845cb341dce010735,Part and Attribute Discovery from Relative Annotations,"Int J Comput Vis (2014) 108:82–96 +DOI 10.1007/s11263-014-0716-6 +Part and Attribute Discovery from Relative Annotations +Subhransu Maji · Gregory Shakhnarovich +Received: 25 February 2013 / Accepted: 14 March 2014 / Published online: 26 April 2014 +© Springer Science+Business Media New York 2014"
+68a2ee5c5b76b6feeb3170aaff09b1566ec2cdf5,Age Classification Based on Simple Lbp Transitions,"AGE CLASSIFICATION BASED ON +SIMPLE LBP TRANSITIONS +Research Scholar & Assoc Professor, Aditya institute of Technology and Management, Tekkalli-532 201, A.P., +Gorti Satyanarayana Murty +India, +Dr. V.Vijaya Kumar +A. Obulesu +Dean-Computer Sciences (CSE & IT), Anurag Group of Institutions, Hyderabad – 500088, A.P., India., +3Asst. Professor, Dept. Of CSE, Anurag Group of Institutions, Hyderabad – 500088, A.P., India."
+68d2afd8c5c1c3a9bbda3dd209184e368e4376b9,Representation Learning by Rotating Your Faces,"Representation Learning by Rotating Your Faces +Luan Tran, Xi Yin, and Xiaoming Liu, Member, IEEE"
+6859b891a079a30ef16f01ba8b85dc45bd22c352,"2D Face Recognition Based on PCA & Comparison of Manhattan Distance, Euclidean Distance & Chebychev Distance","International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue 10, October 2014) +D Face Recognition Based on PCA & Comparison of +Manhattan Distance, Euclidean Distance & Chebychev +Distance +Rajib Saha1, Sayan Barman2 +RCC Institute of Information Technology, Kolkata, India"
+68d08ed9470d973a54ef7806318d8894d87ba610,Drive Video Analysis for the Detection of Traffic Near-Miss Incidents,"Drive Video Analysis for the Detection of Traffic Near-Miss Incidents +Hirokatsu Kataoka1, Teppei Suzuki1 +, Shoko Oikawa3, Yasuhiro Matsui4 and Yutaka Satoh1"
+68caf5d8ef325d7ea669f3fb76eac58e0170fff0,Long-term face tracking in the wild using deep learning,
+68003e92a41d12647806d477dd7d20e4dcde1354,Fuzzy Based Image Dimensionality Reduction Using Shape Primitives for Efficient Face Recognition,"ISSN: 0976-9102 (ONLINE) +DOI: 10.21917/ijivp.2013.0101 +ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING, NOVEMBER 2013, VOLUME: 04, ISSUE: 02 +FUZZY BASED IMAGE DIMENSIONALITY REDUCTION USING SHAPE +PRIMITIVES FOR EFFICIENT FACE RECOGNITION +P. Chandra Sekhar Reddy1, B. Eswara Reddy2 and V. Vijaya Kumar3 +Deprtment of Computer Science and Engineering, Nalla Narasimha Reddy Education Society’s Group of Institutions, India +E-Mail: +Deprtment of Computer Science and Engineering, JNTUA College of Engineering, India +Deprtment of Computer Science and Engineering, Anurag Group of Institutions, India +E-mail: +E-mail:"
+68d4056765c27fbcac233794857b7f5b8a6a82bf,Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal,"Example-Based Face Shape Recovery Using the +Zenith Angle of the Surface Normal +Mario Castel´an1, Ana J. Almaz´an-Delf´ın2, Marco I. Ram´ırez-Sosa-Mor´an3, +nd Luz A. Torres-M´endez1 +CINVESTAV Campus Saltillo, Ramos Arizpe 25900, Coahuila, M´exico +Universidad Veracruzana, Facultad de F´ısica e Inteligencia Artificial, Xalapa 91000, +ITESM, Campus Saltillo, Saltillo 25270, Coahuila, M´exico +Veracruz, M´exico"
+684f5166d8147b59d9e0938d627beff8c9d208dd,Discriminative Block-Diagonal Representation Learning for Image Recognition,"IEEE TRANS. NNLS, JUNE 2017 +Discriminative Block-Diagonal Representation +Learning for Image Recognition +Zheng Zhang, Yong Xu, Senior Member, IEEE, Ling Shao, Senior Member, IEEE, Jian Yang, Member, IEEE"
+68e9c837431f2ba59741b55004df60235e50994d,Detecting Faces Using Region-based Fully Convolutional Networks,"Detecting Faces Using Region-based Fully +Convolutional Networks +Yitong Wang Xing Ji Zheng Zhou Hao Wang Zhifeng Li∗ +Tencent AI Lab, China"
+685f8df14776457c1c324b0619c39b3872df617b,Face Recognition with Preprocessing and Neural Networks,"Master of Science Thesis in Electrical Engineering +Department of Electrical Engineering, Linköping University, 2016 +Face Recognition with +Preprocessing and Neural +Networks +David Habrman"
+68484ae8a042904a95a8d284a7f85a4e28e37513,Spoofing Deep Face Recognition with Custom Silicone Masks,"Spoofing Deep Face Recognition with Custom Silicone Masks +Sushil Bhattacharjee Amir Mohammadi +S´ebastien Marcel +Idiap Research Institute. Centre du Parc, Rue Marconi 19, Martigny (VS), Switzerland +{sushil.bhattacharjee; amir.mohammadi;"
+687e17db5043661f8921fb86f215e9ca2264d4d2,A robust elastic and partial matching metric for face recognition,"A Robust Elastic and Partial Matching Metric for Face Recognition +Gang Hua +Amir Akbarzadeh +Microsoft Corporate +One Microsoft Way, Redmond, WA 98052 +{ganghua,"
+688754568623f62032820546ae3b9ca458ed0870,Resting high frequency heart rate variability is not associated with the recognition of emotional facial expressions in healthy human adults,"ioRxiv preprint first posted online Sep. 27, 2016; +http://dx.doi.org/10.1101/077784 +The copyright holder for this preprint (which was not +peer-reviewed) is the author/funder. It is made available under a +CC-BY-NC-ND 4.0 International license +Resting high frequency heart rate variability is not associated with the +recognition of emotional facial expressions in healthy human adults. +Brice Beffara1,2,3, Nicolas Vermeulen3,4, Martial Mermillod1,2 +Univ. Grenoble Alpes, LPNC, F-38040, Grenoble, France +CNRS, LPNC UMR 5105, F-38040, Grenoble, France +IPSY, Université Catholique de Louvain, Louvain-la-Neuve, Belgium +Fund for Scientific Research (FRS-FNRS), Brussels, Belgium +Correspondence concerning this article should be addressed to Brice Beffara, Office E250, Institut +de Recherches en Sciences Psychologiques, IPSY - Place du Cardinal Mercier, 10 bte L3.05.01 B-1348 +Louvain-la-Neuve, Belgium. E-mail: +Author note +This study explores whether the myelinated vagal connection between the heart and the brain +is involved in emotion recognition. The Polyvagal theory postulates that the activity of the +myelinated vagus nerve underlies socio-emotional skills. It has been proposed that the perception +of emotions could be one of this skills dependent on heart-brain interactions. However, this"
+68f9cb5ee129e2b9477faf01181cd7e3099d1824,ALDA Algorithms for Online Feature Extraction,"ALDA Algorithms for Online Feature Extraction +Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam"
+68d40176e878ebffbc01ffb0556e8cb2756dd9e9,Locality Repulsion Projection and Minutia Extraction Based Similarity Measure for Face Recognition,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +International Conference on Humming Bird ( 01st March 2014) +RESEARCH ARTICLE +OPEN ACCESS +Locality Repulsion Projection and Minutia Extraction Based +Similarity Measure for Face Recognition +Agnel AnushyaP.1,RamyaP.2 +AgnelAnushya P. is currently pursuing M.E (Computer Science and engineering) at Vins Christian college of +Ramya P. is currently working as an Asst. Professor in the dept. of Information Technology at Vins Christian +Engineering. +ollege of Engineering."
+6889d649c6bbd9c0042fadec6c813f8e894ac6cc,Analysis of Robust Soft Learning Vector Quantization and an application to Facial Expression Recognition,"Analysis of Robust Soft Learning Vector +Quantization and an application to Facial +Expression Recognition"
+68c17aa1ecbff0787709be74d1d98d9efd78f410,Gender Classification from Face Images Using Mutual Information and Feature Fusion,"International Journal of Optomechatronics, 6: 92–119, 2012 +Copyright # Taylor & Francis Group, LLC +ISSN: 1559-9612 print=1559-9620 online +DOI: 10.1080/15599612.2012.663463 +GENDER CLASSIFICATION FROM FACE IMAGES +USING MUTUAL INFORMATION AND FEATURE +FUSION +Claudio Perez, Juan Tapia, Pablo Este´vez, and Claudio Held +Department of Electrical Engineering and Advanced Mining Technology +Center, Universidad de Chile, Santiago, Chile +In this article we report a new method for gender classification from frontal face images +using feature selection based on mutual information and fusion of features extracted from +intensity, shape, texture, and from three different spatial scales. We compare the results of +three different mutual information measures: minimum redundancy and maximal relevance +(mRMR), normalized mutual information feature selection (NMIFS), and conditional +mutual information feature selection (CMIFS). We also show that by fusing features +extracted from six different methods we significantly improve the gender classification +results relative to those previously published, yielding 99.13% of the gender classification +rate on the FERET database. +Keywords: Feature fusion, feature selection, gender classification, mutual information, real-time gender"
+68f61154a0080c4aae9322110c8827978f01ac2e,"Recognizing blurred , non-frontal , illumination and expression variant partially occluded faces","Research Article +Journal of the Optical Society of America A +Recognizing blurred, non-frontal, illumination and +expression variant partially occluded faces +ABHIJITH PUNNAPPURATH1* AND AMBASAMUDRAM NARAYANAN RAJAGOPALAN1 +Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India. +*Corresponding author: +Compiled June 26, 2016 +The focus of this paper is on the problem of recognizing faces across space-varying motion blur, changes +in pose, illumination, and expression, as well as partial occlusion, when only a single image per subject +is available in the gallery. We show how the blur incurred due to relative motion between the camera and +the subject during exposure can be estimated from the alpha matte of pixels that straddle the boundary +etween the face and the background. We also devise a strategy to automatically generate the trimap re- +quired for matte estimation. Having computed the motion via the matte of the probe, we account for pose +variations by synthesizing from the intensity image of the frontal gallery, a face image that matches the +pose of the probe. To handle illumination and expression variations, and partial occlusion, we model the +probe as a linear combination of nine blurred illumination basis images in the synthesized non-frontal +pose, plus a sparse occlusion. We also advocate a recognition metric that capitalizes on the sparsity of the +occluded pixels. The performance of our method is extensively validated on synthetic as well as real face +data. © 2016 Optical Society of America"
+6888f3402039a36028d0a7e2c3df6db94f5cb9bb,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018 +CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +Anonymous authors +Paper under double-blind review"
+57c59011614c43f51a509e10717e47505c776389,Unsupervised Human Action Detection by Action Matching,"Unsupervised Human Action Detection by Action Matching +Basura Fernando∗ Sareh Shirazi† Stephen Gould∗ +The Australian National University †Queensland University of Technology"
+571f493c0ade12bbe960cfefc04b0e4607d8d4b2,Review on Content Based Image Retrieval: From Its Origin to the New Age,"International Journal of Research Studies in Science, Engineering and Technology +Volume 3, Issue 2, February 2016, PP 18-41 +ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) +Review on Content Based Image Retrieval: From Its Origin to the +New Age +Mrs. P. Nalini +Assistant Professor, ECE +Dr. B. L. Malleswari +Principal +Mahatma Gandhi Institute of Technology +Sridevi Women's Engineering College +Hyderabad, India +Hyderabad, India"
+57f8e1f461ab25614f5fe51a83601710142f8e88,Region Selection for Robust Face Verification using UMACE Filters,"Region Selection for Robust Face Verification using UMACE Filters +Salina Abdul Samad*, Dzati Athiar Ramli, Aini Hussain +Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, +Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. +In this paper, we investigate the verification performances of four subdivided face images with varying expressions. The +objective of this study is to evaluate which part of the face image is more tolerant to facial expression and still retains its personal +haracteristics due to the variations of the image. The Unconstrained Minimum Average Correlation Energy (UMACE) filter is +implemented to perform the verification process because of its advantages such as shift–invariance, ability to trade-off between +discrimination and distortion tolerance, e.g. variations in pose, illumination and facial expression. The database obtained from the +facial expression database of Advanced Multimedia Processing (AMP) Lab at CMU is used in this study. Four equal +sizes of face regions i.e. bottom, top, left and right halves are used for the purpose of this study. The results show that the bottom +half of the face region gives the best performance in terms of the PSR values with zero false accepted rate (FAR) and zero false +rejection rate (FRR) compared to the other three regions. +. Introduction +Face recognition is a well established field of research, +nd a large number of algorithms have been proposed in the +literature. Various classifiers have been explored to improve +the accuracy of face classification. The basic approach is to +use distance-base methods which measure Euclidean distance +etween any two vectors and then compare it with the preset"
+57a1466c5985fe7594a91d46588d969007210581,A taxonomy of face-models for system evaluation,"A Taxonomy of Face-models for System Evaluation +Vijay N. Iyer, Shane. R. Kirkbride, Brian C. Parks, Walter J. Scheirer and Terrance. E. Boult +Motivation and Data Types +Synthetic Data Types +Unverified – Have no underlying physical or +statistical basis +Physics -Based – Based on structure and +materials combined with the properties +formally modeled in physics. +Statistical – Use statistics from real +data/experiments to estimate/learn model +parameters. Generally have measurements +of accuracy +Guided Synthetic – Individual models based +on individual people. No attempt to capture +properties of large groups, a unique model +per person. For faces, guided models are +omposed of 3D structure models and skin +textures, capturing many artifacts not +easily parameterized. Can be combined with"
+57246142814d7010d3592e3a39a1ed819dd01f3b,Verification of Very Low-Resolution Faces Using An Identity-Preserving Deep Face Super-resolution Network,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Verification of Very Low-Resolution Faces Using An +Identity-Preserving Deep Face Super-resolution Network +Ataer-Cansizoglu, E.; Jones, M.J.; Zhang, Z.; Sullivan, A. +TR2018-116 August 24, 2018"
+574705812f7c0e776ad5006ae5e61d9b071eebdb,A Novel Approach for Face Recognition Using PCA and Artificial Neural Network,"Karthik G et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.5, May- 2014, pg. 780-787 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 3, Issue. 5, May 2014, pg.780 – 787 +RESEARCH ARTICLE +A Novel Approach for Face Recognition +Using PCA and Artificial Neural Network +Karthik G1, Sateesh Kumar H C2 +¹Deptartment of Telecommunication Engg., Dayananda Sagar College of Engg., India +²Department of Telecommunication Engg., Dayananda Sagar College of Engg., India +email : 2 email :"
+571b83f7fc01163383e6ca6a9791aea79cafa7dd,SeqFace: Make full use of sequence information for face recognition,"SeqFace: Make full use of sequence information for face recognition +Wei Hu1 ∗ +Yangyu Huang2 +Guodong Yuan2 +Fan Zhang1 +Ruirui Li1 +Wei Li1 +College of Information Science and Technology, +Beijing University of Chemical Technology, China +YUNSHITU Corp., China"
+574ad7ef015995efb7338829a021776bf9daaa08,AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks for Human Action Recognition in Videos,"AdaScan: Adaptive Scan Pooling in Deep Convolutional Neural Networks +for Human Action Recognition in Videos +Amlan Kar1,∗ +Nishant Rai1,∗ +Karan Sikka2,3,† +Gaurav Sharma1 +IIT Kanpur‡ +SRI International +UCSD"
+57a14a65e8ae15176c9afae874854e8b0f23dca7,Seeing Mixed Emotions: The Specificity of Emotion Perception From Static and Dynamic Facial Expressions Across Cultures,"UvA-DARE (Digital Academic Repository) +Seeing mixed emotions: The specificity of emotion perception from static and dynamic +facial expressions across cultures +Fang, X.; Sauter, D.A.; van Kleef, G.A. +Published in: +Journal of Cross-Cultural Psychology +0.1177/0022022117736270 +Link to publication +Citation for published version (APA): +Fang, X., Sauter, D. A., & van Kleef, G. A. (2018). Seeing mixed emotions: The specificity of emotion perception +from static and dynamic facial expressions across cultures. Journal of Cross-Cultural Psychology, 49(1), 130- +48. DOI: 10.1177/0022022117736270 +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible."
+57d37ad025b5796457eee7392d2038910988655a,Aeaeêêìáîî Áåèääååaeììáçae Çç Àááêêêàáááä Aeçîîäìì Ììììçê,"GEERATVEEETATF + +DagaEha +UdeheS eviif +f.DahaWeiha +ATheiS biediaia +Re ieefheDegeef +aefSciece +TheSch + +Decebe2009"
+3b1aaac41fc7847dd8a6a66d29d8881f75c91ad5,Sparse Representation-Based Open Set Recognition,"Sparse Representation-based Open Set Recognition +He Zhang, Student Member, IEEE and Vishal M. Patel, Senior Member, IEEE"
+3bc776eb1f4e2776f98189e17f0d5a78bb755ef4,View Synthesis from Image and Video for Object Recognition Applications,
+3b15a48ffe3c6b3f2518a7c395280a11a5f58ab0,On knowledge transfer in object class recognition,"On Knowledge Transfer in +Object Class Recognition +A dissertation approved by +TECHNISCHE UNIVERSITÄT DARMSTADT +Fachbereich Informatik +for the degree of +Doktor-Ingenieur (Dr.-Ing.) +presented by +MICHAEL STARK +Dipl.-Inform. +orn in Mainz, Germany +Prof. Dr.-Ing. Michael Goesele, examiner +Prof. Martial Hebert, Ph.D., co-examiner +Prof. Dr. Bernt Schiele, co-examiner +Date of Submission: 12th of August, 2010 +Date of Defense: 23rd of September, 2010 +Darmstadt, 2010"
+3baa3d5325f00c7edc1f1427fcd5bdc6a420a63f,Enhancing Convolutional Neural Networks for Face Recognition with Occlusion Maps and Batch Triplet Loss,"Enhancing Convolutional Neural Networks for Face Recognition with +Occlusion Maps and Batch Triplet Loss +Daniel S´aez Triguerosa,b, Li Menga,∗, Margaret Hartnettb +School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, UK +IDscan Biometrics (a GBG company), London E14 9QD, UK"
+3ba8f8b6bfb36465018430ffaef10d2caf3cfa7e,Local Directional Number Pattern for Face Analysis: Face and Expression Recognition,"Local Directional Number Pattern for Face +Analysis: Face and Expression Recognition +Adin Ramirez Rivera, Student Member, IEEE, Jorge Rojas Castillo, Student Member, IEEE, +nd Oksam Chae, Member, IEEE"
+3b9d94752f8488106b2c007e11c193f35d941e92,"Appearance, Visual and Social Ensembles for Face Recognition in Personal Photo Collections","#2052 +CVPR 2013 Submission #2052. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#2052 +Appearance, Visual and Social Ensembles for +Face Recognition in Personal Photo Collections +Anonymous CVPR submission +Paper ID 2052"
+3b557c4fd6775afc80c2cf7c8b16edde125b270e,Face recognition: Perspectives from the real world,"Face Recognition: Perspectives from the +Real-World +Bappaditya Mandal +Institute for Infocomm Research, A*STAR, +Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632. +Phone: +65 6408 2071; Fax: +65 6776 1378; +E-mail:"
+3b410ae97e4564bc19d6c37bc44ada2dcd608552,Scalability Analysis of Audio-Visual Person Identity Verification,"Scalability Analysis of Audio-Visual Person +Identity Verification +Jacek Czyz1, Samy Bengio2, Christine Marcel2, and Luc Vandendorpe1 +Communications Laboratory, +Universit´e catholique de Louvain, B-1348 Belgium, +IDIAP, CH-1920 Martigny, +Switzerland"
+6f5ce5570dc2960b8b0e4a0a50eab84b7f6af5cb,Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture,"Low Resolution Face Recognition Using a +Two-Branch Deep Convolutional Neural Network +Architecture +Erfan Zangeneh, Mohammad Rahmati, and Yalda Mohsenzadeh"
+6f288a12033fa895fb0e9ec3219f3115904f24de,Learning Expressionlets via Universal Manifold Model for Dynamic Facial Expression Recognition,"Learning Expressionlets via Universal Manifold +Model for Dynamic Facial Expression Recognition +Mengyi Liu, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE, Ruiping Wang, Member, IEEE, +Xilin Chen, Senior Member, IEEE"
+6f957df9a7d3fc4eeba53086d3d154fc61ae88df,Modélisation et suivi des déformations faciales : applications à la description des expressions du visage dans le contexte de la langue des signes,"Mod´elisation et suivi des d´eformations faciales : +pplications `a la description des expressions du visage +dans le contexte de la langue des signes +Hugo Mercier +To cite this version: +Hugo Mercier. Mod´elisation et suivi des d´eformations faciales : applications `a la description +des expressions du visage dans le contexte de la langue des signes. Interface homme-machine +[cs.HC]. Universit´e Paul Sabatier - Toulouse III, 2007. Fran¸cais. <tel-00185084> +HAL Id: tel-00185084 +https://tel.archives-ouvertes.fr/tel-00185084 +Submitted on 5 Nov 2007 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non,"
+6f7d06ced04ead3b9a5da86b37e7c27bfcedbbdd,Multi-Scale Fully Convolutional Network for Fast Face Detection,"Pages 51.1-51.12 +DOI: https://dx.doi.org/10.5244/C.30.51"
+6f7a8b3e8f212d80f0fb18860b2495be4c363eac,Creating Capsule Wardrobes from Fashion Images,"Creating Capsule Wardrobes from Fashion Images +Wei-Lin Hsiao +UT-Austin +Kristen Grauman +UT-Austin"
+6f6b4e2885ea1d9bea1bb2ed388b099a5a6d9b81,"Structured Output SVM Prediction of Apparent Age, Gender and Smile from Deep Features","Structured Output SVM Prediction of Apparent Age, +Gender and Smile From Deep Features +Michal Uˇriˇc´aˇr +CMP, Dept. of Cybernetics +FEE, CTU in Prague +Radu Timofte +Computer Vision Lab +D-ITET, ETH Zurich +Rasmus Rothe +Computer Vision Lab +D-ITET, ETH Zurich +Luc Van Gool +PSI, ESAT, KU Leuven +CVL, D-ITET, ETH Zurich +Jiˇr´ı Matas +CMP, Dept. of Cybernetics +FEE, CTU in Prague"
+6f08885b980049be95a991f6213ee49bbf05c48d,Author's Personal Copy Multi-kernel Appearance Model ☆,"This article appeared in a journal published by Elsevier. The attached +opy is furnished to the author for internal non-commercial research +nd education use, including for instruction at the authors institution +nd sharing with colleagues. +Other uses, including reproduction and distribution, or selling or +licensing copies, or posting to personal, institutional or third party +websites are prohibited. +In most cases authors are permitted to post their version of the +rticle (e.g. in Word or Tex form) to their personal website or +institutional repository. Authors requiring further information +regarding Elsevier’s archiving and manuscript policies are +encouraged to visit: +http://www.elsevier.com/authorsrights"
+6f35b6e2fa54a3e7aaff8eaf37019244a2d39ed3,Learning probabilistic classifiers for human–computer interaction applications,"DOI 10.1007/s00530-005-0177-4 +R E G U L A R PA P E R +Nicu Sebe · Ira Cohen · Fabio G. Cozman · +Theo Gevers · Thomas S. Huang +Learning probabilistic classifiers for human–computer +interaction applications +Published online: 10 May 2005 +(cid:1) Springer-Verlag 2005 +intelligent +interaction,"
+6f3054f182c34ace890a32fdf1656b583fbc7445,Age Estimation Robust to Optical and Motion Blurring by Deep Residual CNN,"Article +Age Estimation Robust to Optical and Motion +Blurring by Deep Residual CNN +Jeon Seong Kang, Chan Sik Kim, Young Won Lee, Se Woon Cho and Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, +Seoul 100-715, Korea; (J.S.K.); (C.S.K.); +(Y.W.L.); (S.W.C.) +* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +Received: 9 March 2018; Accepted: 10 April 2018; Published: 13 April 2018"
+6fa3857faba887ed048a9e355b3b8642c6aab1d8,Face Recognition in Challenging Environments: An Experimental and Reproducible Research Survey,"Face Recognition in Challenging Environments: +An Experimental and Reproducible Research +Survey +Manuel G¨unther and Laurent El Shafey and S´ebastien Marcel"
+6f7ce89aa3e01045fcd7f1c1635af7a09811a1fe,A novel rank order LoG filter for interest point detection,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012"
+6fe2efbcb860767f6bb271edbb48640adbd806c3,Soft Biometrics; Human Identification Using Comparative Descriptions,"SOFT BIOMETRICS: HUMAN IDENTIFICATION USING COMPARATIVE DESCRIPTIONS +Soft Biometrics; Human Identification using +Comparative Descriptions +Daniel A. Reid, Mark S. Nixon, Sarah V. Stevenage"
+6fdc0bc13f2517061eaa1364dcf853f36e1ea5ae,DAISEE: Dataset for Affective States in E-Learning Environments,"DAISEE: Dataset for Affective States in +E-Learning Environments +Abhay Gupta1, Richik Jaiswal2, Sagar Adhikari2, Vineeth Balasubramanian2 +Microsoft India R&D Pvt. Ltd. +Department of Computer Science, IIT Hyderabad +{cs12b1032, cs12b1034,"
+6f5151c7446552fd6a611bf6263f14e729805ec7,Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers,".=?E= )?JE 7EJ 4A?CEJE KIEC +?= *E=HO 2=JJAH .A=JKHAI MEJD +-++ +=IIEAHI +55EJD ++AJHA BH 8EIE 5FAA?D 5EC= 2H?AIIEC 7ELAHIEJO B 5KHHAO +5KHHAO /7 %:0 7 +)>IJH=?J 9EJDE JDA ?JANJ B=?A ANFHAIIE ?=IIE?=JE KIEC JDA +B=?E= =?JE IOIJA .)+5 MA JDA FH>A B +EC B=?E= =?JE KEJI )7I 6DA EI J JH=E = IECA +AHHH?HHA?JEC KJFKJ -++ KJE?=II ?=IIEAH J AIJE=JA JDA +FH>=>EEJEAI JD=J A=?D A B IALAH= ?O ??KHHEC )7 CHKFI EI +FHAIAJ E JDA FH>A E=CA 2=JJ I?=EC EI J ?=E>H=JA JDA -++ +KJFKJI J FH>=>EEJEAI =FFHFHE=JA IKI B JDAIA FH>=>EEJEAI =HA +J=A J >J=E = IAF=H=JA FH>=>EEJO BH A=?D )7 .A=JKHA +ANJH=?JE EI >O CAAH=JEC = =HCA K>AH B ?= >E=HO F=J +JAH *2 BA=JKHAI JDA IAA?JEC BH JDAIA KIEC B=IJ ?HHA=JE +JAHEC .+*. 6DA >E=I L=HE=?A FHFAHJEAI B JDA ?=IIEAH +=HA MA IDM JD=J >JD JDAIA IKH?AI B AHHH ?= >A HA +>O AD=?EC -++ JDHKCD JDA =FFE?=JE B >JIJH=FFEC +?=IIIAF=H=>EEJO MAECDJEC"
+03c56c176ec6377dddb6a96c7b2e95408db65a7a,A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding,"A Novel Geometric Framework on Gram Matrix +Trajectories for Human Behavior Understanding +Anis Kacem, Mohamed Daoudi, Boulbaba Ben Amor, Stefano Berretti, and Juan Carlos Alvarez-Paiva"
+0322e69172f54b95ae6a90eb3af91d3daa5e36ea,Face Classification using Adjusted Histogram in Grayscale,"Face Classification using Adjusted Histogram in +Grayscale +Weenakorn Ieosanurak, and Watcharin Klongdee"
+03f7041515d8a6dcb9170763d4f6debd50202c2b,Clustering Millions of Faces by Identity,"Clustering Millions of Faces by Identity +Charles Otto, Student Member, IEEE, Dayong Wang, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
+038ce930a02d38fb30d15aac654ec95640fe5cb0,Approximate structured output learning for Constrained Local Models with application to real-time facial feature detection and tracking on low-power devices,"Approximate Structured Output Learning for Constrained Local +Models with Application to Real-time Facial Feature Detection and +Tracking on Low-power Devices +Shuai Zheng, Paul Sturgess and Philip H. S. Torr"
+03c1fc9c3339813ed81ad0de540132f9f695a0f8,Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification,"Proceedings of Machine Learning Research 81:1–15, 2018 +Conference on Fairness, Accountability, and Transparency +Gender Shades: Intersectional Accuracy Disparities in +Commercial Gender Classification∗ +Joy Buolamwini +MIT Media Lab 75 Amherst St. Cambridge, MA 02139 +Timnit Gebru +Microsoft Research 641 Avenue of the Americas, New York, NY 10011 +Editors: Sorelle A. Friedler and Christo Wilson"
+0339459a5b5439d38acd9c40a0c5fea178ba52fb,Multimodal recognition of emotions in car environments,"D|C|I&I 2009 Prague +Multimodal recognition of emotions in car +environments +Dragoş DatcuA and Léon J.M. RothkrantzB"
+032825000c03b8ab4c207e1af4daeb1f225eb025,A Novel Approach for Human Face Detection in Color Images Using Skin Color and Golden Ratio,"J. Appl. Environ. Biol. Sci., 7(10)159-164, 2017 +ISSN: 2090-4274 +© 2017, TextRoad Publication +Journal of Applied Environmental +nd Biological Sciences +www.textroad.com +A Novel Approach for Human Face Detection in Color Images Using Skin +Color and Golden Ratio +Faizan Ullah*1, Dilawar Shah1, Sabir Shah1, Abdus Salam2, Shujaat Ali1 +Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan1 +Department of Computer Science, Abdul WaliKhan University, Mardan, KPK, Pakistan2 +Received: May 9, 2017 +Accepted: August 2, 2017"
+03a8f53058127798bc2bc0245d21e78354f6c93b,Max-margin additive classifiers for detection,"Max-Margin Additive Classifiers for Detection +Subhransu Maji and Alexander C. Berg +Sam Hare +VGG Reading Group +October 30, 2009"
+03fc466fdbc8a2efb6e3046fcc80e7cb7e86dc20,A real time system for model-based interpretation of the dynamics of facial expressions,"A Real Time System for Model-based Interpretation of +the Dynamics of Facial Expressions +Christoph Mayer, Matthias Wimmer, Freek Stulp, Zahid Riaz, Anton Roth, Martin Eggers, Bernd Radig +Technische Universit¨at M¨unchen +Boltzmannstr. 3, 85748 Garching +. Motivation +Recent progress in the field of Computer Vision allows +intuitive interaction via speech, gesture or facial expressions +etween humans and technical systems.Model-based tech- +niques facilitate accurately interpreting images with faces +y exploiting a priori knowledge, such as shape and texture +information. This renders them an inevitable component +to realize the paradigm of intuitive human-machine interac- +tion. +Our demonstration shows model-based recognition of +facial expressions in real-time via the state-of-the-art +Candide-3 face model [1] as visible in Figure 1. This three- +dimensional and deformable model is highly appropriate +for real-world face interpretation applications. However, +its complexity challenges the task of model fitting and we"
+03b98b4a2c0b7cc7dae7724b5fe623a43eaf877b,Acume: A Novel Visualization Tool for Understanding Facial Expression and Gesture Data,"Acume: A Novel Visualization Tool for Understanding Facial +Expression and Gesture Data"
+03adcf58d947a412f3904a79f2ab51cfdf0e838a,Video-based face recognition: a survey,"World Journal of Science and Technology 2012, 2(4):136-139 +ISSN: 2231 – 2587 +Available Online: www.worldjournalofscience.com +_________________________________________________________________ +Proceedings of ""Conference on Advances in Communication and Computing (NCACC'12)” +Held at R.C.Patel Institute of Technology, Shirpur, Dist. Dhule,Maharastra,India. +April 21, 2012 +Video-based face recognition: a survey +Shailaja A Patil1 and Pramod J Deore2 +Department of Electronics and Telecommunication, R.C.Patel Institute of Technology,Shirpur,Dist.Dhule.Maharashtra,India."
+03f14159718cb495ca50786f278f8518c0d8c8c9,Performance evaluation of HOG and Gabor features for vision-based vehicle detection,"015 IEEE International Conference on Control System, Computing and Engineering, Nov 27 – Nov 29, 2015 Penang, Malaysia +015 IEEE International Conference on Control System, +Computing and Engineering (ICCSCE2015) +Technical Session 1A – DAY 1 – 27th Nov 2015 +Time: 3.00 pm – 4.30 pm +Venue: Jintan +Topic: Signal and Image Processing +.00 pm – 3.15pm +.15 pm – 3.30pm +.30 pm – 3.45pm +.45 pm – 4.00pm +.00 pm – 4.15pm +.15 pm – 4.30pm +.30 pm – 4.45pm +A 01 ID3 +Can Subspace Based Learning Approach Perform on Makeup Face +Recognition? +Khor Ean Yee, Pang Ying Han, Ooi Shih Yin and Wee Kuok Kwee +A 02 ID35 +Performance Evaluation of HOG and Gabor Features for Vision-based"
+0394040749195937e535af4dda134206aa830258,Geodesic entropic graphs for dimension and entropy estimation in manifold learning,"Geodesic Entropic Graphs for Dimension and +Entropy Estimation in Manifold Learning +Jose A. Costa and Alfred O. Hero III +December 16, 2003"
+03ac1c694bc84a27621da6bfe73ea9f7210c6d45,Chapter 1 Introduction to information security foundations and applications,"Chapter 1 +Introduction to information security +foundations and applications +Ali Ismail Awad1,2 +.1 Background +Information security has extended to include several research directions like user +uthentication and authorization, network security, hardware security, software secu- +rity, and data cryptography. Information security has become a crucial need for +protecting almost all information transaction applications. Security is considered as +n important science discipline whose many multifaceted complexities deserve the +synergy of the computer science and engineering communities. +Recently, due to the proliferation of Information and Communication Tech- +nologies, information security has started to cover emerging topics such as cloud +omputing security, smart cities’ security and privacy, healthcare and telemedicine, +the Internet-of-Things (IoT) security [1], the Internet-of-Vehicles security, and sev- +eral types of wireless sensor networks security [2,3]. In addition, information security +has extended further to cover not only technical security problems but also social and +organizational security challenges [4,5]. +Traditional systems’ development approaches were focusing on the system’s +usability where security was left to the last stage with less priority. However, the"
+0394e684bd0a94fc2ff09d2baef8059c2652ffb0,Median Robust Extended Local Binary Pattern for Texture Classification,"Median Robust Extended Local Binary Pattern +for Texture Classification +Li Liu, Songyang Lao, Paul W. Fieguth, Member, IEEE, Yulan Guo, +Xiaogang Wang, and Matti Pietikäinen, Fellow, IEEE +Index Terms— Texture descriptors, rotation invariance, local +inary pattern (LBP), feature extraction, texture analysis. +how the texture recognition process works in humans as +well as in the important role it plays in the wide variety of +pplications of computer vision and image analysis [1], [2]. +The many applications of texture classification include medical +image analysis and understanding, object recognition, biomet- +rics, content-based image retrieval, remote sensing, industrial +inspection, and document classification. +As a classical pattern recognition problem, texture classifi- +ation primarily consists of two critical subproblems: feature +extraction and classifier designation [1], [2]. It is generally +greed that the extraction of powerful texture features plays a +relatively more important role, since if poor features are used +even the best classifier will fail to achieve good recognition +results. Consequently, most research in texture classification"
+03f4c0fe190e5e451d51310bca61c704b39dcac8,CHEAVD: a Chinese natural emotional audio-visual database,"J Ambient Intell Human Comput +DOI 10.1007/s12652-016-0406-z +O R I G I N A L R E S E A R C H +CHEAVD: a Chinese natural emotional audio–visual database +Ya Li1 +• Jianhua Tao1,2,3 +• Linlin Chao1 +• Wei Bao1,4 +• Yazhu Liu1,4 +Received: 30 March 2016 / Accepted: 22 August 2016 +Ó Springer-Verlag Berlin Heidelberg 2016"
+031055c241b92d66b6984643eb9e05fd605f24e2,Multi-fold MIL Training for Weakly Supervised Object Localization,"Multi-fold MIL Training for Weakly Supervised Object Localization +Ramazan Gokberk Cinbis +Jakob Verbeek Cordelia Schmid +Inria∗"
+0332ae32aeaf8fdd8cae59a608dc8ea14c6e3136,Large Scale 3D Morphable Models,"Int J Comput Vis +DOI 10.1007/s11263-017-1009-7 +Large Scale 3D Morphable Models +James Booth1 +Stefanos Zafeiriou1 +· Anastasios Roussos1,3 · Allan Ponniah2 · David Dunaway2 · +Received: 15 March 2016 / Accepted: 24 March 2017 +© The Author(s) 2017. This article is an open access publication"
+034addac4637121e953511301ef3a3226a9e75fd,Implied Feedback: Learning Nuances of User Behavior in Image Search,"Implied Feedback: Learning Nuances of User Behavior in Image Search +Devi Parikh +Virginia Tech"
+03701e66eda54d5ab1dc36a3a6d165389be0ce79,Improved Principal Component Regression for Face Recognition Under Illumination Variations,"Improved Principal Component Regression for Face +Recognition Under Illumination Variations +Shih-Ming Huang and Jar-Ferr Yang, Fellow, IEEE"
+9b318098f3660b453fbdb7a579778ab5e9118c4c,Joint Patch and Multi-label Learning for Facial Action Unit and Holistic Expression Recognition,"Joint Patch and Multi-label Learning for Facial +Action Unit and Holistic Expression Recognition +Kaili Zhao, Wen-Sheng Chu, Student Member, IEEE, Fernando De la Torre, +Jeffrey F. Cohn, and Honggang Zhang, Senior Member, IEEE +lassifiers without"
+9b474d6e81e3b94e0c7881210e249689139b3e04,VG-RAM Weightless Neural Networks for Face Recognition,"VG-RAM Weightless Neural Networks for +Face Recognition +Alberto F. De Souza, Claudine Badue, Felipe Pedroni, Stiven Schwanz Dias, +Hallysson Oliveira and Soterio Ferreira de Souza +Departamento de Inform´atica +Universidade Federal do Esp´ırito Santo +Av. Fernando Ferrari, 514, 29075-910 - Vit´oria-ES +Brazil +. Introduction +Computerized human face recognition has many practical applications, such as access control, +security monitoring, and surveillance systems, and has been one of the most challenging and +ctive research areas in computer vision for many decades (Zhao et al.; 2003). Even though +urrent machine recognition systems have reached a certain level of maturity, the recognition +of faces with different facial expressions, occlusions, and changes in illumination and/or pose +is still a hard problem. +A general statement of the problem of machine recognition of faces can be formulated as fol- +lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene +using a database of faces. In identification problems, given a face as input, the system reports +ack the identity of an individual based on a database of known individuals; whereas in veri- +fication problems, the system confirms or rejects the claimed identity of the input face. In both"
+9bcfadd22b2c84a717c56a2725971b6d49d3a804,How to Detect a Loss of Attention in a Tutoring System using Facial Expressions and Gaze Direction,"How to Detect a Loss of Attention in a Tutoring System +using Facial Expressions and Gaze Direction +Mark ter Maat"
+9b164cef4b4ad93e89f7c1aada81ae7af802f3a4,A Fully Automatic and Haar like Feature Extraction-Based Method for Lip Contour Detection,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +Vol. 2(1), 17-20, January (2013) +Res.J.Recent Sci. +A Fully Automatic and Haar like Feature Extraction-Based Method for Lip +Contour Detection +Zahedi Morteza and Mohamadian Zahra +School of Computer Engineering, Shahrood University of Technology, Shahrood, IRAN +Received 26th September 2012, revised 27th October 2012, accepted 6th November 2012 +Available online at: www.isca.in"
+9bac481dc4171aa2d847feac546c9f7299cc5aa0,Matrix Product State for Higher-Order Tensor Compression and Classification,"Matrix Product State for Higher-Order Tensor +Compression and Classification +Johann A. Bengua1, Ho N. Phien1, Hoang D. Tuan1 and Minh N. Do2"
+9b7974d9ad19bb4ba1ea147c55e629ad7927c5d7,Faical Expression Recognition by Combining Texture and Geometrical Features,"Faical Expression Recognition by Combining +Texture and Geometrical Features +Renjie Liu, Ruofei Du, Bao-Liang Lu*"
+9b6d0b3fbf7d07a7bb0d86290f97058aa6153179,"NII , Japan at the first THUMOS Workshop 2013","NII, Japan at the first THUMOS Workshop 2013 +Sang Phan, Duy-Dinh Le, Shin’ichi Satoh +National Institute of Informatics +-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430"
+9e8637a5419fec97f162153569ec4fc53579c21e,Segmentation and Normalization of Human Ears Using Cascaded Pose Regression,"Segmentation and Normalization of Human Ears +using Cascaded Pose Regression +Anika Pflug and Christoph Busch +University of Applied Sciences Darmstadt - CASED, +Haardtring 100, +64295 Darmstadt, Germany +http://www.h-da.de"
+9e4b052844d154c3431120ec27e78813b637b4fc,Local gradient pattern - A novel feature representation for facial expression recognition,"Journal of AI and Data Mining +Vol. 2, No .1, 2014, 33-38. +Local gradient pattern - A novel feature representation for facial +expression recognition +M. Shahidul Islam +Department of Computer Science, School of Applied Statistics, National Institute of Development Administration, Bangkok, Thailand. +Received 23 April 2013; accepted 16 June 2013 +*Corresponding author: (M.Shahidul Islam)"
+9ea73660fccc4da51c7bc6eb6eedabcce7b5cead,Talking head detection by likelihood-ratio test,"Talking Head Detection by Likelihood-Ratio Test† +Carl Quillen, Kara Greenfield, and William Campbell +MIT Lincoln Laboratory, +Lexington MA 02420, USA"
+9e9052256442f4e254663ea55c87303c85310df9,Review On Attribute - assisted Reranking for Image Search,"International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) +Volume 4 Issue 10, October 2015 +Review On Attribute-assisted Reranking for +Image Search +Waghmare Supriya, Wavhal Archana, Patil Nital, Tapkir Yogita, Prof. Yogesh Thorat"
+9ef2b2db11ed117521424c275c3ce1b5c696b9b3,Robust Face Alignment Using a Mixture of Invariant Experts,"Robust Face Alignment Using a Mixture of Invariant Experts +Oncel Tuzel† +Salil Tambe‡∗ +Tim K. Marks† +Intel Corporation +Mitsubishi Electric Research Labs (MERL) +{oncel,"
+9e5acdda54481104aaf19974dca6382ed5ff21ed,Automatic localization of facial landmarks from expressive images of high complexity,"Yulia Gizatdinova and Veikko Surakka +Automatic localization of facial +landmarks from expressive images +of high complexity +DEPARTMENT OF COMPUTER SCIENCES +UNIVERSITY OF TAMPERE +D‐2008‐9 +TAMPERE 2008"
+9e0285debd4b0ba7769b389181bd3e0fd7a02af6,From Face Images and Attributes to Attributes,"From face images and attributes to attributes +Robert Torfason, Eirikur Agustsson, Rasmus Rothe, Radu Timofte +Computer Vision Laboratory, ETH Zurich, Switzerland"
+040dc119d5ca9ea3d5fc39953a91ec507ed8cc5d,Large-scale Bisample Learning on ID vs. Spot Face Recognition,"Noname manuscript No. +(will be inserted by the editor) +Large-scale Bisample Learning on ID vs. Spot Face Recognition +Xiangyu Zhu∗ · Hao Liu∗ · Zhen Lei · Hailin Shi · Fan Yang · Dong +Yi · Stan Z. Li +Received: date / Accepted: date"
+047f6afa87f48de7e32e14229844d1587185ce45,An Improvement of Energy-Transfer Features Using DCT for Face Detection,"An Improvement of Energy-Transfer Features +Using DCT for Face Detection +Radovan Fusek, Eduard Sojka, Karel Mozdˇreˇn, and Milan ˇSurkala +Technical University of Ostrava, FEECS, Department of Computer Science, +7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic"
+04b851f25d6d49e61a528606953e11cfac7df2b2,Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,"Optical Flow Guided Feature: A Fast and Robust Motion Representation for +Video Action Recognition +Shuyang Sun1,2, Zhanghui Kuang2, Lu Sheng3, Wanli Ouyang1, Wei Zhang2 +The University of Sydney 2SenseTime Research 3The Chinese University of Hong Kong +{shuyang.sun +{wayne.zhang"
+0447bdb71490c24dd9c865e187824dee5813a676,Manifold Estimation in View-based Feature Space for Face Synthesis Across Pose,"Manifold Estimation in View-based Feature +Space for Face Synthesis Across Pose +Paper 27"
+0435a34e93b8dda459de49b499dd71dbb478dc18,"VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks","VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification +Using Convolutional Neural Networks +Ayesha Gurnani£1, Vandit Gajjar£1, Viraj Mavani£1, Yash Khandhediya£1 +Department of Electronics and Communication Engineering and +Computer Vision Group, L. D. College of Engineering, Ahmedabad, India +{gurnani.ayesha.52, gajjar.vandit.381, mavani.viraj.604, +the need for handcrafted facial descriptors and data +preprocessing. D-CNN models have been not only +successfully applied to human face analysis, but also for +the visual saliency detection [21, 22, 23]. Visual Saliency +is fundamentally an intensity map where higher intensity +signifies regions, where a general human being would +look, and lower intensities mean decreasing level of visual +ttention. It’s a measure of visual attention of humans +ased on the content of the image. It has numerous +pplications in computer vision and image processing +tasks. It is still an open problem when considering the MIT +Saliency Benchmark [24]. +In previous five years, considering age estimation, +gender classification and facial expression classification"
+044ba70e6744e80c6a09fa63ed6822ae241386f2,Early Prediction for Physical Human Robot Collaboration in the Operating Room,"TO APPEAR IN AUTONOMOUS ROBOTS, SPECIAL ISSUE IN LEARNING FOR HUMAN-ROBOT COLLABORATION +Early Prediction for Physical Human Robot +Collaboration in the Operating Room +Tian Zhou, Student Member, IEEE, and Juan Wachs, Member, IEEE"
+04dcdb7cb0d3c462bdefdd05508edfcff5a6d315,Assisting the training of deep neural networks with applications to computer vision,"Assisting the training of deep neural networks +with applications to computer vision +Adriana Romero +tesi doctoral està subjecta a +Aquesta +CompartirIgual 4.0. Espanya de Creative Commons. +Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual +.0. España de Creative Commons. +This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- +ShareAlike 4.0. Spain License. +llicència Reconeixement- NoComercial –"
+044fdb693a8d96a61a9b2622dd1737ce8e5ff4fa,Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions,"Dynamic Texture Recognition Using Local Binary +Patterns with an Application to Facial Expressions +Guoying Zhao and Matti Pietik¨ainen, Senior Member, IEEE"
+04f55f81bbd879773e2b8df9c6b7c1d324bc72d8,Multi-view Face Analysis Based on Gabor Features,"Multi-view Face Analysis Based on Gabor Features +Hongli Liu, Weifeng Liu, Yanjiang Wang +College of Information and Control Engineering in China University of Petroleum, +Qingdao 266580, China"
+0431e8a01bae556c0d8b2b431e334f7395dd803a,Learning Localized Perceptual Similarity Metrics for Interactive Categorization,"Learning Localized Perceptual Similarity Metrics for Interactive Categorization +Catherine Wah ∗ +Google Inc. +google.com"
+04b4c779b43b830220bf938223f685d1057368e9,Video retrieval based on deep convolutional neural network,"Video retrieval based on deep convolutional +neural network +Yajiao Dong +School of Information and Electronics, +Beijing Institution of Technology, Beijing, China +Jianguo Li +School of Information and Electronics, +Beijing Institution of Technology, Beijing, China"
+04616814f1aabe3799f8ab67101fbaf9fd115ae4,UNIVERSITÉ DE CAEN BASSE NORMANDIE U . F . R . de Sciences,"UNIVERSIT´EDECAENBASSENORMANDIEU.F.R.deSciences´ECOLEDOCTORALESIMEMTH`ESEPr´esent´eeparM.GauravSHARMAsoutenuele17D´ecembre2012envuedel’obtentionduDOCTORATdel’UNIVERSIT´EdeCAENSp´ecialit´e:InformatiqueetapplicationsArrˆet´edu07aoˆut2006Titre:DescriptionS´emantiquedesHumainsPr´esentsdansdesImagesVid´eo(SemanticDescriptionofHumansinImages)TheworkpresentedinthisthesiswascarriedoutatGREYC-UniversityofCaenandLEAR–INRIAGrenobleJuryM.PatrickPEREZDirecteurdeRechercheINRIA/Technicolor,RennesRapporteurM.FlorentPERRONNINPrincipalScientistXeroxRCE,GrenobleRapporteurM.JeanPONCEProfesseurdesUniversit´esENS,ParisExaminateurMme.CordeliaSCHMIDDirectricedeRechercheINRIA,GrenobleDirectricedeth`eseM.Fr´ed´ericJURIEProfesseurdesUniversit´esUniversit´edeCaenDirecteurdeth`ese"
+047d7cf4301cae3d318468fe03a1c4ce43b086ed,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"Co-Localization of Audio Sources in Images Using +Binaural Features and Locally-Linear Regression +Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin +To cite this version: +Antoine Deleforge, Radu Horaud, Yoav Y. Schechner, Laurent Girin. Co-Localization of Audio +Sources in Images Using Binaural Features and Locally-Linear Regression. IEEE Transactions +on Audio Speech and Language Processing, 2015, 15p. <hal-01112834> +HAL Id: hal-01112834 +https://hal.inria.fr/hal-01112834 +Submitted on 3 Feb 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+04317e63c08e7888cef480fe79f12d3c255c5b00,Face Recognition Using a Unified 3D Morphable Model,"Face Recognition Using a Unified 3D Morphable Model +Hu, G., Yan, F., Chan, C-H., Deng, W., Christmas, W., Kittler, J., & Robertson, N. M. (2016). Face Recognition +Using a Unified 3D Morphable Model. In Computer Vision – ECCV 2016: 14th European Conference, +Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII (pp. 73-89). (Lecture Notes in +Computer Science; Vol. 9912). Springer Verlag. DOI: 10.1007/978-3-319-46484-8_5 +Published in: +Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, +016, Proceedings, Part VIII +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +Publisher rights +The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46484-8_5 +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy +The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
+0470b0ab569fac5bbe385fa5565036739d4c37f8,Automatic face naming with caption-based supervision,"Automatic Face Naming with Caption-based Supervision +Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid +To cite this version: +Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, Cordelia Schmid. Automatic Face Naming +with Caption-based Supervision. CVPR 2008 - IEEE Conference on Computer Vision +Pattern Recognition, +iety, +<10.1109/CVPR.2008.4587603>. <inria-00321048v2> +008, +pp.1-8, +008, Anchorage, United +<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587603>. +IEEE Computer +States. +HAL Id: inria-00321048 +https://hal.inria.fr/inria-00321048v2 +Submitted on 11 Apr 2011 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub-"
+6a3a07deadcaaab42a0689fbe5879b5dfc3ede52,Learning to Estimate Pose by Watching Videos,"Learning to Estimate Pose by Watching Videos +Prabuddha Chakraborty and Vinay P. Namboodiri +Department of Computer Science and Engineering +IIT Kanpur +{prabudc, vinaypn}"
+6afed8dc29bc568b58778f066dc44146cad5366c,Kernel Hebbian Algorithm for Single-Frame Super-Resolution,"Kernel Hebbian Algorithm for Single-Frame +Super-Resolution +Kwang In Kim1, Matthias O. Franz1, and Bernhard Sch¨olkopf1 +Max Planck Institute f¨ur biologische Kybernetik +Spemannstr. 38, D-72076 T¨ubingen, Germany +{kimki, mof, +http://www.kyb.tuebingen.mpg.de/"
+6a16b91b2db0a3164f62bfd956530a4206b23fea,A Method for Real-Time Eye Blink Detection and Its Application,"A Method for Real-Time Eye Blink Detection and Its Application +Chinnawat Devahasdin Na Ayudhya +Mahidol Wittayanusorn School +Puttamonton, Nakornpatom 73170, Thailand"
+6a806978ca5cd593d0ccd8b3711b6ef2a163d810,Facial Feature Tracking for Emotional Dynamic Analysis,"Facial feature tracking for Emotional Dynamic +Analysis +Thibaud Senechal1, Vincent Rapp1, and Lionel Prevost2 +ISIR, CNRS UMR 7222 +Univ. Pierre et Marie Curie, Paris +{rapp, +LAMIA, EA 4540 +Univ. of Fr. West Indies & Guyana"
+6a8a3c604591e7dd4346611c14dbef0c8ce9ba54,An Affect-Responsive Interactive Photo Frame,"ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS. +An Affect-Responsive Interactive Photo Frame +Hamdi Dibeklio˘glu, Ilkka Kosunen, Marcos Ortega Hortas, Albert Ali Salah, Petr Zuz´anek"
+6a52e6fce541126ff429f3c6d573bc774f5b8d89,Role of Facial Emotion in Social Correlation,"Role of Facial Emotion in Social Correlation +Pankaj Mishra, Rafik Hadfi, and Takayuki Ito +Department of Computer Science and Engineering +Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan +{pankaj.mishra,"
+6aefe7460e1540438ffa63f7757c4750c844764d,Non-rigid Segmentation Using Sparse Low Dimensional Manifolds and Deep Belief Networks,"Non-rigid Segmentation using Sparse Low Dimensional Manifolds and +Deep Belief Networks ∗ +Jacinto C. Nascimento +Instituto de Sistemas e Rob´otica +Instituto Superior T´ecnico, Portugal"
+6a7e464464f70afea78552c8386f4d2763ea1d9c,Facial Landmark Localization – A Literature Survey,"Review Article +International Journal of Current Engineering and Technology +E-ISSN 2277 – 4106, P-ISSN 2347 - 5161 +©2014 INPRESSCO +, All Rights Reserved +Available at http://inpressco.com/category/ijcet +Facial Landmark Localization – A Literature Survey +Dhananjay RathodȦ*, Vinay A, Shylaja SSȦ and S NatarajanȦ +ȦDepartment of Information Science and Engineering, PES Institute of Technology, Bangalore, Karnataka, India +Accepted 25 May 2014, Available online 01 June2014, Vol.4, No.3 (June 2014)"
+32925200665a1bbb4fc8131cd192cb34c2d7d9e3,An Active Appearance Model with a Derivative-Free Optimization,"MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN +An Active Appearance Model with a Derivative-Free +Optimization +Jixia ZHANG‡, Franck DAVOINE†, Chunhong PAN‡ +CNRS†, Institute of Automation of the Chinese Academy of Sciences‡ +95, Zhongguancun Dong Lu, PO Box 2728 − Beijing 100190 − PR China +LIAMA Sino-French IT Lab."
+322c063e97cd26f75191ae908f09a41c534eba90,Improving Image Classification Using Semantic Attributes,"Noname manuscript No. +(will be inserted by the editor) +Improving Image Classification using Semantic Attributes +Yu Su · Fr´ed´eric Jurie +Received: date / Accepted: date"
+325b048ecd5b4d14dce32f92bff093cd744aa7f8,Multi-Image Graph Cut Clothing Segmentation for Recognizing People,"#2670 +CVPR 2008 Submission #2670. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#2670 +Multi-Image Graph Cut Clothing Segmentation for Recognizing People +Anonymous CVPR submission +Paper ID 2670"
+32f7e1d7fa62b48bedc3fcfc9d18fccc4074d347,Hierarchical Sparse and Collaborative Low-Rank representation for emotion recognition,"HIERARCHICAL SPARSE AND COLLABORATIVE LOW-RANK REPRESENTATION FOR +EMOTION RECOGNITION +Xiang Xiang, Minh Dao, Gregory D. Hager, Trac D. Tran +Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA +{xxiang, minh.dao, ghager1,"
+321bd4d5d80abb1bae675a48583f872af3919172,Entropy-weighted feature-fusion method for head-pose estimation,"Wang et al. EURASIP Journal on Image and Video Processing (2016) 2016:44 +DOI 10.1186/s13640-016-0152-3 +EURASIP Journal on Image +nd Video Processing +R EV I E W +Entropy-weighted feature-fusion method +for head-pose estimation +Xiao-Meng Wang*, Kang Liu and Xu Qian +Open Access"
+32575ffa69d85bbc6aef5b21d73e809b37bf376d,Measuring Biometric Sample Quality in Terms of Biometric Information,"-)5741/ *1-641+ 5)2- 37)16; 1 6-45 . *1-641+ 1.4)61 +;K=H= +5?D B 1BH=JE 6A?DCO -CEAAHEC +7ELAHIEJO B JJ=M= +J=HE +)*564)+6 +6DEI F=FAH = AM =FFH=?D J A= +IKHA L=HE=JEI E >EAJHE? I=FA GK=EJO 9A >ACE MEJD +JDA EJKEJE JD=J J = >EAJHE? I=FA ME HA +JDA =KJ B EBH=JE =L=E=>A 1 H +J A=IKHA JDA =KJ B EBH=JE MA +>EAJHE? EBH=JE =I JDA E K?AHJ=EJO +=>KJ JDA B = FAHI J = IAJ B >EAJHE? A= +IKHAAJI 9A JDA IDM JD=J JDA >EAJHE? EBH=JE BH += FAHI =O >A >O JDA HA=JELA AJHFO D(p(cid:107)q) +>AJMAA JDA FFK=JE BA=JKHA q JDA FAHII +BA=JKHA p 6DA >EAJHE? EBH=JE BH = IOI +JA EI JDA A= D(p(cid:107)q) BH = FAHII E JDA FFK=JE 1 +J FH=?JE?=O A=IKHA D(p(cid:107)q) MEJD I= +FAI MA = =CHEJD MDE?D HACK=HEAI = /=KIIE="
+32728e1eb1da13686b69cc0bd7cce55a5c963cdd,Automatic Facial Emotion Recognition Method Based on Eye Region Changes,"Automatic Facial Emotion Recognition Method Based on Eye +Region Changes +Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran +Mina Navraan +Nasrollah Moghadam Charkari* +Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran +Muharram Mansoorizadeh +Faculty of Electrical and Computer Engineering, Bu-Ali Sina University, Hamadan, Iran +Received: 19/Apr/2015 Revised: 19/Mar/2016 Accepted: 19/Apr/2016"
+324b9369a1457213ec7a5a12fe77c0ee9aef1ad4,Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network,"Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network +Jinwei Gu Xiaodong Yang Shalini De Mello Jan Kautz +NVIDIA"
+32df63d395b5462a8a4a3c3574ae7916b0cd4d1d,Facial expression recognition using ensemble of classifiers,"978-1-4577-0539-7/11/$26.00 ©2011 IEEE +ICASSP 2011"
+35308a3fd49d4f33bdbd35fefee39e39fe6b30b7,Efficient and effective human action recognition in video through motion boundary description with a compact set of trajectories,"biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for allUGent research publications. Ghent University has implemented a mandate stipulating that allacademic publications of UGent researchers should be deposited and archived in this repository.Except for items where current copyright restrictions apply, these papers are available in OpenAccess. This item is the archived peer-reviewed author-version of: Efficient and effective human action recognition in video through motion boundary description witha compact set of trajectories Jeong-Jik Seo, Jisoo Son, Hyung-Il Kim, Wesley De Neve, and Yong Man Ro In: 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition,1, 1-6, 2015. To refer to or to cite this work, please use the citation to the published version: Seo, J., Son, J., Kim, H., De Neve, W., and Ro, Y. M. (2015). Efficient and effective human actionrecognition in video through motion boundary description with a compact set of trajectories. 11thIEEE International Conference and Workshops on Automatic Face and Gesture Recognition 1 1-6.http://dx.doi.org/10.1109/FG.2015.7163123"
+352d61eb66b053ae5689bd194840fd5d33f0e9c0,Analysis Dictionary Learning based Classification: Structure for Robustness,"Analysis Dictionary Learning based +Classification: Structure for Robustness +Wen Tang, Ashkan Panahi, Hamid Krim, and Liyi Dai"
+3538d2b5f7ab393387ce138611ffa325b6400774,A DSP-based approach for the implementation of face recognition algorithms,"A DSP-BASED APPROACH FOR THE IMPLEMENTATION OF FACE RECOGNITION +ALGORITHMS +A. U. Batur +B. E. Flinchbaugh +M. H. Hayes IIl +Center for Signal and Image Proc. +Georgia Inst. Of Technology +Atlanta, GA +Imaging and Audio Lab. +Texas Instruments +Dallas, TX +Center for Signal and Image Proc. +Georgia Inst. Of Technology +Atlanta, CA"
+3504907a2e3c81d78e9dfe71c93ac145b1318f9c,Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks,"Noname manuscript No. +(will be inserted by the editor) +Unconstrained Still/Video-Based Face Verification with Deep +Convolutional Neural Networks +Jun-Cheng Chen∗ +Kumar∗ · Ching-Hui Chen∗ · Vishal M. Patel · Carlos D. Castillo · +Rama Chellappa +· Rajeev Ranjan∗ · Swami Sankaranarayanan∗ · Amit +Received: date / Accepted: date"
+35b1c1f2851e9ac4381ef41b4d980f398f1aad68,Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning,"Geometry Guided Convolutional Neural Networks for +Self-Supervised Video Representation Learning +Chuang Gan1, Boqing Gong2, Kun Liu3, Hao Su 4, Leonidas J. Guibas 5 +MIT-IBM Watson AI Lab , 2 Tencent AI Lab, 3 BUPT, 4 UCSD, 5 Stanford University"
+351c02d4775ae95e04ab1e5dd0c758d2d80c3ddd,ActionSnapping: Motion-Based Video Synchronization,"ActionSnapping: Motion-based Video +Synchronization +Jean-Charles Bazin and Alexander Sorkine-Hornung +Disney Research"
+35e4b6c20756cd6388a3c0012b58acee14ffa604,Gender Classification in Large Databases,"Gender Classification in Large Databases +E. Ram´on-Balmaseda, J. Lorenzo-Navarro, and M. Castrill´on-Santana (cid:63) +Universidad de Las Palmas de Gran Canaria +SIANI +Spain"
+35f084ddee49072fdb6e0e2e6344ce50c02457ef,A bilinear illumination model for robust face recognition,"A Bilinear Illumination Model +for Robust Face Recognition +The Harvard community has made this +rticle openly available. Please share how +this access benefits you. Your story matters +Citation +Lee, Jinho, Baback Moghaddam, Hanspeter Pfister, and Raghu +Machiraju. 2005. A bilinear illumination model for robust face +recognition. Proceedings of the Tenth IEEE International Conference +on Computer Vision: October 17-21, 2005, Beijing, China. 1177-1184. +Los Almamitos, C.A.: IEEE Computer Society. +Published Version +doi:10.1109/ICCV.2005.5 +Citable link +http://nrs.harvard.edu/urn-3:HUL.InstRepos:4238979 +Terms of Use +This article was downloaded from Harvard University’s DASH +repository, and is made available under the terms and conditions +pplicable to Other Posted Material, as set forth at http:// +nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-"
+353a89c277cca3e3e4e8c6a199ae3442cdad59b5,Learning from Multiple Views of Data,
+35e6f6e5f4f780508e5f58e87f9efe2b07d8a864,Summarization of User-Generated Sports Video by Using Deep Action Recognition Features,"This paper is a preprint (IEEE accepted status). IEEE copyright notice. 2018 IEEE. +Personal use of this material is permitted. Permission from IEEE must be obtained for all +other uses, in any current or future media, including reprinting/republishing this material for +dvertising or promotional purposes, creating new collective works, for resale or redistribu- +tion to servers or lists, or reuse of any copyrighted. +A. Tejero-de-Pablos, Y. Nakashima, T. Sato, N. Yokoya, M. Linna and E. Rahtu, ”Sum- +marization of User-Generated Sports Video by Using Deep Action Recognition Features,” in +doi: 10.1109/TMM.2018.2794265 +keywords: Cameras; Feature extraction; Games; Hidden Markov models; Semantics; +Three-dimensional displays; 3D convolutional neural networks; Sports video summarization; +ction recognition; deep learning; long short-term memory; user-generated video, +URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8259321&isnumber=4456689"
+352110778d2cc2e7110f0bf773398812fd905eb1,Matrix Completion for Weakly-Supervised Multi-Label Image Classification,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2014 +Matrix Completion for Weakly-supervised +Multi-label Image Classification +Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino"
+6964af90cf8ac336a2a55800d9c510eccc7ba8e1,Temporal Relational Reasoning in Videos,"Temporal Relational Reasoning in Videos +Bolei Zhou, Alex Andonian, Aude Oliva, Antonio Torralba +MIT CSAIL"
+69ff40fd5ce7c3e6db95a2b63d763edd8db3a102,Human Age Estimation via Geometric and Textural Features,"HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL +FEATURES +Merve KILINC1 and Yusuf Sinan AKGUL2 +TUBITAK BILGEM UEKAE, Anibal Street, 41470, Gebze, Kocaeli, Turkey +GIT Vision Lab, http://vision.gyte.edu.tr/, Department of Computer Engineering, Gebze Institute of Technology, 41400, +Kocaeli, Turkey +Keywords: +Age estimation:age classification:geometric features:LBP:Gabor:LGBP:cross ratio:FGNET:MORPH"
+69d29012d17cdf0a2e59546ccbbe46fa49afcd68,Subspace clustering of dimensionality-reduced data,"Subspace clustering of dimensionality-reduced data +Reinhard Heckel, Michael Tschannen, and Helmut B¨olcskei +ETH Zurich, Switzerland +Email:"
+69a55c30c085ad1b72dd2789b3f699b2f4d3169f,Automatic Happiness Strength Analysis of a Group of People using Facial Expressions,"International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016 +Automatic Happiness Strength Analysis of a +Group of People using Facial Expressions +Sagiri Prasanthi#1, Maddali M.V.M. Kumar*2, +#1PG Student, #2Assistant Professor +#1, #2Department of MCA, St. Ann’s College of Engineering & Technology, Andhra Pradesh, India +is a collective concern"
+69526cdf6abbfc4bcd39616acde544568326d856,Face Verification Using Template Matching,"[17] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recogni- +tion,” Pattern Recognit., vol. 33, no. 11, pp. 1771–1782, Nov. 2000. +[18] A. Nefian, “A hidden Markov model-based approach for face detection +nd recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng. Elect. +Eng., Georgia Inst. Technol., Atlanta, 1999. +[19] P. J. Phillips et al., “Overview of the face recognition grand challenge,” +presented at the IEEE CVPR, San Diego, CA, Jun. 2005. +[20] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface +recognition using spherical correlation-principal direction for curved +object recognition,” in Proc. Int. Conf. Automatic Face and Gesture +Recognition, 1998, pp. 372–377. +[21] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Sci., +pp. 71–86, 1991. +[22] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998. +[23] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips, “Face recogni- +tion: A literature survey,” ACM Comput. Surveys, vol. 35, no. 44, pp. +99–458, 2003. +[24] W. Zhao, R. Chellappa, and P. J. Phillips, “Subspace linear discrimi- +nant analysis for face recognition,” UMD TR4009, 1999. +Face Verification Using Template Matching"
+690d669115ad6fabd53e0562de95e35f1078dfbb,"Progressive versus Random Projections for Compressive Capture of Images, Lightfields and Higher Dimensional Visual Signals","Progressive versus Random Projections for Compressive Capture of Images, +Lightfields and Higher Dimensional Visual Signals +Rohit Pandharkar +MIT Media Lab +75 Amherst St, Cambridge, MA +Ashok Veeraraghavan +01 Broadway, Cambridge MA +Ramesh Raskar +MIT Media Lab +75 Amherst St, Cambridge, MA"
+69063f7e0a60ad6ce16a877bc8f11b59e5f7348e,Class-Specific Image Deblurring,"Class-Specific Image Deblurring +Saeed Anwar1, Cong Phuoc Huynh1 +, Fatih Porikli1 +The Australian National University∗ Canberra ACT 2601, Australia +NICTA, Locked Bag 8001, Canberra ACT 2601, Australia"
+3cb2841302af1fb9656f144abc79d4f3d0b27380,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,"See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319928941 +When 3D-Aided 2D Face Recognition Meets Deep +Learning: An extended UR2D for Pose-Invariant +Face Recognition +Article · September 2017 +CITATIONS +authors: +READS +Xiang Xu +University of Houston +Pengfei Dou +University of Houston +8 PUBLICATIONS 10 CITATIONS +9 PUBLICATIONS 29 CITATIONS +SEE PROFILE +SEE PROFILE +Ha Le +University of Houston +7 PUBLICATIONS 2 CITATIONS +Ioannis A Kakadiaris"
+3cfbe1f100619a932ba7e2f068cd4c41505c9f58,A Realistic Simulation Tool for Testing Face Recognition Systems under Real-World Conditions,"A Realistic Simulation Tool for Testing Face Recognition +Systems under Real-World Conditions∗ +M. Correa, J. Ruiz-del-Solar, S. Parra-Tsunekawa, R. Verschae +Department of Electrical Engineering, Universidad de Chile +Advanced Mining Technology Center, Universidad de Chile"
+3cd7b15f5647e650db66fbe2ce1852e00c05b2e4,"ACTIVE, an Extensible Cataloging Platform for Automatic Indexing of Audiovisual Content",
+3c374cb8e730b64dacb9fbf6eb67f5987c7de3c8,Measuring Gaze Orientation for Human-Robot Interaction,"Measuring Gaze Orientation for Human-Robot +Interaction +R. Brochard∗, B. Burger∗, A. Herbulot∗†, F. Lerasle∗† +CNRS; LAAS; 7 avenue du Colonel Roche, 31077 Toulouse Cedex, France +Universit´e de Toulouse; UPS; LAAS-CNRS : F-31077 Toulouse, France +Introduction +In the context of Human-Robot interaction estimating gaze orientation brings +useful information about human focus of attention. This is a contextual infor- +mation : when you point something you usually look at it. Estimating gaze +orientation requires head pose estimation. There are several techniques to esti- +mate head pose from images, they are mainly based on training [3, 4] or on local +face features tracking [6]. The approach described here is based on local face +features tracking in image space using online learning, it is a mixed approach +since we track face features using some learning at feature level. It uses SURF +features [2] to guide detection and tracking. Such key features can be matched +etween images, used for object detection or object tracking [10]. Several ap- +proaches work on fixed size images like training techniques which mainly work +on low resolution images because of computation costs whereas approaches based +on local features tracking work on high resolution images. Tracking face features +such as eyes, nose and mouth is a common problem in many applications such as"
+3c0bbfe664fb083644301c67c04a7f1331d9515f,The Role of Color and Contrast in Facial Age Estimation,"The Role of Color and Contrast in Facial Age Estimation +Paper ID: 7 +No Institute Given"
+3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics,"A Hybrid Deep Learning Architecture for +Privacy-Preserving Mobile Analytics +Seyed Ali Ossia(cid:63), Ali Shahin Shamsabadi(cid:63), Ali Taheri(cid:63), Hamid R. Rabiee(cid:63), +Nic Lane‡, Hamed Haddadi† +(cid:63)Sharif University of Technology, ‡University College London, †Queen Mary University of London"
+3cb0ef5aabc7eb4dd8d32a129cb12b3081ef264f,Absolute Head Pose Estimation From Overhead Wide-Angle Cameras,"Absolute Head Pose Estimation From Overhead Wide-Angle Cameras +Ying-Li Tian, Lisa Brown, Jonathan Connell, +Sharat Pankanti, Arun Hampapur, Andrew Senior, Ruud Bolle +IBM T.J. Watson Research Center +9 Skyline Drive, Hawthorne, NY 10532 USA +{ yltian,lisabr,jconnell,sharat,arunh,aws,bolle"
+3c56acaa819f4e2263638b67cea1ec37a226691d,Body Joint Guided 3-D Deep Convolutional Descriptors for Action Recognition,"Body Joint guided 3D Deep Convolutional +Descriptors for Action Recognition +Congqi Cao, Yifan Zhang, Member, IEEE, Chunjie Zhang, Member, IEEE, and Hanqing Lu, Senior Member, IEEE"
+3c8da376576938160cbed956ece838682fa50e9f,Aiding face recognition with social context association rule based re-ranking,"Chapter 4 +Aiding Face Recognition with +Social Context Association Rule +ased Re-Ranking +Humans are very efficient at recognizing familiar face images even in challenging condi- +tions. One reason for such capabilities is the ability to understand social context between +individuals. Sometimes the identity of the person in a photo can be inferred based on the +identity of other persons in the same photo, when some social context between them is +known. This chapter presents an algorithm to utilize the co-occurrence of individuals as +the social context to improve face recognition. Association rule mining is utilized to infer +multi-level social context among subjects from a large repository of social transactions. +The results are demonstrated on the G-album and on the SN-collection pertaining to 4675 +identities prepared by the authors from a social networking website. The results show that +ssociation rules extracted from social context can be used to augment face recognition and +improve the identification performance. +Introduction +Face recognition capabilities of humans have inspired several researchers to understand +the science behind it and use it in developing automated algorithms. Recently, it is also +rgued that encoding social context among individuals can be leveraged for improved +utomatic face recognition [175]. As shown in Figure 4.1, often times a person’s identity"
+56e4dead93a63490e6c8402a3c7adc493c230da5,Face Recognition Techniques: A Survey,"World Journal of Computer Application and Technology 1(2): 41-50, 2013 +DOI: 10.13189/wjcat.2013.010204 +http://www.hrpub.org +Face Recognition Techniques: A Survey +V.Vijayakumari +Department of Electronics and Communication, Sri krishna College of Technology, Coimbatore, India +*Corresponding Author: +Copyright © 2013 Horizon Research Publishing All rights reserved."
+56e885b9094391f7d55023a71a09822b38b26447,Face Retrieval using Frequency Decoded Local Descriptor,"FREQUENCY DECODED LOCAL BINARY PATTERN +Face Retrieval using Frequency Decoded Local +Descriptor +Shiv Ram Dubey, Member, IEEE"
+56a653fea5c2a7e45246613049fb16b1d204fc96,Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition,"Quaternion Collaborative and Sparse Representation +With Application to Color Face Recognition +Cuiming Zou, Kit Ian Kou, Member, IEEE, and Yulong Wang, Student Member, IEEE +representation-based"
+5666ed763698295e41564efda627767ee55cc943,Relatively-Paired Space Analysis: Learning a Latent Common Space From Relatively-Paired Observations,"Manuscript +Click here to download Manuscript: template.tex +Click here to view linked References +Noname manuscript No. +(will be inserted by the editor) +Relatively-Paired Space Analysis: Learning a Latent Common +Space from Relatively-Paired Observations +Zhanghui Kuang · Kwan-Yee K. Wong +Received: date / Accepted: date"
+5615d6045301ecbc5be35e46cab711f676aadf3a,Discriminatively Learned Hierarchical Rank Pooling Networks,"Discriminatively Learned Hierarchical Rank Pooling Networks +Basura Fernando · Stephen Gould +Received: date / Accepted: date"
+566038a3c2867894a08125efe41ef0a40824a090,Face recognition and gender classification in personal memories,"978-1-4244-2354-5/09/$25.00 ©2009 IEEE +ICASSP 2009"
+56dca23481de9119aa21f9044efd7db09f618704,Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices,"Riemannian Dictionary Learning and Sparse +Coding for Positive Definite Matrices +Anoop Cherian +Suvrit Sra"
+516a27d5dd06622f872f5ef334313350745eadc3,Fine-Grained Facial Expression Analysis Using Dimensional Emotion Model,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +Fine-Grained Facial Expression Analysis Us- +ing Dimensional Emotion Model +ǂFeng Zhou, ǂShu Kong, Charless C. Fowlkes, Tao Chen, *Baiying Lei, Member, IEEE"
+51c3050fb509ca685de3d9ac2e965f0de1fb21cc,Fantope Regularization in Metric Learning,"Fantope Regularization in Metric Learning +Marc T. Law +Nicolas Thome +Matthieu Cord +Sorbonne Universit´es, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France"
+51c7c5dfda47647aef2797ac3103cf0e108fdfb4,Cs 395t: Celebrity Look-alikes *,"CS 395T: Celebrity Look-Alikes ∗ +Adrian Quark"
+519f4eb5fe15a25a46f1a49e2632b12a3b18c94d,Non-Lambertian Reflectance Modeling and Shape Recovery of Faces Using Tensor Splines,"Non-Lambertian Reflectance Modeling and +Shape Recovery of Faces using Tensor Splines +Ritwik Kumar, Student Member, IEEE, Angelos Barmpoutis, Member, IEEE, +Arunava Banerjee, Member, IEEE, and Baba C. Vemuri, Fellow, IEEE"
+51cc78bc719d7ff2956b645e2fb61bab59843d2b,Face and Facial Expression Recognition with an Embedded System for Human-Robot Interaction,"Face and Facial Expression Recognition with an +Embedded System for Human-Robot Interaction +Yang-Bok Lee1, Seung-Bin Moon1, and Yong-Guk Kim 1* +School of Computer Engineering, Sejong University, Seoul, Korea"
+511b06c26b0628175c66ab70dd4c1a4c0c19aee9,Face Recognition using Laplace Beltrami Operator by Optimal Linear Approximations,"International Journal of Engineering Research and General ScienceVolume 2, Issue 5, August – September 2014 +ISSN 2091-2730 +Face Recognition using Laplace Beltrami Operator by Optimal Linear +Approximations +Tapasya Sinsinwar1, P.K.Dwivedi2 +Professor and Director Academics, Institute of Engineering and Technology, Alwar, Rajasthan Technical University, Kota(Raj.) +Research Scholar (M.Tech, IT), Institute of Engineering and Technology"
+5161e38e4ea716dcfb554ccb88901b3d97778f64,SSPP-DAN: Deep domain adaptation network for face recognition with single sample per person,"SSPP-DAN: DEEP DOMAIN ADAPTATION NETWORK FOR +FACE RECOGNITION WITH SINGLE SAMPLE PER PERSON +Sungeun Hong, Woobin Im, Jongbin Ryu, Hyun S. Yang +School of Computing, KAIST, Republic of Korea"
+5121f42de7cb9e41f93646e087df82b573b23311,Classifying Online Dating Profiles on Tinder using FaceNet Facial Embeddings,"CLASSIFYING ONLINE DATING PROFILES ON TINDER USING FACENET FACIAL +EMBEDDINGS +Charles F. Jekel and Raphael T. Haftka +Department of Mechanical & Aerospace Engineering - University of Florida - Gainesville, FL 32611"
+51d1a6e15936727e8dd487ac7b7fd39bd2baf5ee,"A Fast and Accurate System for Face Detection, Identification, and Verification","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +A Fast and Accurate System for Face Detection, +Identification, and Verification +Rajeev Ranjan, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri, +Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa"
+5157dde17a69f12c51186ffc20a0a6c6847f1a29,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning +Machine +Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE"
+3daafe6389d877fe15d8823cdf5ac15fd919676f,Human Action Localization with Sparse Spatial Supervision,"Human Action Localization +with Sparse Spatial Supervision +Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE"
+3daf1191d43e21a8302d98567630b0e2025913b0,Can Autism be Catered with Artificial Intelligence-Assisted Intervention Technology? A Literature Review,"Can Autism be Catered with Artificial Intelligence-Assisted Intervention +Technology? A Literature Review +Muhammad Shoaib Jaliawala∗, Rizwan Ahmed Khan∗† +Faculty of Information Technology, Barrett Hodgson University, Karachi, Pakistan +Universit´e Claude Bernard Lyon 1, France"
+3d36f941d8ec613bb25e80fb8f4c160c1a2848df,Out-of-Sample Generalizations for Supervised Manifold Learning for Classification,"Out-of-sample generalizations for supervised +manifold learning for classification +Elif Vural and Christine Guillemot"
+3d5a1be4c1595b4805a35414dfb55716e3bf80d8,Hidden Two-Stream Convolutional Networks for Action Recognition,"Hidden Two-Stream Convolutional Networks for +Action Recognition +Yi Zhu, Zhenzhong Lan, Shawn Newsam, Alexander G. Hauptmann"
+3d62b2f9cef997fc37099305dabff356d39ed477,Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition,"Joint Face Alignment and 3D Face +Reconstruction with Application to Face +Recognition +Feng Liu, Qijun Zhao, Member, IEEE, Xiaoming Liu, Member, IEEE and Dan Zeng"
+3dd4d719b2185f7c7f92cc97f3b5a65990fcd5dd,Ensemble of Hankel Matrices for Face Emotion Recognition,"Ensemble of Hankel Matrices for +Face Emotion Recognition +Liliana Lo Presti and Marco La Cascia +DICGIM, Universit´a degli Studi di Palermo, +V.le delle Scienze, Ed. 6, 90128 Palermo, Italy, +DRAFT +To appear in ICIAP 2015"
+3dcebd4a1d66313dcd043f71162d677761b07a0d,Local binary pattern domain local appearance face recognition,"Yerel Đkili Örüntü Ortamında Yerel Görünüme Dayalı Yüz Tanıma +Local Binary Pattern Domain Local Appearance Face Recognition +Hazım K. Ekenel1, Mika Fischer1, Erkin Tekeli2, Rainer Stiefelhagen1, Aytül Erçil2 +Institut für Theorestische Informatik, Universität Karlsruhe (TH), Karlsruhe, Germany +Faculty of Engineering and Natural Sciences, Sabancı University, Đstanbul, Turkey +Özetçe +Bu bildiride, ayrık kosinüs dönüşümü tabanlı yerel görünüme +dayalı yüz tanıma algoritması ile yüz imgelerinin yerel ikili +örüntüye (YĐÖ) dayalı betimlemesini birleştiren hızlı bir yüz +tanıma algoritması sunulmuştur. Bu tümleştirmedeki amaç, +yerel ikili örüntünün dayanıklı imge betimleme yeteneği ile +yrık kosinüs dönüşümünün derli-toplu veri betimleme +yeteneğinden yararlanmaktır. Önerilen yaklaşımda, yerel +görünümün modellenmesinden önce girdi yüz imgesi yerel +ikili örüntü ile betimlenmiştir. Elde edilen YĐÖ betimlemesi, +irbirleri ile örtüşmeyen bloklara ayrılmış ve her blok +üzerinde yerel özniteliklerin çıkartımı için ayrık kosinüs +dönüşümü uygulanmıştır. Çıkartımı yapılan yerel öznitelikler +daha sonra arka arkaya eklenerek global öznitelik vektörü +oluşturulmuştur. Önerilen algoritma, CMU PIE ve FRGC"
+3d42e17266475e5d34a32103d879b13de2366561,The Global Dimensionality of Face Space,"Proc.4thIEEEInt’lConf.AutomaticFace&GestureRecognition,Grenoble,France,pp264–270 +The Global Dimensionality of Face Space +(cid:3) +http://venezia.rockefeller.edu/ +The Rockefeller University +Penio S. Penev +Laboratory of Computational Neuroscience +Lawrence Sirovich +Laboratory for Applied Mathematics +Mount Sinai School of Medicine +(cid:13) IEEE2000 +230 York Avenue, New York, NY 10021 +One Gustave L. Levy Place, New York, NY 10029"
+3df7401906ae315e6aef3b4f13126de64b894a54,Robust learning of discriminative projection for multicategory classification on the Stiefel manifold,"Robust Learning of Discriminative Projection for Multicategory Classification on +the Stiefel Manifold +Duc-Son Pham and Svetha Venkatesh +Dept. of Computing, Curtin University of Technology +GPO Box U1987, Perth, WA 6845, Australia"
+3d1af6c531ebcb4321607bcef8d9dc6aa9f0dc5a,Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs,"Random Multispace Quantization as +n Analytic Mechanism for BioHashing +of Biometric and Random Identity Inputs +Andrew B.J. Teoh, Member, IEEE, Alwyn Goh, and David C.L. Ngo, Member, IEEE"
+3d94f81cf4c3a7307e1a976dc6cb7bf38068a381,Data-Dependent Label Distribution Learning for Age Estimation,"Data-Dependent Label Distribution Learning +for Age Estimation +Zhouzhou He, Xi Li, Zhongfei Zhang, Fei Wu, Xin Geng, Yaqing Zhang, Ming-Hsuan Yang, and Yueting Zhuang"
+5892f8367639e9c1e3cf27fdf6c09bb3247651ed,Estimating Missing Features to Improve Multimedia Information Retrieval,"Estimating Missing Features to Improve Multimedia Information Retrieval +Abraham Bagherjeiran +Nicole S. Love +Chandrika Kamath (cid:3)"
+587f81ae87b42c18c565694c694439c65557d6d5,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning +Hardie Cate +Fahim Dalvi +Zeshan Hussain"
+580054294ca761500ada71f7d5a78acb0e622f19,A Subspace Model-Based Approach to Face Relighting Under Unknown Lighting and Poses,"A Subspace Model-Based Approach to Face +Relighting Under Unknown Lighting and Poses +Hyunjung Shim, Student Member, IEEE, Jiebo Luo, Senior Member, IEEE, and Tsuhan Chen, Fellow, IEEE"
+58081cb20d397ce80f638d38ed80b3384af76869,Embedded Real-Time Fall Detection Using Deep Learning For Elderly Care,"Embedded Real-Time Fall Detection Using Deep +Learning For Elderly Care +Hyunwoo Lee∗ +Jooyoung Kim +Dojun Yang +Joon-Ho Kim +Samsung Research, Samsung Electronics +{hyun0772.lee, joody.kim, dojun.yang,"
+581e920ddb6ecfc2a313a3aa6fed3d933b917ab0,Automatic Mapping of Remote Crowd Gaze to Stimuli in the Classroom,"Automatic Mapping of Remote Crowd Gaze to +Stimuli in the Classroom +Thiago Santini1, Thomas K¨ubler1, Lucas Draghetti1, Peter Gerjets2, Wolfgang +Wagner3, Ulrich Trautwein3, and Enkelejda Kasneci1 +University of T¨ubingen, T¨ubingen, Germany +Leibniz-Institut f¨ur Wissensmedien, T¨ubingen, Germany +Hector Research Institute of Education Sciences and Psychology, T¨ubingen, +Germany"
+58fa85ed57e661df93ca4cdb27d210afe5d2cdcd,Facial expression recognition by re-ranking with global and local generic features,"Cancún Center, Cancún, México, December 4-8, 2016 +978-1-5090-4847-2/16/$31.00 ©2016 IEEE"
+5860cf0f24f2ec3f8cbc39292976eed52ba2eafd,COMPUTATION EvaBio: A TOOL FOR PERFORMANCE EVALUATION IN BIOMETRICS,"International Journal of Automated Identification Technology, 3(2), July-December 2011, pp. 51-60 +COMPUTATION EvaBio: A TOOL FOR PERFORMANCE +EVALUATION IN BIOMETRICS +Julien Mahier, Baptiste Hemery, Mohamad El-Abed*, Mohamed T. El-Allam, Mohamed Y. +Bouhaddaoui and Christophe Rosenberger +GREYC Laboratory, ENSICAEN - University of Caen Basse Normandie - CNRS, +6 Boulevard Maréchal Juin, 14000 Caen Cedex - France"
+58bf72750a8f5100e0c01e55fd1b959b31e7dbce,PyramidBox: A Context-assisted Single Shot Face Detector,"PyramidBox: A Context-assisted Single Shot +Face Detector. +Xu Tang∗, Daniel K. Du∗, Zeqiang He, and Jingtuo Liu† +Baidu Inc."
+58542eeef9317ffab9b155579256d11efb4610f2,"Face Recognition Revisited On Pose , Alignment , Color , Illumination And Expression-Pyten","International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +Face Recognition Revisited on Pose, Alignment, +Color, Illumination and Expression-PyTen +Mugdha Tripathi +Computer Science, BIT Noida, India"
+58823377757e7dc92f3b70a973be697651089756,Automatic facial expression analysis,"Technical Report +UCAM-CL-TR-861 +ISSN 1476-2986 +Number 861 +Computer Laboratory +Automatic facial expression analysis +Tadas Baltrusaitis +October 2014 +5 JJ Thomson Avenue +Cambridge CB3 0FD +United Kingdom +phone +44 1223 763500 +http://www.cl.cam.ac.uk/"
+5865e824e3d8560e07840dd5f75cfe9bf68f9d96,Embodied conversational agents for multimodal automated social skills training in people with autism spectrum disorders,"RESEARCH ARTICLE +Embodied conversational agents for +multimodal automated social skills training in +people with autism spectrum disorders +Hiroki Tanaka1*, Hideki Negoro2, Hidemi Iwasaka3, Satoshi Nakamura1 +Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara, 630- +0101, Japan, 2 Center for Special Needs Education, Nara University of Education, Nara-shi, Nara, 630-8538, +Japan, 3 Developmental Center for Child and Adult, Shigisan Hospital, Ikoma-gun, Nara, 636-0815, Japan"
+58bb77dff5f6ee0fb5ab7f5079a5e788276184cc,Facial expression recognition with PCA and LBP features extracting from active facial patches,"Facial Expression Recognition with PCA and LBP +Features Extracting from Active Facial Patches +Yanpeng Liua, Yuwen Caoa, Yibin Lia, Ming Liu, Rui Songa +Yafang Wang, Zhigang Xu , Xin Maa†"
+58db008b204d0c3c6744f280e8367b4057173259,Facial Expression Recognition,"International Journal of Current Engineering and Technology +ISSN 2277 - 4106 +© 2012 INPRESSCO. All Rights Reserved. +Available at http://inpressco.com/category/ijcet +Research Article +Facial Expression Recognition +Riti Kushwahaa and Neeta Naina* +Department of Computer Engineering Malaviya National Institute of Technology, Jaipur, Rajasthan, India +Accepted 3June 2012, Available online 8 June 2012"
+677585ccf8619ec2330b7f2d2b589a37146ffad7,A flexible model for training action localization with varying levels of supervision,"A flexible model for training action localization +with varying levels of supervision +Guilhem Chéron∗ 1 2 +Jean-Baptiste Alayrac∗ 1 +Ivan Laptev1 +Cordelia Schmid2"
+6789bddbabf234f31df992a3356b36a47451efc7,Unsupervised Generation of Free-Form and Parameterized Avatars.,"Unsupervised Generation of Free-Form and +Parameterized Avatars +Adam Polyak, Yaniv Taigman, and Lior Wolf, Member, IEEE"
+675b2caee111cb6aa7404b4d6aa371314bf0e647,AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions,"AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions +Chunhui Gu∗ +Yeqing Li∗ +Chen Sun∗ +David A. Ross∗ +Sudheendra Vijayanarasimhan∗ +Carl Vondrick∗ +George Toderici∗ +Caroline Pantofaru∗ +Susanna Ricco∗ +Rahul Sukthankar∗ +Cordelia Schmid† ∗ +Jitendra Malik‡ ∗"
+67484723e0c2cbeb936b2e863710385bdc7d5368,Anchor Cascade for Efficient Face Detection,"Anchor Cascade for Efficient Face Detection +Baosheng Yu and Dacheng Tao, Fellow, IEEE"
+670637d0303a863c1548d5b19f705860a23e285c,Face swapping: automatically replacing faces in photographs,"Face Swapping: Automatically Replacing Faces in Photographs +Dmitri Bitouk +Neeraj Kumar +Samreen Dhillon∗ +Columbia University† +Peter Belhumeur +Shree K. Nayar +Figure 1: We have developed a system that automatically replaces faces in an input image with ones selected from a large collection of +face images, obtained by applying face detection to publicly available photographs on the internet. In this example, the faces of (a) two +people are shown after (b) automatic replacement with the top three ranked candidates. Our system for face replacement can be used for face +de-identification, personalized face replacement, and creating an appealing group photograph from a set of “burst” mode images. Original +images in (a) used with permission from Retna Ltd. (top) and Getty Images Inc. (bottom). +Rendering, Computational Photography +Introduction +Advances in digital photography have made it possible to cap- +ture large collections of high-resolution images and share them +on the internet. While the size and availability of these col- +lections is leading to many exciting new applications, +lso creating new problems. One of the most +important of"
+6742c0a26315d7354ab6b1fa62a5fffaea06da14,What does 2D geometric information really tell us about 3D face shape?,"BAS AND SMITH: WHAT DOES 2D GEOMETRIC INFORMATION REALLY TELL US ABOUT 3D FACE SHAPE? +What does 2D geometric information +really tell us about 3D face shape? +Anil Bas and William A. P. Smith, Member, IEEE"
+67c703a864aab47eba80b94d1935e6d244e00bcb,Face Retrieval Based On Local Binary Pattern and Its Variants: A Comprehensive Study,"(IJACSA) International Journal of Advanced Computer Science and Applications +Vol. 7, No. 6, 2016 +Face Retrieval Based On Local Binary Pattern and Its +Variants: A Comprehensive Study +Department of Computer Vision and Robotics, University of Science, VNU-HCM, Viet Nam +Phan Khoi, Lam Huu Thien, Vo Hoai Viet +face searching,"
+672fae3da801b2a0d2bad65afdbbbf1b2320623e,Pose-Selective Max Pooling for Measuring Similarity,"Pose-Selective Max Pooling for Measuring Similarity +Xiang Xiang1 and Trac D. Tran2 +Dept. of Computer Science +Dept. of Electrical & Computer Engineering +Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA"
+67ba3524e135c1375c74fe53ebb03684754aae56,A compact pairwise trajectory representation for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+6769cfbd85329e4815bb1332b118b01119975a95,Tied factor analysis for face recognition across large pose changes,"Tied factor analysis for face recognition across +large pose changes"
+0be43cf4299ce2067a0435798ef4ca2fbd255901,Title A temporal latent topic model for facial expression recognition,"Title +A temporal latent topic model for facial expression recognition +Author(s) +Shang, L; Chan, KP +Citation +The 10th Asian Conference on Computer Vision (ACCV 2010), +Queenstown, New Zealand, 8-12 November 2010. In Lecture +Notes in Computer Science, 2010, v. 6495, p. 51-63 +Issued Date +http://hdl.handle.net/10722/142604 +Rights +Creative Commons: Attribution 3.0 Hong Kong License"
+0b2277a0609565c30a8ee3e7e193ce7f79ab48b0,Cost-Sensitive Semi-Supervised Discriminant Analysis for Face Recognition,"Cost-Sensitive Semi-Supervised Discriminant +Analysis for Face Recognition +Jiwen Lu, Member, IEEE, Xiuzhuang Zhou, Member, IEEE, Yap-Peng Tan, Senior Member, IEEE, +Yuanyuan Shang, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
+0b9ce839b3c77762fff947e60a0eb7ebbf261e84,Logarithmic Fourier Pca: a New Approach to Face Recognition,"Proceedings of the IASTED International Conference +Computer Vision (CV 2011) +June 1 - 3, 2011 Vancouver, BC, Canada +LOGARITHMIC FOURIER PCA: A NEW APPROACH TO FACE +RECOGNITION +Lakshmiprabha Nattamai Sekar, +Jhilik Bhattacharya, +omjyoti +Majumder +Surface Robotics Lab +Central Mechanical Engineering Research Institute +Mahatma Gandhi Avenue, +Durgapur - 713209, West Bengal, India. +email: 1 n prabha 2 3"
+0b6a5200c33434cbfa9bf24ba482f6e06bf5fff7,"The use of deep learning in image segmentation, classification and detection","The Use of Deep Learning in Image +Segmentation, Classification and Detection +Mihai-Sorin Badea, Iulian-Ionuț Felea, Laura Maria Florea, Constantin Vertan +The Image Processing and Analysis Lab (LAPI), Politehnica University of Bucharest, Romania"
+0b605b40d4fef23baa5d21ead11f522d7af1df06,Label-Embedding for Attribute-Based Classification,"Label-Embedding for Attribute-Based Classification +Zeynep Akataa,b, Florent Perronnina, Zaid Harchaouib and Cordelia Schmidb +Computer Vision Group∗, XRCE, France +LEAR†, INRIA, France"
+0b0eb562d7341231c3f82a65cf51943194add0bb,Line with Your Paper Identification Number ( Double - Click Here to Edit,"> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +Facial Image Analysis Based on Local Binary +Patterns: A Survey +Di Huang, Caifeng Shan, Mohsen Ardebilian, Liming Chen"
+0b3a146c474166bba71e645452b3a8276ac05998,Whos In the Picture,"Who’s in the Picture? +Tamara L. Berg, Alexander C. Berg, Jaety Edwards and D.A. Forsyth +Berkeley, CA 94720 +Computer Science Division +U.C. Berkeley"
+0b0958493e43ca9c131315bcfb9a171d52ecbb8a,A Unified Neural Based Model for Structured Output Problems,"A Unified Neural Based Model for Structured Output Problems +Soufiane Belharbi∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien Adam∗2 +LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +April 13, 2015"
+0bf3513d18ec37efb1d2c7934a837dabafe9d091,Robust Subspace Clustering via Thresholding Ridge Regression,"Robust Subspace Clustering via Thresholding Ridge Regression +Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632 +Xi Peng1, Zhang Yi2,∗, Huajin Tang1,∗ +College of Computer Science, Sichuan University, Chengdu 610065, P.R. China."
+0b20f75dbb0823766d8c7b04030670ef7147ccdd,Feature selection using nearest attributes,"Feature selection using nearest attributes +Alex Pappachen James, Member, IEEE, and Sima Dimitrijev, Senior Member, IEEE"
+0b5a82f8c0ee3640503ba24ef73e672d93aeebbf,On Learning 3D Face Morphable Model from In-the-wild Images,"On Learning 3D Face Morphable Model +from In-the-wild Images +Luan Tran, and Xiaoming Liu, Member, IEEE"
+0b174d4a67805b8796bfe86cd69a967d357ba9b6,A Survey on Face Detection and Recognition Approaches,"Research Journal of Recent Sciences _________________________________________________ ISSN 2277-2502 +Vol. 3(4), 56-62, April (2014) +Res.J.Recent Sci."
+0b87d91fbda61cdea79a4b4dcdcb6d579f063884,Research on Theory and Method for Facial Expression Recognition Sys- tem Based on Dynamic Image Sequence,"The Open Automation and Control Systems Journal, 2015, 7, 569-579 +Open Access +Research on Theory and Method for Facial Expression Recognition Sys- +tem Based on Dynamic Image Sequence +Send Orders for Reprints to +Yang Xinfeng1,* and Jiang Shan2 +School of Computer & Information Engineering, Nanyang Institute of Technology, Henan, Nanyang, 473000, P.R. +China +Henan University of Traditional Chinese Medicine, Henan, Zhengzhou, 450000, P.R. China"
+0b79356e58a0df1d0efcf428d0c7c4651afa140d,Bayesian Modeling of Facial Similarity,"Appears In: Advances in Neural Information Processing Systems , MIT Press, . +Bayesian Modeling of Facial Similarity +Baback Moghaddam +Mitsubishi Electric Research Laboratory + +Cambridge, MA +Tony Jebara and Alex Pentland +Massachusettes Institute of Technology + +Cambridge, MA +0b572a2b7052b15c8599dbb17d59ff4f02838ff7,Automatic Subspace Learning via Principal Coefficients Embedding,"Automatic Subspace Learning via Principal +Coefficients Embedding +Xi Peng, Jiwen Lu, Senior Member, IEEE, Zhang Yi, Fellow, IEEE and Rui Yan, Member, IEEE,"
+0b02bfa5f3a238716a83aebceb0e75d22c549975,Learning Probabilistic Models for Recognizing Faces under Pose Variations,"Learning Probabilistic Models for Recognizing Faces +under Pose Variations +M. Saquib Sarfraz and Olaf Hellwich +Computer vision and Remote Sensing, Berlin university of Technology +Sekr. FR-3-1, Franklinstr. 28/29, Berlin, Germany"
+0bce54bfbd8119c73eb431559fc6ffbba741e6aa,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018 +SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +RECURRENT NEURAL NETWORKS +V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ +Barcelona Supercomputing Center, ‡Google Inc, +§Universitat Polit`ecnica de Catalunya, ΓColumbia University +{victor.campos,"
+0b4c4ea4a133b9eab46b217e22bda4d9d13559e6,MORF: Multi-Objective Random Forests for face characteristic estimation,"MORF: Multi-Objective Random Forests for Face Characteristic Estimation +Dario Di Fina1 +MICC - University of Florence +Svebor Karaman1,3 +Andrew D. Bagdanov2 +{dario.difina, +CVC - Universitat Autonoma de Barcelona +Alberto Del Bimbo1 +DVMM Lab - Columbia University"
+0b8c92463f8f5087696681fb62dad003c308ebe2,On matching sketches with digital face images,"On Matching Sketches with Digital Face Images +Himanshu S. Bhatt, Samarth Bharadwaj, Richa Singh, and Mayank Vatsa +in local"
+0bc0f9178999e5c2f23a45325fa50300961e0226,Recognizing facial expressions from videos using Deep Belief Networks,"Recognizing facial expressions from videos using Deep +Belief Networks +CS 229 Project +Advisor: Prof. Andrew Ng +Adithya Rao Narendran Thiagarajan"
+9391618c09a51f72a1c30b2e890f4fac1f595ebd,Globally Tuned Cascade Pose Regression via Back Propagation with Application in 2D Face Pose Estimation and Heart Segmentation in 3D CT Images,"Globally Tuned Cascade Pose Regression via +Back Propagation with Application in 2D Face +Pose Estimation and Heart Segmentation in 3D +CT Images +Peng Sun +James K Min +Guanglei Xiong +Dalio Institute of Cardiovascular Imaging, Weill Cornell Medical College +April 1, 2015 +This work was submitted to ICML 2015 but got rejected. We put the initial +submission ”as is” in Page 2 - 11 and add updated contents at the tail. The +ode of this work is available at https://github.com/pengsun/bpcpr5."
+93675f86d03256f9a010033d3c4c842a732bf661,Localized Growth and Characterization of Silicon Nanowires,Universit´edesSciencesetTechnologiesdeLilleEcoleDoctoraleSciencesPourl’ing´enieurUniversit´eLilleNord-de-FranceTHESEPr´esent´ee`al’Universit´edesSciencesetTechnologiesdeLillePourobtenirletitredeDOCTEURDEL’UNIVERSIT´ESp´ecialit´e:MicroetNanotechnologieParTaoXULocalizedgrowthandcharacterizationofsiliconnanowiresSoutenuele25Septembre2009Compositiondujury:Pr´esident:TuamiLASRIRapporteurs:ThierryBARONHenriMARIETTEExaminateurs:EricBAKKERSXavierWALLARTDirecteurdeth`ese:BrunoGRANDIDIER
+936c7406de1dfdd22493785fc5d1e5614c6c2882,Detecting Visual Text,"012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 762–772, +Montr´eal, Canada, June 3-8, 2012. c(cid:13)2012 Association for Computational Linguistics"
+93721023dd6423ab06ff7a491d01bdfe83db7754,Robust Face Alignment Using Convolutional Neural Networks,"ROBUST FACE ALIGNMENT USING CONVOLUTIONAL NEURAL +NETWORKS +Stefan Duffner and Christophe Garcia +Orange Labs, 4, Rue du Clos Courtel, 35512 Cesson-S´evign´e, France +{stefan.duffner, +Keywords: +Face alignment, Face registration, Convolutional Neural Networks."
+93cbb3b3e40321c4990c36f89a63534b506b6daf,Learning from examples in the small sample case: face expression recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +Learning From Examples in the Small Sample Case: +Face Expression Recognition +Guodong Guo and Charles R. Dyer, Fellow, IEEE"
+94b9c0a6515913bad345f0940ee233cdf82fffe1,Face Recognition using Local Ternary Pattern for Low Resolution Image,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Impact Factor (2012): 3.358 +Face Recognition using Local Ternary Pattern for +Low Resolution Image +Vikas1, Amanpreet Kaur2 +Research Scholar, CGC Group of Colleges, Gharuan, Punjab, India +Assistant Professor, Department of Computer Science Engineering, Chandigarh University, Gharuan, Punjab, India"
+944faf7f14f1bead911aeec30cc80c861442b610,Action Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization +Vicky Kalogeiton1,2 +Philippe Weinzaepfel3 +Vittorio Ferrari2 +Cordelia Schmid1"
+9458c518a6e2d40fb1d6ca1066d6a0c73e1d6b73,A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database,"A Benchmark and Comparative Study of +Video-Based Face Recognition +on COX Face Database +Zhiwu Huang, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE, +Ruiping Wang, Member, IEEE, Haihong Zhang, Member, IEEE, +Shihong Lao, Member, IEEE, Alifu Kuerban, +nd Xilin Chen, Senior Member, IEEE"
+948af4b04b4a9ae4bff2777ffbcb29d5bfeeb494,Face Recognition From Single Sample Per Person by Learning of Generic Discriminant Vectors,"Available online at www.sciencedirect.com +Procedia Engineering 41 ( 2012 ) 465 – 472 +International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) +Face Recognition From Single Sample Per Person by Learning of +Generic Discriminant Vectors +Fadhlan Hafiza*, Amir A. Shafieb, Yasir Mohd Mustafahb +Faculty of Electrical Engineering, University of Technology MARA, Shah Alam, 40450 Selangor, Malaysia +Faculty of Engineering, International Islamic University, Jalan Gombak, 53100 Kuala Lumpur, Malaysia"
+9441253b638373a0027a5b4324b4ee5f0dffd670,A Novel Scheme for Generating Secure Face Templates Using BDA,"A Novel Scheme for Generating Secure Face +Templates Using BDA +Shraddha S. Shinde +Prof. Anagha P. Khedkar +P.G. Student, Department of Computer Engineering, +Associate Professor, Department of Computer +MCERC, +Nashik (M.S.), India +e-mail:"
+94a11b601af77f0ad46338afd0fa4ccbab909e82,"Title of dissertation : EFFICIENT SENSING , SUMMARIZATION AND CLASSIFICATION OF VIDEOS",
+0efdd82a4753a8309ff0a3c22106c570d8a84c20,Lda with Subgroup Pca Method for Facial Image Retrieval,"LDA WITH SUBGROUP PCA METHOD FOR FACIAL IMAGE RETRIEVAL +Wonjun Hwang, Tae-Kyun Kim, Seokcheol Kee +Human Computer Interaction Lab., Samsung Advanced Institute of Technology, Korea."
+0eac652139f7ab44ff1051584b59f2dc1757f53b,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,"Efficient Branching Cascaded Regression +for Face Alignment under Significant Head Rotation +Brandon M. Smith +Charles R. Dyer +University of Wisconsin–Madison"
+0e50fe28229fea45527000b876eb4068abd6ed8c,Angle Principal Component Analysis,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
+0eff410cd6a93d0e37048e236f62e209bc4383d1,Learning discriminative MspLBP features based on Ada-LDA for multi-class pattern classification,"Anchorage Convention District +May 3-8, 2010, Anchorage, Alaska, USA +978-1-4244-5040-4/10/$26.00 ©2010 IEEE"
+0ee737085af468f264f57f052ea9b9b1f58d7222,SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination,"SiGAN: Siamese Generative Adversarial Network +for Identity-Preserving Face Hallucination +Chih-Chung Hsu, Member, IEEE, Chia-Wen Lin, Fellow, IEEE, Weng-Tai Su, Student Member, IEEE, +nd Gene Cheung, Senior Member, IEEE,"
+0ee661a1b6bbfadb5a482ec643573de53a9adf5e,On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR +On the Use of Discriminative Cohort Score +Normalization for Unconstrained Face Recognition +Massimo Tistarelli, Senior Member, IEEE, Yunlian Sun, and Norman Poh, Member, IEEE"
+0e49a23fafa4b2e2ac097292acf00298458932b4,Unsupervised Detection of Outlier Images Using Multi-Order Image Transforms,"Theory and Applications of Mathematics & Computer Science 3 (1) (2013) 13–31 +Unsupervised Detection of Outlier Images Using Multi-Order +Image Transforms +Lior Shamira,∗ +Lawrence Technological University, 21000 W Ten Mile Rd., Southfield, MI 48075, United States."
+0e78af9bd0f9a0ce4ceb5f09f24bc4e4823bd698,Spontaneous Subtle Expression Recognition: Imbalanced Databases & Solutions,"Spontaneous Subtle Expression Recognition: +Imbalanced Databases & Solutions (cid:63) +Anh Cat Le Ngo1, Raphael Chung-Wei Phan1, John See2 +Faculty of Engineering, +Multimedia University (MMU), Cyberjaya, Malaysia +Faculty of Computing & Informatics, +Multimedia University (MMU), Cyberjaya, Malaysia"
+0e2ea7af369dbcaeb5e334b02dd9ba5271b10265,Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification,
+0e7c70321462694757511a1776f53d629a1b38f3,2012 Proceedings of the Performance Metrics for Intelligent Systems (PerMI'12) Workshop,"NIST Special Publication 1136 +012 Proceedings of the +Performance Metrics for Intelligent +Systems (PerMI ‘12) Workshop +Rajmohan Madhavan +Elena R. Messina +Brian A. Weiss +http://dx.doi.org/10.6028/NIST.SP.1136"
+600025c9a13ff09c6d8b606a286a79c823d89db8,A Review on Linear and Non-linear Dimensionality Reduction Techniques,"Machine Learning and Applications: An International Journal (MLAIJ) Vol.1, No.1, September 2014 +A REVIEW ON LINEAR AND NON-LINEAR +DIMENSIONALITY REDUCTION +TECHNIQUES +Arunasakthi. K, 2KamatchiPriya. L +Assistant Professor +Department of Computer Science and Engineering +Ultra College of Engineering and Technology for Women,India. +Assistant Professor +Department of Computer Science and Engineering +Vickram College of Engineering, Enathi, Tamil Nadu, India."
+60c24e44fce158c217d25c1bae9f880a8bd19fc3,Controllable Image-to-Video Translation: A Case Study on Facial Expression Generation,"Controllable Image-to-Video Translation: +A Case Study on Facial Expression Generation +Lijie Fan +MIT CSAIL +Wenbing Huang +Tencent AI Lab +Chuang Gan +MIT-Waston Lab +Junzhou Huang +Tencent AI Lab +Boqing Gong +Tencent AI Lab"
+60e2b9b2e0db3089237d0208f57b22a3aac932c1,Frankenstein: Learning Deep Face Representations Using Small Data,"Frankenstein: Learning Deep Face Representations +using Small Data +Guosheng Hu, Member, IEEE, Xiaojiang Peng, Yongxin Yang, Timothy M. Hospedales, and Jakob Verbeek"
+60ce4a9602c27ad17a1366165033fe5e0cf68078,Combination of Face Regions in Forensic Scenarios.,"TECHNICAL NOTE +DIGITAL & MULTIMEDIA SCIENCES +J Forensic Sci, 2015 +doi: 10.1111/1556-4029.12800 +Available online at: onlinelibrary.wiley.com +Pedro Tome,1 Ph.D.; Julian Fierrez,1 Ph.D.; Ruben Vera-Rodriguez,1 Ph.D.; and Javier Ortega-Garcia,1 +Ph.D. +Combination of Face Regions in Forensic +Scenarios*"
+60efdb2e204b2be6701a8e168983fa666feac1be,Transferring Deep Object and Scene Representations for Event Recognition in Still Images,"Int J Comput Vis +DOI 10.1007/s11263-017-1043-5 +Transferring Deep Object and Scene Representations for Event +Recognition in Still Images +Limin Wang1 +· Zhe Wang2 · Yu Qiao3 · Luc Van Gool1 +Received: 31 March 2016 / Accepted: 1 September 2017 +© Springer Science+Business Media, LLC 2017"
+60824ee635777b4ee30fcc2485ef1e103b8e7af9,Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting,"Cascaded Collaborative Regression for Robust Facial +Landmark Detection Trained using a Mixture of Synthetic and +Real Images with Dynamic Weighting +Zhen-Hua Feng, Student Member, IEEE, Guosheng Hu, Student Member, IEEE, Josef Kittler, +Life Member, IEEE, William Christmas, and Xiao-Jun Wu"
+60a20d5023f2bcc241eb9e187b4ddece695c2b9b,Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning,"Invertible Nonlinear Dimensionality Reduction +via Joint Dictionary Learning +Xian Wei, Martin Kleinsteuber, and Hao Shen +Department of Electrical and Computer Engineering +Technische Universit¨at M¨unchen, Germany +{xian.wei, kleinsteuber,"
+60cdcf75e97e88638ec973f468598ae7f75c59b4,Face Annotation Using Transductive Kernel Fisher Discriminant,"Face Annotation Using Transductive +Kernel Fisher Discriminant +Jianke Zhu, Steven C.H. Hoi, and Michael R. Lyu"
+60b3601d70f5cdcfef9934b24bcb3cc4dde663e7,Binary Gradient Correlation Patterns for Robust Face Recognition,"SUBMITTED TO IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Binary Gradient Correlation Patterns +for Robust Face Recognition +Weilin Huang, Student Member, IEEE, and Hujun Yin, Senior Member, IEEE"
+60496b400e70acfbbf5f2f35b4a49de2a90701b5,Avoiding Boosting Overfitting by Removing Confusing Samples,"Avoiding Boosting Overfitting by Removing Confusing +Samples +Alexander Vezhnevets, Olga Barinova +Moscow State University, dept. of Computational Mathematics and Cybernetics, +Graphics and Media Lab +{avezhnevets, +19992 Moscow, Russia"
+60bffecd79193d05742e5ab8550a5f89accd8488,Proposal Classification using sparse representation and applications to skin lesion diagnosis,"PhD Thesis Proposal +Classification using sparse representation and applications to skin +lesion diagnosis +I. Description +In only a few decades, sparse representation modeling has undergone a tremendous expansion with +successful applications in many fields including signal and image processing, computer science, +machine learning, statistics. Mathematically, it can be considered as the problem of finding the +sparsest solution (the one with the fewest non-zeros entries) to an underdetermined linear system +of equations [1]. Based on the observation for natural images (or images rich in textures) that small +scale structures tend to repeat themselves in an image or in a group of similar images, a signal +source can be sparsely represented over some well-chosen redundant basis (a dictionary). In other +words, it can be approximately representable by a linear combination of a few elements (also called +toms or basis vectors) of a redundant/over-complete dictionary. +Such models have been proven successful in many tasks including denoising [2]-[5], compression +[6],[7], super-resolution [8],[9], classification and pattern recognition [10]-[16]. In the context of +lassification, the objective is to find the class to which a test signal belongs, given training data +from multiple classes. Sparse representation has become a powerful technique in classification and +pplications, including texture classification [16], face recognition [12], object detection [10], and +segmentation of medical images [17], [18]. In conventional Sparse Representation Classification +(SRC) schemes, learned dictionaries and sparse representation are involved to classify image pixels"
+601834a4150e9af028df90535ab61d812c45082c,A short review and primer on using video for psychophysiological observations in human-computer interaction applications,"A short review and primer on using video for +psychophysiological observations in +human-computer interaction applications +Teppo Valtonen1 +Quantified Employee unit, Finnish Institute of Occupational Health, +teppo. valtonen fi, +POBox 40, 00250, Helsinki, Finland"
+346dbc7484a1d930e7cc44276c29d134ad76dc3f,Artists portray human faces with the Fourier statistics of complex natural scenes.,"This article was downloaded by:[University of Toronto] +On: 21 November 2007 +Access Details: [subscription number 785020433] +Publisher: Informa Healthcare +Informa Ltd Registered in England and Wales Registered Number: 1072954 +Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK +Systems +Publication details, including instructions for authors and subscription information: +http://www.informaworld.com/smpp/title~content=t713663148 +Artists portray human faces with the Fourier statistics of +omplex natural scenes +Christoph Redies a; Jan Hänisch b; Marko Blickhan a; Joachim Denzler b +Institute of Anatomy I, School of Medicine, Friedrich Schiller University, Germany +Department of Computer Science, Friedrich Schiller University, D-07740 Jena, +Germany +First Published on: 28 August 2007 +To cite this Article: Redies, Christoph, Hänisch, Jan, Blickhan, Marko and Denzler, +Joachim (2007) 'Artists portray human faces with the Fourier statistics of complex +To link to this article: DOI: 10.1080/09548980701574496 +URL: http://dx.doi.org/10.1080/09548980701574496"
+34b3b14b4b7bfd149a0bd63749f416e1f2fc0c4c,The AXES submissions at TrecVid 2013,"The AXES submissions at TrecVid 2013 +Robin Aly1, Relja Arandjelovi´c3, Ken Chatfield3, Matthijs Douze6, Basura Fernando4, Zaid Harchaoui6, +Kevin McGuinness2, Noel E. O’Conner2, Dan Oneata6, Omkar M. Parkhi3, Danila Potapov6, Jérôme Revaud6, +Cordelia Schmid6, Jochen Schwenninger5, David Scott2, Tinne Tuytelaars4, Jakob Verbeek6, Heng Wang6, +Andrew Zisserman3 +University of Twente 2Dublin City University 3Oxford University +KU Leuven 5Fraunhofer Sankt Augustin 6INRIA Grenoble"
+34d484b47af705e303fc6987413dc0180f5f04a9,RI:Medium: Unsupervised and Weakly-Supervised Discovery of Facial Events,"RI:Medium: Unsupervised and Weakly-Supervised +Discovery of Facial Events +Introduction +The face is one of the most powerful channels of nonverbal communication. Facial expression has been a +focus of emotion research for over a hundred years [11]. It is central to several leading theories of emotion +[16, 28, 44] and has been the focus of at times heated debate about issues in emotion science [17, 23, 40]. +Facial expression figures prominently in research on almost every aspect of emotion, including psychophys- +iology [30], neural correlates [18], development [31], perception [4], addiction [24], social processes [26], +depression [39] and other emotion disorders [46], to name a few. In general, facial expression provides cues +bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology. +While people have believed for centuries that facial expressions can reveal what people are thinking and +feeling, it is relatively recently that the face has been studied scientifically for what it can tell us about +internal states, social behavior, and psychopathology. +Faces possess their own language. Beginning with Darwin and his contemporaries, extensive efforts +have been made to manually describe this language. A leading approach, the Facial Action Coding System +(FACS) [19] , segments the visible effects of facial muscle activation into ”action units.” Because of its +descriptive power, FACS has become the state of the art in manual measurement of facial expression and is +widely used in studies of spontaneous facial behavior. The FACS taxonomy was develop by manually ob- +serving graylevel variation between expressions in images and to a lesser extent by recording the electrical +ctivity of underlying facial muscles [9]. Because of its importance to human social dynamics, person per-"
+341002fac5ae6c193b78018a164d3c7295a495e4,von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification,"von Mises-Fisher Mixture Model-based Deep +learning: Application to Face Verification +Md. Abul Hasnat, Julien Bohn´e, Jonathan Milgram, St´ephane Gentric and Liming Chen"
+34ec83c8ff214128e7a4a4763059eebac59268a6,Action Anticipation By Predicting Future Dynamic Images,"Action Anticipation By Predicting Future +Dynamic Images +Cristian Rodriguez, Basura Fernando and Hongdong Li +Australian Centre for Robotic Vision, ANU, Canberra, Australia +{cristian.rodriguez, basura.fernando,"
+34c594abba9bb7e5813cfae830e2c4db78cf138c,Transport-based single frame super resolution of very low resolution face images,"Transport-Based Single Frame Super Resolution of Very Low Resolution Face Images +Soheil Kolouri1, Gustavo K. Rohde1,2 +Department of Biomedical Engineering, Carnegie Mellon University. 2Department of Electrical and Computer Engineering, Carnegie Mellon University. +We describe a single-frame super-resolution method for reconstructing high- +resolution (abbr. high-res) faces from very low-resolution (abbr. low-res) +face images (e.g. smaller than 16× 16 pixels) by learning a nonlinear La- +grangian model for the high-res face images. Our technique is based on the +mathematics of optimal transport, and hence we denote it as transport-based +SFSR (TB-SFSR). In the training phase, a nonlinear model of high-res fa- +ial images is constructed based on transport maps that morph a reference +image into the training face images. In the testing phase, the resolution of +degraded image is enhanced by finding the model parameters that best fit +the given low resolution data. +Generally speaking, most SFSR methods [2, 3, 4, 5] are based on a +linear model for the high-res images. Hence, ultimately, the majority of +SFSR models in the literature can be written as, Ih(x) = ∑i wiψi(x), where +Ih is a high-res image or a high-res image patch, w’s are weight coefficients, +nd ψ’s are high-res images (or image patches), which are learned from the +training images using a specific model. Here we propose a fundamentally +different approach toward modeling high-res images. In our approach the"
+341ed69a6e5d7a89ff897c72c1456f50cfb23c96,"DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network","DAGER: Deep Age, Gender and Emotion +Recognition Using Convolutional Neural +Networks +Afshin Dehghan +Enrique G. Ortiz +Guang Shu +Syed Zain Masood +{afshindehghan, egortiz, guangshu, +Computer Vision Lab, Sighthound Inc., Winter Park, FL"
+340d1a9852747b03061e5358a8d12055136599b0,Audio-Visual Recognition System Insusceptible to Illumination Variation over Internet Protocol _ICIE_28_,"Audio-Visual Recognition System Insusceptible +to Illumination Variation over Internet Protocol +Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang"
+34ccdec6c3f1edeeecae6a8f92e8bdb290ce40fd,A Virtual Assistant to Help Dysphagia Patients Eat Safely at Home,"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) +A Virtual Assistant to Help Dysphagia Patients Eat Safely at Home +Michael Freed, Brian Burns, Aaron Heller, Daniel Sanchez, *Sharon Beaumont-Bowman +SRI International, Menlo Park California / *Brooklyn College, Brooklyn New York +{first name, last"
+5a3da29970d0c3c75ef4cb372b336fc8b10381d7,CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images.,"CNN-based Real-time Dense Face Reconstruction +with Inverse-rendered Photo-realistic Face Images +Yudong Guo, Juyong Zhang†, Jianfei Cai, Boyi Jiang and Jianmin Zheng"
+5a93f9084e59cb9730a498ff602a8c8703e5d8a5,Face Recognition using Local Quantized Patterns,"HUSSAIN ET. AL: FACE RECOGNITION USING LOCAL QUANTIZED PATTERNS +Face Recognition using Local Quantized +Patterns +Sibt ul Hussain +Thibault Napoléon +Fréderic Jurie +GREYC — CNRS UMR 6072, +University of Caen Basse-Normandie, +Caen, France"
+5a34a9bb264a2594c02b5f46b038aa1ec3389072,Label-Embedding for Image Classification,"Label-Embedding for Image Classification +Zeynep Akata, Member, IEEE, Florent Perronnin, Member, IEEE, Zaid Harchaoui, Member, IEEE, +nd Cordelia Schmid, Fellow, IEEE"
+5a4c6246758c522f68e75491eb65eafda375b701,Contourlet structural similarity for facial expression recognition,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE +ICASSP 2010"
+5aad5e7390211267f3511ffa75c69febe3b84cc7,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Estimation +Without Using Eye Movement +Lex Fridman, Philipp Langhans, Joonbum Lee, Bryan Reimer +MIT AgeLab"
+5a86842ab586de9d62d5badb2ad8f4f01eada885,Facial Emotion Recognition and Classification Using Hybridization Method,"International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015 +ISSN 2091-2730 +Facial Emotion Recognition and Classification Using Hybridization +Method +Anchal Garg , Dr. Rohit Bajaj +Deptt. of CSE, Chandigarh Engg. College, Mohali, Punjab, India. +07696449500"
+5a4ec5c79f3699ba037a5f06d8ad309fb4ee682c,Automatic age and gender classification using supervised appearance model,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12/17/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +AutomaticageandgenderclassificationusingsupervisedappearancemodelAliMainaBukarHassanUgailDavidConnahAliMainaBukar,HassanUgail,DavidConnah,“Automaticageandgenderclassificationusingsupervisedappearancemodel,”J.Electron.Imaging25(6),061605(2016),doi:10.1117/1.JEI.25.6.061605."
+5aed0f26549c6e64c5199048c4fd5fdb3c5e69d6,Human Expression Recognition using Facial Features,"International Journal of Computer Applications® (IJCA) (0975 – 8887) +International Conference on Knowledge Collaboration in Engineering, ICKCE-2014 +Human Expression Recognition using Facial Features +G.Saranya +Post graduate student, Dept. of ECE +Parisutham Institute of Technology & Science +Thanjavur. +Affiliated to Anna university, Chennai +recognition can be used"
+5a7520380d9960ff3b4f5f0fe526a00f63791e99,The Indian Spontaneous Expression Database for Emotion Recognition,"The Indian Spontaneous Expression +Database for Emotion Recognition +S L Happy, Student Member, IEEE, Priyadarshi Patnaik, Aurobinda Routray, Member, IEEE, +nd Rajlakshmi Guha"
+5fff61302adc65d554d5db3722b8a604e62a8377,Additive Margin Softmax for Face Verification,"Additive Margin Softmax for Face Verification +Feng Wang +UESTC +Weiyang Liu +Georgia Tech +Haijun Liu +UESTC +Jian Cheng +UESTC +haijun"
+5fa6e4a23da0b39e4b35ac73a15d55cee8608736,RED-Net: A Recurrent Encoder–Decoder Network for Video-Based Face Alignment,"IJCV special issue (Best papers of ECCV 2016) manuscript No. +(will be inserted by the editor) +RED-Net: +A Recurrent Encoder-Decoder Network for Video-based Face Alignment +Xi Peng · Rogerio S. Feris · Xiaoyu Wang · Dimitris N. Metaxas +Submitted: April 19 2017 / Revised: December 12 2017"
+5f871838710a6b408cf647aacb3b198983719c31,Locally Linear Regression for Pose-Invariant Face Recognition,"Locally Linear Regression for Pose-Invariant +Face Recognition +Xiujuan Chai, Shiguang Shan, Member, IEEE, Xilin Chen, Member, IEEE, and Wen Gao, Senior Member, IEEE"
+5f344a4ef7edfd87c5c4bc531833774c3ed23542,Semisupervised Learning of Classifiers with Application to Human-computer Interaction," +5f758a29dae102511576c0a5c6beda264060a401,Fine-grained Video Attractiveness Prediction Using Multimodal Deep Learning on a Large Real-world Dataset,"Fine-grained Video Attractiveness Prediction Using Multimodal +Deep Learning on a Large Real-world Dataset +Xinpeng Chen†∗, Jingyuan Chen♭∗, Lin Ma‡♮, Jian Yao†, Wei Liu‡♮, Jiebo Luo§, Tong Zhang‡ +Wuhan University, ‡Tencent AI Lab, ♭National University of Singapore, §University of Rochester"
+5f5906168235613c81ad2129e2431a0e5ef2b6e4,A Unified Framework for Compositional Fitting of Active Appearance Models,"Noname manuscript No. +(will be inserted by the editor) +A Unified Framework for Compositional Fitting of +Active Appearance Models +Joan Alabort-i-Medina · Stefanos Zafeiriou +Received: date / Accepted: date"
+5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning,"Multiple Facial Attributes Estimation based on +Weighted Heterogeneous Learning +H.Fukui* T.Yamashita* Y.Kato* R.Matsui* +T. Ogata** Y.Yamauchi* H.Fujiyoshi* +*Chubu University +**Abeja Inc. +200, Matuoto-cho, Kasugai, +-1-20, Toranomon, Minato-ku, +Aichi, Japan +Tokyo, Japan"
+5fc664202208aaf01c9b62da5dfdcd71fdadab29,Automatic Face Recognition from Video,rXiv:1504.05308v1 [cs.CV] 21 Apr 2015
+5fa1724a79a9f7090c54925f6ac52f1697d6b570,The Development of Multimodal Lexical Resources,"Proceedings of the Workshop on Grammar and Lexicon: Interactions and Interfaces, +pages 41–47, Osaka, Japan, December 11 2016."
+33a1a049d15e22befc7ddefdd3ae719ced8394bf,An Efficient Approach to Facial Feature Detection for Expression Recognition,"FULL PAPER +International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009 +An Efficient Approach to Facial Feature Detection +for Expression Recognition +S.P. Khandait1, P.D. Khandait2 and Dr.R.C.Thool2 +Deptt. of Info.Tech., K.D.K.C.E., Nagpur, India +2Deptt.of Electronics Engg., K.D.K.C.E., Nagpur, India, 2Deptt. of Info.Tech., SGGSIET, Nanded"
+3399f8f0dff8fcf001b711174d29c9d4fde89379,Face R-CNN,"Face R-CNN +Hao Wang Zhifeng Li∗ Xing Ji Yitong Wang +Tencent AI Lab, China"
+333aa36e80f1a7fa29cf069d81d4d2e12679bc67,Suggesting Sounds for Images from Video Collections,"Suggesting Sounds for Images +from Video Collections +Matthias Sol`er1, Jean-Charles Bazin2, Oliver Wang2, Andreas Krause1 and +Alexander Sorkine-Hornung2 +Computer Science Department, ETH Z¨urich, Switzerland +Disney Research, Switzerland"
+3312eb79e025b885afe986be8189446ba356a507,MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes,"This is a post-print of the original paper published in ECCV 2016 (SpringerLink). +MOON : A Mixed Objective Optimization +Network for the Recognition of Facial Attributes +Ethan M. Rudd, Manuel G¨unther, and Terrance E. Boult +Vision and Security Technology (VAST) Lab, +University of Colorado at Colorado Springs"
+33792bb27ef392973e951ca5a5a3be4a22a0d0c6,Two-Dimensional Whitening Reconstruction for Enhancing Robustness of Principal Component Analysis,"Two-dimensional Whitening Reconstruction for +Enhancing Robustness of Principal Component +Analysis +Xiaoshuang Shi, Zhenhua Guo, Feiping Nie, Lin Yang, Jane You, and Dacheng Tao"
+3328674d71a18ed649e828963a0edb54348ee598,A face and palmprint recognition approach based on discriminant DCT feature extraction,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004 +A Face and Palmprint Recognition Approach Based +on Discriminant DCT Feature Extraction +Xiao-Yuan Jing and David Zhang"
+339937141ffb547af8e746718fbf2365cc1570c8,Facial Emotion Recognition in Real Time,"Facial Emotion Recognition in Real Time +Dan Duncan +Gautam Shine +Chris English"
+33ae696546eed070717192d393f75a1583cd8e2c,Subspace selection to suppress confounding source domain information in AAM transfer learning,
+3393459600368be2c4c9878a3f65a57dcc0c2cfa,Eigen-PEP for Video Face Recognition,"Eigen-PEP for Video Face Recognition +Haoxiang Li†, Gang Hua†, Xiaohui Shen‡, Zhe Lin‡, Jonathan Brandt‡ +Stevens Institute of Technology ‡Adobe Systems Inc."
+3352426a67eabe3516812cb66a77aeb8b4df4d1b,Joint Multi-view Face Alignment in the Wild,"JOURNAL OF LATEX CLASS FILES, VOL. 4, NO. 5, APRIL 2015 +Joint Multi-view Face Alignment in the Wild +Jiankang Deng, Student Member, IEEE, George Trigeorgis, Yuxiang Zhou, and Stefanos Zafeiriou, Member, IEEE"
+334d6c71b6bce8dfbd376c4203004bd4464c2099,Biconvex Relaxation for Semidefinite Programming in Computer Vision,"BICONVEX RELAXATION FOR SEMIDEFINITE PROGRAMMING IN +COMPUTER VISION +SOHIL SHAH*, ABHAY KUMAR*, DAVID JACOBS, +CHRISTOPH STUDER, AND TOM GOLDSTEIN"
+33695e0779e67c7722449e9a3e2e55fde64cfd99,Riemannian coding and dictionary learning: Kernels to the rescue,"Riemannian Coding and Dictionary Learning: Kernels to the Rescue +Mehrtash Harandi, Mathieu Salzmann +Australian National University & NICTA +While sparse coding on non-flat Riemannian manifolds has recently become +increasingly popular, existing solutions either are dedicated to specific man- +ifolds, or rely on optimization problems that are difficult to solve, especially +when it comes to dictionary learning. In this paper, we propose to make use +of kernels to perform coding and dictionary learning on Riemannian man- +ifolds. To this end, we introduce a general Riemannian coding framework +with its kernel-based counterpart. This lets us (i) generalize beyond the spe- +ial case of sparse coding; (ii) introduce efficient solutions to two coding +schemes; (iii) learn the kernel parameters; (iv) perform unsupervised and +supervised dictionary learning in a much simpler manner than previous Rie- +mannian coding approaches. +i=1, di ∈ M, be a dictionary on a Rie- +mannian manifold M, and x ∈ M be a query point on the manifold. We +(cid:17) +define a general Riemannian coding formulation as +More specifically, let D = {di}N +(cid:93)N"
+33e20449aa40488c6d4b430a48edf5c4b43afdab,The Faces of Engagement: Automatic Recognition of Student Engagementfrom Facial Expressions,"TRANSACTIONS ON AFFECTIVE COMPUTING +The Faces of Engagement: Automatic +Recognition of Student Engagement from Facial +Expressions +Jacob Whitehill, Zewelanji Serpell, Yi-Ching Lin, Aysha Foster, and Javier R. Movellan"
+333e7ad7f915d8ee3bb43a93ea167d6026aa3c22,3D Assisted Face Recognition: Dealing With Expression Variations,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +The final version of record is available at http://dx.doi.org/10.1109/TIFS.2014.2309851 +DRAFT +D Assisted Face Recognition: Dealing With +Expression Variations +Nesli Erdogmus, Member, IEEE, Jean-Luc Dugelay, Fellow Member, IEEE"
+334166a942acb15ccc4517cefde751a381512605,Facial Expression Analysis using Deep Learning,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +Facial Expression Analysis using Deep Learning +Hemanth Singh1, Raman Patel2 +,2 M.Tech Student, SSG Engineering College, Odisha, India +---------------------------------------------------------------------***--------------------------------------------------------------------- +examination structures need to analyse the facial exercises"
+33ef419dffef85443ec9fe89a93f928bafdc922e,SelfKin: Self Adjusted Deep Model For Kinship Verification,"SelfKin: Self Adjusted Deep Model For +Kinship Verification +Eran Dahan, Yosi Keller +Faculty of Engineering, Bar-Ilan University, Israel."
+05b8673d810fadf888c62b7e6c7185355ffa4121,A Comprehensive Survey to Face Hallucination,"(will be inserted by the editor) +A Comprehensive Survey to Face Hallucination +Nannan Wang · Dacheng Tao · Xinbo Gao · Xuelong Li · Jie Li +Received: date / Accepted: date"
+05e658fed4a1ce877199a4ce1a8f8cf6f449a890,Domain Transfer Learning for Object and Action Recognition,
+05ad478ca69b935c1bba755ac1a2a90be6679129,Attribute Dominance: What Pops Out?,"Attribute Dominance: What Pops Out? +Naman Turakhia +Georgia Tech"
+054738ce39920975b8dcc97e01b3b6cc0d0bdf32,Towards the design of an end-to-end automated system for image and video-based recognition,"Towards the Design of an End-to-End Automated +System for Image and Video-based Recognition +Rama Chellappa1, Jun-Cheng Chen3, Rajeev Ranjan1, Swami Sankaranarayanan1, Amit Kumar1, +Vishal M. Patel2 and Carlos D. Castillo4"
+05e03c48f32bd89c8a15ba82891f40f1cfdc7562,Scalable Robust Principal Component Analysis Using Grassmann Averages,"Scalable Robust Principal Component +Analysis using Grassmann Averages +Søren Hauberg, Aasa Feragen, Raffi Enficiaud, and Michael J. Black"
+056ba488898a1a1b32daec7a45e0d550e0c51ae4,Cascaded Continuous Regression for Real-Time Incremental Face Tracking,"Cascaded Continuous Regression for Real-time +Incremental Face Tracking +Enrique S´anchez-Lozano, Brais Martinez, +Georgios Tzimiropoulos, and Michel Valstar +Computer Vision Laboratory. University of Nottingham"
+050fdbd2e1aa8b1a09ed42b2e5cc24d4fe8c7371,Spatio-Temporal Scale Selection in Video Data,"Contents +Scale Space and PDE Methods +Spatio-Temporal Scale Selection in Video Data . . . . . . . . . . . . . . . . . . . . . +Tony Lindeberg +Dynamic Texture Recognition Using Time-Causal Spatio-Temporal +Scale-Space Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Ylva Jansson and Tony Lindeberg +Corner Detection Using the Affine Morphological Scale Space . . . . . . . . . . . +Luis Alvarez +Nonlinear Spectral Image Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Martin Benning, Michael Möller, Raz Z. Nossek, Martin Burger, +Daniel Cremers, Guy Gilboa, and Carola-Bibiane Schönlieb +Tubular Structure Segmentation Based on Heat Diffusion. . . . . . . . . . . . . . . +Fang Yang and Laurent D. Cohen +Analytic Existence and Uniqueness Results for PDE-Based Image +Reconstruction with the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Laurent Hoeltgen, Isaac Harris, Michael Breuß, and Andreas Kleefeld +Combining Contrast Invariant L1 Data Fidelities with Nonlinear +Spectral Image Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Leonie Zeune, Stephan A. van Gils, Leon W.M.M. Terstappen,"
+052880031be0a760a5b606b2ad3d22f237e8af70,Datasets on object manipulation and interaction: a survey,"Datasets on object manipulation and interaction: a survey +Yongqiang Huang and Yu Sun"
+053c2f592a7f153e5f3746aa5ab58b62f2cf1d21,Performance Evaluation of Illumination Normalization Techniques for Face Recognition,"International Journal of Research in +Engineering & Technology (IJRET) +ISSN 2321-8843 +Vol. 1, Issue 2, July 2013, 11-20 +© Impact Journals +PERFORMANCE EVALUATION OF ILLUMINATION NORMALIZATION TECHNIQUES +FOR FACE RECOGNITION +A. P. C. SARATHA DEVI & V. MAHESH +Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India"
+05ea7930ae26165e7e51ff11b91c7aa8d7722002,Learning And-Or Model to Represent Context and Occlusion for Car Detection and Viewpoint Estimation,"Learning And-Or Model to Represent Context and +Occlusion for Car Detection and Viewpoint Estimation +Tianfu Wu∗, Bo Li∗ and Song-Chun Zhu"
+051a84f0e39126c1ebeeb379a405816d5d06604d,Biometric Recognition Performing in a Bioinspired System,"Cogn Comput (2009) 1:257–267 +DOI 10.1007/s12559-009-9018-7 +Biometric Recognition Performing in a Bioinspired System +Joan Fa`bregas Æ Marcos Faundez-Zanuy +Published online: 20 May 2009 +Ó Springer Science+Business Media, LLC 2009"
+0559fb9f5e8627fecc026c8ee6f7ad30e54ee929,Facial Expression Recognition,"Facial Expression Recognition +Bogdan J. Matuszewski, Wei Quan and Lik-Kwan Shark +ADSIP Research Centre, University of Central Lancashire +. Introduction +Facial expressions are visible signs of a person’s affective state, cognitive activity and +personality. Humans can perform expression recognition with a remarkable robustness +without conscious effort even under a variety of adverse conditions such as partially +occluded faces, different appearances and poor illumination. Over the last two decades, the +dvances in imaging technology and ever increasing computing power have opened up a +possibility of automatic facial expression recognition and this has led to significant research +efforts from the computer vision and pattern recognition communities. One reason for this +growing interest is due to a wide spectrum of possible applications in diverse areas, such as +more engaging human-computer interaction (HCI) systems, video conferencing, augmented +reality. Additionally from the biometric perspective, automatic recognition of facial +expressions has been investigated in the context of monitoring patients in the intensive care +nd neonatal units for signs of pain and anxiety, behavioural research, identifying level of +oncentration, and improving face recognition. +Automatic facial expression recognition is a difficult task due to its inherent subjective +nature, which is additionally hampered by usual difficulties encountered in pattern +recognition and computer vision research. The vast majority of the current state-of-the-art"
+05a7be10fa9af8fb33ae2b5b72d108415519a698,Multilayer and Multimodal Fusion of Deep Neural Networks for Video Classification,"Multilayer and Multimodal Fusion of Deep Neural Networks +for Video Classification +Xiaodong Yang Pavlo Molchanov Jan Kautz +{xiaodongy, pmolchanov, +NVIDIA"
+050a149051a5d268fcc5539e8b654c2240070c82,Magisterské a doktorské studijnı́ programy,MAGISTERSKÉ A DOKTORSKÉSTUDIJNÍ PROGRAMY31. 5. 2018SBORNÍKSTUDENTSKÁ VĚDECKÁ KONFERENCE
+0580edbd7865414c62a36da9504d1169dea78d6f,Baseline CNN structure analysis for facial expression recognition,"Baseline CNN structure analysis for facial expression recognition +Minchul Shin1, Munsang Kim2 and Dong-Soo Kwon1"
+9d58e8ab656772d2c8a99a9fb876d5611fe2fe20,Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video,"Beyond Temporal Pooling: Recurrence and Temporal +Convolutions for Gesture Recognition in Video +Lionel Pigou, A¨aron van den Oord∗ , Sander Dieleman∗ , +{lionel.pigou,aaron.vandenoord,sander.dieleman, +Mieke Van Herreweghe & Joni Dambre +mieke.vanherreweghe, +Ghent University +February 11, 2016"
+9d42df42132c3d76e3447ea61e900d3a6271f5fe,AutoCAP: An Automatic Caption Generation System based on the Text Knowledge Power Series Representation Model,"International Journal of Computer Applications (0975 – 8887) +Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014) +AutoCAP: An Automatic Caption Generation System +ased on the Text Knowledge Power Series +Representation Model +Krishnapriya P S +M.Tech Dept of CSE +NSS College of Engineering +Palakkad, Kerala"
+9d8fd639a7aeab0dd1bc6eef9d11540199fd6fe2,L Earning to C Luster,"Workshop track - ICLR 2018 +LEARNING TO CLUSTER +Benjamin B. Meier, Thilo Stadelmann & Oliver D¨urr +ZHAW Datalab, Zurich University of Applied Sciences +Winterthur, Switzerland"
+9d357bbf014289fb5f64183c32aa64dc0bd9f454,Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Error Functions,"Face Identification by Fitting a 3D Morphable Model +using Linear Shape and Texture Error Functions +Sami Romdhani, Volker Blanz, and Thomas Vetter +University of Freiburg, Instit¨ut f¨ur Informatik, +Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany, +fromdhani, volker,"
+9d839dfc9b6a274e7c193039dfa7166d3c07040b,Augmented faces,"Augmented Faces +Matthias Dantone1 +Lukas Bossard1 +Till Quack1,2 +Luc van Gool1,3 +ETH Z¨urich +Kooaba AG +K.U. Leuven"
+9d36c81b27e67c515df661913a54a797cd1260bb,3d Face Recognition Techniques - a Review,"Preeti.B.Sharma, Mahesh M. Goyani / International Journal of Engineering Research and +Applications (IJERA) ISSN: 2248-9622 www.ijera.com +Vol. 2, Issue 1,Jan-Feb 2012, pp.787-793 +3D FACE RECOGNITION TECHNIQUES - A REVIEW +Preeti B. Sharma*, Mahesh M. Goyani** +*(Department of Information Technology, Gujarat Technological University, India) +**( Department of Computer Engineering, Gujarat Technological University, India) +security at many places"
+9d757c0fede931b1c6ac344f67767533043cba14,Search Based Face Annotation Using PCA and Unsupervised Label Refinement Algorithms,"Search Based Face Annotation Using PCA and +Unsupervised Label Refinement Algorithms +Shital Shinde1, Archana Chaugule2 +Computer Department, Savitribai Phule Pune University +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18 +Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18 +Computer Department, D.Y.PIET, Pimpri, Pune-18, MH, India +presents"
+9d60ad72bde7b62be3be0c30c09b7d03f9710c5f,A Survey: Face Recognition Techniques,"A Survey: Face Recognition Techniques +Arun Agrawal +Assistant Professor, ITM GOI +Ranjana Sikarwar +M Tech, ITM GOI +video +(Eigen +passport-verification,"
+9c1305383ce2c108421e9f5e75f092eaa4a5aa3c,Speaker Retrieval for Tv Show Videos by Associating Audio Speaker Recognition Result to Visual Faces∗,"SPEAKER RETRIEVAL FOR TV SHOW VIDEOS BY ASSOCIATING AUDIO SPEAKER +RECOGNITION RESULT TO VISUAL FACES∗ +Yina Han*’, Joseph Razik’, Gerard Chollet’, and Guizhong Liu* +*School of Electrical and Information Engineering, Xi’an Jiaotong University, Xi’an, China +’CNRS-LTCI, TELECOM-ParisTech, Paris, France"
+9c1860de6d6e991a45325c997bf9651c8a9d716f,3D reconstruction and face recognition using kernel-based ICA and neural networks,"D Reconstruction and Face Recognition Using Kernel-Based +ICA and Neural Networks +Cheng-Jian Lin Ya-Tzu Huang +Chi-Yung Lee +Dept. of Electrical Dept. of CSIE Dept. of CSIE +Engineering Chaoyang University Nankai Institute of +National University of Technology Technology +of Kaohsiung"
+9ca7899338129f4ba6744f801e722d53a44e4622,Deep neural networks regularization for structured output prediction,"Deep Neural Networks Regularization for Structured +Output Prediction +Soufiane Belharbi∗ +INSA Rouen, LITIS +76000 Rouen, France +Clément Chatelain +INSA Rouen, LITIS +76000 Rouen, France +Romain Hérault +INSA Rouen, LITIS +76000 Rouen, France +Sébastien Adam +INSA Rouen, LITIS +76000 Rouen, France +Normandie Univ, UNIROUEN, UNIHAVRE, +Normandie Univ, UNIROUEN, UNIHAVRE, +Normandie Univ, UNIROUEN, UNIHAVRE, +Normandie Univ, UNIROUEN, UNIHAVRE,"
+9c1664f69d0d832e05759e8f2f001774fad354d6,Action Representations in Robotics: A Taxonomy and Systematic Classification,"Action representations in robotics: A +taxonomy and systematic classification +Journal Title +XX(X):1–32 +(cid:13)The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/ +Philipp Zech, Erwan Renaudo, Simon Haller, Xiang Zhang and Justus Piater"
+9c065dfb26ce280610a492c887b7f6beccf27319,Learning from Video and Text via Large-Scale Discriminative Clustering,"Learning from Video and Text via Large-Scale Discriminative Clustering +Antoine Miech1,2 +Jean-Baptiste Alayrac1,2 +Piotr Bojanowski2 +Ivan Laptev 1,2 +Josef Sivic1,2,3 +´Ecole Normale Sup´erieure +Inria +CIIRC"
+9c781f7fd5d8168ddae1ce5bb4a77e3ca12b40b6,Attribute Based Face Classification Using Support Vector Machine,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +Volume: 03 Issue: 07 | July-2016 www.irjet.net p-ISSN: 2395-0072 +Attribute Based Face Classification Using Support Vector Machine +Brindha.M1, Amsaveni.R2 +Research Scholar, Dept. of Computer Science, PSGR Krishnammal College for Women, Coimbatore +Assistant Professor, Dept. of Information Technology, PSGR Krishnammal College for Women, Coimbatore."
+9ce0d64125fbaf625c466d86221505ad2aced7b1,Recognizing expressions of children in real life scenarios View project PhD ( Doctor of Philosophy ) View project,"Saliency Based Framework for Facial Expression +Recognition +Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz +To cite this version: +Rizwan Ahmed Khan, Alexandre Meyer, Hubert Konik, Saïda Bouakaz. Saliency Based Framework for +Facial Expression Recognition. Frontiers of Computer Science, 2017, <10.1007/s11704-017-6114-9>. +<hal-01546192> +HAL Id: hal-01546192 +https://hal.archives-ouvertes.fr/hal-01546192 +Submitted on 23 Jun 2017 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de"
+02601d184d79742c7cd0c0ed80e846d95def052e,Graphical Representation for Heterogeneous Face Recognition,"Graphical Representation for Heterogeneous +Face Recognition +Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li"
+02e43d9ca736802d72824892c864e8cfde13718e,Transferring a semantic representation for person re-identification and search,"Transferring a Semantic Representation for Person Re-Identification and +Search +Shi, Z; Yang, Y; Hospedales, T; XIANG, T; IEEE Conference on Computer Vision and +Pattern Recognition +© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained for all other uses, in any current or future media, including reprinting/republishing +this material for advertising or promotional purposes, creating new collective works, for resale +or redistribution to servers or lists, or reuse of any copyrighted component of this work in +other works. +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/10075 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact"
+02fda07735bdf84554c193811ba4267c24fe2e4a,Illumination Invariant Face Recognition Using Near-Infrared Images,"Illumination Invariant Face Recognition +Using Near-Infrared Images +Stan Z. Li, Senior Member, IEEE, RuFeng Chu, ShengCai Liao, and Lun Zhang"
+0241513eeb4320d7848364e9a7ef134a69cbfd55,Supervised translation-invariant sparse coding,"Supervised Translation-Invariant Sparse +Coding +¹Jianchao Yang, ²Kai Yu, and ¹Thomas Huang +¹University of Illinois at Urbana Champaign +²NEC Laboratories America at Cupertino"
+02dd0af998c3473d85bdd1f77254ebd71e6158c6,PPP: Joint Pointwise and Pairwise Image Label Prediction,"PPP: Joint Pointwise and Pairwise Image Label Prediction +Yilin Wang1 Suhang Wang1 +Jiliang Tang2 Huan Liu1 Baoxin Li1 +Department of Computer Science, Arizona State Univerity +Yahoo Research"
+029317f260b3303c20dd58e8404a665c7c5e7339,Character Identification in Feature-Length Films Using Global Face-Name Matching,"Character Identification in Feature-Length Films +Using Global Face-Name Matching +Yi-Fan Zhang, Student Member, IEEE, Changsheng Xu, Senior Member, IEEE, Hanqing Lu, Senior Member, IEEE, +nd Yeh-Min Huang, Member, IEEE"
+0273414ba7d56ab9ff894959b9d46e4b2fef7fd0,Photographic home styles in Congress: a computer vision approach,"Photographic home styles in Congress: a +omputer vision approach∗ +L. Jason Anastasopoulos†. +Dhruvil Badani‡ +Crystal Lee§ +Shiry Ginosar¶ +Jake Williams(cid:107) +December 1, 2016"
+02e133aacde6d0977bca01ffe971c79097097b7f,Convolutional Neural Fabrics,
+02567fd428a675ca91a0c6786f47f3e35881bcbd,Deep Label Distribution Learning With Label Ambiguity,"ACCEPTED BY IEEE TIP +Deep Label Distribution Learning +With Label Ambiguity +Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, Member, IEEE, and Xin Geng, Member, IEEE"
+0278acdc8632f463232e961563e177aa8c6d6833,Selective Transfer Machine for Personalized Facial Expression Analysis,"Selective Transfer Machine for Personalized +Facial Expression Analysis +Wen-Sheng Chu, Fernando De la Torre, and Jeffrey F. Cohn +INTRODUCTION +Index Terms—Facial expression analysis, personalization, domain adaptation, transfer learning, support vector machine (SVM) +A UTOMATIC facial AU detection confronts a number of"
+a4a5ad6f1cc489427ac1021da7d7b70fa9a770f2,Gated spatio and temporal convolutional neural network for activity recognition: towards gated multimodal deep learning,"Yudistira and Kurita EURASIP Journal on Image and Video +Processing (2017) 2017:85 +DOI 10.1186/s13640-017-0235-9 +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +Gated spatio and temporal convolutional +neural network for activity recognition: +towards gated multimodal deep learning +Novanto Yudistira1* and Takio Kurita2"
+a40f8881a36bc01f3ae356b3e57eac84e989eef0,"End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks","End-to-end semantic face segmentation with conditional +random fields as convolutional, recurrent and adversarial +networks +Umut Güçlü*, 1, Yağmur Güçlütürk*, 1, +Meysam Madadi2, Sergio Escalera3, Xavier Baró4, Jordi González2, +Rob van Lier1, Marcel van Gerven1"
+a4a0b5f08198f6d7ea2d1e81bd97fea21afe3fc3,Efficient Recurrent Residual Networks Improved by Feature Transfer,"E +Feature Transfer +MSc Thesis +written by +Yue Liu +under the supervision of Dr. Silvia-Laura Pintea, Dr. Jan van Gemert, +nd Dr. Ildiko Suveg and submitted to the Board of Examiners for the +degree of +Master of Science +t the Delft University of Technology. +Date of the public defense: Members of the Thesis Committee: +August 31, 2017 +Prof. Marcel Reinders +Dr. Jan van Gemert +Dr. Julian Urbano Merino +Dr. Silvia-Laura Pintea +Dr. Ildiko Suveg (Bosch) +Dr. Gonzalez Adrlana (Bosch)"
+a44590528b18059b00d24ece4670668e86378a79,Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization,"Learning the Hierarchical Parts of Objects by Deep +Non-Smooth Nonnegative Matrix Factorization +Jinshi Yu, Guoxu Zhou, Andrzej Cichocki +IEEE Fellow, and Shengli Xie IEEE Senior Member"
+a4c430b7d849a8f23713dc283794d8c1782198b2,Video Concept Embedding,"Video Concept Embedding +Anirudh Vemula +Rahul Nallamothu +Syed Zahir Bokhari +. Introduction +In the area of natural language processing, there has been +much success in learning distributed representations for +words as vectors. Doing so has an advantage over using +simple labels, or a one-hot coding scheme for representing +individual words. In learning distributed vector representa- +tions for words, we manage to capture semantic relatedness +of words in vector distance. For example, the word vector +for ”car” and ”road” should end up being closer together in +the vector space representation than ”car” and ”penguin”. +This has been very useful in NLP areas of machine transla- +tion and semantic understanding. +In the computer vision domain, video understanding is a +very important topic. +It is made hard due to the large +mount of high dimensional data in videos. One strategy"
+a4f37cfdde3af723336205b361aefc9eca688f5c,Recent Advances in Face Recognition,"Recent Advances +in Face Recognition"
+a30869c5d4052ed1da8675128651e17f97b87918,Fine-Grained Comparisons with Attributes,"Fine-Grained Comparisons with Attributes +Aron Yu and Kristen Grauman"
+a3ebacd8bcbc7ddbd5753935496e22a0f74dcf7b,"First International Workshop on Adaptive Shot Learning for Gesture Understanding and Production ASL4GUP 2017 Held in conjunction with IEEE FG 2017, in May 30, 2017, Washington DC, USA","First International Workshop on Adaptive Shot Learning +for Gesture Understanding and Production +ASL4GUP 2017 +Held in conjunction with IEEE FG 2017, in May 30, 2017, +Washington DC, USA"
+a3d8b5622c4b9af1f753aade57e4774730787a00,Pose-Aware Person Recognition,"Pose-Aware Person Recognition +Vijay Kumar (cid:63) +Anoop Namboodiri (cid:63) +(cid:63) CVIT, IIIT Hyderabad, India +Manohar Paluri † +Facebook AI Research +C. V. Jawahar (cid:63)"
+a3017bb14a507abcf8446b56243cfddd6cdb542b,Face Localization and Recognition in Varied Expressions and Illumination,"Face Localization and Recognition in Varied +Expressions and Illumination +Hui-Yu Huang, Shih-Hang Hsu"
+a3c8c7da177cd08978b2ad613c1d5cb89e0de741,A Spatio-temporal Approach for Multiple Object Detection in Videos Using Graphs and Probability Maps,"A Spatio-temporal Approach for Multiple +Object Detection in Videos Using Graphs +nd Probability Maps +Henrique Morimitsu1(B), Roberto M. Cesar Jr.1, and Isabelle Bloch2 +University of S˜ao Paulo, S˜ao Paulo, Brazil +Institut Mines T´el´ecom, T´el´ecom ParisTech, CNRS LTCI, Paris, France"
+a378fc39128107815a9a68b0b07cffaa1ed32d1f,Determining a Suitable Metric when Using Non-Negative Matrix Factorization,"Determining a Suitable Metric When using Non-negative Matrix Factorization∗ +David Guillamet and Jordi Vitri`a +Computer Vision Center, Dept. Inform`atica +Universitat Aut`onoma de Barcelona +08193 Bellaterra, Barcelona, Spain"
+a34d75da87525d1192bda240b7675349ee85c123,Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?,"Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not? +Erjin Zhou +Face++, Megvii Inc. +Zhimin Cao +Face++, Megvii Inc. +Qi Yin +Face++, Megvii Inc."
+a3dc109b1dff3846f5a2cc1fe2448230a76ad83f,Active Appearance Model and Pca Based Face Recognition System,"J.Savitha et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.4, April- 2015, pg. 722-731 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 4, Issue. 4, April 2015, pg.722 – 731 +RESEARCH ARTICLE +ACTIVE APPEARANCE MODEL AND PCA +BASED FACE RECOGNITION SYSTEM +Mrs. J.Savitha M.Sc., M.Phil. +Ph.D Research Scholar, Karpagam University, Coimbatore, Tamil Nadu, India +Email: +Dr. A.V.Senthil Kumar +Director, Hindustan College of Arts and Science, Coimbatore, Tamil Nadu, India +Email:"
+a3f69a073dcfb6da8038607a9f14eb28b5dab2db,3D-Aided Deep Pose-Invariant Face Recognition,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
+a38045ed82d6800cbc7a4feb498e694740568258,African American and Caucasian males ' evaluation of racialized female facial averages,"UNLV Theses, Dissertations, Professional Papers, and Capstones +5-2010 +African American and Caucasian males' evaluation +of racialized female facial averages +Rhea M. Watson +University of Nevada Las Vegas +Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations +Part of the Cognition and Perception Commons, Race and Ethnicity Commons, and the Social +Psychology Commons +Repository Citation +Watson, Rhea M., ""African American and Caucasian males' evaluation of racialized female facial averages"" (2010). UNLV Theses, +Dissertations, Professional Papers, and Capstones. 366. +http://digitalscholarship.unlv.edu/thesesdissertations/366 +This Thesis is brought to you for free and open access by Digital It has been accepted for inclusion in UNLV Theses, Dissertations, +Professional Papers, and Capstones by an authorized administrator of Digital For more information, please contact"
+a3f78cc944ac189632f25925ba807a0e0678c4d5,Action Recognition in Realistic Sports Videos,"Action Recognition in Realistic Sports Videos +Khurram Soomro and Amir Roshan Zamir"
+a3a6a6a2eb1d32b4dead9e702824375ee76e3ce7,Multiple Local Curvature Gabor Binary Patterns for Facial Action Recognition,"Multiple Local Curvature Gabor Binary +Patterns for Facial Action Recognition +Anıl Y¨uce, Nuri Murat Arar and Jean-Philippe Thiran +Signal Processing Laboratory (LTS5), +´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland"
+a32c5138c6a0b3d3aff69bcab1015d8b043c91fb,Video redaction: a survey and comparison of enabling technologies,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/19/2018 +Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +Videoredaction:asurveyandcomparisonofenablingtechnologiesShaganSahAmeyaShringiRaymondPtuchaAaronBurryRobertLoceShaganSah,AmeyaShringi,RaymondPtucha,AaronBurry,RobertLoce,“Videoredaction:asurveyandcomparisonofenablingtechnologies,”J.Electron.Imaging26(5),051406(2017),doi:10.1117/1.JEI.26.5.051406."
+a3d78bc94d99fdec9f44a7aa40c175d5a106f0b9,Recognizing Violence in Movies,"Recognizing Violence in Movies +CIS400/401 Project Final Report +Lei Kang +Univ. of Pennsylvania +Philadelphia, PA +Matteus Pan +Univ. of Pennsylvania +Philadelphia, PA +Ben Sapp +Univ. of Pennsylvania +Philadelphia, PA +Ben Taskar +Univ. of Pennsylvania +Philadelphia, PA"
+a3eab933e1b3db1a7377a119573ff38e780ea6a3,Sparse Representation for accurate classification of corrupted and occluded facial expressions,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE +ICASSP 2010"
+a3a34c1b876002e0393038fcf2bcb00821737105,Face Identification across Different Poses and Illuminations with a 3D Morphable Model,"Face Identification across Different Poses and Illuminations +with a 3D Morphable Model +V. Blanz, S. Romdhani, and T. Vetter +University of Freiburg +Georges-K¨ohler-Allee 52, 79110 Freiburg, Germany +fvolker, romdhani,"
+a3f1db123ce1818971a57330d82901683d7c2b67,Poselets and Their Applications in High-Level Computer Vision,"Poselets and Their Applications in High-Level +Computer Vision +Lubomir Bourdev +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2012-52 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-52.html +May 1, 2012"
+a3a97bb5131e7e67316b649bbc2432aaa1a6556e,Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory.,"Cogn Affect Behav Neurosci +DOI 10.3758/s13415-013-0170-x +Role of the hippocampus and orbitofrontal cortex +during the disambiguation of social cues in working memory +Robert S. Ross & Matthew L. LoPresti & Karin Schon & +Chantal E. Stern +# Psychonomic Society, Inc. 2013"
+a35d3ba191137224576f312353e1e0267e6699a1,Increasing security in DRM systems through biometric authentication,"Javier Ortega-Garcia, Josef Bigun, Douglas Reynolds, +nd Joaquin Gonzalez-Rodriguez +Increasing security in DRM systems +through biometric authentication. +ecuring the exchange +of intellectual property +nd providing protection +to multimedia contents in +distribution systems have enabled the +dvent of digital rights management +(DRM) systems [5], [14], [21], [47], +[51], [53]. Rights holders should be able to +license, monitor, and track the usage of rights +in a dynamic digital trading environment, espe- +ially in the near future when universal multimedia +ccess (UMA) becomes a reality, and any multimedia +ontent will be available anytime, anywhere. In such +DRM systems, encryption algorithms, access control, +key management strategies, identification and tracing +of contents, or copy control will play a prominent role"
+b558be7e182809f5404ea0fcf8a1d1d9498dc01a,Bottom-up and top-down reasoning with convolutional latent-variable models,"Bottom-up and top-down reasoning with convolutional latent-variable models +Peiyun Hu +UC Irvine +Deva Ramanan +UC Irvine"
+b5cd8151f9354ee38b73be1d1457d28e39d3c2c6,Finding Celebrities in Video,"Finding Celebrities in Video +Nazli Ikizler +Jai Vasanth +Linus Wong +David Forsyth +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2006-77 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-77.html +May 23, 2006"
+b5fc4f9ad751c3784eaf740880a1db14843a85ba,Significance of image representation for face verification,"SIViP (2007) 1:225–237 +DOI 10.1007/s11760-007-0016-5 +ORIGINAL PAPER +Significance of image representation for face verification +Anil Kumar Sao · B. Yegnanarayana · +B. V. K. Vijaya Kumar +Received: 29 August 2006 / Revised: 28 March 2007 / Accepted: 28 March 2007 / Published online: 1 May 2007 +© Springer-Verlag London Limited 2007"
+b599f323ee17f12bf251aba928b19a09bfbb13bb,Autonomous Quadcopter Videographer,"AUTONOMOUS QUADCOPTER VIDEOGRAPHER +REY R. COAGUILA +B.S. Universidad Peruana de Ciencias Aplicadas, 2009 +A thesis submitted in partial fulfillment of the requirements +for the degree of Master of Science in Computer Science +in the Department of Electrical Engineering and Computer Science +in the College of Engineering and Computer Science +t the University of Central Florida +Orlando, Florida +Spring Term +Major Professor: Gita R. Sukthankar"
+b5160e95192340c848370f5092602cad8a4050cd,Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor,"IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, TO APPEAR +Video Classification With CNNs: Using The Codec +As A Spatio-Temporal Activity Sensor +Aaron Chadha, Alhabib Abbas and Yiannis Andreopoulos, Senior Member, IEEE"
+b52c0faba5e1dc578a3c32a7f5cfb6fb87be06ad,Robust Face Recognition Technique under Varying Illumination,"Journal of Applied Research and +Technology +ISSN: 1665-6423 +Centro de Ciencias Aplicadas y +Desarrollo Tecnológico +México +Hussain Shah, Jamal; Sharif, Muhammad; Raza, Mudassar; Murtaza, Marryam; Ur-Rehman, Saeed +Robust Face Recognition Technique under Varying Illumination +Journal of Applied Research and Technology, vol. 13, núm. 1, febrero, 2015, pp. 97-105 +Centro de Ciencias Aplicadas y Desarrollo Tecnológico +Distrito Federal, México +Available in: http://www.redalyc.org/articulo.oa?id=47436895009 +How to cite +Complete issue +More information about this article +Journal's homepage in redalyc.org +Scientific Information System +Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal +Non-profit academic project, developed under the open access initiative"
+b52886610eda6265a2c1aaf04ce209c047432b6d,Microexpression Identification and Categorization Using a Facial Dynamics Map,"Microexpression Identification and Categorization +using a Facial Dynamics Map +Feng Xu, Junping Zhang, James Z. Wang"
+b5857b5bd6cb72508a166304f909ddc94afe53e3,SSIG and IRISA at Multimodal Person Discovery,"SSIG and IRISA at Multimodal Person Discovery +Cassio E. dos Santos Jr1, Guillaume Gravier2, William Robson Schwartz1 +Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil +IRISA & Inria Rennes , CNRS, Rennes, France"
+b51e3d59d1bcbc023f39cec233f38510819a2cf9,"Can a biologically-plausible hierarchy effectively replace face detection, alignment, and recognition pipelines?","CBMM Memo No. 003 +March 27, 2014 +Can a biologically-plausible hierarchy effectively +replace face detection, alignment, and +recognition pipelines? +Qianli Liao1, Joel Z Leibo1, Youssef Mroueh1, Tomaso Poggio1"
+b54c477885d53a27039c81f028e710ca54c83f11,Semi-Supervised Kernel Mean Shift Clustering,"Semi-Supervised Kernel Mean Shift Clustering +Saket Anand, Member, IEEE, Sushil Mittal, Member, IEEE, Oncel Tuzel, Member, IEEE, +nd Peter Meer, Fellow, IEEE"
+b55d0c9a022874fb78653a0004998a66f8242cad,Hybrid Facial Representations for Emotion Recognition Woo,"Hybrid Facial Representations +for Emotion Recognition +Woo-han Yun, DoHyung Kim, Chankyu Park, and Jaehong Kim +Automatic facial expression recognition is a widely +studied problem in computer vision and human-robot +interaction. There has been a range of studies for +representing facial descriptors for facial expression +recognition. Some prominent descriptors were presented +in the first facial expression recognition and analysis +hallenge (FERA2011). In that competition, the Local +Gabor Binary Pattern Histogram Sequence descriptor +showed the most powerful description capability. In this +paper, we introduce hybrid facial representations for facial +expression recognition, which have more powerful +description capability with lower dimensionality. Our +descriptors consist of a block-based descriptor and a pixel- +ased descriptor. The block-based descriptor represents +the micro-orientation and micro-geometric structure +information. The pixel-based descriptor represents texture +information. We validate our descriptors on two public"
+b261439b5cde39ec52d932a222450df085eb5a91,Facial Expression Recognition using Analytical Hierarchy Process,"International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 2 – June 2015 +Facial Expression Recognition using Analytical Hierarchy +Process +MTech Student 1 , Assistant Professor 2 , Department of Computer Science and Engineeringt1, 2, Disha Institute of +Management and Technology, Raipur Chhattisgarh, India1, 2 +Vinita Phatnani1, Akash Wanjari2, +its significant contribution"
+b2b535118c5c4dfcc96f547274cdc05dde629976,Automatic Recognition of Facial Displays of Unfelt Emotions,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +Automatic Recognition of Facial Displays of +Unfelt Emotions +Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio +Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +nd Gholamreza Anbarjafari, Senior Member, IEEE"
+b235b4ccd01a204b95f7408bed7a10e080623d2e,Regularizing Flat Latent Variables with Hierarchical Structures,"Regularizing Flat Latent Variables with Hierarchical Structures +Rongcheng Lin(cid:117) , Huayu Li(cid:117) , Xiaojun Quan† , Richang Hong(cid:63) , Zhiang Wu∓ , Yong Ge(cid:117) +(cid:117)UNC Charlotte. Email: {rlin4, hli38, +(cid:63) Hefei University of Technology. Email: +Institute for Infocomm Research. Email: +∓ Nanjing University of Finance and Economics. Email:"
+b29b42f7ab8d25d244bfc1413a8d608cbdc51855,Effective face landmark localization via single deep network,"EFFECTIVE FACE LANDMARK LOCALIZATION VIA SINGLE DEEP NETWORK +Zongping Deng1,2, Ke Li1, Qijun Zhao1,2, Yi Zhang2 and Hu Chen1,2,3 +National Key Laboratory of Fundamental Science on Synthetic Vision +School of Computer Science, Sichuan University, Chengdu, China, 610065"
+b2c25af8a8e191c000f6a55d5f85cf60794c2709,A novel dimensionality reduction technique based on kernel optimization through graph embedding,"Noname manuscript No. +(will be inserted by the editor) +A Novel Dimensionality Reduction Technique based on +Kernel Optimization Through Graph Embedding +N. Vretos, A. Tefas and I. Pitas +the date of receipt and acceptance should be inserted later"
+d904f945c1506e7b51b19c99c632ef13f340ef4c,0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 °,"A scalable 3D HOG model for fast object detection and viewpoint estimation +Marco Pedersoli +Tinne Tuytelaars +KU Leuven, ESAT/PSI - iMinds +Kasteelpark Arenberg 10 B-3001 Leuven, Belgium"
+d9810786fccee5f5affaef59bc58d2282718af9b,Adaptive Frame Selection for Enhanced Face Recognition in Low-Resolution Videos,"Adaptive Frame Selection for +Enhanced Face Recognition in +Low-Resolution Videos +Raghavender Reddy Jillela +Thesis submitted to the +College of Engineering and Mineral Resources +t West Virginia University +in partial fulfillment of the requirements +for the degree of +Master of Science +Electrical Engineering +Arun Ross, PhD., Chair +Xin Li, PhD. +Donald Adjeroh, PhD. +Lane Department of Computer Science and Electrical Engineering +Morgantown, West Virginia +Keywords: Face Biometrics, Super-Resolution, Optical Flow, Super-Resolution using +Optical Flow, Adaptive Frame Selection, Inter-Frame Motion Parameter, Image Quality, +Image-Level Fusion, Score-Level Fusion +Copyright 2008 Raghavender Reddy Jillela"
+d94d7ff6f46ad5cab5c20e6ac14c1de333711a0c,Face Album: Towards automatic photo management based on person identity on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+d930ec59b87004fd172721f6684963e00137745f,Face Pose Estimation using a Tree of Boosted Classifiers,"Face Pose Estimation using a +Tree of Boosted Classifiers +Javier Cruz Mota +Project Assistant: Julien Meynet +Professor: Jean-Philippe Thiran +Signal Processing Institute, +´Ecole Polytechnique F´ed´erale de Lausanne (EPFL) +September 11, 2006"
+d9318c7259e394b3060b424eb6feca0f71219179,Face Matching and Retrieval Using Soft Biometrics,"Face Matching and Retrieval Using Soft Biometrics +Unsang Park, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
+d9ef1a80738bbdd35655c320761f95ee609b8f49,A Research - Face Recognition by Using Near Set Theory,"Volume 5, Issue 4, 2015 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +A Research - Face Recognition by Using Near Set Theory +Manisha V. Borkar, Bhakti Kurhade +Department of Computer Science and Engineering +Abha Gaikwad -Patil College of Engineering, Nagpur, Maharashtra, India"
+d9c4b1ca997583047a8721b7dfd9f0ea2efdc42c,Learning Inference Models for Computer Vision,Learning Inference Models for Computer Vision
+d9bad7c3c874169e3e0b66a031c8199ec0bc2c1f,"It All Matters: Reporting Accuracy, Inference Time and Power Consumption for Face Emotion Recognition on Embedded Systems","It All Matters: +Reporting Accuracy, Inference Time and Power Consumption +for Face Emotion Recognition on Embedded Systems +Jelena Milosevic +Institute of Telecommunications, TU Wien +Andrew Forembsky +Movidius an Intel Company +Dexmont Pe˜na +Movidius an Intel Company +David Moloney +Movidius an Intel Company +Miroslaw Malek +ALaRI, Faculty of Informatics, USI"
+d9327b9621a97244d351b5b93e057f159f24a21e,Laplacian smoothing transform for face recognition,"SCIENCE CHINA +Information Sciences +. RESEARCH PAPERS . +December 2010 Vol. 53 No. 12: 2415–2428 +doi: 10.1007/s11432-010-4099-1 +Laplacian smoothing transform for face recognition +GU SuiCheng, TAN Ying +& HE XinGui +Key Laboratory of Machine Perception (MOE); Department of Machine Intelligence, +School of Electronics Engineering and Computer Science; Peking University, Beijing 100871, China +Received March 16, 2009; accepted April 1, 2010"
+aca232de87c4c61537c730ee59a8f7ebf5ecb14f,Ebgm Vs Subspace Projection for Face Recognition,"EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION +Andreas Stergiou, Aristodemos Pnevmatikakis, Lazaros Polymenakos +9.5 Km Markopoulou Avenue, P.O. Box 68, Peania, Athens, Greece +Athens Information Technology +Keywords: +Human-Machine Interfaces, Computer Vision, Face Recognition."
+ac6a9f80d850b544a2cbfdde7002ad5e25c05ac6,Privacy-Protected Facial Biometric Verification Using Fuzzy Forest Learning,"Privacy-Protected Facial Biometric Verification +Using Fuzzy Forest Learning +Richard Jiang, Ahmed Bouridane, Senior Member, IEEE, Danny Crookes, Senior Member, IEEE, +M. Emre Celebi, Senior Member, IEEE, and Hua-Liang Wei"
+accbd6cd5dd649137a7c57ad6ef99232759f7544,Facial Expression Recognition with Local Binary Patterns and Linear Programming,"FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS +AND LINEAR PROGRAMMING +Xiaoyi Feng1, 2, Matti Pietikäinen1, Abdenour Hadid1 +Machine Vision Group, Infotech Oulu and Dept. of Electrical and Information Engineering +P. O. Box 4500 Fin-90014 University of Oulu, Finland +2 College of Electronics and Information, Northwestern Polytechnic University +710072 Xi’an, China +In this work, we propose a novel approach to recognize facial expressions from static +images. First, the Local Binary Patterns (LBP) are used to efficiently represent the facial +images and then the Linear Programming (LP) technique is adopted to classify the seven +facial expressions anger, disgust, fear, happiness, sadness, surprise and neutral. +Experimental results demonstrate an average recognition accuracy of 93.8% on the JAFFE +database, which outperforms the rates of all other reported methods on the same database. +Introduction +Facial expression recognition from static +images is a more challenging problem +than from image sequences because less +information for expression actions +vailable. However, information in a +single image is sometimes enough for"
+ac26166857e55fd5c64ae7194a169ff4e473eb8b,Personalized Age Progression with Bi-Level Aging Dictionary Learning,"Personalized Age Progression with Bi-level +Aging Dictionary Learning +Xiangbo Shu, Jinhui Tang, Senior Member, IEEE, Zechao Li, Hanjiang Lai, Liyan Zhang +nd Shuicheng Yan, Fellow, IEEE"
+ac559873b288f3ac28ee8a38c0f3710ea3f986d9,Team DEEP-HRI Moments in Time Challenge 2018 Technical Report,"Team DEEP-HRI Moments in Time Challenge 2018 Technical Report +Chao Li, Zhi Hou, Jiaxu Chen, Yingjia Bu, Jiqiang Zhou, Qiaoyong Zhong, Di Xie and Shiliang Pu +Hikvision Research Institute"
+ac8e09128e1e48a2eae5fa90f252ada689f6eae7,Leolani: A Reference Machine with a Theory of Mind for Social Communication,"Leolani: a reference machine with a theory of +mind for social communication +Piek Vossen, Selene Baez, Lenka Baj˘ceti´c, and Bram Kraaijeveld +VU University Amsterdam, Computational Lexicology and Terminology Lab, De +Boelelaan 1105, 1081HV Amsterdam, The Netherlands +www.cltl.nl"
+ac8441e30833a8e2a96a57c5e6fede5df81794af,Hierarchical Representation Learning for Kinship Verification,"IEEE TRANSACTIONS ON IMAGE PROCESSING +Hierarchical Representation Learning for Kinship +Verification +Naman Kohli, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Richa Singh, Senior Member, IEEE, +Afzel Noore, Senior Member, IEEE, and Angshul Majumdar, Senior Member, IEEE"
+ac12ba5bf81de83991210b4cd95b4ad048317681,Combining Deep Facial and Ambient Features for First Impression Estimation,"Combining Deep Facial and Ambient Features +for First Impression Estimation +Furkan G¨urpınar1, Heysem Kaya2, Albert Ali Salah3 +Program of Computational Science and Engineering, Bo˘gazi¸ci University, +Bebek, Istanbul, Turkey +Department of Computer Engineering, Namık Kemal University, +C¸ orlu, Tekirda˘g, Turkey +Department of Computer Engineering, Bo˘gazi¸ci University, +Bebek, Istanbul, Turkey"
+acb83d68345fe9a6eb9840c6e1ff0e41fa373229,"Kernel methods in computer vision: object localization, clustering, and taxonomy discovery","Kernel Methods in Computer Vision: +Object Localization, Clustering, +nd Taxonomy Discovery +vorgelegt von +Matthew Brian Blaschko, M.S. +us La Jolla +Von der Fakult¨at IV - Elektrotechnik und Informatik +der Technischen Universit¨at Berlin +zur Erlangung des akademischen Grades +Doktor der Naturwissenschaften +Dr. rer. nat. +genehmigte Dissertation +Promotionsausschuß: +Vorsitzender: Prof. Dr. O. Hellwich +Berichter: Prof. Dr. T. Hofmann +Berichter: Prof. Dr. K.-R. M¨uller +Berichter: Prof. Dr. B. Sch¨olkopf +Tag der wissenschaftlichen Aussprache: 23.03.2009 +Berlin 2009"
+ade1034d5daec9e3eba1d39ae3f33ebbe3e8e9a7,Multimodal Caricatural Mirror,"Multimodal Caricatural Mirror +Martin O.(1), Adell J.(2), Huerta A.(3), Kotsia I.(4), Savran A.(5), Sebbe R.(6) +(1) : Université catholique de Louvain, Belgium +(2) Universitat Polytecnica de Barcelona, Spain +(3) Universidad Polytècnica de Madrid, Spain +(4) Aristotle University of Thessaloniki, Greece +(5) Bogazici University, Turkey +(6) Faculté Polytechnique de Mons, Belgium"
+adf7ccb81b8515a2d05fd3b4c7ce5adf5377d9be,Apprentissage de métrique appliqué à la détection de changement de page Web et aux attributs relatifs,"Apprentissage de métrique appliqué à la +détection de changement de page Web et +ux attributs relatifs +Marc T. Law* — Nicolas Thome* — Stéphane Gançarski* — Mat- +thieu Cord* +* Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, +France +RÉSUMÉ. Nous proposons dans cet article un nouveau schéma d’apprentissage de métrique. +Basé sur l’exploitation de contraintes qui impliquent des quadruplets d’images, notre approche +vise à modéliser des relations sémantiques de similarités riches ou complexes. Nous étudions +omment ce schéma peut être utilisé dans des contextes tels que la détection de régions impor- +tantes dans des pages Web ou la reconnaissance à partir d’attributs relatifs."
+ada73060c0813d957576be471756fa7190d1e72d,VRPBench: A Vehicle Routing Benchmark Tool,"VRPBench: A Vehicle Routing Benchmark Tool +October 19, 2016 +Guilherme A. Zeni1 , Mauro Menzori1, P. S. Martins1, Luis A. A. Meira1"
+adf5caca605e07ee40a3b3408f7c7c92a09b0f70,Line-Based PCA and LDA Approaches for Face Recognition,"Line-based PCA and LDA approaches for Face Recognition +Vo Dinh Minh Nhat, and Sungyoung Lee +Kyung Hee University – South of Korea +{vdmnhat,"
+adaf2b138094981edd615dbfc4b7787693dbc396,Statistical methods for facial shape-from-shading and recognition,"Statistical Methods For Facial +Shape-from-shading and Recognition +William A. P. Smith +Submitted for the degree of Doctor of Philosophy +Department of Computer Science +0th February 2007"
+adf62dfa00748381ac21634ae97710bb80fc2922,ViFaI : A trained video face indexing scheme Harsh,"ViFaI: A trained video face indexing scheme +Harsh Nayyar +Audrey Wei +. Introduction +With the increasing prominence of inexpensive +video recording devices (e.g., digital camcorders and +video recording smartphones), +the average user’s +video collection today is increasing rapidly. With this +development, there arises a natural desire to rapidly +ccess a subset of one’s collection of videos. The solu- +tion to this problem requires an effective video index- +ing scheme. In particular, we must be able to easily +process a video to extract such indexes. +Today, there also exist large sets of labeled (tagged) +face images. One important example is an individual’s +Facebook profile. Such a set of of tagged images of +one’s self, family, friends, and colleagues represents +n extremely valuable potential training set. +In this work, we explore how to leverage the afore-"
+bb489e4de6f9b835d70ab46217f11e32887931a2,Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask,"Everything you wanted to know about Deep Learning for Computer Vision but were +fraid to ask +Moacir A. Ponti, Leonardo S. F. Ribeiro, Tiago S. Nazare +ICMC – University of S˜ao Paulo +S˜ao Carlos/SP, 13566-590, Brazil +Tu Bui, John Collomosse +CVSSP – University of Surrey +Guildford, GU2 7XH, UK +Email: [ponti, leonardo.sampaio.ribeiro, +Email: [t.bui, +tools,"
+bba281fe9c309afe4e5cc7d61d7cff1413b29558,An unpleasant emotional state reduces working memory capacity: electrophysiological evidence,"Social Cognitive and Affective Neuroscience, 2017, 984–992 +doi: 10.1093/scan/nsx030 +Advance Access Publication Date: 11 April 2017 +Original article +An unpleasant emotional state reduces working +memory capacity: electrophysiological evidence +Jessica S. B. Figueira,1 Leticia Oliveira,1 Mirtes G. Pereira,1 Luiza B. Pacheco,1 +Isabela Lobo,1,2 Gabriel C. Motta-Ribeiro,3 and Isabel A. David1 +Laboratorio de Neurofisiologia do Comportamento, Departamento de Fisiologia e Farmacologia, Instituto +Biome´dico, Universidade Federal Fluminense, Niteroi, Brazil, 2MograbiLab, Departamento de Psicologia, +Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, and 3Laboratorio de Engenharia +Pulmonar, Programa de Engenharia Biome´dica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil +Correspondence should be addressed to Isabel A. David, Departamento de Fisiologia e Farmacologia, Instituto Biome´dico, Universidade Federal +Fluminense, Rua Hernani Pires de Mello, 101, Niteroi, RJ 24210-130, Brazil. E-mail:"
+bb06ef67a49849c169781657be0bb717587990e0,Impact of temporal subsampling on accuracy and performance in practical video classification,"Impact of Temporal Subsampling on Accuracy and +Performance in Practical Video Classification +F. Scheidegger∗†, L. Cavigelli∗, M. Schaffner∗, A. C. I. Malossi†, C. Bekas†, L. Benini∗‡ +ETH Zürich, 8092 Zürich, Switzerland +IBM Research - Zürich, 8803 Rüschlikon, Switzerland +Università di Bologna, Italy"
+bb22104d2128e323051fb58a6fe1b3d24a9e9a46,Analyzing Facial Expression by Fusing Manifolds,")=OEC .=?E= -NFHAIIE >O .KIEC +9A;= +D=C1,2 +DK5C +DA1,3 ;E2EC 0KC1,2,3 +1IJEJKJA B 1BH=JE 5?EA?A 5EE?= 6=EM= +,AFJ B +FKJAH 5?EA?A 1BH=JE -CEAAHEC =JE= 6=EM= 7ELAHIEJO +IJEJKJA B AJMHEC =JE= 6=EM= 7ELAHIEJO +{wychang, +)>IJH=?J .A=JKHA HAFHAIAJ=JE ?=IIE?=JE =HA JM =H EIIKAI E B=?E= +ANFHAIIE ==OIEI 1 JDA F=IJ IJ AEJDAH DEIJE? H ?= HAFHA +IAJ=JE BH ==OIEI 1 AIIA?A ?= EBH=JE =EO B?KIAI JDA IK>JA +L=HE=JEI B ANFHAIIEI DEIJE? HAFHAIAJ=JE IJHAIIAI C>= +JEAI 6 J=A JDA B >JD = HAFHAIAJ=JE EI E JDEI +F=FAH A=HEC EI J ?D=H=?JAHEA C>= ?= EBH= +JE 7EA IA KIEC A=H +EC =FFH=?DAI B JDA HAFHAIAJ=JE =HA >O += A=HEC JA?DEGKA 6 EJACH=JA JDAIA +ABBA?JELAO = BKIE ?=IIEAH EI MDE?D ?= DAF J AFO IKEJ=>A +?>E=JE MAECDJI B B=?E= ?FAJI J = ANFHAIIE +FHADA +IELA ?F=HEII B=?E= ANFHAIIE HA?CEJE =HA J JDA +ABBA?JELAAII B KH =CHEJD +A=EEC DK= AJEI F=OI = EFHJ=J HA E DK= ?KE?=JE 6"
+bb7f2c5d84797742f1d819ea34d1f4b4f8d7c197,From Images to 3D Shape Attributes.,"TO APPEAR IN TPAMI +From Images to 3D Shape Attributes +David F. Fouhey, Abhinav Gupta, Andrew Zisserman"
+bbd1eb87c0686fddb838421050007e934b2d74ab,Look at Boundary: A Boundary-Aware Face Alignment Algorithm,"(68 points) COFW (29 points) AFLW (19 points) Figure1:Thefirstcolumnshowsthefaceimagesfromdifferentdatasetswithdifferentnumberoflandmarks.Thesecondcolumnillustratestheuniversallydefinedfacialboundariesestimatedbyourmethods.Withthehelpofboundaryinformation,ourapproachachieveshighaccuracylocalisationresultsacrossmultipledatasetsandannotationprotocols,asshowninthethirdcolumn.Differenttofacedetection[45]andrecognition[75],facealignmentidentifiesgeometrystructureofhumanfacewhichcanbeviewedasmodelinghighlystructuredout-put.Eachfaciallandmarkisstronglyassociatedwithawell-definedfacialboundary,e.g.,eyelidandnosebridge.However,comparedtoboundaries,faciallandmarksarenotsowell-defined.Faciallandmarksotherthancornerscanhardlyremainthesamesemanticallocationswithlargeposevariationandocclusion.Besides,differentannotationschemesofexistingdatasetsleadtoadifferentnumberoflandmarks[28,5,66,30](19/29/68/194points)andanno-tationschemeoffuturefacealignmentdatasetscanhardlybedetermined.Webelievethereasoningofauniquefacial"
+d73d2c9a6cef79052f9236e825058d5d9cdc1321,Cutting the visual world into bigger slices for improved video concept detection. (Amélioration de la détection des concepts dans les vidéos en coupant de plus grandes tranches du monde visuel),"014-ENST-0040 +EDITE - ED 130 +Doctorat ParisTech +T H È S E +pour obtenir le grade de docteur délivré par +TELECOM ParisTech +Spécialité « Signal et Images » +présentée et soutenue publiquement par +Usman Farrokh NIAZ +le 08 juillet 2014 +Cutting the Visual World into Bigger Slices for Improved Video +Concept Detection +Amélioration de la détection des concepts dans les vidéos par de plus grandes tranches du Monde +Visuel +Directeur de thèse : Bernard Mérialdo +M. Philippe-Henri Gosselin, Professeur, INRIA +M. Georges Quénot, Directeur de recherche CNRS, LIG +M. Georges Linares, Professeur, LIA +M. François Brémond, Professeur, INRIA +M. Bernard Mérialdo, Professeur, EURECOM"
+d7fe2a52d0ad915b78330340a8111e0b5a66513a,Photo-to-Caricature Translation on Faces in the Wild,"Unpaired Photo-to-Caricature Translation on Faces in +the Wild +Ziqiang Zhenga, Chao Wanga, Zhibin Yua, Nan Wanga, Haiyong Zhenga,∗, +Bing Zhenga +No. 238 Songling Road, Department of Electronic Engineering, Ocean University of +China, Qingdao, China"
+d708ce7103a992634b1b4e87612815f03ba3ab24,FCVID: Fudan-Columbia Video Dataset,"FCVID: Fudan-Columbia Video Dataset +Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, Shih-Fu Chang +Available at: http://bigvid.fudan.edu.cn/FCVID/ +OVERVIEW +Recognizing visual contents in unconstrained videos +has become a very important problem for many ap- +plications, such as Web video search and recommen- +dation, smart content-aware advertising, robotics, etc. +Existing datasets for video content recognition are +either small or do not have reliable manual labels. +In this work, we construct and release a new Inter- +net video dataset called Fudan-Columbia Video Dataset +(FCVID), containing 91,223 Web videos (total duration +,232 hours) annotated manually according to 239 +ategories. We believe that the release of FCVID can +stimulate innovative research on this challenging and +important problem. +COLLECTION AND ANNOTATION +The categories in FCVID cover a wide range of topics +like social events (e.g., “tailgate party”), procedural"
+d7b6bbb94ac20f5e75893f140ef7e207db7cd483,griffith . edu . au Face Recognition across Pose : A Review,"Griffith Research Online +https://research-repository.griffith.edu.au +Face Recognition across Pose: A +Review +Author +Zhang, Paul, Gao, Yongsheng +Published +Journal Title +Pattern Recognition +https://doi.org/10.1016/j.patcog.2009.04.017 +Copyright Statement +Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance +with the copyright policy of the publisher. Please refer to the journal's website for access to the +definitive, published version. +Downloaded from +http://hdl.handle.net/10072/30193"
+d7d166aee5369b79ea2d71a6edd73b7599597aaa,Fast Subspace Clustering Based on the Kronecker Product,"Fast Subspace Clustering Based on the +Kronecker Product +Lei Zhou1, Xiao Bai1, Xianglong Liu1, Jun Zhou2, and Hancock Edwin3 +Beihang University 2Griffith University 3University of York, UK"
+d79f9ada35e4410cd255db39d7cc557017f8111a,Evaluation of accurate eye corner detection methods for gaze estimation,"Journal of Eye Movement Research +7(3):3, 1-8 +Evaluation of accurate eye corner detection methods for gaze +estimation +Jose Javier Bengoechea +Public University of Navarra, Spain +Juan J. Cerrolaza +Childrens National Medical Center, USA +Arantxa Villanueva +Public University of Navarra, Spain +Rafael Cabeza +Public University of Navarra, Spain +Accurate detection of iris center and eye corners appears to be a promising +pproach for low cost gaze estimation. +In this paper we propose novel eye +inner corner detection methods. Appearance and feature based segmentation +pproaches are suggested. All these methods are exhaustively tested on a realistic +dataset containing images of subjects gazing at different points on a screen. +We have demonstrated that a method based on a neural network presents the +est performance even in light changing scenarios."
+d03265ea9200a993af857b473c6bf12a095ca178,Multiple deep convolutional neural networks averaging for face alignment,"Multiple deep convolutional neural +networks averaging for face +lignment +Shaohua Zhang +Hua Yang +Zhouping Yin +Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 05/28/2015 Terms of Use: http://spiedl.org/terms"
+d00c335fbb542bc628642c1db36791eae24e02b7,Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor,"Article +Deep Learning-Based Gaze Detection System for +Automobile Drivers Using a NIR Camera Sensor +Rizwan Ali Naqvi, Muhammad Arsalan, Ganbayar Batchuluun, Hyo Sik Yoon and +Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, +Seoul 100-715, Korea; (R.A.N.); (M.A.); +(G.B.); (H.S.Y.) +* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +Received: 5 January 2018; Accepted: 1 February 2018; Published: 3 February 2018"
+d074b33afd95074d90360095b6ecd8bc4e5bb6a2,Human-Robot Collaboration: a Survey,"December 11, 2007 +2:8 WSPC/INSTRUCTION FILE +auer-2007-ijhr +International Journal of Humanoid Robotics +(cid:13) World Scientific Publishing Company +Human-Robot Collaboration: A Survey +Andrea Bauer, Dirk Wollherr, Martin Buss +Institute of Automatic Control Engineering (LSR) +Technische Universit¨at M¨unchen +80290 Munich +Germany +Received 01.05.2007 +Revised 29.09.2007 +Accepted Day Month Year +As robots are gradually leaving highly structured factory environments and moving into +human populated environments, they need to possess more complex cognitive abilities. +They do not only have to operate efficiently and safely in natural, populated environ- +ments, but also be able to achieve higher levels of cooperation and communication with +humans. Human-robot collaboration (HRC) is a research field with a wide range of ap- +plications, future scenarios, and potentially a high economic impact. HRC is an interdis-"
+d0144d76b8b926d22411d388e7a26506519372eb,Improving Regression Performance with Distributional Losses,"Improving Regression Performance with Distributional Losses +Ehsan Imani 1 Martha White 1"
+d0a21f94de312a0ff31657fd103d6b29db823caa,Facial Expression Analysis,"Facial Expression Analysis +Fernando De la Torre and Jeffrey F. Cohn"
+d03e4e938bcbc25aa0feb83d8a0830f9cd3eb3ea,Face Recognition with Patterns of Oriented Edge Magnitudes,"Face Recognition with Patterns of Oriented +Edge Magnitudes +Ngoc-Son Vu1,2 and Alice Caplier2 +Vesalis Sarl, Clermont Ferrand, France +Gipsa-lab, Grenoble INP, France"
+d02c54192dbd0798b43231efe1159d6b4375ad36,3 D Reconstruction and Face Recognition Using Kernel-Based ICA and Neural Networks,"D Reconstruction and Face Recognition Using Kernel-Based +ICA and Neural Networks +Cheng-Jian Lin Ya-Tzu Huang +Chi-Yung Lee +Dept. of Electrical Dept. of CSIE Dept. of CSIE +Engineering Chaoyang University Nankai Institute of +National University of Technology Technology +of Kaohsiung"
+d00787e215bd74d32d80a6c115c4789214da5edb,Faster and Lighter Online Sparse Dictionary Learning,"Faster and Lighter Online +Sparse Dictionary Learning +Project report +By: Shay Ben-Assayag, Omer Dahary +Supervisor: Jeremias Sulam"
+be8c517406528edc47c4ec0222e2a603950c2762,Measuring Facial Action,"Harrigan / The new handbook of methods in nonverbal behaviour research 02-harrigan-chap02 Page Proof page 7 +7.6.2005 +5:45pm +B A S I C R E S E A RC H +M E T H O D S A N D +P RO C E D U R E S"
+beb3fd2da7f8f3b0c3ebceaa2150a0e65736d1a2,Adaptive Histogram Equalization and Logarithm Transform with Rescaled Low Frequency DCT Coefficients for Illumination Normalization,"RESEARCH PAPER +International Journal of Recent Trends in Engineering Vol 1, No. 1, May 2009, +Adaptive Histogram Equalization and Logarithm +Transform with Rescaled Low Frequency DCT +Coefficients for Illumination Normalization +Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta +Department of Computer Science and Engineering +Amity School of Engineering Technology, 580, Bijwasan, New Delhi-110061, India +(Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India) +Email: +illumination normalization. The +lighting conditions. Most of the"
+be48b5dcd10ab834cd68d5b2a24187180e2b408f,Constrained Low-Rank Learning Using Least Squares-Based Regularization,"FOR PERSONAL USE ONLY +Constrained Low-rank Learning Using Least +Squares Based Regularization +Ping Li, Member, IEEE, Jun Yu, Member, IEEE, Meng Wang, Member, IEEE, +Luming Zhang, Member, IEEE, Deng Cai, Member, IEEE, and Xuelong Li, Fellow, IEEE,"
+be437b53a376085b01ebd0f4c7c6c9e40a4b1a75,Face Recognition and Retrieval Using Cross Age Reference Coding,"ISSN (Online) 2321 – 2004 +ISSN (Print) 2321 – 5526 +INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +Vol. 4, Issue 5, May 2016 +IJIREEICE +Face Recognition and Retrieval Using Cross +Age Reference Coding +Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 +BE, DSCE, Bangalore1 +Assistant Professor, DSCE, Bangalore2"
+be07f2950771d318a78d2b64de340394f7d6b717,3D HMM-based Facial Expression Recognition using Histogram of Oriented Optical Flow,"See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290192867 +D HMM-based Facial Expression Recognition +using Histogram of Oriented Optical Flow +ARTICLE in SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING · DECEMBER 2015 +DOI: 10.14738/tmlai.36.1661 +READS +AUTHORS, INCLUDING: +Sheng Kung +Oakland University +Djamel Bouchaffra +Institute of Electrical and Electronics Engineers +PUBLICATION 0 CITATIONS +57 PUBLICATIONS 402 CITATIONS +SEE PROFILE +SEE PROFILE +All in-text references underlined in blue are linked to publications on ResearchGate, +letting you access and read them immediately. +Available from: Djamel Bouchaffra +Retrieved on: 11 February 2016"
+beb4546ae95f79235c5f3c0e9cc301b5d6fc9374,A Modular Approach to Facial Expression Recognition,"A Modular Approach to Facial Expression Recognition +Michal Sindlar +Cognitive Artificial Intelligence, Utrecht University, Heidelberglaan 6, 3584 CD, Utrecht +Marco Wiering +Intelligent Systems Group, Utrecht University, Padualaan 14, 3508 TB, Utrecht"
+bebea83479a8e1988a7da32584e37bfc463d32d4,Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning,"Discovery of Latent 3D Keypoints via +End-to-end Geometric Reasoning +Supasorn Suwajanakorn∗ Noah Snavely +Jonathan Tompson Mohammad Norouzi +{supasorn, snavely, tompson, +Google AI"
+beab10d1bdb0c95b2f880a81a747f6dd17caa9c2,DeepDeblur: Fast one-step blurry face images restoration,"DeepDeblur: Fast one-step blurry face images restoration +Lingxiao Wang, Yali Li, Shengjin Wang +Tsinghua Unversity"
+b331ca23aed90394c05f06701f90afd550131fe3,Double regularized matrix factorization for image classification and clustering,"Zhou et al. EURASIP Journal on Image and Video Processing (2018) 2018:49 +https://doi.org/10.1186/s13640-018-0287-5 +EURASIP Journal on Image +nd Video Processing +R ES EAR CH +Double regularized matrix factorization for +image classification and clustering +Wei Zhou1* +, Chengdong Wu2, Jianzhong Wang3,4, Xiaosheng Yu2 and Yugen Yi5 +Open Access"
+b37f57edab685dba5c23de00e4fa032a3a6e8841,Towards social interaction detection in egocentric photo-streams,"Towards Social Interaction Detection in Egocentric Photo-streams +Maedeh Aghaei, Mariella Dimiccoli, Petia Radeva +University of Barcelona and Computer Vision Centre, Barcelona, Spain +Recent advances in wearable camera technology have +led to novel applications in the field of Preventive Medicine. +For some of them, such as cognitive training of elderly peo- +ple by digital memories and detection of unhealthy social +trends associated to neuropsychological disorders, social in- +teraction are of special interest. Our purpose is to address +this problem in the domain of egocentric photo-streams cap- +tured by a low temporal resolution wearable camera (2fpm). +These cameras are suited for collecting visual information +for long period of time, as required by the aforementioned +pplications. The major difficulties to be handled in this +ontext are the sparsity of observations as well as the unpre- +dictability of camera motion and attention orientation due +to the fact that the camera is worn as part of clothing (see +Fig. 1). Inspired by the theory of F-formation which is a +pattern that people tend to follow when interacting [5], our +proposed approach consists of three steps: multi-faces as-"
+b3cb91a08be4117d6efe57251061b62417867de9,Label propagation approach for predicting missing biographic labels in face-based biometric records,"T. Swearingen and A. Ross. ""A label propagation approach for predicting missing biographic labels in +A Label Propagation Approach for +Predicting Missing Biographic Labels +in Face-Based Biometric Records +Thomas Swearingen and Arun Ross"
+b340f275518aa5dd2c3663eed951045a5b8b0ab1,Visual inference of human emotion and behaviour,"Visual Inference of Human Emotion and Behaviour +Shaogang Gong +Caifeng Shan +Tao Xiang +Dept of Computer Science +Queen Mary College, London +Dept of Computer Science +Queen Mary College, London +Dept of Computer Science +Queen Mary College, London +England, UK +England, UK +England, UK"
+b375db63742f8a67c2a7d663f23774aedccc84e5,Brain-Inspired Classroom Occupancy Monitoring on a Low-Power Mobile Platform,"Brain-inspired Classroom Occupancy +Monitoring on a Low-Power Mobile Platform +Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy +Francesco Conti∗, Antonio Pullini† and Luca Benini∗† +Integrated Systems Laboratory, ETH Zurich, Switzerland"
+b3c60b642a1c64699ed069e3740a0edeabf1922c,Max-Margin Object Detection,"Max-Margin Object Detection +Davis E. King"
+b3f7c772acc8bc42291e09f7a2b081024a172564,"A novel approach for performance parameter estimation of face recognition based on clustering , shape and corner detection","www.ijmer.com Vol. 3, Issue. 5, Sep - Oct. 2013 pp-3225-3230 ISSN: 2249-6645 +International Journal of Modern Engineering Research (IJMER) +A novel approach for performance parameter estimation of face +recognition based on clustering, shape and corner detection +.Smt.Minj Salen Kujur , 2.Prof. Prashant Jain, +Department of Electronics & Communication Engineering college Jabalpur"
+b32cf547a764a4efa475e9c99a72a5db36eeced6,Mimicry of ingroup and outgroup emotional expressions,"UvA-DARE (Digital Academic Repository) +Mimicry of ingroup and outgroup emotional expressions +Sachisthal, M.S.M.; Sauter, D.A.; Fischer, A.H. +Published in: +Comprehensive Results in Social Psychology +0.1080/23743603.2017.1298355 +Link to publication +Citation for published version (APA): +Sachisthal, M. S. M., Sauter, D. A., & Fischer, A. H. (2016). Mimicry of ingroup and outgroup emotional +expressions. Comprehensive Results in Social Psychology, 1(1-3), 86-105. DOI: +0.1080/23743603.2017.1298355 +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible. +Download date: 08 Aug 2018"
+b32631f456397462b3530757f3a73a2ccc362342,Discriminant Tensor Dictionary Learning with Neighbor Uncorrelation for Image Set Based Classification,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
+df90850f1c153bfab691b985bfe536a5544e438b,"Face Tracking Algorithm Robust to Pose , Illumination and Face Expression Changes : a 3 D Parametric Model Approach","FACE TRACKING ALGORITHM ROBUST TO POSE, +ILLUMINATION AND FACE EXPRESSION CHANGES: A 3D +PARAMETRIC MODEL APPROACH +Marco Anisetti, Valerio Bellandi +University of Milan - Department of Information Technology +via Bramante 65 - 26013, Crema (CR), Italy +Luigi Arnone, Fabrizio Beverina +STMicroelectronics - Advanced System Technology Group +via Olivetti 5 - 20041, Agrate Brianza, Italy +Keywords: +Face tracking, expression changes, FACS, illumination changes."
+df8da144a695269e159fb0120bf5355a558f4b02,Face Recognition using PCA and Eigen Face Approach,"International Journal of Computer Applications (0975 – 8887) +International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013) +Face Recognition using PCA and Eigen Face +Approach +Anagha A. Shinde +ME EXTC [VLSI & Embedded System] +Sinhgad Academy of Engineering +EXTC Department +Pune, India"
+df577a89830be69c1bfb196e925df3055cafc0ed,"Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions","Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions +Bichen Wu, Alvin Wan∗, Xiangyu Yue∗, Peter Jin, Sicheng Zhao, +Noah Golmant, Amir Gholaminejad, Joseph Gonzalez, Kurt Keutzer +UC Berkeley"
+df51dfe55912d30fc2f792561e9e0c2b43179089,Face Hallucination Using Linear Models of Coupled Sparse Support,"Face Hallucination using Linear Models of Coupled +Sparse Support +Reuben A. Farrugia, Member, IEEE, and Christine Guillemot, Fellow, IEEE +grid and fuse them to suppress the aliasing caused by under- +sampling [5], [6]. On the other hand, learning based meth- +ods use coupled dictionaries to learn the mapping relations +etween low- and high- resolution image pairs to synthesize +high-resolution images from low-resolution images [4], [7]. +The research community has lately focused on the latter +ategory of super-resolution methods, since they can provide +higher quality images and larger magnification factors."
+df054fa8ee6bb7d2a50909939d90ef417c73604c,Image Quality-aware Deep Networks Ensemble for Efficient Gender Recognition in the Wild,"Image Quality-Aware Deep Networks Ensemble for Efficient +Gender Recognition in the Wild +Mohamed Selim1, Suraj Sundararajan1, Alain Pagani2 and Didier Stricker1,2 +Augmented Vision Lab, Technical University Kaiserslautern, Kaiserslautern, Germany +German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany +{mohamed.selim, alain.pagani, s +Keywords: +Gender, Face, Deep Neural Networks, Quality, In the Wild"
+df80fed59ffdf751a20af317f265848fe6bfb9c9,Learning Deep Sharable and Structural Detectors for Face Alignment,"Learning Deep Sharable and Structural +Detectors for Face Alignment +Hao Liu, Jiwen Lu, Senior Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE"
+dfa80e52b0489bc2585339ad3351626dee1a8395,Human Action Forecasting by Learning Task Grammars,"Human Action Forecasting by Learning Task Grammars +Tengda Han +Jue Wang +Anoop Cherian +Stephen Gould"
+dfecaedeaf618041a5498cd3f0942c15302e75c3,A recursive framework for expression recognition: from web images to deep models to game dataset,"Noname manuscript No. +(will be inserted by the editor) +A Recursive Framework for Expression Recognition: From +Web Images to Deep Models to Game Dataset +Wei Li · Christina Tsangouri · Farnaz Abtahi · Zhigang Zhu +Received: date / Accepted: date"
+df5fe0c195eea34ddc8d80efedb25f1b9034d07d,Robust modified Active Shape Model for automatic facial landmark annotation of frontal faces,"Robust Modified Active Shape Model for Automatic Facial Landmark +Annotation of Frontal Faces +Keshav Seshadri and Marios Savvides"
+df2494da8efa44d70c27abf23f73387318cf1ca8,Supervised Filter Learning for Representation Based Face Recognition,"RESEARCH ARTICLE +Supervised Filter Learning for Representation +Based Face Recognition +Chao Bi1, Lei Zhang2, Miao Qi1, Caixia Zheng1, Yugen Yi3, Jianzhong Wang1*, +Baoxue Zhang4* +College of Computer Science and Information Technology, Northeast Normal University, Changchun, +China, 2 Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China, 3 School of +Software, Jiangxi Normal University, Nanchang, China, 4 School of Statistics, Capital University of +Economics and Business, Beijing, China +11111 +* (JW); (BZ)"
+df674dc0fc813c2a6d539e892bfc74f9a761fbc8,An Image Mining System for Gender Classification & Age Prediction Based on Facial Features,"IOSR Journal of Computer Engineering (IOSR-JCE) +e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 21-29 +www.iosrjournals.org +An Image Mining System for Gender Classification & Age +Prediction Based on Facial Features +1.Ms.Dhanashri Shirkey , 2Prof.Dr.S.R.Gupta, +M.E(Scholar),Department Computer Science & Engineering, PRMIT & R, Badnera +Asstt.Prof. Department Computer Science & Engineering, PRMIT & R, Badnera"
+dad7b8be074d7ea6c3f970bd18884d496cbb0f91,Super-Sparse Regression for Fast Age Estimation from Faces at Test Time,"Super-Sparse Regression for Fast Age +Estimation From Faces at Test Time +Ambra Demontis, Battista Biggio, Giorgio Fumera, and Fabio Roli +Dept. of Electrical and Electronic Engineering, University of Cagliari +Piazza d’Armi, 09123 Cagliari, Italy +WWW home page: http://prag.diee.unica.it"
+da4170c862d8ae39861aa193667bfdbdf0ecb363,Multi-Task CNN Model for Attribute Prediction,"Multi-task CNN Model for Attribute Prediction +Abrar H. Abdulnabi, Student Member, IEEE, Gang Wang, Member, IEEE, , Jiwen Lu, Member, IEEE +nd Kui Jia, Member, IEEE"
+dac2103843adc40191e48ee7f35b6d86a02ef019,Unsupervised Celebrity Face Naming in Web Videos,"Unsupervised Celebrity Face Naming in Web Videos +Lei Pang and Chong-Wah Ngo"
+dae420b776957e6b8cf5fbbacd7bc0ec226b3e2e,Recognizing Emotions in Spontaneous Facial Expressions,"RECOGNIZING EMOTIONS IN SPONTANEOUS FACIAL EXPRESSIONS +Michael Grimm, Dhrubabrata Ghosh Dastidar, and Kristian Kroschel +Institut f¨ur Nachrichtentechnik +Universit¨at Karlsruhe (TH), Germany"
+daefac0610fdeff415c2a3f49b47968d84692e87,Multimodal Frame Identification with Multilingual Evaluation,"New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics +Proceedings of NAACL-HLT 2018, pages 1481–1491"
+b49affdff167f5d170da18de3efa6fd6a50262a2,Linking Names and Faces : Seeing the Problem in Different Ways,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +(2008)"""
+b41374f4f31906cf1a73c7adda6c50a78b4eb498,Iterative Gaussianization: From ICA to Random Rotations,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Iterative Gaussianization: From ICA to +Random Rotations +Valero Laparra, Gustavo Camps-Valls, Senior Member, IEEE, and Jesús Malo"
+b4ee64022cc3ccd14c7f9d4935c59b16456067d3,Unsupervised Cross-Domain Image Generation,"Unsupervised Cross-Domain Image Generation +Xinru Hua, Davis Rempe, and Haotian Zhang"
+b40290a694075868e0daef77303f2c4ca1c43269,Combining Local and Global Information for Hair Shape Modeling,"第 40 卷 第 4 期 +014 年 4 月 +自 动 化 学 报 +ACTA AUTOMATICA SINICA +Vol. 40, No. 4 +April, 2014 +融合局部与全局信息的头发形状模型 +王 楠 1 艾海舟 1 +摘 要 头发在人体表观中具有重要作用, 然而, 因为缺少有效的形状模型, 头发分割仍然是一个非常具有挑战性的问题. 本 +文提出了一种基于部件的模型, 它对头发形状以及环境变化更加鲁棒. 该模型将局部与全局信息相结合以描述头发的形状. 局 +部模型通过一系列算法构建, 包括全局形状词表生成, 词表分类器学习以及参数优化; 而全局模型刻画不同的发型, 采用支持 +向量机 (Support vector machine, SVM) 来学习, 它为所有潜在的发型配置部件并确定势函数. 在消费者图片上的实验证明 +了本文算法在头发形状多变和复杂环境等条件下的准确性与有效性. +关键词 头发形状建模, 部件模型, 部件配置算法, 支持向量机 +引用格式 王楠, 艾海舟. 融合局部与全局信息的头发形状模型. 自动化学报, 2014, 40(4): 615−623 +DOI 10.3724/SP.J.1004.2014.00615 +Combining Local and Global Information for Hair Shape Modeling +WANG Nan1 +AI Hai-Zhou1"
+b4b0bf0cbe1a2c114adde9fac64900b2f8f6fee4,Autonomous Learning Framework Based on Online Hybrid Classifier for Multi-view Object Detection in Video,"Autonomous Learning Framework Based on Online Hybrid +Classifier for Multi-view Object Detection in Video +Dapeng Luoa*Zhipeng Zenga Longsheng Weib Yongwen Liua Chen Luoc Jun Chenb Nong Sangd +School of Electronic Information and Mechanics, China University of Geosciences, Wuhan, Hubei 430074, China +School of Automation, China University of Geosciences, Wuhan, Hubei 430074, China +Huizhou School Affiliated to Beijing Normal University, Huizhou 516002, China +dNational Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong +University of Science and Technology, Wuhan, 430074, China"
+a285b6edd47f9b8966935878ad4539d270b406d1,Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap,"Sensors 2011, 11, 9573-9588; doi:10.3390/s111009573 +OPEN ACCESS +sensors +ISSN 1424-8220 +www.mdpi.com/journal/sensors +Article +Facial Expression Recognition Based on Local Binary Patterns +nd Kernel Discriminant Isomap +Xiaoming Zhao 1,* and Shiqing Zhang 2 +Department of Computer Science, Taizhou University, Taizhou 317000, China +School of Physics and Electronic Engineering, Taizhou University, Taizhou 318000, China; +E-Mail: +* Author to whom correspondence should be addressed; E-Mail: +Tel.: +86-576-8513-7178; Fax: ++86-576-8513-7178. +Received: 31 August 2011; in revised form: 27 September 2011 / Accepted: 9 October 2011 / +Published: 11 October 2011"
+a2359c0f81a7eb032cff1fe45e3b80007facaa2a,Towards Structured Analysis of Broadcast Badminton Videos,"Towards Structured Analysis of Broadcast Badminton Videos +Anurag Ghosh +Suriya Singh +C.V.Jawahar +{anurag.ghosh, +CVIT, KCIS, IIIT Hyderabad"
+a27735e4cbb108db4a52ef9033e3a19f4dc0e5fa,Intention from Motion,"Intention from Motion +Andrea Zunino, Jacopo Cavazza, Atesh Koul, Andrea Cavallo, Cristina Becchio and Vittorio Murino"
+a2fbaa0b849ecc74f34ebb36d1442d63212b29d2,An Efficient Approach to Face Recognition of Surgically Altered Images,"Volume 5, Issue 6, June 2015 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +An Efficient Approach to Face Recognition of Surgically +Altered Images +Er. Supriya, Er. Sukhpreet Kaur +Department of computer science and engineering +SUS college of Engineering and Technology, +Tangori, District, Mohali, Punjab, India"
+a50b4d404576695be7cd4194a064f0602806f3c4,Efficiently Estimating Facial Expression and Illumination in Appearance-based Tracking,"In Proceedings of BMVC, Edimburgh, UK, September 2006 +Efficiently estimating facial expression and +illumination in appearance-based tracking +Jos´e M. Buenaposada†, Enrique Mu˜noz‡, Luis Baumela‡ +ESCET, U. Rey Juan Carlos +C/ Tulip´an, s/n +8933 M´ostoles, Spain +Facultad Inform´atica, UPM +Campus de Montegancedo s/n +8660 Boadilla del Monte, Spain +http://www.dia.fi.upm.es/~pcr"
+a5e5094a1e052fa44f539b0d62b54ef03c78bf6a,Detection without Recognition for Redaction,"Detection without Recognition for Redaction +Shagan Sah1, Ram Longman1, Ameya Shringi1, Robert Loce2, Majid Rabbani1, and Raymond Ptucha1 +Rochester Institute of Technology - 83 Lomb Memorial Drive, Rochester, NY USA, 14623 +Conduent, Conduent Labs - US, 800 Phillips Rd, MS128, Webster, NY USA, 14580 +Email:"
+a56c1331750bf3ac33ee07004e083310a1e63ddc,Efficient Point-to-Subspace Query in ℓ1 with Application to Robust Object Instance Recognition,"Vol. xx, pp. x +(cid:13) xxxx Society for Industrial and Applied Mathematics +Efficient Point-to-Subspace Query in (cid:96)1 with Application to Robust Object +Instance Recognition +Ju Sun∗, Yuqian Zhang†, and John Wright‡"
+a54e0f2983e0b5af6eaafd4d3467b655a3de52f4,Face Recognition Using Convolution Filters and Neural Networks,"Face Recognition Using Convolution Filters and +Neural Networks +V. Rihani +Head, Dept. of E&E,PEC +Sec-12, Chandigarh – 160012 +Amit Bhandari +Department of CSE & IT, PEC +Sec-12, Chandigarh – 160012 +C.P. Singh +Physics Department, CFSL, +Sec-36, Chandigarh - 160036 +to: (a) +potential method"
+a5625cfe16d72bd00e987857d68eb4d8fc3ce4fb,VFSC: A Very Fast Sparse Clustering to Cluster Faces from Videos,"VFSC: A Very Fast Sparse Clustering to Cluster Faces +from Videos +Dinh-Luan Nguyen, Minh-Triet Tran +University of Science, VNU-HCMC, Ho Chi Minh city, Vietnam"
+a55efc4a6f273c5895b5e4c5009eabf8e5ed0d6a,"Continuous Head Movement Estimator for Driver Assistance: Issues, Algorithms, and On-Road Evaluations","Continuous Head Movement Estimator for +Driver Assistance: Issues, Algorithms, +nd On-Road Evaluations +Ashish Tawari, Student Member, IEEE, Sujitha Martin, Student Member, IEEE, and +Mohan Manubhai Trivedi, Fellow, IEEE"
+a51d5c2f8db48a42446cc4f1718c75ac9303cb7a,Cross-validating Image Description Datasets and Evaluation Metrics,"Cross-validating Image Description Datasets and Evaluation Metrics +Josiah Wang and Robert Gaizauskas +Department of Computer Science +University of Sheffield, UK +{j.k.wang,"
+a52d9e9daf2cb26b31bf2902f78774bd31c0dd88,Understanding and Designing Convolutional Networks for Local Recognition Problems,"Understanding and Designing Convolutional Networks +for Local Recognition Problems +Jonathan Long +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-97 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-97.html +May 13, 2016"
+a5a44a32a91474f00a3cda671a802e87c899fbb4,Moments in Time Dataset: one million videos for event understanding,"Moments in Time Dataset: one million +videos for event understanding +Mathew Monfort, Bolei Zhou, Sarah Adel Bargal, +Alex Andonian, Tom Yan, Kandan Ramakrishnan, Lisa Brown, +Quanfu Fan, Dan Gutfruend, Carl Vondrick, Aude Oliva"
+bd0e100a91ff179ee5c1d3383c75c85eddc81723,Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action Detection,"Okutama-Action: An Aerial View Video Dataset for Concurrent Human Action +Detection∗ +Mohammadamin Barekatain1, Miquel Mart´ı2,3, Hsueh-Fu Shih4, Samuel Murray2, Kotaro Nakayama5, +Yutaka Matsuo5, Helmut Prendinger6 +Technical University of Munich, Munich, 2KTH Royal Institute of Technology, Stockholm, +Polytechnic University of Catalonia, Barcelona, 4National Taiwan University, Taipei, 5University of +Tokyo, Tokyo, 6National Institute of Informatics, Tokyo"
+bd07d1f68486052b7e4429dccecdb8deab1924db,Face representation under different illumination conditions,
+bd13f50b8997d0733169ceba39b6eb1bda3eb1aa,Occlusion Coherence: Detecting and Localizing Occluded Faces,"Occlusion Coherence: Detecting and Localizing Occluded Faces +Golnaz Ghiasi, Charless C. Fowlkes +University of California at Irvine, Irvine, CA 92697"
+bd78a853df61d03b7133aea58e45cd27d464c3cf,A Sparse Representation Approach to Facial Expression Recognition Based on LBP plus LFDA,"A Sparse Representation Approach to Facial +Expression Recognition Based on LBP plus LFDA +Ritesh Bora, V.A.Chakkarvar +Computer science and Engineering Department, +Government College of Engineering, Aurangabad [Autonomous] +Station Road, Aurangabad, Maharashtra, India."
+bd2d7c7f0145028e85c102fe52655c2b6c26aeb5,Attribute-based People Search: Lessons Learnt from a Practical Surveillance System,"Attribute-based People Search: Lessons Learnt from a +Practical Surveillance System +Rogerio Feris +IBM Watson +http://rogerioferis.com +Russel Bobbitt +IBM Watson +Lisa Brown +IBM Watson +Sharath Pankanti +IBM Watson"
+bdbba95e5abc543981fb557f21e3e6551a563b45,Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks,"International Journal of Computational Intelligence and Applications +Vol. 17, No. 2 (2018) 1850008 (15 pages) +#.c The Author(s) +DOI: 10.1142/S1469026818500086 +Speeding up the Hyperparameter Optimization of Deep +Convolutional Neural Networks +Tobias Hinz*, Nicolas Navarro-Guerrero†, Sven Magg‡ +nd Stefan Wermter§ +Knowledge Technology, Department of Informatics +Universit€at Hamburg +Vogt-K€olln-Str. 30, Hamburg 22527, Germany +Received 15 August 2017 +Accepted 23 March 2018 +Published 18 June 2018 +Most learning algorithms require the practitioner to manually set the values of many hyper- +parameters before the learning process can begin. However, with modern algorithms, the +evaluation of a given hyperparameter setting can take a considerable amount of time and the +search space is often very high-dimensional. We suggest using a lower-dimensional represen- +tation of the original data to quickly identify promising areas in the hyperparameter space. This +information can then be used to initialize the optimization algorithm for the original, higher-"
+d1dfdc107fa5f2c4820570e369cda10ab1661b87,Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,"Super SloMo: High Quality Estimation of Multiple Intermediate Frames +for Video Interpolation +Huaizu Jiang1 +Deqing Sun2 +Varun Jampani2 +Ming-Hsuan Yang3,2 +Erik Learned-Miller1 +Jan Kautz2 +UMass Amherst +NVIDIA 3UC Merced"
+d1dae2993bdbb2667d1439ff538ac928c0a593dc,Gamma Correction Technique Based Feature Extraction for Face Recognition System,"International Journal of Computational Intelligence and Informatics, Vol. 3: No. 1, April - June 2013 +Gamma Correction Technique Based Feature Extraction +for Face Recognition System +B Vinothkumar +P Kumar +Electronics and Communication Engineering +K S Rangasamy College of Technology +Electronics and Communication Engineering +K S Rangasamy College of Technology +Tamilnadu, India +Tamilnadu, India"
+d1f58798db460996501f224fff6cceada08f59f9,Transferrable Representations for Visual Recognition,"Transferrable Representations for Visual Recognition +Jeffrey Donahue +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2017-106 +http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-106.html +May 14, 2017"
+d1a43737ca8be02d65684cf64ab2331f66947207,IJB–S: IARPA Janus Surveillance Video Benchmark,"IJB–S: IARPA Janus Surveillance Video Benchmark (cid:3) +Nathan D. Kalka y +Stephen Elliott z +Brianna Maze y +Kaleb Hebert y +James A. Duncan y +Julia Bryan z +Kevin O’Connor z +Anil K. Jain x"
+d1082eff91e8009bf2ce933ac87649c686205195,Pruning of Error Correcting Output Codes by optimization of accuracy–diversity trade off,"(will be inserted by the editor) +Pruning of Error Correcting Output Codes by +Optimization of Accuracy-Diversity Trade off +S¨ureyya ¨Oz¨o˘g¨ur Aky¨uz · Terry +Windeatt · Raymond Smith +Received: date / Accepted: date"
+d1d6f1d64a04af9c2e1bdd74e72bd3ffac329576,Neural Face Editing with Intrinsic Image Disentangling,"Neural Face Editing with Intrinsic Image Disentangling +Zhixin Shu1 Ersin Yumer2 Sunil Hadap2 Kalyan Sunkavalli2 Eli Shechtman 2 Dimitris Samaras1,3 +Stony Brook University 2Adobe Research 3 CentraleSup´elec, Universit´e Paris-Saclay"
+d69df51cff3d6b9b0625acdcbea27cd2bbf4b9c0,Robust Remote Heart Rate Determination for E-Rehabilitation - A Method that Overcomes Motion and Intensity Artefacts,
+d61578468d267c2d50672077918c1cda9b91429b,Face Image Retrieval Using Pose Specific Set Sparse Feature Representation,"Abdul Afeef N et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 314-323 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 3, Issue. 9, September 2014, pg.314 – 323 +RESEARCH ARTICLE +Face Image Retrieval Using Pose Specific +Set Sparse Feature Representation +Department of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India +Assistant Professor of Computer Science, Viswajyothi College of Engineering and Technology Kerala, India +Abdul Afeef N1, Sebastian George2"
+d687fa99586a9ad229284229f20a157ba2d41aea,Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks,"Journal of Intelligent Learning Systems and Applications, 2013, 5, 115-122 +http://dx.doi.org/10.4236/jilsa.2013.52013 Published Online May 2013 (http://www.scirp.org/journal/jilsa) +Face Recognition Based on Wavelet Packet Coefficients +nd Radial Basis Function Neural Networks +Thangairulappan Kathirvalavakumar1*, Jeyasingh Jebakumari Beulah Vasanthi2 +Department of Computer Science, Virudhunagar Hindu Nadars’ Senthikumara Nadar College, Virudhunagar, India; 2Department of +Computer Applications, Ayya Nadar Janaki Ammal College, Sivakasi, India. +Email: +Received December 12th, 2012; revised April 19th, 2013; accepted April 26th, 2013 +Copyright © 2013 Thangairulappan Kathirvalavakumar, Jeyasingh Jebakumari Beulah Vasanthi. This is an open access article dis- +tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any me- +dium, provided the original work is properly cited."
+d6a9ea9b40a7377c91c705f4c7f206a669a9eea2,Visual Representations for Fine-grained Categorization,"Visual Representations for Fine-grained +Categorization +Ning Zhang +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2015-244 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-244.html +December 17, 2015"
+d671a210990f67eba9b2d3dda8c2cb91575b4a7a,Social Environment Description from Data Collected with a Wearable Device,"Journal of Machine Learning Research () +Submitted ; Published +Social Environment Description from Data Collected with a +Wearable Device +Pierluigi Casale +Computer Vision Center +Autonomous University of Barcelona +Barcelona, Spain +Editor: Radeva Petia, Pujol Oriol"
+d6102a7ddb19a185019fd2112d2f29d9258f6dec,Fashion Style Generator,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +GeneratorPatch……Global+…lstyle(2)lstyle(1)lcontent(1)lcontent(2)φθϕsϕcDiscriminatorDGXX(1)X(2)(a) Framework of the training stage(b) Examples of fashion style generationFigure1:Fashionstylegeneratorframeworkoverview.TheinputXconsistsofasetofclothingpatchesX(1)andfullclothingimagesX(2).Thesystemconsistsoftwocomponents:animagetransfor-mationnetworkGservedasfashionstylegenerator,andadiscrimi-natornetworkDcalculatesbothglobalandpatchbasedcontentandstylelosses.Gisaconvolutionalencoderdecodernetworkparam-eterizedbyweights(cid:18).Sixgeneratedshirtswithdifferentstylesbyourmethodareshownasexamples.(Wehighlyrecommendtozoominallthefigureswithcolorversionformoredetails.)recentneuralstyletransferworks[Gatysetal.,2015].Tak-ingVanGogh’s“StarryNight”astheexamplestyleimage,styleisbetweenthelow-levelcolor/texture(e.g.,blueandyellowcolor,roughorsmoothertexture)andthehigh-levelobjects(e.g.,houseandmountain).“Style”isarelativelyab-stractconcept.Fashionstylegenerationhasatleasttwoprac-ticalusages.Designerscouldquicklyseehowtheclothinglookslikeinagivenstyletofacilitatethedesignprocessing.Shopperscouldsynthesizetheclothingimagewiththeidealstyleandapplyclothingretrievaltools[Jiangetal.,2016b]tosearchthesimilaritems.Fashionstylegenerationisrelatedtoexistingneuralstyletransferworks[Gatysetal.,2015;LiandWand,2016a;EfrosandFreeman,2001],buthasitsownchallenges.Infashionstylegeneration,thesyntheticclothingimageshould"
+d6bfa9026a563ca109d088bdb0252ccf33b76bc6,Unsupervised Temporal Segmentation of Facial Behaviour,"Unsupervised Temporal Segmentation of Facial Behaviour +Abhishek Kar +Advisors: Dr. Amitabha Mukerjee & Dr. Prithwijit Guha +Department of Computer Science and Engineering, IIT Kanpur"
+d6c7092111a8619ed7a6b01b00c5f75949f137bf,A Novel Feature Extraction Technique for Facial Expression Recognition,"A Novel Feature Extraction Technique for Facial Expression +Recognition +*Mohammad Shahidul Islam1, Surapong Auwatanamongkol2 +1 Department of Computer Science, School of Applied Statistics, +National Institute of Development Administration, +Bangkok, 10240, Thailand +Department of Computer Science, School of Applied Statistics, +National Institute of Development Administration, +Bangkok, 10240, Thailand"
+bcee40c25e8819955263b89a433c735f82755a03,Biologically Inspired Vision for Human-Robot Interaction,"Biologically inspired vision for human-robot +interaction +M. Saleiro, M. Farrajota, K. Terzi´c, S. Krishna, J.M.F. Rodrigues, and J.M.H. +du Buf +Vision Laboratory, LARSyS, University of the Algarve, 8005-139 Faro, Portugal, +{masaleiro, mafarrajota, kterzic, jrodrig,"
+bc6de183cd8b2baeebafeefcf40be88468b04b74,Age Group Recognition using Human Facial Images,"Age Group Recognition using Human Facial Images +International Journal of Computer Applications (0975 – 8887) +Volume 126 – No.13, September 2015 +Shailesh S. Kulkarni +Dept. of Electronics and Telecommunication +Government College of Engineering, +Aurangabad, Maharashtra, India"
+bcf19b964e7d1134d00332cf1acf1ee6184aff00,Trajectory-Set Feature for Action Recognition,"IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017 +LETTER +Trajectory-Set Feature for Action Recognition +Kenji MATSUI†, Nonmember, Toru TAMAKI†a), Member, Bisser RAYTCHEV†, Nonmember, +nd Kazufumi KANEDA†, Member +SUMMARY We propose a feature for action recognition called +Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT). +The TS feature encodes only trajectories around densely sampled inter- +est points, without any appearance features. Experimental results on the +UCF50 action dataset demonstrates that TS is comparable to state-of-the- +rts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by +key words: action recognition, trajectory, improved Dense Trajectory +the two-stream CNN [2] that uses a single frame and a opti- +al flow stack. In their paper stacking trajectories was also +reported but did not perform well, probably the sparseness +of trajectories does not fit to CNN architectures. In contrast, +we take a hand-crafted approach that can be fused later with +CNN outputs. +Introduction +Action recognition has been well studied in the computer"
+bc9003ad368cb79d8a8ac2ad025718da5ea36bc4,Facial expression recognition with a three-dimensional face model,"Technische Universit¨at M¨unchen +Bildverstehen und Intelligente Autonome Systeme +Facial Expression Recognition With A +Three-Dimensional Face Model +Christoph Mayer +Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Informatik der Technischen Uni- +versit¨at M¨unchen zur Erlangung des akademischen Grades eines +Doktors der Naturwissenschaften +genehmigten Dissertation. +Vorsitzender: +Univ.-Prof. Dr. Johann Schlichter +Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr. Bernd Radig (i.R.) +. Univ.-Prof. Gudrun J. Klinker, Ph.D. +Die Dissertation wurde am 04.07.2011 bei der Technischen Universit¨at M¨unchen +eingereicht und durch die Fakult¨at f¨ur Informatik am 02.12.2011 angenommen."
+bcc172a1051be261afacdd5313619881cbe0f676,A fast face clustering method for indexing applications on mobile phones,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+bc811a66855aae130ca78cd0016fd820db1603ec,Towards three-dimensional face recognition in the real Huibin,"Towards three-dimensional face recognition in the real +Huibin Li +To cite this version: +Huibin Li. Towards three-dimensional face recognition in the real. Other. Ecole Centrale de +Lyon, 2013. English. <NNT : 2013ECDL0037>. <tel-00998798> +HAL Id: tel-00998798 +https://tel.archives-ouvertes.fr/tel-00998798 +Submitted on 2 Jun 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de +recherche fran¸cais ou ´etrangers, des laboratoires +publics ou priv´es."
+bc98027b331c090448492eb9e0b9721e812fac84,"Face Representation Using Combined Method of Gabor Filters, Wavelet Transformation and DCV and Recognition Using RBF","Journal of Intelligent Learning Systems and Applications, 2012, 4, 266-273 +http://dx.doi.org/10.4236/jilsa.2012.44027 Published Online November 2012 (http://www.SciRP.org/journal/jilsa) +Face Representation Using Combined Method of Gabor +Filters, Wavelet Transformation and DCV and Recognition +Using RBF +Kathirvalavakumar Thangairulappan1*, Jebakumari Beulah Vasanthi Jeyasingh2 +Department of Computer Science, VHNSN College, Virudhunagar, India; 2Department of Computer Applications, ANJA College, +Sivakasi, India. +Email: +Received April 27th, 2012; revised July 19th, 2012; accepted July 26th, 2012"
+bc9af4c2c22a82d2c84ef7c7fcc69073c19b30ab,MoCoGAN: Decomposing Motion and Content for Video Generation,"MoCoGAN: Decomposing Motion and Content for Video Generation +Sergey Tulyakov, +Snap Research +Ming-Yu Liu, Xiaodong Yang, +NVIDIA +Jan Kautz"
+bcac3a870501c5510df80c2a5631f371f2f6f74a,Structured Face Hallucination,"#1387 +CVPR 2013 Submission #1387. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#1387 +Structured Face Hallucination +Anonymous CVPR submission +Paper ID 1387"
+ae8d5be3caea59a21221f02ef04d49a86cb80191,Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks,"Published as a conference paper at ICLR 2018 +SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +RECURRENT NEURAL NETWORKS +V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ +Barcelona Supercomputing Center, ‡Google Inc, +§Universitat Polit`ecnica de Catalunya, ΓColumbia University +{victor.campos,"
+ae2cf545565c157813798910401e1da5dc8a6199,Cascade of Boolean detector combinations,"Mahkonen et al. EURASIP Journal on Image and Video +Processing (2018) 2018:61 +https://doi.org/10.1186/s13640-018-0303-9 +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +Cascade of Boolean detector +ombinations +Katariina Mahkonen* +, Tuomas Virtanen and Joni Kämäräinen"
+aebb9649bc38e878baef082b518fa68f5cda23a5,A Multi - scale TVQI - based Illumination Normalization Model,
+aeeea6eec2f063c006c13be865cec0c350244e5b,"Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial Expression Database","Induced Disgust, Happiness and Surprise: an Addition to the MMI Facial +Expression Database +Michel F. Valstar, Maja Pantic +Imperial College London / Twente University +Department of Computing / EEMCS +80 Queen’s Gate / Drienerlolaan 5 +London / Twente"
+ae9257f3be9f815db8d72819332372ac59c1316b,Deciphering the enigmatic face: the importance of facial dynamics in interpreting subtle facial expressions.,"P SY CH O L O GIC AL SC I E NC E +Research Article +Deciphering the Enigmatic Face +The Importance of Facial Dynamics in Interpreting Subtle +Facial Expressions +Zara Ambadar,1 Jonathan W. Schooler,2 and Jeffrey F. Cohn1 +University of Pittsburgh and 2University of British Columbia, Vancouver, British Columbia, Canada"
+ae89b7748d25878c4dc17bdaa39dd63e9d442a0d,On evaluating face tracks in movies,"On evaluating face tracks in movies +Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez +To cite this version: +Alexey Ozerov, Jean-Ronan Vigouroux, Louis Chevallier, Patrick Pérez. On evaluating face tracks +in movies. IEEE International Conference on Image Processing (ICIP 2013), Sep 2013, Melbourne, +Australia. 2013. <hal-00870059> +HAL Id: hal-00870059 +https://hal.inria.fr/hal-00870059 +Submitted on 4 Oct 2013 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de +recherche français ou étrangers, des laboratoires"
+aeff403079022683b233decda556a6aee3225065,DeepFace: Face Generation using Deep Learning,"DeepFace: Face Generation using Deep Learning +Hardie Cate +Fahim Dalvi +Zeshan Hussain"
+ae753fd46a744725424690d22d0d00fb05e53350,Describing Clothing by Semantic Attributes,"Describing Clothing by Semantic Attributes +Anonymous ECCV submission +Paper ID 727"
+ae85c822c6aec8b0f67762c625a73a5d08f5060d,Retrieving Similar Styles to Parse Clothing,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2353624 +IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. M, NO. N, MONTH YEAR +Retrieving Similar Styles to Parse Clothing +Kota Yamaguchi, Member, IEEE, M. Hadi Kiapour, Student Member, IEEE, +Luis E. Ortiz, and Tamara L. Berg, Member, IEEE"
+d861c658db2fd03558f44c265c328b53e492383a,Automated face extraction and normalization of 3D Mesh Data,"Automated Face Extraction and Normalization of 3D Mesh Data +Jia Wu1, Raymond Tse2, Linda G. Shapiro1"
+d82b93f848d5442f82154a6011d26df8a9cd00e7,Neural Network Based Age Classification Using Linear Wavelet Transforms,"NEURAL NETWORK BASED AGE CLASSIFICATION USING +LINEAR WAVELET TRANSFORMS +NITHYASHRI JAYARAMAN1 & G.KULANTHAIVEL2 +Department of Computer Science & Engineering, +Sathyabama University Old Mamallapuram Road, Chennai, India +Electronics Engineering, National Institute of Technical Teachers +Training & Research, Taramani, Chennai, India +E-mail :"
+d83d2fb5403c823287f5889b44c1971f049a1c93,Introducing the sick face,"Motiv Emot +DOI 10.1007/s11031-013-9353-6 +O R I G I N A L P A P E R +Introducing the sick face +Sherri C. Widen • Joseph T. Pochedly • +Kerrie Pieloch • James A. Russell +Ó Springer Science+Business Media New York 2013"
+d8b568392970b68794a55c090c4dd2d7f90909d2,PDA Face Recognition System Using Advanced Correlation Filters,"PDA Face Recognition System +Using Advanced Correlation +Filters +Chee Kiat Ng +Advisor: Prof. Khosla/Reviere"
+d83ae5926b05894fcda0bc89bdc621e4f21272da,Frugal Forests: Learning a Dynamic and Cost Sensitive Feature Extraction Policy for Anytime Activity Classification,"The Thesis committee for Joshua Allen Kelle certifies that this is the approved +version of the following thesis: +Frugal Forests: Learning a Dynamic and Cost Sensitive +Feature Extraction Policy for Anytime Activity Classification +APPROVED BY +SUPERVISING COMMITTEE: +Kristen Grauman, Supervisor +Peter Stone"
+d86fabd4498c8feaed80ec342d254fb877fb92f5,Region-Object Relevance-Guided Visual Relationship Detection,"Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD +Region-Object Relevance-Guided +Visual Relationship Detection +Yusuke Goutsu +National Institute of Informatics +Tokyo, Japan"
+d89cfed36ce8ffdb2097c2ba2dac3e2b2501100d,Robust Face Recognition via Multimodal Deep Face Representation,"Robust Face Recognition via Multimodal Deep +Face Representation +Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE"
+ab8f9a6bd8f582501c6b41c0e7179546e21c5e91,Nonparametric Face Verification Using a Novel Face Representation,"Nonparametric Face Verification Using a Novel +Face Representation +Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
+ab58a7db32683aea9281c188c756ddf969b4cdbd,Efficient Solvers for Sparse Subspace Clustering,"Efficient Solvers for Sparse Subspace Clustering +Farhad Pourkamali-Anaraki and Stephen Becker"
+aba770a7c45e82b2f9de6ea2a12738722566a149,Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels,"Face Recognition in the Scrambled Domain via Salience-Aware +Ensembles of Many Kernels +Jiang, R., Al-Maadeed, S., Bouridane, A., Crookes, D., & Celebi, M. E. (2016). Face Recognition in the +Scrambled Domain via Salience-Aware Ensembles of Many Kernels. IEEE Transactions on Information +Forensics and Security, 11(8), 1807-1817. DOI: 10.1109/TIFS.2016.2555792 +Published in: +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +Publisher rights +(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ +republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, +or reuse of any copyrighted components of this work in other works. +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy +The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to"
+ab989225a55a2ddcd3b60a99672e78e4373c0df1,"Sample, computation vs storage tradeoffs for classification using tensor subspace models","Sample, Computation vs Storage Tradeoffs for +Classification Using Tensor Subspace Models +Mohammadhossein Chaghazardi and Shuchin Aeron, Senior Member, IEEE"
+ab6776f500ed1ab23b7789599f3a6153cdac84f7,A Survey on Various Facial Expression Techniques,"International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1212 +ISSN 2229-5518 +A Survey on Various Facial Expression +Techniques +Md. Sarfaraz Jalil, Joy Bhattacharya"
+ab1719f573a6c121d7d7da5053fe5f12de0182e7,Combining visual recognition and computational linguistics : linguistic knowledge for visual recognition and natural language descriptions of visual content,"Combining Visual Recognition +nd Computational Linguistics +Linguistic Knowledge for Visual Recognition +nd Natural Language Descriptions +of Visual Content +Thesis for obtaining the title of +Doctor of Engineering Science +(Dr.-Ing.) +of the Faculty of Natural Science and Technology I +of Saarland University +Marcus Rohrbach, M.Sc. +Saarbrücken +March 2014"
+ab2b09b65fdc91a711e424524e666fc75aae7a51,Multi-modal Biomarkers to Discriminate Cognitive State *,"Multi-modal Biomarkers to Discriminate Cognitive State* +Thomas F. Quatieri 1, James R. Williamson1, Christopher J. Smalt1, +Joey Perricone, Tejash Patel, Laura Brattain, Brian S. Helfer, Daryush D. Mehta, Jeffrey Palmer +Kristin Heaton2, Marianna Eddy3, Joseph Moran3 +MIT Lincoln Laboratory, Lexington, Massachusetts, USA +USARIEM, 3NSRDEC +. Introduction +Multimodal biomarkers based on behavorial, neurophysiolgical, and cognitive measurements have +recently obtained increasing popularity in the detection of cognitive stress- and neurological-based +disorders. Such conditions are significantly and adversely affecting human performance and quality +of life for a large fraction of the world’s population. Example modalities used in detection of these +onditions include voice, facial expression, physiology, eye tracking, gait, and EEG analysis. +Toward the goal of finding simple, noninvasive means to detect, predict and monitor cognitive +stress and neurological conditions, MIT Lincoln Laboratory is developing biomarkers that satisfy +three criteria. First, we seek biomarkers that reflect core components of cognitive status such as +working memory capacity, processing speed, attention, and arousal. Second, and as importantly, we +seek biomarkers that reflect timing and coordination relations both within components of each +modality and across different modalities. This is based on the hypothesis that neural coordination +cross different parts of the brain is essential in cognition (Figure 1). An example of timing and +oordination within a modality is the set of finely timed and synchronized physiological"
+ab87dfccb1818bdf0b41d732da1f9335b43b74ae,Structured Dictionary Learning for Classification,"SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING +Structured Dictionary Learning for Classification +Yuanming Suo, Student Member, IEEE, Minh Dao, Student Member, IEEE, Umamahesh Srinivas, Student +Member, IEEE, Vishal Monga, Senior Member, IEEE, and Trac D. Tran, Fellow, IEEE"
+abc1ef570bb2d7ea92cbe69e101eefa9a53e1d72,Raisonnement abductif en logique de description exploitant les domaines concrets spatiaux pour l'interprétation d'images,"Raisonnement abductif en logique de +description exploitant les domaines concrets +spatiaux pour l’interprétation d’images +Yifan Yang 1, Jamal Atif 2, Isabelle Bloch 1 +. LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France +. Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, +LAMSADE, 75016 Paris, France +RÉSUMÉ. L’interprétation d’images a pour objectif non seulement de détecter et reconnaître des +objets dans une scène mais aussi de fournir une description sémantique tenant compte des in- +formations contextuelles dans toute la scène. Le problème de l’interprétation d’images peut être +formalisé comme un problème de raisonnement abductif, c’est-à-dire comme la recherche de la +meilleure explication en utilisant une base de connaissances. Dans ce travail, nous présentons +une nouvelle approche utilisant une méthode par tableau pour la génération et la sélection +d’explications possibles d’une image donnée lorsque les connaissances, exprimées dans une +logique de description, comportent des concepts décrivant les objets mais aussi les relations +spatiales entre ces objets. La meilleure explication est sélectionnée en exploitant les domaines +oncrets pour évaluer le degré de satisfaction des relations spatiales entre les objets."
+abeda55a7be0bbe25a25139fb9a3d823215d7536,Understanding Human-Centric Images: From Geometry to Fashion,"UNIVERSITATPOLITÈCNICADECATALUNYAProgramadeDoctorat:AUTOMÀTICA,ROBÒTICAIVISIÓTesiDoctoralUnderstandingHuman-CentricImages:FromGeometrytoFashionEdgarSimoSerraDirectors:FrancescMorenoNoguerCarmeTorrasMay2015"
+ab8fb278db4405f7db08fa59404d9dd22d38bc83,Implicit and Automated Emotional Tagging of Videos,"UNIVERSITÉ DE GENÈVE +Département d'Informatique +FACULTÉ DES SCIENCES +Professeur Thierry Pun +Implicit and Automated Emotional +Tagging of Videos +THÈSE +présenté à la Faculté des sciences de l'Université de Genève +pour obtenir le grade de Docteur ès sciences, mention informatique +Mohammad SOLEYMANI +Téhéran (IRAN) +Thèse No 4368 +GENÈVE +Repro-Mail - Université de Genève"
+e5823a9d3e5e33e119576a34cb8aed497af20eea,DocFace+: ID Document to Selfie Matching,"DocFace+: ID Document to Selfie* Matching +Yichun Shi, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
+e510f2412999399149d8635a83eca89c338a99a1,Face Recognition using Block-Based DCT Feature Extraction,"Journal of Advanced Computer Science and Technology, 1 (4) (2012) 266-283 +(cid:13)Science Publishing Corporation +www.sciencepubco.com/index.php/JACST +Face Recognition using Block-Based +DCT Feature Extraction +K Manikantan1, Vaishnavi Govindarajan1, +V V S Sasi Kiran1, S Ramachandran2 +Department of Electronics and Communication Engineering, +M S Ramaiah Institute of Technology, Bangalore, Karnataka, India 560054 +E-mail: +E-mail: +E-mail: +Department of Electronics and Communication Engineering, +S J B Institute of Technology, Bangalore, Karnataka, India 560060 +E-mail:"
+e56c4c41bfa5ec2d86c7c9dd631a9a69cdc05e69,Human Activity Recognition Based on Wearable Sensor Data: A Standardization of the State-of-the-Art,"Human Activity Recognition Based on Wearable +Sensor Data: A Standardization of the +State-of-the-Art +Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz +Smart Surveillance Interest Group, Computer Science Department +Universidade Federal de Minas Gerais, Brazil +Email: {arturjordao, antonio.nazare, jessicasena,"
+e5342233141a1d3858ed99ccd8ca0fead519f58b,Finger print and Palm print based Multibiometric Authentication System with GUI Interface,"ISSN: 2277 – 9043 +International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE) +Volume 2, Issue 2, February 2013 +Finger print and Palm print based Multibiometric +Authentication System with GUI Interface +KALAIGNANASELVI.A#1, NARASIMMALOU.T*2 +#PG Scholar, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India. +*Assistant Professor, Dept. of CSE, Dr.Pauls Engineering College, Villupuram District, Tamilnadu, India."
+e52be9a083e621d9ed29c8e9914451a6a327ff59,UvA - DARE ( Digital Academic Repository ) Communication and Automatic Interpretation of Affect from Facial Expressions,"UvA-DARE (Digital Academic Repository) +Communication and Automatic Interpretation of Affect from Facial Expressions +Salah, A.A.; Sebe, N.; Gevers, T. +Published in: +Affective computing and interaction: psychological, cognitive, and neuroscientific perspectives +Link to publication +Citation for published version (APA): +Salah, A. A., Sebe, N., & Gevers, T. (2010). Communication and Automatic Interpretation of Affect from Facial +Expressions. In D. Gökçay, & G. Yildirim (Eds.), Affective computing and interaction: psychological, cognitive, +nd neuroscientific perspectives (pp. 157-183). Hershey, PA: Information Science Reference. +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible. +Download date: 12 Sep 2017 +UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)"
+e5799fd239531644ad9270f49a3961d7540ce358,Kinship classification by modeling facial feature heredity,"KINSHIP CLASSIFICATION BY MODELING FACIAL FEATURE HEREDITY +Ruogu Fang1, Andrew C. Gallagher1, Tsuhan Chen1, Alexander Loui2 +Dept. of Elec. and Computer Eng., Cornell University 2Eastman Kodak Company"
+e5eb7fa8c9a812d402facfe8e4672670541ed108,Performance of PCA Based Semi-supervised Learning in Face Recognition Using MPEG-7 Edge Histogram Descriptor,"Performance of PCA Based Semi-supervised +Learning in Face Recognition Using MPEG-7 +Edge Histogram Descriptor +Shafin Rahman, Sheikh Motahar Naim, Abdullah Al Farooq and Md. Monirul Islam +Department of Computer Science and Engineering +Bangladesh University of Engineering and Technology(BUET) +Dhaka-1000, Bangladesh +Email: {shafin buet, naim sbh2007,"
+e2d265f606cd25f1fd72e5ee8b8f4c5127b764df,Real-Time End-to-End Action Detection with Two-Stream Networks,"Real-Time End-to-End Action Detection +with Two-Stream Networks +Alaaeldin El-Nouby∗†, Graham W. Taylor∗†‡ +School of Engineering, University of Guelph +Vector Institute for Artificial Intelligence +Canadian Institute for Advanced Research"
+f437b3884a9e5fab66740ca2a6f1f3a5724385ea,Human identification technical challenges,"Human Identification Technical Challenges +P. Jonathon Phillips +DARPA +701 N. Fairfax Dr +Arlington, VA 22203"
+f412d9d7bc7534e7daafa43f8f5eab811e7e4148,Running Head : Anxiety and Emotional Faces in WS 2,"Durham Research Online +Deposited in DRO: +6 December 2014 +Version of attached le: +Accepted Version +Peer-review status of attached le: +Peer-reviewed +Citation for published item: +Kirk, H. E. and Hocking, D. R. and Riby, D. M. and Cornish, K. M. (2013) 'Linking social behaviour and +nxiety to attention to emotional faces in Williams syndrome.', Research in developmental disabilities., 34 +(12). pp. 4608-4616. +Further information on publisher's website: +http://dx.doi.org/10.1016/j.ridd.2013.09.042 +Publisher's copyright statement: +NOTICE: this is the author's version of a work that was accepted for publication in Research in Developmental +Disabilities. Changes resulting from the publishing process, such as peer review, editing, corrections, structural +formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made +to this work since it was submitted for publication. A denitive version was subsequently published in Research in +Developmental Disabilities, 34, 12, December 2013, 10.1016/j.ridd.2013.09.042. +Additional information:"
+f442a2f2749f921849e22f37e0480ac04a3c3fec,Critical Features for Face Recognition in Humans and Machines,"Critical Features for Face Recognition in Humans and Machines Naphtali Abudarham1, Lior Shkiller1, Galit Yovel1,2 1School of Psychological Sciences, 2Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel Correspondence regarding this manuscript should be addressed to: Galit Yovel School of Psychological Sciences & Sagol School of Neuroscience Tel Aviv University Tel Aviv, 69978, Israel Email:"
+f4f6fc473effb063b7a29aa221c65f64a791d7f4,Facial expression recognition in the wild based on multimodal texture features,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 4/20/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +FacialexpressionrecognitioninthewildbasedonmultimodaltexturefeaturesBoSunLiandongLiGuoyanZhouJunHeBoSun,LiandongLi,GuoyanZhou,JunHe,“Facialexpressionrecognitioninthewildbasedonmultimodaltexturefeatures,”J.Electron.Imaging25(6),061407(2016),doi:10.1117/1.JEI.25.6.061407."
+f4373f5631329f77d85182ec2df6730cbd4686a9,Recognizing Gender from Human Facial Regions using Genetic Algorithm,"Soft Computing manuscript No. +(will be inserted by the editor) +Recognizing Gender from Human Facial Regions using +Genetic Algorithm +Avirup Bhattacharyya · Rajkumar Saini · +Partha Pratim Roy · Debi Prosad Dogra · +Samarjit Kar +Received: date / Accepted: date"
+f47404424270f6a20ba1ba8c2211adfba032f405,Identification of Face Age range Group using Neural Network,"International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +Identification of Face Age range Group using Neural +Network +Sneha Thakur1, Ligendra Verma2 +1M.Tech scholar, CSE, RITEE Raipur +2 Reader, MCA dept, RITEE Raipur"
+f4ebbeb77249d1136c355f5bae30f02961b9a359,Human Computation for Attribute and Attribute Value Acquisition,"Human Computation for Attribute and Attribute Value Acquisition +Edith Law, Burr Settles, Aaron Snook, Harshit Surana, Luis von Ahn, Tom Mitchell +School of Computer Science +Carnegie Melon University"
+f42dca4a4426e5873a981712102aa961be34539a,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +Optical-Flow Estimation in the Wild +Nima Sedaghat +University of Freiburg +Germany"
+f3d9e347eadcf0d21cb0e92710bc906b22f2b3e7,"NosePose: a competitive, landmark-free methodology for head pose estimation in the wild","NosePose: a competitive, landmark-free +methodology for head pose estimation in the wild +Fl´avio H. B. Zavan, Antonio C. P. Nascimento, Olga R. P. Bellon and Luciano Silva +IMAGO Research Group - Universidade Federal do Paran´a"
+f3ea181507db292b762aa798da30bc307be95344,Covariance Pooling For Facial Expression Recognition,"Covariance Pooling for Facial Expression Recognition +Computer Vision Lab, ETH Zurich, Switzerland +VISICS, KU Leuven, Belgium +Dinesh Acharya†, Zhiwu Huang†, Danda Pani Paudel†, Luc Van Gool†‡ +{acharyad, zhiwu.huang, paudel,"
+f3cf10c84c4665a0b28734f5233d423a65ef1f23,Title Temporal Exemplar-based Bayesian Networks for facialexpression recognition,"Title +Temporal Exemplar-based Bayesian Networks for facial +expression recognition +Author(s) +Shang, L; Chan, KP +Citation +Proceedings - 7Th International Conference On Machine +Learning And Applications, Icmla 2008, 2008, p. 16-22 +Issued Date +http://hdl.handle.net/10722/61208 +Rights +This work is licensed under a Creative Commons Attribution- +NonCommercial-NoDerivatives 4.0 International License.; +International Conference on Machine Learning and Applications +Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +this material is permitted. However, permission to +reprint/republish this material for advertising or promotional +purposes or for creating new collective works for resale or +redistribution to servers or lists, or to reuse any copyrighted +omponent of this work in other works must be obtained from"
+f3b7938de5f178e25a3cf477107c76286c0ad691,Object Detection with Deep Learning: A Review,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2017 +Object Detection with Deep Learning: A Review +Zhong-Qiu Zhao, Member, IEEE, Peng Zheng, +Shou-tao Xu, and Xindong Wu, Fellow, IEEE"
+eb526174fa071345ff7b1fad1fad240cd943a6d7,Deeply vulnerable: a study of the robustness of face recognition to presentation attacks,"Deeply Vulnerable – A Study of the Robustness of Face Recognition to +Presentation Attacks +Amir Mohammadi, Sushil Bhattacharjee, and S´ebastien Marcel ∗†"
+eb566490cd1aa9338831de8161c6659984e923fd,From Lifestyle Vlogs to Everyday Interactions,"From Lifestyle Vlogs to Everyday Interactions +David F. Fouhey, Wei-cheng Kuo, Alexei A. Efros, Jitendra Malik +EECS Department, UC Berkeley"
+eb9312458f84a366e98bd0a2265747aaed40b1a6,Facial Expression Sequence Synthesis Based on Shape and Texture Fusion Model,"-4244-1437-7/07/$20.00 ©2007 IEEE +IV - 473 +ICIP 2007"
+eb716dd3dbd0f04e6d89f1703b9975cad62ffb09, Visual Object Category Discovery in Images and Videos,"Copyright +Yong Jae Lee"
+eb4d2ec77fae67141f6cf74b3ed773997c2c0cf6,A new soft biometric approach for keystroke dynamics based on gender recognition,"Int. J. Information Technology and Management, Vol. 11, Nos. 1/2, 2012 +A new soft biometric approach for keystroke +dynamics based on gender recognition +Romain Giot* and Christophe Rosenberger +GREYC Research Lab, +ENSICAEN – Université de Caen Basse Normandie – CNRS, +4000 Caen, France +Fax: +33-231538110 +E-mail: +E-mail: +*Corresponding author"
+ebb7cc67df6d90f1c88817b20e7a3baad5dc29b9,Fast algorithms for Higher-order Singular Value Decomposition from incomplete data,"Journal of Computational Mathematics +Vol.xx, No.x, 200x, 1–25. +http://www.global-sci.org/jcm +doi:?? +Fast algorithms for Higher-order Singular Value Decomposition +from incomplete data* +Department of Mathematics, University of Alabama, Tuscaloosa, AL +Yangyang Xu +Email:"
+ebabd1f7bc0274fec88a3dabaf115d3e226f198f,Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks,"Driver drowsiness detection system based on feature +representation learning using various deep networks +Sanghyuk Park, Fei Pan, Sunghun Kang and Chang D. Yoo +School of Electrical Engineering, KAIST, +Guseong-dong, Yuseong-gu, Dajeon, Rep. of Korea +{shine0624, feipan, sunghun.kang, cd"
+eb48a58b873295d719827e746d51b110f5716d6c,Face Alignment Using K-Cluster Regression Forests With Weighted Splitting,"Face Alignment Using K-cluster Regression Forests +With Weighted Splitting +Marek Kowalski and Jacek Naruniec"
+ebd5df2b4105ba04cef4ca334fcb9bfd6ea0430c,Fast Localization of Facial Landmark Points,"Fast Localization of Facial Landmark Points +Nenad Markuˇs*, Miroslav Frljak*, Igor S. Pandˇzi´c*, J¨orgen Ahlberg†, and Robert Forchheimer† +* University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia +Link¨oping University, Department of Electrical Engineering, SE-581 83 Link¨oping, Sweden +March 28, 2014"
+ebf204e0a3e137b6c24e271b0d55fa49a6c52b41,Visual Tracking Using Deep Motion Features,"Master of Science Thesis in Electrical Engineering +Department of Electrical Engineering, Linköping University, 2016 +Visual Tracking Using +Deep Motion Features +Susanna Gladh"
+c7e4c7be0d37013de07b6d829a3bf73e1b95ad4e,Dynemo: a Video Database of Natural Facial Expressions of Emotions,"The International Journal of Multimedia & Its Applications (IJMA) Vol.5, No.5, October 2013 +DYNEMO: A VIDEO DATABASE OF NATURAL FACIAL +EXPRESSIONS OF EMOTIONS +Anna Tcherkassof1, Damien Dupré1, Brigitte Meillon2, Nadine Mandran2, +Michel Dubois1 and Jean-Michel Adam2 +LIP, Univ. Grenoble Alpes, BP 47 - 38040 Grenoble Cedex 9, France +LIG, Univ. Grenoble Alpes, BP 53 - 38041 Grenoble Cedex 9, France"
+c7de0c85432ad17a284b5b97c4f36c23f506d9d1,RANSAC-Based Training Data Selection for Speaker State Recognition,"INTERSPEECH 2011 +RANSAC-based Training Data Selection for Speaker State Recognition +Elif Bozkurt1, Engin Erzin1, C¸ i˘gdem Ero˘glu Erdem2, A.Tanju Erdem3 +Multimedia, Vision and Graphics Laboratory, Koc¸ University, Istanbul, Turkey +Department of Electrical and Electronics Engineering, Bahc¸es¸ehir University, Istanbul, Turkey +Department of Electrical and Computer Engineering, ¨Ozye˘gin University, Istanbul, Turkey +ebozkurt,"
+c7f752eea91bf5495a4f6e6a67f14800ec246d08,Exploring the Transfer Learning Aspect of Deep Neural Networks in Facial Information Processing,"EXPLORING THE TRANSFER +LEARNING ASPECT OF DEEP +NEURAL NETWORKS IN FACIAL +INFORMATION PROCESSING +A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER +FOR THE DEGREE OF MASTER OF SCIENCE +IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES +Crefeda Faviola Rodrigues +School of Computer Science"
+c758b9c82b603904ba8806e6193c5fefa57e9613,Heterogeneous Face Recognition with CNNs,"Heterogeneous Face Recognition with CNNs +Shreyas Saxena +Jakob Verbeek +INRIA Grenoble, Laboratoire Jean Kuntzmann"
+c7c03324833ba262eeaada0349afa1b5990c1ea7,A Wearable Face Recognition System on Google Glass for Assisting Social Interactions,"A Wearable Face Recognition System on Google +Glass for Assisting Social Interactions +Bappaditya Mandal∗, Chia Shue Ching, Liyuan Li, Vijay Ramaseshan +Chandrasekhar, Cheston Tan Yin Chet and Lim Joo Hwee +Visual Computing Department, Institute for Infocomm Research, Singapore +Email address: (∗Contact author: Bappaditya Mandal); +{scchia, lyli, vijay, cheston-tan,"
+c7c8d150ece08b12e3abdb6224000c07a6ce7d47,DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification,"DeMeshNet: Blind Face Inpainting for Deep MeshFace Verification +National Laboratory of Pattern Recognition, CASIA +Center for Research on Intelligent Perception and Computing, CASIA +Shu Zhang Ran He Tieniu Tan"
+c78fdd080df01fff400a32fb4cc932621926021f,Robust Automatic Facial Expression Detection Method,"Robust Automatic Facial Expression Detection +Method +Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan, +Institute for Pattern Recognition and Artificial Intelligence/ Huazhong University of Science and Technology, Wuhan, +Yan Ouyang +China +Nong Sang +China +Email:"
+c03f48e211ac81c3867c0e787bea3192fcfe323e,Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in I-Vector Speaker Recognition System,"INTERSPEECH 2016 +September 8–12, 2016, San Francisco, USA +Mahalanobis Metric Scoring Learned from Weighted Pairwise Constraints in +I-vector Speaker Recognition System +Zhenchun Lei1, Yanhong Wan1, Jian Luo1, Yingen Yang1 +School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China"
+c038beaa228aeec174e5bd52460f0de75e9cccbe,Temporal Segment Networks for Action Recognition in Videos,"Temporal Segment Networks for Action +Recognition in Videos +Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool"
+c043f8924717a3023a869777d4c9bee33e607fb5,Emotion Separation Is Completed Early and It Depends on Visual Field Presentation,"Emotion Separation Is Completed Early and It Depends +on Visual Field Presentation +Lichan Liu1,2*, Andreas A. Ioannides1,2 +Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan, 2 Lab for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, +Cyprus"
+c05a7c72e679745deab9c9d7d481f7b5b9b36bdd,"Naval Postgraduate School Monterey, California Approved for Public Release; Distribution Is Unlimited Biometric Challenges for Future Deployments: a Study of the Impact of Geography, Climate, Culture, and Social Conditions on the Effective Collection of Biometrics","NPS-CS-11-005 +NAVAL +POSTGRADUATE +SCHOOL +MONTEREY, CALIFORNIA +BIOMETRIC CHALLENGES FOR FUTURE DEPLOYMENTS: +A STUDY OF THE IMPACT OF GEOGRAPHY, CLIMATE, CULTURE, +AND SOCIAL CONDITIONS ON THE EFFECTIVE +COLLECTION OF BIOMETRICS +Paul C. Clark, Heather S. Gregg, with preface by Cynthia E. Irvine +April 2011 +Approved for public release; distribution is unlimited"
+c0ff7dc0d575658bf402719c12b676a34271dfcd,A New Incremental Optimal Feature Extraction Method for On-Line Applications,"A New Incremental Optimal Feature Extraction +Method for On-line Applications +Youness Aliyari Ghassabeh, Hamid Abrishami Moghaddam +Electrical Engineering Department, K. N. Toosi University of +Technology, Tehran, Iran"
+c02847a04a99a5a6e784ab580907278ee3c12653,Fine Grained Video Classification for Endangered Bird Species Protection,"Fine Grained Video Classification for +Endangered Bird Species Protection +Non-Thesis MS Final Report +Chenyu Wang +. Introduction +.1 Background +This project is about detecting eagles in videos. Eagles are endangered species at the brim of +extinction since 1980s. With the bans of harmful pesticides, the number of eagles keep increasing. +However, recent studies on golden eagles’ activities in the vicinity of wind turbines have shown +significant number of turbine blade collisions with eagles as the major cause of eagles’ mortality. [1] +This project is a part of a larger research project to build an eagle detection and deterrent system +on wind turbine toward reducing eagles’ mortality. [2] The critical component of this study is a +omputer vision system for eagle detection in videos. The key requirement are that the system should +work in real time and detect eagles at a far distance from the camera (i.e. in low resolution). +There are three different bird species in my dataset - falcon, eagle and seagull. The reason for +involving only these three species is based on the real world situation. Wind turbines are always +installed near coast and mountain hill where falcons and seagulls will be the majority. So my model +will classify the minority eagles out of other bird species during the immigration season and protecting +them by using the deterrent system. +.2 Brief Approach"
+c0c8d720658374cc1ffd6116554a615e846c74b5,Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Modeling Multimodal Clues in a Hybrid Deep +Learning Framework for Video Classification +Yu-Gang Jiang, Zuxuan Wu, Jinhui Tang, Zechao Li, Xiangyang Xue, Shih-Fu Chang"
+eee8a37a12506ff5df72c402ccc3d59216321346,Volume C,"Uredniki: +dr. Tomaž Erjavec +Odsek za tehnologije znanja +Institut »Jožef Stefan«, Ljubljana +dr. Jerneja Žganec Gros +Alpineon d.o.o, Ljubljana +Založnik: Institut »Jožef Stefan«, Ljubljana +Tisk: Birografika BORI d.o.o. +Priprava zbornika: Mitja Lasič +Oblikovanje naslovnice: dr. Damjan Demšar +Tiskano iz predloga avtorjev +Naklada: 50 +Ljubljana, oktober 2008 +Konferenco IS 2008 sofinancirata +Ministrstvo za visoko šolstvo, znanost in tehnologijo +Institut »Jožef Stefan« +Informacijska družba +ISSN 1581-9973 +CIP - Kataložni zapis o publikaciji +Narodna in univerzitetna knjižnica, Ljubljana"
+ee18e29a2b998eddb7f6663bb07891bfc7262248,Local Linear Discriminant Analysis Framework Using Sample Neighbors,"Local Linear Discriminant Analysis Framework +Using Sample Neighbors +Zizhu Fan, Yong Xu, Member, IEEE, and David Zhang, Fellow, IEEE"
+eefb8768f60c17d76fe156b55b8a00555eb40f4d,Subspace Scores for Feature Selection in Computer Vision,"Subspace Scores for Feature Selection in Computer Vision +Cameron Musco +Christopher Musco"
+ee463f1f72a7e007bae274d2d42cd2e5d817e751,Automatically Extracting Qualia Relations for the Rich Event Ontology,"Automatically Extracting Qualia Relations for the Rich Event Ontology +Ghazaleh Kazeminejad1, Claire Bonial2, Susan Windisch Brown1 and Martha Palmer1 +{ghazaleh.kazeminejad, susan.brown, +University of Colorado Boulder, 2U.S. Army Research Lab"
+eed1dd2a5959647896e73d129272cb7c3a2e145c,The Elements of Fashion Style,"INPUTSTYLE DOCUMENTTOP ITEMS“ ”I need an outfit for a beach wedding that I'm going to early this summer. I'm so excited -- it's going to be warm and exotic and tropical... I want my outfit to look effortless, breezy, flowy, like I’m floating over the sand! Oh, and obviously no white! For a tropical spot, I think my outfit should be bright and"
+ee92d36d72075048a7c8b2af5cc1720c7bace6dd,Face recognition using mixtures of principal components,"FACE RECOGNITION USING MIXTURES OF PRINCIPAL COMPONENTS +Deepak S. Turaga and Tsuhan Chen +Video and Display Processing +Philips Research USA +Briarcliff Manor, NY 10510"
+eedfb384a5e42511013b33104f4cd3149432bd9e,Multimodal probabilistic person tracking and identification in smart spaces,"Multimodal Probabilistic Person +Tracking and Identification +in Smart Spaces +zur Erlangung des akademischen Grades eines +Doktors der Ingenieurwissenschaften +der Fakultät für Informatik +der Universität Fridericiana zu Karlsruhe (TH) +genehmigte +Dissertation +Keni Bernardin +us Karlsruhe +Tag der mündlichen Prüfung: 20.11.2009 +Erster Gutachter: +Zweiter Gutachter: +Prof. Dr. A. Waibel +Prof. Dr. R. Stiefelhagen"
+c91103e6612fa7e664ccbc3ed1b0b5deac865b02,Automatic Facial Expression Recognition Using Statistical-Like Moments,"Automatic facial expression recognition using +statistical-like moments +Roberto D’Ambrosio, Giulio Iannello, and Paolo Soda +{r.dambrosio, g.iannello, +Integrated Research Center, Universit`a Campus Bio-Medico di Roma, +Via Alvaro del Portillo, 00128 Roma, Italy"
+fc1e37fb16006b62848def92a51434fc74a2431a,A Comprehensive Analysis of Deep Regression,"DRAFT +A Comprehensive Analysis of Deep Regression +St´ephane Lathuili`ere, Pablo Mesejo, Xavier Alameda-Pineda, Member IEEE, and Radu Horaud"
+fcd3d69b418d56ae6800a421c8b89ef363418665,Effects of Aging over Facial Feature Analysis and Face Recognition,"Effects of Aging over Facial Feature Analysis and Face +Recognition +Bilgin Esme & Bulent Sankur +Bogaziçi Un. Electronics Eng. Dept. March 2010"
+fcd77f3ca6b40aad6edbd1dab9681d201f85f365,Machine Learning Based Attacks and Defenses in Computer Security: Towards Privacy and Utility Balance in Sensor Environments,"(cid:13)Copyright 2014 +Miro Enev"
+fcf8bb1bf2b7e3f71fb337ca3fcf3d9cf18daa46,Feature Selection via Sparse Approximation for Face Recognition,"MANUSCRIPT SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTELL., JULY 2010 +Feature Selection via Sparse Approximation for +Face Recognition +Yixiong Liang, Lei Wang, Yao Xiang, and Beiji Zou"
+fcbf808bdf140442cddf0710defb2766c2d25c30,Unsupervised Semantic Action Discovery from Video Collections,"IJCV manuscript No. +(will be inserted by the editor) +Unsupervised Semantic Action Discovery from Video +Collections +Ozan Sener · Amir Roshan Zamir · Chenxia Wu · Silvio Savarese · +Ashutosh Saxena +Received: date / Accepted: date"
+fd4ac1da699885f71970588f84316589b7d8317b,Supervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +Supervised Descent Method +for Solving Nonlinear Least Squares +Problems in Computer Vision +Xuehan Xiong, and Fernando De la Torre"
+fdf533eeb1306ba418b09210387833bdf27bb756,Exploiting Unrelated Tasks in Multi-Task Learning,
+fdda5852f2cffc871fd40b0cb1aa14cea54cd7e3,Im2Flow: Motion Hallucination from Static Images for Action Recognition,"Im2Flow: Motion Hallucination from Static Images for Action Recognition +Ruohan Gao +UT Austin +Bo Xiong +UT Austin +Kristen Grauman +UT Austin"
+fdfaf46910012c7cdf72bba12e802a318b5bef5a,Computerized Face Recognition in Renaissance Portrait Art,"Computerized Face Recognition in Renaissance +Portrait Art +Ramya Srinivasan, Conrad Rudolph and Amit Roy-Chowdhury"
+fdca08416bdadda91ae977db7d503e8610dd744f,ICT - 2009 . 7 . 1 KSERA Project 2010 - 248085,"ICT-2009.7.1 +KSERA Project +010-248085 +Deliverable D3.1 +Deliverable D3.1 +Human Robot Interaction +Human Robot Interaction +8 October 2010 +Public Document +The KSERA project (http://www.ksera +KSERA project (http://www.ksera-project.eu) has received funding from the European Commission +project.eu) has received funding from the European Commission +under the 7th Framework Programme (FP7) for Research and Technological Development under grant +under the 7th Framework Programme (FP7) for Research and Technological Development under grant +under the 7th Framework Programme (FP7) for Research and Technological Development under grant +greement n°2010-248085."
+fd96432675911a702b8a4ce857b7c8619498bf9f,Improved Face Detection and Alignment using Cascade Deep Convolutional Network,"Improved Face Detection and Alignment using Cascade +Deep Convolutional Network +Weilin Cong†, Sanyuan Zhao†, Hui Tian‡, and Jianbing Shen† +Beijing Key Laboratory of Intelligent Information Technology, School of +Computer Science,Beijing Institute of Technology, Beijing 100081, P.R.China +China Mobile Research Institute, Xuanwu Men West Street, Beijing"
+fdb33141005ca1b208a725796732ab10a9c37d75,A connectionist computational method for face recognition,"Int.J.Appl. Math. Comput.Sci.,2016,Vol. 26,No. 2,451–465 +DOI: 10.1515/amcs-2016-0032 +A CONNECTIONIST COMPUTATIONAL METHOD FOR FACE RECOGNITION +FRANCISCO A. PUJOL a, HIGINIO MORA a,∗ +, JOS ´E A. GIRONA-SELVA a +Department of Computer Technology +University of Alicante, 03690, San Vicente del Raspeig, Alicante, Spain +e-mail: +In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. +First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial +graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of +the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining +each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and +the recognition process are performed by using a similarity function that takes into account both the geometric and texture +information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our +proposal when compared with other state-of the-art methods. +Keywords: pattern recognition, face recognition, neural networks, self-organizing maps. +Introduction +libraries, +In recent years, there has been intensive research carried"
+fd615118fb290a8e3883e1f75390de8a6c68bfde,Joint Face Alignment with Non-parametric Shape Models,"Joint Face Alignment with Non-Parametric +Shape Models +Brandon M. Smith and Li Zhang +University of Wisconsin – Madison +http://www.cs.wisc.edu/~lizhang/projects/joint-align/"
+fdaf65b314faee97220162980e76dbc8f32db9d6,Face recognition using both visible light image and near-infrared image and a deep network,"Accepted Manuscript +Face recognition using both visible light image and near-infrared image and a deep +network +Kai Guo, Shuai Wu, Yong Xu +Reference: +S2468-2322(17)30014-8 +0.1016/j.trit.2017.03.001 +TRIT 41 +To appear in: +CAAI Transactions on Intelligence Technology +Received Date: 30 January 2017 +Accepted Date: 28 March 2017 +Please cite this article as: K. Guo, S. Wu, Y. Xu, Face recognition using both visible light image and +near-infrared image and a deep network, CAAI Transactions on Intelligence Technology (2017), doi: +0.1016/j.trit.2017.03.001. +This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to +our customers we are providing this early version of the manuscript. The manuscript will undergo +opyediting, typesetting, and review of the resulting proof before it is published in its final form. Please +note that during the production process errors may be discovered which could affect the content, and all +legal disclaimers that apply to the journal pertain."
+f2e9494d0dca9fb6b274107032781d435a508de6,Title of Dissertation : UNCONSTRAINED FACE RECOGNITION,
+f2a7f9bd040aa8ea87672d38606a84c31163e171,Human Action Recognition without Human,"Human Action Recognition without Human +Yun He, Soma Shirakabe, Yutaka Satoh, Hirokatsu Kataoka +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{yun.he, shirakabe-s, yu.satou,"
+f231046d5f5d87e2ca5fae88f41e8d74964e8f4f,Perceived Age Estimation from Face Images,"We are IntechOpen, +the first native scientific +publisher of Open Access books +,350 +08,000 +.7 M +Open access books available +International authors and editors +Downloads +Our authors are among the +Countries delivered to +TOP 1% +2.2% +most cited scientists +Contributors from top 500 universities +Selection of our books indexed in the Book Citation Index +in Web of Science™ Core Collection (BKCI) +Interested in publishing with us? +Contact +Numbers displayed above are based on latest data collected."
+f5770dd225501ff3764f9023f19a76fad28127d4,Real Time Online Facial Expression Transfer with Single Video Camera,"Real Time Online Facial Expression Transfer +with Single Video Camera"
+f519723238701849f1160d5a9cedebd31017da89,Impact of multi-focused images on recognition of soft biometric traits,"Impact of multi-focused images on recognition of soft biometric traits +EURECOM, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia +V. Chiesaa, J.L. Dugelaya +Antipolis cedex, FRANCE"
+f558af209dd4c48e4b2f551b01065a6435c3ef33,An Enhanced Attribute Reranking Design for Web Image Search,"International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) +ISSN: 0976-1353 Volume 23 Issue 1 –JUNE 2016. +AN ENHANCED ATTRIBUTE +RERANKING DESIGN FOR WEB IMAGE +SEARCH +Sai Tejaswi Dasari#1 and G K Kishore Babu*2 +#Student,Cse, CIET, Lam,Guntur, India +* Assistant Professort,Cse, CIET, Lam,Guntur , India"
+e378ce25579f3676ca50c8f6454e92a886b9e4d7,Robust Video Super-Resolution with Learned Temporal Dynamics,"Robust Video Super-Resolution with Learned Temporal Dynamics +Ding Liu1 Zhaowen Wang2 Yuchen Fan1 Xianming Liu3 +Zhangyang Wang4 Shiyu Chang5 Thomas Huang1 +University of Illinois at Urbana-Champaign 2Adobe Research +Facebook 4Texas A&M University 5IBM Research"
+e393a038d520a073b9835df7a3ff104ad610c552,Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks,"Automatic temporal segment +detection via bilateral long short- +term memory recurrent neural +networks +Bo Sun +Siming Cao +Jun He +Lejun Yu +Liandong Li +Bo Sun, Siming Cao, Jun He, Lejun Yu, Liandong Li, “Automatic temporal segment +detection via bilateral long short-term memory recurrent neural networks,” J. +Electron. Imaging 26(2), 020501 (2017), doi: 10.1117/1.JEI.26.2.020501. +Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx"
+e315959d6e806c8fbfc91f072c322fb26ce0862b,An Efficient Face Recognition System Based on Sub-Window Extraction Algorithm,"An Efficient Face Recognition System Based on Sub-Window +International Journal of Soft Computing and Engineering (IJSCE) +ISSN: 2231-2307, Volume-1, Issue-6, January 2012 +Extraction Algorithm +Manish Gupta, Govind sharma"
+e39a0834122e08ba28e7b411db896d0fdbbad9ba,Maximum Likelihood Estimation of Depth Maps Using Photometric Stereo,"Maximum Likelihood Estimation of Depth Maps +Using Photometric Stereo +Adam P. Harrison, Student Member, IEEE, and Dileepan Joseph, Member, IEEE"
+e3e2c106ccbd668fb9fca851498c662add257036,"Appearance, context and co-occurrence ensembles for identity recognition in personal photo collections","Appearance, Context and Co-occurrence Ensembles for +Identity Recognition in Personal Photo Collections +Archana Sapkota1 +Raghuraman Gopalan2 +University of Colorado at Colorado Springs +Eric Zavesky2 +T.E.Boult1 +AT&T Labs-Research, Middletown, NJ"
+e3917d6935586b90baae18d938295e5b089b5c62,Face localization and authentication using color and depth images,"Face Localization and Authentication +Using Color and Depth Images +Filareti Tsalakanidou, Sotiris Malassiotis, and Michael G. Strintzis, Fellow, IEEE"
+e3144f39f473e238374dd4005c8b83e19764ae9e,Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost Optical-Flow Estimation in the Wild,"Next-Flow: Hybrid Multi-Tasking with Next-Frame Prediction to Boost +Optical-Flow Estimation in the Wild +Nima Sedaghat +University of Freiburg +Germany"
+cfffae38fe34e29d47e6deccfd259788176dc213,Training bookcowgrass flower ? ? water sky doggrass water boat water chair road ? cow grass chair grass dog building ?,"TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, DECEMBER 2012 +Matrix Completion for Weakly-supervised +Multi-label Image Classification +Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino"
+cfd4004054399f3a5f536df71f9b9987f060f434,Person Recognition in Social Media Photos,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 20?? +Person Recognition in Personal Photo Collections +Seong Joon Oh,Rodrigo Benenson, Mario Fritz, and Bernt Schiele, Fellow, IEEE"
+cf875336d5a196ce0981e2e2ae9602580f3f6243,"7 What 1 S It Mean for a Computer to ""have"" Emotions?","7 What 1 +Rosalind W. Picard +It Mean for a Computer to ""Have"" Emotions? +There is a lot of talk about giving machines emotions, some of +it fluff. Recently at a large technical meeting, a researcher stood up +nd talked of how a Bamey stuffed animal [the purple dinosaur for +kids) ""has emotions."" He did not define what he meant by this, but +fter repeating it several times, it became apparent that children +ttributed emotions to Barney, and that Barney had deliberately +expressive behaviors that would encourage the kids to think. Bar- +ney had emotions. But kids have attributed emotions to dolls and +stuffed animals for as long a s we know; and most of my technical +olleagues would agree that such toys have never had and still do +not have emotions. What is different now that prompts a researcher +to make such a claim? Is the computational plush an example of a +omputer that really does have emotions? +If not Barney, then what would be an example of a computa- +tional system that has emotions? I am not a philosopher, and this +paper will not be a discussion of the meaning of this question in +ny philosophical sense. However, as an engineer I am interested"
+cfd8c66e71e98410f564babeb1c5fd6f77182c55,Comparative Study of Coarse Head Pose Estimation,"Comparative Study of Coarse Head Pose Estimation +Lisa M. Brown and Ying-Li Tian +IBM T.J. Watson Research Center +Hawthorne, NY 10532"
+cfbb2d32586b58f5681e459afd236380acd86e28,Improving alignment of faces for recognition,"Improving Alignment of Faces for Recognition +Md. Kamrul Hasan +Christopher J. Pal +D´epartement de g´enie informatique et g´enie logiciel +´Ecole Polytechnique de Montr´eal, +D´epartement de g´enie informatique et g´enie logiciel +´Ecole Polytechnique de Montr´eal, +Qu´ebec, Canada +Qu´ebec, Canada"
+cfa92e17809e8d20ebc73b4e531a1b106d02b38c,Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression,"Advances in Data Analysis and Classification manuscript No. +(will be inserted by the editor) +Parametric Classification with Soft Labels using the +Evidential EM Algorithm +Linear Discriminant Analysis vs. Logistic Regression +Benjamin Quost · Thierry Denœux · +Shoumei Li +Received: date / Accepted: date"
+cf5a0115d3f4dcf95bea4d549ec2b6bdd7c69150,Detection of emotions from video in non-controlled environment. (Détection des émotions à partir de vidéos dans un environnement non contrôlé),"Detection of emotions from video in non-controlled +environment +Rizwan Ahmed Khan +To cite this version: +Rizwan Ahmed Khan. Detection of emotions from video in non-controlled environment. Image +Processing. Universit´e Claude Bernard - Lyon I, 2013. English. <NNT : 2013LYO10227>. +<tel-01166539v2> +HAL Id: tel-01166539 +https://tel.archives-ouvertes.fr/tel-01166539v2 +Submitted on 23 Jun 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+cfdc632adcb799dba14af6a8339ca761725abf0a,Probabilistic Formulations of Regression with Mixed Guidance,"Probabilistic Formulations of Regression with Mixed +Guidance +Aubrey Gress, Ian Davidson University of California, Davis"
+cfc30ce53bfc204b8764ebb764a029a8d0ad01f4,Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization,"Regularizing Deep Neural Networks by Noise: +Its Interpretation and Optimization +Hyeonwoo Noh +Tackgeun You +Dept. of Computer Science and Engineering, POSTECH, Korea +Jonghwan Mun +Bohyung Han"
+cf805d478aeb53520c0ab4fcdc9307d093c21e52,Finding Tiny Faces in the Wild with Generative Adversarial Network,"Finding Tiny Faces in the Wild with Generative Adversarial Network +Yancheng Bai1 +Yongqiang Zhang1 +Mingli Ding2 +Bernard Ghanem1 +Visual Computing Center, King Abdullah University of Science and Technology (KAUST) +School of Electrical Engineering and Automation, Harbin Institute of Technology (HIT) +Institute of Software, Chinese Academy of Sciences (CAS) +{zhangyongqiang, +Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of +re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned +y the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in."
+cf86616b5a35d5ee777585196736dfafbb9853b5,Learning Multiscale Active Facial Patches for Expression Analysis,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Learning Multiscale Active Facial Patches for +Expression Analysis +Lin Zhong, Qingshan Liu, Peng Yang, Junzhou Huang, and Dimitris N. Metaxas, Senior Member, IEEE"
+cacd51221c592012bf2d9e4894178c1c1fa307ca,Face and Expression Recognition Techniques: A Review,"ISSN: 2277-3754 +ISO 9001:2008 Certified +International Journal of Engineering and Innovative Technology (IJEIT) +Volume 4, Issue 11, May 2015 +Face and Expression Recognition Techniques: A +Review +Advanced Communication & Signal Processing Laboratory, Department of Electronics & Communication +engineering, Government College of Engineering Kannur, Kerala, India. +Rishin C. K, Aswani Pookkudi, A. Ranjith Ram"
+ca0363d29e790f80f924cedaf93cb42308365b3d,Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines,"Facial Expression Recognition in Image Sequences +using Geometric Deformation Features and Support +Vector Machines +Irene Kotsiay and Ioannis Pitasy,Senior Member IEEE +yAristotle University of Thessaloniki +Department of Informatics +Box 451 +54124 Thessaloniki, Greece +email:"
+cad52d74c1a21043f851ae14c924ac689e197d1f,From Ego to Nos-Vision: Detecting Social Relationships in First-Person Views,"From Ego to Nos-vision: +Detecting Social Relationships in First-Person Views +Stefano Alletto, Giuseppe Serra, Simone Calderara, Francesco Solera and Rita Cucchiara +Universit`a degli Studi di Modena e Reggio Emilia +Via Vignolese 905, 41125 Modena - Italy"
+cad24ba99c7b6834faf6f5be820dd65f1a755b29,"Understanding hand-object manipulation by modeling the contextual relationship between actions, grasp types and object attributes","Understanding hand-object +manipulation by modeling the +ontextual relationship between actions, +grasp types and object attributes +Minjie Cai1, Kris M. Kitani2 and Yoichi Sato1 +Journal Title +XX(X):1–14 +(cid:13)The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/"
+cadba72aa3e95d6dcf0acac828401ddda7ed8924,Algorithms and VLSI Architectures for Low-Power Mobile Face Verification,"THÈSE PRÉSENTÉE À LA FACULTÉ DES SCIENCES +POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +Algorithms and VLSI Architectures +for Low-Power Mobile Face Verification +Jean-Luc Nagel +Acceptée sur proposition du jury: +Prof. F. Pellandini, directeur de thèse +PD Dr. M. Ansorge, co-directeur de thèse +Prof. P.-A. Farine, rapporteur +Dr. C. Piguet, rapporteur +Soutenue le 2 juin 2005 +INSTITUT DE MICROTECHNIQUE +UNIVERSITÉ DE NEUCHÂTEL"
+ca37eda56b9ee53610c66951ee7ca66a35d0a846,Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection,"Semantic Concept Discovery for Large-Scale Zero-Shot Event Detection +Xiaojun Chang1,2, Yi Yang1, Alexander G. Hauptmann2, Eric P. Xing3 and Yao-Liang Yu3∗ +Centre for Quantum Computation and Intelligent Systems, University of Technology Sydney. +Language Technologies Institute, Carnegie Mellon University. +Machine Learning Department, Carnegie Mellon University. +{cxj273, {alex, epxing,"
+ca606186715e84d270fc9052af8500fe23befbda,"Using subclass discriminant analysis, fuzzy integral and symlet decomposition for face recognition","Using Subclass Discriminant Analysis, Fuzzy Integral and Symlet Decomposition for +Face Recognition +Seyed Mohammad Seyedzade +Department of Electrical Engineering, +Iran Univ. of Science and Technology, +Narmak, Tehran, Iran +Email: +Sattar Mirzakuchaki +Amir Tahmasbi +Department of Electrical Engineering, +Iran Univ. of Science and Technology, +Department of Electrical Engineering, +Iran Univ. of Science and Technology, +Narmak, Tehran, Iran +Email: +Narmak, Tehran, Iran +Email:"
+e4bf70e818e507b54f7d94856fecc42cc9e0f73d,Face Recognition under Varying Blur in an Unconstrained Environment,"IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 +FACE RECOGNITION UNDER VARYING BLUR IN AN +UNCONSTRAINED ENVIRONMENT +Anubha Pearline.S1, Hemalatha.M2 +M.Tech, Information Technology,Madras Institute of Technology, TamilNadu,India, +Assistant Professor, Information Technology,Madras Institute of Technology, TamilNadu,India, email:,"
+e4a1b46b5c639d433d21b34b788df8d81b518729,Side Information for Face Completion: a Robust PCA Approach,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Side Information for Face Completion: a Robust +PCA Approach +Niannan Xue, Student Member, IEEE, Jiankang Deng, Student Member,IEEE, +Shiyang Cheng, Student Member,IEEE, Yannis Panagakis, Member,IEEE, +nd Stefanos Zafeiriou, Member, IEEE"
+e4c81c56966a763e021938be392718686ba9135e,Bio-Inspired Architecture for Clustering into Natural and Non-Natural Facial Expressions,",100+OPEN ACCESS BOOKS103,000+INTERNATIONALAUTHORS AND EDITORS106+ MILLIONDOWNLOADSBOOKSDELIVERED TO151 COUNTRIESAUTHORS AMONGTOP 1%MOST CITED SCIENTIST12.2%AUTHORS AND EDITORSFROM TOP 500 UNIVERSITIESSelection of our books indexed in theBook Citation Index in Web of Science™Core Collection (BKCI)Chapter from the book Visual Cortex - Current Status and PerspectivesDownloaded from: http://www.intechopen.com/books/visual-cortex-current-status-and-perspectivesPUBLISHED BYWorld's largest Science,Technology & Medicine Open Access book publisherInterested in publishing with InTechOpen?Contact us at"
+e4e95b8bca585a15f13ef1ab4f48a884cd6ecfcc,Face Recognition with Independent Component Based Super-resolution,"Face Recognition with Independent Component Based +Super-resolution +Osman Gokhan Sezer†,a, Yucel Altunbasakb, Aytul Ercila +Faculty of Engineering and Natural Sciences, Sabanci Univ., Istanbul, Turkiye, 34956 +School of Elec. and Comp. Eng. , Georgia Inst. of Tech., Atlanta, GA, USA, 30332-0250"
+e43ea078749d1f9b8254e0c3df4c51ba2f4eebd5,Facial Expression Recognition Based on Constrained Local Models and Support Vector Machines,"Facial Expression Recognition Based on Constrained +Local Models and Support Vector Machines +Nikolay Neshov1, Ivo Draganov2, Agata Manolova3"
+e4c2f8e4aace8cb851cb74478a63d9111ca550ae,Distributed One-class Learning,"DISTRIBUTED ONE-CLASS LEARNING +Ali Shahin Shamsabadi(cid:63), Hamed Haddadi†, Andrea Cavallaro(cid:63) +(cid:63)Queen Mary University of London,†Imperial College London"
+e475e857b2f5574eb626e7e01be47b416deff268,Facial Emotion Recognition Using Nonparametric Weighted Feature Extraction and Fuzzy Classifier,"Facial Emotion Recognition Using Nonparametric +Weighted Feature Extraction and Fuzzy Classifier +Maryam Imani and Gholam Ali Montazer"
+e4391993f5270bdbc621b8d01702f626fba36fc2,Head Pose Estimation Using Multi-scale Gaussian Derivatives,"Author manuscript, published in ""18th Scandinavian Conference on Image Analysis (2013)"" +DOI : 10.1007/978-3-642-38886-6_31"
+e4d8ba577cabcb67b4e9e1260573aea708574886,Um Sistema De Recomendaç˜ao Inteligente Baseado Em V ´ Idio Aulas Para Educaç˜ao a Distˆancia an Intelligent Recommendation System Based on Video Lectures for Distance Education (revelation),"UM SISTEMA DE RECOMENDAC¸ ˜AO INTELIGENTE BASEADO EM V´IDIO +AULAS PARA EDUCAC¸ ˜AO A DIST ˆANCIA +Gaspare Giuliano Elias Bruno +Tese de Doutorado apresentada ao Programa +de P´os-gradua¸c˜ao em Engenharia de Sistemas e +Computa¸c˜ao, COPPE, da Universidade Federal +do Rio de Janeiro, como parte dos requisitos +necess´arios `a obten¸c˜ao do t´ıtulo de Doutor em +Engenharia de Sistemas e Computa¸c˜ao. +Orientadores: Edmundo Albuquerque de +Souza e Silva +Rosa Maria Meri Le˜ao +Rio de Janeiro +Janeiro de 2016"
+e475deadd1e284428b5e6efd8fe0e6a5b83b9dcd,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,"Accepted in Pattern Recognition Letters +Pattern Recognition Letters +journal homepage: www.elsevier.com +Are you eligible? Predicting adulthood from face images via class specific mean +utoencoder +Maneet Singh, Shruti Nagpal, Mayank Vatsa∗∗, Richa Singh +IIIT-Delhi, New Delhi, 110020, India +Article history: +Received 15 March 2017"
+e4abc40f79f86dbc06f5af1df314c67681dedc51,Head Detection with Depth Images in the Wild,"Head Detection with Depth Images in the Wild +Diego Ballotta, Guido Borghi, Roberto Vezzani and Rita Cucchiara +Department of Engineering ”Enzo Ferrari” +University of Modena and Reggio Emilia, Italy +Keywords: +Head Detection, Head Localization, Depth Maps, Convolutional Neural Network"
+e4d0e87d0bd6ead4ccd39fc5b6c62287560bac5b,Implicit video multi-emotion tagging by exploiting multi-expression relations,"Implicit Video Multi-Emotion Tagging by Exploiting Multi-Expression +Relations +Zhilei Liu, Shangfei Wang*, Zhaoyu Wang and Qiang Ji"
+e48e94959c4ce799fc61f3f4aa8a209c00be8d7f,Design of an Efficient Real-Time Algorithm Using Reduced Feature Dimension for Recognition of Speed Limit Signs,"Hindawi Publishing Corporation +The Scientific World Journal +Volume 2013, Article ID 135614, 6 pages +http://dx.doi.org/10.1155/2013/135614 +Research Article +Design of an Efficient Real-Time Algorithm Using Reduced +Feature Dimension for Recognition of Speed Limit Signs +Hanmin Cho,1 Seungwha Han,2 and Sun-Young Hwang1 +Department of Electronic Engineering, Sogang University, Seoul 121-742, Republic of Korea +Samsung Techwin R&D Center, Security Solution Division, 701 Sampyeong-dong, Bundang-gu, Seongnam-si, +Gyeonggi 463-400, Republic of Korea +Correspondence should be addressed to Sun-Young Hwang; +Received 28 August 2013; Accepted 1 October 2013 +Academic Editors: P. Daponte, M. Nappi, and N. Nishchal +Copyright © 2013 Hanmin Cho et al. This is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +We propose a real-time algorithm for recognition of speed limit signs from a moving vehicle. Linear Discriminant Analysis (LDA) +required for classification is performed by using Discrete Cosine Transform (DCT) coefficients. To reduce feature dimension in +LDA, DCT coefficients are selected by a devised discriminant function derived from information obtained by training. Binarization +nd thinning are performed on a Region of Interest (ROI) obtained by preprocessing a detected ROI prior to DCT for further"
+e496d6be415038de1636bbe8202cac9c1cea9dbe,Facial Expression Recognition in Older Adults using Deep Machine Learning,"Facial Expression Recognition in Older Adults using +Deep Machine Learning +Andrea Caroppo, Alessandro Leone and Pietro Siciliano +National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, +Italy"
+e43cc682453cf3874785584fca813665878adaa7,Face Recognition using Local Derivative Pattern Face Descriptor,"www.ijecs.in +International Journal Of Engineering And Computer Science ISSN:2319-7242 +Volume 3 Issue 10 October, 2014 Page No.8830-8834 +Face Recognition using Local Derivative Pattern Face +Descriptor +Pranita R. Chavan1, Dr. Dnyandeo J. Pete2 +Department of Electronics and Telecommunication +Datta Meghe College of Engineering +Airoli, Navi Mumbai, India 1,2 +Mob: 99206746061 +Mob: 99870353142"
+fec6648b4154fc7e0892c74f98898f0b51036dfe,"A Generic Face Processing Framework: Technologies, Analyses and Applications","A Generic Face Processing +Framework: Technologies, +Analyses and Applications +JANG Kim-fung +A Thesis Submitted in Partial Ful(cid:12)lment +of the Requirements for the Degree of +Master of Philosophy +Computer Science and Engineering +Supervised by +Prof. Michael R. Lyu +(cid:13)The Chinese University of Hong Kong +July 2003 +The Chinese University of Hong Kong holds the copyright of this thesis. Any +person(s) intending to use a part or whole of the materials in the thesis in +proposed publication must seek copyright release from the Dean of the +Graduate School."
+fea0a5ed1bc83dd1b545a5d75db2e37a69489ac9,Enhancing Recommender Systems for TV by Face Recognition,"Enhancing Recommender Systems for TV by Face Recognition +Toon De Pessemier, Damien Verlee and Luc Martens +iMinds - Ghent University, Technologiepark 15, B-9052 Ghent, Belgium +{toon.depessemier, +Keywords: +Recommender System, Face Recognition, Face Detection, TV, Emotion Detection."
+fe9c460d5ca625402aa4d6dd308d15a40e1010fa,Neural Architecture for Temporal Emotion Classification,"Neural Architecture for Temporal Emotion +Classification +Roland Schweiger, Pierre Bayerl, and Heiko Neumann +Universit¨at Ulm, Neuroinformatik, Germany"
+fe464b2b54154d231671750053861f5fd14454f5,Multi Joint Action in CoTeSys-Setup and Challenges-Technical report CoTeSys-TR-1001,"Multi Joint Action in CoTeSys +- Setup and Challenges - +Technical report CoTeSys-TR-10-01 +D. Brˇsˇci´c, F. Rohrm¨uller, O. Kourakos, S. Sosnowski, D. Althoff, M. Lawitzky, +A. M¨ortl, M. Rambow, V. Koropouli, J.R. Medina Hern´andez, X. Zang, +W. Wang, D. Wollherr, K. K¨uhnlenz, S. Hirche and M. Buss 1 +{drazen, rohrm, omirosk, sosnowski, dalthoff, lawitzky, moertl, rambow, vicky, +medina, xueliang zang, wangwei, dirk, kuehnlen, hirche, +M. Eggers, C. Mayer, T. Kruse, A. Kirsch, M. Beetz and B. Radig 2 +{eggers, mayerc, kruset, kirsch, beetz, +J. Blume, A. Bannat, T. Rehrl and F. Wallhoff 3 +{blume, bannat, rehrl, +T. Lorenz and A. Schub¨o 4 +{lorenz, +P. Basili and S. Glasauer 5 +C. Lenz, T. R¨oder, G. Panin and A. Knoll 6 +W. Maier and E. Steinbach 7 +{werner.maier, +Institute of Automatic Control +Experimental Psychology Unit"
+fea83550a21f4b41057b031ac338170bacda8805,Learning a Metric Embedding for Face Recognition using the Multibatch Method,"Learning a Metric Embedding +for Face Recognition +using the Multibatch Method +Oren Tadmor +Yonatan Wexler +Tal Rosenwein +Shai Shalev-Shwartz +Amnon Shashua +Orcam Ltd., Jerusalem, Israel"
+feeb0fd0e254f38b38fe5c1022e84aa43d63f7cc,Search Pruning with Soft Biometric Systems: Efficiency-Reliability Tradeoff,"EURECOM +Multimedia Communications Department +Mobile Communications Department +229, route des Crˆetes +B.P. 193 +06904 Sophia-Antipolis +FRANCE +Research Report RR-11-255 +Search Pruning with Soft Biometric Systems: +Efficiency-Reliability Tradeoff +June 1st, 2011 +Last update June 1st, 2011 +Antitza Dantcheva, Arun Singh, Petros Elia and Jean-Luc Dugelay +EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco, +Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales."
+fe0c51fd41cb2d5afa1bc1900bbbadb38a0de139,Bayesian face recognition using 2D Gaussian-Hermite moments,"Rahman et al. EURASIP Journal on Image and Video Processing (2015) 2015:35 +DOI 10.1186/s13640-015-0090-5 +RESEARCH +Open Access +Bayesian face recognition using 2D +Gaussian-Hermite moments +S. M. Mahbubur Rahman1*, Shahana Parvin Lata2 and Tamanna Howlader2"
+c8db8764f9d8f5d44e739bbcb663fbfc0a40fb3d,Modeling for part-based visual object detection based on local features,"Modeling for part-based visual object +detection based on local features +Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Rheinisch-Westf¨alischen Technischen Hochschule Aachen +zur Erlangung des akademischen Grades eines Doktors +der Ingenieurwissenschaften genehmigte Dissertation +vorgelegt von +Diplom-Ingenieur +Mark Asbach +us Neuss +Berichter: +Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm +Univ.-Prof. Dr.-Ing. Til Aach +Tag der m¨undlichen Pr¨ufung: 28. September 2011 +Diese Dissertation ist auf den Internetseiten der +Hochschulbibliothek online verf¨ugbar."
+c86e6ed734d3aa967deae00df003557b6e937d3d,Generative Adversarial Networks with Decoder-Encoder Output Noise,"Generative Adversarial Networks with +Decoder-Encoder Output Noise +Guoqiang Zhong, Member, IEEE, Wei Gao, Yongbin Liu, Youzhao Yang +onditional distribution of their neighbors. In [32], Portilla and +Simoncelli proposed a parametric texture model based on joint +statistics, which uses a decomposition method that is called +steerable pyramid decomposition to decompose the texture +of images. An example-based super-resolution algorithm [11] +was proposed in 2002, which uses a Markov network to model +the spatial relationship between the pixels of an image. A +scene completion algorithm [16] was proposed in 2007, which +pplied a semantic scene match technique. These traditional +lgorithms can be applied to particular image generation tasks, +such as texture synthesis and super-resolution. Their common +haracteristic is that they predict the images pixel by pixel +rather than generate an image as a whole, and the basic idea +of them is to make an interpolation according to the existing +part of the images. Here, the problem is, given a set of images, +an we generate totally new images with the same distribution +of the given ones?"
+c8a4b4fe5ff2ace9ab9171a9a24064b5a91207a3,Locating facial landmarks with binary map cross-correlations,"LOCATING FACIAL LANDMARKS WITH BINARY MAP CROSS-CORRELATIONS +J´er´emie Nicolle +K´evin Bailly +Vincent Rapp +Mohamed Chetouani +Univ. Pierre & Marie Curie, ISIR - CNRS UMR 7222, F-75005, Paris - France +{nicolle, bailly, rapp,"
+c866a2afc871910e3282fd9498dce4ab20f6a332,Surveillance Face Recognition Challenge,"Noname manuscript No. +(will be inserted by the editor) +Surveillance Face Recognition Challenge +Zhiyi Cheng · Xiatian Zhu · Shaogang Gong +Received: date / Accepted: date"
+c84233f854bbed17c22ba0df6048cbb1dd4d3248,Exploring Locally Rigid Discriminative Patches for Learning Relative Attributes,"Y. VERMA, C. V. JAWAHAR: EXPLORING PATCHES FOR RELATIVE ATTRIBUTES +Exploring Locally Rigid Discriminative +Patches for Learning Relative Attributes +Yashaswi Verma +http://researchweb.iiit.ac.in/~yashaswi.verma/ +C. V. Jawahar +http://www.iiit.ac.in/~jawahar/ +IIIT-Hyderabad, India +http://cvit.iiit.ac.in"
+c81ee278d27423fd16c1a114dcae486687ee27ff,Search Based Face Annotation Using Weakly Labeled Facial Images,"Search Based Face Annotation Using Weakly +Labeled Facial Images +Shital Shinde1, Archana Chaugule2 +Computer Department, Savitribai Phule Pune University +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18 +Mahatma Phulenagar, 120/2 Mahaganpati soc, Chinchwad, Pune-19, MH, India +D.Y.Patil Institute of Engineering and Technology, Pimpri, Pune-18, Savitribai Phule Pune University +DYPIET, Pimpri, Pune-18, MH, India"
+c83a05de1b4b20f7cd7cd872863ba2e66ada4d3f,A Deep Learning Perspective on the Origin of Facial Expressions,"BREUER, KIMMEL: A DEEP LEARNING PERSPECTIVE ON FACIAL EXPRESSIONS +A Deep Learning Perspective on the Origin +of Facial Expressions +Ran Breuer +Ron Kimmel +Department of Computer Science +Technion - Israel Institute of Technology +Technion City, Haifa, Israel +Figure 1: Demonstration of the filter visualization process."
+c8adbe00b5661ab9b3726d01c6842c0d72c8d997,Deep Architectures for Face Attributes,"Deep Architectures for Face Attributes +Tobi Baumgartner, Jack Culpepper +Computer Vision and Machine Learning Group, Flickr, Yahoo, +{tobi,"
+fb4545782d9df65d484009558e1824538030bbb1,"Learning Visual Patterns: Imposing Order on Objects, Trajectories and Networks",
+fbf196d83a41d57dfe577b3a54b1b7fa06666e3b,Extreme Learning Machine for Large-Scale Action Recognition,"Extreme Learning Machine for Large-Scale +Action Recognition +G¨ul Varol and Albert Ali Salah +Department of Computer Engineering, Bo˘gazi¸ci University, Turkey"
+fba464cb8e3eff455fe80e8fb6d3547768efba2f,Survey Paper on Emotion Recognition,"International Journal of Engineering and Applied Sciences (IJEAS) +ISSN: 2394-3661, Volume-3, Issue-2, February 2016 +Survey Paper on Emotion Recognition +Prachi Shukla, Sandeep Patil"
+fbb2f81fc00ee0f257d4aa79bbef8cad5000ac59,Reading Hidden Emotions: Spontaneous Micro-expression Spotting and Recognition,"Reading Hidden Emotions: Spontaneous +Micro-expression Spotting and Recognition +Xiaobai Li, Student Member, IEEE, Xiaopeng Hong, Member, IEEE, Antti Moilanen, Xiaohua Huang, Student +Member, IEEE, Tomas Pfister, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
+fb9ad920809669c1b1455cc26dbd900d8e719e61,3 D Gaze Estimation from Remote RGB-D Sensors THÈSE,"D Gaze Estimation from Remote RGB-D Sensors +THÈSE NO 6680 (2015) +PRÉSENTÉE LE 9 OCTOBRE 2015 +À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR +LABORATOIRE DE L'IDIAP +PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE +ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE +POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES +Kenneth Alberto FUNES MORA +cceptée sur proposition du jury: +Prof. K. Aminian, président du jury +Dr J.-M. Odobez, directeur de thèse +Prof. L.-Ph. Morency, rapporteur +Prof. D. Witzner Hansen, rapporteur +Dr R. Boulic, rapporteur +Suisse"
+ed28e8367fcb7df7e51963add9e2d85b46e2d5d6,A Novel Approach of Face Recognition Using Convolutional Neural Networks with Auto Encoder,"International J. of Engg. Research & Indu. Appls. (IJERIA). +ISSN 0974-1518, Vol.9, No. III (December 2016), pp.23-42 +A NOVEL APPROACH OF FACE RECOGNITION USING +CONVOLUTIONAL NEURAL NETWORKS WITH AUTO +ENCODER +T. SYED AKHEEL1 AND DR. S. A. K JILANI2 +Research Scholar, Dept. of Electronics & Communication Engineering, +Rayalaseema University Kurnool, Andhra Pradesh. +2 Research Supervisor, Professor, Dept. of Electronics & Communication Engineering, +Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh."
+ed08ac6da6f8ead590b390b1d14e8a9b97370794,An Efficient Approach for 3D Face Recognition Using ANN Based Classifiers,"ISSN(Online): 2320-9801 +ISSN (Print): 2320-9798 +International Journal of Innovative Research in Computer +nd Communication Engineering +(An ISO 3297: 2007 Certified Organization) +Vol. 3, Issue 9, September 2015 +An Efficient Approach for 3D Face +Recognition Using ANN Based Classifiers +Vaibhav M. Pathak1, Suhas S.Satonkar2, Dr.Prakash B.Khanale3 +Assistant Professor, Dept. of C.S., Shri Shivaji College, Parbhani, M.S, India1 +Assistant Professor, Dept. of C.S., Arts, Commerce and Science College, Gangakhed, M.S, India2 +Associate Professor, Dept. of C.S., Dnyanopasak College Parbhani, M.S, India3"
+edef98d2b021464576d8d28690d29f5431fd5828,Pixel-Level Alignment of Facial Images for High Accuracy Recognition Using Ensemble of Patches,"Pixel-Level Alignment of Facial Images +for High Accuracy Recognition +Using Ensemble of Patches +Hoda Mohammadzade, Amirhossein Sayyafan, Benyamin Ghojogh"
+ed04e161c953d345bcf5b910991d7566f7c486f7,Mirror my emotions! Combining facial expression analysis and synthesis on a robot,"Combining facial expression analysis and synthesis on a +Mirror my emotions! +robot +Stefan Sosnowski1 and Christoph Mayer2 and Kolja K¨uhnlenz3 and Bernd Radig4"
+c1d2d12ade031d57f8d6a0333cbe8a772d752e01,Convex optimization techniques for the efficient recovery of a sparsely corrupted low-rank matrix,"Journal of Math-for-Industry, Vol.2(2010B-5), pp.147–156 +Convex optimization techniques for the efficient recovery of a sparsely +orrupted low-rank matrix +Silvia Gandy and Isao Yamada +Received on August 10, 2010 / Revised on August 31, 2010"
+c10a15e52c85654db9c9343ae1dd892a2ac4a279,Learning the Relative Importance of Objects from Tagged Images for Retrieval and Cross-Modal Search,"Int J Comput Vis (2012) 100:134–153 +DOI 10.1007/s11263-011-0494-3 +Learning the Relative Importance of Objects from Tagged Images +for Retrieval and Cross-Modal Search +Sung Ju Hwang · Kristen Grauman +Received: 16 December 2010 / Accepted: 23 August 2011 / Published online: 18 October 2011 +© Springer Science+Business Media, LLC 2011"
+c1dfabe36a4db26bf378417985a6aacb0f769735,Describing Visual Scene through EigenMaps,"Journal of Computer Vision and Image Processing, NWPJ-201109-50 +Describing Visual Scene through EigenMaps +Shizhi Chen, Student Member, IEEE, and YingLi Tian, Senior Member, IEEE"
+c1ff88493721af1940df0d00bcfeefaa14f1711f,Subspace Regression: Predicting a Subspace from one Sample,"#1369 +CVPR 2010 Submission #1369. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +#1369 +Subspace Regression: Predicting a Subspace from one Sample +Anonymous CVPR submission +Paper ID 1369"
+c11eb653746afa8148dc9153780a4584ea529d28,Global and Local Consistent Wavelet-domain Age Synthesis,"Global and Local Consistent Wavelet-domain Age +Synthesis +Peipei Li†, Yibo Hu†, Ran He Member, IEEE and Zhenan Sun Member, IEEE"
+c1ebbdb47cb6a0ed49c4d1cf39d7565060e6a7ee,Robust Facial Landmark Localization Based on Texture and Pose Correlated Initialization,"Robust Facial Landmark Localization Based on +Yiyun Pan, Junwei Zhou, Member, IEEE, Yongsheng Gao, Senior Member, IEEE, Shengwu Xiong"
+c1dd69df9dfbd7b526cc89a5749f7f7fabc1e290,Unconstrained face identification with multi-scale block-based correlation,"Unconstrained face identification with multi-scale block-based +orrelation +Gaston, J., MIng, J., & Crookes, D. (2016). Unconstrained face identification with multi-scale block-based +orrelation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal +Processing (pp. 1477-1481). [978-1-5090-4117-6/17] Institute of Electrical and Electronics Engineers (IEEE). +Published in: +Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +Publisher rights +© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future +media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or +redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy"
+c68ec931585847b37cde9f910f40b2091a662e83,A Comparative Evaluation of Dotted Raster-Stereography and Feature-Based Techniques for Automated Face Recognition,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 9, No. 6, 2018 +A Comparative Evaluation of Dotted Raster- +Stereography and Feature-Based Techniques for +Automated Face Recognition +Muhammad Wasim +S. Talha Ahsan +Department of Computer Science +Department of Electrical Engineering +Usman Institute of Technology +Usman Institute of Technology +Karachi, Pakistan +Karachi, Pakistan +Lubaid Ahmed, Syed Faisal Ali, +Fauzan Saeed +Department of Computer Science +Usman Institute of Technology +Karachi, Pakistan +feature-based +system. The"
+c614450c9b1d89d5fda23a54dbf6a27a4b821ac0,Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image,"Vol.60: e17160480, January-December 2017 +http://dx.doi.org/10.1590/1678-4324-2017160480 +ISSN 1678-4324 Online Edition +Engineering,Technology and Techniques +BRAZILIAN ARCHIVES OF +BIOLOGY AND TECHNOLOGY +A N I N T E R N A T I O N A L J O U R N A L +Face Image Retrieval of Efficient Sparse Code words and +Multiple Attribute in Binning Image +Suchitra S1*. +Srm Easwari Engineering College, Ramapuram, Bharathi Salai, Chennai, Tamil Nadu, India."
+c6f3399edb73cfba1248aec964630c8d54a9c534,A comparison of CNN-based face and head detectors for real-time video surveillance applications,"A Comparison of CNN-based Face and Head Detectors for +Real-Time Video Surveillance Applications +Le Thanh Nguyen-Meidine1, Eric Granger 1, Madhu Kiran1 and Louis-Antoine Blais-Morin2 +´Ecole de technologie sup´erieure, Universit´e du Qu´ebec, Montreal, Canada +Genetec Inc., Montreal, Canada"
+c6ffa09c4a6cacbbd3c41c8ae7a728b0de6e10b6,Feature extraction using constrained maximum variance mapping,"This article appeared in a journal published by Elsevier. The attached +opy is furnished to the author for internal non-commercial research +nd education use, including for instruction at the authors institution +nd sharing with colleagues. +Other uses, including reproduction and distribution, or selling or +licensing copies, or posting to personal, institutional or third party +websites are prohibited. +In most cases authors are permitted to post their version of the +rticle (e.g. in Word or Tex form) to their personal website or +institutional repository. Authors requiring further information +regarding Elsevier’s archiving and manuscript policies are +encouraged to visit: +http://www.elsevier.com/copyright"
+c62c07de196e95eaaf614fb150a4fa4ce49588b4,SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation,Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
+ec90d333588421764dff55658a73bbd3ea3016d2,Protocol for Systematic Literature Review of Face Recognition in Uncontrolled Environment,"Research Article +Protocol for Systematic Literature Review of Face +Recognition in Uncontrolled Environment +Faizan Ullah, Sabir Shah, Dilawar Shah, Abdusalam, Shujaat Ali +Department of Computer Science, Bacha Khan University, Charsadda, KPK, Pakistan"
+ec1e03ec72186224b93b2611ff873656ed4d2f74,D Reconstruction of “ Inthe-Wild ” Faces in Images and Videos,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +D Reconstruction of “In-the-Wild” Faces in +Images and Videos +James Booth, Anastasios Roussos, Evangelos Ververas, Epameinondas Anton- +kos, Stylianos Ploumpis, Yannis Panagakis, and Stefanos Zafeiriou"
+ec12f805a48004a90e0057c7b844d8119cb21b4a,Distance-Based Descriptors and Their Application in the Task of Object Detection,"Distance-Based Descriptors and Their +Application in the Task of Object Detection +Radovan Fusek(B) and Eduard Sojka +Department of Computer Science, Technical University of Ostrava, FEECS, +7. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic"
+ec54000c6c0e660dd99051bdbd7aed2988e27ab8,Two in One: Joint Pose Estimation and Face Recognition with Pca,"TWO IN ONE: JOINT POSE ESTIMATION AND FACE RECOGNITION WITH P2CA1 +Francesc Tarres*, Antonio Rama* +{tarres, +Davide Onofrio+, Stefano Tubaro+ +{d.onofrio, +*Dept. Teoria del Senyal i Comunicacions - Universitat Politècnica de Catalunya, Barcelona, Spain ++Dipartimento di Elettronica e Informazione - Politecnico di Milano, Meiland, Italy"
+ec0104286c96707f57df26b4f0a4f49b774c486b,An Ensemble CNN2ELM for Age Estimation,"An Ensemble CNN2ELM for Age Estimation +Mingxing Duan , Kenli Li, Senior Member, IEEE, and Keqin Li, Fellow, IEEE"
+4e32fbb58154e878dd2fd4b06398f85636fd0cf4,A Hierarchical Matcher using Local Classifier Chains,"A Hierarchical Matcher using Local Classifier Chains +L. Zhang and I.A. Kakadiaris +Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204"
+4ea53e76246afae94758c1528002808374b75cfa,A Review of Scholastic Examination and Models for Face Recognition and Retrieval in Video,"Lasbela, U. J.Sci. Techl., vol.IV , pp. 57-70, 2015 +Review ARTICLE +A Review of Scholastic Examination and Models for Face Recognition +ISSN 2306-8256 +nd Retrieval in Video +Varsha Sachdeva1, Junaid Baber2, Maheen Bakhtyar2, Muzamil Bokhari3, Imran Ali4 +Department of Computer Science, SBK Women’s University, Quetta, Balochistan +Department of CS and IT, University of Balochistan, Quetta +Department of Physics, University of Balochistan, Quetta +Institute of Biochemistry, University of Balochistan, Quetta"
+4e97b53926d997f451139f74ec1601bbef125599,Discriminative Regularization for Generative Models,"Discriminative Regularization for Generative Models +Alex Lamb, Vincent Dumoulin and Aaron Courville +Montreal Institute for Learning Algorithms, Universit´e de Montr´eal"
+4e27fec1703408d524d6b7ed805cdb6cba6ca132,SSD-Sface: Single shot multibox detector for small faces,"SSD-Sface: Single shot multibox detector for small faces +C. Thuis"
+4e6c9be0b646d60390fe3f72ce5aeb0136222a10,Long-Term Temporal Convolutions for Action Recognition,"Long-term Temporal Convolutions +for Action Recognition +G¨ul Varol, Ivan Laptev, and Cordelia Schmid, Fellow, IEEE"
+4ef0a6817a7736c5641dc52cbc62737e2e063420,Study of Face Recognition Techniques,"International Journal of Advanced Computer Research (ISSN (Print): 2249-7277 ISSN (Online): 2277-7970) +Volume-4 Number-4 Issue-17 December-2014 +Study of Face Recognition Techniques +Sangeeta Kaushik1*, R. B. Dubey2 and Abhimanyu Madan3 +Received: 10-November-2014; Revised: 18-December-2014; Accepted: 23-December-2014 +©2014 ACCENTS"
+4e0e49c280acbff8ae394b2443fcff1afb9bdce6,Automatic Learning of Gait Signatures for People Identification,"Automatic learning of gait signatures for people identification +F.M. Castro +Univ. of Malaga +fcastro<at>uma.es +M.J. Mar´ın-Jim´enez +Univ. of Cordoba +mjmarin<at>uco.es +N. Guil +Univ. of Malaga +nguil<at>uma.es +N. P´erez de la Blanca +Univ. of Granada +nicolas<at>ugr.es"
+20a432a065a06f088d96965f43d0055675f0a6c1,The Effects of Regularization on Learning Facial Expressions with Convolutional Neural Networks,"In: Proc. of the 25th Int. Conference on Artificial Neural Networks (ICANN) +Part II, LNCS 9887, pp. 80-87, Barcelona, Spain, September 2016 +The final publication is available at Springer via +http://dx.doi.org//10.1007/978-3-319-44781-0_10 +The Effects of Regularization on Learning Facial +Expressions with Convolutional Neural Networks +Tobias Hinz, Pablo Barros, and Stefan Wermter +University of Hamburg Department of Computer Science, +Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany +http://www.informatik.uni-hamburg.de/WTM"
+20a3ce81e7ddc1a121f4b13e439c4cbfb01adfba,Sparse-MVRVMs Tree for Fast and Accurate Head Pose Estimation in the Wild,"Sparse-MVRVMs Tree for Fast and Accurate +Head Pose Estimation in the Wild +Mohamed Selim, Alain Pagani, and Didier Stricker +Augmented Vision Research Group, +German Research Center for Artificial Intelligence (DFKI), +Tripstaddterstr. 122, 67663 Kaiserslautern, Germany +Technical University of Kaiserslautern +http://www.av.dfki.de"
+2004afb2276a169cdb1f33b2610c5218a1e47332,Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition,"Hindawi +Computational Intelligence and Neuroscience +Volume 2018, Article ID 3803627, 11 pages +https://doi.org/10.1155/2018/3803627 +Research Article +Deep Convolutional Neural Network Used in Single Sample per +Person Face Recognition +Junying Zeng , Xiaoxiao Zhao , Junying Gan , Chaoyun Mai +nd Fan Wang +, Yikui Zhai, +School of Information Engineering, Wuyi University, Jiangmen 529020, China +Correspondence should be addressed to Xiaoxiao Zhao; +Received 27 November 2017; Revised 23 May 2018; Accepted 26 July 2018; Published 23 August 2018 +Academic Editor: Jos´e Alfredo Hern´andez-P´erez +Copyright © 2018 Junying Zeng et al. 0is is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be +trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper +proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample +method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and"
+20e504782951e0c2979d9aec88c76334f7505393,Robust LSTM-Autoencoders for Face De-Occlusion in the Wild,"Robust LSTM-Autoencoders for Face De-Occlusion +in the Wild +Fang Zhao, Jiashi Feng, Jian Zhao, Wenhan Yang, Shuicheng Yan"
+20ade100a320cc761c23971d2734388bfe79f7c5,Subspace Clustering via Good Neighbors,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Subspace Clustering via Good Neighbors +Jufeng Yang, Jie Liang, Kai Wang, Ming-Hsuan Yang"
+202d8d93b7b747cdbd6e24e5a919640f8d16298a,Face Classification via Sparse Approximation,"Face Classification via Sparse Approximation +Elena Battini S˝onmez1, Bulent Sankur2 and Songul Albayrak3 +Computer Science Department, Bilgi University, Dolapdere, Istanbul, TR +Electric and Electronic Engineering Department, Bo¯gazici University, Istanbul, TR +Computer Engineering Department, Yıldız Teknik University, Istanbul, TR"
+205b34b6035aa7b23d89f1aed2850b1d3780de35,Log-domain polynomial filters for illumination-robust face recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +Shenzhen Key Lab. of Information Sci&Tech, +♯Nagaoka University of Technology, Japan +RECOGNITION +. INTRODUCTION"
+2059d2fecfa61ddc648be61c0cbc9bc1ad8a9f5b,Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression,"TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015 +Co-Localization of Audio Sources in Images Using +Binaural Features and Locally-Linear Regression +Antoine Deleforge∗ Radu Horaud∗ Yoav Y. Schechner‡ Laurent Girin∗† +INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +Univ. Grenoble Alpes, GIPSA-Lab, France +Dept. Electrical Eng., Technion-Israel Inst. of Technology, Haifa, Israel"
+20111924fbf616a13d37823cd8712a9c6b458cd6,Linear Regression Line based Partial Face Recognition,"International Journal of Computer Applications (0975 – 8887) +Volume 130 – No.11, November2015 +Linear Regression Line based Partial Face Recognition +Naveena M. +Department of Studies in +Computer Science, +Manasagagothri, +Mysore. +G. Hemantha Kumar +Department of Studies in +Computer Science, +Manasagagothri, +Mysore. +P. Nagabhushan +Department of Studies in +Computer Science, +Manasagagothri, +Mysore. +images. In"
+20532b1f80b509f2332b6cfc0126c0f80f438f10,A Deep Matrix Factorization Method for Learning Attribute Representations,"A deep matrix factorization method for learning +ttribute representations +George Trigeorgis, Konstantinos Bousmalis, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE +Bj¨orn W. Schuller, Senior member, IEEE"
+205af28b4fcd6b569d0241bb6b255edb325965a4,Facial expression recognition and tracking for intelligent human-robot interaction,"Intel Serv Robotics (2008) 1:143–157 +DOI 10.1007/s11370-007-0014-z +SPECIAL ISSUE +Facial expression recognition and tracking for intelligent human-robot +interaction +Y. Yang · S. S. Ge · T. H. Lee · C. Wang +Received: 27 June 2007 / Accepted: 6 December 2007 / Published online: 23 January 2008 +© Springer-Verlag 2008"
+20a0b23741824a17c577376fdd0cf40101af5880,Learning to Track for Spatio-Temporal Action Localization,"Learning to track for spatio-temporal action localization +Philippe Weinzaepfela +Zaid Harchaouia,b +NYU +Inria∗ +Cordelia Schmida"
+18c72175ddbb7d5956d180b65a96005c100f6014,From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, +JUNE 2001 +From Few to Many: Illumination Cone +Models for Face Recognition under +Variable Lighting and Pose +Athinodoros S. Georghiades, Student Member, IEEE, Peter N. Belhumeur, Member, IEEE, and +David J. Kriegman, Senior Member, IEEE"
+18636347b8741d321980e8f91a44ee054b051574,Facial marks: Soft biometric for face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE +ICIP 2009"
+181045164df86c72923906aed93d7f2f987bce6c,Rheinisch-westfälische Technische Hochschule Aachen,"RHEINISCH-WESTFÄLISCHE TECHNISCHE +HOCHSCHULE AACHEN +KNOWLEDGE-BASED SYSTEMS GROUP +PROF. GERHARD LAKEMEYER, PH. D. +Detection and Recognition of Human +Faces using Random Forests for a +Mobile Robot +MASTER OF SCIENCE THESIS +VAISHAK BELLE +MATRICULATION NUMBER: 26 86 51 +SUPERVISOR: +SECOND SUPERVISOR: +PROF. GERHARD LAKEMEYER, PH. D. +PROF. ENRICO BLANZIERI, PH. D. +ADVISERS: +STEFAN SCHIFFER, THOMAS DESELAERS"
+18d5b0d421332c9321920b07e0e8ac4a240e5f1f,Collaborative Representation Classification Ensemble for Face Recognition,"Collaborative Representation Classification +Ensemble for Face Recognition +Xiao Chao Qu, Suah Kim, Run Cui and Hyoung Joong Kim"
+18d51a366ce2b2068e061721f43cb798177b4bb7,Looking into your eyes: observed pupil size influences approach-avoidance responses.,"Cognition and Emotion +ISSN: 0269-9931 (Print) 1464-0600 (Online) Journal homepage: http://www.tandfonline.com/loi/pcem20 +Looking into your eyes: observed pupil size +influences approach-avoidance responses +Marco Brambilla, Marco Biella & Mariska E. Kret +To cite this article: Marco Brambilla, Marco Biella & Mariska E. Kret (2018): Looking into your +eyes: observed pupil size influences approach-avoidance responses, Cognition and Emotion, DOI: +0.1080/02699931.2018.1472554 +To link to this article: https://doi.org/10.1080/02699931.2018.1472554 +View supplementary material +Published online: 11 May 2018. +Submit your article to this journal +View related articles +View Crossmark data +Full Terms & Conditions of access and use can be found at +http://www.tandfonline.com/action/journalInformation?journalCode=pcem20"
+1885acea0d24e7b953485f78ec57b2f04e946eaf,Combining Local and Global Features for 3D Face Tracking,"Combining Local and Global Features for 3D Face Tracking +Pengfei Xiong, Guoqing Li, Yuhang Sun +Megvii (face++) Research +{xiongpengfei, liguoqing,"
+18a849b1f336e3c3b7c0ee311c9ccde582d7214f,"Efficiently Scaling up Crowdsourced Video Annotation A Set of Best Practices for High Quality, Economical Video Labeling","Int J Comput Vis +DOI 10.1007/s11263-012-0564-1 +Efficiently Scaling up Crowdsourced Video Annotation +A Set of Best Practices for High Quality, Economical Video Labeling +Carl Vondrick · Donald Patterson · Deva Ramanan +Received: 31 October 2011 / Accepted: 20 August 2012 +© Springer Science+Business Media, LLC 2012"
+18cd79f3c93b74d856bff6da92bfc87be1109f80,A N a Pplication to H Uman F Ace P Hoto - S Ketch S Ynthesis and R Ecognition,"International Journal of Advances in Engineering & Technology, May 2012. +©IJAET ISSN: 2231-1963 +AN APPLICATION TO HUMAN FACE PHOTO-SKETCH +SYNTHESIS AND RECOGNITION +Amit R. Sharma and 2Prakash. R. Devale +Student and 2Professor & Head, +Department of Information Tech., Bharti Vidyapeeth Deemed University, Pune, India"
+1886b6d9c303135c5fbdc33e5f401e7fc4da6da4,Knowledge Guided Disambiguation for Large-Scale Scene Classification With Multi-Resolution CNNs,"Knowledge Guided Disambiguation for Large-Scale +Scene Classification with Multi-Resolution CNNs +Limin Wang, Sheng Guo, Weilin Huang, Member, IEEE, Yuanjun Xiong, and Yu Qiao, Senior Member, IEEE"
+1888bf50fd140767352158c0ad5748b501563833,A Guided Tour of Face Processing,"PA R T 1 +THE BASICS"
+185360fe1d024a3313042805ee201a75eac50131,Person De-Identification in Videos,"Person De-Identification in Videos +Prachi Agrawal and P. J. Narayanan"
+1824b1ccace464ba275ccc86619feaa89018c0ad,One millisecond face alignment with an ensemble of regression trees,"One Millisecond Face Alignment with an Ensemble of Regression Trees +Vahid Kazemi and Josephine Sullivan +KTH, Royal Institute of Technology +Computer Vision and Active Perception Lab +Teknikringen 14, Stockholm, Sweden"
+27a0a7837f9114143717fc63294a6500565294c2,Face Recognition in Unconstrained Environments: A Comparative Study,"Face Recognition in Unconstrained Environments: A +Comparative Study +Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa +To cite this version: +Rodrigo Verschae, Javier Ruiz-Del-Solar, Mauricio Correa. Face Recognition in Unconstrained +Environments: A Comparative Study: . Workshop on Faces in ’Real-Life’ Images: Detection, +Alignment, and Recognition, Oct 2008, Marseille, France. 2008. <inria-00326730> +HAL Id: inria-00326730 +https://hal.inria.fr/inria-00326730 +Submitted on 5 Oct 2008 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+275b5091c50509cc8861e792e084ce07aa906549,Leveraging the User's Face as a Known Object in Handheld Augmented Reality,"Institut für Informatik +der Technischen +Universität München +Dissertation +Leveraging the User’s Face as a Known Object +in Handheld Augmented Reality +Sebastian Bernhard Knorr"
+276dbb667a66c23545534caa80be483222db7769,An Introduction to Image-based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods,"D Res. 2, 03(2011)4 +0.1007/3DRes.03(2011)4 +DR REVIEW w +An Introduction to Image-based 3D Surface Reconstruction and a +Survey of Photometric Stereo Methods +Steffen Herbort • Christian Wöhler +introduction +image-based 3D +techniques. Then we describe +Received: 21Feburary 2011 / Revised: 20 March 2011 / Accepted: 11 May 2011 +© 3D Research Center, Kwangwoon University and Springer 2011"
+270733d986a1eb72efda847b4b55bc6ba9686df4,Recognizing Facial Expressions Using Model-Based Image Interpretation,"We are IntechOpen, +the first native scientific +publisher of Open Access books +,350 +08,000 +.7 M +Open access books available +International authors and editors +Downloads +Our authors are among the +Countries delivered to +TOP 1% +2.2% +most cited scientists +Contributors from top 500 universities +Selection of our books indexed in the Book Citation Index +in Web of Science™ Core Collection (BKCI) +Interested in publishing with us? +Contact +Numbers displayed above are based on latest data collected."
+27169761aeab311a428a9dd964c7e34950a62a6b,Face Recognition Using 3D Head Scan Data Based on Procrustes Distance,"International Journal of the Physical Sciences Vol. 5(13), pp. 2020 -2029, 18 October, 2010 +Available online at http://www.academicjournals.org/IJPS +ISSN 1992 - 1950 ©2010 Academic Journals +Full Length Research Paper +Face recognition using 3D head scan data based on +Ahmed Mostayed1, Sikyung Kim1, Mohammad Mynuddin Gani Mazumder1* and Se Jin Park2 +Procrustes distance +Department of Electrical Engineering, Kongju National University, South Korea. +Korean Research Institute of Standards and Science (KRISS), Korea. +Accepted 6 July, 2010 +Recently, face recognition has attracted significant attention from the researchers and scientists in +various fields of research, such as biomedical informatics, pattern recognition, vision, etc due its +pplications in commercially available systems, defense and security purpose. In this paper a practical +method for face reorganization utilizing head cross section data based on Procrustes analysis is +proposed. This proposed method relies on shape signatures of the contours extracted from face data. +The shape signatures are created by calculating the centroid distance of the boundary points, which is +translation and rotation invariant signature. The shape signatures for a selected region of interest +(ROI) are used as feature vectors and authentication is done using them. After extracting feature +vectors a comparison analysis is performed utilizing Procrustes distance to differentiate their face +pattern from each other. The proposed scheme attains an equal error rate (EER) of 4.563% for the 400"
+27173d0b9bb5ce3a75d05e4dbd8f063375f24bb5,Effect of Different Occlusion on Facial Expressions Recognition,"Ankita Vyas Int. Journal of Engineering Research and Applications www.ijera.com +ISSN : 2248-9622, Vol. 4, Issue 10( Part - 3), October 2014, pp.40-44 +RESEARCH ARTICLE +OPEN ACCESS +Effect of Different Occlusion on Facial Expressions Recognition +Ankita Vyas*, Ramchand Hablani** +*(Department of Computer Science, RGPV University, Indore) +** (Department of Computer Science, RGPV University, Indore)"
+2770b095613d4395045942dc60e6c560e882f887,GridFace: Face Rectification via Learning Local Homography Transformations,"GridFace: Face Rectification via Learning Local +Homography Transformations +Erjin Zhou, Zhimin Cao, and Jian Sun +Face++, Megvii Inc."
+27cccf992f54966feb2ab4831fab628334c742d8,"Facial Expression Recognition by Statistical, Spatial Features and using Decision Tree","International Journal of Computer Applications (0975 – 8887) +Volume 64– No.18, February 2013 +Facial Expression Recognition by Statistical, Spatial +Features and using Decision Tree +Nazil Perveen +Assistant Professor +CSIT Department +GGV BIlaspur, Chhattisgarh +India +Darshan Kumar +Assistant Professor +Electronics (ECE) Department +JECRC Jaipur, Rajasthan India +IshanBhardwaj +Student of Ph.D. +Electrical Department +NIT Raipur, Chhattisgarh India"
+27f8b01e628f20ebfcb58d14ea40573d351bbaad,Events based Multimedia Indexing and Retrieval,"DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE +ICT International Doctoral School +Events based Multimedia Indexing +nd Retrieval +Kashif Ahmad +SUBMITTED TO THE DEPARTMENT OF +INFORMATION ENGINEERING AND COMPUTER SCIENCE (DISI) +IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE +DOCTOR OF PHILOSOPHY +Advisor: +Examiners: Prof. Marco Carli, Universit`a degli Studi di Roma Tre, Italy +Prof. Nicola Conci, Universit`a degli Studi di Trento, Italy +Prof. Pietro Zanuttigh, Universit`a degli Studi di Padova, Italy +Prof. Giulia Boato, Universit`a degli Studi di Trento, Italy +December 2017"
+27b1670e1b91ab983b7b1ecfe9eb5e6ba951e0ba,Comparison between k-nn and svm method for speech emotion recognition,"Comparison between k-nn and svm method +for speech emotion recognition +Muzaffar Khan, Tirupati Goskula, Mohmmed Nasiruddin ,Ruhina Quazi +Anjuman College of Engineering & Technology ,Sadar, Nagpur, India"
+27ee8482c376ef282d5eb2e673ab042f5ded99d7,Scale Normalization for the Distance Maps AAM,"Scale Normalization for the Distance Maps AAM. +Denis GIRI, Maxime ROSENWALD, Benjamin VILLENEUVE, Sylvain LE GALLOU and Renaud S ´EGUIER +Email: {denis.giri, maxime.rosenwald, benjamin.villeneuve, sylvain.legallou, +Avenue de la boulaie, BP 81127, +5 511 Cesson-S´evign´e, France +Sup´elec, IETR-SCEE Team"
+4b4106614c1d553365bad75d7866bff0de6056ed,Unconstrained Facial Images: Database for Face Recognition Under Real-World Conditions,"Unconstrained Facial Images: Database for Face +Recognition under Real-world Conditions⋆ +Ladislav Lenc1,2 and Pavel Kr´al1,2 +Dept. of Computer Science & Engineering +University of West Bohemia +Plzeˇn, Czech Republic +NTIS - New Technologies for the Information Society +University of West Bohemia +Plzeˇn, Czech Republic"
+4b89cf7197922ee9418ae93896586c990e0d2867,Unsupervised Discovery of Action Classes,"LATEX Author Guidelines for CVPR Proceedings +First Author +Institution1 +Institution1 address"
+4b04247c7f22410681b6aab053d9655cf7f3f888,Robust Face Recognition by Constrained Part-based Alignment,"Robust Face Recognition by Constrained Part-based +Alignment +Yuting Zhang, Kui Jia, Yueming Wang, Gang Pan, Tsung-Han Chan, Yi Ma"
+4b60e45b6803e2e155f25a2270a28be9f8bec130,Attribute based object identification,"Attribute Based Object Identification +Yuyin Sun, Liefeng Bo and Dieter Fox"
+4b48e912a17c79ac95d6a60afed8238c9ab9e553,Minimum Margin Loss for Deep Face Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Minimum Margin Loss for Deep Face Recognition +Xin Wei, Student Member, IEEE, Hui Wang, Member, IEEE, Bryan Scotney, and Huan Wan"
+4b5eeea5dd8bd69331bd4bd4c66098b125888dea,Human Activity Recognition Using Conditional Random Fields and Privileged Information,"Human Activity Recognition Using Conditional +Random Fields and Privileged Information +DOCTORAL THESIS +submitted to +the designated by the General Assembly Composition of the +Department of Computer Science & Engineering Inquiry +Committee +Michalis Vrigkas +in partial fulfillment of the Requirements for the Degree of +DOCTOR OF PHILOSOPHY +February 2016"
+4be03fd3a76b07125cd39777a6875ee59d9889bd,Content-based analysis for accessing audiovisual archives: Alternatives for concept-based indexing and search,"CONTENT-BASED ANALYSIS FOR ACCESSING AUDIOVISUAL ARCHIVES: +ALTERNATIVES FOR CONCEPT-BASED INDEXING AND SEARCH +Tinne Tuytelaars +ESAT/PSI - IBBT +KU Leuven, Belgium"
+11f7f939b6fcce51bdd8f3e5ecbcf5b59a0108f5,Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem,"Rolling Riemannian Manifolds to Solve the Multi-class Classification Problem +Rui Caseiro1, Pedro Martins1, João F. Henriques1, Fátima Silva Leite1,2, and Jorge Batista1 +Institute of Systems and Robotics - University of Coimbra, Portugal +Department of Mathematics - University of Coimbra, Portugal , +{ruicaseiro, pedromartins, henriques,"
+11691f1e7c9dbcbd6dfd256ba7ac710581552baa,SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos,"SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos +Silvio Giancola, Mohieddine Amine, Tarek Dghaily, Bernard Ghanem +King Abdullah University of Science and Technology (KAUST), Saudi Arabia"
+1149c6ac37ae2310fe6be1feb6e7e18336552d95,"Classification of Face Images for Gender, Age, Facial Expression, and Identity","Proc. Int. Conf. on Artificial Neural Networks (ICANN’05), Warsaw, LNCS 3696, vol. I, pp. 569-574, Springer Verlag 2005 +Classification of Face Images for Gender, Age, +Facial Expression, and Identity1 +Torsten Wilhelm, Hans-Joachim B¨ohme, and Horst-Michael Gross +Department of Neuroinformatics and Cognitive Robotics +Ilmenau Technical University, P.O.Box 100565, 98684 Ilmenau, Germany"
+11f17191bf74c80ad0b16b9f404df6d03f7c8814,Recognition of Visually Perceived Compositional Human Actions by Multiple Spatio-Temporal Scales Recurrent Neural Networks,"Recognition of Visually Perceived Compositional +Human Actions by Multiple Spatio-Temporal Scales +Recurrent Neural Networks +Haanvid Lee, Minju Jung, and Jun Tani"
+1198572784788a6d2c44c149886d4e42858d49e4,Learning Discriminative Features using Encoder-Decoder type Deep Neural Nets,"Learning Discriminative Features using Encoder/Decoder type Deep +Neural Nets +Vishwajeet Singh1, Killamsetti Ravi Kumar2, K Eswaran3 +ALPES, Bolarum, Hyderabad 500010, +ALPES, Bolarum, Hyderabad 500010, +SNIST, Ghatkesar, Hyderabad 501301,"
+11fe6d45aa2b33c2ec10d9786a71c15ec4d3dca8,Tied Factor Analysis for Face Recognition across Large Pose Differences,"JUNE 2008 +Tied Factor Analysis for Face Recognition +cross Large Pose Differences +Simon J.D. Prince, Member, IEEE, James H. Elder, Member, IEEE, +Jonathan Warrell, Member, IEEE, and Fatima M. Felisberti"
+1134a6be0f469ff2c8caab266bbdacf482f32179,Facial Expression Identification Using Four-bit Co- Occurrence Matrixfeatures and K-nn Classifier,"IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 +FACIAL EXPRESSION IDENTIFICATION USING FOUR-BIT CO- +OCCURRENCE MATRIXFEATURES AND K-NN CLASSIFIER +Bonagiri C S K Sunil Kumar1, V Bala Shankar2, Pullela S V V S R Kumar3 +,2,3 Department of Computer Science & Engineering, Aditya College of Engineering, Surampalem, East Godavari +District, Andhra Pradesh, India"
+111a9645ad0108ad472b2f3b243ed3d942e7ff16,Facial Expression Classification Using Combined Neural Networks,"Facial Expression Classification Using +Combined Neural Networks +Rafael V. Santos, Marley M.B.R. Vellasco, Raul Q. Feitosa, Ricardo Tanscheit +DEE/PUC-Rio, Marquês de São Vicente 225, Rio de Janeiro – RJ - Brazil"
+111d0b588f3abbbea85d50a28c0506f74161e091,Facial Expression Recognition from Visual Information using Curvelet Transform,"International Journal of Computer Applications (0975 – 8887) +Volume 134 – No.10, January 2016 +Facial Expression Recognition from Visual Information +using Curvelet Transform +Pratiksha Singh +Surabhi Group of Institution Bhopal +systems. Further applications"
+11ac88aebe0230e743c7ea2c2a76b5d4acbfecd0,Hybrid Cascade Model for Face Detection in the Wild Based on Normalized Pixel Difference and a Deep Convolutional Neural Network,"Hybrid Cascade Model for Face Detection in the Wild +Based on Normalized Pixel Difference and a Deep +Convolutional Neural Network +Darijan Marčetić[0000-0002-6556-665X], Martin Soldić[0000-0002-4031-0404] +nd Slobodan Ribarić[0000-0002-8708-8513] +University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia +{darijan.marcetic, martin.soldic,"
+7d98dcd15e28bcc57c9c59b7401fa4a5fdaa632b,Face Appearance Factorization for Expression Analysis and Synthesis,"FACE APPEARANCE FACTORIZATION FOR EXPRESSION ANALYSIS AND SYNTHESIS +Bouchra Abboud, Franck Davoine +Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne. +BP 20529, 60205 COMPIEGNE Cedex, FRANCE. +E-mail:"
+7de6e81d775e9cd7becbfd1bd685f4e2a5eebb22,Labeled Faces in the Wild: A Survey,"Labeled Faces in the Wild: A Survey +Erik Learned-Miller, Gary Huang, Aruni RoyChowdhury, Haoxiang Li, Gang Hua"
+7d73adcee255469aadc5e926066f71c93f51a1a5,Face alignment by deep convolutional network with adaptive learning rate,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+7d9fe410f24142d2057695ee1d6015fb1d347d4a,Facial Expression Feature Extraction Based on FastLBP,"Facial Expression Feature Extraction Based on +FastLBP +Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China +Ya Zheng +Email: +Computer and Information Engineering Department of Beijing Technology and Business University, Beijing, China +Email: +Xiuxin Chen, Chongchong Yu and Cheng Gao +facial expression"
+7dffe7498c67e9451db2d04bb8408f376ae86992,LEAR-INRIA submission for the THUMOS workshop,"LEAR-INRIA submission for the THUMOS workshop +Heng Wang and Cordelia Schmid +LEAR, INRIA, France"
+7d3f6dd220bec883a44596ddec9b1f0ed4f6aca2,Linear Regression for Face Recognition,"Linear Regression for Face Recognition +Imran Naseem, +Roberto Togneri, Senior Member, IEEE, and +Mohammed Bennamoun"
+29ce6b54a87432dc8371f3761a9568eb3c5593b0,Age Sensitivity of Face Recognition Algorithms,"Kent Academic Repository +Full text document (pdf) +Citation for published version +Yassin, DK H. PHM and Hoque, Sanaul and Deravi, Farzin (2013) Age Sensitivity of Face Recognition +pp. 12-15. +https://doi.org/10.1109/EST.2013.8 +Link to record in KAR +http://kar.kent.ac.uk/43222/ +Document Version +Author's Accepted Manuscript +Copyright & reuse +Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all +ontent is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions +for further reuse of content should be sought from the publisher, author or other copyright holder. +Versions of research +The version in the Kent Academic Repository may differ from the final published version. +Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the +published version of record. +Enquiries +For any further enquiries regarding the licence status of this document, please contact:"
+292eba47ef77495d2613373642b8372d03f7062b,Deep Secure Encoding: An Application to Face Recognition,"Deep Secure Encoding: An Application to Face Recognition +Rohit Pandey +Yingbo Zhou +Venu Govindaraju"
+29e96ec163cb12cd5bd33bdf3d32181c136abaf9,Regularized Locality Preserving Projections with Two-Dimensional Discretized Laplacian Smoothing,"Report No. UIUCDCS-R-2006-2748 +UILU-ENG-2006-1788 +Regularized Locality Preserving Projections with Two-Dimensional +Discretized Laplacian Smoothing +Deng Cai, Xiaofei He, and Jiawei Han +July 2006"
+29e793271370c1f9f5ac03d7b1e70d1efa10577c,Face Recognition Based on Multi-classifierWeighted Optimization and Sparse Representation,"International Journal of Signal Processing, Image Processing and Pattern Recognition +Vol.6, No.5 (2013), pp.423-436 +http://dx.doi.org/10.14257/ijsip.2013.6.5.37 +Face Recognition Based on Multi-classifierWeighted Optimization +nd Sparse Representation +Deng Nan1, Zhengguang Xu2 and ShengQin Bian3 +,2,3Institute of control science and engineering, +University of Science and Technology Beijing +,2,330 Xueyuan Road, Haidian District, Beijing 100083 P. R.China"
+29c7dfbbba7a74e9aafb6a6919629b0a7f576530,Automatic Facial Expression Analysis and Emotional Classification,"Automatic Facial Expression Analysis and Emotional +Classification +Robert Fischer +Submitted to the Department of Math and Natural Sciences +in partial fulfillment of the requirements for the degree of a +Diplomingenieur der Optotechnik und Bildverarbeitung (FH) +(Diplom Engineer of Photonics and Image Processing) +t the +UNIVERSITY OF APPLIED SCIENCE DARMSTADT (FHD) +Accomplished and written at the +MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) +October 2004 +Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Department of Math and Natural Sciences +October 30, 2004 +Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +Dr. Harald Scharfenberg +Professor at FHD +Thesis Supervisor +Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ."
+294d1fa4e1315e1cf7cc50be2370d24cc6363a41,A modular non-negative matrix factorization for parts-based object recognition using subspace representation,"008 SPIE Digital Library -- Subscriber Archive Copy +Processing: Machine Vision Applications, edited by Kurt S. Niel, David Fofi, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6813, 68130C, © 2008 SPIE-IS&T · 0277-786X/08/$18SPIE-IS&T/ Vol. 6813 68130C-1"
+29d414bfde0dfb1478b2bdf67617597dd2d57fc6,Perfect histogram matching PCA for face recognition,"Multidim Syst Sign Process (2010) 21:213–229 +DOI 10.1007/s11045-009-0099-y +Perfect histogram matching PCA for face recognition +Ana-Maria Sevcenco · Wu-Sheng Lu +Received: 10 August 2009 / Revised: 21 November 2009 / Accepted: 29 December 2009 / +Published online: 14 January 2010 +© Springer Science+Business Media, LLC 2010"
+290136947fd44879d914085ee51d8a4f433765fa,On a taxonomy of facial features,"On a Taxonomy of Facial Features +Brendan Klare and Anil K. Jain"
+2957715e96a18dbb5ed5c36b92050ec375214aa6,InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity,"Improving Face Attribute Detection with Race and Gender Diversity +InclusiveFaceNet: +Hee Jung Ryu 1 Hartwig Adam * 1 Margaret Mitchell * 1"
+2965d092ed72822432c547830fa557794ae7e27b,Improving Representation and Classification of Image and Video Data for Surveillance Applications,"Improving Representation and Classification of Image and +Video Data for Surveillance Applications +Andres Sanin +BSc(Biol), MSc(Biol), MSc(CompSc) +A thesis submitted for the degree of Doctor of Philosophy at +The University of Queensland in 2012 +School of Information Technology and Electrical Engineering"
+2921719b57544cfe5d0a1614d5ae81710ba804fa,Face Recognition Enhancement Based on Image File Formats and Wavelet De - noising,"Face Recognition Enhancement Based on Image +File Formats and Wavelet De-noising +Isra’a Abdul-Ameer Abdul-Jabbar, Jieqing Tan, and Zhengfeng Hou"
+29a013b2faace976f2c532533bd6ab4178ccd348,Hierarchical Manifold Learning With Applications to Supervised Classification for High-Resolution Remotely Sensed Images,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Hierarchical Manifold Learning With Applications +to Supervised Classification for High-Resolution +Remotely Sensed Images +Hong-Bing Huang, Hong Huo, and Tao Fang"
+29756b6b16d7b06ea211f21cdaeacad94533e8b4,Thresholding Approach based on GPU for Facial Expression Recognition,"Thresholding Approach based on GPU for Facial +Expression Recognition +Jesús García-Ramírez1, J. Arturo Olvera-López1, Ivan Olmos-Pineda1, Georgina +Flores-Becerra2, Adolfo Aguilar-Rico2 +Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México +Instituto Tecnológico de Puebla, Puebla, México"
+293193d24d5c4d2975e836034bbb2329b71c4fe7,Building a Corpus of Facial Expressions for Learning-Centered Emotions,"Building a Corpus of Facial Expressions +for Learning-Centered Emotions +María Lucía Barrón-Estrada, Ramón Zatarain-Cabada, +Bianca Giovanna Aispuro-Medina, Elvia Minerva Valencia-Rodríguez, +Ana Cecilia Lara-Barrera +Instituto Tecnológico de Culiacán, Culiacán, Sinaloa, +Mexico +{lbarron, rzatarain, m06170904, m95170906, m15171452}"
+294bd7eb5dc24052237669cdd7b4675144e22306,Automatic Face Annotation,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 +Automatic Face Annotation +Ashna Shajahan +M.Tech Student, Dept. of Computer Science & Engineering, Mount Zion College of Engineering, Pathanamthitta, Kerala, India"
+2988f24908e912259d7a34c84b0edaf7ea50e2b3,A Model of Brightness Variations Due to Illumination Changes and Non-rigid Motion Using Spherical Harmonics,"A Model of Brightness Variations Due to +Illumination Changes and Non-rigid Motion +Using Spherical Harmonics +Jos´e M. Buenaposada +Alessio Del Bue +Dep. Ciencias de la Computaci´on, +U. Rey Juan Carlos, Spain +http://www.dia.fi.upm.es/~pcr +Inst. for Systems and Robotics +Inst. Superior T´ecnico, Portugal +http://www.isr.ist.utl.pt/~adb +Enrique Mu˜noz +Facultad de Inform´atica, +U. Complutense de Madrid, Spain +Luis Baumela +Dep. de Inteligencia Artificial, +U. Polit´ecnica de Madrid, Spain +http://www.dia.fi.upm.es/~pcr +http://www.dia.fi.upm.es/~pcr"
+7cee802e083c5e1731ee50e731f23c9b12da7d36,2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks,"B3C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional +Networks +Vandit Gajjar +Department of Electronics and Communication Engineering and +Computer Vision Group, L. D. College of Engineering, Ahmedabad, India"
+7c47da191f935811f269f9ba3c59556c48282e80,Robust eye centers localization with zero-crossing encoded image projections,"Robust Eye Centers Localization +with Zero–Crossing Encoded Image Projections +Laura Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Corneliu Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Constantin Vertan +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313"
+7c45b5824645ba6d96beec17ca8ecfb22dfcdd7f,News Image Annotation on a Large Parallel Text-image Corpus,"News image annotation on a large parallel text-image corpus +Pierre Tirilly, Vincent Claveau, Patrick Gros +Universit´e de Rennes 1/IRISA, CNRS/IRISA, INRIA Rennes-Bretagne Atlantique +Campus de Beaulieu +5042 Rennes Cedex, France"
+7c0a6824b556696ad7bdc6623d742687655852db,MPCA+MDA: A novel approach for face recognition based on tensor objects,"8th Telecommunications forum TELFOR 2010 +Serbia, Belgrade, November 23-25, 2010. +MPCA+DATER: A Novel Approach for Face +Recognition Based on Tensor Objects +Ali. A. Shams Baboli, Member, IEEE, G. Rezai-rad, Member, IEEE, Aref. Shams Baboli"
+7c95449a5712aac7e8c9a66d131f83a038bb7caa,This is an author produced version of Facial first impressions from another angle: How social judgements are influenced by changeable and invariant facial properties. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102935/,"This is an author produced version of Facial first impressions from another angle: How +social judgements are influenced by changeable and invariant facial properties. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/102935/ +Article: +Sutherland, Clare, Young, Andrew William orcid.org/0000-0002-1202-6297 and Gillian, +Rhodes (2017) Facial first impressions from another angle: How social judgements are +influenced by changeable and invariant facial properties. British journal of psychology. pp. +97-415. ISSN 0007-1269 +https://doi.org/10.1111/bjop.12206 +promoting access to +White Rose research papers +http://eprints.whiterose.ac.uk/"
+7c3e09e0bd992d3f4670ffacb4ec3a911141c51f,Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images,"Noname manuscript No. +(will be inserted by the editor) +Transferring Object-Scene Convolutional Neural Networks for +Event Recognition in Still Images +Limin Wang · Zhe Wang · Yu Qiao · Luc Van Gool +Received: date / Accepted: date"
+7c7b0550ec41e97fcfc635feffe2e53624471c59,"Head, Eye, and Hand Patterns for Driver Activity Recognition","051-4651/14 $31.00 © 2014 IEEE +DOI 10.1109/ICPR.2014.124"
+7c119e6bdada2882baca232da76c35ae9b5277f8,Facial expression recognition using embedded Hidden Markov Model,"Facial Expression Recognition Using Embedded +Hidden Markov Model +Languang He, Xuan Wang, Member, IEEE, Chenglong Yu, Member, IEEE, Kun Wu +Intelligence Computing Research Center +HIT Shenzhen Graduate School +Shenzhen, China +{telent, wangxuan, ycl, wukun}"
+7c9a65f18f7feb473e993077d087d4806578214e,SpringerLink - Zeitschriftenbeitrag,"SpringerLink - Zeitschriftenbeitrag +http://www.springerlink.com/content/93hr862660nl1164/?p=abe5352... +Deutsch +Deutsch +Vorherige Beitrag Nächste Beitrag +Beitrag markieren +In den Warenkorb legen +Zu gespeicherten Artikeln +hinzufügen +Permissions & Reprints +Diesen Artikel empfehlen +Ergebnisse +finden +Erweiterte Suche +im gesamten Inhalt +in dieser Zeitschrift +in diesem Heft +Diesen Beitrag exportieren +Diesen Beitrag exportieren als RIS +| Text"
+7c1e1c767f7911a390d49bed4f73952df8445936,Non-Rigid Object Detection with LocalInterleaved Sequential Alignment (LISA),"NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) +Non-Rigid Object Detection with Local +Interleaved Sequential Alignment (LISA) +Karel Zimmermann, Member, IEEE,, David Hurych, Member, IEEE, +nd Tom´aˇs Svoboda, Member, IEEE"
+7cf579088e0456d04b531da385002825ca6314e2,Emotion Detection on TV Show Transcripts with Sequence-based Convolutional Neural Networks,"Emotion Detection on TV Show Transcripts with +Sequence-based Convolutional Neural Networks +Sayyed M. Zahiri +Jinho D. Choi +Mathematics and Computer Science +Mathematics and Computer Science +Emory University +Atlanta, GA 30322, USA +Emory University +Atlanta, GA 30322, USA"
+7c349932a3d083466da58ab1674129600b12b81c,Leveraging Multiple Features for Image Retrieval and Matching,
+1648cf24c042122af2f429641ba9599a2187d605,Boosting cross-age face verification via generative age normalization,"Boosting Cross-Age Face Verification via Generative Age Normalization +Grigory Antipov(cid:2)† +Jean-Luc Dugelay† +(cid:2) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +Moez Baccouche(cid:2) +Eurecom, 450 route des Chappes, 06410 Biot, France"
+162403e189d1b8463952fa4f18a291241275c354,Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences,"Action Recognition with Spatio-Temporal +Visual Attention on Skeleton Image Sequences +Zhengyuan Yang, Student Member, IEEE, Yuncheng Li, Jianchao Yang, Member, IEEE, +nd Jiebo Luo, Fellow, IEEE +With a strong ability of modeling sequential data, Recur- +rent Neural Networks (RNN) with Long Short-Term Memory +(LSTM) neurons outperform the previous hand-crafted feature +ased methods [9], [10]. Each skeleton frame is converted into +feature vector and the whole sequence is fed into the RNN. +Despite the strong ability in modeling temporal sequences, +RNN structures lack the ability to efficiently learn the spatial +relations between the joints. To better use spatial information, +hierarchical structure is proposed in [11], [12] that feeds +the joints into the network as several pre-defined body part +groups. However, +limit +the effectiveness of representing spatial relations. A spatio- +temporal 2D LSTM (ST-LSTM) network [13] is proposed +to learn the spatial and temporal relations simultaneously. +Furthermore, a two-stream RNN structure [14] is proposed to"
+160259f98a6ec4ec3e3557de5e6ac5fa7f2e7f2b,Discriminant multi-label manifold embedding for facial Action Unit detection,"Discriminant Multi-Label Manifold Embedding for Facial Action Unit +Detection +Signal Procesing Laboratory (LTS5), ´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland +Anıl Y¨uce, Hua Gao and Jean-Philippe Thiran"
+16671b2dc89367ce4ed2a9c241246a0cec9ec10e,Detecting the Number of Clusters in n-Way Probabilistic Clustering,"Detecting the Number of Clusters +in n-Way Probabilistic Clustering +Zhaoshui He, Andrzej Cichocki, Senior Member, IEEE, +Shengli Xie, Senior Member, IEEE, and Kyuwan Choi"
+16395b40e19cbc6d5b82543039ffff2a06363845,Action Recognition in Video Using Sparse Coding and Relative Features,"Action Recognition in Video Using Sparse Coding and Relative Features +Anal´ı Alfaro +Domingo Mery +Alvaro Soto +P. Universidad Catolica de Chile +P. Universidad Catolica de Chile +P. Universidad Catolica de Chile +Santiago, Chile +Santiago, Chile +Santiago, Chile"
+16b9d258547f1eccdb32111c9f45e2e4bbee79af,NormFace: L2 Hypersphere Embedding for Face Verification,"006 Xiyuan Ave. +Chengdu, Sichuan 611731 +Jian Cheng +006 Xiyuan Ave. +Chengdu, Sichuan 611731 +University of Electronic Science and Technology of China +Xiang Xiang +Johns Hopkins University +400 N. Charles St. +Baltimore, Maryland 21218 +Alan L. Yuille +Johns Hopkins University +400 N. Charles St. +Baltimore, Maryland 21218 +NormFace: L2 Hypersphere Embedding for Face Verification +University of Electronic Science and Technology of China +Feng Wang∗"
+16c884be18016cc07aec0ef7e914622a1a9fb59d,Exploiting Multimodal Data for Image Understanding,"UNIVERSITÉ DE GRENOBLE +No attribué par la bibliothèque +THÈSE +pour obtenir le grade de +DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE +Spécialité : Mathématiques et Informatique +préparée au Laboratoire Jean Kuntzmann +dans le cadre de l’École Doctorale Mathématiques, +Sciences et Technologies de l’Information, Informatique +présentée et soutenue publiquement +Matthieu Guillaumin +le 27 septembre 2010 +Exploiting Multimodal Data for Image Understanding +Données multimodales pour l’analyse d’image +Directeurs de thèse : Cordelia Schmid et Jakob Verbeek +M. Éric Gaussier +M. Antonio Torralba +Mme Tinne Tuytelaars Katholieke Universiteit Leuven +M. Mark Everingham University of Leeds +Mme Cordelia Schmid"
+1630e839bc23811e340bdadad3c55b6723db361d,Exploiting relationship between attributes for improved face verification,"SONG, TAN, CHEN: EXPLOITING RELATIONSHIP BETWEEN ATTRIBUTES +Exploiting Relationship between Attributes for +Improved Face Verification +Fengyi Song +Xiaoyang Tan +Songcan Chen +Department of Computer Science and +Technology, Nanjing University of Aero- +nautics and Astronautics, Nanjing 210016, +P.R. China"
+16286fb0f14f6a7a1acc10fcd28b3ac43f12f3eb,"All Smiles are Not Created Equal: Morphology and Timing of Smiles Perceived as Amused, Polite, and Embarrassed/Nervous.","J Nonverbal Behav +DOI 10.1007/s10919-008-0059-5 +O R I G I N A L P A P E R +All Smiles are Not Created Equal: Morphology +nd Timing of Smiles Perceived as Amused, Polite, +nd Embarrassed/Nervous +Zara Ambadar Æ Jeffrey F. Cohn Æ Lawrence Ian Reed +Ó Springer Science+Business Media, LLC 2008"
+166186e551b75c9b5adcc9218f0727b73f5de899,Automatic Age and Gender Recognition in Human Face Image Dataset using Convolutional Neural Network System,"Volume 4, Issue 2, February 2016 +International Journal of Advance Research in +Computer Science and Management Studies +Research Article / Survey Paper / Case Study +Available online at: www.ijarcsms.com +ISSN: 2321-7782 (Online) +Automatic Age and Gender Recognition in Human Face Image +Dataset using Convolutional Neural Network System +Subhani Shaik1 +Assoc. Prof & Head of the Department +Department of CSE, +Anto A. Micheal2 +Associate Professor +Department of CSE, +St.Mary’s Group of Institutions Guntur +St.Mary’s Group of Institutions Guntur +Chebrolu(V&M),Guntur(Dt), +Andhra Pradesh - India +Chebrolu(V&M),Guntur(Dt), +Andhra Pradesh - India"
+16d9b983796ffcd151bdb8e75fc7eb2e31230809,GazeDirector: Fully Articulated Eye Gaze Redirection in Video,"EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer +(Guest Editors) +Volume 37 (2018), Number 2 +GazeDirector: Fully Articulated Eye Gaze Redirection in Video +ID: paper1004"
+162c33a2ec8ece0dc96e42d5a86dc3fedcf8cd5e,Large-Scale Classification by an Approximate Least Squares One-Class Support Vector Machine Ensemble,"Mygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2016). Large-Scale +Classification by an Approximate Least Squares One-Class Support Vector +of a meeting held 20-22 August 2015, Helsinki, Finland (Vol. 2, pp. 6-10). +Institute of Electrical and Electronics Engineers (IEEE). DOI: +0.1109/Trustcom.2015.555 +Peer reviewed version +Link to published version (if available): +0.1109/Trustcom.2015.555 +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms"
+161eb88031f382e6a1d630cd9a1b9c4bc6b47652,Automatic facial expression recognition using features of salient facial patches,"Automatic Facial Expression Recognition +Using Features of Salient Facial Patches +S L Happy and Aurobinda Routray"
+4209783b0cab1f22341f0600eed4512155b1dee6,Accurate and Efficient Similarity Search for Large Scale Face Recognition,"Accurate and Efficient Similarity Search for Large Scale Face Recognition +Ce Qi +Zhizhong Liu +Fei Su"
+42e3dac0df30d754c7c7dab9e1bb94990034a90d,PANDA: Pose Aligned Networks for Deep Attribute Modeling,"PANDA: Pose Aligned Networks for Deep Attribute Modeling +Ning Zhang1,2, Manohar Paluri1, Marc’Aurelio Ranzato1, Trevor Darrell2, Lubomir Bourdev1 +EECS, UC Berkeley +{mano, ranzato, +Facebook AI Research +{nzhang,"
+42cc9ea3da1277b1f19dff3d8007c6cbc0bb9830,Coordinated Local Metric Learning,"Coordinated Local Metric Learning +Shreyas Saxena +Jakob Verbeek +Inria∗"
+42350e28d11e33641775bef4c7b41a2c3437e4fd,Multilinear Discriminant Analysis for Face Recognition,"Multilinear Discriminant Analysis +for Face Recognition +Shuicheng Yan, Member, IEEE, Dong Xu, Qiang Yang, Senior Member, IEEE, Lei Zhang, Member, IEEE, +Xiaoou Tang, Senior Member, IEEE, and Hong-Jiang Zhang, Fellow, IEEE"
+42e155ea109eae773dadf74d713485be83fca105,Sparse reconstruction of facial expressions with localized gabor moments,
+4270460b8bc5299bd6eaf821d5685c6442ea179a,"Partial Similarity of Objects, or How to Compare a Centaur to a Horse","Int J Comput Vis (2009) 84: 163–183 +DOI 10.1007/s11263-008-0147-3 +Partial Similarity of Objects, or How to Compare a Centaur +to a Horse +Alexander M. Bronstein · Michael M. Bronstein · Alfred +M. Bruckstein · Ron Kimmel +Received: 30 September 2007 / Accepted: 3 June 2008 / Published online: 26 July 2008 +© Springer Science+Business Media, LLC 2008"
+429d4848d03d2243cc6a1b03695406a6de1a7abd,"Face Recognition based on Logarithmic Fusion of SVD and KT Ramachandra A C , Raja K B , Venugopal K R , L M Patnaik","Face Recognition based on Logarithmic Fusion +International Journal of Soft Computing and Engineering (IJSCE) +ISSN: 2231-2307, Volume-2, Issue-3, July 2012 +of SVD and KT +Ramachandra A C, Raja K B, Venugopal K R, L M Patnaik"
+42dc36550912bc40f7faa195c60ff6ffc04e7cd6,Visible and Infrared Face Identification via Sparse Representation,"Hindawi Publishing Corporation +ISRN Machine Vision +Volume 2013, Article ID 579126, 10 pages +http://dx.doi.org/10.1155/2013/579126 +Research Article +Visible and Infrared Face Identification via +Sparse Representation +Pierre Buyssens1 and Marinette Revenu2 +LITIS EA 4108-QuantIF Team, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France +GREYC UMR CNRS 6072 ENSICAEN-Image Team, University of Caen Basse-Normandie, 6 Boulevard Mar´echal Juin, +4050 Caen, France +Correspondence should be addressed to Pierre Buyssens; +Received 4 April 2013; Accepted 27 April 2013 +Academic Editors: O. Ghita, D. Hernandez, Z. Hou, M. La Cascia, and J. M. Tavares +Copyright © 2013 P. Buyssens and M. Revenu. This is an open access article distributed under the Creative Commons Attribution +License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly +ited. +We present a facial recognition technique based on facial sparse representation. A dictionary is learned from data, and patches +extracted from a face are decomposed in a sparse manner onto this dictionary. We particularly focus on the design of dictionaries +that play a crucial role in the final identification rates. Applied to various databases and modalities, we show that this approach"
+42ecfc3221c2e1377e6ff849afb705ecd056b6ff,Pose Invariant Face Recognition Under Arbitrary Unknown Lighting Using Spherical Harmonics,"Pose Invariant Face Recognition under Arbitrary +Unknown Lighting using Spherical Harmonics +Lei Zhang and Dimitris Samaras +Department of Computer Science, +SUNY at Stony Brook, NY, 11790 +{lzhang,"
+421955c6d2f7a5ffafaf154a329a525e21bbd6d3,Evolutionary Pursuit and Its Application to Face Recognition,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 6, +JUNE 2000 +Evolutionary Pursuit and Its +Application to Face Recognition +Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE"
+42df75080e14d32332b39ee5d91e83da8a914e34,Illumination Compensation Using Oriented Local Histogram Equalization and its Application to Face Recognition,"Illumination Compensation Using Oriented +Local Histogram Equalization and +Its Application to Face Recognition +Ping-Han Lee, Szu-Wei Wu, and Yi-Ping Hung"
+89945b7cd614310ebae05b8deed0533a9998d212,Divide-and-Conquer Method for L1 Norm Matrix Factorization in the Presence of Outliers and Missing Data,"Divide-and-Conquer Method for L1 Norm Matrix +Factorization in the Presence of Outliers and +Missing Data +Deyu Meng and Zongben Xu"
+89c84628b6f63554eec13830851a5d03d740261a,Image Enhancement and Automated Target Recognition Techniques for Underwater Electro-Optic Imagery,"Image Enhancement and Automated Target Recognition +Techniques for Underwater Electro-Optic Imagery +Thomas Giddings (PI), Cetin Savkli and Joseph Shirron +Metron, Inc. +1911 Freedom Dr., Suite 800 +Reston, VA 20190 +phone: (703) 437-2428 fax: (703) 787-3518 email: +Contract Number N00014-07-C-0351 +http:www.metsci.com +LONG TERM GOALS +The long-term goal of this project is to provide a flexible, accurate and extensible automated target +recognition (ATR) system for use with a variety of imaging and non-imaging sensors. Such an ATR +system, once it achieves a high level of performance, can relieve human operators from the tedious +usiness of pouring over vast quantities of mostly mundane data, calling the operator in only when the +omputer assessment involves an unacceptable level of ambiguity. The ATR system will provide most +leading edge algorithms for detection, segmentation, and classification while incorporating many novel +lgorithms that we are developing at Metron. To address one of the most critical challenges in ATR +technology, the system will also provide powerful feature extraction routines designed for specific +pplications of current interest. +OBJECTIVES"
+89c51f73ec5ebd1c2a9000123deaf628acf3cdd8,Face Recognition Based on Nonlinear Feature Approach Eimad,"American Journal of Applied Sciences 5 (5): 574-580, 2008 +ISSN 1546-9239 +© 2008 Science Publications +Face Recognition Based on Nonlinear Feature Approach +Eimad E.A. Abusham, 1Andrew T.B. Jin, 1Wong E. Kiong and 2G. Debashis +Faculty of Information Science and Technology, +Faculty of Engineering and Technology, Multimedia University (Melaka Campus), +Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia"
+89c73b1e7c9b5e126a26ed5b7caccd7cd30ab199,Application of an Improved Mean Shift Algorithm in Real-time Facial Expression Recognition,"Application of an Improved Mean Shift Algorithm +in Real-time Facial Expression Recognition +School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +School of Electrical and Information Engineering, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +Zhao-yi PENG +Yu ZHOU +Yan-hui ZHU +Email: +Zhi-qiang WEN +Email: +School of Computer and Communication, Hunan University of Technology, Hunan, Zhuzhou, 412008,china +facial +real-time +expression"
+893239f17dc2d17183410d8a98b0440d98fa2679,UvA-DARE ( Digital Academic Repository ) Expression-Invariant Age Estimation,"UvA-DARE (Digital Academic Repository) +Expression-Invariant Age Estimation +Alnajar, F.; Lou, Z.; Alvarez Lopez, J.M.; Gevers, T. +Published in: +Proceedings of the British Machine Vision Conference 2014 +0.5244/C.28.14 +Link to publication +Citation for published version (APA): +Alnajar, F., Lou, Z., Alvarez, J., & Gevers, T. (2014). Expression-Invariant Age Estimation. In M. Valstar, A. +French, & T. Pridmore (Eds.), Proceedings of the British Machine Vision Conference 2014 (pp. 14.1-14.11). +BMVA Press. DOI: 10.5244/C.28.14 +General rights +It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), +other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). +Disclaimer/Complaints regulations +If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating +your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask +the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, +The Netherlands. You will be contacted as soon as possible. +Download date: 04 Aug 2017"
+8913a5b7ed91c5f6dec95349fbc6919deee4fc75,BigBIRD: A large-scale 3D database of object instances,"BigBIRD: A Large-Scale 3D Database of Object Instances +Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel"
+89d3a57f663976a9ac5e9cdad01267c1fc1a7e06,Neural Class-Specific Regression for face verification,"Neural Class-Specific Regression for face +verification +Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj"
+89bc311df99ad0127383a9149d1684dfd8a5aa34,Towards ontology driven learning of visual concept detectors,"Towards ontology driven learning of +visual concept detectors +Sanchit ARORA, Chuck CHO, Paul FITZPATRICK, Franc¸ois SCHARFFE 1 +Dextro Robotics, Inc. 101 Avenue of the Americas, New York, USA"
+898a66979c7e8b53a10fd58ac51fbfdb6e6e6e7c,Dynamic vs. Static Recognition of Facial Expressions,"Dynamic vs. Static Recognition of Facial +Expressions +No Author Given +No Institute Given"
+89d7cc9bbcd2fdc4f4434d153ecb83764242227b,Face-Name Graph Matching For The Personalities In Movie Screen,"Einstein.J, DivyaBaskaran / International Journal of Engineering Research and Applications +(IJERA) ISSN: 2248-9622 www.ijera.com +Vol. 3, Issue 2, March -April 2013, pp.351-355 +Face-Name Graph Matching For The Personalities In Movie +Screen +*(Asst. Professor, Dept. of IT, VelTech HighTech Dr. Rangarajan Dr.Sakunthala Engineering College, +Einstein.J*, DivyaBaskaran** +** (Final Year Student, M.Tech IT, Vel Tech Dr. RR &Dr. SR Technical University, Chennai.) +Chennai.)"
+891b10c4b3b92ca30c9b93170ec9abd71f6099c4,2 New Statement for Structured Output Regression Problems,"Facial landmark detection using structured output deep +neural networks +Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +Adam∗2 +LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +September 24, 2015"
+45c340c8e79077a5340387cfff8ed7615efa20fd,Assessment of the Emotional States of Students during e-Learning,
+45e7ddd5248977ba8ec61be111db912a4387d62f,Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization,"CHEN ET AL.: ADVERSARIAL POSENET +Adversarial Learning of Structure-Aware Fully +Convolutional Networks for Landmark +Localization +Yu Chen1, Chunhua Shen2, Hao Chen2, Xiu-Shen Wei3, Lingqiao Liu2 and Jian Yang1"
+4526992d4de4da2c5fae7a5ceaad6b65441adf9d,System for Medical Mask Detection in the Operating Room Through Facial Attributes,"System for Medical Mask Detection +in the Operating Room Through +Facial Attributes +A. Nieto-Rodr´ıguez, M. Mucientes(B), and V.M. Brea +Center for Research in Information Technologies (CiTIUS), +University of Santiago de Compostela, Santiago de Compostela, Spain"
+45efd6c2dd4ca19eed38ceeb7c2c5568231451e1,Comparative Analysis of Statistical Approach for Face Recognition,"Comparative Analysis of Statistical Approach +for Face Recognition +S.Pradnya1, M.Riyajoddin2, M.Janga Reddy3 +CMR Institute of Technology, Hyderabad, (India)"
+4560491820e0ee49736aea9b81d57c3939a69e12,Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications,"Investigating the Impact of Data Volume and +Domain Similarity on Transfer Learning +Applications +Michael Bernico, Yuntao Li, and Dingchao Zhang +State Farm Insurance, Bloomington IL 61710, USA,"
+4571626d4d71c0d11928eb99a3c8b10955a74afe,Geometry Guided Adversarial Facial Expression Synthesis,"Geometry Guided Adversarial Facial Expression Synthesis +Lingxiao Song1,2 +Zhihe Lu1,3 Ran He1,2,3 +Zhenan Sun1,2 +Tieniu Tan1,2,3 +National Laboratory of Pattern Recognition, CASIA +Center for Research on Intelligent Perception and Computing, CASIA +Center for Excellence in Brain Science and Intelligence Technology, CAS"
+4534d78f8beb8aad409f7bfcd857ec7f19247715,Transformation-Based Models of Video Sequences,"Under review as a conference paper at ICLR 2017 +TRANSFORMATION-BASED MODELS OF VIDEO +SEQUENCES +Joost van Amersfoort ∗, Anitha Kannan, Marc’Aurelio Ranzato, +Arthur Szlam, Du Tran & Soumith Chintala +Facebook AI Research +{akannan, ranzato, aszlam, trandu,"
+459e840ec58ef5ffcee60f49a94424eb503e8982,One-shot Face Recognition by Promoting Underrepresented Classes,"One-shot Face Recognition by Promoting Underrepresented Classes +Yandong Guo, Lei Zhang +Microsoft +One Microsoft Way, Redmond, Washington, United States +{yandong.guo,"
+451c42da244edcb1088e3c09d0f14c064ed9077e,Using subclasses in discriminant non-negative subspace learning for facial expression recognition,"© EURASIP, 2011 - ISSN 2076-1465 +9th European Signal Processing Conference (EUSIPCO 2011) +INTRODUCTION"
+4568063b7efb66801e67856b3f572069e774ad33,Correspondence driven adaptation for human profile recognition,"Correspondence Driven Adaptation for Human Profile Recognition +Ming Yang1, Shenghuo Zhu1, Fengjun Lv2, Kai Yu1 +NEC Laboratories America, Inc. +Huawei Technologies (USA) +Cupertino, CA 95014 +Santa Clara, CA 95050"
+45e459462a80af03e1bb51a178648c10c4250925,LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning,"LCrowdV: Generating Labeled Videos for +Simulation-based Crowd Behavior Learning +Ernest Cheung1, Tsan Kwong Wong1, Aniket Bera1, Xiaogang Wang2, and +Dinesh Manocha1 +The University of North Carolina at Chapel Hill"
+458677de7910a5455283a2be99f776a834449f61,Face Image Retrieval Using Facial Attributes By K-Means,"Face Image Retrieval Using Facial Attributes By +K-Means +[1]I.Sudha, [2]V.Saradha, [3]M.Tamilselvi, [4]D.Vennila +[1]AP, Department of CSE ,[2][3][4] B.Tech(CSE) +Achariya college of Engineering Technology- +Puducherry"
+45a6333fc701d14aab19f9e2efd59fe7b0e89fec,Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE +RECOGNITION +Luis Anton-Canalis +Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +Campus Universitario de Tafira, 35017 Gran Canaria, Spain +Elena Sanchez-Nielsen +Departamento de E.I.O. y Computacion +8271 Universidad de La Laguna, Spain +Keywords: +Image understanding, Gesture recognition, Hand dataset."
+1ffe20eb32dbc4fa85ac7844178937bba97f4bf0,Face Clustering: Representation and Pairwise Constraints,"Face Clustering: Representation and Pairwise +Constraints +Yichun Shi, Student Member, IEEE, Charles Otto, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
+1f8304f4b51033d2671147b33bb4e51b9a1e16fe,Beyond Trees: MAP Inference in MRFs via Outer-Planar Decomposition,"Noname manuscript No. +(will be inserted by the editor) +Beyond Trees: +MAP Inference in MRFs via Outer-Planar Decomposition +Dhruv Batra · Andrew C. Gallagher · Devi Parikh · Tsuhan Chen +Received: date / Accepted: date"
+1f9ae272bb4151817866511bd970bffb22981a49,An Iterative Regression Approach for Face Pose Estimation from RGB Images,"An Iterative Regression Approach for Face Pose Estima- +tion from RGB Images +Wenye He +This paper presents a iterative optimization method, explicit shape regression, for face pose +detection and localization. The regression function is learnt to find out the entire facial shape +nd minimize the alignment errors. A cascaded learning framework is employed to enhance +shape constraint during detection. A combination of a two-level boosted regression, shape +performance. In this paper, we have explain the advantage of ESR for deformable object like +face pose estimation and reveal its generic applications of the method. In the experiment, +we compare the results with different work and demonstrate the accuracy and robustness in +different scenarios. +Introduction +Pose estimation is an important problem in computer vision, and has enabled many practical ap- +plication from face expression 1 to activity tracking 2. Researchers design a new algorithm called +explicit shape regression (ESR) to find out face alignment from a picture 3. Figure 1 shows how +the system uses ESR to learn a shape of a human face image. A simple way to identify a face is to +find out facial landmarks like eyes, nose, mouth and chin. The researchers define a face shape S +nd S is composed of Nf p facial landmarks. Therefore, they get S = [x1, y1, ..., xNf p, yNf p]T . The +objective of the researchers is to estimate a shape S of a face image. The way to know the accuracy"
+1fc249ec69b3e23856b42a4e591c59ac60d77118,Evaluation of a 3D-aided pose invariant 2D face recognition system,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris +{xxu18, hale4, pdou, ywu35, +Computational Biomedicine Lab +800 Calhoun Rd. Houston, TX, USA"
+1fbde67e87890e5d45864e66edb86136fbdbe20e,The Action Similarity Labeling Challenge,"The Action Similarity Labeling Challenge +Orit Kliper-Gross, Tal Hassner, and +Lior Wolf, Member, IEEE"
+1f41a96589c5b5cee4a55fc7c2ce33e1854b09d6,Demographic Estimation from Face Images: Human vs. Machine Performance,"Demographic Estimation from Face Images: +Human vs. Machine Performance +Hu Han, Member, IEEE, Charles Otto, Student Member, IEEE, Xiaoming Liu, Member, IEEE +nd Anil K. Jain, Fellow, IEEE"
+1f8e44593eb335c2253d0f22f7f9dc1025af8c0d,Fine-Tuning Regression Forests Votes for Object Alignment in the Wild,"Fine-tuning regression forests votes for object alignment in the wild. +Yang, H; Patras, I +© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained for all other uses, in any current or future media, including reprinting/republishing +this material for advertising or promotional purposes, creating new collective works, for resale +or redistribution to servers or lists, or reuse of any copyrighted component of this work in +other works. +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/22607 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact"
+1f94734847c15fa1da68d4222973950d6b683c9e,Embedding Label Structures for Fine-Grained Feature Representation,"Embedding Label Structures for Fine-Grained Feature Representation +Xiaofan Zhang +UNC Charlotte +Charlotte, NC 28223 +Feng Zhou +NEC Lab America +Cupertino, CA 95014 +Yuanqing Lin +NEC Lab America +Cupertino, CA 95014 +Shaoting Zhang +UNC Charlotte +Charlotte, NC 28223"
+1f745215cda3a9f00a65166bd744e4ec35644b02,Facial cosmetics database and impact analysis on automatic face recognition,"Facial Cosmetics Database and Impact Analysis on +Automatic Face Recognition +Marie-Lena Eckert #1, Neslihan Kose ∗2, Jean-Luc Dugelay ∗3 +# Computer Science Department, TU Muenchen +Boltzmannstr. 3, 85748 Garching b. Muenchen, Germany +Multimedia Communications Department, EURECOM +50 Route des Chappes, 06410 Biot, France"
+1fff309330f85146134e49e0022ac61ac60506a9,Data-Driven Sparse Sensor Placement for Reconstruction,"Data-Driven Sparse Sensor Placement for Reconstruction +Krithika Manohar∗, Bingni W. Brunton, J. Nathan Kutz, and Steven L. Brunton +Corresponding author:"
+73f467b4358ac1cafb57f58e902c1cab5b15c590,Combination of Dimensionality Reduction Techniques for Face Image Retrieval: A Review,"ISSN 0976 3724 47 +Combination of Dimensionality Reduction Techniques for Face +Image Retrieval: A Review +Fousiya K.K 1, Jahfar Ali P 2 +M.Tech Scholar, MES College of Engineering, Kuttippuram, +Kerala +Asst. Professor, MES College of Engineering, Kuttippuram, +Kerala"
+7323b594d3a8508f809e276aa2d224c4e7ec5a80,An Experimental Evaluation of Covariates Effects on Unconstrained Face Verification,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +An Experimental Evaluation of Covariates +Effects on Unconstrained Face Verification +Boyu Lu, Student Member, IEEE, Jun-Cheng Chen, Member, IEEE, Carlos D Castillo, Member, IEEE +nd Rama Chellappa, Fellow, IEEE"
+732e8d8f5717f8802426e1b9debc18a8361c1782,Unimodal Probability Distributions for Deep Ordinal Classification,"Unimodal Probability Distributions for Deep Ordinal Classification +Christopher Beckham 1 Christopher Pal 1"
+73ed64803d6f2c49f01cffef8e6be8fc9b5273b8,Cooking in the kitchen: Recognizing and Segmenting Human Activities in Videos,"Noname manuscript No. +(will be inserted by the editor) +Cooking in the kitchen: Recognizing and Segmenting Human +Activities in Videos +Hilde Kuehne · Juergen Gall · Thomas Serre +Received: date / Accepted: date"
+7306d42ca158d40436cc5167e651d7ebfa6b89c1,Transductive Zero-Shot Action Recognition by Word-Vector Embedding,"Noname manuscript No. +(will be inserted by the editor) +Transductive Zero-Shot Action Recognition by +Word-Vector Embedding +Xun Xu · Timothy Hospedales · Shaogang Gong +Received: date / Accepted: date"
+734cdda4a4de2a635404e4c6b61f1b2edb3f501d,Automatic landmark point detection and tracking for human facial expressions,"Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 +http://jivp.eurasipjournals.com/content/2013/1/8 +R ES EAR CH +Open Access +Automatic landmark point detection and tracking +for human facial expressions +Yun Tie* and Ling Guan"
+732686d799d760ccca8ad47b49a8308b1ab381fb,Teachers’ differing classroom behaviors: The role of emotional sensitivity and cultural tolerance,"Running head: TEACHERS’ DIFFERING BEHAVIORS +Graduate School of Psychology +RESEARCH MASTER’S PSYCHOLOGY THESıS REPORT +Teachers’ differing classroom behaviors: +The role of emotional sensitivity and cultural tolerance +Ceren Su Abacıoğlu +Supervisor: prof. dr. Agneta Fischer +Second supervisor: dr. Disa Sauter +External Supervisor: prof. dr. Monique Volman +Research Master’s, Social Psychology +Ethics Committee Reference Code: 2016-SP-7084"
+73fbdd57270b9f91f2e24989178e264f2d2eb7ae,Kernel linear regression for low resolution face recognition under variable illumination,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012"
+73c9cbbf3f9cea1bc7dce98fce429bf0616a1a8c,Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,"imagesViewpoint factorizationLearned landmarksFigure1.Wepresentanovelmethodthatcanlearnviewpointin-variantlandmarkswithoutanysupervision.Themethodusesaprocessofviewpointfactorizationwhichlearnsadeeplandmarkdetectorcompatiblewithimagedeformations.Itcanbeappliedtorigidanddeformableobjectsandobjectcategories.terns.Achievingadeeperunderstandingofobjectsrequiresmodelingtheirintrinsicviewpoint-independentstructure.Oftenthisstructureisdefinedmanuallybyspecifyingen-titiessuchaslandmarks,parts,andskeletons.Givensuffi-cientmanualannotations,itispossibletoteachdeepneuralnetworksandothermodelstorecognizesuchstructuresinimages.However,theproblemoflearningsuchstructureswithoutmanualsupervisionremainslargelyopen.Inthispaper,wecontributeanewapproachtolearnviewpoint-independentrepresentationsofobjectsfromim-ageswithoutmanualsupervision(fig.1).Weformulatethistaskasafactorizationproblem,wheretheeffectsofimagedeformations,forexamplearisingfromaviewpointchange,areexplainedbythemotionofareferenceframeattachedtotheobjectandindependentoftheviewpoint.Afterdescribingthegeneralprinciple(sec.3.1),wein-1"
+8796f2d54afb0e5c924101f54d469a1d54d5775d,Illumination Invariant Face Recognition Using Fuzzy LDA and FFNN,"Journal of Signal and Information Processing, 2012, 3, 45-50 +http://dx.doi.org/10.4236/jsip.2012.31007 Published Online February 2012 (http://www.SciRP.org/journal/jsip) +Illumination Invariant Face Recognition Using Fuzzy LDA +nd FFNN +Behzad Bozorgtabar, Hamed Azami, Farzad Noorian +School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran. +Email: +Received October 20th, 2011; revised November 24th, 2011; accepted December 10th, 2011"
+87f285782d755eb85d8922840e67ed9602cfd6b9,Incorporating Boltzmann Machine Priors for Semantic Labeling in Images and Videos,"INCORPORATING BOLTZMANN MACHINE PRIORS +FOR SEMANTIC LABELING IN IMAGES AND VIDEOS +A Dissertation Presented +ANDREW KAE +Submitted to the Graduate School of the +University of Massachusetts Amherst in partial fulfillment +of the requirements for the degree of +DOCTOR OF PHILOSOPHY +May 2014 +Computer Science"
+871f5f1114949e3ddb1bca0982086cc806ce84a8,Discriminative learning of apparel features,"Discriminative Learning of Apparel Features +Rasmus Rothe1, Marko Ristin1, Matthias Dantone1, and Luc Van Gool1,2 +Computer Vision Laboratory, D-ITET, ETH Z¨urich, Switzerland +ESAT - PSI / IBBT, K.U. Leuven, Belgium"
+87bee0e68dfc86b714f0107860d600fffdaf7996,Automated 3D Face Reconstruction from Multiple Images Using Quality Measures,"Automated 3D Face Reconstruction from Multiple Images +using Quality Measures +Marcel Piotraschke and Volker Blanz +Institute for Vision and Graphics, University of Siegen, Germany"
+878169be6e2c87df2d8a1266e9e37de63b524ae7,Image interpretation above and below the object level.,"CBMM Memo No. 089 +May 10, 2018 +Image interpretation above and below the object level +Guy Ben-Yosef, Shimon Ullman"
+878301453e3d5cb1a1f7828002ea00f59cbeab06,Faceness-Net: Face Detection through Deep Facial Part Responses,"Faceness-Net: Face Detection through +Deep Facial Part Responses +Shuo Yang, Ping Luo, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE"
+87e592ee1a7e2d34e6b115da08700a1ae02e9355,Deep Pictorial Gaze Estimation,"Deep Pictorial Gaze Estimation +Seonwook Park, Adrian Spurr, and Otmar Hilliges +AIT Lab, Department of Computer Science, ETH Zurich"
+87dd3fd36bccbe1d5f1484ac05f1848b51c6eab5,Spatio-temporal Maximum Average Correlation Height Templates in Action Recognition and Video Summarization,"SPATIO-TEMPORAL MAXIMUM AVERAGE CORRELATION +HEIGHT TEMPLATES IN ACTION RECOGNITION AND VIDEO +SUMMARIZATION +MIKEL RODRIGUEZ +B.A. Earlham College, Richmond Indiana +M.S. University of Central Florida +A dissertation submitted in partial fulfillment of the requirements +for the degree of Doctor of Philosophy +in the School of Electrical Engineering and Computer Science +in the College of Engineering and Computer Science +t the University of Central Florida +Orlando, Florida +Summer Term +Major Professor: Mubarak Shah"
+87bb183d8be0c2b4cfceb9ee158fee4bbf3e19fd,Craniofacial Image Analysis,"Craniofacial Image Analysis +Ezgi Mercan, Indriyati Atmosukarto, Jia Wu, Shu Liang and Linda G. Shapiro"
+8006219efb6ab76754616b0e8b7778dcfb46603d,Contributions to large-scale learning for image classification. (Contributions à l'apprentissage grande échelle pour la classification d'images),"CONTRIBUTIONSTOLARGE-SCALELEARNINGFORIMAGECLASSIFICATIONZeynepAkataPhDThesisl’´EcoleDoctoraleMath´ematiques,SciencesetTechnologiesdel’Information,InformatiquedeGrenoble"
+804b4c1b553d9d7bae70d55bf8767c603c1a09e3,Subspace clustering with a learned dimensionality reduction projection,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+800cbbe16be0f7cb921842d54967c9a94eaa2a65,Multimodal Recognition of Emotions Multimodal Recognition of Emotions,"MULTIMODAL RECOGNITION OF +EMOTIONS"
+80135ed7e34ac1dcc7f858f880edc699a920bf53,Efficient Action and Event Recognition in Videos Using Extreme Learning Machines,"EFFICIENT ACTION AND EVENT RECOGNITION IN VIDEOS USING +EXTREME LEARNING MACHINES +G¨ul Varol +B.S., Computer Engineering, Bo˘gazi¸ci University, 2013 +Submitted to the Institute for Graduate Studies in +Science and Engineering in partial fulfillment of +the requirements for the degree of +Master of Science +Graduate Program in Computer Engineering +Bo˘gazi¸ci University"
+803c92a3f0815dbf97e30c4ee9450fd005586e1a,Max-Mahalanobis Linear Discriminant Analysis Networks,"Max-Mahalanobis Linear Discriminant Analysis Networks +Tianyu Pang 1 Chao Du 1 Jun Zhu 1"
+80c8d143e7f61761f39baec5b6dfb8faeb814be9,Local Directional Pattern based Fuzzy Co- occurrence Matrix Features for Face recognition,"Local Directional Pattern based Fuzzy Co- +occurrence Matrix Features for Face recognition +Dr. P Chandra Sekhar Reddy +Professor, CSE Dept. +Gokaraju Rangaraju Institute of Engineering and Technology, Hyd."
+80345fbb6bb6bcc5ab1a7adcc7979a0262b8a923,Soft Biometrics for a Socially Assistive Robotic Platform,"Research Article +Pierluigi Carcagnì*, Dario Cazzato, Marco Del Coco, Pier Luigi Mazzeo, Marco Leo, and +Cosimo Distante +Soft Biometrics for a Socially Assistive Robotic +Platform +Open Access"
+80a6bb337b8fdc17bffb8038f3b1467d01204375,Subspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition,"Proceedings of the International Conference on Computer and Information Science and Technology +Ottawa, Ontario, Canada, May 11 – 12, 2015 +Paper No. 126 +Subspace LDA Methods for Solving the Small Sample Size +Problem in Face Recognition +Ching-Ting Huang, Chaur-Chin Chen +Department of Computer Science/National Tsing Hua University +01 KwanFu Rd., Sec. 2, Hsinchu, Taiwan"
+80097a879fceff2a9a955bf7613b0d3bfa68dc23,Active Self-Paced Learning for Cost-Effective and Progressive Face Identification,"Active Self-Paced Learning for Cost-Effective and +Progressive Face Identification +Liang Lin, Keze Wang, Deyu Meng, Wangmeng Zuo, and Lei Zhang"
+74408cfd748ad5553cba8ab64e5f83da14875ae8,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation +nd Evaluation"
+74dbe6e0486e417a108923295c80551b6d759dbe,An HMM based Model for Prediction of Emotional Composition of a Facial Expression using both Significant and Insignificant Action Units and Associated Gender Differences,"International Journal of Computer Applications (0975 – 8887) +Volume 45– No.11, May 2012 +An HMM based Model for Prediction of Emotional +Composition of a Facial Expression using both +Significant and Insignificant Action Units and +Associated Gender Differences +Suvashis Das +Koichi Yamada +Department of Management and Information +Department of Management and Information +Systems Science +603-1 Kamitomioka, Nagaoka +Niigata, Japan +Systems Science +603-1 Kamitomioka, Nagaoka +Niigata, Japan"
+747c25bff37b96def96dc039cc13f8a7f42dbbc7,EmoNets: Multimodal deep learning approaches for emotion recognition in video,"EmoNets: Multimodal deep learning approaches for emotion +recognition in video +Samira Ebrahimi Kahou · Xavier Bouthillier · Pascal Lamblin · Caglar Gulcehre · +Vincent Michalski · Kishore Konda · S´ebastien Jean · Pierre Froumenty · Yann +Dauphin · Nicolas Boulanger-Lewandowski · Raul Chandias Ferrari · Mehdi Mirza · +David Warde-Farley · Aaron Courville · Pascal Vincent · Roland Memisevic · +Christopher Pal · Yoshua Bengio"
+744fa8062d0ae1a11b79592f0cd3fef133807a03,Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification.,"Aalborg Universitet +Deep Pain +Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi; M. Gonfaus, Josep ; Nasrollahi, Kamal; +Moeslund, Thomas B.; Xavier Roca, F. +Published in: +I E E E Transactions on Cybernetics +DOI (link to publication from Publisher): +0.1109/TCYB.2017.2662199 +Publication date: +Document Version +Accepted author manuscript, peer reviewed version +Link to publication from Aalborg University +Citation for published version (APA): +Rodriguez, P., Cucurull, G., Gonzàlez, J., M. Gonfaus, J., Nasrollahi, K., Moeslund, T. B., & Xavier Roca, F. +(2017). Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification. I E E E +Transactions on Cybernetics, 1-11. DOI: 10.1109/TCYB.2017.2662199 +General rights +Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
+743e582c3e70c6ec07094887ce8dae7248b970ad,Face Recognition based on Deep Neural Network,"International Journal of Signal Processing, Image Processing and Pattern Recognition +Vol.8, No.10 (2015), pp.29-38 +http://dx.doi.org/10.14257/ijsip.2015.8.10.04 +Face Recognition based on Deep Neural Network +Li Xinhua,Yu Qian +Shandong Women’s University"
+74b0095944c6e29837c208307a67116ebe1231c8,Manifold learning using Euclidean k-nearest neighbor graphs [image processing examples],"beindependentandidenticallydis-tributed(i.i.d.)randomvectorswithvaluesinacompactsubsetof.The(-)nearestneighborofinisgivenby!""$%&(*,.%13575where575istheusualEuclidean(<=)distanceinbe-tweenvectorand.Forgeneralinteger?,the-nearestneighborofapointisdefinedinasimilarway.The-NNgraphputsanedgebetweeneachpointinandits-nearestneighbors.LetBCDBCDFHbethesetof-nearestneighborsofin.Thetotaledgelengthofthe-NNgraphisdefinedas:<JDCFHMN +M%&QRS1575J(1)whereVWXisapowerweightingconstant.2.1.ConvergencetoExtrinsicZ-EntropyThe-NNedgelengthliesinthelargeclassoffunctionalscalledcontinuousquasi-additiveEuclideanfunctionals[7].Othergraphsinthisclassincludetheminimalspanningtree,theminimalmatch-inggraphorthetravelingsalesmantouramongothers.Thesefunc-tionalshaveremarkableasymptoticbehaviorasincreases:Theorem1([7,Theorem8.3])Let +bei.i.d.randomvectorswithvaluesinacompactsubsetofandLebesgueden-sity\.Let]?_,aVb]anddefineZF]7VHf].Then,withprobability(w.p.)gh""jk<JDCFHmoDJDCp\mFrHtr(2)whereoDJDCisaconstantindependentof\.Furthermore,themeanlengthuv<JDCFHwfmconvergestothesamelimit.Thequantitythatdeterminesthelimit(2)inTheorem1istheex-trinsicR´enyiZ-entropyofthemultivariateLebesguedensity\:yz{mF\H7Zg!pz{\mFrHtr(3)III - 9880-7803-8484-9/04/$20.00 ©2004 IEEEICASSP 2004(cid:224)"
+74156a11c2997517061df5629be78428e1f09cbd,"Preparatory coordination of head, eyes and hands: Experimental study at intersections","Cancún Center, Cancún, México, December 4-8, 2016 +978-1-5090-4846-5/16/$31.00 ©2016 IEEE"
+748e72af01ba4ee742df65e9c030cacec88ce506,Discriminative Regions Selection for Facial Expression Recognition,"Discriminative Regions Selection for Facial Expression +Recognition +Hazar Mliki1 and Mohamed Hammami2 +1 MIRACL-FSEG, University of Sfax +018 Sfax, Tunisia +MIRACL-FS, University of Sfax +018 Sfax, Tunisia"
+749d605dd12a4af58de1fae6f5ef5e65eb06540e,Multi-Task Video Captioning with Video and Entailment Generation,"Multi-Task Video Captioning with Video and Entailment Generation +Ramakanth Pasunuru and Mohit Bansal +UNC Chapel Hill +{ram,"
+749382d19bfe9fb8d0c5e94d0c9b0a63ab531cb7,A Modular Framework to Detect and Analyze Faces for Audience Measurement Systems,"A Modular Framework to Detect and Analyze Faces for +Audience Measurement Systems +Andreas Ernst, Tobias Ruf, Christian Kueblbeck +Fraunhofer Institute for Integrated Circuits IIS +Department Electronic Imaging +Am Wolfsmantel 33, 91058 Erlangen, Germany +{andreas.ernst, tobias.ruf,"
+74c19438c78a136677a7cb9004c53684a4ae56ff,RESOUND: Towards Action Recognition without Representation Bias,"RESOUND: Towards Action Recognition +without Representation Bias +Yingwei Li, Yi Li, and Nuno Vasconcelos +UC San Diego"
+74eae724ef197f2822fb7f3029c63014625ce1ca,Feature Extraction based on Local Directional Pattern with SVM Decision-level Fusion for Facial Expression Recognition,"International Journal of Bio-Science and Bio-Technology +Vol. 5, No. 2, April, 2013 +Feature Extraction based on Local Directional Pattern with SVM +Decision-level Fusion for Facial Expression Recognition +Juxiang Zhou1, Tianwei Xu1,2 and Jianhou Gan1 +Key Laboratory of Education Informalization for Nationalities, Ministry of +Education, Yunnan Normal University, Kunming, China +College of Information, Yunnan Normal University, Kunming, China"
+7480d8739eb7ab97c12c14e75658e5444b852e9f,MLBoost Revisited: A Faster Metric Learning Algorithm for Identity-Based Face Retrieval,"NEGREL ET AL.: REVISITED MLBOOST FOR FACE RETRIEVAL +MLBoost Revisited: A Faster Metric +Learning Algorithm for Identity-Based Face +Retrieval +Romain Negrel +Alexis Lechervy +Frederic Jurie +Normandie Univ, UNICAEN, +ENSICAEN, CNRS +France"
+74ba4ab407b90592ffdf884a20e10006d2223015,Partial Face Detection in the Mobile Domain,"Partial Face Detection in the Mobile Domain +Upal Mahbub, Student Member, IEEE, Sayantan Sarkar, Student Member, IEEE, +nd Rama Chellappa, Fellow, IEEE"
+7405ed035d1a4b9787b78e5566340a98fe4b63a0,Self-Expressive Decompositions for Matrix Approximation and Clustering,"Self-Expressive Decompositions for +Matrix Approximation and Clustering +Eva L. Dyer, Member, IEEE, Tom A. Goldstein, Member, IEEE, Raajen Patel, Student Member, IEEE, +Konrad P. K¨ording, and Richard G. Baraniuk, Fellow, IEEE"
+744db9bd550bf5e109d44c2edabffec28c867b91,FX e-Makeup for Muscle Based Interaction,"FX e-Makeup for Muscle Based Interaction +Katia Canepa Vega1, Abel Arrieta2, Felipe Esteves3, and Hugo Fuks1 +Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil +Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil +Department of Administration, PUC-Rio, Rio de Janeiro, Brazil"
+74325f3d9aea3a810fe4eab8863d1a48c099de11,Regression-Based Image Alignment for General Object Categories,"Regression-Based Image Alignment +for General Object Categories +Hilton Bristow1 and Simon Lucey2 +Queensland University of Technology (QUT) +Brisbane QLD 4000, Australia +Carnegie Mellon University (CMU) +Pittsburgh PA 15289, USA"
+744d23991a2c48d146781405e299e9b3cc14b731,Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2535284, IEEE +Transactions on Image Processing +Aging Face Recognition: A Hierarchical Learning +Model Based on Local Patterns Selection +Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE"
+1a45ddaf43bcd49d261abb4a27977a952b5fff12,LDOP: Local Directional Order Pattern for Robust Face Retrieval,"LDOP: Local Directional Order Pattern for Robust +Face Retrieval +Shiv Ram Dubey, Member, IEEE, and Snehasis Mukherjee, Member, IEEE"
+1aa766bbd49bac8484e2545c20788d0f86e73ec2,"Baseline face detection, head pose estimation, and coarse direction detection for facial data in the SHRP2 naturalistic driving study","Baseline Face Detection, Head Pose Estimation, and Coarse +Direction Detection for Facial Data in the SHRP2 Naturalistic +Driving Study +J. Paone, D. Bolme, R. Ferrell, Member, IEEE, D. Aykac, and +T. Karnowski, Member, IEEE +Oak Ridge National Laboratory, Oak Ridge, TN"
+1a849b694f2d68c3536ed849ed78c82e979d64d5,This is a repository copy of Symmetric Shape Morphing for 3 D Face and Head Modelling,"This is a repository copy of Symmetric Shape Morphing for 3D Face and Head Modelling. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/131760/ +Version: Accepted Version +Proceedings Paper: +Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634, Smith, William Alfred +Peter orcid.org/0000-0002-6047-0413 et al. (1 more author) (2018) Symmetric Shape +Morphing for 3D Face and Head Modelling. In: The 13th IEEE Conference on Automatic +Face and Gesture Recognition. IEEE . +Reuse +Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless +indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by +national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of +the full text version. This is indicated by the licence information on the White Rose Research Online record +for the item. +Takedown +If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +emailing including the URL of the record and the reason for the withdrawal request. +https://eprints.whiterose.ac.uk/"
+1a878e4667fe55170252e3f41d38ddf85c87fcaf,Discriminative Machine Learning with Structure,"Discriminative Machine Learning with Structure +Simon Lacoste-Julien +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2010-4 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-4.html +January 12, 2010"
+1a41831a3d7b0e0df688fb6d4f861176cef97136,A Biological Model of Object Recognition with Feature Learning,"massachusetts institute of technology — artificial intelligence laboratory +A Biological Model of Object +Recognition with Feature Learning +Jennifer Louie +AI Technical Report 2003-009 +CBCL Memo 227 +June 2003 +© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f +t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u"
+1a6c3c37c2e62b21ebc0f3533686dde4d0103b3f,Implementation of Partial Face Recognition using Directional Binary Code,"International Journal of Linguistics and Computational Applications (IJLCA) ISSN 2394-6385 (Print) +Volume 4, Issue 1, January – March 2017 ISSN 2394-6393 (Online) +Implementation of Partial Face Recognition +using Directional Binary Code +N.Pavithra #1, A.Sivapriya*2, K.Hemalatha*3 , D.Lakshmi*4 +,2,3Final Year, Department of Computer Science and Engineering, PanimalarInstitute of Technology, +Assistant Professor, Department of Computer Science and Engineering, PanimalarInstitute of Technology, Tamilnadu, India, +faith +is proposed. It +face alignment and"
+1a3eee980a2252bb092666cf15dd1301fa84860e,PCA Gaussianization for image processing,"PCA GAUSSIANIZATION FOR IMAGE PROCESSING +Valero Laparra, Gustavo Camps-Valls and Jes´us Malo +Image Processing Laboratory (IPL), Universitat de Val`encia +Catedr´atico A. Escardino - 46980 Paterna, Val`encia, Spain"
+1a031378cf1d2b9088a200d9715d87db8a1bf041,D Eep D Ictionary L Earning : S Ynergizing R E - Construction and C Lassification,"Workshop track - ICLR 2018 +DEEP DICTIONARY LEARNING: SYNERGIZING RE- +CONSTRUCTION AND CLASSIFICATION +Shahin Mahdizadehaghdam, Ashkan Panahi, Hamid Krim & Liyi Dai"
+1afd481036d57320bf52d784a22dcb07b1ca95e2,Automated Content Metadata Extraction Services Based on MPEG Standards,"The Computer Journal Advance Access published December 6, 2012 +© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. +For Permissions, please email: +doi:10.1093/comjnl/bxs146 +Automated Content Metadata Extraction +Services Based on MPEG Standards +D.C. Gibbon∗, Z. Liu, A. Basso and B. Shahraray +AT&T Labs Research, Middletown, NJ, USA +Corresponding author: +This paper is concerned with the generation, acquisition, standardized representation and transport +of video metadata. The use of MPEG standards in the design and development of interoperable +media architectures and web services is discussed. A high-level discussion of several algorithms +for metadata extraction is presented. Some architectural and algorithmic issues encountered when +designing services for real-time processing of video streams, as opposed to traditional offline media +processing, are addressed. A prototype real-time video analysis system for generating MPEG-7 +Audiovisual Description Profile from MPEG-2 transport stream encapsulated video is presented. +Such a capability can enable a range of new services such as content-based personalization of live +roadcasts given that the MPEG-7 based data models fit in well with specifications for advanced +television services such as TV-Anytime andAlliance for Telecommunications Industry Solutions IPTV +Interoperability Forum."
+1a9a192b700c080c7887e5862c1ec578012f9ed1,Discriminant Subspace Analysis for Face Recognition with Small Number of Training Samples,"IEEE TRANSACTIONS ON SYSTEM, MAN AND CYBERNETICS, PART B +Discriminant Subspace Analysis for Face +Recognition with Small Number of Training +Samples +Hui Kong, Xuchun Li, Matthew Turk, and Chandra Kambhamettu"
+1a8ccc23ed73db64748e31c61c69fe23c48a2bb1,Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade,"Extensive Facial Landmark Localization +with Coarse-to-fine Convolutional Network Cascade +Erjin Zhou Haoqiang Fan Zhimin Cao Yuning Jiang Qi Yin +Megvii Inc."
+1ad97cce5fa8e9c2e001f53f6f3202bddcefba22,Grassmann Averages for Scalable Robust PCA,"Grassmann Averages for Scalable Robust PCA +Aasa Feragen +DIKU and MPIs T¨ubingen∗ +Denmark and Germany +Søren Hauberg +DTU Compute∗ +Lyngby, Denmark"
+1a7a2221fed183b6431e29a014539e45d95f0804,Person Identification Using Text and Image Data,"Person Identification Using Text and Image Data +David S. Bolme, J. Ross Beveridge and Adele E. Howe +Computer Science Department +Colorado State Univeristy +Fort Collins, Colorado 80523"
+1a5b39a4b29afc5d2a3cd49087ae23c6838eca2b,Competitive Game Designs for Improving the Cost Effectiveness of Crowdsourcing,"Competitive Game Designs for Improving the Cost +Effectiveness of Crowdsourcing +Markus Rokicki, Sergiu Chelaru, Sergej Zerr, Stefan Siersdorfer +L3S Research Center, Hannover, Germany"
+287795991fad3c61d6058352879c7d7ae1fdd2b6,Biometrics Security: Facial Marks Detection from the Low Quality Images,"International Journal of Computer Applications (0975 – 8887) +Volume 66– No.8, March 2013 +Biometrics Security: Facial Marks Detection from the +Low Quality Images +nd facial marks are detected using LoG with morphological +operator. This method though was not enough to detect the +facial marks from the low quality images [7]. But, facial +marks have been used to speed up the retrieval process in +order to differentiate the human faces [15]. +Ziaul Haque Choudhury K.M.Mehata +B.S.Abdur Rahman University B.S.Abdur Rahman University +Dept. Of Information Technology Dept. Of Computer Science & Engineering +Chennai, India Chennai, India"
+28d7029cfb73bcb4ad1997f3779c183972a406b4,Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification,"Discriminative Nonlinear Analysis Operator +Learning: When Cosparse Model Meets Image +Classification +Zaidao Wen, Biao Hou, Member, IEEE, and Licheng Jiao, Senior Member, IEEE"
+280d59fa99ead5929ebcde85407bba34b1fcfb59,Online Nonnegative Matrix Factorization With Outliers,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+28cd46a078e8fad370b1aba34762a874374513a5,"cvpaper.challenge in 2016: Futuristic Computer Vision through 1, 600 Papers Survey","CVPAPER.CHALLENGE IN 2016, JULY 2017 +vpaper.challenge in 2016: Futuristic Computer +Vision through 1,600 Papers Survey +Hirokatsu Kataoka, Soma Shirak- +be, Yun He, Shunya Ueta, Teppei Suzuki, Kaori Abe, Asako Kanezaki, Shin’ichiro +Morita, Toshiyuki Yabe, Yoshihiro Kanehara, Hiroya Yatsuyanagi, Shinya Maruyama, Ryosuke Taka- +sawa, Masataka Fuchida, Yudai Miyashita, Kazushige Okayasu, Yuta Matsuzaki"
+28b5b5f20ad584e560cd9fb4d81b0a22279b2e7b,A New Fuzzy Stacked Generalization Technique and Analysis of its Performance,"A New Fuzzy Stacked Generalization Technique +nd Analysis of its Performance +Mete Ozay, Student Member, IEEE, Fatos T. Yarman Vural, Member, IEEE"
+28bc378a6b76142df8762cd3f80f737ca2b79208,Understanding Objects in Detail with Fine-Grained Attributes,"Understanding Objects in Detail with Fine-grained Attributes +Andrea Vedaldi1 +Siddharth Mahendran2 +Stavros Tsogkas3 +Subhransu Maji4 +Ross Girshick5 +Juho Kannala6 +Esa Rahtu6 +Matthew B. Blaschko3 +David Weiss7 +Ben Taskar8 +Naomi Saphra2 +Sammy Mohamed9 +Iasonas Kokkinos3 +Karen Simonyan1"
+28bcf31f794dc27f73eb248e5a1b2c3294b3ec9d,Improved Combination of LBP plus LFDA for Facial Expression Recognition using SRC,"International Journal of Computer Applications (0975 – 8887) +Volume 96– No.13, June 2014 +Improved Combination of LBP plus LFDA for Facial +Expression Recognition using SRC +Ritesh Bora +Research Scholar, CSE Department, +Government College of Engineering, Aurangabad +human +facial +expression +recognition"
+28fe6e785b32afdcd2c366c9240a661091b850cf,Facial Expression Recognition using Patch based Gabor Features,"International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 +Foundation of Computer Science FCS, New York, USA +Volume 10 – No.7, March 2016 – www.ijais.org +Facial Expression Recognition using Patch based Gabor +Features +Electronics & Telecommunication Engg +Electronics & Telecommunication Engg +St. Francis Institute of Technology +St. Francis Institute of Technology +Vaqar Ansari +Department +Mumbai, India +Anju Chandran +Department +Mumbai, India"
+28c9198d30447ffe9c96176805c1cd81615d98c8,No evidence that a range of artificial monitoring cues influence online donations to charity in an MTurk sample,"rsos.royalsocietypublishing.org +Research +Cite this article: Saunders TJ, Taylor AH, +Atkinson QD. 2016 No evidence that a range of +rtificial monitoring cues influence online +donations to charity in an MTurk sample. +R. Soc. open sci. 3: 150710. +http://dx.doi.org/10.1098/rsos.150710 +Received: 22 December 2015 +Accepted: 13 September 2016 +Subject Category: +Psychology and cognitive neuroscience +Subject Areas: +ehaviour/psychology/evolution +Keywords: +prosociality, eye images, charity donation, +reputation, online behaviour +Author for correspondence: +Quentin D. Atkinson +e-mail:"
+2866cbeb25551257683cf28f33d829932be651fe,A Two-Step Learning Method For Detecting Landmarks on Faces From Different Domains,"In Proceedings of the 2018 IEEE International Conference on Image Processing (ICIP) +The final publication is available at: http://dx.doi.org/10.1109/ICIP.2018.8451026 +A TWO-STEP LEARNING METHOD FOR DETECTING LANDMARKS +ON FACES FROM DIFFERENT DOMAINS +Bruna Vieira Frade +Erickson R. Nascimento +Universidade Federal de Minas Gerais (UFMG), Brazil +{brunafrade,"
+28aa89b2c827e5dd65969a5930a0520fdd4a3dc7,Characterization and Classification of Faces across Age Progression,
+28b061b5c7f88f48ca5839bc8f1c1bdb1e6adc68,Predicting User Annoyance Using Visual Attributes,"Predicting User Annoyance Using Visual Attributes +Gordon Christie +Virginia Tech +Amar Parkash +Goibibo +Ujwal Krothapalli +Virginia Tech +Devi Parikh +Virginia Tech"
+17a85799c59c13f07d4b4d7cf9d7c7986475d01c,Extending Procrustes Analysis: Building Multi-view 2-D Models from 3-D Human Shape Samples,"ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents +ondicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha +estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats +emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats +de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la +presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de +drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita +de parts de la tesi és obligat indicar el nom de la persona autora. +ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes +ondiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha +sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos +privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción +on finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. +No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). +Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus +ontenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la +persona autora. +WARNING. On having consulted this thesis you’re accepting the following use conditions: +Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the +titular of the intellectual property rights only for private uses placed in investigation and teaching"
+176f26a6a8e04567ea71677b99e9818f8a8819d0,MEG: Multi-Expert Gender Classification from Face Images in a Demographics-Balanced Dataset,"MEG: Multi-Expert Gender classification from +face images in a demographics-balanced dataset +Modesto Castrill´on-Santana1, Maria De Marsico2, Michele Nappi3, and +Daniel Riccio4 +Universidad de Las Palmas de Gran Canaria, Spain. Email: +Sapienza University of Rome, Italy. Email: +University of Salerno, Fisciano (SA), Italy. Email: +University of Naples Federico II, Italy, Email:"
+17cf838720f7892dbe567129dcf3f7a982e0b56e,Global-Local Face Upsampling Network,"Global-Local Face Upsampling Network +Oncel Tuzel +Yuichi Taguchi +John R. Hershey +Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA"
+17370f848801871deeed22af152489e39b6e1454,Undersampled face recognition with one-pass dictionary learning,"UNDERSAMPLED FACE RECOGNITION WITH ONE-PASS DICTIONARY LEARNING +Chia-Po Wei and Yu-Chiang Frank Wang +Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan +{cpwei,"
+178a82e3a0541fa75c6a11350be5bded133a59fd,BioHDD: a dataset for studying biometric identification on heavily degraded data,"Techset Composition Ltd, Salisbury +{IEE}BMT/Articles/Pagination/BMT20140045.3d +www.ietdl.org +Received on 15th July 2014 +Revised on 17th September 2014 +Accepted on 23rd September 2014 +doi: 10.1049/iet-bmt.2014.0045 +ISSN 2047-4938 +BioHDD: a dataset for studying biometric +identification on heavily degraded data +Gil Santos1, Paulo T. Fiadeiro2, Hugo Proença1 +Department of Computer Science, IT – Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal +Department of Physics, Remote Sensing Unit – Optics, Optometry and Vision Sciences Group, University of Beira Interior, +Covilhã, Portugal +E-mail:"
+17a995680482183f3463d2e01dd4c113ebb31608,Structured Label Inference for Visual Understanding,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z +Structured Label Inference for +Visual Understanding +Nelson Nauata, Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng, +Zicheng Liao and Greg Mori"
+1742ffea0e1051b37f22773613f10f69d2e4ed2c,Interactive Mirror for Smart Home,
+174930cac7174257515a189cd3ecfdd80ee7dd54,Multi-view Face Detection Using Deep Convolutional Neural Networks,"Multi-view Face Detection Using Deep Convolutional +Neural Networks +Sachin Sudhakar Farfade +Yahoo +Mohammad Saberian +inc.com +Yahoo +Li-Jia Li +Yahoo"
+1750db78b7394b8fb6f6f949d68f7c24d28d934f,Detecting Facial Retouching Using Supervised Deep Learning,"Detecting Facial Retouching Using Supervised +Deep Learning +Aparna Bharati, Richa Singh, Senior Member, IEEE, Mayank Vatsa, Senior Member, IEEE, Kevin W. +Bowyer, Fellow, IEEE"
+173657da03e3249f4e47457d360ab83b3cefbe63,HKU-Face : A Large Scale Dataset for Deep Face Recognition Final Report,"HKU-Face: A Large Scale Dataset for +Deep Face Recognition +Final Report +Haicheng Wang +035140108 +COMP4801 Final Year Project +Project Code: 17007"
+7bbaa09c9e318da4370a83b126bcdb214e7f8428,"FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing and HPC","FaaSter, Better, Cheaper: The Prospect of +Serverless Scientific Computing and HPC +Josef Spillner1, Cristian Mateos2, and David A. Monge3 +Zurich University of Applied Sciences, School of Engineering +Service Prototyping Lab (blog.zhaw.ch/icclab/), 8401 Winterthur, Switzerland +ISISTAN Research Institute - CONICET - UNICEN +Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina +ITIC Research Institute, National University of Cuyo +Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina"
+7b9961094d3e664fc76b12211f06e12c47a7e77d,Bridging biometrics and forensics,"Bridging Biometrics and Forensics +Yanjun Yan and Lisa Ann Osadciw +EECS, Syracuse University, Syracuse, NY, USA +{yayan,"
+7b9b3794f79f87ca8a048d86954e0a72a5f97758,Passing an Enhanced Turing Test - Interacting with Lifelike Computer Representations of Specific Individuals,"DOI 10.1515/jisys-2013-0016 Journal of Intelligent Systems 2013; 22(4): 365–415 +Avelino J. Gonzalez*, Jason Leigh, Ronald F. DeMara, Andrew +Johnson, Steven Jones, Sangyoon Lee, Victor Hung, Luc +Renambot, Carlos Leon-Barth, Maxine Brown, Miguel Elvir, +James Hollister and Steven Kobosko +Passing an Enhanced Turing Test – +Interacting with Lifelike Computer +Representations of Specific Individuals"
+7bce4f4e85a3bfcd6bfb3b173b2769b064fce0ed,A Psychologically-Inspired Match-Score Fusion Model for Video-Based Facial Expression Recognition,"A Psychologically-Inspired Match-Score Fusion Model +for Video-Based Facial Expression Recognition +Albert Cruz, Bir Bhanu, Songfan Yang, +VISLab, EBUII-216, University of California Riverside, +Riverside, California, USA, 92521-0425 +{acruz, bhanu,"
+7b0f1fc93fb24630eb598330e13f7b839fb46cce,Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings,"Learning to Find Eye Region Landmarks for Remote Gaze +Estimation in Unconstrained Settings +Seonwook Park +ETH Zurich +Xucong Zhang +MPI for Informatics +Andreas Bulling +MPI for Informatics +Otmar Hilliges +ETH Zurich"
+7bdcd85efd1e3ce14b7934ff642b76f017419751,Learning Discriminant Face Descriptor,"Learning Discriminant Face Descriptor +Zhen Lei, Member, IEEE, Matti Pietika¨ inen, Fellow, IEEE, and Stan Z. Li, Fellow, IEEE"
+7b3b7769c3ccbdf7c7e2c73db13a4d32bf93d21f,"On the design and evaluation of robust head pose for visual user interfaces: algorithms, databases, and comparisons","On the Design and Evaluation of Robust Head Pose for +Visual User Interfaces: Algorithms, Databases, and +Comparisons +Sujitha Martin +Laboratory of Intelligent and +Safe Automobiles +UCSD - La Jolla, CA, USA +Ashish Tawari +Laboratory of Intelligent and +Safe Automobiles +UCSD - La Jolla, CA, USA +Erik Murphy-Chutorian +Laboratory of Intelligent and +Safe Automobiles +UCSD - La Jolla, CA, USA +Shinko Y. Cheng +Laboratory of Intelligent and +Safe Automobiles +UCSD - La Jolla, CA, USA +Mohan Trivedi"
+8f6d05b8f9860c33c7b1a5d704694ed628db66c7,Non-linear dimensionality reduction and sparse representation models for facial analysis. (Réduction de la dimension non-linéaire et modèles de la représentations parcimonieuse pour l'analyse du visage),"Non-linear dimensionality reduction and sparse +representation models for facial analysis +Yuyao Zhang +To cite this version: +Yuyao Zhang. Non-linear dimensionality reduction and sparse representation models for facial analysis. +Medical Imaging. INSA de Lyon, 2014. English. <NNT : 2014ISAL0019>. <tel-01127217> +HAL Id: tel-01127217 +https://tel.archives-ouvertes.fr/tel-01127217 +Submitted on 7 Mar 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de +recherche français ou étrangers, des laboratoires"
+8f772d9ce324b2ef5857d6e0b2a420bc93961196,Facial Landmark Point Localization using Coarse-to-Fine Deep Recurrent Neural Network,"MAHPOD et al.: CFDRNN +Facial Landmark Point Localization using +Coarse-to-Fine Deep Recurrent Neural Network +Shahar Mahpod, Rig Das, Emanuele Maiorana, Yosi Keller, and Patrizio Campisi,"
+8fda2f6b85c7e34d3e23927e501a4b4f7fc15b2a,Feature Selection with Annealing for Big Data Learning,"Feature Selection with Annealing for Big Data +Learning +Adrian Barbu, Yiyuan She, Liangjing Ding, Gary Gramajo"
+8fa3478aaf8e1f94e849d7ffbd12146946badaba,Attributes for Classifier Feedback,"Attributes for Classifier Feedback +Amar Parkash1 and Devi Parikh2 +Indraprastha Institute of Information Technology (Delhi, India) +Toyota Technological Institute (Chicago, US)"
+8f9c37f351a91ed416baa8b6cdb4022b231b9085,Generative Adversarial Style Transfer Networks for Face Aging,"Generative Adversarial Style Transfer Networks for Face Aging +Sveinn Palsson +D-ITET, ETH Zurich +Eirikur Agustsson +D-ITET, ETH Zurich"
+8f8c0243816f16a21dea1c20b5c81bc223088594,Local Directional Number Based Classification and Recognition of Expressions Using Subspace Methods,
+8f3e3f0f97844d3bfd9e9ec566ac7a54f6931b09,"A Survey on Human Emotion Recognition Approaches, Databases and Applications","Electronic Letters on Computer Vision and Image Analysis 14(2):24-44; 2015 +A Survey on Human Emotion Recognition Approaches, +Databases and Applications +C.Vinola*, K.Vimaladevi† +* Department of Computer Science and Engineering, Francis Xavier Engineering College, Tirunelveli,Tamilnadu,India +Department of Computer Science and Engineering, P.S.R Engineering College, Sivakasi, Tamilnadu,India +Received 7th Aug 2015; accepted 30th Nov 2015"
+8f89aed13cb3555b56fccd715753f9ea72f27f05,Attended End-to-end Architecture for Age Estimation from Facial Expression Videos,"Attended End-to-end Architecture for Age +Estimation from Facial Expression Videos +Wenjie Pei, Hamdi Dibeklio˘glu, Member, IEEE, Tadas Baltruˇsaitis and David M.J. Tax"
+8fd9c22b00bd8c0bcdbd182e17694046f245335f,Recognizing Facial Expressions in Videos,"Recognizing Facial Expressions in Videos +Lin Su, Matthew Balazsi"
+8acdc4be8274e5d189fb67b841c25debf5223840,Improving clustering performance using independent component analysis and unsupervised feature learning,"Gultepe and Makrehchi +Hum. Cent. Comput. Inf. Sci. (2018) 8:25 +https://doi.org/10.1186/s13673-018-0148-3 +RESEARCH +Improving clustering performance +using independent component analysis +nd unsupervised feature learning +Open Access +Eren Gultepe* and Masoud Makrehchi +*Correspondence: +Department of Electrical +nd Computer Engineering, +University of Ontario Institute +of Technology, 2000 Simcoe +St N, Oshawa, ON L1H 7K4, +Canada"
+8a54f8fcaeeede72641d4b3701bab1fe3c2f730a,What do you think of my picture? Investigating factors of influence in profile images context perception,"What do you think of my picture? Investigating factors +of influence in profile images context perception +Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid +Heynderickx +To cite this version: +Filippo Mazza, Matthieu Perreira da Silva, Patrick Le Callet, Ingrid Heynderickx. What do you +think of my picture? Investigating factors of influence in profile images context perception. Human +Vision and Electronic Imaging XX, Mar 2015, San Francisco, United States. Proc. SPIE 9394, Hu- +man Vision and Electronic Imaging XX, 9394, <http://spie.org/EI/conferencedetails/human-vision- +electronic-imaging>. <10.1117/12.2082817>. <hal-01149535> +HAL Id: hal-01149535 +https://hal.archives-ouvertes.fr/hal-01149535 +Submitted on 7 May 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est"
+8aae23847e1beb4a6d51881750ce36822ca7ed0b,Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron,"Comparison Between Geometry-Based and Gabor-Wavelets-Based +Facial Expression Recognition Using Multi-Layer Perceptron +Zhengyou Zhang +Shigeru Akamatsu + Michael Lyons + + ATR Interpreting Telecommunications Research Laboratories +-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan +INRIA, 2004 route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France +e-mail:"
+8a866bc0d925dfd8bb10769b8b87d7d0ff01774d,WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art,"WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art +Saif M. Mohammad and Svetlana Kiritchenko +National Research Council Canada"
+8a3bb63925ac2cdf7f9ecf43f71d65e210416e17,ShearFace: Efficient Extraction of Anisotropic Features for Face Recognition,"ShearFace: Efficient Extraction of Anisotropic +Features for Face Recognition +Mohamed Anouar Borgi1, Demetrio Labate2 +Research Groups on Intelligent Machines, +University of Sfax, +Sfax 3038, Tunisia +nd anisotropic"
+8adb2fcab20dab5232099becbd640e9c4b6a905a,Beyond Euclidean Eigenspaces: Bayesian Matching for Visual Recognition,"Beyond Euclidean Eigenspaces: +Bayesian Matching for Visual Recognition +Baback Moghaddam +Alex Pentland +Mitsubishi Electric Research Laboratory +MIT Media Laboratory + + +Cambridge, MA +Cambridge, MA +8a91ad8c46ca8f4310a442d99b98c80fb8f7625f,2D Segmentation Using a Robust Active Shape Model With the EM Algorithm,"D Segmentation Using a Robust Active +Shape Model With the EM Algorithm +Carlos Santiago, Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques"
+8aed6ec62cfccb4dba0c19ee000e6334ec585d70,Localizing and Visualizing Relative Attributes,"Localizing and Visualizing Relative Attributes +Fanyi Xiao and Yong Jae Lee"
+8a336e9a4c42384d4c505c53fb8628a040f2468e,Detecting Visually Observable Disease Symptoms from Faces,"Wang and Luo EURASIP Journal on Bioinformatics +nd Systems Biology (2016) 2016:13 +DOI 10.1186/s13637-016-0048-7 +R ES EAR CH +Detecting Visually Observable Disease +Symptoms from Faces +Kuan Wang* and Jiebo Luo +Open Access"
+7ed3b79248d92b255450c7becd32b9e5c834a31e,L 1-regularized Logistic Regression Stacking and Transductive CRF Smoothing for Action Recognition in Video,"L1-regularized Logistic Regression Stacking and Transductive CRF Smoothing +for Action Recognition in Video +Svebor Karaman +University of Florence +Lorenzo Seidenari +University of Florence +Andrew D. Bagdanov +University of Florence +Alberto Del Bimbo +University of Florence"
+7e8016bef2c180238f00eecc6a50eac473f3f138,Immersive Interactive Data Mining and Machine Learning Algorithms for Big Data Visualization,"TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +Immersive Interactive Data Mining and Machine +Learning Algorithms for Big Data Visualization +Mohammadreza Babaee +Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs (Dr.-Ing.) +genehmigten Dissertation. +Vorsitzender: +Univ.-Prof. Dr. sc.techn. Andreas Herkersdorf +Pr¨ufer der Dissertation: +. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +. Univ.-Prof. Dr.-Ing. habil. Dirk Wollherr +. Prof. Dr. Mihai Datcu +Die Dissertation wurde am 13.08.2015 bei der Technischen Universit¨at M¨unchen eingerei- +ht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 16.02.2016 +ngenommen."
+7e3367b9b97f291835cfd0385f45c75ff84f4dc5,Improved local binary pattern based action unit detection using morphological and bilateral filters,"Improved Local Binary Pattern Based Action Unit Detection Using +Morphological and Bilateral Filters +Anıl Y¨uce1, Matteo Sorci2 and Jean-Philippe Thiran1 +Signal Processing Laboratory (LTS5) +´Ecole Polytechnique F´ed´erale de Lausanne, +Switzerland +nViso SA +Lausanne, Switzerland"
+7ef0cc4f3f7566f96f168123bac1e07053a939b2,Triangular Similarity Metric Learning: a Siamese Architecture Approach. ( L'apprentissage de similarité triangulaire en utilisant des réseaux siamois),"Triangular Similarity Metric Learning: a Siamese +Architecture Approach +Lilei Zheng +To cite this version: +Lilei Zheng. Triangular Similarity Metric Learning: a Siamese Architecture Approach. Com- +puter Science [cs]. UNIVERSITE DE LYON, 2016. English. <NNT : 2016LYSEI045>. <tel- +01314392> +HAL Id: tel-01314392 +https://hal.archives-ouvertes.fr/tel-01314392 +Submitted on 11 May 2016 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+7ee53d931668fbed1021839db4210a06e4f33190,What If We Do Not have Multiple Videos of the Same Action? — Video Action Localization Using Web Images,"What if we do not have multiple videos of the same action? — +Video Action Localization Using Web Images +Center for Research in Computer Vision (CRCV), University of Central Florida (UCF) +Waqas Sultani, Mubarak Shah"
+7e9df45ece7843fe050033c81014cc30b3a8903a,Audio-visual intent-to-speak detection for human-computer interaction,"AUDIO-VISUAL INTENT-TO-SPEAK DETECTION FOR HUMAN-COMPUTER +INTERACTION +Philippe de Cuetos +Institut Eurecom + , route des Cr^etes, BP + +Chalapathy Neti, Andrew W. Senior +IBM T.J. Watson Research Center +Yorktown Heights, NY +cneti,aws"
+7ebd323ddfe3b6de8368c4682db6d0db7b70df62,Location-based Face Recognition Using Smart Mobile Device Sensors,"Proceedings of the International Conference on Computer and Information Science and Technology +Ottawa, Ontario, Canada, May 11 – 12, 2015 +Paper No. 111 +Location-based Face Recognition Using Smart Mobile Device +Sensors +Nina Taherimakhsousi, Hausi A. Müller +Department of Computer Science +University of Victoria, Victoria, Canada"
+7ed6ff077422f156932fde320e6b3bd66f8ffbcb,State of 3D Face Biometrics for Homeland Security Applications,"State of 3D Face Biometrics for Homeland Security Applications +Anshuman Razdan1, Gerald Farin2, Myung Soo-Bae3 and Mahesh +Chaudhari4"
+7e507370124a2ac66fb7a228d75be032ddd083cc,Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE +Transactions on Affective Computing +Dynamic Pose-Robust Facial Expression +Recognition by Multi-View Pairwise Conditional +Random Forests +Arnaud Dapogny1 and Kevin Bailly1 and S´everine Dubuisson1 +Sorbonne Universit´es, UPMC Univ Paris 06 +CNRS, UMR 7222, F-75005, Paris, France"
+10e7dd3bbbfbc25661213155e0de1a9f043461a2,Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video,"Cross Euclidean-to-Riemannian Metric Learning +with Application to Face Recognition from Video +Zhiwu Huang, Member, IEEE, Ruiping Wang, Member, IEEE, Shiguang Shan, Senior Member, IEEE, +Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE"
+10ce3a4724557d47df8f768670bfdd5cd5738f95,Fisher Light-Fields for Face Recognition across Pose and Illumination,"Fihe igh Fie +Ac e ad +Ra +The Rbic i e Caegie e +5000 Fbe Ave e ib gh A 15213 +Abac. ay face ecgii ak he e ad i +dii f he be ad ga + +di(cid:11)ee e ad de a di(cid:11)ee i +ecgii a + bjec ca ed a abiay e ad de abiay i +d ay be f be iage agai ca ed a abiay e ad +de abiay i +Fihe +iage. achig bewee he be ad ga +he Fihe +d ci + ay face ecgii ceai he e f he be ad ga +di(cid:11)ee. The ga +The a +102e374347698fe5404e1d83f441630b1abf62d9,Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation,"Facial Image Analysis for Fully-Automatic +Prediction of Difficult Endotracheal Intubation +Gabriel L. Cuendet, Student Member, IEEE, Patrick Schoettker, Anıl Y¨uce Student Member, IEEE, Matteo Sorci, +Hua Gao, Christophe Perruchoud, Jean-Philippe Thiran, Senior Member, IEEE"
+10e0e6f1ec00b20bc78a5453a00c792f1334b016,Temporal Selective Max Pooling Towards Practical Face Recognition,"Pose-Selective Max Pooling for Measuring Similarity +Xiang Xiang1 and Trac D. Tran2 +Dept. of Computer Science +Dept. of Electrical & Computer Engineering +Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA"
+100641ed8a5472536dde53c1f50fa2dd2d4e9be9,Visual attributes for enhanced human-machine communication,"Visual Attributes for Enhanced Human-Machine Communication* +Devi Parikh1"
+101569eeef2cecc576578bd6500f1c2dcc0274e2,Multiaccuracy: Black-Box Post-Processing for Fairness in Classification,"Multiaccuracy: Black-Box Post-Processing for Fairness in +Michael P. Kim∗† +Classification +Amirata Ghorbani∗ +James Zou"
+106732a010b1baf13c61d0994552aee8336f8c85,Expanded Parts Model for Semantic Description of Humans in Still Images,"Expanded Parts Model for Semantic Description +of Humans in Still Images +Gaurav Sharma, Member, IEEE, Fr´ed´eric Jurie, and Cordelia Schmid, Fellow, IEEE"
+102b27922e9bd56667303f986404f0e1243b68ab,Multiscale recurrent regression networks for face alignment,"Wang et al. Appl Inform (2017) 4:13 +DOI 10.1186/s40535-017-0042-5 +RESEARCH +Multiscale recurrent regression networks +for face alignment +Open Access +Caixun Wang1,2,3, Haomiao Sun1,2,3, Jiwen Lu1,2,3*, Jianjiang Feng1,2,3 and Jie Zhou1,2,3 +*Correspondence: +State Key Lab of Intelligent +Technologies and Systems, +Beijing 100084, People’s +Republic of China +Full list of author information +is available at the end of the +rticle"
+10fcbf30723033a5046db791fec2d3d286e34daa,On-Line Cursive Handwriting Recognition: A Survey of Methods and Performances,"On-Line Cursive Handwriting Recognition: A Survey of Methods +nd Performances +Dzulkifli Mohamad* , 2Muhammad Faisal Zafar*, and 3Razib M. Othman* +*Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM) , 81310 +Skudai, Johor, Malaysia."
+108b2581e07c6b7ca235717c749d45a1fa15bb24,Using Stereo Matching with General Epipolar Geometry for 2D Face Recognition across Pose,"Using Stereo Matching with General Epipolar +Geometry for 2D Face Recognition +cross Pose +Carlos D. Castillo, Student Member, IEEE, and +David W. Jacobs, Member, IEEE"
+10d334a98c1e2a9e96c6c3713aadd42a557abb8b,Scene Text Recognition Using Part-Based Tree-Structured Character Detection,"Scene Text Recognition using Part-based Tree-structured Character Detection +Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, Song Gao and Zhong Zhang +State Key Laboratory of Management and Control for Complex Systems, CASIA, Beijing, China"
+1048c753e9488daa2441c50577fe5fdba5aa5d7c,Recognising faces in unseen modes: A tensor based approach,"Recognising faces in unseen modes: a tensor based approach +Santu Rana, Wanquan Liu, Mihai Lazarescu and Svetha Venkatesh +{santu.rana, wanquan, m.lazarescu, +Dept. of Computing, Curtin University of Technology +GPO Box U1987, Perth, WA 6845, Australia."
+19841b721bfe31899e238982a22257287b9be66a,Recurrent Neural Networks,"Published as a conference paper at ICLR 2018 +SKIP RNN: LEARNING TO SKIP STATE UPDATES IN +RECURRENT NEURAL NETWORKS +V´ıctor Campos∗†, Brendan Jou‡, Xavier Gir´o-i-Nieto§, Jordi Torres†, Shih-Fu ChangΓ +Barcelona Supercomputing Center, ‡Google Inc, +§Universitat Polit`ecnica de Catalunya, ΓColumbia University +{victor.campos,"
+192723085945c1d44bdd47e516c716169c06b7c0,Vision and Attention Theory Based Sampling for Continuous Facial Emotion Recognition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation +Vision and Attention Theory Based Sampling +for Continuous Facial Emotion Recognition +Albert C. Cruz, Student Member, IEEE, Bir Bhanu, Fellow, IEEE, and +Ninad S. Thakoor, Member, IEEE"
+19fb5e5207b4a964e5ab50d421e2549ce472baa8,Online emotional facial expression dictionary,"International Conference on Computer Systems and Technologies - CompSysTech’14 +Online Emotional Facial Expression Dictionary +Léon Rothkrantz"
+1962e4c9f60864b96c49d85eb897141486e9f6d1,Locality preserving embedding for face and handwriting digital recognition,"Neural Comput & Applic (2011) 20:565–573 +DOI 10.1007/s00521-011-0577-7 +O R I G I N A L A R T I C L E +Locality preserving embedding for face and handwriting digital +recognition +Zhihui Lai • MingHua Wan • Zhong Jin +Received: 3 December 2008 / Accepted: 11 March 2011 / Published online: 1 April 2011 +Ó Springer-Verlag London Limited 2011 +supervised manifold +the local sub-manifolds."
+191674c64f89c1b5cba19732869aa48c38698c84,Face Image Retrieval Using Attribute - Enhanced Sparse Codewords,"International Journal of Advanced Technology in Engineering and Science www.ijates.com +Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550 +FACE IMAGE RETRIEVAL USING ATTRIBUTE - +ENHANCED SPARSE CODEWORDS +E.Sakthivel1 , M.Ashok kumar2 +PG scholar, Communication Systems, Adhiyamaan College of Engineeing,Hosur,(India) +Asst. Prof., Electronics And Communication Engg., Adhiyamaan College of Engg.,Hosur,(India)"
+19af008599fb17bbd9b12288c44f310881df951c,Discriminative Local Sparse Representations for Robust Face Recognition,"Discriminative Local Sparse Representations for +Robust Face Recognition +Yi Chen, Umamahesh Srinivas, Thong T. Do, Vishal Monga, and Trac D. Tran"
+19296e129c70b332a8c0a67af8990f2f4d4f44d1,Is that you? Metric learning approaches for face identification,"Metric Learning Approaches for Face Identification +Is that you? +M. Guillaumin, J. Verbeek and C. Schmid +LEAR team, INRIA Rhˆone-Alpes, France +Supplementary Material"
+19666b9eefcbf764df7c1f5b6938031bcf777191,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data: +Common and Individual Feature Extraction +Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE"
+19c0c7835dba1a319b59359adaa738f0410263e8,Natural Image Statistics and Low-Complexity Feature Selection,"Natural Image Statistics and +Low-Complexity Feature Selection +Manuela Vasconcelos and Nuno Vasconcelos, Senior Member, IEEE"
+19d583bf8c5533d1261ccdc068fdc3ef53b9ffb9,FaceNet: A unified embedding for face recognition and clustering,"FaceNet: A Unified Embedding for Face Recognition and Clustering +Florian Schroff +Dmitry Kalenichenko +James Philbin +Google Inc. +Google Inc. +Google Inc."
+1910f5f7ac81d4fcc30284e88dee3537887acdf3,Semantic Based Hypergraph Reranking Model for Web Image Search,"Volume 6, Issue 5, May 2016 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +Semantic Based Hypergraph Reranking Model for Web +Image Search +Amol Darkunde, 2Manoj Jalan, 3Yelmar Mahesh, 4Shivadatta Shinde, 5Dnyanda Patil +, 2, 3, 4 B. E. Dept of CSE, 5 Asst. Prof. Dept of CSE +, 2, 3, 4, 5 Dr.D.Y.Patil College of Engineering, Pune, Maharashtra, India"
+197c64c36e8a9d624a05ee98b740d87f94b4040c,Regularized Greedy Column Subset Selection,"Regularized Greedy Column Subset Selection +Bruno Ordozgoiti*a, Alberto Mozoa, Jes´us Garc´ıa L´opez de Lacalleb +Department of Computer Systems, Universidad Polit´ecnica de Madrid +Department of Applied Mathematics, Universidad Polit´ecnica de Madrid"
+19d4855f064f0d53cb851e9342025bd8503922e2,Learning SURF Cascade for Fast and Accurate Object Detection,"Learning SURF Cascade for Fast and Accurate Object Detection +Jianguo Li, Yimin Zhang +Intel Labs China"
+4c6e1840451e1f86af3ef1cb551259cb259493ba,Hand Posture Dataset Creation for Gesture Recognition,"HAND POSTURE DATASET CREATION FOR GESTURE +RECOGNITION +Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria +Luis Anton-Canalis +Campus Universitario de Tafira, 35017 Gran Canaria, Spain +Elena Sanchez-Nielsen +Departamento de E.I.O. y Computacion +8271 Universidad de La Laguna, Spain +Keywords: +Image understanding, Gesture recognition, Hand dataset."
+4c815f367213cc0fb8c61773cd04a5ca8be2c959,Facial expression recognition using curvelet based local binary patterns,"978-1-4244-4296-6/10/$25.00 ©2010 IEEE +ICASSP 2010"
+4c4e49033737467e28aa2bb32f6c21000deda2ef,Improving Landmark Localization with Semi-Supervised Learning,"Improving Landmark Localization with Semi-Supervised Learning +Sina Honari1∗, Pavlo Molchanov2, Stephen Tyree2, Pascal Vincent1,4,5, Christopher Pal1,3, Jan Kautz2 +MILA-University of Montreal, 2NVIDIA, 3Ecole Polytechnique of Montreal, 4CIFAR, 5Facebook AI Research. +{honaris, +{pmolchanov, styree,"
+4c4236b62302957052f1bbfbd34dbf71ac1650ec,Semi-supervised face recognition with LDA self-training,"SEMI-SUPERVISED FACE RECOGNITION WITH LDA SELF-TRAINING +Xuran Zhao, Nicholas Evans and Jean-Luc Dugelay +Multimedia Communications Department, EURECOM +229 Route des Crêtes , BP 193, F-06560 Sophia-Antipolis Cedex, France +{zhaox, evans,"
+4c81c76f799c48c33bb63b9369d013f51eaf5ada,Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs,"Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job +Candidate Screening from Video CVs +Heysem Kaya1, Furkan G¨urpınar2, and Albert Ali Salah2 +Department of Computer Engineering, Namık Kemal University, Tekirda˘g, Turkey +Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey"
+4c1ce6bced30f5114f135cacf1a37b69bb709ea1,Gaze direction estimation by component separation for recognition of Eye Accessing Cues,"Gaze Direction Estimation by Component Separation for +Recognition of Eye Accessing Cues +Ruxandra Vrˆanceanu +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Corneliu Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Laura Florea +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313 +Constantin Vertan +Image Processing and Analysis Laboratory +University ”Politehnica” of Bucharest, Romania, Address Splaiul Independent¸ei 313"
+2661f38aaa0ceb424c70a6258f7695c28b97238a,Multilayer Architectures for Facial Action Unit Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 4, AUGUST 2012 +Multilayer Architectures for Facial +Action Unit Recognition +Tingfan Wu, Nicholas J. Butko, Paul Ruvolo, Jacob Whitehill, Marian S. Bartlett, and Javier R. Movellan"
+264a84f4d27cd4bca94270620907cffcb889075c,Deep motion features for visual tracking,"Deep Motion Features for Visual Tracking +Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg +Computer Vision Laboratory, Department of Electrical Engineering, Link¨oping University, Sweden"
+26a72e9dd444d2861298d9df9df9f7d147186bcd,Collecting and annotating the large continuous action dataset,"DOI 10.1007/s00138-016-0768-4 +ORIGINAL PAPER +Collecting and annotating the large continuous action dataset +Daniel Paul Barrett1 · Ran Xu2 · Haonan Yu1 · Jeffrey Mark Siskind1 +Received: 18 June 2015 / Revised: 18 April 2016 / Accepted: 22 April 2016 / Published online: 21 May 2016 +© The Author(s) 2016. This article is published with open access at Springerlink.com"
+266766818dbc5a4ca1161ae2bc14c9e269ddc490,Boosting a Low-Cost Smart Home Environment with Usage and Access Control Rules,"Article +Boosting a Low-Cost Smart Home Environment with +Usage and Access Control Rules +Paolo Barsocchi * ID , Antonello Calabrò, Erina Ferro, Claudio Gennaro ID and Eda Marchetti and +Claudio Vairo +Institute of Information Science and Technologies of CNR (CNR-ISTI)-Italy, 56124 Pisa, Italy; +(A.C.); (E.F.); (C.G.); +(E.M.); (C.V.) +* Correspondence: Tel.: +39-050-315-2965 +Received: 27 April 2018; Accepted: 31 May 2018; Published: 8 June 2018"
+265af79627a3d7ccf64e9fe51c10e5268fee2aae,A Mixture of Transformed Hidden Markov Models for Elastic Motion Estimation,"A Mixture of Transformed Hidden Markov +Models for Elastic Motion Estimation +Huijun Di, Linmi Tao, and Guangyou Xu, Senior Member, IEEE"
+26af867977f90342c9648ccf7e30f94470d40a73,Joint Gender and Face Recognition System for RGB-D Images with Texture and DCT Features,"IJIRST –International Journal for Innovative Research in Science & Technology| Volume 3 | Issue 04 | September 2016 +ISSN (online): 2349-6010 +Joint Gender and Face Recognition System for +RGB-D Images with Texture and DCT Features +Jesny Antony +PG Student +Department of Computer Science & Information Systems +Federal Institute of Science and Technology, Mookkannoor +PO, Angamaly, Ernakulam, Kerala 683577, India +Prasad J. C. +Associate Professor +Department of Computer Science & Engineering +Federal Institute of Science and Technology, Mookkannoor +PO, Angamaly, Ernakulam, Kerala 683577, India"
+26c884829897b3035702800937d4d15fef7010e4,Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation,"IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x +PAPER +Facial Expression Recognition by Supervised Independent +Component Analysis using MAP Estimation +Fan CHEN +, Nonmember and Kazunori KOTANI +, Member +SUMMARY Permutation ambiguity of the classical Inde- +pendent Component Analysis (ICA) may cause problems in fea- +ture extraction for pattern classification. Especially when only a +small subset of components is derived from data, these compo- +nents may not be most distinctive for classification, because ICA +is an unsupervised method. We include a selective prior for de- +mixing coefficients into the classical ICA to alleviate the problem. +Since the prior is constructed upon the classification information +from the training data, we refer to the proposed ICA model with +selective prior as a supervised ICA (sICA). We formulated the +learning rule for sICA by taking a Maximum a Posteriori (MAP) +scheme and further derived a fixed point algorithm for learning +the de-mixing matrix. We investigate the performance of sICA"
+26ad6ceb07a1dc265d405e47a36570cb69b2ace6,Neural Correlates of Cross-Cultural Adaptation,"RESEARCH AND EXPLOR ATORY +DEVELOPMENT DEPARTMENT +REDD-2015-384 +Neural Correlates of Cross-Cultural +How to Improve the Training and Selection for +Military Personnel Involved in Cross-Cultural +Operating Under Grant #N00014-12-1-0629/113056 +Adaptation +September, 2015 +Interactions +Jonathon Kopecky +Jason Spitaletta +Mike Wolmetz +Alice Jackson +Prepared for: +Office of Naval Research"
+26437fb289cd7caeb3834361f0cc933a02267766,Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and Game-Based Development of Thinking Skills in Classroom Settings,"012 International Conference on Management and Education Innovation +IPEDR vol.37 (2012) © (2012) IACSIT Press, Singapore +Innovative Assessment Technologies: Comparing ‘Face-to-Face’ and +Game-Based Development of Thinking Skills in Classroom Settings +Gyöngyvér Molnár 1 + and András Lőrincz 2 +University of Szeged, 2 Eötvös Loránd University"
+26e570049aaedcfa420fc8c7b761bc70a195657c,Hybrid Facial Regions Extraction for Micro-expression Recognition System,"J Sign Process Syst +DOI 10.1007/s11265-017-1276-0 +Hybrid Facial Regions Extraction for Micro-expression +Recognition System +Sze-Teng Liong1,2,3 · John See4 · Raphael C.-W. Phan2 · KokSheik Wong5 · +Su-Wei Tan2 +Received: 2 February 2016 / Revised: 20 October 2016 / Accepted: 10 August 2017 +© Springer Science+Business Media, LLC 2017"
+21ef129c063bad970b309a24a6a18cbcdfb3aff5,Individual and Inter-related Action Unit Detection in Videos for Affect Recognition,"POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCESacceptée sur proposition du jury:Dr J.-M. Vesin, président du juryProf. J.-Ph. Thiran, Prof. D. Sander, directeurs de thèseProf. M. F. Valstar, rapporteurProf. H. K. Ekenel, rapporteurDr S. Marcel, rapporteurIndividual and Inter-related Action Unit Detection in Videos for Affect RecognitionTHÈSE NO 6837 (2016)ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNEPRÉSENTÉE LE 19 FÉVRIER 2016À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEURLABORATOIRE DE TRAITEMENT DES SIGNAUX 5PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE Suisse2016PARAnıl YÜCE"
+218b2c5c9d011eb4432be4728b54e39f366354c1,Enhancing Training Collections for Image Annotation: An Instance-Weighted Mixture Modeling Approach,"Enhancing Training Collections for Image +Annotation: An Instance-Weighted Mixture +Modeling Approach +Neela Sawant, Student Member, IEEE, James Z. Wang, Senior Member, IEEE, Jia Li, Senior Member, IEEE."
+21a2f67b21905ff6e0afa762937427e92dc5aa0b,Extra Facial Landmark Localization via Global Shape Reconstruction,"Hindawi +Computational Intelligence and Neuroscience +Volume 2017, Article ID 8710492, 13 pages +https://doi.org/10.1155/2017/8710492 +Research Article +Extra Facial Landmark Localization via +Global Shape Reconstruction +Shuqiu Tan, Dongyi Chen, Chenggang Guo, and Zhiqi Huang +School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, +West Hi-Tech Zone, Chengdu 611731, China +Correspondence should be addressed to Dongyi Chen; +Received 4 January 2017; Revised 26 March 2017; Accepted 4 April 2017; Published 23 April 2017 +Academic Editor: Elio Masciari +Copyright © 2017 Shuqiu Tan et al. This is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +Localizing facial landmarks is a popular topic in the field of face analysis. However, problems arose in practical applications such +s handling pose variations and partial occlusions while maintaining moderate training model size and computational efficiency +still challenges current solutions. In this paper, we present a global shape reconstruction method for locating extra facial landmarks +omparing to facial landmarks used in the training phase. In the proposed method, the reduced configuration of facial landmarks +is first decomposed into corresponding sparse coefficients. Then explicit face shape correlations are exploited to regress between"
+2162654cb02bcd10794ae7e7d610c011ce0fb51b,Joint gaze-correction and beautification of DIBR-synthesized human face via dual sparse coding,"978-1-4799-5751-4/14/$31.00 ©2014 IEEE +http://www.skype.com/ +http://www.google.com/hangouts/ +tification, sparse coding"
+21f3c5b173503185c1e02a3eb4e76e13d7e9c5bc,Rotation Invariant Real-time Face Detection and Recognition System,"m a s s a c h u s e t t s i n s t i t u t e o f +t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y +Rotation Invariant Real-time +Face Detection and +Recognition System +Purdy Ho +AI Memo 2001-010 +CBCL Memo 197 +May 31, 2001 +© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f +t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u"
+21bd9374c211749104232db33f0f71eab4df35d5,Integrating facial makeup detection into multimodal biometric user verification system,"Integrating Facial Makeup Detection Into +Multimodal Biometric User Verification System +Ekberjan Derman* +CuteSafe Technology Inc. +Gebze, Kocaeli, Turkey +Chiara Galdi, Jean-Luc Dugelay +Eurecom Digital Security Department +06410 Biot, France +{chiara.galdi,"
+214db8a5872f7be48cdb8876e0233efecdcb6061,Semantic-Aware Co-Indexing for Image Retrieval,"Semantic-aware Co-indexing for Image Retrieval +Shiliang Zhang2, Ming Yang1, Xiaoyu Wang1, Yuanqing Lin1, Qi Tian2 +NEC Laboratories America, Inc. +Dept. of CS, Univ. of Texas at San Antonio +Cupertino, CA 95014 +San Antonio, TX 78249"
+214ac8196d8061981bef271b37a279526aab5024,Face Recognition Using Smoothed High-Dimensional Representation,"Face Recognition Using Smoothed High-Dimensional +Representation +Juha Ylioinas, Juho Kannala, Abdenour Hadid, and Matti Pietik¨ainen +Center for Machine Vision Research, PO Box 4500, +FI-90014 University of Oulu, Finland"
+213a579af9e4f57f071b884aa872651372b661fd,Automatic and Efficient Human Pose Estimation for Sign Language Videos,"Int J Comput Vis +DOI 10.1007/s11263-013-0672-6 +Automatic and Efficient Human Pose Estimation for Sign +Language Videos +James Charles · Tomas Pfister · Mark Everingham · +Andrew Zisserman +Received: 4 February 2013 / Accepted: 29 October 2013 +© Springer Science+Business Media New York 2013"
+21626caa46cbf2ae9e43dbc0c8e789b3dbb420f1,Transductive VIS-NIR face matching,"978-1-4673-2533-2/12/$26.00 ©2012 IEEE +ICIP 2012"
+4d49c6cff198cccb21f4fa35fd75cbe99cfcbf27,Topological principal component analysis for face encoding and recognition,"Topological Principal Component Analysis for +face encoding and recognition +Albert Pujol , Jordi Vitri(cid:18)a, Felipe Lumbreras, +Juan J. Villanueva +Computer Vision Center and Departament d’Inform(cid:18)atica, Edi(cid:12)ci O, Universitat +Aut(cid:18)onoma de Barcelona +4da735d2ed0deeb0cae4a9d4394449275e316df2,"The rhythms of head, eyes and hands at intersections","Gothenburg, Sweden, June 19-22, 2016 +978-1-5090-1820-8/16/$31.00 ©2016 IEEE"
+4d530a4629671939d9ded1f294b0183b56a513ef,Facial Expression Classification Method Based on Pseudo Zernike Moment and Radial Basis Function Network,"International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012 +Facial Expression Classification Method Based on Pseudo +Zernike Moment and Radial Basis Function Network +Tran Binh Long, Le Hoang Thai, and Tran Hanh"
+4d2975445007405f8cdcd74b7fd1dd547066f9b8,Image and Video Processing for Affective Applications,"Image and Video Processing +for Affective Applications +Maja Pantic and George Caridakis"
+4db9e5f19366fe5d6a98ca43c1d113dac823a14d,"Are 1, 000 Features Worth A Picture? Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers","Combining Crowdsourcing and Face Recognition to Identify Civil War Soldiers +Are 1,000 Features Worth A Picture? +Vikram Mohanty, David Thames, Kurt Luther +Department of Computer Science and Center for Human-Computer Interaction +Virginia Tech, Arlington, VA, USA"
+4dd71a097e6b3cd379d8c802460667ee0cbc8463,Real-time multi-view facial landmark detector learned by the structured output SVM,"Real-time Multi-view Facial Landmark Detector +Learned by the Structured Output SVM +Michal Uˇriˇc´aˇr1, Vojtˇech Franc1, Diego Thomas2, Akihiro Sugimoto2, and V´aclav Hlav´aˇc1 +Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech +Technical University in Prague, 166 27 Prague 6, Technick´a 2 Czech Republic +National Institute of Informatics, Tokyo, Japan"
+4d7e1eb5d1afecb4e238ba05d4f7f487dff96c11,Largest center-specific margin for dimension reduction,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+4d6ad0c7b3cf74adb0507dc886993e603c863e8c,Human Activity Recognition Based on Wearable Sensor Data : A Standardization of the State-ofthe-Art,"Human Activity Recognition Based on Wearable +Sensor Data: A Standardization of the +State-of-the-Art +Artur Jord˜ao, Antonio C. Nazare Jr., Jessica Sena and William Robson Schwartz +Smart Surveillance Interest Group, Computer Science Department +Universidade Federal de Minas Gerais, Brazil +Email: {arturjordao, antonio.nazare, jessicasena,"
+4dca3d6341e1d991c902492952e726dc2a443d1c,Learning towards Minimum Hyperspherical Energy,"Learning towards Minimum Hyperspherical Energy +Weiyang Liu1,*, Rongmei Lin2,*, Zhen Liu1,*, Lixin Liu3,*, Zhiding Yu4, Bo Dai1,5, Le Song1,6 +Georgia Institute of Technology 2Emory University +South China University of Technology 4NVIDIA 5Google Brain 6Ant Financial"
+4d0ef449de476631a8d107c8ec225628a67c87f9,Face system evaluation toolkit: Recognition is harder than it seems,"© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE +must be obtained for all other uses, in any current or future media, including +reprinting/republishing this material for advertising or promotional purposes, +reating new collective works, for resale or redistribution to servers or lists, or +reuse of any copyrighted component of this work in other works. +Pre-print of article that appeared at BTAS 2010. +The published article can be accessed from: +http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5634517"
+4d47261b2f52c361c09f7ab96fcb3f5c22cafb9f,Deep multi-frame face super-resolution,"Deep multi-frame face super-resolution +Evgeniya Ustinova, Victor Lempitsky +October 17, 2017"
+4df3143922bcdf7db78eb91e6b5359d6ada004d2,The Chicago face database: A free stimulus set of faces and norming data.,"Behav Res (2015) 47:1122–1135 +DOI 10.3758/s13428-014-0532-5 +The Chicago face database: A free stimulus set of faces +nd norming data +Debbie S. Ma & Joshua Correll & Bernd Wittenbrink +Published online: 13 January 2015 +# Psychonomic Society, Inc. 2015"
+75879ab7a77318bbe506cb9df309d99205862f6c,Analysis of emotion recognition from facial expressions using spatial and transform domain methods,"Analysis Of Emotion Recognition From Facial +Expressions Using Spatial And Transform Domain +Methods +Ms. P. Suja* and Dr. Shikha Tripathi"
+75503aff70a61ff4810e85838a214be484a674ba,Improved facial expression recognition via uni-hyperplane classification,"Improved Facial Expression Recognition via Uni-Hyperplane Classification +S.W. Chew∗, S. Lucey†, P. Lucey‡, S. Sridharan∗, and J.F. Cohn‡"
+75308067ddd3c53721430d7984295838c81d4106,Rapid Facial Reactions in Response to Facial Expressions of Emotion Displayed by Real Versus Virtual Faces,"Article +Rapid Facial Reactions +in Response to Facial +Expressions of Emotion +Displayed by Real Versus +Virtual Faces +i-Perception +018 Vol. 9(4), 1–18 +! The Author(s) 2018 +DOI: 10.1177/2041669518786527 +journals.sagepub.com/home/ipe +Leonor Philip, Jean-Claude Martin and Ce´ line Clavel +LIMSI, CNRS, University of Paris-Sud, Orsay, France"
+759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,Attribute and simile classifiers for face verification,"Attribute and Simile Classifiers for Face Verification +Neeraj Kumar +Alexander C. Berg +Peter N. Belhumeur +Columbia University∗ +Shree K. Nayar"
+75859ac30f5444f0d9acfeff618444ae280d661d,Multibiometric Cryptosystems Based on Feature-Level Fusion,"Multibiometric Cryptosystems based on Feature +Level Fusion +Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
+758d7e1be64cc668c59ef33ba8882c8597406e53,"AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild","IEEE TRANSACTIONS ON AFFECTIVE COMPUTING +AffectNet: A Database for Facial Expression, +Valence, and Arousal Computing in the Wild +Ali Mollahosseini, Student Member, IEEE, Behzad Hasani, Student Member, IEEE, +nd Mohammad H. Mahoor, Senior Member, IEEE"
+7553fba5c7f73098524fbb58ca534a65f08e91e7,A Practical Approach for Determination of Human Gender & Age,"Harpreet Kaur Bhatia et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.6, June- 2014, pg. 816-824 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 3, Issue. 6, June 2014, pg.816 – 824 +RESEARCH ARTICLE +A Practical Approach for Determination +of Human Gender & Age +Harpreet Kaur Bhatia1, Ahsan Hussain2 +CSE Dept. & CSVTU University, India +CSE Dept. & CSVTU University, India"
+75249ebb85b74e8932496272f38af274fbcfd696,Face Identification in Large Galleries,"Face Identification in Large Galleries +Rafael H. Vareto, Filipe Costa, William Robson Schwartz +Smart Surveillance Interest Group, Department of Computer Science +Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
+81a142c751bf0b23315fb6717bc467aa4fdfbc92,Pairwise Trajectory Representation for Action Recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+81bfe562e42f2eab3ae117c46c2e07b3d142dade,A Hajj And Umrah Location Classification System For Video Crowded Scenes,"A Hajj And Umrah Location Classification System For Video +Crowded Scenes +Hossam M. Zawbaa† +Salah A. Aly†‡ +Adnan A. Gutub† +Center of Research Excellence in Hajj and Umrah, Umm Al-Qura University, Makkah, KSA +College of Computers and Information Systems, Umm Al-Qura University, Makkah, KSA"
+81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,Comparison of Face Recognition Neural Networks,"UNIVERSITY OF TARTU +FACULTY OF SCIENCE AND TECHNOLOGY +Institute of Computer Science +Computer Science +Zepp Uibo +Comparison of Face Recognition +Neural Networks +Bachelor's thesis (6 ECST) +Supervisor: Tambet Matiisen +Tartu 2016"
+8147ee02ec5ff3a585dddcd000974896cb2edc53,Angular Embedding: A Robust Quadratic Criterion,"Angular Embedding: +A Robust Quadratic Criterion +Stella X. Yu, Member,"
+8199803f476c12c7f6c0124d55d156b5d91314b6,The iNaturalist Species Classification and Detection Dataset,"The iNaturalist Species Classification and Detection Dataset +Grant Van Horn1 Oisin Mac Aodha1 Yang Song2 Yin Cui3 Chen Sun2 +Alex Shepard4 Hartwig Adam2 +Pietro Perona1 +Serge Belongie3 +Caltech +Google +Cornell Tech +iNaturalist"
+81b2a541d6c42679e946a5281b4b9dc603bc171c,Semi-supervised learning with committees: exploiting unlabeled data using ensemble learning algorithms,"Universit¨at Ulm | 89069 Ulm | Deutschland +Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +Institut f¨ur Neuroinformatik +Direktor: Prof. Dr. G¨unther Palm +Semi-Supervised Learning with Committees: +Exploiting Unlabeled Data Using Ensemble +Learning Algorithms +Dissertation zur Erlangung des Doktorgrades +Doktor der Naturwissenschaften (Dr. rer. nat.) +der Fakult¨at f¨ur Ingenieurwissenschaften und Informatik +der Universit¨at Ulm +vorgelegt von +Mohamed Farouk Abdel Hady +us Kairo, ¨Agypten +Ulm, Deutschland"
+8160b3b5f07deaa104769a2abb7017e9c031f1c1,Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification,"Exploiting Discriminant Information in Nonnegative +Matrix Factorization With Application +to Frontal Face Verification +Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, Ioan Buciu, and Ioannis Pitas, Senior Member, IEEE"
+814d091c973ff6033a83d4e44ab3b6a88cc1cb66,The EU-Emotion Stimulus Set: A validation study.,"Behav Res (2016) 48:567–576 +DOI 10.3758/s13428-015-0601-4 +The EU-Emotion Stimulus Set: A validation study +Helen O’Reilly 1,2 & Delia Pigat 1 & Shimrit Fridenson 5 & Steve Berggren 3,4 & Shahar Tal 5 & +Ofer Golan 5 & Sven Bölte 3,4 & Simon Baron-Cohen 1,6 & Daniel Lundqvist 3 +Published online: 30 September 2015 +# Psychonomic Society, Inc. 2015"
+816eff5e92a6326a8ab50c4c50450a6d02047b5e,fLRR: Fast Low-Rank Representation Using Frobenius Norm,"fLRR: Fast Low-Rank Representation Using +Frobenius Norm +Haixian Zhang, Zhang Yi, and Xi Peng +Low Rank Representation (LRR) intends to find the representation +with lowest-rank of a given data set, which can be formulated as a +rank minimization problem. Since the rank operator is non-convex and +discontinuous, most of the recent works use the nuclear norm as a convex +relaxation. This letter theoretically shows that under some conditions, +Frobenius-norm-based optimization problem has an unique solution that +is also a solution of the original LRR optimization problem. In other +words, it is feasible to apply Frobenius-norm as a surrogate of the +nonconvex matrix rank function. This replacement will largely reduce the +time-costs for obtaining the lowest-rank solution. Experimental results +show that our method (i.e., fast Low Rank Representation, fLRR), +performs well in terms of accuracy and computation speed in image +lustering and motion segmentation compared with nuclear-norm-based +LRR algorithm. +Introduction: Given a data set X ∈ Rm×n(m < n) composed of column +vectors, let A be a data set composed of vectors with the same dimension +s those in X. Both X and A can be considered as matrices. A linear"
+8149c30a86e1a7db4b11965fe209fe0b75446a8c,Semi-supervised multiple instance learning based domain adaptation for object detection,"Semi-Supervised Multiple Instance Learning based +Domain Adaptation for Object Detection +Siemens Corporate Research +Siemens Corporate Research +Siemens Corporate Research +Amit Kale +Bangalore +Chhaya Methani +Bangalore +{chhaya.methani, +Rahul Thota +Bangalore +rahul.thota,"
+81da427270c100241c07143885ba3051ec4a2ecb,Learning the Synthesizability of Dynamic Texture Samples,"Learning the Synthesizability of Dynamic Texture Samples∗ +Feng Yang1, Gui-Song Xia1, Dengxin Dai2, Liangpei Zhang1 +State Key Lab. LIESMARS, Wuhan University, China +{guisong.xia, fengyang, +Computer Vision Lab., ETH Zurich, Switzerland +February 6, 2018"
+86614c2d2f6ebcb9c600d4aef85fd6bf6eab6663,Benchmarks for Cloud Robotics,"Benchmarks for Cloud Robotics +Arjun Singh +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-142 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-142.html +August 12, 2016"
+86b69b3718b9350c9d2008880ce88cd035828432,Improving Face Image Extraction by Using Deep Learning Technique,"Improving Face Image Extraction by Using Deep Learning Technique +Zhiyun Xue, Sameer Antani, L. Rodney Long, Dina Demner-Fushman, George R. Thoma +National Library of Medicine, NIH, Bethesda, MD"
+86904aee566716d9bef508aa9f0255dc18be3960,Learning Anonymized Representations with Adversarial Neural Networks,"Learning Anonymized Representations with +Adversarial Neural Networks +Cl´ement Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel"
+867e709a298024a3c9777145e037e239385c0129,Analytical Representation of Undersampled Face Recognition Approach Based on Dictionary Learning and Sparse Representation,"INTERNATIONAL JOURNAL +OF PROFESSIONAL ENGINEERING STUDIES Volume VIII /Issue 2 / FEB 2017 +ANALYTICAL REPRESENTATION OF UNDERSAMPLED FACE +RECOGNITION APPROACH BASED ON DICTIONARY LEARNING +AND SPARSE REPRESENTATION +Murala Sandeep1 A.Mallikarjuna Reddy2 P.Rajashaker Reddy3 Dr. G. Vishnu murthy4 +(M.Tech)1, Assistant Professor2, Assistant Professor3, HOD of CSE Department4 +Anurag group of institutions Ghatkesar, Ranga Reddy, Hyderabad, India"
+86c053c162c08bc3fe093cc10398b9e64367a100,Cascade of forests for face alignment,"Cascade of Forests for Face Alignment +Heng Yang, Changqing Zou, Ioannis Patras"
+861802ac19653a7831b314cd751fd8e89494ab12,"Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications","Marcin Grzegorzek, Christian Theobalt, Reinhard Koch, +Andreas Kolb +Time-of-Flight and Depth Imaging. Sensors, Algorithms +nd Applications: Dagstuhl Seminar 2012 and GCPR +Workshop on Imaging New Modalities (Lecture ... Vision, +Pattern Recognition, and Graphics) +Publisher: Springer; 2013 edition +(November 8, 2013) +Language: English +Pages: 320 +ISBN: 978-3642449635 +Size: 20.46 MB +Format: PDF / ePub / Kindle +Cameras for 3D depth imaging, using +either time-of-flight (ToF) or +structured light sensors, have received +lot of attention recently and have +een improved considerably over the +last few years. The present +techniques..."
+861b12f405c464b3ffa2af7408bff0698c6c9bf0,An Effective Technique for Removal of Facial Dupilcation by SBFA,"International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 +Volume: 3 Issue: 5 +3337 - 3342 +_______________________________________________________________________________________________ +An Effective Technique for Removal of Facial Dupilcation by SBFA +Miss. Deepika B. Patil +Computer Department, +GHRCEM, +Pune, India +Dr. Ayesha Butalia +Computer Department, +GHRCEM, +Pune, India"
+86e1bdbfd13b9ed137e4c4b8b459a3980eb257f6,The Kinetics Human Action Video Dataset,"The Kinetics Human Action Video Dataset +Will Kay +Jo˜ao Carreira +Karen Simonyan +Brian Zhang +Chloe Hillier +Sudheendra Vijayanarasimhan +Fabio Viola +Tim Green +Trevor Back +Paul Natsev +Mustafa Suleyman +Andrew Zisserman"
+86b105c3619a433b6f9632adcf9b253ff98aee87,A Mutual Information based Face Clustering Algorithm for Movies,"424403677/06/$20.00 ©2006 IEEE +ICME 2006"
+72a87f509817b3369f2accd7024b2e4b30a1f588,Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints,"Fault diagnosis of a railway device using semi-supervised +independent factor analysis with mixing constraints +Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin +To cite this version: +Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin. Fault diagnosis of a railway device +using semi-supervised independent factor analysis with mixing constraints. Pattern Analysis and +Applications, Springer Verlag, 2012, 15 (3), pp.313-326. <hal-00750589> +HAL Id: hal-00750589 +https://hal.archives-ouvertes.fr/hal-00750589 +Submitted on 11 Nov 2012 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de"
+72a00953f3f60a792de019a948174bf680cd6c9f,Understanding the role of facial asymmetry in human face identification,"Stat Comput (2007) 17:57–70 +DOI 10.1007/s11222-006-9004-9 +Understanding the role of facial asymmetry in human face +identification +Sinjini Mitra · Nicole A. Lazar · Yanxi Liu +Received: May 2005 / Accepted: September 2006 / Published online: 30 January 2007 +C(cid:1) Springer Science + Business Media, LLC 2007"
+72ecaff8b57023f9fbf8b5b2588f3c7019010ca7,Facial Keypoints Detection,"Facial Keypoints Detection +Shenghao Shi"
+72591a75469321074b072daff80477d8911c3af3,Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction,"Group Component Analysis for Multi-block Data: +Common and Individual Feature Extraction +Guoxu Zhou, Andrzej Cichocki Fellow, IEEE, Yu Zhang, and Danilo Mandic Fellow, IEEE"
+729a9d35bc291cc7117b924219bef89a864ce62c,Recognizing Material Properties from Images,"Recognizing Material Properties from Images +Gabriel Schwartz and Ko Nishino, Senior Member, IEEE"
+721d9c387ed382988fce6fa864446fed5fb23173,Assessing Facial Expressions in Virtual Reality Environments,
+72c0c8deb9ea6f59fde4f5043bff67366b86bd66,Age progression in Human Faces : A Survey,"Age progression in Human Faces : A Survey +Narayanan Ramanathan, Rama Chellappa and Soma Biswas"
+72f4aaf7e2e3f215cd8762ce283988220f182a5b,Active illumination and appearance model for face alignment,"Turk J Elec Eng & Comp Sci, Vol.18, No.4, 2010, c(cid:2) T ¨UB˙ITAK +doi:10.3906/elk-0906-48 +Active illumination and appearance model for face +lignment +Fatih KAHRAMAN1, Muhittin G ¨OKMEN 2, Sune DARKNER3, Rasmus LARSEN3 +Institute of Informatics, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY +Department of Computer Engineering, ˙Istanbul Technical University, ˙Istanbul, 34469, TURKEY +DTU Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, DENMARK +e-mail: +e-mail: +e-mail: {sda,"
+72a55554b816b66a865a1ec1b4a5b17b5d3ba784,Real-Time Face Identification via CNN and Boosted Hashing Forest,"Real-Time Face Identification +via CNN +nd Boosted Hashing Forest +Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita Kostromov +State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia +IEEE Computer Society Workshop on Biometrics +In conjunction with CVPR 2016, June 26, 2016"
+72bf9c5787d7ff56a1697a3389f11d14654b4fcf,Robust Face Recognition Using Symmetric Shape-from-Shading,"RobustFaceRecognitionUsing +SymmetricShape-from-Shading +W.Zhao +RamaChellappa +CenterforAutomationResearchand +ElectricalandComputerEngineeringDepartment +UniversityofMaryland +CollegePark,MD +ThesupportoftheO(cid:14)ceofNavalResearchunderGrantN +4414a328466db1e8ab9651bf4e0f9f1fe1a163e4,Weighted voting of sparse representation classifiers for facial expression recognition,"© EURASIP, 2010 ISSN 2076-1465 +8th European Signal Processing Conference (EUSIPCO-2010) +INTRODUCTION"
+4439746eeb7c7328beba3f3ef47dc67fbb52bcb3,YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST,"YASAMAN HEYDARZADEH at al: AN EFFICIENT FACE DETECTION METHOD USING ADABOOST . . . +An Efficient Face Detection Method Using Adaboost and Facial Parts +Yasaman Heydarzadeh, Abolfazl Toroghi Haghighat +Computer, IT and Electronic department +Azad University of Qazvin +Tehran, Iran +qiau.ac.ir ,"
+446a99fdedd5bb32d4970842b3ce0fc4f5e5fa03,A Pose-Adaptive Constrained Local Model for Accurate Head Pose Tracking,"A Pose-Adaptive Constrained Local Model For +Accurate Head Pose Tracking +Lucas Zamuner +Eikeo +1 rue Leon Jouhaux, +F-75010, Paris, France +Kevin Bailly +Sorbonne Universit´es +UPMC Univ Paris 06 +CNRS UMR 7222, ISIR +F-75005, Paris, France +Erwan Bigorgne +Eikeo +1 rue Leon Jouhaux, +F-75010, Paris, France"
+44b1399e8569a29eed0d22d88767b1891dbcf987,Learning Multi-modal Latent Attributes,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Learning Multi-modal Latent Attributes +Yanwei Fu, Timothy M. Hospedales, Tao Xiang and Shaogang Gong"
+446dc1413e1cfaee0030dc74a3cee49a47386355,Recent Advances in Zero-shot Recognition,"Recent Advances in Zero-shot Recognition +Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang Xue, Leonid Sigal, and Shaogang Gong"
+44a3ec27f92c344a15deb8e5dc3a5b3797505c06,A Taxonomy of Part and Attribute Discovery Techniques,"A Taxonomy of Part and Attribute Discovery +Techniques +Subhransu Maji"
+44dd150b9020b2253107b4a4af3644f0a51718a3,An Analysis of the Sensitivity of Active Shape Models to Initialization When Applied to Automatic Facial Landmarking,"An Analysis of the Sensitivity of Active Shape +Models to Initialization when Applied to Automatic +Facial Landmarking +Keshav Seshadri, Student Member, IEEE and Marios Savvides, Member, IEEE"
+447d8893a4bdc29fa1214e53499ffe67b28a6db5,Electronic Transport in Quantum Confined Systems,"THÈSEPour obtenir le titre deDOCTEUR DE L’UNIVERSITÉSpécialitéSCIENCES DES MATÉRIAUXParMaxime BERTHEElectronic transport in quantum confined systemsSoutenue le 11 décembre 2007 devant la commission d’examen composée de:B. DJAFARI-ROUHANIS. ROUSSETD. RODITCHEVF. CHARRAD. STIÉVENARDH. SHIGEKAWAB. GRANDIDIERPrésidentRapporteurRapporteurExaminateurDirecteur de thèseCo-directeur de thèseCo-directeur de thèsel’Université des Sciences et Technologies de LilleEcole Doctorale Sciences de la Matière, du Rayonnement et de l’EnvironnementPrésentée à"
+44f65e3304bdde4be04823fd7ca770c1c05c2cef,On the use of phase of the Fourier transform for face recognition under variations in illumination,"SIViP +DOI 10.1007/s11760-009-0125-4 +ORIGINAL PAPER +On the use of phase of the Fourier transform for face recognition +under variations in illumination +Anil Kumar Sao · B. Yegnanarayana +Received: 17 November 2008 / Revised: 20 February 2009 / Accepted: 7 July 2009 +© Springer-Verlag London Limited 2009"
+447a5e1caf847952d2bb526ab2fb75898466d1bc,Learning Non-linear Transform with Discrim- Inative and Minimum Information Loss Priors,"Under review as a conference paper at ICLR 2018 +LEARNING NON-LINEAR TRANSFORM WITH DISCRIM- +INATIVE AND MINIMUM INFORMATION LOSS PRIORS +Anonymous authors +Paper under double-blind review"
+2a7bca56e2539c8cf1ae4e9da521879b7951872d,Exploiting Unrelated Tasks in Multi-Task Learning,"Exploiting Unrelated Tasks in Multi-Task Learning +Anonymous Author 1 +Unknown Institution 1 +Anonymous Author 2 +Unknown Institution 2 +Anonymous Author 3 +Unknown Institution 3"
+2a0efb1c17fbe78470acf01e4601a75735a805cc,Illumination-Insensitive Face Recognition Using Symmetric Shape-from-Shading,"Illumination-InsensitiveFaceRecognitionUsing +SymmetricShape-from-Shading +WenYiZhao +RamaChellappa +CenterforAutomationResearch +UniversityofMaryland,CollegePark,MD +2aec012bb6dcaacd9d7a1e45bc5204fac7b63b3c,Robust Registration and Geometry Estimation from Unstructured Facial Scans,"Robust Registration and Geometry Estimation from Unstructured +Facial Scans +Maxim Bazik1 and Daniel Crispell2"
+2ae139b247057c02cda352f6661f46f7feb38e45,Combining modality specific deep neural networks for emotion recognition in video,"Combining Modality Specific Deep Neural Networks for +Emotion Recognition in Video +Samira Ebrahimi Kahou1, Christopher Pal1, Xavier Bouthillier2, Pierre Froumenty1, +Ça˘glar Gülçehre2,∗ , Roland Memisevic2, Pascal Vincent2, Aaron Courville2, & Yoshua Bengio2 +École Polytechique de Montréal, Université de Montréal, Montréal, Canada +Laboratoire d’Informatique des Systèmes Adaptatifs, Université de Montréal, Montréal, Canada +{samira.ebrahimi-kahou, christopher.pal, +{bouthilx, gulcehrc, memisevr, vincentp, courvila,"
+2ad0ee93d029e790ebb50574f403a09854b65b7e,Acquiring linear subspaces for face recognition under variable lighting,"Acquiring Linear Subspaces for Face +Recognition under Variable Lighting +Kuang-Chih Lee, Student Member, IEEE, Jeffrey Ho, Member, IEEE, and +David Kriegman, Senior Member, IEEE"
+2ff9618ea521df3c916abc88e7c85220d9f0ff06,Facial Tic Detection Using Computer Vision,"Facial Tic Detection Using Computer Vision +Christopher D. Leveille +Advisor: Prof. Aaron Cass +March 20, 2014"
+2fda461869f84a9298a0e93ef280f79b9fb76f94,OpenFace: An open source facial behavior analysis toolkit,"OpenFace: an open source facial behavior analysis toolkit +Tadas Baltruˇsaitis +Peter Robinson +Louis-Philippe Morency"
+2ffcd35d9b8867a42be23978079f5f24be8d3e35,Satellite based Image Processing using Data mining,"ISSN XXXX XXXX © 2018 IJESC +Research Article Volume 8 Issue No.6 +Satellite based Image Processing using Data mining +E.Malleshwari1, S.Nirmal Kumar2, J.Dhinesh3 +Professor1, Assistant Professor2, PG Scholar3 +Department of Information Technology1, 2, Master of Computer Applications3 +Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India"
+2f7e9b45255c9029d2ae97bbb004d6072e70fa79,cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey,"Noname manuscript No. +(will be inserted by the editor) +vpaper.challenge in 2015 +A review of CVPR2015 and DeepSurvey +Hirokatsu Kataoka · Yudai Miyashita · Tomoaki Yamabe · Soma +Shirakabe · Shin’ichi Sato · Hironori Hoshino · Ryo Kato · Kaori Abe · +Takaaki Imanari · Naomichi Kobayashi · Shinichiro Morita · Akio +Nakamura +Received: date / Accepted: date"
+2f489bd9bfb61a7d7165a2f05c03377a00072477,Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning,"JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST +Structured Semi-supervised Forest for +Facial Landmarks Localization with Face +Mask Reasoning +Department of Computer Science +The Univ. of Hong Kong, HK +School of EECS +Queen Mary Univ. of London, UK +Xuhui Jia1 +Heng Yang2 +Angran Lin1 +Kwok-Ping Chan1 +Ioannis Patras2"
+2f59f28a1ca3130d413e8e8b59fb30d50ac020e2,Children Gender Recognition Under Unconstrained Conditions Based on Contextual Information,"Children Gender Recognition Under Unconstrained +Conditions Based on Contextual Information +Riccardo Satta, Javier Galbally and Laurent Beslay +Joint Research Centre, European Commission, Ispra, Italy +Email:"
+2f78e471d2ec66057b7b718fab8bfd8e5183d8f4,An Investigation of a New Social Networks Contact Suggestion Based on Face Recognition Algorithm,"SOFTWARE ENGINEERING +VOLUME: 14 | NUMBER: 5 | 2016 | DECEMBER +An Investigation of a New Social Networks +Contact Suggestion Based on Face Recognition +Algorithm +Ivan ZELINKA1,2, Petr SALOUN 2, Jakub STONAWSKI 2, Adam ONDREJKA2 +Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics +Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Ho Chi Minh City, Vietman +Department of Computer Science, Faculty of Electrical Engineering and Computer Science, +VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic +DOI: 10.15598/aeee.v14i5.1116"
+2f88d3189723669f957d83ad542ac5c2341c37a5,Attribute-correlated local regions for deep relative attributes learning,"Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 9/13/2018 +Terms of Use: https://www.spiedigitallibrary.org/terms-of-use +Attribute-correlatedlocalregionsfordeeprelativeattributeslearningFenZhangXiangweiKongZeJiaFenZhang,XiangweiKong,ZeJia,“Attribute-correlatedlocalregionsfordeeprelativeattributeslearning,”J.Electron.Imaging27(4),043021(2018),doi:10.1117/1.JEI.27.4.043021."
+2fda164863a06a92d3a910b96eef927269aeb730,Names and faces in the news,"Names and Faces in the News +Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire, +Ryan White, Yee-Whye Teh, Erik Learned-Miller and D.A. Forsyth +Computer Science Division +U.C. Berkeley +Berkeley, CA 94720"
+2f8ef26bfecaaa102a55b752860dbb92f1a11dc6,A Graph Based Approach to Speaker Retrieval in Talk Show Videos with Transcript-Based Supervision,"A Graph Based Approach to Speaker Retrieval in Talk +Show Videos with Transcript-Based Supervision +Yina Han 1, Guizhong Liu, Hichem Sahbi, Gérard Chollet"
+2f17f6c460e02bd105dcbf14c9b73f34c5fb59bd,Robust Face Recognition Using the Deep C2D-CNN Model Based on Decision-Level Fusion,"Article +Robust Face Recognition Using the Deep C2D-CNN +Model Based on Decision-Level Fusion +Jing Li 1,2,†, Tao Qiu 3,†, Chang Wen 3,*, Kai Xie 1,2 and Fang-Qing Wen 1,2 +School of Electronic and Information, Yangtze University, Jingzhou 434023, China; +(J.L.); (K.X.); (F-Q.W.) +National Demonstration Center for Experimental Electrical and Electronic Education, Yangtze University, +Jingzhou 434023, China +School of Computer Science, Yangtze University, Jingzhou 434023, China; +* Correspondence: Tel.: +86-136-9731-5482 +These authors contributed equally to this work. +Received: 20 May 2018; Accepted: 25 June 2018; Published: 28 June 2018"
+2f184c6e2c31d23ef083c881de36b9b9b6997ce9,Polichotomies on Imbalanced Domains by One-per-Class Compensated Reconstruction Rule,"Polichotomies on Imbalanced Domains +y One-per-Class Compensated Reconstruction Rule +Roberto D’Ambrosio and Paolo Soda +Integrated Research Centre, Universit´a Campus Bio-Medico of Rome, Rome, Italy"
+2fa1fc116731b2b5bb97f06d2ac494cb2b2fe475,A novel approach to personal photo album representation and management,"A novel approach to personal photo album representation +nd management +Edoardo Ardizzone, Marco La Cascia, and Filippo Vella +Universit`a di Palermo - Dipartimento di Ingegneria Informatica +Viale delle Scienze, 90128, Palermo, Italy"
+2f882ceaaf110046e63123b495212d7d4e99f33d,High Frequency Component Compensation based Super-Resolution Algorithm for Face Video Enhancement,"High Frequency Component Compensation based Super-resolution +Algorithm for Face Video Enhancement +Junwen Wu, Mohan Trivedi, Bhaskar Rao +CVRR Lab, UC San Diego, La Jolla, CA 92093, USA"
+2f95340b01cfa48b867f336185e89acfedfa4d92,Face expression recognition with a 2-channel Convolutional Neural Network,"Face Expression Recognition with a 2-Channel +Convolutional Neural Network +Dennis Hamester, Pablo Barros, Stefan Wermter +University of Hamburg — Department of Informatics +Vogt-K¨olln-Straße 30, 22527 Hamburg, Germany +http://www.informatik.uni-hamburg.de/WTM/"
+2faa09413162b0a7629db93fbb27eda5aeac54ca,Quantifying how lighting and focus affect face recognition performance,"NISTIR 7674 +Quantifying How Lighting and Focus +Affect Face Recognition Performance +Phillips, P. J. +Beveridge, J. R. +Draper, B. +Bolme, D. +Givens, G. H. +Lui, Y. M."
+433bb1eaa3751519c2e5f17f47f8532322abbe6d,Face Recognition,
+43bb20ccfda7b111850743a80a5929792cb031f0,Discrimination of Computer Generated versus Natural Human Faces,"PhD Dissertation +International Doctorate School in Information and +Communication Technologies +DISI - University of Trento +Discrimination of Computer Generated +versus Natural Human Faces +Duc-Tien Dang-Nguyen +Advisor: +Prof. Giulia Boato +Universit`a degli Studi di Trento +Co-Advisor: +Prof. Francesco G. B. De Natale +Universit`a degli Studi di Trento +February 2014"
+439ac8edfa1e7cbc65474cab544a5b8c4c65d5db,Face authentication with undercontrolled pose and illumination,"SIViP (2011) 5:401–413 +DOI 10.1007/s11760-011-0244-6 +ORIGINAL PAPER +Face authentication with undercontrolled pose and illumination +Maria De Marsico · Michele Nappi · Daniel Riccio +Received: 15 September 2010 / Revised: 14 December 2010 / Accepted: 17 February 2011 / Published online: 7 August 2011 +© Springer-Verlag London Limited 2011"
+43f6953804964037ff91a4f45d5b5d2f8edfe4d5,Multi-feature fusion in advanced robotics applications,"Multi-Feature Fusion in Advanced Robotics Applications +Zahid Riaz, Christoph Mayer, Michael Beetz, +Bernd Radig +Institut für Informatik +Technische Universität München +D-85748 Garching, Germany"
+439ec47725ae4a3660e509d32828599a495559bf,Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation and Evaluation,"Facial Expressions Tracking and Recognition: Database Protocols for Systems Validation +nd Evaluation"
+43a03cbe8b704f31046a5aba05153eb3d6de4142,Towards Robust Face Recognition from Video,"Towards Robust Face Recognition from Video +Jeffery R. Price +Timothy F. Gee +Image Science and Machine Vision Group +Oak Ridge National Laboratory +Oak Ridge, TN 37831-6010 +{pricejr,"
+434bf475addfb580707208618f99c8be0c55cf95,DeXpression: Deep Convolutional Neural Network for Expression Recognition,"UNDER CONSIDERATION FOR PUBLICATION IN PATTERN RECOGNITION LETTERS +DeXpression: Deep Convolutional Neural +Network for Expression Recognition +Peter Burkert∗‡, Felix Trier∗‡, Muhammad Zeshan Afzal†‡, +Andreas Dengel†‡ and Marcus Liwicki‡ +German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany +University of Kaiserslautern, Gottlieb-Daimler-Str., Kaiserslautern 67663, Germany"
+43836d69f00275ba2f3d135f0ca9cf88d1209a87,Effective hyperparameter optimization using Nelder-Mead method in deep learning,"Ozaki et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:20 +DOI 10.1186/s41074-017-0030-7 +IPSJ Transactions on Computer +Vision and Applications +RESEARCH PAPER +Open Access +Effective hyperparameter optimization +using Nelder-Mead method in deep learning +Yoshihiko Ozaki1,2, Masaki Yano1,2 and Masaki Onishi1,2*"
+4362368dae29cc66a47114d5ffeaf0534bf0159c,"Performance Analysis of FDA Based Face Recognition Using Correlation, ANN and SVM","UACEE International Journal of Artificial Intelligence and Neural Networks ISSN:- 2250-3749 (online) +Performance Analysis of FDA Based Face +Recognition Using Correlation, ANN and SVM +Mahesh Goyani +Akash Dhorajiya +Ronak Paun +Department of Computer Engineering +Department of Computer Engineering +Department of Computer Engineering +GCET, Sardar Patel University +GCET, Sardar Patel University +GCET, Sardar Patel University +Anand, INDIA +Anand, INDIA +Anand, INDIA +e- mail : +e- mail : +e- mail :"
+4350bb360797a4ade4faf616ed2ac8e27315968e,Edge Suppression by Gradient Field Transformation Using Cross-Projection Tensors,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Edge Suppression by Gradient Field +Transformation using Cross-Projection +Tensors +Amit Agrawal, Ramesh Raskar, Rama Chellappa +TR2006-058 +June 2006"
+43476cbf2a109f8381b398e7a1ddd794b29a9a16,A Practical Transfer Learning Algorithm for Face Verification,"A Practical Transfer Learning Algorithm for Face Verification +Xudong Cao +David Wipf +Fang Wen +Genquan Duan +Jian Sun"
+4353d0dcaf450743e9eddd2aeedee4d01a1be78b,Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition,"Learning Discriminative LBP-Histogram Bins +for Facial Expression Recognition +Caifeng Shan and Tommaso Gritti +Philips Research, High Tech Campus 36, Eindhoven 5656 AE, The Netherlands +{caifeng.shan,"
+43b8b5eeb4869372ef896ca2d1e6010552cdc4d4,Large-scale Supervised Hierarchical Feature Learning for Face Recognition,"Large-scale Supervised Hierarchical Feature Learning for Face Recognition +Jianguo Li, Yurong Chen +Intel Labs China"
+43ae4867d058453e9abce760ff0f9427789bab3a,Graph Embedded Nonparametric Mutual Information for Supervised Dimensionality Reduction,"Graph Embedded Nonparametric Mutual +Information For Supervised +Dimensionality Reduction +Dimitrios Bouzas, Nikolaos Arvanitopoulos, Student Member, IEEE, and Anastasios Tefas, Member, IEEE"
+438b88fe40a6f9b5dcf08e64e27b2719940995e0,Building a classification cascade for visual identification from one example,"Building a Classi(cid:2)cation Cascade for Visual Identi(cid:2)cation from One Example +Andras Ferencz +Erik G. Learned-Miller +Computer Science, U.C. Berkeley +Computer Science, UMass Amherst +Jitendra Malik +Computer Science, U.C. Berkeley"
+43fb9efa79178cb6f481387b7c6e9b0ca3761da8,Mixture of parts revisited: Expressive part interactions for Pose Estimation,"Mixture of Parts Revisited: Expressive Part Interactions for Pose Estimation +Anoop R Katti +IIT Madras +Chennai, India +Anurag Mittal +IIT Madras +Chennai, India"
+43ed518e466ff13118385f4e5d039ae4d1c000fb,Classification of Occluded Objects Using Fast Recurrent Processing,"Classification of Occluded Objects using Fast Recurrent +Processing +Ozgur Yilmaza,∗ +Turgut Ozal University, Department of Computer Engineering, Ankara Turkey"
+43d7d0d0d0e2d6cf5355e60c4fe5b715f0a1101a,Playlist Generation using Facial Expression Analysis and Task Extraction,"Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl +Data: 04/05/2018 16:53:32 +U M CS"
+88c6d4b73bd36e7b5a72f3c61536c8c93f8d2320,Image patch modeling in a light field,"Image patch modeling in a light field +Zeyu Li +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2014-81 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-81.html +May 15, 2014"
+889bc64c7da8e2a85ae6af320ae10e05c4cd6ce7,Using Support Vector Machines to Enhance the Performance of Bayesian Face Recognition,"Using Support Vector Machines to Enhance the +Performance of Bayesian Face Recognition +Zhifeng Li, Member, IEEE, and Xiaoou Tang, Senior Member, IEEE"
+88a898592b4c1dfd707f04f09ca58ec769a257de,MobileFace: 3D Face Reconstruction with Efficient CNN Regression,"MobileFace: 3D Face Reconstruction +with Efficient CNN Regression +Nikolai Chinaev1, Alexander Chigorin1, and Ivan Laptev1,2 +VisionLabs, Amsterdam, The Netherlands +{n.chinaev, +Inria, WILLOW, Departement d’Informatique de l’Ecole Normale Superieure, PSL +Research University, ENS/INRIA/CNRS UMR 8548, Paris, France"
+8812aef6bdac056b00525f0642702ecf8d57790b,A Unified Features Approach to Human Face Image Analysis and Interpretation,"A Unified Features Approach to Human Face Image +Analysis and Interpretation +Zahid Riaz, Suat Gedikli, Micheal Beetz and Bernd Radig +Department of Informatics, +Technische Universit¨at M¨unchen +85748 Garching, Germany"
+881066ec43bcf7476479a4146568414e419da804,From Traditional to Modern: Domain Adaptation for Action Classification in Short Social Video Clips,"From Traditional to Modern : Domain Adaptation for +Action Classification in Short Social Video Clips +Aditya Singh, Saurabh Saini, Rajvi Shah, and P J Narayanan +Center for Visual Information Technology, IIIT Hyderabad, India"
+8813368c6c14552539137aba2b6f8c55f561b75f,Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition,"Trunk-Branch Ensemble Convolutional Neural +Networks for Video-based Face Recognition +Changxing Ding, Student Member, IEEE, Dacheng Tao, Fellow, IEEE"
+88e2574af83db7281c2064e5194c7d5dfa649846,A Robust Shape Reconstruction Method for Facial Feature Point Detection,"Hindawi Publishing Corporation +Computational Intelligence and Neuroscience +Volume 2017, Article ID 4579398, 11 pages +http://dx.doi.org/10.1155/2017/4579398 +Research Article +A Robust Shape Reconstruction Method for Facial Feature +Point Detection +Shuqiu Tan, Dongyi Chen, Chenggang Guo, and Zhiqi Huang +School of Automation Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, +West Hi-Tech Zone, Chengdu 611731, China +Correspondence should be addressed to Shuqiu Tan; and Dongyi Chen; +Received 24 October 2016; Revised 18 January 2017; Accepted 30 January 2017; Published 19 February 2017 +Academic Editor: Ezequiel L´opez-Rubio +Copyright © 2017 Shuqiu Tan et al. This is an open access article distributed under the Creative Commons Attribution License, +which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. +Facial feature point detection has been receiving great research advances in recent years. Numerous methods have been developed +nd applied in practical face analysis systems. However, it is still a quite challenging task because of the large variability in expression +nd gestures and the existence of occlusions in real-world photo shoot. In this paper, we present a robust sparse reconstruction +method for the face alignment problems. Instead of a direct regression between the feature space and the shape space, the concept +of shape increment reconstruction is introduced. Moreover, a set of coupled overcomplete dictionaries termed the shape increment"
+883006c0f76cf348a5f8339bfcb649a3e46e2690,Weakly supervised pain localization using multiple instance learning,"Weakly Supervised Pain Localization using Multiple Instance Learning +Karan Sikka, Abhinav Dhall and Marian Bartlett"
+88850b73449973a34fefe491f8836293fc208580,XBeats-An Emotion Based Music Player,"www.ijaret.org Vol. 2, Issue I, Jan. 2014 +ISSN 2320-6802 +INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN +ENGINEERING AND TECHNOLOGY +WINGS TO YOUR THOUGHTS….. +XBeats-An Emotion Based Music Player +Sayali Chavan1, Ekta Malkan2, Dipali Bhatt3, Prakash H. Paranjape4 +U.G. Student, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056. +U.G. Student, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056. +U.G. Student, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056. +Assistant Professor, Dept. of Computer Engineering, +D.J. Sanghvi College of Engineering, +Vile Parle (W), Mumbai-400056."
+88f2952535df5859c8f60026f08b71976f8e19ec,A neural network framework for face recognition by elastic bunch graph matching,"A neural network framework for face +recognition by elastic bunch graph matching +Francisco A. Pujol López, Higinio Mora Mora*, José A. Girona Selva"
+8818b12aa0ff3bf0b20f9caa250395cbea0e8769,Fashion Conversation Data on Instagram_ICWSM 2017,"Fashion Conversation Data on Instagram +Yu-I Ha∗ +Sejeong Kwon∗ +Meeyoung Cha∗ +Jungseock Joo† +Graduate School of Culture Technology, KAIST, South Korea +Department of Communication Studies, UCLA, USA"
+887b7676a4efde616d13f38fcbfe322a791d1413,Deep Temporal Appearance-Geometry Network for Facial Expression Recognition,"Deep Temporal Appearance-Geometry Network +for Facial Expression Recognition +Injae Lee‡ Chunghyun Ahn‡ +Junmo Kim† +Heechul Jung† Sihaeng Lee† Sunjeong Park† +Korea Advanced Institute of Science and Technology† +Electronics and Telecommunications Research Institute‡ +{heechul, haeng, sunny0414, {ninja,"
+8878871ec2763f912102eeaff4b5a2febfc22fbe,Human Action Recognition in Unconstrained Videos by Explicit Motion Modeling,"Human Action Recognition in Unconstrained +Videos by Explicit Motion Modeling +Yu-Gang Jiang, Qi Dai, Wei Liu, Xiangyang Xue, and Chong-Wah Ngo"
+8855d6161d7e5b35f6c59e15b94db9fa5bbf2912,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD COGNITIVE REORGANIZATION AND PROTECTIVE MECHANISMS IN PREGNANCY AND THE POSTPARTUM PERIOD By,COGNITION IN PREGNANCY AND THE POSTPARTUM PERIOD
+88bee9733e96958444dc9e6bef191baba4fa6efa,Extending Face Identification to Open-Set Face Recognition,"Extending Face Identification to +Open-Set Face Recognition +Cassio E. dos Santos Jr., William Robson Schwartz +Department of Computer Science +Universidade Federal de Minas Gerais +Belo Horizonte, Brazil"
+88fd4d1d0f4014f2b2e343c83d8c7e46d198cc79,Joint action recognition and summarization by sub-modular inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+9fa1be81d31fba07a1bde0275b9d35c528f4d0b8,Identifying Persons by Pictorial and Contextual Cues,"Identifying Persons by Pictorial and +Contextual Cues +Nicholas Leonard Pi¨el +Thesis submitted for the degree of Master of Science +Supervisor: +Prof. dr. Theo Gevers +April 2009"
+9f094341bea610a10346f072bf865cb550a1f1c1,Recognition and volume estimation of food intake using a mobile device,"Recognition and Volume Estimation of Food Intake using a Mobile Device +Manika Puri Zhiwei Zhu Qian Yu Ajay Divakaran Harpreet Sawhney +Sarnoff Corporation +01 Washington Rd, +Princeton, NJ, 08540 +{mpuri, zzhu, qyu, adivakaran,"
+6bcfcc4a0af2bf2729b5bc38f500cfaab2e653f0,Facial Expression Recognition in the Wild Using Improved Dense Trajectories and Fisher Vector Encoding,"Facial expression recognition in the wild using improved dense trajectories and +Fisher vector encoding +Sadaf Afshar1 +Albert Ali Salah2 +Computational Science and Engineering Program, Bo˘gazic¸i University, Istanbul, Turkey +Department of Computer Engineering, Bo˘gazic¸i University, Istanbul, Turkey +{sadaf.afshar,"
+6b089627a4ea24bff193611e68390d1a4c3b3644,Cross-Pollination of Normalization Techniques From Speaker to Face Authentication Using Gaussian Mixture Models,"CROSS-POLLINATION OF NORMALISATION +TECHNIQUES FROM SPEAKER TO FACE +AUTHENTICATION USING GAUSSIAN +MIXTURE MODELS +Roy Wallace Mitchell McLaren Chris McCool +Sébastien Marcel +Idiap-RR-03-2012 +JANUARY 2012 +Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny +T +41 27 721 77 11 F +41 27 721 77 12 www.idiap.ch"
+6be0ab66c31023762e26d309a4a9d0096f72a7f0,Enhance Visual Recognition under Adverse Conditions via Deep Networks,"Enhance Visual Recognition under Adverse +Conditions via Deep Networks +Ding Liu, Student Member, IEEE, Bowen Cheng, Zhangyang Wang, Member, IEEE, +Haichao Zhang, Member, IEEE, and Thomas S. Huang, Life Fellow, IEEE"
+6b18628cc8829c3bf851ea3ee3bcff8543391819,Face recognition based on subset selection via metric learning on manifold,"Hong Shao, Shuang Chen, Jie-yi Zhao, Wen-cheng Cui, Tian-shu Yu, 2015. +Face recognition based on subset selection via metric learning on manifold. +058. [doi:10.1631/FITEE.1500085] +Face recognition based on subset +selection via metric learning on manifold +Key words: Face recognition, Sparse representation, Manifold structure, +Metric learning, Subset selection +Contact: Shuang Chen +E-mail: +ORCID: http://orcid.org/0000-0001-7441-4749 +Front Inform Technol & Electron Eng"
+6b6493551017819a3d1f12bbf922a8a8c8cc2a03,Pose Normalization for Local Appearance-Based Face Recognition,"Pose Normalization for Local Appearance-Based +Face Recognition +Hua Gao, Hazım Kemal Ekenel, and Rainer Stiefelhagen +Computer Science Department, Universit¨at Karlsruhe (TH) +Am Fasanengarten 5, Karlsruhe 76131, Germany +http://isl.ira.uka.de/cvhci"
+0728f788107122d76dfafa4fb0c45c20dcf523ca,The Best of BothWorlds: Combining Data-Independent and Data-Driven Approaches for Action Recognition,"The Best of Both Worlds: Combining Data-independent and Data-driven +Approaches for Action Recognition +Zhenzhong Lan, Dezhong Yao, Ming Lin, Shoou-I Yu, Alexander Hauptmann +{lanzhzh, minglin, iyu,"
+071099a4c3eed464388c8d1bff7b0538c7322422,Facial expression recognition in the wild using rich deep features,"FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES +Abubakrelsedik Karali, Ahmad Bassiouny and Motaz El-Saban +Microsoft Advanced Technology labs, Microsoft Technology and Research, Cairo, Egypt"
+07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1,Large scale unconstrained open set face database,"Large Scale Unconstrained Open Set Face Database +Archana Sapkota +University of Colorado at Colorado Springs +2Terrance E. Boult +Securics Inc, Colorado Springs"
+070ab604c3ced2c23cce2259043446c5ee342fd6,An Active Illumination and Appearance (AIA) Model for Face Alignment,"AnActiveIlluminationandAppearance(AIA)ModelforFaceAlignment +FatihKahraman,MuhittinGokmen +IstanbulTechnicalUniversity, +ComputerScienceDept.,Turkey +{fkahraman, +InformaticsandMathematicalModelling,Denmark +SuneDarkner,RasmusLarsen +TechnicalUniversityofDenmark"
+071135dfb342bff884ddb9a4d8af0e70055c22a1,Temporal 3D ConvNets: New Architecture and Transfer Learning for Video Classification,"New Architecture and Transfer Learning for Video Classification +Temporal 3D ConvNets: +Ali Diba1,4,(cid:63), Mohsen Fayyaz2,(cid:63), Vivek Sharma3, Amir Hossein Karami4, Mohammad Mahdi Arzani4, +Rahman Yousefzadeh4, Luc Van Gool1,4 +ESAT-PSI, KU Leuven, 2University of Bonn, 3CV:HCI, KIT, Karlsruhe, 4Sensifai"
+0754e769eb613fd3968b6e267a301728f52358be,Towards a Watson that sees: Language-guided action recognition for robots,"Towards a Watson That Sees: Language-Guided Action Recognition for +Robots +Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller and Yiannis Aloimonos"
+07c83f544d0604e6bab5d741b0bf9a3621d133da,Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition,"Learning Spatio-Temporal Features with 3D Residual Networks +for Action Recognition +Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{kensho.hara, hirokatsu.kataoka,"
+0717b47ab84b848de37dbefd81cf8bf512b544ac,Robust Face Recognition and Tagging in Visual Surveillance System,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +International Conference on Humming Bird ( 01st March 2014) +RESEARCH ARTICLE +OPEN ACCESS +Robust Face Recognition and Tagging in Visual Surveillance +Kavitha MS 1, Siva Pradeepa S2 +System +Kavitha MS Author is currently pursuing M.E(CSE)in VINS Christian college of Engineering,Nagercoil. +Siva pradeepa,Assistant Lecturer in VINS Christian college of Engineering"
+0750a816858b601c0dbf4cfb68066ae7e788f05d,CosFace: Large Margin Cosine Loss for Deep Face Recognition,"CosFace: Large Margin Cosine Loss for Deep Face Recognition +Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, +Zhifeng Li∗, and Wei Liu∗ +Tencent AI Lab"
+078d507703fc0ac4bf8ca758be101e75ea286c80,Large - Scale Content Based Face Image Retrieval using Attribute Enhanced,"ISSN: 2321-8169 +International Journal on Recent and Innovation Trends in Computing and Communication +Volume: 3 Issue: 8 +5287 - 5296 +________________________________________________________________________________________________________________________________ +Large- Scale Content Based Face Image Retrieval using Attribute Enhanced +Sparse Codewords. +Chaitra R, +Mtech Digital Coomunication Engineering +Acharya Institute Of Technology +Bangalore"
+0716e1ad868f5f446b1c367721418ffadfcf0519,Interactively Guiding Semi-Supervised Clustering via Attribute-Based Explanations,"Interactively Guiding Semi-Supervised +Clustering via Attribute-Based Explanations +Shrenik Lad and Devi Parikh +Virginia Tech, Blacksburg, VA, USA"
+0726a45eb129eed88915aa5a86df2af16a09bcc1,Introspective perception: Learning to predict failures in vision systems,"Introspective Perception: Learning to Predict Failures in Vision Systems +Shreyansh Daftry, Sam Zeng, J. Andrew Bagnell and Martial Hebert"
+0742d051caebf8a5d452c03c5d55dfb02f84baab,Real-time geometric motion blur for a deforming polygonal mesh,"Real-Time Geometric Motion Blur for a Deforming Polygonal Mesh +Nathan Jones +Formerly: Texas A&M University +Currently: The Software Group"
+38d56ddcea01ce99902dd75ad162213cbe4eaab7,Sense Beauty by Label Distribution Learning,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
+389334e9a0d84bc54bcd5b94b4ce4c5d9d6a2f26,Facial parameter extraction system based on active contours,"FACIAL PARAMETER EXTRACTION SYSTEM BASED ON ACTIVE CONTOURS +Montse Pardàs, Marcos Losada +Universitat Politècnica de Catalunya, Barcelona, Spain"
+38f7f3c72e582e116f6f079ec9ae738894785b96,A New Technique for Face Matching after Plastic Surgery in Forensics,"IJARCCE +ISSN (Online) 2278-1021 +ISSN (Print) 2319 5940 +International Journal of Advanced Research in Computer and Communication Engineering +Vol. 4, Issue 11, November 2015 +A New Technique for Face Matching after +Plastic Surgery in Forensics +Anju Joseph1, Nilu Tressa Thomas2, Neethu C. Sekhar3 +Student, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 1,2 +Asst. Professor, Dept. of CSE, Amal Jyothi College of Engineering, Kanjirappally, India 3 +I. INTRODUCTION +Facial recognition is one of the most important task that +forensic examiners execute +their +investigation. This work focuses on analysing the effect of +plastic surgery in face recognition algorithms. It is +imperative for the subsequent facial recognition systems to +e capable of addressing this significant issue and +ccordingly there is a need for more research in this +important area."
+38679355d4cfea3a791005f211aa16e76b2eaa8d,Evolutionary Cross-Domain Discriminative Hessian Eigenmaps,"Title +Evolutionary cross-domain discriminative Hessian Eigenmaps +Author(s) +Si, S; Tao, D; Chan, KP +Citation +Issued Date +http://hdl.handle.net/10722/127357 +Rights +This work is licensed under a Creative Commons Attribution- +NonCommercial-NoDerivatives 4.0 International License.; ©2010 +IEEE. Personal use of this material is permitted. However, +permission to reprint/republish this material for advertising or +promotional purposes or for creating new collective works for +resale or redistribution to servers or lists, or to reuse any +opyrighted component of this work in other works must be +obtained from the IEEE."
+38682c7b19831e5d4f58e9bce9716f9c2c29c4e7,Movie Character Identification Using Graph Matching Algorithm,"International Journal of Computer Trends and Technology (IJCTT) – Volume 18 Number 5 – Dec 2014 +Movie Character Identification Using Graph Matching +Algorithm +Shaik. Kartheek.*1, A.Srinivasa Reddy*2 +M.Tech Scholar, Dept of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India. +Associate Professor, Department of CSE, QISCET, ONGOLE, Dist: Prakasam, AP, India"
+3803b91e784922a2dacd6a18f61b3100629df932,Temporal Multimodal Fusion for Video Emotion Classification in the Wild,"Temporal Multimodal Fusion +for Video Emotion Classification in the Wild +Valentin Vielzeuf∗ +Orange Labs +Cesson-Sévigné, France +Stéphane Pateux +Orange Labs +Cesson-Sévigné, France +Frédéric Jurie +Normandie Univ., UNICAEN, +ENSICAEN, CNRS +Caen, France"
+38eea307445a39ee7902c1ecf8cea7e3dcb7c0e7,Multi-distance Support Matrix Machines,"Noname manuscript No. +(will be inserted by the editor) +Multi-distance Support Matrix Machine +Yunfei Ye1 +· Dong Han1 +Received: date / Accepted: date"
+384f972c81c52fe36849600728865ea50a0c4670,"Multi-Fold Gabor, PCA and ICA Filter Convolution Descriptor for Face Recognition","Multi-Fold Gabor, PCA and ICA Filter +Convolution Descriptor for Face Recognition +Cheng Yaw Low, Andrew Beng Jin Teoh, Senior Member, IEEE, Cong Jie Ng"
+38f1fac3ed0fd054e009515e7bbc72cdd4cf801a,Finding Person Relations in Image Data of the Internet Archive,"Finding Person Relations in Image Data of the +Internet Archive +Eric M¨uller-Budack1,2[0000−0002−6802−1241], +Kader Pustu-Iren1[0000−0003−2891−9783], Sebastian Diering1, and +Ralph Ewerth1,2[0000−0003−0918−6297] +Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany +L3S Research Center, Leibniz Universit¨at Hannover, Germany"
+380d5138cadccc9b5b91c707ba0a9220b0f39271,Deep Imbalanced Learning for Face Recognition and Attribute Prediction,"Deep Imbalanced Learning for Face Recognition +nd Attribute Prediction +Chen Huang, Yining Li, Chen Change Loy, Senior Member, IEEE and Xiaoou Tang, Fellow, IEEE"
+38215c283ce4bf2c8edd597ab21410f99dc9b094,The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent,"The SEMAINE Database: Annotated Multimodal Records of +Emotionally Colored Conversations between a Person and a Limited +Agent +McKeown, G., Valstar, M., Cowie, R., Pantic, M., & Schröder, M. (2012). The SEMAINE Database: Annotated +Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent. IEEE +Transactions on Affective Computing, 3(1), 5-17. DOI: 10.1109/T-AFFC.2011.20 +Published in: +Document Version: +Peer reviewed version +Queen's University Belfast - Research Portal: +Link to publication record in Queen's University Belfast Research Portal +General rights +Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other +opyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated +with these rights. +Take down policy +The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to +ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the +Research Portal that you believe breaches copyright or violates any law, please contact +Download date:05. Nov. 2018"
+38183fe28add21693729ddeaf3c8a90a2d5caea3,Scale-Aware Face Detection,"Scale-Aware Face Detection +Zekun Hao1, Yu Liu1, Hongwei Qin2, Junjie Yan2, Xiu Li2, Xiaolin Hu2 +SenseTime, 2Tsinghua University +{haozekun,"
+3802da31c6d33d71b839e260f4022ec4fbd88e2d,Deep Attributes for One-Shot Face Recognition,"Deep Attributes for One-Shot Face Recognition +Aishwarya Jadhav1,3, Vinay P. Namboodiri2, and K. S. Venkatesh 3 +Xerox Research Center India, 2Department of Computer Science, +Department of Electrical Engineering, IIT Kanpur"
+00fb2836068042c19b5197d0999e8e93b920eb9c,Genetic Algorithm for Weight Optimization in Descriptor based Face Recognition Methods,
+0077cd8f97cafd2b389783858a6e4ab7887b0b6b,Face Image Reconstruction from Deep Templates,"MAI et al.: ON THE RECONSTRUCTION OF DEEP FACE TEMPLATES +On the Reconstruction of Deep Face Templates +Guangcan Mai, Kai Cao, Pong C. Yuen, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
+00214fe1319113e6649435cae386019235474789,Face Recognition using Distortion Models,"Bachelorarbeit im Fach Informatik +Face Recognition using +Distortion Models +Mathematik, Informatik und Naturwissenschaften der +RHEINISCH-WESTFÄLISCHEN TECHNISCHEN HOCHSCHULE AACHEN +Der Fakultät für +Lehrstuhl für Informatik VI +Prof. Dr.-Ing. H. Ney +vorgelegt von: +Harald Hanselmann +Matrikelnummer 252400 +Gutachter: +Prof. Dr.-Ing. H. Ney +Prof. Dr. B. Leibe +Betreuer: +Dipl.-Inform. Philippe Dreuw +September 2009"
+004e3292885463f97a70e1f511dc476289451ed5,Quadruplet-Wise Image Similarity Learning,"Quadruplet-wise Image Similarity Learning +Marc T. Law +Nicolas Thome +Matthieu Cord +LIP6, UPMC - Sorbonne University, Paris, France +{Marc.Law, Nicolas.Thome,"
+00f0ed04defec19b4843b5b16557d8d0ccc5bb42,Modeling Spatial and Temporal Cues for Multi-label Facial Action Unit Detection,
+0037bff7be6d463785d4e5b2671da664cd7ef746,Multiple Instance Metric Learning from Automatically Labeled Bags of Faces,"Author manuscript, published in ""European Conference on Computer Vision (ECCV '10) 6311 (2010) 634--647"" +DOI : 10.1007/978-3-642-15549-9_46"
+00d9d88bb1bdca35663946a76d807fff3dc1c15f,Subjects and Their Objects: Localizing Interactees for a Person-Centric View of Importance,"Subjects and Their Objects: Localizing Interactees for a +Person-Centric View of Importance +Chao-Yeh Chen · Kristen Grauman"
+00a3cfe3ce35a7ffb8214f6db15366f4e79761e3,Using Kinect for real-time emotion recognition via facial expressions,"Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen, 2015. Using +Kinect for real-time emotion recognition via facial expressions. Frontiers of +Information Technology & Electronic Engineering, 16(4):272-282. +[doi:10.1631/FITEE.1400209] +Using Kinect for real-time emotion +recognition via facial expressions +Key words: Kinect, Emotion recognition, Facial expression, Real-time +lassification, Fusion algorithm, Support vector machine (SVM) +Contact: Qi-rong Mao +E-mail: +ORCID: http://orcid.org/0000-0002-5021-9057 +Front Inform Technol & Electron Eng"
+004a1bb1a2c93b4f379468cca6b6cfc6d8746cc4,Balanced k-Means and Min-Cut Clustering,"Balanced k-Means and Min-Cut Clustering +Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang"
+00d94b35ffd6cabfb70b9a1d220b6823ae9154ee,Discriminative Bayesian Dictionary Learning for Classification,"Discriminative Bayesian Dictionary Learning +for Classification +Naveed Akhtar, Faisal Shafait, and Ajmal Mian"
+006f283a50d325840433f4cf6d15876d475bba77,Preserving Structure in Model-Free Tracking,"Preserving Structure in Model-Free Tracking +Lu Zhang and Laurens van der Maaten"
+00d931eccab929be33caea207547989ae7c1ef39,The Natural Input Memory Model,"The Natural Input Memory Model +Joyca P.W. Lacroix +Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands +Department of Psychology, Universiteit van Amsterdam, Roeterstraat 15, 1018 WB Amsterdam, The Netherlands +Jaap M.J. Murre +Department of Computer Science, IKAT, Universiteit Maastricht, St. Jacobsstraat 6, 6211 LB Maastricht, The Netherlands +Eric O. Postma +H. Jaap van den Herik"
+0052de4885916cf6949a6904d02336e59d98544c,Generalized Low Rank Approximations of Matrices,"005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. +DOI: 10.1007/s10994-005-3561-6 +Generalized Low Rank Approximations of Matrices +JIEPING YE +Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, +MN 55455, USA +Editor: +Peter Flach +Published online: 12 August 2005"
+6e198f6cc4199e1c4173944e3df6f39a302cf787,MORPH-II: Inconsistencies and Cleaning Whitepaper,"MORPH-II: Inconsistencies and Cleaning Whitepaper +Participants: G. Bingham, B. Yip, M. Ferguson, and C. Nansalo +Mentors: C. Chen, Y. Wang, and T. Kling +NSF-REU Site at UNC Wilmington, Summer 2017"
+6eba25166fe461dc388805cc2452d49f5d1cdadd,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV 1 Learning Grimaces by Watching TV","Pages 122.1-122.12 +DOI: https://dx.doi.org/10.5244/C.30.122"
+6e8a81d452a91f5231443ac83e4c0a0db4579974,Illumination robust face representation based on intrinsic geometrical information,"Illumination robust face representation based on intrinsic geometrical +information +Soyel, H; Ozmen, B; McOwan, PW +This is a pre-copyedited, author-produced PDF of an article accepted for publication in IET +Conference on Image Processing (IPR 2012). The version of record is available +http://ieeexplore.ieee.org/document/6290632/?arnumber=6290632&tag=1 +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/16147 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact"
+6ecd4025b7b5f4894c990614a9a65e3a1ac347b2,Automatic Naming of Character using Video Streaming for Face Recognition with Graph Matching,"International Journal on Recent and Innovation Trends in Computing and Communication +ISSN: 2321-8169 +Volume: 2 Issue: 5 +1275– 1281 +_______________________________________________________________________________________________ +Automatic Naming of Character using Video Streaming for Face +Recognition with Graph Matching +Nivedita.R.Pandey +Ranjan.P.Dahake +PG Student at MET’s IOE Bhujbal Knowledge City, +PG Student at MET’s IOE Bhujbal Knowledge City, +Nasik, Maharashtra, India, +Nasik, Maharashtra, India,"
+6e9a8a34ab5b7cdc12ea52d94e3462225af2c32c,Fusing Aligned and Non-aligned Face Information for Automatic Affect Recognition in the Wild: A Deep Learning Approach,"Fusing Aligned and Non-Aligned Face Information +for Automatic Affect Recognition in the Wild: A Deep Learning Approach +Bo-Kyeong Kim, Suh-Yeon Dong, Jihyeon Roh, Geonmin Kim, Soo-Young Lee +Computational NeuroSystems Laboratory (CNSL) +Korea Advanced Institute of Science and Technology (KAIST) +{bokyeong1015, {rohleejh, gmkim90,"
+6e3a181bf388dd503c83dc324561701b19d37df1,Finding a low-rank basis in a matrix subspace,"Finding a low-rank basis in a matrix subspace +Yuji Nakatsukasa · Tasuku Soma · +Andr´e Uschmajew"
+6ef1996563835b4dfb7fda1d14abe01c8bd24a05,Nonparametric Part Transfer for Fine-Grained Recognition,"Nonparametric Part Transfer for Fine-grained Recognition +Christoph G¨oring, Erik Rodner, Alexander Freytag, and Joachim Denzler∗ +Computer Vision Group, Friedrich Schiller University Jena +www.inf-cv.uni-jena.de"
+6e8c3b7d25e6530a631ea01fbbb93ac1e8b69d2f,"Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution","Deep Episodic Memory: Encoding, Recalling, and Predicting +Episodic Experiences for Robot Action Execution +Jonas Rothfuss∗†, Fabio Ferreira∗†, Eren Erdal Aksoy ‡, You Zhou† and Tamim Asfour†"
+6e911227e893d0eecb363015754824bf4366bdb7,Wasserstein Divergence for GANs,"Wasserstein Divergence for GANs +Jiqing Wu1, Zhiwu Huang1, Janine Thoma1, Dinesh Acharya1, and +Luc Van Gool1,2 +Computer Vision Lab, ETH Zurich, Switzerland +VISICS, KU Leuven, Belgium"
+6ee8a94ccba10062172e5b31ee097c846821a822,How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis,"Submitted 3/13; Revised 10/13; Published 12/13 +How to Solve Classification and Regression Problems on +High-Dimensional Data with a Supervised +Extension of Slow Feature Analysis +Alberto N. Escalante-B. +Laurenz Wiskott +Institut f¨ur Neuroinformatik +Ruhr-Universit¨at Bochum +Bochum D-44801, Germany +Editor: David Dunson"
+6e379f2d34e14efd85ae51875a4fa7d7ae63a662,A New Multi-modal Biometric System Based on Fingerprint and Finger Vein Recognition,"A NEW MULTI-MODAL BIOMETRIC SYSTEM +BASED ON FINGERPRINT AND FINGER +VEIN RECOGNITION +Naveed AHMED +Master's Thesis +Department of Software Engineering +Advisor: Prof. Dr. Asaf VAROL +JULY-2014"
+6e0a05d87b3cc7e16b4b2870ca24cf5e806c0a94,Random Graphs for Structure Discovery in High-dimensional Data,"RANDOM GRAPHS FOR STRUCTURE +DISCOVERY IN HIGH-DIMENSIONAL DATA +Jos¶e Ant¶onio O. Costa +A dissertation submitted in partial fulflllment +of the requirements for the degree of +Doctor of Philosophy +(Electrical Engineering: Systems) +in The University of Michigan +Doctoral Committee: +Professor Alfred O. Hero III, Chair +Professor Jefirey A. Fessler +Professor Susan A. Murphy +Professor David L. Neuhofi"
+6e1802874ead801a7e1072aa870681aa2f555f35,Exploring Feature Descritors for Face Recognition,"424407281/07/$20.00 ©2007 IEEE +I 629 +ICASSP 2007 +*22+),)164,7+616DAIK??AIIB=B=?AHA?CEJE=CHEJDCHA=JOHAEAI.EIDAHB=?A -*/ 4A?AJO?=*E=HO2=JJAH*22+),)"
+6ed22b934e382c6f72402747d51aa50994cfd97b,Customized expression recognition for performance-driven cutout character animation,"Customized Expression Recognition for Performance-Driven +Cutout Character Animation +Xiang Yu† +NEC Laboratories America +Jianchao Yang‡ Wilmot Li§ +Snapchat"
+6e93fd7400585f5df57b5343699cb7cda20cfcc2,Comparing a novel model based on the transferable belief model with humans during the recognition of partially occluded facial expressions.,"http://journalofvision.org/9/2/22/ +Comparing a novel model based on the transferable +elief model with humans during the recognition of +partially occluded facial expressions +Zakia Hammal +Martin Arguin +Frédéric Gosselin +Département de Psychologie, Université de Montréal, +Canada +Département de Psychologie, Université de Montréal, +Canada +Département de Psychologie, Université de Montréal, +Canada +Humans recognize basic facial expressions effortlessly. Yet, despite a considerable amount of research, this task remains +elusive for computer vision systems. Here, we compared the behavior of one of the best computer models of facial +expression recognition (Z. Hammal, L. Couvreur, A. Caplier, & M. Rombaut, 2007) with the behavior of human observers +during the M. Smith, G. Cottrell, F. Gosselin, and P. G. Schyns (2005) facial expression recognition task performed on +stimuli randomly sampled using Gaussian apertures. The modelVwhich we had to significantly modify in order to give the +bility to deal with partially occluded stimuliVclassifies the six basic facial expressions (Happiness, Fear, Sadness, +Surprise, Anger, and Disgust) plus Neutral from static images based on the permanent facial feature deformations and the"
+9ab463d117219ed51f602ff0ddbd3414217e3166,Weighted Transmedia Relevance Feedback for Image Retrieval and Auto-annotation,"Weighted Transmedia +Relevance Feedback for +Image Retrieval and +Auto-annotation +Thomas Mensink, Jakob Verbeek, Gabriela Csurka +TECHNICAL +REPORT +N° 0415 +December 2011 +Project-Teams LEAR - INRIA +nd TVPA - XRCE"
+9ac82909d76b4c902e5dde5838130de6ce838c16,Recognizing Facial Expressions Automatically from Video,"Recognizing Facial Expressions Automatically +from Video +Caifeng Shan and Ralph Braspenning +Introduction +Facial expressions, resulting from movements of the facial muscles, are the face +hanges in response to a person’s internal emotional states, intentions, or social +ommunications. There is a considerable history associated with the study on fa- +ial expressions. Darwin (1872) was the first to describe in details the specific fa- +ial expressions associated with emotions in animals and humans, who argued that +ll mammals show emotions reliably in their faces. Since that, facial expression +nalysis has been a area of great research interest for behavioral scientists (Ekman, +Friesen, and Hager, 2002). Psychological studies (Mehrabian, 1968; Ambady and +Rosenthal, 1992) suggest that facial expressions, as the main mode for non-verbal +ommunication, play a vital role in human face-to-face communication. For illus- +tration, we show some examples of facial expressions in Fig. 1. +Computer recognition of facial expressions has many important applications in +intelligent human-computer interaction, computer animation, surveillance and se- +urity, medical diagnosis, law enforcement, and awareness systems (Shan, 2007). +Therefore, it has been an active research topic in multiple disciplines such as psy- +hology, cognitive science, human-computer interaction, and pattern recognition."
+9ac15845defcd0d6b611ecd609c740d41f0c341d,Robust Color-based Vision for Mobile Robots,"Copyright +Juhyun Lee"
+9af1cf562377b307580ca214ecd2c556e20df000,International Journal of Advanced Studies in Computer Science and Engineering,"Feb. 28 +International Journal of Advanced Studies in Computer Science and Engineering +IJASCSE, Volume 4, Issue 2, 2015 +Video-Based Facial Expression Recognition +Using Local Directional Binary Pattern +Sahar Hooshmand, Ali Jamali Avilaq, Amir Hossein Rezaie +Electrical Engineering Dept., AmirKabir Univarsity of Technology +Tehran, Iran"
+9a23a0402ae68cc6ea2fe0092b6ec2d40f667adb,High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs,"High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs +Ting-Chun Wang1 Ming-Yu Liu1 +Jun-Yan Zhu2 Andrew Tao1 +Jan Kautz1 Bryan Catanzaro1 +NVIDIA Corporation +UC Berkeley +Figure 1: We propose a generative adversarial framework for synthesizing 2048 × 1024 images from semantic label maps +(lower left corner in (a)). Compared to previous work [5], our results express more natural textures and details. (b) We can +hange labels in the original label map to create new scenes, like replacing trees with buildings. (c) Our framework also +llows a user to edit the appearance of individual objects in the scene, e.g. changing the color of a car or the texture of a road. +Please visit our website for more side-by-side comparisons as well as interactive editing demos."
+9a7858eda9b40b16002c6003b6db19828f94a6c6,Mooney face classification and prediction by learning across tone,"MOONEY FACE CLASSIFICATION AND PREDICTION BY LEARNING ACROSS TONE +Tsung-Wei Ke(cid:63)† +Stella X. Yu(cid:63)† +David Whitney(cid:63) +(cid:63) UC Berkeley / †ICSI"
+9a276c72acdb83660557489114a494b86a39f6ff,Emotion Classification through Lower Facial Expressions using Adaptive Support Vector Machines,"Emotion Classification through Lower Facial Expressions using Adaptive +Support Vector Machines +Porawat Visutsak +Department of Information Technology, Faculty of Industrial Technology and Management, +King Mongkut’s University of Technology North Bangkok,"
+9a42c519f0aaa68debbe9df00b090ca446d25bc4,Face Recognition via Centralized Coordinate Learning,"Face Recognition via Centralized Coordinate +Learning +Xianbiao Qi, Lei Zhang"
+9aad8e52aff12bd822f0011e6ef85dfc22fe8466,Temporal-Spatial Mapping for Action Recognition,"Temporal-Spatial Mapping for Action Recognition +Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jingyu Yang, and Xiaoyan Sun"
+363ca0a3f908859b1b55c2ff77cc900957653748,Local Binary Patterns and Linear Programming using Facial Expression,"International Journal of Computer Trends and Technology (IJCTT) – volume 1 Issue 3 Number 4 – Aug 2011 +Local Binary Patterns and Linear Programming using +Facial Expression +Ms.P.Jennifer +#MCA Department, Bharath Institute of Science and Technology ++B.Tech (C.S.E), Bharath University , Chennai – 73. +Dr. A. Muthu kumaravel +#MCA Department, Bharath Institute of Science and Technology ++B.Tech (C.S.E), Bharath University , Chennai – 73."
+36939e6a365e9db904d81325212177c9e9e76c54,"Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race","Assessing the Accuracy of Four Popular Face Recognition Tools for +Inferring Gender, Age, and Race +Soon-Gyo Jung, Jisun An, Haewoon Kwak, Joni Salminen, Bernard J. Jansen +Qatar Computing Research Institute, HBKU +HBKU Research Complex, Doha, P.O. Box 34110, Qatar"
+3646b42511a6a0df5470408bc9a7a69bb3c5d742,Detection of Facial Parts based on ABLATA,"International Journal of Computer Applications (0975 – 8887) +Applications of Computers and Electronics for the Welfare of Rural Masses (ACEWRM) 2015 +Detection of Facial Parts based on ABLATA +Siddhartha Choubey +Shri Shankaracharya +Technical Campus, Bhilai +Vikas Singh +Shri Shankaracharya +Technical Campus, Bhilai +Abha Choubey +Shri Shankaracharya +Technical Campus, Bhilai"
+36fe39ed69a5c7ff9650fd5f4fe950b5880760b0,Tracking von Gesichtsmimik mit Hilfe von Gitterstrukturen zur Klassifikation von schmerzrelevanten Action Units,"Tracking von Gesichtsmimik +mit Hilfe von Gitterstrukturen +zur Klassifikation von schmerzrelevanten Action +Units +Christine Barthold1, Anton Papst1, Thomas Wittenberg1 +Christian K¨ublbeck1, Stefan Lautenbacher2, Ute Schmid2, Sven Friedl1,3 +Fraunhofer-Institut f¨ur Integrierte Schaltungen IIS, Erlangen, +Otto-Friedrich-Universit¨at Bamberg, 3Universit¨atsklinkum Erlangen +Kurzfassung. In der Schmerzforschung werden schmerzrelevante Mi- +mikbewegungen von Probanden mittels des Facial Action Coding System +klassifiziert. Die manuelle Klassifikation hierbei ist aufw¨andig und eine +utomatische (Vor-)klassifikation k¨onnte den diagnostischen Wert dieser +Analysen erh¨ohen sowie den klinischen Workflow unterst¨utzen. Der hier +vorgestellte regelbasierte Ansatz erm¨oglicht eine automatische Klassifika- +tion ohne große Trainingsmengen vorklassifizierter Daten. Das Verfahren +erkennt und verfolgt Mimikbewegungen, unterst¨utzt durch ein Gitter, +und ordnet diese Bewegungen bestimmten Gesichtsarealen zu. Mit die- +sem Wissen kann aus den Bewegungen auf die zugeh¨origen Action Units +geschlossen werden. +Einleitung"
+36fc4120fc0638b97c23f97b53e2184107c52233,Introducing Celebrities in an Images using HAAR Cascade algorithm,"National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013) +Proceedings published by International Journal of Computer Applications® (IJCA) +Introducing Celebrities in an Images using HAAR +Cascade algorithm +Jaya M. Jadhav +Deipali V. Gore +Asst. Professor +Rashmi R. Tundalwar +PES Modern College of Engg. +PES Modern College of Engg. +PES Modern College of Engg. +Shivaji Nagar, Pune +Shivaji Nagar, Pune +Shivaji Nagar, Pune"
+36ce0b68a01b4c96af6ad8c26e55e5a30446f360,Facial expression recognition based on a mlp neural network using constructive training algorithm,"Multimed Tools Appl +DOI 10.1007/s11042-014-2322-6 +Facial expression recognition based on a mlp neural +network using constructive training algorithm +Hayet Boughrara · Mohamed Chtourou · +Chokri Ben Amar · Liming Chen +Received: 5 February 2014 / Revised: 22 August 2014 / Accepted: 13 October 2014 +© Springer Science+Business Media New York 2014"
+3674f3597bbca3ce05e4423611d871d09882043b,Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions,"ISSN 1796-2048 +Volume 7, Number 4, August 2012 +Contents +Special Issue: Multimedia Contents Security in Social Networks Applications +Guest Editors: Zhiyong Zhang and Muthucumaru Maheswaran +Guest Editorial +Zhiyong Zhang and Muthucumaru Maheswaran +SPECIAL ISSUE PAPERS +DRTEMBB: Dynamic Recommendation Trust Evaluation Model Based on Bidding +Gang Wang and Xiao-lin Gui +Block-Based Parallel Intra Prediction Scheme for HEVC +Jie Jiang, Baolong, Wei Mo, and Kefeng Fan +Optimized LSB Matching Steganography Based on Fisher Information +Yi-feng Sun, Dan-mei Niu, Guang-ming Tang, and Zhan-zhan Gao +A Novel Robust Zero-Watermarking Scheme Based on Discrete Wavelet Transform +Yu Yang, Min Lei, Huaqun Liu, Yajian Zhou, and Qun Luo +Stego Key Estimation in LSB Steganography +Jing Liu and Guangming Tang +REGULAR PAPERS +Facial Expression Spacial Charts for Describing Dynamic Diversity of Facial Expressions"
+365866dc937529c3079a962408bffaa9b87c1f06,Facial Feature Expression Based Approach for Human Face Recognition: A Review,"IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May 2014. +www.ijiset.com +ISSN 2348 – 7968 +Facial Feature Expression Based Approach for Human Face +Recognition: A Review +Jageshvar K. Keche1, Mahendra P. Dhore2 +Department of Computer Science, SSESA, Science College, Congress Nagar, Nagpur, (MS)-India, +Department of Electronics & Computer Science, RTM Nagpur University, Campus Nagpur, (MS)-India. +required +extraction of"
+362a70b6e7d55a777feb7b9fc8bc4d40a57cde8c,A partial least squares based ranker for fast and accurate age estimation,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+3630324c2af04fd90f8668f9ee9709604fe980fd,Image Classification With Tailored Fine-Grained Dictionaries,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2607345, IEEE +Transactions on Circuits and Systems for Video Technology +Image Classification with Tailored Fine-Grained +Dictionaries +Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Zechao Li, Yu-Gang Jiang and Shuicheng Yan"
+36cf96fe11a2c1ea4d999a7f86ffef6eea7b5958,RGB-D Face Recognition With Texture and Attribute Features,"RGB-D Face Recognition with Texture and +Attribute Features +Gaurav Goswami, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, and Richa Singh, Senior +Member, IEEE"
+36018404263b9bb44d1fddaddd9ee9af9d46e560,Occluded Face Recognition by Using Gabor Features,"OCCLUDED FACE RECOGNITION BY USING GABOR +FEATURES +Burcu Kepenekci 1,2, F. Boray Tek 1,2, Gozde Bozdagi Akar 1 +Department of Electrical And Electronics Engineering, METU, Ankara, Turkey +7h%ł7$.(cid:3)%ł/7(1(cid:15)(cid:3)$QNDUD(cid:15)(cid:3)7XUNH\"
+366595171c9f4696ec5eef7c3686114fd3f116ad,Algorithms and Representations for Visual Recognition,"Algorithms and Representations for Visual +Recognition +Subhransu Maji +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2012-53 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-53.html +May 1, 2012"
+3634b4dd263c0f330245c086ce646c9bb748cd6b,Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images,"Temporal Localization of Fine-Grained Actions in Videos +y Domain Transfer from Web Images +Chen Sun* Sanketh Shetty† Rahul Sukthankar† Ram Nevatia* +*University of Southern California +Google, Inc."
+5c6de2d9f93b90034f07860ae485a2accf529285,Compensating for pose and illumination in unconstrained periocular biometrics,"Int. J. Biometrics, Vol. X, No. Y, xxxx +Compensating for pose and illumination in +unconstrained periocular biometrics +Chandrashekhar N. Padole and +Hugo Proença* +Department of Computer Science, +IT – Instituto de Telecomunicações, +University of Beira Interior, +6200-Covilhã, Portugal +Fax: +351-275-319899 +E-mail: +E-mail: +*Corresponding author"
+5cbe1445d683d605b31377881ac8540e1d17adf0,On 3D face reconstruction via cascaded regression in shape space,"On 3D Face Reconstruction via Cascaded Regression in Shape Space +Feng Liu, Dan Zeng, Jing Li, Qijun Zhao +College of Computer Science, Sichuan University, Chengdu, China"
+5c2e264d6ac253693469bd190f323622c457ca05,Improving large-scale face image retrieval using multi-level features,"978-1-4799-2341-0/13/$31.00 ©2013 IEEE +ICIP 2013"
+5c5e1f367e8768a9fb0f1b2f9dbfa060a22e75c0,Reference Face Graph for Face Recognition,"Reference Face Graph for Face Recognition +Mehran Kafai, Member, IEEE, Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
+5c35ac04260e281141b3aaa7bbb147032c887f0c,Face Detection and Tracking Control with Omni Car,"Face Detection and Tracking Control with Omni Car +Jheng-Hao Chen, Tung-Yu Wu +CS 231A Final Report +June 31, 2016"
+5c435c4bc9c9667f968f891e207d241c3e45757a,"""How old are you?"" : Age Estimation with Tensors of Binary Gaussian Receptive Maps","RUIZ-HERNANDEZ, CROWLEY, LUX: HOW OLD ARE YOU? +""How old are you?"" : Age Estimation with +Tensors of Binary Gaussian Receptive Maps +John A. Ruiz-Hernandez +James L. Crowley +Augustin Lux +INRIA Grenoble Rhones-Alpes +Research Center and Laboratoire +d’Informatique de Grenoble (LIG) +655 avenue de l’Europe +8 334 Saint Ismier Cedex, France"
+5c02bd53c0a6eb361972e8a4df60cdb30c6e3930,Multimedia stimuli databases usage patterns: a survey report,"Multimedia stimuli databases usage patterns: a +survey report +M. Horvat1, S. Popović1 and K. Ćosić1 +University of Zagreb, Faculty of Electrical Engineering and Computing +Department of Electric Machines, Drives and Automation +Zagreb, Croatia"
+5c717afc5a9a8ccb1767d87b79851de8d3016294,A novel eye region based privacy protection scheme,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012"
+096eb8b4b977aaf274c271058feff14c99d46af3,Multi-observation visual recognition via joint dynamic sparse representation,"REPORT DOCUMENTATION PAGE +Form Approved OMB NO. 0704-0188 +including +for reviewing +information, +this collection of +information +is estimated +to average 1 hour per response, +the data needed, and completing and reviewing +this collection of +instructions, +The public reporting burden +Send comments +searching existing data sources, gathering and maintaining +to Washington +regarding +this burden estimate or any other aspect of +Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. +Headquarters Services, Directorate"
+09137e3c267a3414314d1e7e4b0e3a4cae801f45,Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN,"Noname manuscript No. +(will be inserted by the editor) +Two Birds with One Stone: Transforming and Generating +Facial Images with Iterative GAN +Dan Ma · Bin Liu · Zhao Kang · Jiayu Zhou · Jianke Zhu · Zenglin Xu +Received: date / Accepted: date"
+09926ed62511c340f4540b5bc53cf2480e8063f8,Tubelet Detector for Spatio-Temporal Action Localization,"Action Tubelet Detector for Spatio-Temporal Action Localization +Vicky Kalogeiton1,2 +Philippe Weinzaepfel3 +Vittorio Ferrari2 +Cordelia Schmid1"
+097340d3ac939ce181c829afb6b6faff946cdce0,Adding New Tasks to a Single Network with Weight Trasformations using Binary Masks,"Adding New Tasks to a Single Network with +Weight Transformations using Binary Masks +Massimiliano Mancini1,2, Elisa Ricci2,3, Barbara Caputo1,4, Samuel Rota Bul`o5 +Sapienza University of Rome, 2Fondazione Bruno Kessler,3University of Trento, +Italian Institute of Technology, 5Mapillary Research"
+09718bf335b926907ded5cb4c94784fd20e5ccd8,"Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble","Recognizing Partially Occluded, Expression Variant +Faces From Single Training Image per Person +With SOM and Soft k-NN Ensemble +Xiaoyang Tan, Songcan Chen, Zhi-Hua Zhou, Member, IEEE, and Fuyan Zhang"
+0903bb001c263e3c9a40f430116d1e629eaa616f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +An Empirical Study of Context in Object Detection +Anonymous CVPR submission +Paper ID 987"
+09df62fd17d3d833ea6b5a52a232fc052d4da3f5,Mejora de Contraste y Compensación en Cambios de la Iluminación,"ISSN: 1405-5546 +Instituto Politécnico Nacional +México +Rivas Araiza, Edgar A.; Mendiola Santibañez, Jorge D.; Herrera Ruiz, Gilberto; González Gutiérrez, +Carlos A.; Trejo Perea, Mario; Ríos Moreno, G. J. +Mejora de Contraste y Compensación en Cambios de la Iluminación +Instituto Politécnico Nacional +Distrito Federal, México +Disponible en: http://www.redalyc.org/articulo.oa?id=61509703 +Cómo citar el artículo +Número completo +Más información del artículo +Página de la revista en redalyc.org +Sistema de Información Científica +Red de Revistas Científicas de América Latina, el Caribe, España y Portugal +Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto"
+09f853ce12f7361c4b50c494df7ce3b9fad1d221,Random Forests for Real Time 3D Face Analysis,"myjournal manuscript No. +(will be inserted by the editor) +Random forests for real time 3D face analysis +Gabriele Fanelli · Matthias Dantone · Juergen Gall · Andrea Fossati · +Luc Van Gool +Received: date / Accepted: date"
+09750c9bbb074bbc4eb66586b20822d1812cdb20,Estimation of the neutral face shape using Gaussian Mixture Models,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012"
+097f674aa9e91135151c480734dda54af5bc4240,Face Recognition Based on Multiple Region Features,"Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney +Face Recognition Based on Multiple Region Features +Jiaming Li, Geoff Poulton, Ying Guo, Rong-Yu Qiao +CSIRO Telecommunications & Industrial Physics +Australia +Tel: 612 9372 4104, Fax: 612 9372 4411, Email:"
+5da740682f080a70a30dc46b0fc66616884463ec,Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild,"Real-Time Head Pose Estimation Using +Multi-Variate RVM on Faces in the Wild +Mohamed Selim, Alain Pagani, Didier Stricker +Augmented Vision Research Group, +German Research Center for Artificial Intelligence (DFKI), +Tripstaddterstr. 122, 67663 Kaiserslautern, Germany +Technical University of Kaiserslautern +http://www.av.dfki.de"
+5de5848dc3fc35e40420ffec70a407e4770e3a8d,WebVision Database: Visual Learning and Understanding from Web Data,"WebVision Database: Visual Learning and Understanding from Web Data +Wen Li1, Limin Wang1, Wei Li2, Eirikur Agustsson1, Luc Van Gool1 +Computer Vision Laboratory, ETH Zurich +Google Switzerland"
+5da139fc43216c86d779938d1c219b950dd82a4c,A Generalized Multiple Instance Learning Algorithm for Iterative Distillation and Cross-Granular Propagation of Video Annotations,"-4244-1437-7/07/$20.00 ©2007 IEEE +II - 205 +ICIP 2007"
+5d185d82832acd430981ffed3de055db34e3c653,A Fuzzy Reasoning Model for Recognition of Facial Expressions,"A Fuzzy Reasoning Model for Recognition +of Facial Expressions +Oleg Starostenko1, Renan Contreras1, Vicente Alarcón Aquino1, Leticia Flores Pulido1, +Jorge Rodríguez Asomoza1, Oleg Sergiyenko2, and Vira Tyrsa3 +Research Center CENTIA, Department of Computing, Electronics and Mechatronics, +Universidad de las Américas, 72820, Puebla, Mexico +{oleg.starostenko; renan.contrerasgz; vicente.alarcon; leticia.florespo; +Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juárez, +Insurgentes Este, 21280, Mexicali, Baja California, Mexico +Universidad Politécnica de Baja California, Mexicali, Baja California, Mexico"
+5d233e6f23b1c306cf62af49ce66faac2078f967,Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions,"RESEARCH ARTICLE +Optimal Geometrical Set for Automated +Marker Placement to Virtualized Real-Time +Facial Emotions +Vasanthan Maruthapillai, Murugappan Murugappan* +School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600, Ulu Pauh, Arau, Perlis, West Malaysia"
+5db075a308350c083c3fa6722af4c9765c4b8fef,The Novel Method of Moving Target Tracking Eyes Location based on SIFT Feature Matching and Gabor Wavelet Algorithm,"The Novel Method of Moving Target Tracking Eyes +Location based on SIFT Feature Matching and Gabor +Wavelet Algorithm +* Jing Zhang, Caixia Yang, Kecheng Liu +College of Computer and Information Engineering, Nanyang Institute of Technology, +Henan Nanyang, 473004, China +* Tel.: 0086+13838972861 +* E-mail: +Sensors & Transducers, Vol. 154, Issue 7, July 2013, pp. 129-137 +SSSeeennnsssooorrrsss &&& TTTrrraaannnsssddduuuccceeerrrsss +© 2013 by IFSA +http://www.sensorsportal.com +Received: 28 April 2013 /Accepted: 19 July 2013 /Published: 31 July 2013"
+5d7f8eb73b6a84eb1d27d1138965eb7aef7ba5cf,Robust Registration of Dynamic Facial Sequences,"Robust Registration of Dynamic Facial Sequences +Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro"
+5db4fe0ce9e9227042144758cf6c4c2de2042435,Recognition of Facial Expression Using Haar Wavelet Transform,"INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.3, JUNE 2010 +Recognition of Facial Expression Using Haar +Wavelet Transform +M. Satiyan, M.Hariharan, R.Nagarajan +paper +features +investigates"
+5d5cd6fa5c41eb9d3d2bab3359b3e5eb60ae194e,Face Recognition Algorithms,"Face Recognition Algorithms +Proyecto Fin de Carrera +June 16, 2010 +Ion Marqu´es +Supervisor: +Manuel Gra˜na"
+5d09d5257139b563bd3149cfd5e6f9eae3c34776,Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization,"Optics Communications 338 (2015) 77–89 +Contents lists available at ScienceDirect +Optics Communications +journal homepage: www.elsevier.com/locate/optcom +Pattern recognition with composite correlation filters designed with +multi-objective combinatorial optimization +Victor H. Diaz-Ramirez a,n, Andres Cuevas a, Vitaly Kober b, Leonardo Trujillo c, +Abdul Awwal d +Instituto Politécnico Nacional – CITEDI, Ave. del Parque 1310, Mesade Otay, Tijuana B.C. 22510, México +Department of Computer Science, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada B.C. 22860, México +Instituto Tecnológico de Tijuana, Blvd. Industrial y Ave. ITR TijuanaS/N, Mesa de Otay, Tijuana B.C. 22500, México +d National Ignition Facility, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA +r t i c l e i n f o +b s t r a c t +Article history: +Received 12 July 2014 +Accepted 16 November 2014 +Available online 23 October 2014 +Keywords: +Object recognition"
+5d197c8cd34473eb6cde6b65ced1be82a3a1ed14,A Face Image Database for Evaluating Out-of-Focus Blur,"0AFaceImageDatabaseforEvaluatingOut-of-FocusBlurQiHan,QiongLiandXiamuNiuHarbinInstituteofTechnologyChina1.IntroductionFacerecognitionisoneofthemostpopularresearchfieldsofcomputervisionandmachinelearning(Tores(2004);Zhaoetal.(2003)).Alongwithinvestigationoffacerecognitionalgorithmsandsystems,manyfaceimagedatabaseshavebeencollected(Gross(2005)).Facedatabasesareimportantfortheadvancementoftheresearchfield.Becauseofthenonrigidityandcomplex3Dstructureofface,manyfactorsinfluencetheperformanceoffacedetectionandrecognitionalgorithmssuchaspose,expression,age,brightness,contrast,noise,blurandetc.Someearlyfacedatabasesgatheredunderstrictlycontrolledenvironment(Belhumeuretal.(1997);Samaria&Harter(1994);Turk&Pentland(1991))onlyallowslightexpressionvariation.Toinvestigatetherelationshipsbetweenalgorithms’performanceandtheabovefactors,morefacedatabaseswithlargerscaleandvariouscharacterswerebuiltinthepastyears(Bailly-Bailliereetal.(2003);Flynnetal.(2003);Gaoetal.(2008);Georghiadesetal.(2001);Hallinan(1995);Phillipsetal.(2000);Simetal.(2003)).Forinstance,The""CAS-PEAL"",""FERET"",""CMUPIE"",and""YaleB""databasesincludevariousposes(Gaoetal.(2008);Georghiadesetal.(2001);Phillipsetal.(2000);Simetal.(2003));The""HarvardRL"",""CMUPIE""and""YaleB""databasesinvolvemorethan40differentconditionsinillumination(Georghiadesetal.(2001);Hallinan(1995);Simetal.(2003));Andthe""BANCA"",and""NDHID""databasescontainover10timesgathering(Bailly-Bailliereetal.(2003);Flynnetal.(2003)).Thesedatabaseshelpresearcherstoevaluateandimprovetheiralgorithmsaboutfacedetection,recognition,andotherpurposes.Blurisnotthemostimportantbutstillanotablefactoraffectingtheperformanceofabiometricsystem(Fronthaleretal.(2006);Zamanietal.(2007)).Themainreasonsleadingblurconsistinout-of-focusofcameraandmotionofobject,andtheout-of-focusblurismoresignificantintheapplicationenvironmentoffacerecognition(Eskicioglu&Fisher(1995);Kimetal.(1998);Tanakaetal.(2007);Yitzhaky&Kopeika(1996)).Toinvestigatetheinfluenceofbluronafacerecognitionsystem,afaceimagedatabasewithdifferentconditionsofclarityandefficientblurevaluatingalgorithmsareneeded.Thischapterintroducesanewfacedatabasebuiltforthepurposeofblurevaluation.Theapplicationenvironmentsoffacerecognitionareanalyzedfirstly,thenaimagegatheringschemeisdesigned.Twotypicalgatheringfacilitiesareusedandthefocusstatusaredividedinto11steps.Further,theblurassessmentalgorithmsaresummarizedandthecomparisonbetweenthemisraisedonthevarious-claritydatabase.The7www.intechopen.com"
+5da2ae30e5ee22d00f87ebba8cd44a6d55c6855e,"When facial expressions do and do not signal minds: The role of face inversion, expression dynamism, and emotion type.","This is an Open Access document downloaded from ORCA, Cardiff University's institutional +repository: http://orca.cf.ac.uk/111659/ +This is the author’s version of a work that was submitted to / accepted for publication. +Citation for final published version: +Krumhuber, Eva G, Lai, Yukun, Rosin, Paul and Hugenberg, Kurt 2018. When facial expressions +Publishers page: +Please note: +Changes made as a result of publishing processes such as copy-editing, formatting and page +numbers may not be reflected in this version. For the definitive version of this publication, please +refer to the published source. You are advised to consult the publisher’s version if you wish to cite +this paper. +This version is being made available in accordance with publisher policies. See +http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications +made available in ORCA are retained by the copyright holders."
+31625522950e82ad4dffef7ed0df00fdd2401436,Motion Representation with Acceleration Images,"Motion Representation with Acceleration Images +Hirokatsu Kataoka, Yun He, Soma Shirakabe, Yutaka Satoh +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{hirokatsu.kataoka, yun.he, shirakabe-s,"
+318e7e6daa0a799c83a9fdf7dd6bc0b3e89ab24a,Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis and Application,"Sparsity in Dynamics of Spontaneous +Subtle Emotions: Analysis & Application +Anh Cat Le Ngo, Member, IEEE, John See, Member, IEEE, Raphael C.-W. Phan, Member, IEEE"
+31c0968fb5f587918f1c49bf7fa51453b3e89cf7,Deep Transfer Learning for Person Re-identification,"Deep Transfer Learning for Person Re-identification +Mengyue Geng +Yaowei Wang +Tao Xiang +Yonghong Tian"
+316e67550fbf0ba54f103b5924e6537712f06bee,Multimodal semi-supervised learning for image classification,"Multimodal semi-supervised learning +for image classification +Matthieu Guillaumin, Jakob Verbeek, Cordelia Schmid +LEAR team, INRIA Grenoble, France"
+31ef5419e026ef57ff20de537d82fe3cfa9ee741,Facial Expression Analysis Based on High Dimensional Binary Features,"Facial Expression Analysis Based on +High Dimensional Binary Features +Samira Ebrahimi Kahou, Pierre Froumenty, and Christopher Pal +´Ecole Polytechique de Montr´eal, Universit´e de Montr´eal, Montr´eal, Canada +{samira.ebrahimi-kahou, pierre.froumenty,"
+3176ee88d1bb137d0b561ee63edf10876f805cf0,Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation,"Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation +Sina Honari1, Jason Yosinski2, Pascal Vincent1,4, Christopher Pal3 +University of Montreal, 2Cornell University, 3Ecole Polytechnique of Montreal, 4CIFAR +{honaris,"
+31ace8c9d0e4550a233b904a0e2aabefcc90b0e3,Learning Deep Face Representation,"Learning Deep Face Representation +Haoqiang Fan +Megvii Inc. +Zhimin Cao +Megvii Inc. +Yuning Jiang +Megvii Inc. +Qi Yin +Megvii Inc. +Chinchilla Doudou +Megvii Inc."
+91811203c2511e919b047ebc86edad87d985a4fa,Expression Subspace Projection for Face Recognition from Single Sample per Person,"Expression Subspace Projection for Face +Recognition from Single Sample per Person +Hoda Mohammadzade, Student Member, IEEE, and Dimitrios Hatzinakos, Senior Member, IEEE"
+9117fd5695582961a456bd72b157d4386ca6a174,Recognition Using Dee Networks,"Facial Expression +n Recognition Using Dee +ep Neural +Networks +Junnan Li and Edmund Y. Lam +Departm +ment of Electrical and Electronic Engineering +he University of Hong Kong, Pokfulam, +Hong Kong"
+91067f298e1ece33c47df65236853704f6700a0b,Local Binary Pattern and Local Linear Regression for Pose Invariant Face Recognition,"IJSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 11 | May 2016 +ISSN (online): 2349-784X +Local Binary Pattern and Local Linear +Regression for Pose Invariant Face Recognition +Raju Dadasab Patil +M. Tech Student +Shreekumar T +Associate Professor +Department of Computer Science & Engineering +Department of Computer Science & Engineering +Mangalore Institute of Engineering & Technology, Badaga +Mangalore Institute of Engineering & Technology, Badaga +Mijar, Moodbidri, Mangalore +Mijar, Moodbidri, Mangalore +Karunakara K +Professor & Head of Dept. +Department of Information Science & Engineering +Sri SidarthaInstitute of Technology, Tumkur"
+919d3067bce76009ce07b070a13728f549ebba49,Time Based Re-ranking for Web Image Search,"International Journal of Scientific and Research Publications, Volume 4, Issue 6, June 2014 +ISSN 2250-3153 +Time Based Re-ranking for Web Image Search +Ms. A.Udhayabharadhi *, Mr. R.Ramachandran ** +* MCA Student, Sri Manakula Vinayagar Engineering College, Pondicherry-605106 +** Assistant Professor dept of MCA, Sri Manakula Vinayagar Engineering College, Pondicherry-605106"
+91e57667b6fad7a996b24367119f4b22b6892eca,Probabilistic Corner Detection for Facial Feature,"Probabilistic Corner Detection for Facial Feature +Extraction +Article +Accepted version +E. Ardizzone, M. La Cascia, M. Morana +In Lecture Notes in Computer Science Volume 5716, 2009 +It is advisable to refer to the publisher's version if you intend to cite +from the work. +Publisher: Springer +http://link.springer.com/content/pdf/10.1007%2F978-3- +642-04146-4_50.pdf"
+917bea27af1846b649e2bced624e8df1d9b79d6f,Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications,"Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for +Mobile and Embedded Applications +Baohua Sun, +Lin Yang, +Patrick Dong, Wenhan Zhang, +Gyrfalcon Technology Inc. +Jason Dong, Charles Young +900 McCarthy Blvd. Milpitas, CA 95035"
+91b1a59b9e0e7f4db0828bf36654b84ba53b0557,Simultaneous Hallucination and Recognition of Low-Resolution Faces Based on Singular Value Decomposition,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < +Simultaneous Hallucination and Recognition of +Low-Resolution Faces Based on Singular Value +Decomposition +Muwei Jian, Kin-Man Lam*, Senior Member, IEEE +(SVD) +for performing both"
+911bef7465665d8b194b6b0370b2b2389dfda1a1,Learning Human Optical Flow,"RANJAN, ROMERO, BLACK: LEARNING HUMAN OPTICAL FLOW +Learning Human Optical Flow +MPI for Intelligent Systems +Tübingen, Germany +Amazon Inc. +Anurag Ranjan1 +Javier Romero∗,2 +Michael J. Black1"
+91ead35d1d2ff2ea7cf35d15b14996471404f68d,Combining and Steganography of 3D Face Textures,"Combining and Steganography of 3D Face Textures +Mohsen Moradi and Mohammad-Reza Rafsanjani-Sadeghi"
+91d513af1f667f64c9afc55ea1f45b0be7ba08d4,Automatic Face Image Quality Prediction,"Automatic Face Image Quality Prediction +Lacey Best-Rowden, Student Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
+91e58c39608c6eb97b314b0c581ddaf7daac075e,Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks,"Pixel-wise Ear Detection with Convolutional +Encoder-Decoder Networks +ˇZiga Emerˇsiˇc 1, Luka Lan Gabriel 2, Vitomir ˇStruc 3 and Peter Peer 1"
+9131c990fad219726eb38384976868b968ee9d9c,Deep Facial Expression Recognition: A Survey,"Deep Facial Expression Recognition: A Survey +Shan Li and Weihong Deng∗, Member, IEEE"
+911505a4242da555c6828509d1b47ba7854abb7a,Improved Active Shape Model for Facial Feature Localization,"IMPROVED ACTIVE SHAPE MODEL FOR FACIAL FEATURE LOCALIZATION +Hui-Yu Huang and Shih-Hang Hsu +National Formosa University, Taiwan +Email:"
+915d4a0fb523249ecbc88eb62cb150a60cf60fa0,Comparison of Feature Extraction Techniques in Automatic Face Recognition Systems for Security Applications,"Comparison of Feature Extraction Techniques in Automatic +Face Recognition Systems for Security Applications +S . Cruz-Llanas, J. Ortega-Garcia, E. Martinez-Torrico, J. Gonzalez-Rodriguez +Dpto. Ingenieria Audiovisual y Comunicaciones, EUIT Telecomunicacion, Univ. PolitCcnica de Madrid, Spain +{cruzll, jortega, etorrico, +http://www.atvs.diac.upm.es"
+6582f4ec2815d2106957215ca2fa298396dde274,Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations,"JUNE 2007 +Discriminative Learning and Recognition +of Image Set Classes Using +Canonical Correlations +Tae-Kyun Kim, Josef Kittler, Member, IEEE, and Roberto Cipolla, Member, IEEE"
+655d9ba828eeff47c600240e0327c3102b9aba7c,Kernel pooled local subspaces for classification,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005 +Kernel Pooled Local Subspaces for Classification +Peng Zhang, Student Member, IEEE, Jing Peng, Member, IEEE, and Carlotta Domeniconi"
+656a59954de3c9fcf82ffcef926af6ade2f3fdb5,Convolutional Network Representation for Visual Recognition,"Convolutional Network Representation +for Visual Recognition +ALI SHARIF RAZAVIAN +Doctoral Thesis +Stockholm, Sweden, 2017"
+656aeb92e4f0e280576cbac57d4abbfe6f9439ea,Use of Image Enhancement Techniques for Improving Real Time Face Recognition Efficiency on Wearable Gadgets,"Journal of Engineering Science and Technology +Vol. 12, No. 1 (2017) 155 - 167 +© School of Engineering, Taylor’s University +USE OF IMAGE ENHANCEMENT TECHNIQUES +FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY +ON WEARABLE GADGETS +MUHAMMAD EHSAN RANA1,*, AHMAD AFZAL ZADEH2, +AHMAD MOHAMMAD MAHMOOD ALQURNEH3 +, 3Asia Pacific University of Technology & Innovation, Kuala Lumpur 57000, Malaysia +Staffordshire University, Beaconside Stafford ST18 0AB, United Kingdom +*Corresponding Author:"
+656f05741c402ba43bb1b9a58bcc5f7ce2403d9a,Supervised Learning Approaches for Automatic Structuring of Videos. (Méthodes d'apprentissage supervisé pour la structuration automatique de vidéos),"THÈSEPour obtenir le grade deDOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPESSpécialité : Mathématiques et InformatiqueArrêté ministériel : 7 août 2006Présentée parDanila POTAPOVThèse dirigée par Cordelia SCHMID et codirigée par Zaid HARCHAOUIpréparée au sein de Inria Grenoble Rhône-Alpesdans l'École Doctorale Mathématiques, Sciences et technologies de l'information, InformatiqueSupervised Learning Approaches for Automatic Structuring of VideosThèse soutenue publiquement le « 22 Juillet 2015 »,devant le jury composé de : Prof. Cordelia SCHMID Inria Grenoble Rhône-Alpes, France, Directeur de thèseDr. Zaid HARCHAOUIInria Grenoble Rhône-Alpes, France, Co-encadrant de thèse Prof. Patrick PEREZTechnicolor Rennes, France, RapporteurProf. Ivan LAPTEVInria Paris Rocquencourt, France, Rapporteur, PrésidentDr. Florent PERRONNINFacebook AI Research, Paris, France, ExaminateurDr. Matthijs DOUZEInria Grenoble Rhône-Alpes, France, Examinateur"
+65817963194702f059bae07eadbf6486f18f4a0a,WhittleSearch: Interactive Image Search with Relative Attribute Feedback,"http://dx.doi.org/10.1007/s11263-015-0814-0 +WhittleSearch: Interactive Image Search with Relative Attribute +Feedback +Adriana Kovashka · Devi Parikh · Kristen Grauman +Received: date / Accepted: date"
+6581c5b17db7006f4cc3575d04bfc6546854a785,Contextual Person Identification in Multimedia Data,"Contextual Person Identification +in Multimedia Data +zur Erlangung des akademischen Grades eines +Doktors der Ingenieurwissenschaften +der Fakultät für Informatik +des Karlsruher Instituts für Technologie (KIT) +genehmigte +Dissertation +Dipl.-Inform. Martin Bäuml +us Erlangen +Tag der mündlichen Prüfung: +8. November 2014 +Hauptreferent: +Korreferent: +Prof. Dr. Rainer Stiefelhagen +Karlsruher Institut für Technologie +Prof. Dr. Gerhard Rigoll +Technische Universität München +KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft +www.kit.edu"
+653d19e64bd75648cdb149f755d59e583b8367e3,"Decoupling ""when to update"" from ""how to update""","Decoupling “when to update” from “how to +update” +Eran Malach and Shai Shalev-Shwartz +School of Computer Science, The Hebrew University, Israel"
+65babb10e727382b31ca5479b452ee725917c739,Label Distribution Learning,"Label Distribution Learning +Xin Geng*, Member, IEEE"
+62dccab9ab715f33761a5315746ed02e48eed2a0,A Short Note about Kinetics-600,"A Short Note about Kinetics-600 +Jo˜ao Carreira +Eric Noland +Andras Banki-Horvath +Chloe Hillier +Andrew Zisserman"
+62d1a31b8acd2141d3a994f2d2ec7a3baf0e6dc4,Noise-resistant network: a deep-learning method for face recognition under noise,"Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43 +DOI 10.1186/s13640-017-0188-z +EURASIP Journal on Image +nd Video Processing +R ES EAR CH +Noise-resistant network: a deep-learning +method for face recognition under noise +Yuanyuan Ding1,2, Yongbo Cheng1,2, Xiaoliu Cheng1, Baoqing Li1*, Xing You1 and Xiaobing Yuan1 +Open Access"
+62694828c716af44c300f9ec0c3236e98770d7cf,Identification of Action Units Related to Affective States in a Tutoring System for Mathematics,"Padrón-Rivera, G., Rebolledo-Mendez, G., Parra, P. P., & Huerta-Pacheco, N. S. (2016). Identification of Action Units Related to +Identification of Action Units Related to Affective States in a Tutoring System +Gustavo Padrón-Rivera1, Genaro Rebolledo-Mendez1*, Pilar Pozos Parra2 and N. Sofia +Facultad de Estadística e Informática, Universidad Veracruzana, Mexico // 2Universidad Juárez Autónoma de +Tabasco, Mexico // // // // +for Mathematics +Huerta-Pacheco1 +*Corresponding author"
+62f0d8446adee6a5e8102053a63a61af07ac4098,Facial point detection using convolutional neural network transferred from a heterogeneous task,"FACIAL POINT DETECTION USING CONVOLUTIONAL NEURAL NETWORK +TRANSFERRED FROM A HETEROGENEOUS TASK +Takayoshi Yamashita* Taro Watasue** Yuji Yamauchi* Hironobu Fujiyoshi* +**Tome R&D +*Chubu University, +200, Matsumoto-cho, Kasugai, AICHI"
+628a3f027b7646f398c68a680add48c7969ab1d9,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Plan for Final Year Project: +HKU-Face: A Large Scale Dataset for Deep Face +Recognition +Haicheng Wang +035140108 +Haoyu Li +035141841 +Introduction +Face recognition has been one of the most successful techniques in the field of artificial intelligence +ecause of its surpassing human-level performance in academic experiments and broad application in +the industrial world. Gaussian-face[1] and Facenet[2] hold state-of-the-art record using statistical +method and deep-learning method respectively. What’s more, face recognition has been applied +in various areas like authority checking and recording, fostering a large number of start-ups like +Face++. +Our final year project will deal with the face recognition task by building a large-scaled and carefully- +filtered dataset. Our project plan specifies our roadmap and current research process. This plan first +illustrates the significance and potential enhancement in constructing large-scale face dataset for +oth academics and companies. Then objectives to accomplish and related literature review will be +expressed in detail. Next, methodologies used, scope of our project and challenges faced by us are +described. The detailed timeline for this project follows as well as a small summary."
+62374b9e0e814e672db75c2c00f0023f58ef442c,Frontal face authentication using discriminating,"Frontalfaceauthenticationusingdiscriminatinggridswith +morphologicalfeaturevectors +A.Tefas +C.Kotropoulos +I.Pitas +DepartmentofInformatics,AristotleUniversityofThessaloniki +Box,Thessaloniki +EDICSnumbers:-KNOWContentRecognitionandUnderstanding +-MODAMultimodalandMultimediaEnvironments +Anovelelasticgraphmatchingprocedurebasedonmultiscalemorphologicaloperations,thesocalled +morphologicaldynamiclinkarchitecture,isdevelopedforfrontalfaceauthentication.Fastalgorithms +forimplementingmathematicalmorphologyoperationsarepresented.Featureselectionbyemploying +linearprojectionalgorithmsisproposed.Discriminatorypowercoe(cid:14)cientsthatweighthematching +errorateachgridnodearederived.Theperformanceofmorphologicaldynamiclinkarchitecturein +frontalfaceauthenticationisevaluatedintermsofthereceiveroperatingcharacteristicontheMVTS +faceimagedatabase.Preliminaryresultsforfacerecognitionusingtheproposedtechniquearealso +presented. +Correspondingauthor:I.Pitas +DRAFT +September +626859fe8cafd25da13b19d44d8d9eb6f0918647,Activity Recognition Based on a Magnitude-Orientation Stream Network,"Activity Recognition based on a +Magnitude-Orientation Stream Network +Carlos Caetano, Victor H. C. de Melo, Jefersson A. dos Santos, William Robson Schwartz +Smart Surveillance Interest Group, Department of Computer Science +Universidade Federal de Minas Gerais, Belo Horizonte, Brazil"
+62007c30f148334fb4d8975f80afe76e5aef8c7f,Eye In-Painting with Exemplar Generative Adversarial Networks,"Eye In-Painting with Exemplar Generative Adversarial Networks +Brian Dolhansky, Cristian Canton Ferrer +Facebook Inc. +Hacker Way, Menlo Park (CA), USA +{bdol,"
+62a30f1b149843860938de6dd6d1874954de24b7,Fast Algorithm for Updating the Discriminant Vectors of Dual-Space LDA,"Fast Algorithm for Updating the Discriminant Vectors +of Dual-Space LDA +Wenming Zheng, Member, IEEE, and Xiaoou Tang, Fellow, IEEE"
+62e0380a86e92709fe2c64e6a71ed94d152c6643,Facial emotion recognition with expression energy,"Facial Emotion Recognition With Expression Energy +Albert Cruz +Center for Research in +Intelligent Systems +16 Winston Chung Hall +Bir Bhanu +Center for Research in +Intelligent Systems +16 Winston Chung Hall +Ninad Thakoor +Center for Research in +Intelligent Systems +16 Winston Chung Hall +Riverside, CA, 92521-0425, +Riverside, CA, 92521-0425, +Riverside, CA, 92521-0425,"
+961a5d5750f18e91e28a767b3cb234a77aac8305,Face Detection without Bells and Whistles,"Face Detection without Bells and Whistles +Markus Mathias1, Rodrigo Benenson2, Marco Pedersoli1, and Luc Van Gool1,3 +ESAT-PSI/VISICS, iMinds, KU Leuven, Belgium +MPI Informatics, Saarbrücken, Germany +D-ITET/CVL, ETH Zürich, Switzerland"
+9626bcb3fc7c7df2c5a423ae8d0a046b2f69180c,A deep learning approach for action classification in American football video sequences,"UPTEC STS 17033 +Examensarbete 30 hp +November 2017 +A deep learning approach for +ction classification in American +football video sequences +Jacob Westerberg"
+9696b172d66e402a2e9d0a8d2b3f204ad8b98cc4,Region-Based Facial Expression Recognition in Still Images,"J Inf Process Syst, Vol.9, No.1, March 2013 +pISSN 1976-913X +eISSN 2092-805X +Region-Based Facial Expression Recognition in +Still Images +Gawed M. Nagi*, Rahmita Rahmat*, Fatimah Khalid* and Muhamad Taufik*"
+96f4a1dd1146064d1586ebe86293d02e8480d181,Comparative Analysis of Reranking Techniques for Web Image Search,"COMPARATIVE ANALYSIS OF RERANKING +TECHNIQUES FOR WEB IMAGE SEARCH +Suvarna V. Jadhav1, A.M.Bagade2 +,2Department of Information Technology, Pune Institute of Computer Technology, Pune,( India)"
+9606b1c88b891d433927b1f841dce44b8d3af066,Principal Component Analysis with Tensor Train Subspace,"Principal Component Analysis with Tensor Train +Subspace +Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron"
+966e36f15b05ef8436afecf57a97b73d6dcada94,Dimensionality Reduction using Relative Attributes,"Dimensionality Reduction using Relative +Attributes +Mohammadreza Babaee1, Stefanos Tsoukalas1, Maryam Babaee2 +Gerhard Rigoll1, and Mihai Datcu3 +Institute for Human-Machine Communication, Technische Universit¨at M¨unchen +Computer Engineering Dept. University of Isfahan, Iran +The Remote Sensing Technology Institute (IMF), German Aerospace Center +Introduction +Visual attributes are high-level semantic description of visual data that are close +to the language of human. They have been intensively used in various appli- +ations such as image classification [1,2], active learning [3,4], and interactive +search [5]. However, the usage of attributes in dimensionality reduction has not +een considered yet. In this work, we propose to utilize relative attributes as +semantic cues in dimensionality reduction. To this end, we employ Non-negative +Matrix Factorization (NMF) [6] constrained by embedded relative attributes to +ome up with a new algorithm for dimensionality reduction, namely attribute +regularized NMF (ANMF). +Approach +We assume that X ∈ RD×N denotes N data points (e.g., images) represented by +D dimensional low-level feature vectors. The NMF decomposes the non-negative"
+96b1000031c53cd4c1c154013bb722ffd87fa7da,ContextVP: Fully Context-Aware Video Prediction,"ContextVP: Fully Context-Aware Video +Prediction +Wonmin Byeon1,2,3,4, Qin Wang2, +Rupesh Kumar Srivastava4, and Petros Koumoutsakos2 +NVIDIA, Santa Clara, CA, USA +ETH Zurich, Zurich, Switzerland +The Swiss AI Lab IDSIA, Manno, Switzerland +NNAISENSE, Lugano, Switzerland"
+968f472477a8afbadb5d92ff1b9c7fdc89f0c009,Firefly-based Facial Expression Recognition,Firefly-based Facial Expression Recognition
+9686dcf40e6fdc4152f38bd12b929bcd4f3bbbcc,Emotion Based Music Player,"International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015 +ISSN 2091-2730 +Emotion Based Music Player +Hafeez Kabani1, Sharik Khan2, Omar Khan3, Shabana Tadvi4 +Department of Computer Science and Engineering +Department of Computer Science and Engineering +Department of Computer Science and Engineering +Asst. Professor, Department of Computer Science and Engineering +M.H Saboo Siddik College of Engineering, University of Mumbai, India"
+3a2fc58222870d8bed62442c00341e8c0a39ec87,Probabilistic Local Variation Segmentation,"Probabilistic Local Variation +Segmentation +Michael Baltaxe +Technion - Computer Science Department - M.Sc. Thesis MSC-2014-02 - 2014"
+3a76e9fc2e89bdd10a9818f7249fbf61d216efc4,Face Sketch Matching via Coupled Deep Transform Learning,"Face Sketch Matching via Coupled Deep Transform Learning +Shruti Nagpal1, Maneet Singh1, Richa Singh1 +, Mayank Vatsa1 +, Afzel Noore2, and Angshul Majumdar1 +IIIT-Delhi, India, 2West Virginia University +{shrutin, maneets, rsingh, mayank,"
+3a804cbf004f6d4e0b041873290ac8e07082b61f,A Corpus-Guided Framework for Robotic Visual Perception,"Language-Action Tools for Cognitive Artificial Agents: Papers from the 2011 AAAI Workshop (WS-11-14) +A Corpus-Guided Framework for Robotic Visual Perception +Ching L. Teo, Yezhou Yang, Hal Daum´e III, Cornelia Ferm¨uller, Yiannis Aloimonos +University of Maryland Institute for Advanced Computer Studies, College Park, MD 20742-3275 +{cteo, yzyang, hal, fer,"
+3a04eb72aa64760dccd73e68a3b2301822e4cdc3,Scalable Sparse Subspace Clustering,"Scalable Sparse Subspace Clustering +Machine Intelligence Laboratory, College of Computer Science, Sichuan University, +Xi Peng, Lei Zhang and Zhang Yi +{leizhang, +Chengdu, 610065, China."
+3abc833f4d689f37cc8a28f47fb42e32deaa4b17,Large Scale Retrieval and Generation of Image Descriptions,"Noname manuscript No. +(will be inserted by the editor) +Large Scale Retrieval and Generation of Image Descriptions +Vicente Ordonez · Xufeng Han · Polina Kuznetsova · Girish Kulkarni · +Margaret Mitchell · Kota Yamaguchi · Karl Stratos · Amit Goyal · +Jesse Dodge · Alyssa Mensch · Hal Daum´e III · Alexander C. Berg · +Yejin Choi · Tamara L. Berg +Received: date / Accepted: date"
+3a60678ad2b862fa7c27b11f04c93c010cc6c430,A Multimodal Database for Affect Recognition and Implicit Tagging,"JANUARY-MARCH 2012 +A Multimodal Database for +Affect Recognition and Implicit Tagging +Mohammad Soleymani, Member, IEEE, Jeroen Lichtenauer, +Thierry Pun, Member, IEEE, and Maja Pantic, Fellow, IEEE"
+3a591a9b5c6d4c62963d7374d58c1ae79e3a4039,Driver Cell Phone Usage Detection from HOV/HOT NIR Images,"Driver Cell Phone Usage Detection From HOV/HOT NIR Images +Yusuf Artan, Orhan Bulan, Robert P. Loce, and Peter Paul +Xerox Research Center Webster +800 Phillips Rd. Webster NY 14580"
+3aa9c8c65ce63eb41580ba27d47babb1100df8a3,Differentiating Duchenne from non-Duchenne smiles using active appearance models,"Annals of the +University of North Carolina Wilmington +Master of Science in +Computer Science and Information Systems"
+3a0a839012575ba455f2b84c2d043a35133285f9,Corpus-Guided Sentence Generation of Natural Images,"Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 444–454, +Edinburgh, Scotland, UK, July 27–31, 2011. c(cid:13)2011 Association for Computational Linguistics"
+3a9681e2e07be7b40b59c32a49a6ff4c40c962a2,"Comparing treatment means : overlapping standard errors , overlapping confidence intervals , and tests of hypothesis","Biometrics & Biostatistics International Journal +Comparing treatment means: overlapping standard +errors, overlapping confidence intervals, and tests of +hypothesis"
+3a846704ef4792dd329a5c7a2cb8b330ab6b8b4e,FACE-GRAB: Face recognition with General Region Assigned to Binary operator,"in any current or +future media, +for all other uses, +© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained +including +reprinting/republishing this material for advertising or promotional purposes, creating +new collective works, for resale or redistribution to servers or lists, or reuse of any +opyrighted component of this work in other works. +Pre-print of article that appeared at the IEEE Computer Society Workshop on Biometrics +010. +The published article can be accessed from: +http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5544597"
+3a95eea0543cf05670e9ae28092a114e3dc3ab5c,Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering,"Constructing the L2-Graph for Robust Subspace +Learning and Subspace Clustering +Xi Peng, Zhiding Yu, Huajin Tang, Member, IEEE, and Zhang Yi, Senior Member, IEEE"
+3a4f522fa9d2c37aeaed232b39fcbe1b64495134,Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset,"ISSN (Online) 2321 – 2004 +ISSN (Print) 2321 – 5526 +INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING +Vol. 4, Issue 5, May 2016 +IJIREEICE +Face Recognition and Retrieval Using Cross +Age Reference Coding +Sricharan H S1, Srinidhi K S1, Rajath D N1, Tejas J N1, Chandrakala B M2 +BE, DSCE, Bangalore1 +Assistant Professor, DSCE, Bangalore2"
+540b39ba1b8ef06293ed793f130e0483e777e278,Biologically Inspired Emotional Expressions for Artificial Agents,"ORIGINAL RESEARCH +published: 13 July 2018 +doi: 10.3389/fpsyg.2018.01191 +Biologically Inspired Emotional +Expressions for Artificial Agents +Beáta Korcsok 1*, Veronika Konok 2, György Persa 3, Tamás Faragó 2, Mihoko Niitsuma 4, +Ádám Miklósi 2,5, Péter Korondi 1, Péter Baranyi 6 and Márta Gácsi 2,5 +Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics, +Budapest, Hungary, 2 Department of Ethology, Eötvös Loránd University, Budapest, Hungary, 3 Institute for Computer Science +nd Control, Hungarian Academy of Sciences, Budapest, Hungary, 4 Department of Precision Mechanics, Chuo University, +Tokyo, Japan, 5 MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary, 6 Department of Telecommunications +nd Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary +A special area of human-machine interaction, +the expression of emotions gains +importance with the continuous development of artificial agents such as social robots or"
+543f21d81bbea89f901dfcc01f4e332a9af6682d,Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks,"Published as a conference paper at ICLR 2016 +UNSUPERVISED AND SEMI-SUPERVISED LEARNING +WITH CATEGORICAL GENERATIVE ADVERSARIAL +NETWORKS +Jost Tobias Springenberg +University of Freiburg +79110 Freiburg, Germany"
+54969bcd728b0f2d3285866c86ef0b4797c2a74d,Learning for Video Compression,"IEEE TRANSACTION SUBMISSION +Learning for Video Compression +Zhibo Chen, Senior Member, IEEE, Tianyu He, Xin Jin, Feng Wu, Fellow, IEEE"
+5456166e3bfe78a353df988897ec0bd66cee937f,Improved Boosting Performance by Exclusion of Ambiguous Positive Examples,"Improved Boosting Performance by Exclusion +of Ambiguous Positive Examples +Miroslav Kobetski, Josephine Sullivan +Computer Vision and Active Perception, KTH, Stockholm 10800, Sweden +{kobetski, +Keywords: +Boosting, Image Classification, Algorithm Evaluation, Dataset Pruning, VOC2007."
+54aacc196ffe49b3450059fccdf7cd3bb6f6f3c3,A joint learning framework for attribute models and object descriptions,"A Joint Learning Framework for Attribute Models and Object Descriptions +Dhruv Mahajan +Yahoo! Labs, Bangalore, India +Sundararajan Sellamanickam +Vinod Nair"
+541bccf19086755f8b5f57fd15177dc49e77d675,A few days of a robot's life in the human's world: toward incremental individual recognition,"Computer Science and ArtificialIntelligence LaboratoryTechnical Reportmassachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.eduMIT-CSAIL-TR-2007-022April 3, 2007A Few Days of A Robot’s Life in the Human’s World: Toward Incremental Individual RecognitionLijin Aryananda"
+54756f824befa3f0c2af404db0122f5b5bbf16e0,Computer Vision — Visual Recognition,"Research Statement +Computer Vision — Visual Recognition +Alexander C. Berg +Computational visual recognition concerns identifying what is in an image, video, or other visual data, enabling +pplications such as measuring location, pose, size, activity, and identity as well as indexing for search by content. +Recent progress in making economical sensors and improvements in network, storage, and computational power +make visual recognition practical and relevant in almost all experimental sciences and commercial applications +such as image search. My work in visual recognition brings together machine learning, insights from psychology +nd physiology, computer graphics, algorithms, and a great deal of computation. +While I am best known for my work on general object category detection – creating techniques and building +systems for some of the best performing approaches to categorizing and localizing objects in images, recognizing +ction in video, and searching large collections of video and images – my research extends widely across visual +recognition including: +• Creating low-level image descriptors – procedures for converting pixel values to features that can be used +to model appearance for recognition. These include widely used descriptors for category recognition in +images [4, 2], object detection in images and video [11, 10, 2], and optical flow based descriptors for action +recognition in video [8]. +• Developing models for recognition – ranging from what is becoming seminal work in recognizing human +ctions in video [8], to formulating object localization as approximate subgraph isomorphism [2], to models +for parsing architectural images [3], to a novel approach for face recognition based on high level describable"
+549c719c4429812dff4d02753d2db11dd490b2ae,YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video,"YouTube-BoundingBoxes: A Large High-Precision +Human-Annotated Data Set for Object Detection in Video +Esteban Real +Google Brain +Jonathon Shlens +Google Brain +Stefano Mazzocchi +Google Research +Xin Pan +Google Brain +Vincent Vanhoucke +Google Brain"
+988d1295ec32ce41d06e7cf928f14a3ee079a11e,Semantic Deep Learning,"Semantic Deep Learning +Hao Wang +September 29, 2015"
+98c548a4be0d3b62971e75259d7514feab14f884,Deep generative-contrastive networks for facial expression recognition,"Deep generative-contrastive networks for facial expression recognition +Youngsung Kim†, ByungIn Yoo‡,†, Youngjun Kwak†, Changkyu Choi†, and Junmo Kim‡ +Samsung Advanced Institute of Technology (SAIT), ‡KAIST +hangkyu"
+981449cdd5b820268c0876477419cba50d5d1316,Learning Deep Features for One-Class Classification,"Learning Deep Features for One-Class +Classification +Pramuditha Perera, Student Member, IEEE, and Vishal M. Patel, Senior Member , IEEE"
+9854145f2f64d52aac23c0301f4bb6657e32e562,An Improved Face Verification Approach Based on Speedup Robust Features and Pairwise Matching,"An Improved Face Verification Approach based on +Speedup Robust Features and Pairwise Matching +Eduardo Santiago Moura, Herman Martins Gomes and Jo˜ao Marques de Carvalho +Center for Electrical Engineering and Informatics (CEEI) +Federal University of Campina Grande (UFCG) +Campina Grande, Para´ıba, Brazil +Email:"
+98127346920bdce9773aba6a2ffc8590b9558a4a,Efficient human action recognition using histograms of motion gradients and VLAD with descriptor shape information,"Noname manuscript No. +(will be inserted by the editor) +Efficient Human Action Recognition using +Histograms of Motion Gradients and +VLAD with Descriptor Shape Information +Ionut C. Duta · Jasper R.R. Uijlings · +Bogdan Ionescu · Kiyoharu Aizawa · +Alexander G. Hauptmann · Nicu Sebe +Received: date / Accepted: date"
+98519f3f615e7900578bc064a8fb4e5f429f3689,Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces,"Dictionary-based Domain Adaptation Methods +for the Re-identification of Faces +Qiang Qiu, Jie Ni, and Rama Chellappa"
+9825aa96f204c335ec23c2b872855ce0c98f9046,Face and Facial Expression Recognition in 3-d Using Masked Projection under Occlusion,"International Journal of Ethics in Engineering & Management Education +Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014) +FACE AND FACIAL EXPRESSION +RECOGNITION IN 3-D USING MASKED +PROJECTION UNDER OCCLUSION +Jyoti patil * +M.Tech (CSE) +GNDEC Bidar-585401 +BIDAR, INDIA +Gouri Patil +M.Tech (CSE) +GNDEC Bidar- 585401 +BIDAR, INDIA +Snehalata Patil +M.Tech (CSE) +VKIT, Bangalore- 560040 +BANGALORE, INDIA"
+53e081f5af505374c3b8491e9c4470fe77fe7934,Unconstrained realtime facial performance capture,"Unconstrained Realtime Facial Performance Capture +Pei-Lun Hsieh⇤ +⇤ University of Southern California +Chongyang Ma⇤ +Jihun Yu† +Hao Li⇤ +Industrial Light & Magic +Figure 1: Calibration-free realtime facial performance capture on highly occluded subjects using an RGB-D sensor."
+53c36186bf0ffbe2f39165a1824c965c6394fe0d,I Know How You Feel: Emotion Recognition with Facial Landmarks,"I Know How You Feel: Emotion Recognition with Facial Landmarks +Tooploox 2Polish-Japanese Academy of Information Technology 3Warsaw University of Technology +Ivona Tautkute1,2, Tomasz Trzcinski1,3 and Adam Bielski1"
+5366573e96a1dadfcd4fd592f83017e378a0e185,"Server, server in the cloud. Who is the fairest in the crowd?","Böhlen, Chandola and Salunkhe +Server, server in the cloud. +Who is the fairest in the crowd?"
+53a41c711b40e7fe3dc2b12e0790933d9c99a6e0,Recurrent Memory Addressing for Describing Videos,"Recurrent Memory Addressing for describing videos +Arnav Kumar Jain∗ Abhinav Agarwalla∗ +Kumar Krishna Agrawal∗ +Pabitra Mitra +{arnavkj95, abhinavagarawalla, kumarkrishna, +Indian Institute of Technology Kharagpur"
+533bfb82c54f261e6a2b7ed7d31a2fd679c56d18,Unconstrained Face Recognition: Identifying a Person of Interest From a Media Collection,"Technical Report MSU-CSE-14-1 +Unconstrained Face Recognition: Identifying a +Person of Interest from a Media Collection +Lacey Best-Rowden, Hu Han, Member, IEEE, Charles Otto, Brendan Klare, Member, IEEE, and +Anil K. Jain, Fellow, IEEE"
+3fbd68d1268922ee50c92b28bd23ca6669ff87e5,A shape- and texture-based enhanced Fisher classifier for face recognition,"IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001 +A Shape- and Texture-Based Enhanced Fisher +Classifier for Face Recognition +Chengjun Liu, Member, IEEE, and Harry Wechsler, Fellow, IEEE"
+3f22a4383c55ceaafe7d3cfed1b9ef910559d639,Robust Kronecker Component Analysis,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Robust Kronecker Component Analysis +Mehdi Bahri, Student Member, IEEE, Yannis Panagakis, and Stefanos Zafeiriou, Member, IEEE"
+3fdcc1e2ebcf236e8bb4a6ce7baf2db817f30001,A Top-Down Approach for a Synthetic Autobiographical Memory System,"A top-down approach for a synthetic +utobiographical memory system +Andreas Damianou1,2, Carl Henrik Ek3, Luke Boorman1, Neil D. Lawrence2, +nd Tony J. Prescott1 +Sheffield Centre for Robotics (SCentRo), Univ. of Sheffield, Sheffield, S10 2TN, UK +Dept. of Computer Science, Univ. of Sheffield, Sheffield, S1 4DP, UK +CVAP Lab, KTH, Stockholm, Sweden"
+3f848d6424f3d666a1b6dd405a48a35a797dd147,Is 2D Information Enough For Viewpoint Estimation?,"GHODRATI et al.: IS 2D INFORMATION ENOUGH FOR VIEWPOINT ESTIMATION? +Is 2D Information Enough For Viewpoint +Estimation? +Amir Ghodrati +Marco Pedersoli +Tinne Tuytelaars +KU Leuven, ESAT - PSI, iMinds +Leuven, Belgium"
+3fa738ab3c79eacdbfafa4c9950ef74f115a3d84,DaMN - Discriminative and Mutually Nearest: Exploiting Pairwise Category Proximity for Video Action Recognition,"DaMN – Discriminative and Mutually Nearest: +Exploiting Pairwise Category Proximity +for Video Action Recognition +Rui Hou1, Amir Roshan Zamir1, Rahul Sukthankar2, and Mubarak Shah1 +Center for Research in Computer Vision at UCF, Orlando, USA +Google Research, Mountain View, USA +http://crcv.ucf.edu/projects/DaMN/"
+3fb98e76ffd8ba79e1c22eda4d640da0c037e98a,Convolutional Neural Networks for Crop Yield Prediction using Satellite Images,"Convolutional Neural Networks for Crop Yield Prediction using Satellite Images +H. Russello"
+3f14b504c2b37a0e8119fbda0eff52efb2eb2461,Joint Facial Action Unit Detection and Feature Fusion: A Multi-Conditional Learning Approach,"Joint Facial Action Unit Detection and Feature +Fusion: A Multi-Conditional Learning Approach +Stefanos Eleftheriadis, Ognjen Rudovic, Member, IEEE, and Maja Pantic, Fellow, IEEE"
+3fac7c60136a67b320fc1c132fde45205cd2ac66,Remarks on Computational Facial Expression Recognition from HOG Features Using Quaternion Multi-layer Neural Network,"Remarks on Computational Facial Expression +Recognition from HOG Features Using +Quaternion Multi-layer Neural Network +Kazuhiko Takahashi1, Sae Takahashi1, Yunduan Cui2, +nd Masafumi Hashimoto3 +Information Systems Design, Doshisha University, Kyoto, Japan +Graduate School of Doshisha University, Kyoto, Japan +Intelligent Information Engineering and Science, Doshisha University, Kyoto, Japan"
+3f9a7d690db82cf5c3940fbb06b827ced59ec01e,VIP: Finding important people in images,"VIP: Finding Important People in Images +Clint Solomon Mathialagan +Virginia Tech +Andrew C. Gallagher +Google Inc. +Dhruv Batra +Virginia Tech +Project: https://computing.ece.vt.edu/~mclint/vip/ +Demo: http://cloudcv.org/vip/"
+3fd90098551bf88c7509521adf1c0ba9b5dfeb57,Attribute-Based Classification for Zero-Shot Visual Object Categorization,"Page 1 of 21 +*****For Peer Review Only***** +Attribute-Based Classification for Zero-Shot +Visual Object Categorization +Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling"
+3f7723ab51417b85aa909e739fc4c43c64bf3e84,Improved Performance in Facial Expression Recognition Using 32 Geometric Features,"Improved Performance in Facial Expression +Recognition Using 32 Geometric Features +Giuseppe Palestra1(B), Adriana Pettinicchio2, Marco Del Coco2, +Pierluigi Carcagn`ı2, Marco Leo2, and Cosimo Distante2 +Department of Computer Science, University of Bari, Bari, Italy +National Institute of Optics, National Research Council, Arnesano, LE, Italy"
+3f63f9aaec8ba1fa801d131e3680900680f14139,Facial Expression recognition using Local Binary Patterns and Kullback Leibler divergence,"Facial Expression Recognition using Local Binary +Patterns and Kullback Leibler Divergence +AnushaVupputuri, SukadevMeher +divergence."
+3f0e0739677eb53a9d16feafc2d9a881b9677b63,Efficient Two-Stream Motion and Appearance 3D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for +Video Classification +Ali Diba +ESAT-KU Leuven +Ali Pazandeh +Sharif UTech +Luc Van Gool +ESAT-KU Leuven, ETH Zurich"
+30b15cdb72760f20f80e04157b57be9029d8a1ab,Face Aging with Identity-Preserved Conditional Generative Adversarial Networks,"Face Aging with Identity-Preserved +Conditional Generative Adversarial Networks +Zongwei Wang +Shanghaitech University +Xu Tang +Baidu +Weixin Luo, Shenghua Gao∗ +Shanghaitech University +{luowx,"
+30870ef75aa57e41f54310283c0057451c8c822b,Overcoming catastrophic forgetting with hard attention to the task,"Overcoming Catastrophic Forgetting with Hard Attention to the Task +Joan Serr`a 1 D´ıdac Sur´ıs 1 2 Marius Miron 1 3 Alexandros Karatzoglou 1"
+305346d01298edeb5c6dc8b55679e8f60ba97efb,Fine-Grained Face Annotation Using Deep Multi-Task CNN,"Article +Fine-Grained Face Annotation Using Deep +Multi-Task CNN +Luigi Celona * +, Simone Bianco +nd Raimondo Schettini +Department of Informatics, Systems and Communication, University of Milano-Bicocca, +viale Sarca, 336 Milano, Italy; (S.B.); (R.S.) +* Correspondence: +Received: 3 July 2018; Accepted: 13 August 2018; Published: 14 August 2018"
+309e17e6223e13b1f76b5b0eaa123b96ef22f51b,Face recognition based on a 3D morphable model,"Face Recognition based on a 3D Morphable Model +Volker Blanz +University of Siegen +H¤olderlinstr. 3 +57068 Siegen, Germany"
+3046baea53360a8c5653f09f0a31581da384202e,Deformable Face Alignment via Local Measurements and Global Constraints,"Deformable Face Alignment via Local +Measurements and Global Constraints +Jason M. Saragih"
+3028690d00bd95f20842d4aec84dc96de1db6e59,Leveraging Union of Subspace Structure to Improve Constrained Clustering,"Leveraging Union of Subspace Structure to Improve Constrained Clustering +John Lipor 1 Laura Balzano 1"
+30c96cc041bafa4f480b7b1eb5c45999701fe066,Discrete Cosine Transform Locality-Sensitive Hashes for Face Retrieval,"Discrete Cosine Transform Locality-Sensitive +Hashes for Face Retrieval +Mehran Kafai, Member, IEEE, Kave Eshghi, and Bir Bhanu, Fellow, IEEE"
+306957285fea4ce11a14641c3497d01b46095989,Face Recognition Under Varying Lighting Based on Derivates of Log Image,"FACE RECOGNITION UNDER VARYING LIGHTING BASED ON +DERIVATES OF LOG IMAGE +Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2 +ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing 100080, China +Graduate School, CAS, Beijing, 100039, China"
+307a810d1bf6f747b1bd697a8a642afbd649613d,An affordable contactless security system access for restricted area,"An affordable contactless security system access +for restricted area +Pierre Bonazza1, Johel Mitéran1, Barthélémy Heyrman1, Dominique Ginhac1, +Vincent Thivent2, Julien Dubois1 +Laboratory Le2i +University Bourgogne Franche-Comté, France +Odalid compagny, France +Contact +Keywords – Smart Camera, Real-time Image Processing, Biometrics, Face Detection, Face Verifica- +tion, EigenFaces, Support Vector Machine, +We present in this paper a security system based on +identity verification process and a low-cost smart cam- +era, intended to avoid unauthorized access to restricted +rea. The Le2i laboratory has a longstanding experi- +ence in smart cameras implementation and design [1], +for example in the case of real-time classical face de- +tection [2] or human fall detection [3]. +The principle of the system, fully thought and designed +in our laboratory, is as follows: the allowed user pre- +sents a RFID card to the reader based on Odalid system"
+302c9c105d49c1348b8f1d8cc47bead70e2acf08,Unconstrained Face Recognition Using A Set-to-Set Distance Measure,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2710120, IEEE +Transactions on Circuits and Systems for Video Technology +IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY +Unconstrained Face Recognition Using A Set-to-Set +Distance Measure +Jiaojiao Zhao, Jungong Han, and Ling Shao, Senior Member IEEE"
+301b0da87027d6472b98361729faecf6e1d5e5f6,Head Pose Estimation in Face Recognition Across Pose Scenarios,"HEAD POSE ESTIMATION IN FACE RECOGNITION ACROSS +POSE SCENARIOS +M. Saquib Sarfraz and Olaf Hellwich +Computer vision and Remote Sensing, Berlin university of Technology +Sekr. FR-3-1, Franklinstr. 28/29, D-10587, Berlin, Germany. +Keywords: +Pose estimation, facial pose, face recognition, local energy models, shape description, local features, head +pose classification."
+30b103d59f8460d80bb9eac0aa09aaa56c98494f,Enhancing Human Action Recognition with Region Proposals,"Enhancing Human Action Recognition with Region Proposals +Fahimeh Rezazadegan, Sareh Shirazi, Niko Sünderhauf, Michael Milford, Ben Upcroft +Australian Centre for Robotic Vision(ACRV), School of Electrical Engineering and Computer Science +Queensland University of Technology(QUT)"
+5e6f546a50ed97658be9310d5e0a67891fe8a102,Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?,"Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? +Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh +National Institute of Advanced Industrial Science and Technology (AIST) +Tsukuba, Ibaraki, Japan +{kensho.hara, hirokatsu.kataoka,"
+5e0eb34aeb2b58000726540336771053ecd335fc,Low-Quality Video Face Recognition with Deep Networks and Polygonal Chain Distance,"Low-Quality Video Face Recognition with Deep +Networks and Polygonal Chain Distance +Christian Herrmann∗†, Dieter Willersinn†, J¨urgen Beyerer†∗ +Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany +Fraunhofer IOSB, Karlsruhe, Germany"
+5e28673a930131b1ee50d11f69573c17db8fff3e,Descriptor Based Methods in the Wild,"Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : France +(2008)"""
+5ea9063b44b56d9c1942b8484572790dff82731e,Multiclass Support Vector Machines and Metric Multidimensional Scaling for Facial Expression Recognition,"MULTICLASS SUPPORT VECTOR MACHINES AND METRIC MULTIDIMENSIONAL +SCALING FOR FACIAL EXPRESSION RECOGNITION +Irene Kotsiay, Stefanos Zafeiriouy, Nikolaos Nikolaidisy and Ioannis Pitasy +yAristotle University of Thessaloniki, Department of Informatics +Thessaloniki, Greece +email: fekotsia, dralbert, nikolaid,"
+5e6ba16cddd1797853d8898de52c1f1f44a73279,Face Identification with Second-Order Pooling,"Face Identification with Second-Order Pooling +Fumin Shen, Chunhua Shen and Heng Tao Shen"
+5ec94adc9e0f282597f943ea9f4502a2a34ecfc2,Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach,"Leveraging the Power of Gabor Phase for Face +Identification: A Block Matching Approach +Yang Zhong, Haibo Li +KTH, Royal Institute of Technology"
+5b59e6b980d2447b2f3042bd811906694e4b0843,Two-stage cascade model for unconstrained face detection,"Two-stage Cascade Model for Unconstrained +Face Detection +Darijan Marčetić, Tomislav Hrkać, Slobodan Ribarić +University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia +{darijan.marcetic, tomislav.hrkac,"
+5bfc32d9457f43d2488583167af4f3175fdcdc03,Local Gray Code Pattern (LGCP): A Robust Feature Descriptor for Facial Expression Recognition,"International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 +Local Gray Code Pattern (LGCP): A Robust +Feature Descriptor for Facial Expression +Recognition +Mohammad Shahidul Islam +Atish Dipankar University of Science & Technology, School, Department of Computer Science and Engineering, Dhaka, Bangladesh."
+5ba7882700718e996d576b58528f1838e5559225,Predicting Personalized Image Emotion Perceptions in Social Networks,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2016.2628787, IEEE +Transactions on Affective Computing +IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, OCTOBER 2016 +Predicting Personalized Image Emotion +Perceptions in Social Networks +Sicheng Zhao, Hongxun Yao, Yue Gao, Senior Member, IEEE, Guiguang Ding and Tat-Seng Chua"
+5b6f0a508c1f4097dd8dced751df46230450b01a,Finding lost children,"Finding Lost Children +Ashley Michelle Eden +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2010-174 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-174.html +December 20, 2010"
+5bb684dfe64171b77df06ba68997fd1e8daffbe1,One-Sided Unsupervised Domain Mapping,
+5bae9822d703c585a61575dced83fa2f4dea1c6d,MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking,"MOTChallenge 2015: +Towards a Benchmark for Multi-Target Tracking +Laura Leal-Taix´e∗, Anton Milan∗, Ian Reid, Stefan Roth, and Konrad Schindler"
+5babbad3daac5c26503088782fd5b62067b94fa5,Are You Sure You Want To Do That? Classification with Verification,"Are You Sure You Want To Do That? +Classification with Verification +Harris Chan∗ +Atef Chaudhury∗ +Kevin Shen∗"
+5bb87c7462c6c1ec5d60bde169c3a785ba5ea48f,Targeting Ultimate Accuracy: Face Recognition via Deep Embedding,"Targeting Ultimate Accuracy: Face Recognition via Deep Embedding +Jingtuo Liu Yafeng Deng Tao Bai Zhengping Wei Chang Huang +Baidu Research – Institute of Deep Learning"
+5b9d9f5a59c48bc8dd409a1bd5abf1d642463d65,An evolving spatio-temporal approach for gender and age group classification with Spiking Neural Networks,"Evolving Systems. manuscript No. +(will be inserted by the editor) +An evolving spatio-temporal approach for gender and age +group classification with Spiking Neural Networks +Fahad Bashir Alvi, Russel Pears, Nikola Kasabov +Received: date / Accepted: date"
+5bf70c1afdf4c16fd88687b4cf15580fd2f26102,Residual Codean Autoencoder for Facial Attribute Analysis,"Accepted in Pattern Recognition Letters +Pattern Recognition Letters +journal homepage: www.elsevier.com +Residual Codean Autoencoder for Facial Attribute Analysis +Akshay Sethi, Maneet Singh, Richa Singh, Mayank Vatsa∗∗ +IIIT-Delhi, New Delhi, India +Article history: +Received 29 March 2017"
+5b721f86f4a394f05350641e639a9d6cb2046c45,Detection under Privileged Information,"A short version of this paper is accepted to ACM Asia Conference on Computer and Communications Security (ASIACCS) 2018 +Detection under Privileged Information (Full Paper)∗ +Z. Berkay Celik +Pennsylvania State University +Patrick McDaniel +Pennsylvania State University +Rauf Izmailov +Vencore Labs +Nicolas Papernot, +Ryan Sheatsley, Raquel Alvarez +Pennsylvania State University +Ananthram Swami +Army Research Laboratory"
+5be3cc1650c918da1c38690812f74573e66b1d32,Relative Parts: Distinctive Parts for Learning Relative Attributes,"Relative Parts: Distinctive Parts for Learning Relative Attributes +Ramachandruni N. Sandeep +Yashaswi Verma +C. V. Jawahar +Center for Visual Information Technology, IIIT Hyderabad, India - 500032"
+5b6bed112e722c0629bcce778770d1b28e42fc96,Can Your Eyes Tell Me How You Think? A Gaze Directed Estimation of the Mental Activity,"FLOREA ET AL.:CANYOUREYESTELLMEHOWYOUTHINK? +Can Your Eyes Tell Me How You Think? A +Gaze Directed Estimation of the Mental +Activity +Laura Florea +http://alpha.imag.pub.ro/common/staff/lflorea +Corneliu Florea +http://alpha.imag.pub.ro/common/staff/cflorea +Ruxandra Vrânceanu +Constantin Vertan +http://alpha.imag.pub.ro/common/staff/vertan +Image Processing and Analysis +Laboratory, LAPI +University “Politehnica” of Bucharest +Bucharest, Romania"
+37c8514df89337f34421dc27b86d0eb45b660a5e,Facial Landmark Tracking by Tree-Based Deformable Part Model Based Detector,"Facial Landmark Tracking by Tree-based Deformable Part Model +Based Detector +Michal Uˇriˇc´aˇr, Vojtˇech Franc, and V´aclav Hlav´aˇc +Center for Machine Perception, Department of Cybernetics +Faculty of Electrical Engineering, Czech Technical University in Prague +66 27 Prague 6, Technick´a 2, Czech Republic +{uricamic, xfrancv,"
+374c7a2898180723f3f3980cbcb31c8e8eb5d7af,Facial Expression Recognition in Videos using a Novel Multi-Class Support Vector Machines Variant,"FACIAL EXPRESSION RECOGNITION IN VIDEOS USING A NOVEL MULTI-CLASS +SUPPORT VECTOR MACHINES VARIANT +Irene Kotsiay, Nikolaos Nikolaidisy and Ioannis Pitasy +yAristotle University of Thessaloniki +Department of Informatics +Box 451, 54124 Thessaloniki, Greece"
+372fb32569ced35eaf3740a29890bec2be1869fa,Mu rhythm suppression is associated with the classification of emotion in faces.,"Running head: MU RHYTHM MODULATION BY CLASSIFICATION OF EMOTION 1 +Mu rhythm suppression is associated with the classification of emotion in faces +Matthew R. Moore1, Elizabeth A. Franz1 +Department of Psychology, University of Otago, Dunedin, New Zealand +Corresponding authors: +Matthew Moore & Liz Franz +Phone: +64 (3) 479 5269; Fax: +64 (3) 479 8335 +Department of Psychology +University of Otago +PO Box 56 +Dunedin, New Zealand"
+37f2e03c7cbec9ffc35eac51578e7e8fdfee3d4e,Co-operative Pedestrians Group Tracking in Crowded Scenes Using an MST Approach,"WACV 2015 Submission #394. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +Co-operative Pedestrians Group Tracking in Crowded Scenes using an MST +Approach +Anonymous WACV submission +Paper ID 394"
+3795974e24296185d9b64454cde6f796ca235387,Finding your Lookalike: Measuring Face Similarity Rather than Face Identity,"Finding your Lookalike: +Measuring Face Similarity Rather than Face Identity +Amir Sadovnik, Wassim Gharbi, Thanh Vu +Lafayette College +Easton, PA +Andrew Gallagher +Google Research +Mountain View, CA"
+37278ffce3a0fe2c2bbf6232e805dd3f5267eba3,Can we still avoid automatic face detection?,"Can we still avoid automatic face detection? +Michael J. Wilber1,2 +Vitaly Shmatikov1,2 +Serge Belongie1,2 +Department of Computer Science, Cornell University 2 Cornell Tech"
+377a1be5113f38297716c4bb951ebef7a93f949a,Facial emotion recognition with anisotropic inhibited Gabor energy histograms,"Dear Faculty, IGERT Fellows, IGERT Associates and Students, +You are cordially invited to attend a Seminar presented by Albert Cruz. Please +plan to attend. +Albert Cruz +IGERT Fellow +Electrical Engineering +Date: Friday, October 11, 2013 +Location: Bourns A265 +Time: 11:00am +Facial emotion recognition with anisotropic +inhibited gabor energy histograms"
+370e0d9b89518a6b317a9f54f18d5398895a7046,Cross-pollination of normalisation techniques from speaker to face authentication using Gaussian mixture models,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. X, NO. X, XXXXXXX 20XX +Cross-pollination of normalisation techniques +from speaker to face authentication +using Gaussian mixture models +Roy Wallace, Member, IEEE, Mitchell McLaren, Member, IEEE, Christopher McCool, Member, IEEE, +nd S´ebastien Marcel, Member, IEEE"
+37eb666b7eb225ffdafc6f318639bea7f0ba9a24,"Age, Gender and Race Estimation from Unconstrained Face Images","MSU Technical Report (2014): MSU-CSE-14-5 +Age, Gender and Race Estimation from +Unconstrained Face Images +Hu Han, Member, IEEE and Anil K. Jain, Fellow, IEEE"
+375435fb0da220a65ac9e82275a880e1b9f0a557,From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +From Pixels to Response Maps: Discriminative Image +Filtering for Face Alignment in the Wild +Akshay Asthana, Stefanos Zafeiriou, Georgios Tzimiropou- +los, Shiyang Cheng and Maja Pantic"
+37b6d6577541ed991435eaf899a2f82fdd72c790,Vision-based Human Gender Recognition: A Survey,"Vision-based Human Gender Recognition: A Survey +Choon Boon Ng, Yong Haur Tay, Bok Min Goi +Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia."
+370b5757a5379b15e30d619e4d3fb9e8e13f3256,Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,"Labeled Faces in the Wild: A Database for Studying +Face Recognition in Unconstrained Environments +Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller"
+08d2f655361335bdd6c1c901642981e650dff5ec,Automatic Cast Listing in Feature-Length Films with Anisotropic Manifold Space,"This is the published version: +Arandjelovic, Ognjen and Cipolla, R. 2006, Automatic cast listing in feature‐length films with +Anisotropic Manifold Space, in CVPR 2006 : Proceedings of the Computer Vision and Pattern +Recognition Conference 2006, IEEE, Piscataway, New Jersey, pp. 1513‐1520. +http://hdl.handle.net/10536/DRO/DU:30058435 +Reproduced with the kind permission of the copyright owner. +Copyright : 2006, IEEE +Available from Deakin Research Online:"
+08fbe3187f31b828a38811cc8dc7ca17933b91e9,Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Statistical Computations on Grassmann and +Stiefel Manifolds for Image and Video-Based +Recognition +Turaga, P.; Veeraraghavan, A.; Srivastava, A.; Chellappa, R. +TR2011-084 April 2011"
+08ae100805d7406bf56226e9c3c218d3f9774d19,Predicting the Sixteen Personality Factors (16PF) of an individual by analyzing facial features,"Gavrilescu and Vizireanu EURASIP Journal on Image and Video Processing (2017) 2017:59 +DOI 10.1186/s13640-017-0211-4 +EURASIP Journal on Image +nd Video Processing +R ES EAR CH +Predicting the Sixteen Personality Factors +(16PF) of an individual by analyzing facial +features +Mihai Gavrilescu* and Nicolae Vizireanu +Open Access"
+08c18b2f57c8e6a3bfe462e599a6e1ce03005876,A Least-Squares Framework for Component Analysis,"A Least-Squares Framework +for Component Analysis +Fernando De la Torre Member, IEEE,"
+08ff81f3f00f8f68b8abd910248b25a126a4dfa4,Symmetric Subspace Learning for Image Analysis,"Papachristou, K., Tefas, A., & Pitas, I. (2014). Symmetric Subspace Learning +5697. DOI: 10.1109/TIP.2014.2367321 +Peer reviewed version +Link to published version (if available): +0.1109/TIP.2014.2367321 +Link to publication record in Explore Bristol Research +PDF-document +This is the author accepted manuscript (AAM). The final published version (version of record) is available online +via Institute of Electrical and Electronic Engineers at http://dx.doi.org/10.1109/TIP.2014.2367321. Please refer to +ny applicable terms of use of the publisher. +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms"
+0861f86fb65aa915fbfbe918b28aabf31ffba364,An Efficient Facial Annotation with Machine Learning Approach,"International Journal of Computer Trends and Technology (IJCTT) – volume 22 Number 3–April 2015 +An Efficient Facial Annotation with Machine Learning Approach +A.Anusha,2R.Srinivas +Final M.Tech Student, 2Associate Professor +,2Dept of CSE ,Aditya Institute of Technology And Management, Tekkali, Srikakulam , Andhra Pradesh"
+080c204edff49bf85b335d3d416c5e734a861151,CLAD: A Complex and Long Activities Dataset with Rich Crowdsourced Annotations,"CLAD: A Complex and Long Activities +Dataset with Rich Crowdsourced +Annotations +Jawad Tayyub1, Majd Hawasly2∗, David C. Hogg1 and Anthony G. Cohn1 +Journal Title +XX(X):1–6 +(cid:13)The Author(s) 2016 +Reprints and permission: +sagepub.co.uk/journalsPermissions.nav +DOI: 10.1177/ToBeAssigned +www.sagepub.com/"
+08f4832507259ded9700de81f5fd462caf0d5be8,Geometric Approach for Human Emotion Recognition using Facial Expression,"International Journal of Computer Applications (0975 – 8887) +Volume 118 – No.14, May 2015 +Geometric Approach for Human Emotion +Recognition using Facial Expression +S. S. Bavkar +Assistant Professor +VPCOE Baramati +J. S. Rangole +Assistant Professor +VPCOE Baramati +V. U. Deshmukh +Assistant Professor +VPCOE Baramati"
+08d40ee6e1c0060d3b706b6b627e03d4b123377a,Towards Weakly-Supervised Action Localization,"Human Action Localization +with Sparse Spatial Supervision +Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid, Fellow, IEEE"
+088aabe3da627432fdccf5077969e3f6402f0a80,Classifier-to-generator Attack: Estimation,"Under review as a conference paper at ICLR 2018 +CLASSIFIER-TO-GENERATOR ATTACK: ESTIMATION +OF TRAINING DATA DISTRIBUTION FROM CLASSIFIER +Anonymous authors +Paper under double-blind review"
+08903bf161a1e8dec29250a752ce9e2a508a711c,Joint Dimensionality Reduction and Metric Learning: A Geometric Take,"Joint Dimensionality Reduction and Metric Learning: A Geometric Take +Mehrtash Harandi 1 2 Mathieu Salzmann 3 Richard Hartley 2 1"
+08e24f9df3d55364290d626b23f3d42b4772efb6,Enhancing facial expression classification by information fusion,"ENHANCING FACIAL EXPRESSION CLASSIFICATION BY INFORMATION +FUSION +I. Buciu1, Z. Hammal 2, A. Caplier2, N. Nikolaidis 1, and I. Pitas 1 +AUTH/Department of Informatics/ Aristotle University of Thessaloniki +phone: + 30(2310)99.6361, fax: + 30(2310)99.8453, email: +GR-54124, Thessaloniki, Box 451, Greece +Laboratoire des Images et des Signaux / Institut National Polytechnique de Grenoble +phone: + 33(0476)574363, fax: + 33(0476)57 47 90, email: +web: http://www.aiia.csd.auth.gr +8031 Grenoble, France +web: http://www.lis.inpg.fr"
+0857281a3b6a5faba1405e2c11f4e17191d3824d,Face recognition via edge-based Gabor feature representation for plastic surgery-altered images,"Chude-Olisah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:102 +http://asp.eurasipjournals.com/content/2014/1/102 +R ES EAR CH +Face recognition via edge-based Gabor feature +representation for plastic surgery-altered images +Chollette C Chude-Olisah1*, Ghazali Sulong1, Uche A K Chude-Okonkwo2 and Siti Z M Hashim1 +Open Access"
+08f6745bc6c1b0fb68953ea61054bdcdde6d2fc7,Understanding Kin Relationships in a Photo,"Understanding Kin Relationships in a Photo +Siyu Xia, Ming Shao, Student Member, IEEE, Jiebo Luo, Fellow, IEEE, and Yun Fu, Senior Member, IEEE"
+6dd052df6b0e89d394192f7f2af4a3e3b8f89875,A literature survey on Facial Expression Recognition using Global Features,"International Journal of Engineering and Advanced Technology (IJEAT) +ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +A literature survey on Facial Expression +Recognition using Global Features +Vaibhavkumar J. Mistry, Mahesh M. Goyani"
+6dd5dbb6735846b214be72983e323726ef77c7a9,A Survey on Newer Prospective Biometric Authentication Modalities,"Josai Mathematical Monographs +vol. 7 (2014), pp. 25-40 +A Survey on Newer Prospective +Biometric Authentication Modalities +Narishige Abe, Takashi Shinzaki"
+6d10beb027fd7213dd4bccf2427e223662e20b7d,User Adaptive and Context-Aware Smart Home Using Pervasive and Semantic Technologies,"Publishing CorporationJournal of Electrical and Computer EngineeringVolume 2016, Article ID 4789803, 20 pageshttp://dx.doi.org/10.1155/2016/4789803"
+6dddf1440617bf7acda40d4d75c7fb4bf9517dbb,"Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking","JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MM YY +Beyond Counting: Comparisons of Density Maps for Crowd +Analysis Tasks - Counting, Detection, and Tracking +Di Kang, Zheng Ma, Member, IEEE, Antoni B. Chan Senior Member, IEEE,"
+6d07e176c754ac42773690d4b4919a39df85d7ec,Face Attribute Prediction Using Off-The-Shelf Deep Learning Networks,"Face Attribute Prediction Using Off-The-Shelf Deep +Learning Networks +Yang Zhong +Josephine Sullivan +Haibo Li +Computer Science and Communication +KTH Royal Institute of Technology +00 44 Stockholm, Sweden +{yzhong, sullivan,"
+6d4b5444c45880517213a2fdcdb6f17064b3fa91,Harvesting Image Databases from The Web,"Journal of Information Engineering and Applications +ISSN 2224-5782 (print) ISSN 2225-0506 (online) +Vol 2, No.3, 2012 +www.iiste.org +Harvesting Image Databases from The Web +Snehal M. Gaikwad +G.H.Raisoni College of Engg. & Mgmt.,Pune,India +Snehal S. Pathare +G.H.Raisoni College of Engg. & Mgmt.,Pune,India +Trupti A. Jachak +G.H.Raisoni College of Engg. & Mgmt.,Pune,India"
+6d8c9a1759e7204eacb4eeb06567ad0ef4229f93,"Face Alignment Robust to Pose, Expressions and Occlusions","Face Alignment Robust to Pose, Expressions and +Occlusions +Vishnu Naresh Boddeti†, Myung-Cheol Roh†, Jongju Shin, Takaharu Oguri, Takeo Kanade"
+6d618657fa5a584d805b562302fe1090957194ba,Human Facial Expression Recognition based on Principal Component Analysis and Artificial Neural Network,"Full Paper +NNGT Int. J. of Artificial Intelligence , Vol. 1, July 2014 +Human Facial Expression Recognition based +on Principal Component Analysis and +Artificial Neural Network +Laboratory of Automatic and Signals Annaba (LASA) , Department of electronics, Faculty of Engineering, +Zermi.Narima, Ramdani.M, Saaidia.M +Badji-Mokhtar University, P.O.Box 12, Annaba-23000, Algeria. +E-Mail :"
+6d66c98009018ac1512047e6bdfb525c35683b16,Face Recognition Based on Fitting a 3D Morphable Model,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003 +Face Recognition Based on +Fitting a 3D Morphable Model +Volker Blanz and Thomas Vetter, Member, IEEE"
+0172867f4c712b33168d9da79c6d3859b198ed4c,Expression and illumination invariant preprocessing technique for Face Recognition,"Technique for Face Recognition +Computer and System Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt +A. Abbas, M. I. Khalil, S. Abdel-Hay, H. M. Fahmy +Expression and Illumination Invariant Preprocessing"
+0145dc4505041bf39efa70ea6d95cf392cfe7f19,Human action segmentation with hierarchical supervoxel consistency,"Human Action Segmentation with Hierarchical Supervoxel Consistency +Jiasen Lu1, Ran Xu1 Jason J. Corso2 +Department of Computer Science and Engineering, SUNY at Buffalo. 2Department of EECS, University of Michigan. +Detailed analysis of human action, such as classification, detection and lo- +alization has received increasing attention from the community; datasets +like J-HMDB [1] have made it plausible to conduct studies analyzing the +impact that such deeper information has on the greater action understanding +problem. However, detailed automatic segmentation of human action has +omparatively been unexplored. In this paper, we introduce a hierarchical +MRF model to automatically segment human action boundaries in videos +“in-the-wild” (see Fig. 1). +We first propose a human motion saliency representation which incor- +porates two parts: foreground motion and human appearance information. +For foreground motion estimation, we propose a new motion saliency fea- +ture by using long-term trajectories to build a camera motion model, and +then measure the motion saliency via the deviation from the camera model. +For human appearance information, we use a DPM person detector trained +on PASCAL VOC 2007 and construct a saliency map by averaging the nor- +malized detection score of all the scale and all components. +Then, to segment the human action, we start by applying hierarchical"
+01bef320b83ac4405b3fc5b1cff788c124109fb9,Translating Head Motion into Attention - Towards Processing of Student's Body-Language,"de Lausanne +RLC D1 740, CH-1015 +Lausanne +de Lausanne +RLC D1 740, CH-1015 +Lausanne +de Lausanne +RLC D1 740, CH-1015 +Lausanne +Translating Head Motion into Attention - Towards +Processing of Student’s Body-Language +Mirko Raca +CHILI Laboratory +Łukasz Kidzi´nski +CHILI Laboratory +Pierre Dillenbourg +CHILI Laboratory +École polytechnique fédérale +École polytechnique fédérale +École polytechnique fédérale"
+01c8d7a3460422412fba04e7ee14c4f6cdff9ad7,Rule Based System for Recognizing Emotions Using Multimodal Approach,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 4, No. 7, 2013 +Rule Based System for Recognizing Emotions Using +Multimodal Approach +Preeti Khanna +Information System +SBM, SVKM’s NMIMS +Mumbai, India"
+0163d847307fae508d8f40ad193ee542c1e051b4,Classemes and Other Classifier-Based Features for Efficient Object Categorization,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 +Classemes and Other Classifier-based +Features for Efficient Object Categorization +- Supplementary material - +Alessandro Bergamo, and Lorenzo Torresani, Member, IEEE +LOW-LEVEL FEATURES +We extract the SIFT [1] features for our descriptor +ccording to the following pipeline. We first convert +each image to gray-scale, then we normalize the con- +trast by forcing the 0.01% of lightest and darkest pixels +to be mapped to white and black respectively, and +linearly rescaling the values in between. All images +exceeding 786,432 pixels of resolution are downsized +to this maximum value while keeping the aspect ratio. +The 128-dimensional SIFT descriptors are computed +from the interest points returned by a DoG detec- +tor [2]. We finally compute a Bag-Of-Word histogram +of these descriptors, using a K-means vocabulary of +500 words. +CLASSEMES"
+01c4cf9c7c08f0ad3f386d88725da564f3c54679,Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV),"Interpretability Beyond Feature Attribution: +Quantitative Testing with Concept Activation Vectors (TCAV) +Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler +Fernanda Viegas Rory Sayres"
+017ce398e1eb9f2eed82d0b22fb1c21d3bcf9637,Face Recognition with Harmonic De-lighting,"FACE RECOGNITION WITH HARMONIC DE-LIGHTING +Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2 +ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +Graduate School, CAS, Beijing, China, 100080 +Emails: {lyqing, sgshan, wgao}jdl.ac.cn"
+014e3d0fa5248e6f4634dc237e2398160294edce,What does 2D geometric information really tell us about 3D face shape?,"Int J Comput Vis manuscript No. +(will be inserted by the editor) +What does 2D geometric information really tell us about +D face shape? +Anil Bas1 · William A. P. Smith1 +Received: date / Accepted: date"
+011e6146995d5d63c852bd776f782cc6f6e11b7b,Fast Training of Triplet-Based Deep Binary Embedding Networks,"Fast Training of Triplet-based Deep Binary Embedding Networks +Bohan Zhuang, Guosheng Lin, Chunhua Shen∗, Ian Reid +The University of Adelaide; and Australian Centre for Robotic Vision"
+0181fec8e42d82bfb03dc8b82381bb329de00631,Discriminative Subspace Clustering,"Discriminative Subspace Clustering +Vasileios Zografos∗1, Liam Ellis†1, and Rudolf Mester‡1 2 +CVL, Dept. of Electrical Engineering, Link¨oping University, Link¨oping, Sweden +VSI Lab, Computer Science Department, Goethe University, Frankfurt, Germany"
+0113b302a49de15a1d41ca4750191979ad756d2f,Matching Faces with Textual Cues in Soccer Videos,"424403677/06/$20.00 ©2006 IEEE +ICME 2006"
+0601416ade6707c689b44a5bb67dab58d5c27814,Feature Selection in Face Recognition: A Sparse Representation Perspective,"Feature Selection in Face Recognition: A Sparse +Representation Perspective +Allan Y. Yang +John Wright +Yi Ma +S. Shankar Sastry +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2007-99 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-99.html +August 14, 2007"
+064b797aa1da2000640e437cacb97256444dee82,Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression,"Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression +Zhiao Huang +Megvii Inc. +Erjin Zhou +Megvii Inc. +Zhimin Cao +Megvii Inc."
+06f146dfcde10915d6284981b6b84b85da75acd4,Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords,"Scalable Face Image Retrieval using +Attribute-Enhanced Sparse Codewords +Bor-Chun Chen, Yan-Ying Chen, Yin-Hsi Kuo, Winston H. Hsu"
+0697bd81844d54064d992d3229162fe8afcd82cb,User-driven mobile robot storyboarding: Learning image interest and saliency from pairwise image comparisons,"User-driven mobile robot storyboarding: Learning image interest and +saliency from pairwise image comparisons +Michael Burke1"
+06262d6beeccf2784e4e36a995d5ee2ff73c8d11,Recognize Actions by Disentangling Components of Dynamics,"Recognize Actions by Disentangling Components of Dynamics +Yue Zhao1, Yuanjun Xiong1,2, and Dahua Lin1 +CUHK - SenseTime Joint Lab, The Chinese University of Hong Kong 2Amazon Rekognition"
+06d93a40365da90f30a624f15bf22a90d9cfe6bb,Learning from Candidate Labeling Sets,"Learning from Candidate Labeling Sets +Idiap Research Institute and EPF Lausanne +Luo Jie +Francesco Orabona +DSI, Universit`a degli Studi di Milano"
+06e7e99c1fdb1da60bc3ec0e2a5563d05b63fe32,WhittleSearch: Image search with relative attribute feedback,"WhittleSearch: Image Search with Relative Attribute Feedback +Adriana Kovashka, Devi Parikh and Kristen Grauman +(Supplementary Material) +Comparative Qualitative Search Results +We present three qualitative search results for human-generated feedback, in addition to those +shown in the paper. Each example shows one search iteration, where the 20 reference images are +randomly selected (rather than ones that match a keyword search, as the image examples in the +main paper illustrate). For each result, the first figure shows our method and the second figure +shows the binary feedback result for the corresponding target image. Note that for our method, +“more/less X” (where X is an attribute) means that the target image is more/less X than the +reference image which is shown. +Figures 1 and 2 show results for human-generated relative attribute and binary feedback, re- +spectively, when both methods are used to target the same “mental image” of a shoe shown in the +top left bubble. The top right grid of 20 images are the reference images displayed to the user, and +those outlined and annotated with constraints are the ones chosen by the user to give feedback. +The bottom row of images in either figure shows the top-ranked images after integrating the user’s +feedback into the scoring function, revealing the two methods’ respective performance. We see that +while both methods retrieve high-heeled shoes, only our method retrieves images that are as “open” +s the target image. This is because using the proposed approach, the user was able to comment +explicitly on the desired openness property."
+066d71fcd997033dce4ca58df924397dfe0b5fd1,Iranian Face Database and Evaluation with a New Detection Algorithm,"(cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:4)(cid:6)(cid:7)(cid:3)(cid:8)(cid:9)(cid:6)(cid:10)(cid:3)(cid:11)(cid:3)(cid:12)(cid:3)(cid:13)(cid:9) +(cid:3)(cid:4)(cid:14)(cid:6)(cid:15)(cid:16)(cid:3)(cid:17)(cid:18)(cid:3)(cid:11)(cid:5)(cid:19)(cid:4) (cid:20)(cid:5)(cid:11)(cid:21)(cid:6)(cid:3)(cid:6)(cid:22)(cid:9)(cid:20)(cid:6)(cid:10)(cid:9)(cid:11)(cid:9)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4)(cid:6)(cid:23)(cid:17)(cid:24)(cid:19)(cid:2)(cid:5)(cid:11)(cid:21)(cid:25) +(cid:26)(cid:11)(cid:5)(cid:8)(cid:17)(cid:6)(cid:27)(cid:1)(cid:9)(cid:22)(cid:8)(cid:18)(cid:1)(cid:28)(cid:12)(cid:6)(cid:29)(cid:4)(cid:20)(cid:11)(cid:6)(cid:24)(cid:30)(cid:1)(cid:15)(cid:25)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)!(cid:8) (cid:8)(cid:6)(cid:4)(cid:1)""(cid:16)(cid:8)(cid:16)(cid:20)(cid:14)(cid:1)(cid:3)(cid:15)(cid:8)(cid:22)(cid:4)(cid:12)(cid:1)(cid:23)(cid:5)(cid:29)(cid:18)(cid:14)(cid:1)(cid:31)(cid:8)(cid:20)(cid:8) (cid:14)(cid:1)(cid:26)!(cid:9)(cid:13)(cid:14)(cid:1)#(cid:17)(cid:8)(cid:6)(cid:5)$(cid:1)(cid:17)(cid:4)(cid:5)%(cid:8)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)&(cid:30)(cid:8)(cid:16)(cid:15)(cid:15)(cid:21)(cid:27)(cid:15)(cid:17) +(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:10)(cid:8)(cid:11)(cid:6)(cid:8)(cid:12)(cid:1)(cid:13)(cid:6)(cid:7)(cid:14) (cid:3)(cid:15)(cid:16)(cid:8)(cid:17)(cid:17)(cid:8)(cid:18)(cid:1)(cid:3)(cid:8)(cid:16)(cid:18)(cid:6)(cid:1)(cid:19)(cid:4)(cid:16)(cid:11)(cid:16)(cid:6)(cid:10)(cid:6)(cid:14)(cid:1)(cid:19)(cid:20)(cid:21)(cid:1)(cid:9)(cid:22)(cid:8)(cid:17)(cid:1)(cid:23)(cid:8)(cid:11)(cid:24)(cid:8)(cid:12)(cid:25)(cid:8)(cid:20)(cid:18) +(cid:23)(cid:12)(cid:13)(cid:11)(cid:2)(cid:3)(cid:8)(cid:11)$(cid:1)’(cid:16)(cid:6)(cid:11) ((cid:8)((cid:4)(cid:20)(cid:1)(cid:6)(cid:12)(cid:24)(cid:20)(cid:15)(cid:18))(cid:27)(cid:4)(cid:11)(cid:1)(cid:8)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:15)(cid:25)(cid:1)(cid:15)(cid:29)(cid:4)(cid:20)(cid:1)*(cid:14)+,,(cid:1)(cid:27)(cid:15)(cid:5)(cid:15)(cid:20)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1).(cid:4)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:4)(cid:18)(cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)+(cid:2)+(cid:1)(cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1)(cid:16))(cid:17)(cid:8)(cid:12)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:11) (cid:6)(cid:12)(cid:1)(cid:8)-(cid:4)(cid:11)(cid:1)(cid:10)(cid:4)(cid:24).(cid:4)(cid:4)(cid:12)(cid:1)/ +(cid:8)(cid:12)(cid:18) 01(cid:21)(cid:1)2(cid:4)(cid:1)(cid:12)(cid:8)(cid:17)(cid:4)(cid:18)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:26)(cid:20)(cid:8)(cid:12)(cid:6)(cid:8)(cid:12)(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)4(cid:26)3(cid:19)(cid:23)5(cid:21)(cid:1)’(cid:15)(cid:1)(cid:4)(cid:29)(cid:8)(cid:5))(cid:8)(cid:24)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:24)(cid:16)(cid:4)(cid:1)(cid:4)6((cid:4)(cid:20)(cid:6)(cid:17)(cid:4)(cid:12)(cid:24)(cid:8)(cid:5)(cid:1)(cid:20)(cid:4)(cid:11))(cid:5)(cid:24)(cid:1)(cid:15)(cid:25)(cid:1)(cid:8)(cid:1)(cid:12)(cid:4).(cid:1)(cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) +(cid:25)(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:18)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:8)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:1)(cid:6)(cid:11)(cid:1)(cid:20)(cid:4)((cid:15)(cid:20)(cid:24)(cid:4)(cid:18)(cid:21) +(cid:26)(cid:9)(cid:27) (cid:28)(cid:19)(cid:2)(cid:14)(cid:13)$(cid:1)3(cid:8)(cid:27)(cid:4)(cid:1)(cid:26)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:19)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:14)(cid:1)3(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1)3(cid:4)(cid:8)(cid:24))(cid:20)(cid:4)(cid:1)(cid:19)(cid:4)(cid:24)(cid:4)(cid:27)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:9)(cid:5)-(cid:15)(cid:20)(cid:6)(cid:24)(cid:16)(cid:17)(cid:11)(cid:14)(cid:1)(cid:9)-(cid:4)(cid:1)7(cid:5)(cid:8)(cid:11)(cid:11)(cid:6)(cid:25)(cid:6)(cid:27)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:21) +(cid:29) (cid:1)(cid:4)(cid:11)(cid:2)(cid:19)(cid:14)(cid:18)(cid:8)(cid:11)(cid:5)(cid:19)(cid:4) +8)(cid:17)(cid:8)(cid:12)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:6)(cid:11)(cid:1) (cid:24)(cid:16)(cid:4)(cid:1) (cid:17)(cid:15)(cid:11)(cid:24)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) )(cid:11)(cid:4)(cid:25))(cid:5)(cid:1) (cid:7)(cid:4)(cid:30)(cid:1) (cid:24)(cid:15)(cid:1) (cid:8)(cid:1) +((cid:4)(cid:20)(cid:11)(cid:15)(cid:12)9(cid:11)(cid:1) (cid:6)(cid:18)(cid:4)(cid:12)(cid:24)(cid:6)(cid:24)(cid:30)(cid:21)(cid:1) (cid:9)(cid:11)(cid:1) (cid:16))(cid:17)(cid:8)(cid:12)(cid:11)(cid:14)(cid:1) .(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:24)(cid:15)(cid:1) (cid:27)(cid:8)(cid:24)(cid:4)-(cid:15)(cid:20)(cid:6)(cid:22)(cid:4)(cid:1) (cid:8)(cid:1) +((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:8)-(cid:4)(cid:1)-(cid:20)(cid:15))((cid:1)(cid:25)(cid:20)(cid:15)(cid:17)(cid:1)(cid:8)(cid:1)((cid:4)(cid:20)(cid:11)(cid:15)(cid:12):(cid:11)(cid:1)(cid:25)(cid:8)(cid:27)(cid:4)(cid:1)(cid:6)(cid:17)(cid:8)-(cid:4)(cid:1)(cid:8)(cid:12)(cid:18)(cid:1)(cid:8)(cid:20)(cid:4)(cid:1)(cid:15)(cid:25)(cid:24)(cid:4)(cid:12)(cid:1) +(cid:8)(cid:10)(cid:5)(cid:4)(cid:1)(cid:24)(cid:15)(cid:1)(cid:10)(cid:4)(cid:1);)(cid:6)(cid:24)(cid:4)(cid:1)((cid:20)(cid:4)(cid:27)(cid:6)(cid:11)(cid:4)(cid:1)(cid:6)(cid:12)(cid:1)(cid:24)(cid:16)(cid:6)(cid:11)(cid:1)(cid:4)(cid:11)(cid:24)(cid:6)(cid:17)(cid:8)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)<(cid:2)=(cid:21)(cid:1)(cid:26)(cid:12)(cid:1)(cid:20)(cid:4)(cid:27)(cid:4)(cid:12)(cid:24)(cid:1)(cid:30)(cid:4)(cid:8)(cid:20)(cid:11)(cid:14)(cid:1) +(cid:25)(cid:8)(cid:27)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:8)(cid:12)(cid:18)(cid:1) (cid:20)(cid:4)(cid:5)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1) .(cid:15)(cid:20)(cid:7)(cid:11)(cid:1) (cid:16)(cid:8)(cid:29)(cid:4)(cid:1) (cid:20)(cid:4)(cid:27)(cid:4)(cid:6)(cid:29)(cid:4)(cid:18)(cid:1) (cid:11))(cid:10)(cid:11)(cid:24)(cid:8)(cid:12)(cid:24)(cid:6)(cid:8)(cid:5)(cid:1) +(cid:8)(cid:24)(cid:24)(cid:4)(cid:12)(cid:24)(cid:6)(cid:15)(cid:12)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) (cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1) (cid:6)(cid:12)(cid:1) (cid:10)(cid:6)(cid:15)(cid:17)(cid:4)(cid:24)(cid:20)(cid:6)(cid:27)(cid:11)(cid:14)(cid:1) ((cid:8)(cid:24)(cid:24)(cid:4)(cid:20)(cid:12)(cid:1) (cid:20)(cid:4)(cid:27)(cid:15)-(cid:12)(cid:6)(cid:24)(cid:6)(cid:15)(cid:12)(cid:14)(cid:1) +(cid:8)(cid:12)(cid:18)(cid:1) (cid:27)(cid:15)(cid:17)()(cid:24)(cid:4)(cid:20) (cid:29)(cid:6)(cid:11)(cid:6)(cid:15)(cid:12)(cid:1) (cid:27)(cid:15)(cid:17)(cid:17))(cid:12)(cid:6)(cid:24)(cid:6)(cid:4)(cid:11)(cid:1) </(cid:14)(cid:1) *(cid:14)(cid:1) > (cid:8)(cid:12)(cid:18) 1=(cid:21)(cid:1) ’(cid:16)(cid:4)(cid:11)(cid:4)(cid:1) +(cid:27)(cid:15)(cid:17)(cid:17)(cid:15)(cid:12)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:20)(cid:4)(cid:11)(cid:24)(cid:11)(cid:1)(cid:8)(cid:17)(cid:15)(cid:12)-(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:1)(cid:17)(cid:15)(cid:24)(cid:6)(cid:29)(cid:8)(cid:24)(cid:4)(cid:18)(cid:1))(cid:11)(cid:1)(cid:24)(cid:15)(cid:1)(cid:27)(cid:15)(cid:5)(cid:5)(cid:4)(cid:27)(cid:24)(cid:1)(cid:8)(cid:1) +(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1) (cid:15)(cid:25)(cid:1) (cid:25)(cid:8)(cid:27)(cid:6)(cid:8)(cid:5)(cid:1) (cid:6)(cid:17)(cid:8)-(cid:4)(cid:11)(cid:1) (cid:25)(cid:20)(cid:15)(cid:17)(cid:1) ((cid:4)(cid:15)((cid:5)(cid:4)(cid:1) (cid:6)(cid:12)(cid:1) (cid:18)(cid:6)(cid:25)(cid:25)(cid:4)(cid:20)(cid:4)(cid:12)(cid:24)(cid:1) (cid:8)-(cid:4)(cid:11)(cid:21) ’(cid:16)(cid:4)(cid:1) +(cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:1)(cid:6)(cid:11)(cid:1)(cid:6)(cid:12)(cid:24)(cid:4)(cid:12)(cid:18)(cid:4)(cid:18)(cid:1)(cid:25)(cid:15)(cid:20)(cid:1)(cid:18)(cid:6)(cid:11)(cid:24)(cid:20)(cid:6)(cid:10))(cid:24)(cid:6)(cid:15)(cid:12)(cid:1)(cid:24)(cid:15)(cid:1)(cid:20)(cid:4)(cid:11)(cid:4)(cid:8)(cid:20)(cid:27)(cid:16)(cid:4)(cid:20)(cid:11)(cid:21) +’(cid:16)(cid:4)(cid:20)(cid:4)(cid:1) (cid:8)(cid:20)(cid:4)(cid:1) (cid:17)(cid:8)(cid:12)(cid:30)(cid:1) ()(cid:10)(cid:5)(cid:6)(cid:27)(cid:8)(cid:5)(cid:5)(cid:30)(cid:1) (cid:8)(cid:29)(cid:8)(cid:6)(cid:5)(cid:8)(cid:10)(cid:5)(cid:4)(cid:1) (cid:18)(cid:8)(cid:24)(cid:8)(cid:10)(cid:8)(cid:11)(cid:4)(cid:11)(cid:1) (cid:25)(cid:15)(cid:20)(cid:1) (cid:25)(cid:8)(cid:27)(cid:4)(cid:1)"
+06560d5721ecc487a4d70905a485e22c9542a522,Deep Facial Attribute Detection in the Wild: From General to Specific,"SUN, YU: DEEP FACIAL ATTRIBUTE DETECTION IN THE WILD +Deep Facial Attribute Detection in the Wild: +From General to Specific +Yuechuan Sun +Jun Yu +Department of Automation +University of Science and Technology +of China +Hefei, China"
+06fe63b34fcc8ff68b72b5835c4245d3f9b8a016,Learning semantic representations of objects and their parts,"Mach Learn +DOI 10.1007/s10994-013-5336-9 +Learning semantic representations of objects +nd their parts +Grégoire Mesnil · Antoine Bordes · Jason Weston · +Gal Chechik · Yoshua Bengio +Received: 24 May 2012 / Accepted: 26 February 2013 +© The Author(s) 2013"
+06aab105d55c88bd2baa058dc51fa54580746424,Image Set-Based Collaborative Representation for Face Recognition,"Image Set based Collaborative Representation for +Face Recognition +Pengfei Zhu, Student Member, IEEE, Wangmeng Zuo, Member, IEEE, Lei Zhang, Member, IEEE, Simon C.K. Shiu, +Member, IEEE, David Zhang, Fellow, IEEE"
+06262d14323f9e499b7c6e2a3dec76ad9877ba04,Real-Time Pose Estimation Piggybacked on Object Detection,"Real-Time Pose Estimation Piggybacked on Object Detection +Roman Jur´anek, Adam Herout, Mark´eta Dubsk´a, Pavel Zemˇc´ık +Brno University of Technology +Brno, Czech Republic"
+062c41dad67bb68fefd9ff0c5c4d296e796004dc,Temporal Generative Adversarial Nets with Singular Value Clipping,"Temporal Generative Adversarial Nets with Singular Value Clipping +Masaki Saito∗ +Eiichi Matsumoto∗ +Preferred Networks inc., Japan +{msaito, matsumoto, +Shunta Saito"
+06400a24526dd9d131dfc1459fce5e5189b7baec,Event Recognition in Photo Collections with a Stopwatch HMM,"Event Recognition in Photo Collections with a Stopwatch HMM +Lukas Bossard1 +Matthieu Guillaumin1 +Luc Van Gool1,2 +Computer Vision Lab +ETH Z¨urich, Switzerland +ESAT, PSI-VISICS +K.U. Leuven, Belgium"
+0694b05cbc3ef5d1c5069a4bfb932a5a7b4d5ff0,Exploiting Local Class Information in Extreme Learning Machine,"Iosifidis, A., Tefas, A., & Pitas, I. (2014). Exploiting Local Class Information +in Extreme Learning Machine. Paper presented at International Joint +Conference on Computational Intelligence (IJCCI), Rome, Italy. +Peer reviewed version +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms"
+060820f110a72cbf02c14a6d1085bd6e1d994f6a,Fine-grained classification of pedestrians in video: Benchmark and state of the art,"Fine-Grained Classification of Pedestrians in Video: Benchmark and State of the Art +David Hall and Pietro Perona +California Institute of Technology. +The dataset was labelled with bounding boxes, tracks, pose and fine- +grained labels. To achieve this, crowdsourcing, using workers from Ama- +zon’s Mechanical Turk (MTURK) was used. A summary of the dataset’s +statistics can be found in Table 1. +Number of Frames Sent to MTURK +Number of Frames with at least 1 Pedestrian +Number of Bounding Box Labels +Number of Pose Labels +Number of Tracks +8,708 +0,994 +2,457 +7,454 +,222 +Table 1: Dataset Statistics +A state-of-the-art algorithm for fine-grained classification was tested us- +ing the dataset. The results are reported as a useful performance baseline."
+063a3be18cc27ba825bdfb821772f9f59038c207,The development of spontaneous facial responses to others’ emotions in infancy: An EMG study,"This is a repository copy of The development of spontaneous facial responses to others’ +emotions in infancy. An EMG study. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/125231/ +Version: Published Version +Article: +Kaiser, Jakob, Crespo-Llado, Maria Magdalena, Turati, Chiara et al. (1 more author) +(2017) The development of spontaneous facial responses to others’ emotions in infancy. +An EMG study. Scientific Reports. ISSN 2045-2322 +https://doi.org/10.1038/s41598-017-17556-y +Reuse +This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +uthors for the original work. More information and the full terms of the licence here: +https://creativecommons.org/licenses/ +Takedown +If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +emailing including the URL of the record and the reason for the withdrawal request. +https://eprints.whiterose.ac.uk/"
+06ad99f19cf9cb4a40741a789e4acbf4433c19ae,SenTion: A framework for Sensing Facial Expressions,"SenTion: A framework for Sensing Facial +Expressions +Rahul Islam∗, Karan Ahuja∗, Sandip Karmakar∗, Ferdous Barbhuiya∗ ∗IIIT Guwahati +{rahul.islam, karan.ahuja, sandip,"
+6c27eccf8c4b22510395baf9f0d0acc3ee547862,Using CMU PIE Human Face Database to a Convolutional Neural Network - Neocognitron,"Using CMU PIE Human Face Database to a +Convolutional Neural Network - Neocognitron +José Hiroki Saito1, Tiago Vieira de Carvalho1, Marcelo Hirakuri1, André Saunite1, +Alessandro Noriaki Ide2 and Sandra Abib1 +- Federal University of São Carlos - Computer Science Department - GAPIS +Rodovia Washington Luis, Km 235, São Carlos – SP - Brazil +- University of Genoa - Department of Informatics, Systems and Telematics - Neurolab +Via Opera Pia, 13 – I-16145 – Genoa - Italy"
+6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,"Privacy-Preserving Deep Inference for Rich User +Data on The Cloud +Seyed Ali Osia ♯, Ali Shahin Shamsabadi ♯, Ali Taheri ♯, Kleomenis Katevas ⋆, +Hamid R. Rabiee ♯, Nicholas D. Lane †, Hamed Haddadi ⋆ +♯ Sharif University of Technology +⋆ Queen Mary University of London +Nokia Bell Labs & University of Oxford"
+6c304f3b9c3a711a0cca5c62ce221fb098dccff0,Attentive Semantic Video Generation Using Captions,"Attentive Semantic Video Generation using Captions +Tanya Marwah∗ +IIT Hyderabad +Gaurav Mittal∗ +Vineeth N. Balasubramanian +IIT Hyderabad"
+6cb7648465ba7757ecc9c222ac1ab6402933d983,Visual Forecasting by Imitating Dynamics in Natural Sequences,"Visual Forecasting by Imitating Dynamics in Natural Sequences +Kuo-Hao Zeng†‡ William B. Shen† De-An Huang† Min Sun‡ Juan Carlos Niebles† +{khzeng, bshen88, dahuang, +Stanford University ‡National Tsing Hua University"
+6c2b392b32b2fd0fe364b20c496fcf869eac0a98,Fully automatic face recognition framework based on local and global features,"DOI 10.1007/s00138-012-0423-7 +ORIGINAL PAPER +Fully automatic face recognition framework based +on local and global features +Cong Geng · Xudong Jiang +Received: 30 May 2011 / Revised: 21 February 2012 / Accepted: 29 February 2012 / Published online: 22 March 2012 +© Springer-Verlag 2012"
+6cddc7e24c0581c50adef92d01bb3c73d8b80b41,Face Verification Using the LARK Representation,"Face Verification Using the LARK +Representation +Hae Jong Seo, Student Member, IEEE, Peyman Milanfar, Fellow, IEEE,"
+6cfc337069868568148f65732c52cbcef963f79d,Audio-Visual Speaker Localization via Weighted Clustering Israel -,"Audio-Visual Speaker Localization via Weighted +Clustering +Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes +To cite this version: +Israel-Dejene Gebru, Xavier Alameda-Pineda, Radu Horaud, Florence Forbes. Audio-Visual Speaker +Localization via Weighted Clustering. IEEE Workshop on Machine Learning for Signal Processing, +Sep 2014, Reims, France. pp.1-6, 2014, <10.1109/MLSP.2014.6958874>. <hal-01053732> +HAL Id: hal-01053732 +https://hal.archives-ouvertes.fr/hal-01053732 +Submitted on 11 Aug 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de"
+6cd96f2b63c6b6f33f15c0ea366e6003f512a951,A New Approach in Solving Illumination and Facial Expression Problems for Face Recognition,"A New Approach in Solving Illumination and Facial Expression Problems +for Face Recognition +Yee Wan Wong, Kah Phooi Seng, Li-Minn Ang +The University of Nottingham Malaysia Campus +Tel : 03-89248358, Fax : 03-89248017 +E-mail : +Jalan Broga +3500 Semenyih, Selangor"
+6c8c7065d1041146a3604cbe15c6207f486021ba,Attention Modeling for Face Recognition via Deep Learning,"Attention Modeling for Face Recognition via Deep Learning +Sheng-hua Zhong +Department of Computing, Hung Hom, Kowloon +Hong Kong, 999077 CHINA +Yan Liu +Department of Computing, Hung Hom, Kowloon +Hong Kong, 99907 CHINA +Yao Zhang +Department of Computing, Hung Hom, Kowloon +Hong Kong, 99907 CHINA +Fu-lai Chung +Department of Computing, Hung Hom, Kowloon +Hong Kong, 99907 CHINA"
+390f3d7cdf1ce127ecca65afa2e24c563e9db93b,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face +Alignment with Auxiliary Attributes +Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE"
+39ed31ced75e6151dde41944a47b4bdf324f922b,Pose-Guided Photorealistic Face Rotation,"Pose-Guided Photorealistic Face Rotation +Yibo Hu1,2, Xiang Wu1, Bing Yu3, Ran He1,2 ∗, Zhenan Sun1,2 +CRIPAC & NLPR & CEBSIT, CASIA 2University of Chinese Academy of Sciences +Noah’s Ark Laboratory, Huawei Technologies Co., Ltd. +{yibo.hu, {rhe,"
+3918b425bb9259ddff9eca33e5d47bde46bd40aa,Learning Language from Ambiguous Perceptual Context,"Copyright +David Lieh-Chiang Chen"
+3998c5aa6be58cce8cb65a64cb168864093a9a3e,Understanding head and hand activities and coordination in naturalistic driving videos,Intelligent Vehicles Symposium 2014
+39dc2ce4cce737e78010642048b6ed1b71e8ac2f,Recognition of six basic facial expressions by feature-points tracking using RBF neural network and fuzzy inference system,"Recognition of Six Basic Facial Expressions by Feature-Points Tracking using +RBF Neural Network and Fuzzy Inference System +Hadi Seyedarabi*, Ali Aghagolzadeh **, Sohrab Khanmohammadi ** +*Islamic Azad University of AHAR +**Elect. Eng. Faculty, Tabriz University, Tabriz, Iran"
+396a19e29853f31736ca171a3f40c506ef418a9f,Real World Real-time Automatic Recognition of Facial Expressions,"Real World Real-time Automatic Recognition of Facial Expressions +Ying-li Tian Lisa Brown Arun Hampapur Sharat Pankanti Andrew Senior and Ruud Bolle +Exploratory Computer Vision Group, IBM T. J. Watson Research Center +PO Box 704, Yorktown Heights, NY 10598"
+39c8b34c1b678235b60b648d0b11d241a34c8e32,Learning to Deblur Images with Exemplars,"Learning to Deblur Images with Exemplars +Jinshan Pan∗, Wenqi Ren∗, Zhe Hu∗, and Ming-Hsuan Yang"
+3986161c20c08fb4b9b791b57198b012519ea58b,An Efficient Method for Face Recognition based on Fusion of Global and Local Feature Extraction,"International Journal of Soft Computing and Engineering (IJSCE) +ISSN: 2231-2307, Volume-4 Issue-4, September 2014 +An Efficient Method for Face Recognition based on +Fusion of Global and Local Feature Extraction +E. Gomathi, K. Baskaran"
+392c3cabe516c0108b478152902a9eee94f4c81e,Tiny images,"Computer Science and Artificial Intelligence Laboratory +Technical Report +MIT-CSAIL-TR-2007-024 +April 23, 2007 +Tiny images +Antonio Torralba, Rob Fergus, and William T. Freeman +m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u"
+3933e323653ff27e68c3458d245b47e3e37f52fd,Evaluation of a 3 D-aided Pose Invariant 2 D Face Recognition System,"Evaluation of a 3D-aided Pose Invariant 2D Face Recognition System +Xiang Xu, Ha A. Le, Pengfei Dou, Yuhang Wu, Ioannis A. Kakadiaris +{xxu18, hale4, pdou, ywu35, +Computational Biomedicine Lab +800 Calhoun Rd. Houston, TX, USA"
+3958db5769c927cfc2a9e4d1ee33ecfba86fe054,Describable Visual Attributes for Face Verification and Image Search,"Describable Visual Attributes for +Face Verification and Image Search +Neeraj Kumar, Student Member, IEEE, Alexander C. Berg, Member, IEEE, +Peter N. Belhumeur, and Shree K. Nayar, Member, IEEE"
+99ced8f36d66dce20d121f3a29f52d8b27a1da6c,Organizing Multimedia Data in Video Surveillance Systems Based on Face Verification with Convolutional Neural Networks,"Organizing Multimedia Data in Video +Surveillance Systems Based on Face Verification +with Convolutional Neural Networks +Anastasiia D. Sokolova, Angelina S. Kharchevnikova, Andrey V. Savchenko +National Research University Higher School of Economics, Nizhny Novgorod, Russian +Federation"
+994f7c469219ccce59c89badf93c0661aae34264,Model Based Face Recognition Across Facial Expressions,"Model Based Face Recognition Across Facial +Expressions +Zahid Riaz, Christoph Mayer, Matthias Wimmer, and Bernd Radig, Senior Member, IEEE +screens, embedded into mobiles and installed into everyday +living and working environments they become valuable tools +for human system interaction. A particular important aspect of +this interaction is detection and recognition of faces and +interpretation of facial expressions. These capabilities are +deeply rooted in the human visual system and a crucial +uilding block for social interaction. Consequently, these +apabilities are an important step towards the acceptance of +many technical systems. +trees as a classifier +lies not only"
+9949ac42f39aeb7534b3478a21a31bc37fe2ffe3,Parametric Stereo for Multi-pose Face Recognition and 3D-Face Modeling,"Parametric Stereo for Multi-Pose Face Recognition and +D-Face Modeling +Rik Fransens, Christoph Strecha, Luc Van Gool +PSI ESAT-KUL +Leuven, Belgium"
+9958942a0b7832e0774708a832d8b7d1a5d287ae,The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals,"The Sparse Matrix Transform for Covariance +Estimation and Analysis of High Dimensional +Signals +Guangzhi Cao*, Member, IEEE, Leonardo R. Bachega, and Charles A. Bouman, Fellow, IEEE"
+99726ad232cef837f37914b63de70d8c5101f4e2,Facial Expression Recognition Using PCA & Distance Classifier,"International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 570 +ISSN 2229-5518 +Facial Expression Recognition Using PCA & Distance Classifier +AlpeshKumar Dauda* +Dept. of Electronics & Telecomm. Engg. +Ph.D Scholar,VSSUT +BURLA, ODISHA, INDIA +Nilamani Bhoi +Reader in Dept. of Electronics & Telecomm. Engg. +VEER SURENDRA SAI UNIVERSITY OF +TECHNOLOGY +BURLA, ODISHA, INDIA"
+9993f1a7cfb5b0078f339b9a6bfa341da76a3168,"A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image","JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +A Simple, Fast and Highly-Accurate Algorithm to +Recover 3D Shape from 2D Landmarks on a Single +Image +Ruiqi Zhao, Yan Wang, Aleix M. Martinez"
+992ebd81eb448d1eef846bfc416fc929beb7d28b,Exemplar-Based Face Parsing Supplementary Material,"Exemplar-Based Face Parsing +Supplementary Material +Brandon M. Smith Li Zhang +Jonathan Brandt Zhe Lin Jianchao Yang +University of Wisconsin–Madison +Adobe Research +http://www.cs.wisc.edu/~lizhang/projects/face-parsing/ +. Additional Selected Results +Figures 1 and 2 supplement Figure 4 in our paper. In all cases, the input images come from our Helen [1] test set. We note +that our algorithm generally produces accurate results, as shown in Figures 1. However, our algorithm is not perfect and makes +mistakes on especially challenging input images, as shown in Figure 2. +In our view, the mouth is the most challenging region of the face to segment: the shape and appearance of the lips vary +widely from subject to subject, mouths deform significantly, and the overall appearance of the mouth region changes depending +on whether the inside of the mouth is visible or not. Unusual mouth expressions, like those shown in Figure 2, are not repre- +sented well in the exemplar images, which results in poor label transfer from the top exemplars to the test image. Despite these +hallenges, our algorithm generally performs well on the mouth, with large segmentation errors occurring infrequently. +. Comparisons with Liu et al. [2] +The scene parsing approach by Liu et al. [2] shares sevaral similarities with our work. Like our approach, they propose a +nonparametric system that transfers labels from exemplars in a database to annotate a test image. This begs the question, Why +not simply apply the approach from Liu et al. to face images?"
+99c20eb5433ed27e70881d026d1dbe378a12b342,Semi-Supervised and Unsupervised Data Extraction Targeting Speakers: From Speaker Roles to Fame?,"ISCA Archive +http://www.isca-speech.org/archive +First Workshop on Speech, Language +nd Audio in Multimedia +Marseille, France +August 22-23, 2013 +Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013."
+9990e0b05f34b586ffccdc89de2f8b0e5d427067,Auto - Optimized Multimodal Expression Recognition Framework Using 3 D Kinect Data for ASD Therapeutic Aid,"International Journal of Modeling and Optimization, Vol. 3, No. 2, April 2013 +Auto-Optimized Multimodal Expression Recognition +Framework Using 3D Kinect Data for ASD Therapeutic +Amira E. Youssef, Sherin F. Aly, Ahmed S. Ibrahim, and A. Lynn Abbott +regarding +emotion +recognize"
+99d7678039ad96ee29ab520ff114bb8021222a91,Political image analysis with deep neural networks,"Political image analysis with deep neural +networks +L. Jason Anastasopoulos∗ +Shiry Ginosar§. +Dhruvil Badani† +Jake Ryland Williams¶ +Crystal Lee‡ +November 28, 2017"
+52012b4ecb78f6b4b9ea496be98bcfe0944353cd,Using Support Vector Machine and Local Binary Pattern for Facial Expression Recognition,"JOURNAL OF COMPUTATION IN BIOSCIENCES AND ENGINEERING +Journal homepage: http://scienceq.org/Journals/JCLS.php +Research Article +Using Support Vector Machine and Local Binary Pattern for Facial Expression +Recognition +Open Access +Ayeni Olaniyi Abiodun 1, Alese Boniface Kayode1, Dada Olabisi Matemilayo2 +1. Department of Computer Science, Federal University Technology Akure, PMB 704, Akure, Nigeria. +. Department of computer science, Kwara state polytechnic Ilorin, Kwara-State, Nigeria. +. *Corresponding author: Ayeni Olaniyi Abiodun Mail Id: +Received: September 22, 2015, Accepted: December 14, 2015, Published: December 14, 2015."
+529e2ce6fb362bfce02d6d9a9e5de635bde81191,Normalization of Face Illumination Based on Large-and Small-Scale Features,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +> TIP-05732-2009< +Normalization of Face Illumination Based +on Large- and Small- Scale Features +Xiaohua Xie, Wei-Shi Zheng, Member, IEEE, Jianhuang Lai*, Member, IEEE +Pong C. Yuen, Member, IEEE, Ching Y. Suen, IEEE Fellow"
+52887969107956d59e1218abb84a1f834a314578,Travel Recommendation by Mining People Attributes and Travel Group Types From Community-Contributed Photos,"Travel Recommendation by Mining People +Attributes and Travel Group Types From +Community-Contributed Photos +Yan-Ying Chen, An-Jung Cheng, and Winston H. Hsu, Senior Member, IEEE"
+52258ec5ec73ce30ca8bc215539c017d279517cf,Recognizing Faces with Expressions: Within-class Space and Between-class Space,"Recognizing Faces with Expressions: Within-class Space and Between-class Space +Department of Computer Science and Engineering, Zhejang University, Hangzhou 310027,P.R.China +Email: +Yu Bing Chen Ping Jin Lianfu"
+529baf1a79cca813f8c9966ceaa9b3e42748c058,Triangle wise Mapping Technique to Transform one Face Image into Another Face Image,"Triangle Wise Mapping Technique to Transform one Face Image into Another Face Image +{tag} {/tag} +International Journal of Computer Applications +© 2014 by IJCA Journal +Volume 87 - Number 6 +Year of Publication: 2014 +Authors: +Rustam Ali Ahmed +Bhogeswar Borah +10.5120/15209-3714 +{bibtex}pxc3893714.bib{/bibtex}"
+5239001571bc64de3e61be0be8985860f08d7e7e,Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling,"SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2016 +Deep Appearance Models: A Deep Boltzmann +Machine Approach for Face Modeling +Chi Nhan Duong, Student, IEEE, Khoa Luu, Member, IEEE, +Kha Gia Quach, Student, IEEE, Tien D. Bui, Senior Member, IEEE"
+554b9478fd285f2317214396e0ccd81309963efd,Spatio-Temporal Action Localization For Human Action Recognition in Large Dataset,"Spatio-Temporal Action Localization For Human Action +Recognition in Large Dataset +Sameh MEGRHI1, Marwa JMAL 2, Azeddine BEGHDADI1 and Wided Mseddi1,2 +L2TI, Institut Galil´ee, Universit´e Paris 13, France; +SERCOM, Ecole Polytechnique de Tunisie"
+55c68c1237166679d2cb65f266f496d1ecd4bec6,Learning to score the figure skating sports videos,"Learning to Score Figure Skating Sport Videos +Chengming Xu, Yanwei Fu, Zitian Chen,Bing Zhang, Yu-Gang Jiang, Xiangyang Xue"
+5502dfe47ac26e60e0fb25fc0f810cae6f5173c0,Affordance Prediction via Learned Object Attributes,"Affordance Prediction via Learned Object Attributes +Tucker Hermans +James M. Rehg +Aaron Bobick"
+55a158f4e7c38fe281d06ae45eb456e05516af50,Simile Classifiers for Face Classification,"The 22nd International Conference on Computer Graphics and Vision +GraphiCon’2012"
+5550a6df1b118a80c00a2459bae216a7e8e3966c,A perusal on Facial Emotion Recognition System ( FERS ),"ISSN: 0974-2115 +www.jchps.com Journal of Chemical and Pharmaceutical Sciences +A perusal on Facial Emotion Recognition System (FERS) +School of Information Technology and Engineering, VIT University, Vellore, 632014, India +Krithika L.B +*Corresponding author: E-Mail:"
+55079a93b7d1eb789193d7fcdcf614e6829fad0f,Efficient and Robust Inverse Lighting of a Single Face Image Using Compressive Sensing,"Efficient and Robust Inverse Lighting of a Single Face Image using Compressive +Sensing +Miguel Heredia Conde†, Davoud Shahlaei#, Volker Blanz# and Otmar Loffeld† +Center for Sensor Systems† (ZESS) and Institute for Vision and Graphics#, University of Siegen +57076 Siegen, Germany"
+551fa37e8d6d03b89d195a5c00c74cc52ff1c67a,GeThR-Net: A Generalized Temporally Hybrid Recurrent Neural Network for Multimodal Information Fusion,"GeThR-Net: A Generalized Temporally Hybrid +Recurrent Neural Network for Multimodal +Information Fusion +Ankit Gandhi1 ∗, Arjun Sharma1 ∗ , Arijit Biswas2, and Om Deshmukh1 +Xerox Research Centre India; 2 Amazon Development Center India +(*-equal contribution)"
+55c40cbcf49a0225e72d911d762c27bb1c2d14aa,Indian Face Age Database : A Database for Face Recognition with Age Variation,"Indian Face Age Database: A Database for Face Recognition with Age Variation +{tag} {/tag} +International Journal of Computer Applications +Foundation of Computer Science (FCS), NY, USA +Volume 126 +Number 5 +Year of Publication: 2015 +Authors: +Reecha Sharma, M.S. Patterh +10.5120/ijca2015906055 +{bibtex}2015906055.bib{/bibtex}"
+973e3d9bc0879210c9fad145a902afca07370b86,From Emotion Recognition to Website Customizations,"(IJACSA) International Journal of Advanced Computer Science and Applications, +Vol. 7, No. 7, 2016 +From Emotion Recognition to Website +Customizations +O.B. Efremides +School of Web Media +Bahrain Polytechnic +Isa Town, Kingdom of Bahrain"
+97b8249914e6b4f8757d22da51e8347995a40637,"Large-Scale Vehicle Detection, Indexing, and Search in Urban Surveillance Videos","Large-Scale Vehicle Detection, Indexing, +nd Search in Urban Surveillance Videos +Rogerio Schmidt Feris, Associate Member, IEEE, Behjat Siddiquie, James Petterson, +Yun Zhai, Associate Member, IEEE, Ankur Datta, Lisa M. Brown, Senior Member, IEEE, and +Sharath Pankanti, Fellow, IEEE"
+972ef9ddd9059079bdec17abc8b33039ed25c99c,A Novel on understanding How IRIS Recognition works,"International Journal of Innovations in Engineering and Technology (IJIET) +A Novel on understanding How IRIS +Recognition works +Vijay Shinde +Dept. of Comp. Science +M.P.M. College, Bhopal, India +Prof. Prakash Tanwar +Asst. Professor CSE +M.P.M. College, Bhopal, India"
+97032b13f1371c8a813802ade7558e816d25c73f,Total Recall Final Report,"Total Recall Final Report +Peter Collingbourne, Nakul Durve, Khilan Gudka, Steve Lovegrove, Jiefei Ma, Sadegh Shahrbaf +Supervisor: Professor Duncan Gillies +January 11, 2006"
+97137d5154a9f22a5d9ecc32e8e2b95d07a5a571,Facial expression recognition based on local region specific features and support vector machines,"The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3418-y +Facial Expression Recognition based on Local Region +Specific Features and Support Vector Machines +Deepak Ghimire1, Sunghwan Jeong1, Joonwhoan Lee2, ♣, Sang Hyun +Park1 +Korea Electronics Technology Institute, Jeonju-si, Jeollabuk-do 561-844, Rep. of Korea; E- +Mails: (deepak, shjeong, +Division of Computer Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 561- +756, Rep. of Korea; E-Mail: +♣ Corresponding Author; E-Mail: +Tel.: +82-63-270-2406; Fax: +82-63-270-2394."
+97f9c3bdb4668f3e140ded2da33fe704fc81f3ea,An Experimental Comparison of Appearance and Geometric Model Based Recognition,"AnExperimentalComparisonofAppearance +ndGeometricModelBasedRecognition +J.Mundy,A.Liu,N.Pillow,A.Zisserman,S.Abdallah,S.Utcke, +S.NayarandC.Rothwell +GeneralElectricCorporateResearchandDevelopment,Schenectady,NY,USA +RoboticsResearchGroup,UniversityofOxford,Oxford,UK +Dept.ofComputerScience,ColumbiaUniversity,NY,USA +INRIA,SophiaAntipolis,France"
+97cf04eaf1fc0ac4de0f5ad4a510d57ce12544f5,"Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond","manuscript No. +(will be inserted by the editor) +Deep Affect Prediction in-the-wild: Aff-Wild Database and Challenge, +Deep Architectures, and Beyond +Dimitrios Kollias (cid:63) · Panagiotis Tzirakis † · Mihalis A. Nicolaou ∗ · Athanasios +Papaioannou(cid:107) · Guoying Zhao1 · Bj¨orn Schuller2 · Irene Kotsia3 · Stefanos +Zafeiriou4"
+97d1d561362a8b6beb0fdbee28f3862fb48f1380,Age Synthesis and Estimation via Faces: A Survey,"Age Synthesis and Estimation via Faces: +A Survey +Yun Fu, Member, IEEE, Guodong Guo, Senior Member, IEEE, and +Thomas S. Huang, Fellow, IEEE"
+97865d31b5e771cf4162bc9eae7de6991ceb8bbf,Face and Gender Classification in Crowd Video,"Face and Gender Classification in Crowd Video +Priyanka Verma +IIIT-D-MTech-CS-GEN-13-100 +July 16, 2015 +Indraprastha Institute of Information Technology +New Delhi +Thesis Advisors +Dr. Richa Singh +Dr. Mayank Vatsa +Submitted in partial fulfillment of the requirements +for the Degree of M.Tech. in Computer Science +(cid:13) Verma, 2015 +Keywords : Face Recognition, Gender Classification, Crowd database"
+9755554b13103df634f9b1ef50a147dd02eab02f,How Transferable Are CNN-Based Features for Age and Gender Classification?,"How Transferable are CNN-based Features for +Age and Gender Classification? +Gökhan Özbulak1, Yusuf Aytar2 and Hazım Kemal Ekenel1"
+63cf5fc2ee05eb9c6613043f585dba48c5561192,Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces Prototype Selection for Classification in Standard and Generalized Dissimilarity Spaces,"Prototype Selection for +Classification in Standard +nd Generalized +Dissimilarity Spaces"
+63c109946ffd401ee1195ed28f2fb87c2159e63d,Robust Facial Feature Localization Using Improved Active Shape Model and Gabor Filter,"MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN +Robust Facial Feature Localization using Improved Active Shape +Model and Gabor Filter +Hui-Yu Huang +Engineering, National Formosa University, +Taiwan +E-mail:"
+631483c15641c3652377f66c8380ff684f3e365c,Sync-DRAW: Automatic GIF Generation using Deep Recurrent Attentive Architectures,"Sync-DRAW: Automatic Video Generation using Deep Recurrent +A(cid:130)entive Architectures +Gaurav Mi(cid:138)al∗ +Tanya Marwah∗ +IIT Hyderabad +Vineeth N Balasubramanian +IIT Hyderabad"
+632fa986bed53862d83918c2b71ab953fd70d6cc,What Face and Body Shapes Can Tell About Height,"GÜNEL ET AL.: WHAT FACE AND BODY SHAPES CAN TELL ABOUT HEIGHT +What Face and Body Shapes Can Tell +About Height +Semih Günel +Helge Rhodin +Pascal Fua +CVLab +EPFL, +Lausanne, Switzerland"
+63340c00896d76f4b728dbef85674d7ea8d5ab26,Discriminant Subspace Analysis: A Fukunaga-Koontz Approach,"Discriminant Subspace Analysis: +A Fukunaga-Koontz Approach +Sheng Zhang, Member, IEEE, and Terence Sim, Member, IEEE"
+633101e794d7b80f55f466fd2941ea24595e10e6,Face Attribute Prediction with classification CNN,"In submission to IEEE conference +Face Attribute Prediction with classification CNN +FACE ATTRIBUTE PREDICTION WITH +CLASSIFICATION CNN +Yang Zhong +Josephine Sullivan +Haibo Li +Computer Science and Communication +KTH Royal Institute of Technology +00 44 Stockholm, Sweden +{yzhong, sullivan,"
+634541661d976c4b82d590ef6d1f3457d2857b19,Advanced Techniques for Face Recognition under Challenging Environments,"AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa +in cotutela con Università di Sassari +DOTTORATO DI RICERCA IN +INGEGNERIA ELETTRONICA, INFORMATICA E DELLE +TELECOMUNICAZIONI +Ciclo XXVI +Settore Concorsuale di afferenza: 09/H1 +Settore Scientifico disciplinare: ING-INF/05 +ADVANCED TECHNIQUES FOR FACE RECOGNITION +UNDER CHALLENGING ENVIRONMENTS +TITOLO TESI +YUNLIAN SUN +Presentata da: +Coordinatore Dottorato +ALESSANDRO VANELLI-CORALLI +Relatore +DAVIDE MALTONI +Relatore +MASSIMO TISTARELLI +Esame finale anno 2014"
+6332a99e1680db72ae1145d65fa0cccb37256828,MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE REPORT OF THE RESEARCH PROJECT OPTION: COMPUTER VISION Pose and Face Recovery via Spatio-temporal GrabCut Human Segmentation,"MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE +REPORT OF THE RESEARCH PROJECT +OPTION: COMPUTER VISION +Pose and Face Recovery via +Spatio-temporal GrabCut Human +Segmentation +Author: Antonio Hernández Vela +Date: 13/07/2010 +Advisor: Sergio Escalera Guerrero"
+63488398f397b55552f484409b86d812dacde99a,Learning Universal Multi-view Age Estimator by Video Contexts,"Learning Universal Multi-view Age Estimator by Video Contexts +Zheng Song1, Bingbing Ni3, Dong Guo4, Terence Sim2, Shuicheng Yan1 +Department of Electrical and Computer Engineering, 2 School of Computing, National University of Singapore; +{zheng.s, +Advanced Digital Sciences Center, Singapore; 4 Facebook"
+63c022198cf9f084fe4a94aa6b240687f21d8b41,Consensus Message Passing for Layered Graphical Models,
+0f65c91d0ed218eaa7137a0f6ad2f2d731cf8dab,Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition,"Multi-Directional Multi-Level Dual-Cross +Patterns for Robust Face Recognition +Changxing Ding, Jonghyun Choi, Dacheng Tao, Senior Member, IEEE, and Larry S. Davis, Fellow, IEEE"
+0f112e49240f67a2bd5aaf46f74a924129f03912,Age-Invariant Face Recognition,"Age-Invariant Face Recognition +Unsang Park, Member, IEEE, +Yiying Tong, Member, IEEE, and +Anil K. Jain, Fellow, IEEE"
+0f4cfcaca8d61b1f895aa8c508d34ad89456948e,Local appearance based face recognition using discrete cosine transform,"LOCAL APPEARANCE BASED FACE RECOGNITION USING +DISCRETE COSINE TRANSFORM (WedPmPO4) +Author(s) :"
+0fdcfb4197136ced766d538b9f505729a15f0daf,Multiple pattern classification by sparse subspace decomposition,"Multiple Pattern Classification by Sparse Subspace Decomposition +Institute of Media and Information Technology, Chiba University +Tomoya Sakai +-33 Yayoi, Inage, Chiba, Japan"
+0fad544edfc2cd2a127436a2126bab7ad31ec333,Decorrelating Semantic Visual Attributes by Resisting the Urge to Share,"Decorrelating Semantic Visual Attributes by Resisting the Urge to Share +Dinesh Jayaraman +UT Austin +Fei Sha +Kristen Grauman +UT Austin"
+0fd1715da386d454b3d6571cf6d06477479f54fc,A Survey of Autonomous Human Affect Detection Methods for Social Robots Engaged in Natural HRI,"J Intell Robot Syst (2016) 82:101–133 +DOI 10.1007/s10846-015-0259-2 +A Survey of Autonomous Human Affect Detection Methods +for Social Robots Engaged in Natural HRI +Derek McColl · Alexander Hong · +Naoaki Hatakeyama · Goldie Nejat · +Beno Benhabib +Received: 10 December 2014 / Accepted: 11 August 2015 / Published online: 23 August 2015 +© Springer Science+Business Media Dordrecht 2015"
+0f92e9121e9c0addc35eedbbd25d0a1faf3ab529,MORPH-II: A Proposed Subsetting Scheme,"MORPH-II: A Proposed Subsetting Scheme +Participants: K. Kempfert, J. Fabish, K. Park, and R. Towner +Mentors: Y. Wang, C. Chen, and T. Kling +NSF-REU Site at UNC Wilmington, Summer 2017"
+0f0366070b46972fcb2976775b45681e62a94a26,Reliable Posterior Probability Estimation for Streaming Face Recognition,"Reliable Posterior Probability Estimation for Streaming Face Recognition +Abhijit Bendale +University of Colorado at Colorado Springs +Terrance Boult +University of Colorado at Colorado Springs"
+0ff23392e1cb62a600d10bb462d7a1f171f579d0,Toward Sparse Coding on Cosine Distance,"Toward Sparse Coding on Cosine +Distance +Jonghyun Choi, Hyunjong Cho, Jungsuk Kwak#, +Larry S. Davis +UMIACS | University of Maryland, College Park +#Stanford University"
+0f395a49ff6cbc7e796656040dbf446a40e300aa,The Change of Expression Configuration Affects Identity-Dependent Expression Aftereffect but Not Identity-Independent Expression Aftereffect,"ORIGINAL RESEARCH +published: 22 December 2015 +doi: 10.3389/fpsyg.2015.01937 +The Change of Expression +Configuration Affects +Identity-Dependent Expression +Aftereffect but Not +Identity-Independent Expression +Aftereffect +Miao Song 1, 2*, Keizo Shinomori 2, Qian Qian 3, Jun Yin 1 and Weiming Zeng 1 +College of Information Engineering, Shanghai Maritime University, Shanghai, China, 2 School of Information, Kochi University +of Technology, Kochi, Japan, 3 Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science +nd Technology, Kunming, China +The present study examined the influence of expression configuration on cross-identity +expression aftereffect. The expression configuration refers to the spatial arrangement +of facial features in a face for conveying an emotion, e.g., an open-mouth smile vs. +closed-mouth smile. In the first of two experiments, the expression aftereffect is +measured using a cross-identity/cross-expression configuration factorial design. The +facial +identities of test faces were the same or different from the adaptor, while"
+0fd1bffb171699a968c700f206665b2f8837d953,Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning,"Weakly Supervised Object Localization with +Multi-fold Multiple Instance Learning +Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid, Fellow, IEEE"
+0a6d344112b5af7d1abbd712f83c0d70105211d0,Constrained Local Neural Fields for Robust Facial Landmark Detection in the Wild,"Constrained Local Neural Fields for robust facial landmark detection in the wild +Tadas Baltruˇsaitis +Peter Robinson +University of Cambridge Computer Laboratory +USC Institute for Creative Technologies +5 JJ Thomson Avenue +Louis-Philippe Morency +2015 Waterfront Drive"
+0a3863a0915256082aee613ba6dab6ede962cdcd,Early and Reliable Event Detection Using Proximity Space Representation,"Early and Reliable Event Detection Using Proximity Space Representation +Maxime Sangnier +LTCI, CNRS, T´el´ecom ParisTech, Universit´e Paris-Saclay, 75013, Paris, France +J´erˆome Gauthier +LADIS, CEA, LIST, 91191, Gif-sur-Yvette, France +Alain Rakotomamonjy +Normandie Universit´e, UR, LITIS EA 4108, Avenue de l’universit´e, 76801, Saint-Etienne-du-Rouvray, France"
+0a60d9d62620e4f9bb3596ab7bb37afef0a90a4f,Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates,"Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. GCPR 2016 +(cid:13) Copyright by Springer. The final publication will be available at link.springer.com +A. Freytag, E. Rodner, M. Simon, A. Loos, H. K¨uhl and J. Denzler +Chimpanzee Faces in the Wild: +Log-Euclidean CNNs for Predicting Identities +nd Attributes of Primates +Alexander Freytag1,2, Erik Rodner1,2, Marcel Simon1, Alexander Loos3, +Hjalmar S. K¨uhl4,5, and Joachim Denzler1,2,5 +Computer Vision Group, Friedrich Schiller University Jena, Germany +Michael Stifel Center Jena, Germany +Fraunhofer Institute for Digital Media Technology, Germany +Max Planck Institute for Evolutionary Anthropology, Germany +5German Centre for Integrative Biodiversity Research (iDiv), Germany"
+0aa9872daf2876db8d8e5d6197c1ce0f8efee4b7,Timing is everything : a spatio-temporal approach to the analysis of facial actions,"Imperial College of Science, Technology and Medicine +Department of Computing +Timing is everything +A spatio-temporal approach to the analysis of facial +ctions +Michel Fran¸cois Valstar +Submitted in part fulfilment of the requirements for the degree of +Doctor of Philosophy in Computing of Imperial College, February 2008"
+0a87d781fe2ae2e700237ddd00314dbc10b1429c,Multi-scale HOG Prescreening Algorithm for Detection of Buried Explosive Hazards in FL-IR and FL-GPR Data,"Distribution Statement A: Approved for public release; distribution unlimited. +Multi-scale HOG Prescreening Algorithm for Detection of Buried +Explosive Hazards in FL-IR and FL-GPR Data +*University of Missouri, Electrical and Computer Engineering Department, Columbia, MO +K. Stone*, J. M. Keller*, D. Shaw*"
+0af48a45e723f99b712a8ce97d7826002fe4d5a5,Toward Wide-Angle Microvision Sensors,"Toward Wide-Angle Microvision Sensors +Sanjeev J. Koppal, Member, IEEE, Ioannis Gkioulekas, Student Member, IEEE, +Travis Young, Member, IEEE, Hyunsung Park, Student Member, IEEE, +Kenneth B. Crozier, Member, IEEE, Geoffrey L. Barrows, Member, IEEE, and +Todd Zickler, Member, IEEE"
+0aa8a0203e5f406feb1815f9b3dd49907f5fd05b,Mixture Subclass Discriminant Analysis,"Mixture subclass discriminant analysis +Nikolaos Gkalelis, Vasileios Mezaris, Ioannis Kompatsiaris"
+0a7309147d777c2f20f780a696efe743520aa2db,Stories for Images-in-Sequence by using Visual and Narrative Components,"Stories for Images-in-Sequence by using Visual +nd Narrative Components (cid:63) +Marko Smilevski1,2, Ilija Lalkovski2, and Gjorgji Madjarov1,3 +Ss. Cyril and Methodius University, Skopje, Macedonia +Pendulibrium, Skopje, Macedonia +Elevate Global, Skopje, Macedonia"
+0a1138276c52c734b67b30de0bf3f76b0351f097,Discriminant Incoherent Component Analysis,"This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. +The final version of record is available at +http://dx.doi.org/10.1109/TIP.2016.2539502 +Discriminant Incoherent Component Analysis +Christos Georgakis, Student Member, IEEE, Yannis Panagakis, Member, IEEE, and Maja Pantic, Fellow, IEEE"
+0a6a25ee84fc0bf7284f41eaa6fefaa58b5b329a,Neural Networks Regularization Through Representation Learning,"THÈSEPour obtenir le diplôme de doctorat Spécialité Informatique Préparée au sein de « l'INSA Rouen Normandie » Présentée et soutenue parSoufiane BELHARBIThèse dirigée par Sébastien ADAM, laboratoire LITIS Neural Networks Regularization Through Representation LearningThèse soutenue publiquement le 06 Juillet 2018 devant le jury composé deSébastien ADAMProfesseur à l'Université de Rouen NormandieDirecteur de thèseClément CHATELAINMaître de conférence à l'INSA Rouen NormandieEncadrant de thèseRomain HÉRAULTMaître de conférence à l'INSA Rouen NormandieEncadrant de thèseElisa FROMONTProfesseur à l'Université de Rennes 1Rapporteur de thèseThierry ARTIÈRESProfesseur à l'École Centrale MarseilleRapporteur de thèseJohn LEEProfesseur à l'Université Catholique de LouvainExaminateur de thèseDavid PICARDMaître de conférences à l'École Nationale Supérieure de l'Électronique et de ses ApplicationsExaminateur de thèseFrédéric JURIEProfesseur à l' Université de Caen NormandieInvité"
+0ae9cc6a06cfd03d95eee4eca9ed77b818b59cb7,"Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition","Noname manuscript No. +(will be inserted by the editor) +Multi-task, multi-label and multi-domain learning with +residual convolutional networks for emotion recognition +Gerard Pons · David Masip +Received: date / Accepted: date"
+0acf23485ded5cb9cd249d1e4972119239227ddb,Dual coordinate solvers for large-scale structural SVMs,"Dual coordinate solvers for large-scale structural SVMs +Deva Ramanan +UC Irvine +This manuscript describes a method for training linear SVMs (including binary SVMs, SVM regression, +nd structural SVMs) from large, out-of-core training datasets. Current strategies for large-scale learning fall +into one of two camps; batch algorithms which solve the learning problem given a finite datasets, and online +lgorithms which can process out-of-core datasets. The former typically requires datasets small enough to fit +in memory. The latter is often phrased as a stochastic optimization problem [4, 15]; such algorithms enjoy +strong theoretical properties but often require manual tuned annealing schedules, and may converge slowly +for problems with large output spaces (e.g., structural SVMs). We discuss an algorithm for an “intermediate” +regime in which the data is too large to fit in memory, but the active constraints (support vectors) are small +enough to remain in memory. +In this case, one can design rather efficient learning algorithms that are +s stable as batch algorithms, but capable of processing out-of-core datasets. We have developed such a +MATLAB-based solver and used it to train a series of recognition systems [19, 7, 21, 12] for articulated pose +estimation, facial analysis, 3D object recognition, and action classification, all with publicly-available code. +This writeup describes the solver in detail. +Approach: Our approach is closely based on data-subsampling algorithms for collecting hard exam- +ples [9, 10, 6], combined with the dual coordinate quadratic programming (QP) solver described in liblinear +[8]. The latter appears to be current fastest method for learning linear SVMs. We make two extensions (1)"
+6412d8bbcc01f595a2982d6141e4b93e7e982d0f,"Deep Convolutional Neural Network Using Triplets of Faces, Deep Ensemble, and Score-Level Fusion for Face Recognition","Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and +Score-level Fusion for Face Recognition +Bong-Nam Kang, Student Member, IEEE1, Yonghyun Kim, Student Member, IEEE2, and +Daijin Kim, Member, IEEE2 +Department of Creative IT Engineering, POSTECH, Korea +Department of Computer Science and Engineering, POSTECH, Korea +{bnkang, gkyh0805,"
+641f0989b87bf7db67a64900dcc9568767b7b50f,Reconstructing faces from their signatures using RBF regression,"Reconstructing Faces from their Signatures using RBF +Regression +Alexis Mignon, Fr´ed´eric Jurie +To cite this version: +Alexis Mignon, Fr´ed´eric Jurie. Reconstructing Faces from their Signatures using RBF Regres- +sion. British Machine Vision Conference 2013, Sep 2013, Bristol, United Kingdom. pp.103.1– +03.12, 2013, <10.5244/C.27.103>. <hal-00943426> +HAL Id: hal-00943426 +https://hal.archives-ouvertes.fr/hal-00943426 +Submitted on 13 Feb 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+64153df77fe137b7c6f820a58f0bdb4b3b1a879b,Shape Invariant Recognition of Segmented Human Faces using Eigenfaces,"Shape Invariant Recognition of Segmented Human +Faces using Eigenfaces +Zahid Riaz, Michael Beetz, Bernd Radig +Department of Informatics +Technical University of Munich, Germany"
+649eb674fc963ce25e4e8ce53ac7ee20500fb0e3,Toward correlating and solving abstract tasks using convolutional neural networks,
+645de797f936cb19c1b8dba3b862543645510544,Deep Temporal Linear Encoding Networks,"Deep Temporal Linear Encoding Networks +Ali Diba1,(cid:63), Vivek Sharma1,(cid:63), and Luc Van Gool1,2 +ESAT-PSI, KU Leuven, 2CVL, ETH Z¨urich"
+90d735cffd84e8f2ae4d0c9493590f3a7d99daf1,Recognition of Faces using Efficient Multiscale Local Binary Pattern and Kernel Discriminant Analysis in Varying Environment,"Original Research Paper +American Journal of Engineering and Applied Sciences +Recognition of Faces using Efficient Multiscale Local Binary +Pattern and Kernel Discriminant Analysis in Varying +Environment +Sujata G. Bhele and +V.H. Mankar +Department of Electronics Engg, Priyadarshini College of Engg, Nagpur, India +Department of Electronics Engg, Government Polytechnic, Nagpur, India +Article history +Received: 20-06-2017 +Revised: 18-07-2017 +Accepted: 21-08-2017 +Corresponding Author: +Sujata G. Bhele +Department of Electronics +Engg, Priyadarshini College of +Engg, Nagpur, India +Email:"
+90fb58eeb32f15f795030c112f5a9b1655ba3624,Face and Iris Recognition in a Video Sequence Using Dbpnn and Adaptive Hamming Distance,"INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS +www.ijrcar.com +Vol.4 Issue 6, Pg.: 12-27 +June 2016 +INTERNATIONAL JOURNAL OF +RESEARCH IN COMPUTER +APPLICATIONS AND ROBOTICS +ISSN 2320-7345 +FACE AND IRIS RECOGNITION IN A +VIDEO SEQUENCE USING DBPNN AND +ADAPTIVE HAMMING DISTANCE +S. Revathy, 2Mr. L. Ramasethu +PG Scholar, Hindusthan College of Engineering and Technology, Coimbatore, India. +Assistant Professor, Hindusthan College of Engineering and Technology, Coimbatore, India. +Email id:"
+90cb074a19c5e7d92a1c0d328a1ade1295f4f311,Fully Automatic Upper Facial Action Recognition,"MIT. Media Laboratory Affective Computing Technical Report #571 +Appears in IEEE International Workshop on Analysis and Modeling of Faces and Gestures , Oct 2003 +Fully Automatic Upper Facial Action Recognition +Ashish Kapoor Yuan Qi Rosalind W. Picard +MIT Media Laboratory +Cambridge, MA 02139"
+907475a4febf3f1d4089a3e775ea018fbec895fe,Statistical modeling for facial expression analysis and synthesis,"STATISTICAL MODELING FOR FACIAL EXPRESSION ANALYSIS AND SYNTHESIS +Bouchra Abboud, Franck Davoine, Mˆo Dang +Heudiasyc Laboratory, CNRS, University of Technology of Compi`egne. +BP 20529, 60205 COMPIEGNE Cedex, FRANCE. +E-mail:"
+9028fbbd1727215010a5e09bc5758492211dec19,Solving the Uncalibrated Photometric Stereo Problem Using Total Variation,"Solving the Uncalibrated Photometric Stereo +Problem using Total Variation +Yvain Qu´eau1, Fran¸cois Lauze2, and Jean-Denis Durou1 +IRIT, UMR CNRS 5505, Toulouse, France +Dept. of Computer Science, Univ. of Copenhagen, Denmark"
+bff77a3b80f40cefe79550bf9e220fb82a74c084,Facial Expression Recognition Based on Local Binary Patterns and Local Fisher Discriminant Analysis,"Facial Expression Recognition Based on Local Binary Patterns and +Local Fisher Discriminant Analysis +SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1 +School of Physics and Electronic Engineering +Taizhou University +Taizhou 318000 +CHINA +2Department of Computer Science +Taizhou University +Taizhou 318000 +CHINA"
+bf1e0279a13903e1d43f8562aaf41444afca4fdc,Different Viewpoints of Recognizing Fleeting Facial Expressions with DWT,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 +Volume: 04 Issue: 10 | Oct -2017 www.irjet.net p-ISSN: 2395-0072 +Different Viewpoints of Recognizing Fleeting Facial Expressions with +VAIBHAV SHUBHAM1, MR. SANJEEV SHRIVASTAVA2, DR. MOHIT GANGWAR3 +information +to get desired +information +Introduction +---------------------------------------------------------------------***---------------------------------------------------------------------"
+bf5940d57f97ed20c50278a81e901ae4656f0f2c,Query-Free Clothing Retrieval via Implicit Relevance Feedback,"Query-free Clothing Retrieval via Implicit +Relevance Feedback +Zhuoxiang Chen, Zhe Xu, Ya Zhang, Member, IEEE, and Xiao Gu"
+bfb98423941e51e3cd067cb085ebfa3087f3bfbe,Sparseness helps: Sparsity Augmented Collaborative Representation for Classification,"Sparseness helps: Sparsity Augmented +Collaborative Representation for Classification +Naveed Akhtar, Faisal Shafait, and Ajmal Mian"
+d3b73e06d19da6b457924269bb208878160059da,Implementation of an Automated Smart Home Control for Detecting Human Emotions via Facial Detection,"Proceedings of the 5th International Conference on Computing and Informatics, ICOCI 2015 +1-13 August, 2015 Istanbul, Turkey. Universiti Utara Malaysia (http://www.uum.edu.my ) +Paper No. +IMPLEMENTATION OF AN AUTOMATED SMART HOME +CONTROL FOR DETECTING HUMAN EMOTIONS VIA FACIAL +DETECTION +Lim Teck Boon1, Mohd Heikal Husin2, Zarul Fitri Zaaba3 and Mohd Azam +Osman4 +Universiti Sains Malaysia, Malaysia, +Universiti Sains Malaysia, Malaysia, +Universiti Sains Malaysia, Malaysia, +Universiti Sains Malaysia, Malaysia,"
+d3d71a110f26872c69cf25df70043f7615edcf92,Learning Compact Feature Descriptor and Adaptive Matching Framework for Face Recognition,"Learning Compact Feature Descriptor and Adaptive +Matching Framework for Face Recognition +Zhifeng Li, Senior Member, IEEE, Dihong Gong, Xuelong Li, Fellow, IEEE, and Dacheng Tao, Fellow, IEEE +improvements"
+d3b18ba0d9b247bfa2fb95543d172ef888dfff95,Learning and Using the Arrow of Time,"Learning and Using the Arrow of Time +Donglai Wei1, Joseph Lim2, Andrew Zisserman3 and William T. Freeman4,5 +Harvard University 2University of Southern California +University of Oxford 4Massachusetts Institute of Technology 5Google Research +Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer +elow1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level +reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn +nd exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on +large-scale video datasets."
+d309e414f0d6e56e7ba45736d28ee58ae2bad478,Efficient Two-Stream Motion and Appearance 3 D CNNs for Video Classification,"Efficient Two-Stream Motion and Appearance 3D CNNs for +Video Classification +Ali Diba +ESAT-KU Leuven +Ali Pazandeh +Sharif UTech +Luc Van Gool +ESAT-KU Leuven, ETH Zurich"
+d3f5a1848b0028d8ab51d0b0673732cad2e3c8c9,STAIR Actions: A Video Dataset of Everyday Home Actions,
+d3c004125c71942846a9b32ae565c5216c068d1e,Recognizing Age-Separated Face Images: Humans and Machines,"RESEARCH ARTICLE +Recognizing Age-Separated Face Images: +Humans and Machines +Daksha Yadav1, Richa Singh2, Mayank Vatsa2*, Afzel Noore1 +. West Virginia University, Morgantown, West Virginia, United States of America, 2. IIIT Delhi, New Delhi, +Delhi, India"
+d350a9390f0818703f886138da27bf8967fe8f51,Lighting design for portraits with a virtual light stage,"LIGHTING DESIGN FOR PORTRAITS WITH A VIRTUAL LIGHT STAGE +Davoud Shahlaei, Marcel Piotraschke, Volker Blanz +Institute for Vision and Graphics, University of Siegen, Germany"
+d33fcdaf2c0bd0100ec94b2c437dccdacec66476,Neurons With Paraboloid Decision Boundaries for Improved Neural Network Classification Performance.,"Neurons with Paraboloid Decision Boundaries for +Improved Neural Network Classification +Performance +Nikolaos Tsapanos, Anastasios Tefas, Member, IEEE, Nikolaos Nikolaidis, Member, IEEE, and +Ioannis Pitas, Fellow, IEEE"
+d46b790d22cb59df87f9486da28386b0f99339d3,Learning Face Deblurring Fast and Wide,"Learning Face Deblurring Fast and Wide +Meiguang Jin +University of Bern +Switzerland +Michael Hirsch† +Amazon Research +Germany +Paolo Favaro +University of Bern +Switzerland"
+d41c11ebcb06c82b7055e2964914b9af417abfb2,CDI-Type I: Unsupervised and Weakly-Supervised Discovery of Facial Events,"CDI-Type I: Unsupervised and Weakly-Supervised +Introduction +Discovery of Facial Events +The face is one of the most powerful channels of nonverbal communication. Facial expression has been a +focus of emotion research for over a hundred years [12]. It is central to several leading theories of emotion +[18, 31, 54] and has been the focus of at times heated debate about issues in emotion science [19, 24, 50]. +Facial expression figures prominently in research on almost every aspect of emotion, including psychophys- +iology [40], neural correlates [20], development [11], perception [4], addiction [26], social processes [30], +depression [49] and other emotion disorders [55], to name a few. In general, facial expression provides cues +bout emotional response, regulates interpersonal behavior, and communicates aspects of psychopathology. +Because of its importance to behavioral science and the emerging fields of computational behavior +science, perceptual computing, and human-robot interaction, significant efforts have been applied toward +developing algorithms that automatically detect facial expression. With few exceptions, previous work on +facial expression relies on supervised approaches to learning (i.e. event categories are defined in advance +in labeled training data). While supervised learning has important advantages, two critical limitations may +e noted. One, because labeling facial expression is highly labor intensive, progress in automated facial +expression recognition and analysis is slowed. For the most detailed and comprehensive labeling or coding +systems, such as Facial Action Coding System (FACS), three to four months is typically required to train +coder (’coding’ refers to the labeling of video using behavioral descriptors). Once trained, each minute +of video may require 1 hour or more to code [9]. No wonder relatively few databases are yet available,"
+d444368421f456baf8c3cb089244e017f8d32c41,CNN for IMU assisted odometry estimation using velodyne LiDAR,"CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR +Martin Velas, Michal Spanel, Michal Hradis, and Adam Herout"
+d4885ca24189b4414031ca048a8b7eb2c9ac646c,"Efficient Facial Representations for Age, Gender and Identity Recognition in Organizing Photo Albums using Multi-output CNN","Efficient Facial Representations for Age, Gender +nd Identity Recognition in Organizing Photo +Albums using Multi-output CNN +Andrey V. Savchenko +Samsung-PDMI Joint AI Center, St. Petersburg Department of Steklov Institute of +Mathematics +National Research University Higher School of Economics +Nizhny Novgorod, Russia"
+d4001826cc6171c821281e2771af3a36dd01ffc0,Modélisation de contextes pour l'annotation sémantique de vidéos. (Context based modeling for video semantic annotation),"Modélisation de contextes pour l’annotation sémantique +de vidéos +Nicolas Ballas +To cite this version: +Nicolas Ballas. Modélisation de contextes pour l’annotation sémantique de vidéos. Autre [cs.OH]. +Ecole Nationale Supérieure des Mines de Paris, 2013. Français. <NNT : 2013ENMP0051>. <pastel- +00958135> +HAL Id: pastel-00958135 +https://pastel.archives-ouvertes.fr/pastel-00958135 +Submitted on 11 Mar 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de"
+d458c49a5e34263c95b3393386b5d76ba770e497,A Comparative Analysis of Gender Classification Techniques,"Middle-East Journal of Scientific Research 20 (1): 01-13, 2014 +ISSN 1990-9233 +© IDOSI Publications, 2014 +DOI: 10.5829/idosi.mejsr.2014.20.01.11434 +A Comparative Analysis of Gender Classification Techniques +Sajid Ali Khan, Maqsood Ahmad, Muhammad Nazir and Naveed Riaz +Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan"
+d4e669d5d35fa0ca9f8d9a193c82d4153f5ffc4e,A Lightened CNN for Deep Face Representation,"A Lightened CNN for Deep Face Representation +Xiang Wu +School of Computer and Communication Engineering +University of Science and Technology Beijing, Beijing, China +Ran He, Zhenan Sun +National Laboratory of Pattern Recognition +Institute of Automation Chinese Academy of Sciences, Beijing, China +{rhe,"
+d4b88be6ce77164f5eea1ed2b16b985c0670463a,A Survey of Different 3D Face Reconstruction Methods,"TECHNICAL REPORT JAN.15.2016 +A Survey of Different 3D Face Reconstruction +Methods +Amin Jourabloo +Department of Computer Science and Engineering"
+d44ca9e7690b88e813021e67b855d871cdb5022f,"Selecting, Optimizing and Fusing 'Salient' Gabor Features for Facial Expression Recognition","QUT Digital Repository: +http://eprints.qut.edu.au/ +Zhang, Ligang and Tjondronegoro, Dian W. (2009) Selecting, optimizing and +fusing ‘salient’ Gabor features for facial expression recognition. In: Neural +Information Processing (Lecture Notes in Computer Science), 1-5 December +009, Hotel Windsor Suites Bangkok, Bangkok. +© Copyright 2009 Springer-Verlag GmbH Berlin Heidelberg"
+bafb8812817db7445fe0e1362410a372578ec1fc,Image-Quality-Based Adaptive Face Recognition,"Image-Quality-Based Adaptive Face Recognition +Harin Sellahewa and Sabah A. Jassim"
+ba99c37a9220e08e1186f21cab11956d3f4fccc2,A Fast Factorization-Based Approach to Robust PCA,"A Fast Factorization-based Approach to Robust PCA +Department of Computer Science, Southern Illinois University,Carbondale, IL 62901 USA +Chong Peng, Zhao Kang, and Qiang Cheng +Email:"
+ba816806adad2030e1939450226c8647105e101c,MindLAB at the THUMOS Challenge,"MindLAB at the THUMOS Challenge +Fabi´an P´aez +Jorge A. Vanegas +Fabio A. Gonz´alez +MindLAB Research Group +MindLAB Research Group +MindLAB Research Group +Bogot´a, Colombia +Bogot´a, Colombia +Bogot´a, Colombia"
+badcd992266c6813063c153c41b87babc0ba36a3,Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks,"Recent Advances in Object Detection in the Age +of Deep Convolutional Neural Networks +Shivang Agarwal(∗ +,1), Jean Ogier du Terrail(∗ +,1,2), Fr´ed´eric Jurie(1) +(∗) equal contribution +(1)Normandie Univ, UNICAEN, ENSICAEN, CNRS +(2)Safran Electronics and Defense +September 11, 2018"
+ba8a99d35aee2c4e5e8a40abfdd37813bfdd0906,Uporaba emotivno pogojenega računalništva v priporočilnih sistemih,"ELEKTROTEHNI ˇSKI VESTNIK 78(1-2): 12–17, 2011 +EXISTING SEPARATE ENGLISH EDITION +Uporaba emotivno pogojenega raˇcunalniˇstva v +priporoˇcilnih sistemih +Marko Tkalˇciˇc, Andrej Koˇsir, Jurij Tasiˇc +Univerza v Ljubljani, Fakulteta za elektrotehniko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +Univerza v Ljubljani, Fakulteta za raˇcunalniˇstvo in informatiko, Trˇzaˇska 25, 1000 Ljubljana, Slovenija +E-poˇsta: +Povzetek. V ˇclanku predstavljamo rezultate treh raziskav, vezanih na izboljˇsanje delovanja multimedijskih +priporoˇcilnih sistemov s pomoˇcjo metod emotivno pogojenega raˇcunalniˇstva (ang. affective computing). +Vsebinski priporoˇcilni sistem smo izboljˇsali s pomoˇcjo metapodatkov, ki opisujejo emotivne odzive uporabnikov. +Pri skupinskem priporoˇcilnem sistemu smo dosegli znaˇcilno izboljˇsanje v obmoˇcju hladnega zagona z uvedbo +nove mere podobnosti, ki temelji na osebnostnem modelu velikih pet (ang. five factor model). Razvili smo tudi +sistem za neinvazivno oznaˇcevanje vsebin z emotivnimi parametri, ki pa ˇse ni zrel za uporabo v priporoˇcilnih +sistemih. +Kljuˇcne besede: priporoˇcilni sistemi, emotivno pogojeno raˇcunalniˇstvo, strojno uˇcenje, uporabniˇski profil, +emocije +Uporaba emotivnega raˇcunalniˇstva v priporoˇcilnih +sistemih +In this paper we present the results of three investigations of"
+badd371a49d2c4126df95120902a34f4bee01b00,Parallel Separable 3D Convolution for Video and Volumetric Data Understanding,"GONDA, WEI, PARAG, PFISTER: PARALLEL SEPARABLE 3D CONVOLUTION +Parallel Separable 3D Convolution for Video +nd Volumetric Data Understanding +Harvard John A. Paulson School of +Engineering and Applied Sciences +Camabridge MA, USA +Felix Gonda +Donglai Wei +Toufiq Parag +Hanspeter Pfister"
+a0f94e9400938cbd05c4b60b06d9ed58c3458303,Value-Directed Human Behavior Analysis from Video Using Partially Observable Markov Decision Processes,"Value-Directed Human Behavior Analysis +from Video Using Partially Observable +Markov Decision Processes +Jesse Hoey and James J. Little, Member, IEEE"
+a022eff5470c3446aca683eae9c18319fd2406d5,Deep learning for semantic description of visual human traits. (Apprentissage profond pour la description sémantique des traits visuels humains),"017-ENST-0071 +EDITE - ED 130 +Doctorat ParisTech +T H È S E +pour obtenir le grade de docteur délivré par +TÉLÉCOM ParisTech +Spécialité « SIGNAL et IMAGES » +présentée et soutenue publiquement par +Grigory ANTIPOV +le 15 décembre 2017 +Apprentissage Profond pour la Description Sémantique des Traits +Visuels Humains +Directeur de thèse : Jean-Luc DUGELAY +Co-encadrement de la thèse : Moez BACCOUCHE +Mme Bernadette DORIZZI, PRU, Télécom SudParis +Mme Jenny BENOIS-PINEAU, PRU, Université de Bordeaux +M. Christian WOLF, MC/HDR, INSA de Lyon +M. Patrick PEREZ, Chercheur/HDR, Technicolor Rennes +M. Moez BACCOUCHE, Chercheur/Docteur, Orange Labs Rennes +M. Jean-Luc DUGELAY, PRU, Eurecom Sophia Antipolis"
+a0c37f07710184597befaa7e6cf2f0893ff440e9,Fast Retinomorphic Event Stream for Video Recognition and Reinforcement Learning,
+a0fd85b3400c7b3e11122f44dc5870ae2de9009a,Learning Deep Representation for Face Alignment with Auxiliary Attributes,"Learning Deep Representation for Face +Alignment with Auxiliary Attributes +Zhanpeng Zhang, Ping Luo, Chen Change Loy, Member, IEEE and Xiaoou Tang, Fellow, IEEE"
+a0dfb8aae58bd757b801e2dcb717a094013bc178,Reconocimiento de expresiones faciales con base en la dinámica de puntos de referencia faciales,"Reconocimiento de expresiones faciales con base +en la din´amica de puntos de referencia faciales +E. Morales-Vargas, C.A. Reyes-Garcia, Hayde Peregrina-Barreto +Instituto Nacional de Astrof´ısica ´Optica y Electr´onica, +Divisi´on de Ciencias Computacionales, Tonantzintla, Puebla, +M´exico +Resumen. Las expresiones faciales permiten a las personas comunicar +emociones, y es pr´acticamente lo primero que observamos al interactuar +on alguien. En el ´area de computaci´on, el reconocimiento de expresiones +faciales es importante debido a que su an´alisis tiene aplicaci´on directa en +´areas como psicolog´ıa, medicina, educaci´on, entre otras. En este articulo +se presenta el proceso de dise˜no de un sistema para el reconocimiento de +expresiones faciales utilizando la din´amica de puntos de referencia ubi- +ados en el rostro, su implementaci´on, experimentos realizados y algunos +de los resultados obtenidos hasta el momento. +Palabras clave: Expresiones faciales, clasificaci´on, m´aquinas de soporte +vectorial,modelos activos de apariencia. +Facial Expressions Recognition Based on Facial +Landmarks Dynamics"
+a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b,Cascaded Regressor based 3D Face Reconstruction from a Single Arbitrary View Image,"Cascaded Regressor based 3D Face Reconstruction +from a Single Arbitrary View Image +Feng Liu, Dan Zeng, Jing Li, Qijun Zhao +College of Computer Science, Sichuan University, Chengdu, China"
+a03cfd5c0059825c87d51f5dbf12f8a76fe9ff60,Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning,"Simultaneous Learning and Alignment: +Multi-Instance and Multi-Pose Learning? +Boris Babenko1 Piotr Doll´ar1,2 +Zhuowen Tu3 +Serge Belongie1,2 +Comp. Science & Eng. +Univ. of CA, San Diego +Electrical Engineering +California Inst. of Tech. +Lab of Neuro Imaging +Univ. of CA, Los Angeles"
+a090d61bfb2c3f380c01c0774ea17929998e0c96,On the dimensionality of video bricks under varying illumination,"On the Dimensionality of Video Bricks under Varying Illumination +Beijing Lab of Intelligent Information Technology, School of Computer Science, +Youdong Zhao, Xi Song, Yunde Jia +Beijing Institute of Technology, Beijing 100081, PR China +{zyd458, songxi,"
+a000149e83b09d17e18ed9184155be140ae1266e,Action Recognition in Realistic Sports Videos,"Chapter 9 +Action Recognition in Realistic +Sports Videos +Khurram Soomro and Amir R. Zamir"
+a01f9461bc8cf8fe40c26d223ab1abea5d8e2812,Facial Age Estimation Through the Fusion of Texture and Local Appearance Descriptors,"Facial Age Estimation Through the Fusion of Texture +nd local appearance Descriptors +Ivan Huerta1, Carles Fern´andez2, and Andrea Prati1 +DPDCE, University IUAV, Santa Croce 1957, 30135 Venice, Italy +Herta Security, Pau Claris 165 4-B, 08037 Barcelona, Spain"
+a702fc36f0644a958c08de169b763b9927c175eb,Facial expression recognition using Hough forest,"FACIAL EXPRESSION RECOGNITION USING HOUGH FOREST +Chi-Ting Hsu1, Shih-Chung Hsu1, and Chung-Lin Huang1,2 +. Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan +Email: +. Department of Applied Informatics and Multimedia, Asia University, Taichung, Taiwan"
+a7267bc781a4e3e79213bb9c4925dd551ea1f5c4,Proceedings of eNTERFACE 2015 Workshop on Intelligent Interfaces,"Proceedings of eNTERFACE’15 +The 11th Summer Workshop +on Multimodal Interfaces +August 10th - September 4th, 2015 +Numediart Institute, University of Mons +Mons, Belgium"
+a784a0d1cea26f18626682ab108ce2c9221d1e53,Anchored Regression Networks Applied to Age Estimation and Super Resolution,"Anchored Regression Networks applied to Age Estimation and Super Resolution +Eirikur Agustsson +D-ITET, ETH Zurich +Switzerland +Radu Timofte +D-ITET, ETH Zurich +Merantix GmbH +Luc Van Gool +D-ITET, ETH Zurich +ESAT, KU Leuven"
+a77e9f0bd205a7733431a6d1028f09f57f9f73b0,Multimodal feature fusion for CNN-based gait recognition: an empirical comparison,"Multimodal feature fusion for CNN-based gait recognition: an +empirical comparison +F.M. Castroa,, M.J. Mar´ın-Jim´enezb, N. Guila, N. P´erez de la Blancac +Department of Computer Architecture, University of Malaga, Spain, 29071 +Department of Computing and Numerical Analysis, University of Cordoba, Spain, 14071 +Department of Computer Science and Artificial Intelligence, University of Granada, Spain, 18071"
+a7d23c699a5ae4ad9b8a5cbb8c38e5c3b5f5fb51,A Summary of literature review : Face Recognition,"Postgraduate Annual Research Seminar 2007 (3-4 July 2007) +A Summary of literature review : Face Recognition +Kittikhun Meethongjan & Dzulkifli Mohamad +Faculty of Computer Science & Information System, +University Technology of Malaysia, 81310 Skudai, Johor, Malaysia."
+a7664247a37a89c74d0e1a1606a99119cffc41d4,Modal Consistency based Pre-Trained Multi-Model Reuse,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
+a7a6eb53bee5e2224f2ecd56a14e3a5a717e55b9,Face Recognition Using Multi-viewpoint Patterns for Robot Vision,"1th International Symposium of Robotics Research (ISRR2003), pp.192-201, 2003 +Face Recognition Using Multi-viewpoint Patterns for +Robot Vision +Kazuhiro Fukui and Osamu Yamaguchi +Corporate Research and Development Center, TOSHIBA Corporation +, KomukaiToshiba-cho, Saiwai-ku, Kawasaki 212-8582 Japan"
+a758b744a6d6962f1ddce6f0d04292a0b5cf8e07,"Study on Human Face Recognition under Invariant Pose, Illumination and Expression using LBP, LoG and SVM","ISSN XXXX XXXX © 2017 IJESC +Research Article Volume 7 Issue No.4 +Study on Human Face Recognition under Invariant Pose, Illumination +nd Expression using LBP, LoG and SVM +Amrutha +Depart ment of Co mputer Science & Engineering +Mangalore Institute of Technology & Engineering , Moodabidri, Mangalore, India +INTRODUCTION +RELATED WORK +Abstrac t: +Face recognition system uses human face for the identification of the user. Face recognition is a difficu lt task there is no unique +method that provide accurate an accurate and effic ient solution in all the situations like the face image with differen t pose , +illu mination and exp ression. Local Binary Pattern (LBP) and Laplac ian of Gaussian (Lo G) operators. Support Vector Machine +lassifier is used to recognize the human face. The Lo G algorith m is used to preprocess the image to detect the edges of the face +image to get the image information. The LBP operator divides the face image into several blocks to generate the features informat ion +on pixe l level by creating LBP labels for all the blocks of image is obtained by concatenating all the individual local histo grams. +Support Vector Machine classifier (SVM ) is used to classify t he image. The a lgorith m performances is verified under the constraints +like illu mination, e xp ression and pose variation +Ke ywor ds: Face Recognition, Local Binary Pattern, Laplac ian of Gaussian, histogram, illu mination, pose angle, exp ression +variations, SVM ."
+a75ee7f4c4130ef36d21582d5758f953dba03a01,Human face attributes prediction with Deep Learning,"DD2427 Final Project Report +Mohamed Abdulaziz Ali Haseeb +DD2427 Final Project Report +Human face attributes prediction with Deep +Learning +Mohamed Abdulaziz Ali Haseeb"
+a775da3e6e6ea64bffab7f9baf665528644c7ed3,Human Face Pose Estimation based on Feature Extraction Points,"International Journal of Computer Applications (0975 – 8887) +Volume 142 – No.9, May 2016 +Human Face Pose Estimation based on Feature +Extraction Points +Guneet Bhullar +Research scholar, +Department of ECE +SBSSTC, Moga Road, +Ferozepur, Punjab, India"
+a703d51c200724517f099ee10885286ddbd8b587,Fuzzy neural networks(FNN)-based approach for personalized facial expression recognition with novel feature selection method,"Fuzzy Neural Networks(FNN)-based Approach for +Personalized Facial Expression Recognition with +Novel Feature Selection Method +Dae-Jin Kim and Zeungnam Bien +Div. of EE, Dept. of EECS, KAIST +73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea +Kwang-Hyun Park +Human-friendly Welfare Robotic System Engineering Research Center, KAIST +73-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea"
+b871d1b8495025ff8a6255514ed39f7765415935,Application of Completed Local Binary Pattern for Facial Expression Recognition on Gabor Filtered Facial Images,"Application of Completed Local Binary Pattern for Facial Expression +Recognition on Gabor Filtered Facial Images +Tanveer Ahsan, 2Rifat Shahriar, *3Uipil Chong +Dept. of Electrical and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea"
+b8dba0504d6b4b557d51a6cf4de5507141db60cf,Comparing Performances of Big Data Stream Processing Platforms with RAM3S,"Comparing Performances of Big Data Stream +Processing Platforms with RAM3S"
+b89862f38fff416d2fcda389f5c59daba56241db,A Web Survey for Facial Expressions Evaluation,"A Web Survey for Facial Expressions Evaluation +Matteo Sorci +Gianluca Antonini +Jean-Philippe Thiran +Ecole Polytechnique Federale de Lausanne +Signal Processing Institute +Ecublens, 1015 Lausanne, Switzerland +Ecole Polytechnique Federale de Lausanne, Operation Research Group +Michel Bierlaire +Ecublens, 1015 Lausanne, Switzerland +June 9, 2008"
+b8f3f6d8f188f65ca8ea2725b248397c7d1e662d,Selfie Detection by Synergy-Constraint Based Convolutional Neural Network,"Selfie Detection by Synergy-Constriant Based +Convolutional Neural Network +Yashas Annadani, Vijaykrishna Naganoor, Akshay Kumar Jagadish and Krishnan Chemmangat +Electrical and Electronics Engineering, NITK-Surathkal, India."
+b85580ff2d8d8be0a2c40863f04269df4cd766d9,HCMUS team at the Multimodal Person Discovery in Broadcast TV Task of MediaEval 2016,"HCMUS team at the Multimodal Person Discovery in +Broadcast TV Task of MediaEval 2016 +Vinh-Tiep Nguyen, Manh-Tien H. Nguyen, Quoc-Huu Che, Van-Tu Ninh, +Tu-Khiem Le, Thanh-An Nguyen, Minh-Triet Tran +Faculty of Information Technology +University of Science, Vietnam National University-Ho Chi Minh city +{nhmtien, cqhuu, nvtu,"
+b81cae2927598253da37954fb36a2549c5405cdb,Experiments on Visual Information Extraction with the Faces of Wikipedia,"Experiments on Visual Information Extraction with the Faces of Wikipedia +Md. Kamrul Hasan and Christopher Pal +D´epartement de g´enie informatique et g´enie logiciel, Polytechnique Montr´eal +500, Chemin de Polytechnique, Universit´e de Montr´eal, Montr`eal, Qu´ebec, Canada"
+b8a829b30381106b806066d40dd372045d49178d,A Probabilistic Framework for Joint Pedestrian Head and Body Orientation Estimation,"A Probabilistic Framework for Joint Pedestrian Head +nd Body Orientation Estimation +Fabian Flohr, Madalin Dumitru-Guzu, Julian F. P. Kooij, and Dariu M. Gavrila"
+b1d89015f9b16515735d4140c84b0bacbbef19ac,Too Far to See? Not Really!—Pedestrian Detection With Scale-Aware Localization Policy,"Too Far to See? Not Really! +— Pedestrian Detection with Scale-aware +Localization Policy +Xiaowei Zhang, Li Cheng, Bo Li, and Hai-Miao Hu"
+b14b672e09b5b2d984295dfafb05604492bfaec5,Apprentissage de Modèles pour la Classification et la Recherche d ’ Images Learning Image Classification and Retrieval Models,LearningImageClassificationandRetrievalModelsThomasMensink
+b1a3b19700b8738b4510eecf78a35ff38406df22,Automatic Analysis of Facial Actions: A Survey,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE +Transactions on Affective Computing +JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +Automatic Analysis of Facial Actions: A Survey +Brais Martinez, Member, IEEE, Michel F. Valstar, Senior Member, IEEE, Bihan Jiang, +nd Maja Pantic, Fellow, IEEE"
+b166ce267ddb705e6ed855c6b679ec699d62e9cb,Sample group and misplaced atom dictionary learning for face recognition,"Turk J Elec Eng & Comp Sci +(2017) 25: 4421 { 4430 +⃝ T (cid:127)UB_ITAK +doi:10.3906/elk-1702-49 +Sample group and misplaced atom dictionary learning for face recognition +Meng WANG1;2, Zhengping HU1;(cid:3) +, Zhe Sun1, Mei ZHU2, Mei SUN2 +Department of Information Science & Engineering, Faculty of Electronics & Communication, Yanshan University, +Department of Physics & Electronics Engineering, Faculty of Electronics & Communication, Taishan University, +Qinhuangdao, P.R. China +Tai’an, P.R. China +Received: 04.02.2017 +(cid:15) +Accepted/Published Online: 01.06.2017 +(cid:15) +Final Version: 05.10.2017"
+b15a06d701f0a7f508e3355a09d0016de3d92a6d,Facial contrast is a cue for perceiving health from the face.,"Running head: FACIAL CONTRAST LOOKS HEALTHY +Facial contrast is a cue for perceiving health from the face +Richard Russell1, Aurélie Porcheron2,3, Jennifer R. Sweda1, Alex L. Jones1, Emmanuelle +Mauger2, Frederique Morizot2 +Gettysburg College, Gettysburg, PA, USA +CHANEL Recherche et Technologie, Chanel PB +Université Grenoble Alpes +Author Note +Richard Russell, Jennifer R. Sweda, and Alex L. Jones, Department of Psychology, +Gettysburg College. Aurélie Porcheron, Emmanuelle Mauger, and Frederique Morizot, +CHANEL Recherche et Technologie, Chanel PB. Aurélie Porcheron, Laboratoire de +Psychologie et NeuroCognition, Université Grenoble Alpes. +Corresponding author: Richard Russell, Department of Psychology, Box 407, Gettysburg +College, Gettysburg, PA 17325, USA. Email: +This is a prepublication copy. This article may not exactly replicate the authoritative document +published in the APA journal. It is not the copy of record. The authoritative document can be +found through this DOI: http://psycnet.apa.org/doi/10.1037/xhp0000219"
+b1444b3bf15eec84f6d9a2ade7989bb980ea7bd1,Local Directional Relation Pattern for Unconstrained and Robust Face Retrieval,"LOCAL DIRECTIONAL RELATION PATTERN +Local Directional Relation Pattern for +Unconstrained and Robust Face Retrieval +Shiv Ram Dubey, Member, IEEE"
+b1451721864e836069fa299a64595d1655793757,Criteria Sliders: Learning Continuous Database Criteria via Interactive Ranking,"Criteria Sliders: Learning Continuous +Database Criteria via Interactive Ranking +James Tompkin,1∗ Kwang In Kim,2∗ Hanspeter Pfister,3 and Christian Theobalt4 +Brown University 2University of Bath +Harvard University 4Max Planck Institute for Informatics"
+b19e83eda4a602abc5a8ef57467c5f47f493848d,Heat Kernel Based Local Binary Pattern for Face Representation,"JOURNAL OF LATEX CLASS FILES +Heat Kernel Based Local Binary Pattern for +Face Representation +Xi Li†, Weiming Hu†, Zhongfei Zhang‡, Hanzi Wang§"
+dde5125baefa1141f1ed50479a3fd67c528a965f,Synthesizing Normalized Faces from Facial Identity Features,"Synthesizing Normalized Faces from Facial Identity Features +Forrester Cole1 David Belanger1,2 Dilip Krishnan1 Aaron Sarna1 Inbar Mosseri1 William T. Freeman1,3 +Google, Inc. 2University of Massachusetts Amherst 3MIT CSAIL +{fcole, dbelanger, dilipkay, sarna, inbarm,"
+dd8084b2878ca95d8f14bae73e1072922f0cc5da,"Model Distillation with Knowledge Transfer in Face Classification, Alignment and Verification","Model Distillation with Knowledge Transfer from +Face Classification to Alignment and Verification +Chong Wang∗, Xipeng Lan and Yangang Zhang +Beijing Orion Star Technology Co., Ltd. Beijing, China +{chongwang.nlpr, xipeng.lan,"
+ddf55fc9cf57dabf4eccbf9daab52108df5b69aa,Methodology and Performance Analysis of 3-D Facial Expression Recognition Using Statistical Shape Representation,"International Journal of Grid and Distributed Computing +Vol. 4, No. 3, September, 2011 +Methodology and Performance Analysis of 3-D Facial Expression +Recognition Using Statistical Shape Representation +Wei Quan, Bogdan J. Matuszewski, Lik-Kwan Shark +ADSIP Research Centre, University of Central Lancashire +{WQuan, BMatuszewski1, +Charlie Frowd +School of Psychology, University of Central Lancashire"
+ddea3c352f5041fb34433b635399711a90fde0e8,Facial Expression Classification using Visual Cues and Language,"Facial Expression Classification using Visual Cues and Language +Abhishek Kar +Advisor: Dr. Amitabha Mukerjee +Department of Computer Science and Engineering, IIT Kanpur"
+ddbd24a73ba3d74028596f393bb07a6b87a469c0,Multi-region Two-Stream R-CNN for Action Detection,"Multi-region two-stream R-CNN +for action detection +Xiaojiang Peng, Cordelia Schmid +Inria(cid:63)"
+ddf099f0e0631da4a6396a17829160301796151c,Learning Face Image Quality from Human Assessments,"IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY +Learning Face Image Quality from +Human Assessments +Lacey Best-Rowden, Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
+dd0a334b767e0065c730873a95312a89ef7d1c03,Eigenexpressions: Emotion Recognition Using Multiple Eigenspaces,"Eigenexpressions: Emotion Recognition using Multiple +Eigenspaces +Luis Marco-Gim´enez1, Miguel Arevalillo-Herr´aez1, and Cristina Cuhna-P´erez2 +University of Valencia. Computing Department, +Burjassot. Valencia 46100, Spain, +Universidad Cat´olica San Vicente M´artir de Valencia (UCV), +Burjassot. Valencia. Spain"
+dd8d53e67668067fd290eb500d7dfab5b6f730dd,A Parameter-Free Framework for General Supervised Subspace Learning,"A Parameter-Free Framework for General +Supervised Subspace Learning +Shuicheng Yan, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, Xiaoou Tang, Senior Member, IEEE, +nd Thomas S. Huang, Life Fellow, IEEE"
+ddbb6e0913ac127004be73e2d4097513a8f02d37,Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis,"IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 3, SEPTEMBER 1999 +Face Detection Using Quantized Skin Color +Regions Merging and Wavelet Packet Analysis +Christophe Garcia and Georgios Tziritas, Member, IEEE"
+dc550f361ae82ec6e1a0cf67edf6a0138163382e,Emotion Based Music Player,"ISSN XXXX XXXX © 2018 IJESC +Research Article Volume 8 Issue No.3 +Vijay Chakole1, Aniket Choudhary2, Kalyani Trivedi3, Kshitija Bhoyar4, Ruchita Bodele5, Sayali Karmore6 +Emotion Based Music Player +Professor1, UG Student2, 3, 4, 5, 6 +Department of Electronics Engineering +K.D.K. College of Engineering Nagpur, India"
+dcb44fc19c1949b1eda9abe998935d567498467d,Ordinal Zero-Shot Learning,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +labelunseen labelFigure1:Supervisionintensityfordifferentlabels.Greenrepre-sentsseenlabelsandredrepresentsunseenlabels.Thegroundtruthlabelofthisinstanceis“Good”,soithasthestrongestsupervisionintensity.Although“Common”isanunseenlabel,itstillhascertainsupervisioninformationbecauseitiscloselyrelatedto“Good”.classifier;[ZhangandSaligrama,2016]learnsajointlatentspaceusingstructuredlearning.Thedifficultyinobtainingthesideinformationorusingothertechniquestoprocessthesideinformationarethemostseriousissuesformanyexistingzero-shotlearningmethods.Fortheattribute-basedmethods,humanexpertsareneededtolabelattributesandthisisverytime-consumingandnoteasytoobtainthediscriminativecategory-levelattributes.Somemethodsdiscoverattributesinteractively[ParikhandGrau-man,2011][Bransonetal.,2010],butthisalsorequiresla-borioushumanparticipation.Althoughmanyalgorithmscandiscoverattribute-relatedconceptsontheWeb[Rohrbachetal.,2010][Bergetal.,2010],theycanalsobebiasedorlackinformationthatiscriticaltoaparticulartask[ParikhandGrauman,2011].Forthetextcorpora-basedmethods,theyfirstrequirealargelanguagecorpora,suchasWikipedia,andthenneedtolearnwordrepresentation[Socheretal.,2013]orusestandardNaturalLanguageProcessing(NLP)techniquestoproduceclassdescriptions[Elhoseinyetal.,2013].Itishardtoguaranteethecorrectnessofsuchclassdescriptionsforzero-shotlearning.Conclusively,althoughsideinforma-tionishelpfulforzero-shotlearning,ithasmanydisadvan-tages.Generatingthesesideinformationisverytediousandsometimeswecannotknowwhichsideinformationistrulywanted.IfwedependonhumanlabororNLPtechniques,noisysideinformationwillbecomealmostinevitableandin-fluencethefinalperformance.Toavoidtheseproblems,itisimportanttosolvezero-shotlearninginwhateverpossiblecasesthathavesomepropertieswecanutilizetoavoidusingsideinformation."
+dc7df544d7c186723d754e2e7b7217d38a12fcf7,Facial expression recognition using salient facial patches,"Facial expression recognition using salient facial patches +Hazar Mliki +MIRACL-ENET’COM +University of Sfax +Tunisia (3018), Sfax +Mohamed Hammami +MIRACL-FSS +University of Sfax +Tunisia (3018), Sfax"
+dc77287bb1fcf64358767dc5b5a8a79ed9abaa53,Fashion Conversation Data on Instagram,"Fashion Conversation Data on Instagram +Yu-I Ha∗ +Sejeong Kwon∗ +Meeyoung Cha∗ +Jungseock Joo† +Graduate School of Culture Technology, KAIST, South Korea +Department of Communication Studies, UCLA, USA"
+dc2e805d0038f9d1b3d1bc79192f1d90f6091ecb,Face Recognition and Facial Attribute Analysis from Unconstrained Visual Data,
+dc974c31201b6da32f48ef81ae5a9042512705fe,Am I Done? Predicting Action Progress in Videos,"Am I done? Predicting Action Progress in Video +Federico Becattini1, Tiberio Uricchio1, Lorenzo Seidenari1, +Alberto Del Bimbo1, and Lamberto Ballan2 +Media Integration and Communication Center, Univ. of Florence, Italy +Department of Mathematics “Tullio Levi-Civita”, Univ. of Padova, Italy"
+b613b30a7cbe76700855479a8d25164fa7b6b9f1,Identifying User-Specific Facial Affects from Spontaneous Expressions with Minimal Annotation,"Identifying User-Specific Facial Affects from +Spontaneous Expressions with Minimal Annotation +Michael Xuelin Huang, Grace Ngai, Kien A. Hua, Fellow, IEEE, Stephen C.F. Chan, Member, IEEE +nd Hong Va Leong, Member, IEEE Computer Society"
+b6f682648418422e992e3ef78a6965773550d36b,"CBMM Memo No . 061 February 8 , 2017 Full interpretation of minimal images","February 8, 2017"
+a9791544baa14520379d47afd02e2e7353df87e5,The Need for Careful Data Collection for Pattern Recognition in Digital Pathology,"Technical Note +The Need for Careful Data Collection for Pattern Recognition in +Digital Pathology +Raphaël Marée1 +Department of Electrical Engineering and Computer Science, Montefiore Institute, University of Liège, 4000 Liège, Belgium +Received: 08 December 2016 +Accepted: 15 March 2017 +Published: 10 April 2017"
+a9eb6e436cfcbded5a9f4b82f6b914c7f390adbd,A Model for Facial Emotion Inference Based on Planar Dynamic Emotional Surfaces,"(IJARAI) International Journal of Advanced Research in Artificial Intelligence, +Vol. 5, No.6, 2016 +A Model for Facial Emotion Inference Based on +Planar Dynamic Emotional Surfaces +Ruivo, J. P. P. +Escola Polit´ecnica +Negreiros, T. +Escola Polit´ecnica +Barretto, M. R. P. +Escola Polit´ecnica +Tinen, B. +Escola Polit´ecnica +Universidade de S˜ao Paulo +Universidade de S˜ao Paulo +Universidade de S˜ao Paulo +Universidade de S˜ao Paulo +S˜ao Paulo, Brazil +S˜ao Paulo, Brazil +S˜ao Paulo, Brazil +S˜ao Paulo, Brazil"
+a955033ca6716bf9957b362b77092592461664b4,Video Based Face Recognition Using Artificial Neural Network,"ISSN(Online): 2320-9801 +ISSN (Print): 2320-9798 +International Journal of Innovative Research in Computer +nd Communication Engineering +(An ISO 3297: 2007 Certified Organization) +Video Based Face Recognition Using Artificial +Vol. 3, Issue 6, June 2015 +Neural Network +Santhy Mol T, Neethu Susan Jacob +Pursuing M.Tech, Dept. of CSE, Caarmel Engineering College, MG University, Kerala, India +Assistant Professor, Dept of CSE, Caarmel Engineering College, MG University, Kerala, India"
+a956ff50ca958a3619b476d16525c6c3d17ca264,A novel bidirectional neural network for face recognition,"A Novel Bidirectional Neural Network for Face Recognition +JalilMazloum, Ali Jalali and Javad Amiryan +Electrical and Computer Engineering Department +ShahidBeheshti University +Tehran, Iran"
+a98316980b126f90514f33214dde51813693fe0d,Collaborations on YouTube: From Unsupervised Detection to the Impact on Video and Channel Popularity,"Collaborations on YouTube: From Unsupervised Detection to the +Impact on Video and Channel Popularity +Christian Koch, Moritz Lode, Denny Stohr, Amr Rizk, Ralf Steinmetz +Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany +E-Mail: {Christian.Koch | Denny.Stohr | Amr.Rizk |"
+a93781e6db8c03668f277676d901905ef44ae49f,Recent Data Sets on Object Manipulation: A Survey.,"Recent Datasets on Object Manipulation: A Survey +Yongqiang Huang, Matteo Bianchi, Minas Liarokapis and Yu Sun"
+a9adb6dcccab2d45828e11a6f152530ba8066de6,Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma Illumination Subspaces based Robust Face Recognition,"Aydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma +Illumination Subspaces based Robust Face Recognition +D. Kern, H.K. Ekenel, R. Stiefelhagen +Interactive Systems Labs, Universität Karlsruhe (TH) +76131 Karlsruhe, Almanya +web: http://isl.ira.uka.de/face_recognition +Özetçe +yönlerine +ydınlanma +kaynaklanan +sonra, yüz uzayı +Bu çalışmada aydınlanma alt-uzaylarına dayalı bir yüz tanıma +sistemi sunulmuştur. Bu sistemde, +ilk olarak, baskın +ydınlanma yönleri, bir topaklandırma algoritması kullanılarak +öğrenilmiştir. Topaklandırma algoritması sonucu önden, sağ +ve sol yanlardan olmak üzere üç baskın aydınlanma yönü +gözlemlenmiştir. Baskın +karar +-yüzün görünümündeki"
+a95dc0c4a9d882a903ce8c70e80399f38d2dcc89,Review and Implementation of High-Dimensional Local Binary Patterns and Its Application to Face Recognition,"TR-IIS-14-003 +Review and Implementation of +High-Dimensional Local Binary +Patterns and Its Application to +Face Recognition +Bor-Chun Chen, Chu-Song Chen, Winston Hsu +July. 24, 2014 || Technical Report No. TR-IIS-14-003 +http://www.iis.sinica.edu.tw/page/library/TechReport/tr2014/tr14.html"
+a9286519e12675302b1d7d2fe0ca3cc4dc7d17f6,Learning to Succeed while Teaching to Fail: Privacy in Closed Machine Learning Systems,"Learning to Succeed while Teaching to Fail: +Privacy in Closed Machine Learning Systems +Jure Sokoli´c, Qiang Qiu, Miguel R. D. Rodrigues, and Guillermo Sapiro"
+a949b8700ca6ba96ee40f75dfee1410c5bbdb3db,Instance-Weighted Transfer Learning of Active Appearance Models,"Instance-weighted Transfer Learning of Active Appearance Models +Daniel Haase, Erik Rodner, and Joachim Denzler +Computer Vision Group, Friedrich Schiller University of Jena, Germany +Ernst-Abbe-Platz 2-4, 07743 Jena, Germany"
+a92b5234b8b73e06709dd48ec5f0ec357c1aabed,Disjoint Multi-task Learning Between Heterogeneous Human-Centric Tasks,
+d50c6d22449cc9170ab868b42f8c72f8d31f9b6c,Dynamic Multi-Task Learning with Convolutional Neural Network,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
+d522c162bd03e935b1417f2e564d1357e98826d2,Weakly supervised object extraction with iterative contour prior for remote sensing images,"He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:19 +http://asp.eurasipjournals.com/content/2013/1/19 +RESEARCH +Open Access +Weakly supervised object extraction with +iterative contour prior for remote sensing +images +Chu He1,2*, Yu Zhang1, Bo Shi1, Xin Su3, Xin Xu1 and Mingsheng Liao2"
+d59f18fcb07648381aa5232842eabba1db52383e,Robust Facial Expression Recognition Using Spatially Localized Geometric Model,"International Conference on Systemics, Cybernetics and Informatics, February 12–15, 2004 +ROBUST FACIAL EXPRESSION RECOGNITION USING SPATIALLY +LOCALIZED GEOMETRIC MODEL +Department of Electrical Engineering +Dept. of Computer Sc. and Engg. +Ashutosh Saxena +IIT Kanpur +Kanpur 208016, India +Kanpur 208016, India +Ankit Anand +IIT Kanpur +Prof. Amitabha Mukerjee +Dept. of Computer Sc. and Engg. +IIT Kanpur +Kanpur 208016, India +While approaches based on 3D deformable facial model have +chieved expression recognition rates of as high as 98% [2], they +re computationally inefficient and require considerable apriori +training based on 3D information, which is often unavailable. +Recognition from 2D images remains a difficult yet important"
+d588dd4f305cdea37add2e9bb3d769df98efe880,Audio - Visual Authentication System over the Internet Protocol,"Audio-Visual Authentication System over the +Internet Protocol +Yee Wan Wong, Kah Phooi Seng, and Li-Minn Ang +bandoned. +illumination based +is developed with the objective to"
+d5444f9475253bbcfef85c351ea9dab56793b9ea,BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance,"IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS +BoxCars: Improving Fine-Grained Recognition +of Vehicles using 3D Bounding Boxes +in Traffic Surveillance +Jakub Sochor, Jakub ˇSpaˇnhel, Adam Herout +in contrast"
+d5ab6aa15dad26a6ace5ab83ce62b7467a18a88e,Optimized Structure for Facial Action Unit Relationship Using Bayesian Network,"World Journal of Computer Application and Technology 2(7): 133-138, 2014 +DOI: 10.13189/wjcat.2014.020701 +http://www.hrpub.org +Optimized Structure for Facial Action Unit Relationship +Using Bayesian Network +Yee Koon Loh*, Shahrel A. Suandi +Intelligent Biometric Group, School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Pulau +*Corresponding Author: +Pinang, Malaysia +Copyright © 2014 Horizon Research Publishing All rights reserved."
+d56fe69cbfd08525f20679ffc50707b738b88031,Training of multiple classifier systems utilizing partially labeled sequential data sets,"Training of multiple classifier systems utilizing +partially labelled sequences +Martin Schels, Patrick Schillinger, and Friedhelm Schwenker +Ulm University - Department of Neural Information Processing +89069 Ulm - Germany"
+d5de42d37ee84c86b8f9a054f90ddb4566990ec0,Asynchronous Temporal Fields for Action Recognition,"Asynchronous Temporal Fields for Action Recognition +Gunnar A. Sigurdsson1∗ Santosh Divvala2,3 Ali Farhadi2,3 Abhinav Gupta1,3 +Carnegie Mellon University 2University of Washington 3Allen Institute for Artificial Intelligence +github.com/gsig/temporal-fields/"
+d50a40f2d24363809a9ac57cf7fbb630644af0e5,End-to-end Trained CNN Encode-Decoder Networks for Image Steganography,"END-TO-END TRAINED CNN ENCODER-DECODER NETWORKS FOR IMAGE +STEGANOGRAPHY +Atique ur Rehman, Rafia Rahim, Shahroz Nadeem, Sibt ul Hussain +National University of Computer & Emerging Sciences (NUCES-FAST), Islamabad, Pakistan. +Reveal.ai (Recognition, Vision & Learning) Lab"
+d5b5c63c5611d7b911bc1f7e161a0863a34d44ea,Extracting Scene-Dependent Discriminant Features for Enhancing Face Recognition under Severe Conditions,"Extracting Scene-dependent Discriminant +Features for Enhancing Face Recognition +under Severe Conditions +Rui Ishiyama and Nobuyuki Yasukawa +Information and Media Processing Research Laboratories, NEC Corporation +753, Shimonumabe, Nakahara-Ku, Kawasaki 211-8666 Japan"
+d59404354f84ad98fa809fd1295608bf3d658bdc,Face Synthesis from Visual Attributes via Sketch using Conditional VAEs and GANs,"International Journal of Computer Vision manuscript No. +(will be inserted by the editor) +Face Synthesis from Visual Attributes via Sketch using +Conditional VAEs and GANs +Xing Di · Vishal M. Patel +Received: date / Accepted: date"
+d231a81b38fde73bdbf13cfec57d6652f8546c3c,SUPERRESOLUTION TECHNIQUES FOR FACE RECOGNITION FROM VIDEO by Osman,"SUPERRESOLUTION TECHNIQUES +FOR FACE RECOGNITION FROM VIDEO +Osman Gökhan Sezer +B.S., E.E., Boğaziçi University, 2003 +Submitted to the Graduate School of Engineering +and Natural Sciences in partially fulfillment of +the requirement for the degree of +Master of Science +Graduate Program in Electronics Engineering and Computer Science +Sabancı University +Spring 2005"
+d22785eae6b7503cb16402514fd5bd9571511654,Evaluating Facial Expressions with Different Occlusion around Image Sequence,"Evaluating Facial Expressions with Different +Occlusion around Image Sequence +Ankita Vyas, Ramchand Hablani +Department of Computer Science +Sanghvi Institute of Management & Science +Indore (MP), India +local +INTRODUCTION"
+d2eb1079552fb736e3ba5e494543e67620832c52,DeSTNet: Densely Fused Spatial Transformer Networks,"ANNUNZIATA, SAGONAS, CALÌ: DENSELY FUSED SPATIAL TRANSFORMER NETWORKS1 +DeSTNet: Densely Fused Spatial +Transformer Networks1 +Roberto Annunziata +Christos Sagonas +Jacques Calì +Onfido Research +Finsbury Avenue +London, UK"
+d24dafe10ec43ac8fb98715b0e0bd8e479985260,"Effects of Social Anxiety on Emotional Mimicry and Contagion: Feeling Negative, but Smiling Politely","J Nonverbal Behav (2018) 42:81–99 +https://doi.org/10.1007/s10919-017-0266-z +O R I G I N A L P A P E R +Effects of Social Anxiety on Emotional Mimicry +nd Contagion: Feeling Negative, but Smiling Politely +Corine Dijk1 +Charlotte van Eeuwijk4 +• Gerben A. van Kleef2 +• Agneta H. Fischer2 +• Nexhmedin Morina3 +Published online: 25 September 2017 +Ó The Author(s) 2017. This article is an open access publication"
+d278e020be85a1ccd90aa366b70c43884dd3f798,Learning From Less Data: Diversified Subset Selection and Active Learning in Image Classification Tasks,"Learning From Less Data: Diversified Subset Selection and +Active Learning in Image Classification Tasks +Vishal Kaushal +IIT Bombay +Mumbai, Maharashtra, India +Khoshrav Doctor +AITOE Labs +Mumbai, Maharashtra, India +Suyash Shetty +AITOE Labs +Mumbai, Maharashtra, India +Rishabh Iyer +AITOE Labs +Seattle, Washington, USA +Anurag Sahoo +AITOE Labs +Seattle, Washington, USA +Narsimha Raju +IIT Bombay +Mumbai, Maharashtra, India"
+aadf4b077880ae5eee5dd298ab9e79a1b0114555,Using Hankel matrices for dynamics-based facial emotion recognition and pain detection,"Dynamics-based Facial Emotion Recognition and Pain Detection +Using Hankel Matrices for +Liliana Lo Presti and Marco La Cascia +DICGIM - University of Palermo +V.le delle Scienze, Ed. 6, 90128 Palermo (Italy)"
+aae742779e8b754da7973949992d258d6ca26216,Robust facial expression classification using shape and appearance features,"Robust Facial Expression Classification Using Shape +nd Appearance Features +S L Happy and Aurobinda Routray +Department of Electrical Engineering, +Indian Institute of Technology Kharagpur, India"
+aa52910c8f95e91e9fc96a1aefd406ffa66d797d,Face Recognition System Based on 2dfld and Pca,"FACE RECOGNITION SYSTEM BASED +ON 2DFLD AND PCA +Dr. Sachin D. Ruikar +E&TC Department +Sinhgad Academy of Engineering +Pune, India +Mr. Hulle Rohit Rajiv +ME E&TC [Digital System] +Sinhgad Academy of Engineering +Pune, India"
+aafb8dc8fda3b13a64ec3f1ca7911df01707c453,Excitation Backprop for RNNs,"Excitation Backprop for RNNs +Sarah Adel Bargal∗1, Andrea Zunino∗ 2, Donghyun Kim1, Jianming Zhang3, +Vittorio Murino2,4, Stan Sclaroff1 +Department of Computer Science, Boston University 2Pattern Analysis & Computer Vision (PAVIS), +Istituto Italiano di Tecnologia 3Adobe Research 4Computer Science Department, Universit`a di Verona +Figure 1: Our proposed framework spatiotemporally highlights/grounds the evidence that an RNN model used in producing a class label +or caption for a given input video. In this example, by using our proposed back-propagation method, the evidence for the activity class +CliffDiving is highlighted in a video that contains CliffDiving and HorseRiding. Our model employs a single backward pass to produce +saliency maps that highlight the evidence that a given RNN used in generating its outputs."
+aadfcaf601630bdc2af11c00eb34220da59b7559,Multi-view Hybrid Embedding: A Divide-and-Conquer Approach,"Multi-view Hybrid Embedding: +A Divide-and-Conquer Approach +Jiamiao Xu∗, Shujian Yu∗, Xinge You†, Senior Member, IEEE, Mengjun Leng, +Xiao-Yuan Jing, and C. L. Philip Chen, Fellow, IEEE"
+aaa4c625f5f9b65c7f3df5c7bfe8a6595d0195a5,Biometrics in ambient intelligence,"Biometrics in Ambient Intelligence +Massimo Tistarelli§ and Ben Schouten§§"
+aae0e417bbfba701a1183d3d92cc7ad550ee59c3,A Statistical Method for 2-D Facial Landmarking,"A Statistical Method for 2-D Facial Landmarking +Hamdi Dibeklio˘glu, Student Member, IEEE, Albert Ali Salah, Member, IEEE, and Theo Gevers, Member, IEEE"
+aa577652ce4dad3ca3dde44f881972ae6e1acce7,Deep Attribute Networks,"Deep Attribute Networks +Junyoung Chung +Department of EE, KAIST +Daejeon, South Korea +Donghoon Lee +Department of EE, KAIST +Daejeon, South Korea +Youngjoo Seo +Department of EE, KAIST +Daejeon, South Korea +Chang D. Yoo +Department of EE, KAIST +Daejeon, South Korea"
+aa94f214bb3e14842e4056fdef834a51aecef39c,Reconhecimento de padrões faciais: Um estudo,"Reconhecimento de padrões faciais: Um estudo +Alex Lima Silva, Marcos Evandro Cintra +Universidade Federal +Rural do Semi-Árido +Departamento de Ciências Naturais +Mossoró, RN - 59625-900 +Email: +Resumo—O reconhecimento facial tem sido utilizado em di- +versas áreas para identificação e autenticação de usuários. Um +dos principais mercados está relacionado a segurança, porém há +uma grande variedade de aplicações relacionadas ao uso pessoal, +onveniência, aumento de produtividade, etc. O rosto humano +possui um conjunto de padrões complexos e mutáveis. Para +reconhecer esses padrões, são necessárias técnicas avançadas de +reconhecimento de padrões capazes, não apenas de reconhecer, +mas de se adaptar às mudanças constantes das faces das pessoas. +Este documento apresenta um método de reconhecimento facial +proposto a partir da análise comparativa de trabalhos encontra- +dos na literatura. +iométrica é o uso da biometria para reconhecimento, identi-"
+aac101dd321e6d2199d8c0b48c543b541c181b66,Using Context to Enhance the Understanding of Face Images,"USING CONTEXT TO ENHANCE THE +UNDERSTANDING OF FACE IMAGES +A Dissertation Presented +VIDIT JAIN +Submitted to the Graduate School of the +University of Massachusetts Amherst in partial fulfillment +of the requirements for the degree of +DOCTOR OF PHILOSOPHY +September 2010 +Department of Computer Science"
+af6e351d58dba0962d6eb1baf4c9a776eb73533f,How to Train Your Deep Neural Network with Dictionary Learning,"How to Train Your Deep Neural Network with +Dictionary Learning +Vanika Singhal*, Shikha Singh+ and Angshul Majumdar# +*IIIT Delhi +Okhla Phase 3 +Delhi, 110020, India ++IIIT Delhi +Okhla Phase 3 +#IIIT Delhi +Okhla Phase 3 +Delhi, 110020, India +Delhi, 110020, India"
+af62621816fbbe7582a7d237ebae1a4d68fcf97d,Active Shape Model Based Recognition Of Facial Expression,"International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 +International Conference on Humming Bird ( 01st March 2014) +RESEARCH ARTICLE +OPEN ACCESS +Active Shape Model Based Recognition Of Facial Expression +AncyRija V , Gayathri. S2 +AncyRijaV,Author is currently pursuing M.E (Software Engineering) in Vins Christian College of +Engineering, +e-mail: +Gayathri.S, M.E., Asst.Prof.,Department of Information Technology , Vins Christian college of Engineering."
+afa57e50570a6599508ee2d50a7b8ca6be04834a,Motion in action : optical flow estimation and action localization in videos. (Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos),"Motion in action : optical flow estimation and action +localization in videos +Philippe Weinzaepfel +To cite this version: +Philippe Weinzaepfel. Motion in action : optical flow estimation and action localization in videos. +Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2016. English. <NNT : +016GREAM013>. <tel-01407258> +HAL Id: tel-01407258 +https://tel.archives-ouvertes.fr/tel-01407258 +Submitted on 1 Dec 2016 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de"
+afc7092987f0d05f5685e9332d83c4b27612f964,Person-independent facial expression detection using Constrained Local Models,"Person-Independent Facial Expression Detection using Constrained +Local Models +Sien. W. Chew, Patrick Lucey, Simon Lucey, Jason Saragih, Jeffrey F. Cohn and Sridha Sridharan"
+b730908bc1f80b711c031f3ea459e4de09a3d324,Active Orientation Models for Face Alignment In-the-Wild,"Active Orientation Models for Face +Alignment In-the-Wild +Georgios Tzimiropoulos, Joan Alabort-i-Medina, Student Member, IEEE, +Stefanos P. Zafeiriou, Member, IEEE, and Maja Pantic, Fellow, IEEE"
+b7cf7bb574b2369f4d7ebc3866b461634147041a,From NLDA to LDA/GSVD: a modified NLDA algorithm,"Neural Comput & Applic (2012) 21:1575–1583 +DOI 10.1007/s00521-011-0728-x +O R I G I N A L A R T I C L E +From NLDA to LDA/GSVD: a modified NLDA algorithm +Jun Yin • Zhong Jin +Received: 2 August 2010 / Accepted: 3 August 2011 / Published online: 19 August 2011 +Ó Springer-Verlag London Limited 2011"
+b7894c1f805ffd90ab4ab06002c70de68d6982ab,A comprehensive age estimation on face images using hybrid filter based feature extraction,"Biomedical Research 2017; Special Issue: S610-S618 +ISSN 0970-938X +www.biomedres.info +A comprehensive age estimation on face images using hybrid filter based +feature extraction. +Karthikeyan D1*, Balakrishnan G2 +Department of ECE, Srinivasan Engineering College, Perambalur, India +Department of Computer Science and Engineering, Indra Ganesan College of Engineering, Trichy, India"
+b7eead8586ffe069edd190956bd338d82c69f880,A Video Database for Facial Behavior Understanding,"A VIDEO DATABASE FOR FACIAL +BEHAVIOR UNDERSTANDING +D. Freire-Obreg´on and M. Castrill´on-Santana. +SIANI, Universidad de Las Palmas de Gran Canaria, Spain"
+b7774c096dc18bb0be2acef07ff5887a22c2a848,Distance metric learning for image and webpage comparison. (Apprentissage de distance pour la comparaison d'images et de pages Web),"Distance metric learning for image and webpage +omparison +Marc Teva Law +To cite this version: +Marc Teva Law. Distance metric learning for image and webpage comparison. Image Processing. Uni- +versité Pierre et Marie Curie - Paris VI, 2015. English. <NNT : 2015PA066019>. <tel-01135698v2> +HAL Id: tel-01135698 +https://tel.archives-ouvertes.fr/tel-01135698v2 +Submitted on 18 Mar 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non, +émanant des établissements d’enseignement et de +recherche français ou étrangers, des laboratoires"
+b7f05d0771da64192f73bdb2535925b0e238d233,Robust Active Shape Model using AdaBoosted Histogram Classifiers,"MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +Robust Active Shape Model using AdaBoosted Histogram Classifiers +Yuanzhong Li +W ataru Ito +Imaging Software Technology Center +Imaging Software Technology Center +FUJI PHOTO FILM CO., LTD. +fujifilm.co.jp +FUJI PHOTO FILM CO., LTD. +fujifilm.co.jp"
+b755505bdd5af078e06427d34b6ac2530ba69b12,NFRAD: Near-Infrared Face Recognition at a Distance,"To appear in the International Joint Conf. Biometrics, Washington D.C., October, 2011 +NFRAD: Near-Infrared Face Recognition at a Distance +Hyunju Maenga, Hyun-Cheol Choia, Unsang Parkb, Seong-Whan Leea and Anil K. Jaina,b +Dept. of Brain and Cognitive Eng. Korea Univ., Seoul, Korea +Dept. of Comp. Sci. & Eng. Michigan State Univ., E. Lansing, MI, USA 48824 +{hjmaeng, ,"
+b7b461f82c911f2596b310e2b18dd0da1d5d4491,K-mappings and Regression trees,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +K-MAPPINGS AND REGRESSION TREES +SAMSI and Duke University +. INTRODUCTION +rgminM1,...,MK +P1,...PK +Arthur Szlam† +.1. Partitioning Y +K(cid:2) +(cid:2) +(cid:3) +(cid:4)"
+b73fdae232270404f96754329a1a18768974d3f6,Local Relation Map : A Novel Illumination Invariant Face Recognition Approach Regular Paper,
+b76af8fcf9a3ebc421b075b689defb6dc4282670,Face Mask Extraction in Video Sequence,"Face Mask Extraction in Video Sequence +Yujiang Wang 1 · Bingnan Luo 1 · Jie Shen 1 · Maja Pantic 1"
+b7f7a4df251ff26aca83d66d6b479f1dc6cd1085,Handling missing weak classifiers in boosted cascade: application to multiview and occluded face detection,"Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 +http://jivp.eurasipjournals.com/content/2013/1/55 +RESEARCH +Open Access +Handling missing weak classifiers in boosted +ascade: application to multiview and +occluded face detection +Pierre Bouges1*, Thierry Chateau1*, Christophe Blanc1 and Gaëlle Loosli2"
+db227f72bb13a5acca549fab0dc76bce1fb3b948,Characteristic Based Image Search Using Re-Ranking Method,"International Refereed Journal of Engineering and Science (IRJES) +ISSN (Online) 2319-183X, (Print) 2319-1821 +Volume 4, Issue 6 (June 2015), PP.169-169-174 +Characteristic Based Image Search using Re-Ranking method +Chitti Babu, 2Yasmeen Jaweed, 3G.Vijay Kumar +,2,3Computer Science Engineering Dept, Sree Dattha Institute of Engineering & Science"
+dbaf89ca98dda2c99157c46abd136ace5bdc33b3,Nonlinear Cross-View Sample Enrichment for Action Recognition,"Nonlinear Cross-View Sample Enrichment for +Action Recognition +Ling Wang, Hichem Sahbi +Institut Mines-T´el´ecom; T´el´ecom ParisTech; CNRS LTCI"
+dbe255d3d2a5d960daaaba71cb0da292e0af36a7,Evolutionary Cost-Sensitive Extreme Learning Machine,"Evolutionary Cost-sensitive Extreme Learning +Machine +Lei Zhang, Member, IEEE, and David Zhang, Fellow, IEEE"
+dbb0a527612c828d43bcb9a9c41f1bf7110b1dc8,Machine Learning Techniques for Face Analysis,"Chapter 7 +Machine Learning Techniques +for Face Analysis +Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen"
+dbb7f37fb9b41d1aa862aaf2d2e721a470fd2c57,Face image analysis with convolutional neural networks,"Face Image Analysis With +Convolutional Neural Networks +Dissertation +Zur Erlangung des Doktorgrades +der Fakult¨at f¨ur Angewandte Wissenschaften +n der Albert-Ludwigs-Universit¨at Freiburg im Breisgau +Stefan Duffner"
+dbd5e9691cab2c515b50dda3d0832bea6eef79f2,Image - based Face Recognition : Issues and Methods 1,"Image-basedFaceRecognition:IssuesandMethods +WenYiZhao +RamaChellappa +Sarno(cid:11)Corporation +CenterforAutomationResearch + +UniversityofMaryland +Princeton,NJ +CollegePark,MD +db67edbaeb78e1dd734784cfaaa720ba86ceb6d2,SPECFACE — A dataset of human faces wearing spectacles,"SPECFACE - A Dataset of Human Faces Wearing Spectacles +Anirban Dasgupta, Shubhobrata Bhattacharya and Aurobinda Routray +Indian Institute of Technology Kharagpur +India"
+a83fc450c124b7e640adc762e95e3bb6b423b310,Deep Face Feature for Face Alignment and Reconstruction,"Deep Face Feature for Face Alignment +Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu"
+a85e9e11db5665c89b057a124547377d3e1c27ef,Dynamics of Driver's Gaze: Explorations in Behavior Modeling and Maneuver Prediction,"Dynamics of Driver’s Gaze: Explorations in +Behavior Modeling & Maneuver Prediction +Sujitha Martin, Member, IEEE, Sourabh Vora, Kevan Yuen, and Mohan M. Trivedi, Fellow, IEEE"
+a8117a4733cce9148c35fb6888962f665ae65b1e,A Good Practice Towards Top Performance of Face Recognition: Transferred Deep Feature Fusion,"IEEE TRANSACTIONS ON XXXX, VOL. XX, NO. XX, XX 201X +A Good Practice Towards Top Performance of Face +Recognition: Transferred Deep Feature Fusion +Lin Xiong1∗†, Jayashree Karlekar1∗, Jian Zhao2∗†, Jiashi Feng2, Member, IEEE, Sugiri Pranata1, and +Shengmei Shen1"
+a87ab836771164adb95d6744027e62e05f47fd96,Understanding human-human interactions: a survey,"Understanding human-human interactions: a survey +Alexandros Stergiou +Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands +Department of Information and Computing Sciences, Utrecht University,Buys Ballotgebouw, Princetonplein 5, Utrecht, 3584CC, Netherlands +Ronald Poppe1"
+a8035ca71af8cc68b3e0ac9190a89fed50c92332,IIIT-CFW: A Benchmark Database of Cartoon Faces in the Wild,"IIIT-CFW: A Benchmark Database of +Cartoon Faces in the Wild +Ashutosh Mishra1, Shyam Nandan Rai1, Anand Mishra2, C. V. Jawahar1 +IIIT Chittoor, Sri City, India +CVIT, KCIS, IIIT Hyderabad, India"
+a88640045d13fc0207ac816b0bb532e42bcccf36,Simultaneously Learning Neighborship and Projection Matrix for Supervised Dimensionality Reduction,"ARXIV VERSION +Simultaneously Learning Neighborship and +Projection Matrix for Supervised +Dimensionality Reduction +Yanwei Pang, Senior Member, IEEE, Bo Zhou, and Feiping Nie, Senior Member, IEEE"
+a8a30a8c50d9c4bb8e6d2dd84bc5b8b7f2c84dd8,This is a repository copy of Modelling of Orthogonal Craniofacial Profiles,"This is a repository copy of Modelling of Orthogonal Craniofacial Profiles. +White Rose Research Online URL for this paper: +http://eprints.whiterose.ac.uk/131767/ +Version: Published Version +Article: +Dai, Hang, Pears, Nicholas Edwin orcid.org/0000-0001-9513-5634 and Duncan, Christian +(2017) Modelling of Orthogonal Craniofacial Profiles. Journal of Imaging. ISSN 2313-433X +https://doi.org/10.3390/jimaging3040055 +Reuse +This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence +llows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the +uthors for the original work. More information and the full terms of the licence here: +https://creativecommons.org/licenses/ +Takedown +If you consider content in White Rose Research Online to be in breach of UK law, please notify us by +emailing including the URL of the record and the reason for the withdrawal request. +https://eprints.whiterose.ac.uk/"
+a8638a07465fe388ae5da0e8a68e62a4ee322d68,How to predict the global instantaneous feeling induced by a facial picture?,"How to predict the global instantaneous feeling induced +y a facial picture? +Arnaud Lienhard, Patricia Ladret, Alice Caplier +To cite this version: +Arnaud Lienhard, Patricia Ladret, Alice Caplier. How to predict the global instantaneous +feeling induced by a facial picture?. Signal Processing: Image Communication, Elsevier, 2015, +pp.1-30. . +HAL Id: hal-01198718 +https://hal.archives-ouvertes.fr/hal-01198718 +Submitted on 14 Sep 2015 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+a8e75978a5335fd3deb04572bb6ca43dbfad4738,Sparse Graphical Representation based Discriminant Analysis for Heterogeneous Face Recognition,"Sparse Graphical Representation based Discriminant +Analysis for Heterogeneous Face Recognition +Chunlei Peng, Xinbo Gao, Senior Member, IEEE, Nannan Wang, Member, IEEE, and Jie Li"
+ded968b97bd59465d5ccda4f1e441f24bac7ede5,Large scale 3 D Morphable Models,"Noname manuscript No. +(will be inserted by the editor) +Large scale 3D Morphable Models +James Booth · Anastasios Roussos · Allan Ponniah · David Dunaway · Stefanos +Zafeiriou +Received: date / Accepted: date"
+de0eb358b890d92e8f67592c6e23f0e3b2ba3f66,Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification,"ACCEPTED BY IEEE TRANS. PATTERN ANAL. AND MACH. INTELL. +Inference-Based Similarity Search in +Randomized Montgomery Domains for +Privacy-Preserving Biometric Identification +Yi Wang, Jianwu Wan, Jun Guo, Yiu-Ming Cheung, and Pong C Yuen"
+dee406a7aaa0f4c9d64b7550e633d81bc66ff451,Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning,"Content-Adaptive Sketch Portrait Generation by +Decompositional Representation Learning +Dongyu Zhang, Liang Lin, Tianshui Chen, Xian Wu, Wenwei Tan, and Ebroul Izquierdo"
+dedabf9afe2ae4a1ace1279150e5f1d495e565da,Robust Face Recognition With Structurally Incoherent Low-Rank Matrix Decomposition,"Robust Face Recognition With Structurally +Incoherent Low-Rank Matrix Decomposition +Chia-Po Wei, Chih-Fan Chen, and Yu-Chiang Frank Wang"
+de398bd8b7b57a3362c0c677ba8bf9f1d8ade583,Hierarchical Bayesian Theme Models for Multipose Facial Expression Recognition,"Hierarchical Bayesian Theme Models for +Multi-pose Facial Expression Recognition +Qirong Mao, Member, IEEE, Qiyu Rao, Yongbin Yu, and Ming Dong*, Member, IEEE"
+defa8774d3c6ad46d4db4959d8510b44751361d8,FEBEI - Face Expression Based Emoticon Identification CS - B657 Computer Vision,"FEBEI - Face Expression Based Emoticon Identification +CS - B657 Computer Vision +Nethra Chandrasekaran Sashikar - necsashi +Prashanth Kumar Murali - prmurali +Robert J Henderson - rojahend"
+b08203fca1af7b95fda8aa3d29dcacd182375385,Object and Text-guided Semantics for CNN-based Activity Recognition,"OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY RECOGNITION +(cid:63)Sungmin Eum †§, (cid:63)Christopher Reale †, Heesung Kwon†, Claire Bonial †, Clare Voss† +U.S. Army Research Laboratory, Adelphi, MD, USA +§Booz Allen Hamilton Inc., McLean, VA, USA"
+b09b693708f412823053508578df289b8403100a,Two-Stream SR-CNNs for Action Recognition in Videos,"WANG et al.: TWO-STREAM SR-CNNS FOR ACTION RECOGNITION IN VIDEOS +Two-Stream SR-CNNs for Action +Recognition in Videos +Yifan Wang1 +Jie Song1 +Limin Wang2 +Luc Van Gool2 +Otmar Hilliges1 +Advanced Interactive Technologies Lab +ETH Zurich +Zurich, Switzerland +Computer Vision Lab +ETH Zurich +Zurich, Switzerland"
+b07582d1a59a9c6f029d0d8328414c7bef64dca0,Employing Fusion of Learned and Handcrafted Features for Unconstrained Ear Recognition,"Employing Fusion of Learned and Handcrafted +Features for Unconstrained Ear Recognition +Maur´ıcio Pamplona Segundo∗† +Earnest E. Hansley∗ +Sudeep Sarkar∗‡ +October 24, 2017"
+b0c1615ebcad516b5a26d45be58068673e2ff217,How Image Degradations Affect Deep CNN-Based Face Recognition?,"How Image Degradations Affect Deep CNN-based Face +Recognition? +S¸amil Karahan1 Merve Kılınc¸ Yıldırım1 Kadir Kırtac¸1 Ferhat S¸ ¨ukr¨u Rende1 +G¨ultekin B¨ut¨un1Hazım Kemal Ekenel2"
+b0de0892d2092c8c70aa22500fed31aa7eb4dd3f,A Robust and Efficient Video Representation for Action Recognition,"(will be inserted by the editor) +A robust and efficient video representation for action recognition +Heng Wang · Dan Oneata · Jakob Verbeek · Cordelia Schmid +Received: date / Accepted: date"
+a66d89357ada66d98d242c124e1e8d96ac9b37a0,Failure Detection for Facial Landmark Detectors,"Failure Detection for Facial Landmark Detectors +Andreas Steger, Radu Timofte, and Luc Van Gool +Computer Vision Lab, D-ITET, ETH Zurich, Switzerland +{radu.timofte,"
+a608c5f8fd42af6e9bd332ab516c8c2af7063c61,Age Estimation via Grouping and Decision Fusion,"Age Estimation via Grouping and Decision Fusion +Kuan-Hsien Liu, Member, IEEE, Shuicheng Yan, Senior Member, IEEE, +nd C.-C. Jay Kuo, Fellow, IEEE"
+a6eb6ad9142130406fb4ffd4d60e8348c2442c29,"Video Description: A Survey of Methods, Datasets and Evaluation Metrics","Video Description: A Survey of Methods, +Datasets and Evaluation Metrics +Nayyer Aafaq, Syed Zulqarnain Gilani, Wei Liu, and Ajmal Mian"
+a6590c49e44aa4975b2b0152ee21ac8af3097d80,3D Interpreter Networks for Viewer-Centered Wireframe Modeling,"https://doi.org/10.1007/s11263-018-1074-6 +D Interpreter Networks for Viewer-Centered Wireframe Modeling +Jiajun Wu1 · Tianfan Xue2 · Joseph J. Lim3 · Yuandong Tian4 · +Joshua B. Tenenbaum1 · Antonio Torralba1 · William T. Freeman1,5 +Received: date / Accepted: date"
+a694180a683f7f4361042c61648aa97d222602db,Face recognition using scattering wavelet under Illicit Drug Abuse variations,"Face Recognition using Scattering Wavelet under Illicit Drug Abuse Variations +Prateekshit Pandey, Richa Singh, Mayank Vatsa +fprateekshit12078, rsingh, +IIIT-Delhi India"
+a6ce2f0795839d9c2543d64a08e043695887e0eb,Driver Gaze Region Estimation Without Using Eye Movement,"Driver Gaze Region Estimation +Without Using Eye Movement +Lex Fridman, Philipp Langhans, Joonbum Lee, and Bryan Reimer +Massachusetts Institute of Technology (MIT)"
+a6ebe013b639f0f79def4c219f585b8a012be04f,Facial Expression Recognition Based on Hybrid Approach,"Facial Expression Recognition Based on Hybrid +Approach +Md. Abdul Mannan, Antony Lam, Yoshinori Kobayashi, and Yoshinori Kuno +Graduate School of Science and Engineering, Saitama University, +55 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan +E-mail"
+b97f694c2a111b5b1724eefd63c8d64c8e19f6c9,Group Affect Prediction Using Multimodal Distributions,"Group Affect Prediction Using Multimodal Distributions +Saqib Nizam Shamsi +Aspiring Minds +Bhanu Pratap Singh +Univeristy of Massachusetts, Amherst +Manya Wadhwa +Johns Hopkins University"
+b9d0774b0321a5cfc75471b62c8c5ef6c15527f5,Fishy Faces: Crafting Adversarial Images to Poison Face Authentication,"Fishy Faces: Crafting Adversarial Images to Poison Face Authentication +Giuseppe Garofalo +Vera Rimmer +Tim Van hamme +imec-DistriNet, KU Leuven +imec-DistriNet, KU Leuven +imec-DistriNet, KU Leuven +Davy Preuveneers +Wouter Joosen +imec-DistriNet, KU Leuven +imec-DistriNet, KU Leuven"
+b9cad920a00fc0e997fc24396872e03f13c0bb9c,Face liveness detection under bad illumination conditions,"FACE LIVENESS DETECTION UNDER BAD ILLUMINATION CONDITIONS +Bruno Peixoto, Carolina Michelassi, and Anderson Rocha +University of Campinas (Unicamp) +Campinas, SP, Brazil"
+b908edadad58c604a1e4b431f69ac8ded350589a,Deep Face Feature for Face Alignment,"Deep Face Feature for Face Alignment +Boyi Jiang, Juyong Zhang, Bailin Deng, Yudong Guo and Ligang Liu"
+b9f2a755940353549e55690437eb7e13ea226bbf,Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions,"Unsupervised Feature Learning from Videos for Discovering and Recognizing Actions +Carolina Redondo-Cabrera +Roberto J. López-Sastre"
+b9cedd1960d5c025be55ade0a0aa81b75a6efa61,Inexact Krylov Subspace Algorithms for Large Matrix Exponential Eigenproblem from Dimensionality Reduction,"INEXACT KRYLOV SUBSPACE ALGORITHMS FOR LARGE +MATRIX EXPONENTIAL EIGENPROBLEM FROM +DIMENSIONALITY REDUCTION +GANG WU∗, TING-TING FENG† , LI-JIA ZHANG‡ , AND MENG YANG§"
+b971266b29fcecf1d5efe1c4dcdc2355cb188ab0,On the Reconstruction of Face Images from Deep Face Templates.,"MAI et al.: ON THE RECONSTRUCTION OF FACE IMAGES FROM DEEP FACE TEMPLATES +On the Reconstruction of Face Images from +Deep Face Templates +Guangcan Mai, Kai Cao, Pong C. Yuen∗, Senior Member, IEEE, and Anil K. Jain, Life Fellow, IEEE"
+a158c1e2993ac90a90326881dd5cb0996c20d4f3,Symmetry as an Intrinsically Dynamic Feature,"OPEN ACCESS +ISSN 2073-8994 +Article +Vito Di Gesu 1,2,†, Marco E. Tabacchi 1,3,* and Bertrand Zavidovique 4 +DMA, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy +CITC, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Itlay +Istituto Nazionale di Ricerche Demopolis, via Col. Romey 7, 91100 Trapani, Italy +IEF, Université Paris IX–Orsay, Paris, France; E-Mail: (B.Z.) +Deceased on 15 March 2009. +* Author to whom correspondence should be addressed; E-Mail: +Received: 4 March 2010; in revised form: 23 March 2010 / Accepted: 29 March 2010 / +Published: 1 April 2010"
+a15d9d2ed035f21e13b688a78412cb7b5a04c469,Object Detection Using Strongly-Supervised Deformable Part Models,"Object Detection Using +Strongly-Supervised Deformable Part Models +Hossein Azizpour1 and Ivan Laptev2 +Computer Vision and Active Perception Laboratory (CVAP), KTH, Sweden +INRIA, WILLOW, Laboratoire d’Informatique de l’Ecole Normale Superieure"
+a1b1442198f29072e907ed8cb02a064493737158,Crowdsourcing Facial Responses to Online Videos,"Crowdsourcing Facial Responses +to Online Videos +Daniel McDuff, Student Member, IEEE, Rana El Kaliouby, Member, IEEE, and +Rosalind W. Picard, Fellow, IEEE"
+a15c728d008801f5ffc7898568097bbeac8270a4,ForgetIT Deliverable Template,"www.forgetit-project.eu +ForgetIT +Concise Preservation by Combining Managed Forgetting +nd Contextualized Remembering +Grant Agreement No. 600826 +Deliverable D4.4 +Work-package +Deliverable +Deliverable Leader +Quality Assessor +Dissemination level +Delivery date in Annex I +Actual delivery date +Revisions +Status +Keywords +Information Consolidation and Con- +entration +D4.4: +Information analysis, consolidation"
+a1132e2638a8abd08bdf7fc4884804dd6654fa63,Real-Time Video Face Recognition for Embedded Devices,"Real-Time Video Face Recognition +for Embedded Devices +Gabriel Costache, Sathish Mangapuram, Alexandru +Drimbarean, Petronel Bigioi and Peter Corcoran +Tessera, Galway, +Ireland +. Introduction +This chapter will address the challenges of real-time video face recognition systems +implemented in embedded devices. Topics to be covered include: the importance and +hallenges of video face recognition in real life scenarios, describing a general architecture of +generic video face recognition system and a working solution suitable for recognizing +faces in real-time using low complexity devices. Each component of the system will be +described together with the system’s performance on a database of video samples that +resembles real life conditions. +. Video face recognition +Face recognition remains a very active topic in computer vision and receives attention from +large community of researchers in that discipline. Many reasons feed this interest; the +main being the wide range of commercial, law enforcement and security applications that +require authentication. The progress made in recent years on the methods and algorithms +for data processing as well as the availability of new technologies makes it easier to study"
+a14ae81609d09fed217aa12a4df9466553db4859,Face Identification Using Large Feature Sets,"REVISED VERSION, JUNE 2011 +Face Identification Using Large Feature Sets +William Robson Schwartz, Huimin Guo, Jonghyun Choi, and Larry S. Davis, Fellow, IEEE"
+a1f1120653bb1bd8bd4bc9616f85fdc97f8ce892,Latent Embeddings for Zero-Shot Classification,"Latent Embeddings for Zero-shot Classification +Yongqin Xian1, Zeynep Akata1, Gaurav Sharma1,2,∗, Quynh Nguyen3, Matthias Hein3 and Bernt Schiele1 +MPI for Informatics +IIT Kanpur +Saarland University"
+a1e97c4043d5cc9896dc60ae7ca135782d89e5fc,"Re-identification of Humans in Crowds using Personal, Social and Environmental Constraints","IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Re-identification of Humans in Crowds using +Personal, Social and Environmental Constraints +Shayan Modiri Assari, Member, IEEE, Haroon Idrees, Member, IEEE, and Mubarak Shah, Fellow, IEEE"
+ef940b76e40e18f329c43a3f545dc41080f68748,A Face Recognition and Spoofing Detection Adapted to Visually- Impaired People,"Research Article Volume 7 Issue No.3 +ISSN XXXX XXXX © 2017 IJESC +A Face Recognition and Spoofing Detection Adapted to Visually- +Impaired People +Rutuja R. Dengale1, Bhagyashri S. Deshmukh 2, Anuja R. Mahangade3, Shivani V. Ujja inkar4 +K.K Wagh Institute of Engineering and Education Research, Nashik, India +Depart ment of Co mputer Engineering +Abstrac t: +According to estimates by the world Health organization, about 285 million people suffer fro m so me kind of v isual disabilit ies of +which 39 million are blind, resulting in 0.7 of the word population. As many v isual impaired peoples in the word they are unable +to recognize the people who is standing in front of them and some peoples who have problem to re me mbe r na me of the person. +They can easily recognize the person using this system. A co mputer vision technique and image ana lysis can help v isually +the home using face identification and spoofing detection system. This system also provide feature to add newly known people +nd keep records of all peoples visiting their ho me. +Ke ywor ds: face-recognition, spoofing detection, visually-impaired, system architecture. +INTRODUCTION +The facia l ana lysis can be used to e xtract very useful and +relevant information in order to help people with visual +impairment in several of its tasks daily providing them with a +greater degree of autonomy and security. Facia l recognition"
+efd308393b573e5410455960fe551160e1525f49,Tracking Persons-of-Interest via Unsupervised Representation Adaptation,"Tracking Persons-of-Interest via +Unsupervised Representation Adaptation +Shun Zhang, Jia-Bin Huang, Jongwoo Lim, Yihong Gong, Jinjun Wang, +Narendra Ahuja, and Ming-Hsuan Yang"
+ef230e3df720abf2983ba6b347c9d46283e4b690,QUIS-CAMPI: an annotated multi-biometrics data feed from surveillance scenarios,"Page 1 of 20 +QUIS-CAMPI: An Annotated Multi-biometrics Data Feed From +Surveillance Scenarios +João Neves1,*, Juan Moreno2, Hugo Proença3 +IT - Instituto de Telecomunicações, University of Beira Interior +Department of Computer Science, University of Beira Interior +IT - Instituto de Telecomunicações, University of Beira Interior"
+ef4ecb76413a05c96eac4c743d2c2a3886f2ae07,Modeling the importance of faces in natural images,"Modeling the Importance of Faces in Natural Images +Jin B.a, Yildirim G.a, Lau C.a, Shaji A.a, Ortiz Segovia M.b and S¨usstrunk S.a +EPFL, Lausanne, Switzerland; +Oc´e, Paris, France"
+ef032afa4bdb18b328ffcc60e2dc5229cc1939bc,Attribute-enhanced metric learning for face retrieval,"Fang and Yuan EURASIP Journal on Image and Video +Processing (2018) 2018:44 +https://doi.org/10.1186/s13640-018-0282-x +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +Attribute-enhanced metric learning for +face retrieval +Yuchun Fang* +nd Qiulong Yuan"
+ef5531711a69ed687637c48930261769465457f0,Studio2Shop: from studio photo shoots to fashion articles,"Studio2Shop: from studio photo shoots to fashion articles +Julia Lasserre1, Katharina Rasch1 and Roland Vollgraf +Zalando Research, Muehlenstr. 25, 10243 Berlin, Germany +Keywords: +omputer vision, deep learning, fashion, item recognition, street-to-shop"
+ef559d5f02e43534168fbec86707915a70cd73a0,DeepInsight: Multi-Task Multi-Scale Deep Learning for Mental Disorder Diagnosis,"DING, HUO, HU, LU: DEEPINSIGHT +DeepInsight: Multi-Task Multi-Scale Deep +Learning for Mental Disorder Diagnosis +Mingyu Ding1 +Yuqi Huo2 +Jun Hu2 +Zhiwu Lu1 +School of Information +Renmin University of China +Beijing, 100872, China +Beijing Key Laboratory +of Big Data Management +nd Analysis Methods +Beijing, 100872, China"
+efa08283656714911acff2d5022f26904e451113,Active Object Localization in Visual Situations,"Active Object Localization in Visual Situations +Max H. Quinn, Anthony D. Rhodes, and Melanie Mitchell"
+ef999ab2f7b37f46445a3457bf6c0f5fd7b5689d,Improving face verification in photo albums by combining facial recognition and metadata with cross-matching,"Calhoun: The NPS Institutional Archive +DSpace Repository +Theses and Dissertations +. Thesis and Dissertation Collection, all items +017-12 +Improving face verification in photo albums by +ombining facial recognition and metadata +with cross-matching +Bouthour, Khoubeib +Monterey, California: Naval Postgraduate School +http://hdl.handle.net/10945/56868 +Downloaded from NPS Archive: Calhoun"
+c32fb755856c21a238857b77d7548f18e05f482d,Multimodal Emotion Recognition for Human-Computer Interaction: A Survey,"Multimodal Emotion Recognition for Human- +Computer Interaction: A Survey +School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083 Beijing, China. +Michele Mukeshimana, Xiaojuan Ban, Nelson Karani, Ruoyi Liu"
+c3beae515f38daf4bd8053a7d72f6d2ed3b05d88,ACL 2014 52nd Annual Meeting of the Association for Computational Linguistics TACL Papers,"ACL201452ndAnnualMeetingoftheAssociationforComputationalLinguisticsTACLPapersJune23-25,2014Baltimore,Maryland,USA"
+c3dc4f414f5233df96a9661609557e341b71670d,Utterance independent bimodal emotion recognition in spontaneous communication,"Tao et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:4 +http://asp.eurasipjournals.com/content/2011/1/4 +RESEARCH +Utterance independent bimodal emotion +recognition in spontaneous communication +Jianhua Tao*, Shifeng Pan, Minghao Yang, Ya Li, Kaihui Mu and Jianfeng Che +Open Access"
+c3b3636080b9931ac802e2dd28b7b684d6cf4f8b,Face Recognition via Local Directional Pattern,"International Journal of Security and Its Applications +Vol. 7, No. 2, March, 2013 +Face Recognition via Local Directional Pattern +Dong-Ju Kim*, Sang-Heon Lee and Myoung-Kyu Sohn +Division of IT Convergence, Daegu Gyeongbuk Institute of Science & Technology +50-1, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, Korea."
+c398684270543e97e3194674d9cce20acaef3db3,Comparative Face Soft Biometrics for Human Identification,"Chapter 2 +Comparative Face Soft Biometrics for +Human Identification +Nawaf Yousef Almudhahka, Mark S. Nixon and Jonathon S. Hare"
+c3285a1d6ec6972156fea9e6dc9a8d88cd001617,Extreme 3D Face Reconstruction: Seeing Through Occlusions,
+c3bcc4ee9e81ce9c5c0845f34e9992872a8defc0,A New Scheme for Image Recognition Using Higher-Order Local Autocorrelation and Factor Analysis,"MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +A New Scheme for Image Recognition Using Higher-Order Local +Autocorrelation and Factor Analysis +Naoyuki Nomotoy, Yusuke Shinoharay, Takayoshi Shirakiy, Takumi Kobayashiy, Nobuyuki Otsuy yyy +yThe University of Tokyo +Tokyo, Japan +yyyAIST +Tukuba, Japan +f shiraki, takumi, otsug"
+c32383330df27625592134edd72d69bb6b5cff5c,Intrinsic Illumination Subspace for Lighting Insensitive Face Recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 2, APRIL 2012 +Intrinsic Illumination Subspace for Lighting +Insensitive Face Recognition +Chia-Ping Chen and Chu-Song Chen, Member, IEEE"
+c32f04ccde4f11f8717189f056209eb091075254,Analysis and Synthesis of Behavioural Specific Facial Motion,"Analysis and Synthesis of Behavioural Specific +Facial Motion +Lisa Nanette Gralewski +A dissertation submitted to the University of Bristol in accordance with the requirements +for the degree of Doctor of Philosophy in the Faculty of Engineering, Department of +Computer Science. +February 2007 +71657 words"
+c30e4e4994b76605dcb2071954eaaea471307d80,Feature Selection for Emotion Recognition based on Random Forest,
+c37a971f7a57f7345fdc479fa329d9b425ee02be,A Novice Guide towards Human Motion Analysis and Understanding,"A Novice Guide towards Human Motion Analysis and Understanding +Dr. Ahmed Nabil Mohamed"
+c3fb2399eb4bcec22723715556e31c44d086e054,Face recognition based on SIGMA sets of image features,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +. INTRODUCTION"
+c37de914c6e9b743d90e2566723d0062bedc9e6a,Joint and Discriminative Dictionary Learning for Facial Expression Recognition,"©2016 Society for Imaging Science and Technology +DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-455 +Joint and Discriminative Dictionary Learning +Expression Recognition +for Facial +Sriram Kumar, Behnaz Ghoraani, Andreas Savakis"
+c4f1fcd0a5cdaad8b920ee8188a8557b6086c1a4,The Ignorant Led by the Blind: A Hybrid Human–Machine Vision System for Fine-Grained Categorization,"Int J Comput Vis (2014) 108:3–29 +DOI 10.1007/s11263-014-0698-4 +The Ignorant Led by the Blind: A Hybrid Human–Machine Vision +System for Fine-Grained Categorization +Steve Branson · Grant Van Horn · Catherine Wah · +Pietro Perona · Serge Belongie +Received: 7 March 2013 / Accepted: 8 January 2014 / Published online: 20 February 2014 +© Springer Science+Business Media New York 2014"
+c43862db5eb7e43e3ef45b5eac4ab30e318f2002,Provable Self-Representation Based Outlier Detection in a Union of Subspaces,"Provable Self-Representation Based Outlier Detection in a Union of Subspaces +Chong You, Daniel P. Robinson, Ren´e Vidal +Johns Hopkins University, Baltimore, MD, 21218, USA"
+c4dcf41506c23aa45c33a0a5e51b5b9f8990e8ad,Understanding Activity: Learning the Language of Action,"Understanding Activity: Learning the Language of Action +Randal Nelson and Yiannis Aloimonos +Univ. of Rochester and Maryland +.1 Overview +Understanding observed activity is an important +problem, both from the standpoint of practical applications, +nd as a central issue in attempting to describe the +phenomenon of intelligence. On the practical side, there are a +large number of applications that would benefit from +improved machine ability to analyze activity. The most +prominent are various surveillance scenarios. The current +emphasis on homeland security has brought this issue to the +forefront, and resulted in considerable work on mostly low- +level detection schemes. There are also applications in +medical diagnosis and household assistants that, in the long +run, may be even more important. In addition, there are +numerous scientific projects, ranging from monitoring of +weather conditions to observation of animal behavior that +would be facilitated by automatic understanding of activity. +From a scientific standpoint, understanding activity"
+c42a8969cd76e9f54d43f7f4dd8f9b08da566c5f,Towards Unconstrained Face Recognition Using 3D Face Model,"Towards Unconstrained Face Recognition +Using 3D Face Model +Zahid Riaz1, M. Saquib Sarfraz2 and Michael Beetz1 +Intelligent Autonomous Systems (IAS), Technical University of Munich, Garching +Computer Vision Research Group, COMSATS Institute of Information +Technology, Lahore +Germany +Pakistan +. Introduction +Over the last couple of decades, many commercial systems are available to identify human +faces. However, face recognition is still an outstanding challenge against different kinds of +real world variations especially facial poses, non-uniform lightings and facial expressions. +Meanwhile the face recognition technology has extended its role from biometrics and security +pplications to human robot interaction (HRI). Person identity is one of the key tasks while +interacting with intelligent machines/robots, exploiting the non intrusive system security +nd authentication of the human interacting with the system. This capability further helps +machines to learn person dependent traits and interaction behavior to utilize this knowledge +for tasks manipulation. In such scenarios acquired face images contain large variations which +demands an unconstrained face recognition system. +Fig. 1. Biometric analysis of past few years has been shown in figure showing the"
+eac6aee477446a67d491ef7c95abb21867cf71fc,A Survey of Sparse Representation: Algorithms and Applications,"JOURNAL +A survey of sparse representation: algorithms and +pplications +Zheng Zhang, Student Member, IEEE, Yong Xu, Senior Member, IEEE, +Jian Yang, Member, IEEE, Xuelong Li, Fellow, IEEE, and David Zhang, Fellow, IEEE"
+ea079334121a0ba89452036e5d7f8e18f6851519,Unsupervised incremental learning of deep descriptors from video streams,"UNSUPERVISED INCREMENTAL LEARNING OF DEEP DESCRIPTORS +FROM VIDEO STREAMS +Federico Pernici and Alberto Del Bimbo +MICC – University of Florence"
+eac1b644492c10546a50f3e125a1f790ec46365f,"Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection","Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for +Action Classification and Detection +Mohammadreza Zolfaghari , Gabriel L. Oliveira, Nima Sedaghat, and Thomas Brox +University of Freiburg +Freiburg im Breisgau, Germany"
+ea482bf1e2b5b44c520fc77eab288caf8b3f367a,Flexible Orthogonal Neighborhood Preserving Embedding,Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
+eafda8a94e410f1ad53b3e193ec124e80d57d095,Observer-Based Measurement of Facial Expression With the Facial Action Coding System,"Jeffrey F. Cohn +Zara Ambadar +Paul Ekman +Observer-Based Measurement of Facial Expression +With the Facial Action Coding System +Facial expression has been a focus of emotion research for over +hundred years (Darwin, 1872/1998). It is central to several +leading theories of emotion (Ekman, 1992; Izard, 1977; +Tomkins, 1962) and has been the focus of at times heated +debate about issues in emotion science (Ekman, 1973, 1993; +Fridlund, 1992; Russell, 1994). Facial expression figures +prominently in research on almost every aspect of emotion, +including psychophysiology (Levenson, Ekman, & Friesen, +990), neural bases (Calder et al., 1996; Davidson, Ekman, +Saron, Senulis, & Friesen, 1990), development (Malatesta, +Culver, Tesman, & Shephard, 1989; Matias & Cohn, 1993), +perception (Ambadar, Schooler, & Cohn, 2005), social pro- +esses (Hatfield, Cacioppo, & Rapson, 1992; Hess & Kirouac, +000), and emotion disorder (Kaiser, 2002; Sloan, Straussa, +Quirka, & Sajatovic, 1997), to name a few."
+ea85378a6549bb9eb9bcc13e31aa6a61b655a9af,Template Protection for PCA - LDA - based 3 D Face Recognition System,"Diplomarbeit +Template Protection for PCA-LDA-based 3D +Face Recognition System +Daniel Hartung +Technische Universität Darmstadt +Fachbereich Informatik +Fachgebiet Graphisch-Interaktive Systeme +Fraunhoferstraße 5 +64283 Darmstadt +Betreuer: Dipl.-Ing. Xuebing Zhou +Prüfer: Prof. Dr. techn. Dieter W. Fellner"
+ea2ee5c53747878f30f6d9c576fd09d388ab0e2b,Viola-Jones Based Detectors: How Much Affects the Training Set?,"Viola-Jones based Detectors: How much affects +the Training Set? +Modesto Castrill´on-Santana, Daniel Hern´andez-Sosa, Javier Lorenzo-Navarro +SIANI +Edif. Central del Parque Cient´ıfico Tecnol´ogico +Universidad de Las Palmas de Gran Canaria +5017 - Spain"
+e1f790bbedcba3134277f545e56946bc6ffce48d,Image Retrieval Using Attribute Enhanced Sparse Code Words,"International Journal of Innovative Research in Science, +Engineering and Technology +(An ISO 3297: 2007 Certified Organization) +Vol. 3, Issue 5, May 2014 +Sparse Code Words +ISSN: 2319-8753 +Image Retrieval Using Attribute Enhanced +M.Balaganesh1, N.Arthi2 +Associate Professor, Department of Computer Science and Engineering, SRV Engineering College, sembodai, india1 +P.G. Student, Department of Computer Science and Engineering, SRV Engineering College, sembodai, India 2"
+e1ab3b9dee2da20078464f4ad8deb523b5b1792e,Pre-Training CNNs Using Convolutional Autoencoders,"Pre-Training CNNs Using Convolutional +Autoencoders +Maximilian Kohlbrenner +TU Berlin +Russell Hofmann +TU Berlin +Sabbir Ahmmed +TU Berlin +Youssef Kashef +TU Berlin"
+e19ebad4739d59f999d192bac7d596b20b887f78,Learning Gating ConvNet for Two-Stream based Methods in Action Recognition,"Learning Gating ConvNet for Two-Stream based Methods in Action +Recognition +Jiagang Zhu1,2, Wei Zou1, Zheng Zhu1,2"
+e1f6e2651b7294951b5eab5d2322336af1f676dc,Emotional Avatars: Appearance Augmentation and Animation based on Facial Expression Analysis,"Appl. Math. Inf. Sci. 9, No. 2L, 461-469 (2015) +Applied Mathematics & Information Sciences +An International Journal +http://dx.doi.org/10.12785/amis/092L21 +Emotional Avatars: Appearance Augmentation and +Animation based on Facial Expression Analysis +Taehoon Cho, Jin-Ho Choi, Hyeon-Joong Kim and Soo-Mi Choi∗ +Department of Computer Science and Engineering, Sejong University, 98 Gunja, Gwangjin, Seoul 143-747, Korea +Received: 22 May 2014, Revised: 23 Jul. 2014, Accepted: 24 Jul. 2014 +Published online: 1 Apr. 2015"
+e1d726d812554f2b2b92cac3a4d2bec678969368,Human Action Recognition Bases on Local Action Attributes,"J Electr Eng Technol.2015; 10(?): 30-40 +http://dx.doi.org/10.5370/JEET.2015.10.2.030 +ISSN(Print) +975-0102 +ISSN(Online) 2093-7423 +Human Action Recognition Bases on Local Action Attributes +Jing Zhang*, Hong Liu*, Weizhi Nie† Lekha Chaisorn**, Yongkang Wong** +nd Mohan S Kankanhalli**"
+e1e6e6792e92f7110e26e27e80e0c30ec36ac9c2,Ranking with Adaptive Neighbors,"TSINGHUA SCIENCE AND TECHNOLOGY +ISSNll1007-0214 +0?/?? pp???–??? +DOI: 10.26599/TST.2018.9010000 +Volume 1, Number 1, Septembelr 2018 +Ranking with Adaptive Neighbors +Muge Li, Liangyue Li, and Feiping Nie∗"
+cd9666858f6c211e13aa80589d75373fd06f6246,A Novel Time Series Kernel for Sequences Generated by LTI Systems,"A Novel Time Series Kernel for +Sequences Generated by LTI Systems +Liliana Lo Presti, Marco La Cascia +V.le delle Scienze Ed.6, DIID, Universit´a degli studi di Palermo, Italy"
+cd596a2682d74bdfa7b7160dd070b598975e89d9,Mood Detection: Implementing a facial expression recognition system,"Mood Detection: Implementing a facial +expression recognition system +Neeraj Agrawal, Rob Cosgriff and Ritvik Mudur +. Introduction +Facial expressions play a significant role in human dialogue. As a result, there has been +onsiderable work done on the recognition of emotional expressions and the application of this +research will be beneficial in improving human-machine dialogue. One can imagine the +improvements to computer interfaces, automated clinical (psychological) research or even +interactions between humans and autonomous robots. +Unfortunately, a lot of the literature does not focus on trying to achieve high recognition rates +cross multiple databases. In this project we develop our own mood detection system that +ddresses this challenge. The system involves pre-processing image data by normalizing and +pplying a simple mask, extracting certain (facial) features using PCA and Gabor filters and then +using SVMs for classification and recognition of expressions. Eigenfaces for each class are used +to determine class-specific masks which are then applied to the image data and used to train +multiple, one against the rest, SVMs. We find that simply using normalized pixel intensities +works well with such an approach. +Figure 1 – Overview of our system design +. Image pre-processing +We performed pre-processing on the images used to train and test our algorithms as follows:"
+cda4fb9df653b5721ad4fe8b4a88468a410e55ec,Gabor wavelet transform and its application,"Gabor wavelet transform and its application +Wei-lun Chao R98942073"
+cd3005753012409361aba17f3f766e33e3a7320d,Multilinear Biased Discriminant Analysis: A Novel Method for Facial Action Unit Representation,"Multilinear Biased Discriminant Analysis: A Novel Method for Facial +Action Unit Representation +Mahmoud Khademi†, Mehran Safayani†and Mohammad T. Manzuri-Shalmani† +: Sharif University of Tech., DSP Lab,"
+cd7a7be3804fd217e9f10682e0c0bfd9583a08db,Women also Snowboard: Overcoming Bias in Captioning Models,"Women also Snowboard: +Overcoming Bias in Captioning Models +Lisa Anne Hendricks * 1 Kaylee Burns * 1 Kate Saenko 2 Trevor Darrell 1 Anna Rohrbach 1"
+ccfcbf0eda6df876f0170bdb4d7b4ab4e7676f18,A Dynamic Appearance Descriptor Approach to Facial Actions Temporal Modeling,"JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011 +A Dynamic Appearance Descriptor Approach to +Facial Actions Temporal Modelling +Bihan Jiang, Student Member, IEEE, Michel Valstar, Member, IEEE, Brais Martinez, Member, IEEE, and +Maja Pantic, Fellow, IEEE"
+cc3c273bb213240515147e8be68c50f7ea22777c,Gaining Insight Into Films Via Topic Modeling & Visualization,"Gaining Insight Into Films +Via Topic Modeling & Visualization +MISHA RABINOVICH, MFA +YOGESH GIRDHAR, PHD +KEYWORDS Collaboration, computer vision, cultural +nalytics, economy of abundance, interactive data +visualization +We moved beyond misuse when the software actually +ecame useful for film analysis with the addition of audio +nalysis, subtitle analysis, facial recognition, and topic +modeling. Using multiple types of visualizations and +back-and-fourth workflow between people and AI +we arrived at an approach for cultural analytics that +an be used to review and develop film criticism. Finally, +we present ways to apply these techniques to Database +Cinema and other aspects of film and video creation. +PROJECT DATE 2014 +URL http://misharabinovich.com/soyummy.html"
+cc8e378fd05152a81c2810f682a78c5057c8a735,Expression Invariant Face Recognition System based on Topographic Independent Component Analysis and Inner Product Classifier,"International Journal of Computer Sciences and Engineering Open Access +Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693 +Expression Invariant Face Recognition System based on Topographic +Independent Component Analysis and Inner Product Classifier +Aruna Bhat +Department of Electrical Engineering, IIT Delhi, New Delhi, India +*Corresponding Author: +Available online at: www.ijcseonline.org +Received: 07/Nov/2017, Revised: 22/Nov/2017, Accepted: 14/Dec/2017, Published: 31/Dec/2017"
+ccf43c62e4bf76b6a48ff588ef7ed51e87ddf50b,Nutraceuticals and Cosmeceuticals for Human Beings–An Overview,"American Journal of Food Science and Health +Vol. 2, No. 2, 2016, pp. 7-17 +http://www.aiscience.org/journal/ajfsh +ISSN: 2381-7216 (Print); ISSN: 2381-7224 (Online) +Nutraceuticals and Cosmeceuticals for Human +Beings–An Overview +R. Ramasubramania Raja* +Department of Pharmacognosy, Narayana Pharmacy College, Nellore, India"
+cc31db984282bb70946f6881bab741aa841d3a7c,Learning Grimaces by Watching TV,"ALBANIE, VEDALDI: LEARNING GRIMACES BY WATCHING TV +Learning Grimaces by Watching TV +Samuel Albanie +http://www.robots.ox.ac.uk/~albanie +Andrea Vedaldi +http://www.robots.ox.ac.uk/~vedaldi +Engineering Science Department +Univeristy of Oxford +Oxford, UK"
+cc91001f9d299ad70deb6453d55b2c0b967f8c0d,Performance Enhancement of Face Recognition in Smart TV Using Symmetrical Fuzzy-Based Quality Assessment,"OPEN ACCESS +ISSN 2073-8994 +Article +Performance Enhancement of Face Recognition in Smart TV +Using Symmetrical Fuzzy-Based Quality Assessment +Yeong Gon Kim, Won Oh Lee, Ki Wan Kim, Hyung Gil Hong and Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, +Seoul 100-715, Korea; E-Mails: (Y.G.K.); (W.O.L.); +(K.W.K.); (H.G.H.) +* Author to whom correspondence should be addressed; E-Mail: +Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735. +Academic Editor: Christopher Tyler +Received: 31 March 2015 / Accepted: 21 August 2015 / Published: 25 August 2015"
+cc96eab1e55e771e417b758119ce5d7ef1722b43,An Empirical Study of Recent Face Alignment Methods,"An Empirical Study of Recent +Face Alignment Methods +Heng Yang, Xuhui Jia, Chen Change Loy and Peter Robinson"
+e64b683e32525643a9ddb6b6af8b0472ef5b6a37,Face Recognition and Retrieval in Video,"Face Recognition and Retrieval in Video +Caifeng Shan"
+e6b45d5a86092bbfdcd6c3c54cda3d6c3ac6b227,Pairwise Relational Networks for Face Recognition,"Pairwise Relational Networks for Face +Recognition +Bong-Nam Kang1[0000−0002−6818−7532], Yonghyun Kim2[0000−0003−0038−7850], +nd Daijin Kim1,2[0000−0002−8046−8521] +Department of Creative IT Engineering, POSTECH, Korea +Department of Computer Science and Engineering, POSTECH, Korea"
+e6865b000cf4d4e84c3fe895b7ddfc65a9c4aaec,"Tobias Siebenlist , Kathrin Knautz Chapter 15 . The critical role of the cold - start problem and incentive systems in emotional Web 2 . 0 services","Tobias Siebenlist, Kathrin Knautz +Chapter 15. The critical role of the +old-start problem and incentive systems +in emotional Web 2.0 services"
+e6d689054e87ad3b8fbbb70714d48712ad84dc1c,Robust Facial Feature Tracking,"Robust Facial Feature Tracking +Fabrice Bourel, Claude C. Chibelushi, Adrian A. Low +School of Computing, Staffordshire University +Stafford ST18 0DG"
+e6dc1200a31defda100b2e5ddb27fb7ecbbd4acd,Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction,"Flexible Manifold Embedding: A Framework +for Semi-Supervised and Unsupervised +Dimension Reduction +Feiping Nie, Dong Xu, Member, IEEE, Ivor Wai-Hung Tsang, and Changshui Zhang, Member, IEEE +, the linear regression function ("
+e6e5a6090016810fb902b51d5baa2469ae28b8a1,Energy-Efficient Deep In-memory Architecture for NAND Flash Memories,"Title +Energy-Efficient Deep In-memory Architecture for NAND +Flash Memories +Archived version +Accepted manuscript: the content is same as the published +paper but without the final typesetting by the publisher +Published version +Published paper +Authors (contact) +0.1109/ISCAS.2018.8351458"
+e6178de1ef15a6a973aad2791ce5fbabc2cb8ae5,Improving Facial Landmark Detection via a Super-Resolution Inception Network,"Improving Facial Landmark Detection via a +Super-Resolution Inception Network +Martin Knoche, Daniel Merget, Gerhard Rigoll +Institute for Human-Machine Communication +Technical University of Munich, Germany"
+f9784db8ff805439f0a6b6e15aeaf892dba47ca0,"Comparing the performance of Emotion-Recognition Implementations in OpenCV, Cognitive Services, and Google Vision APIs","Comparing the performance of Emotion-Recognition Implementations +in OpenCV, Cognitive Services, and Google Vision APIs +LUIS ANTONIO BELTRÁN PRIETO, ZUZANA KOMÍNKOVÁ OPLATKOVÁ +Department of Informatics and Artificial Intelligence +Tomas Bata University in Zlín +Nad Stráněmi 4511, 76005, Zlín +CZECH REPUBLIC"
+f935225e7811858fe9ef6b5fd3fdd59aec9abd1a,Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.,"www.elsevier.com/locate/ynimg +Spatiotemporal dynamics and connectivity pattern differences +etween centrally and peripherally presented faces +Lichan Liu and Andreas A. Ioannides* +Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan +Received 4 May 2005; revised 26 January 2006; accepted 6 February 2006 +Available online 24 March 2006 +Most neuroimaging studies on face processing used centrally presented +images with a relatively large visual field. Images presented in this way +ctivate widespread striate and extrastriate areas and make it difficult +to study spatiotemporal dynamics and connectivity pattern differences +from various parts of the visual field. Here we studied magneto- +encephalographic responses in humans to centrally and peripherally +presented faces for testing the hypothesis that processing of visual +stimuli with facial expressions of emotions depends on where the +stimuli are presented in the visual field. Using our tomographic and +statistical parametric mapping analyses, we identified occipitotemporal +reas activated by face stimuli more than by control conditions. V1/V2 +ctivity was significantly stronger for lower than central and upper +visual field presentation. Fusiform activity, however, was significantly"
+f93606d362fcbe62550d0bf1b3edeb7be684b000,Nearest Neighbor Classifier Based on Nearest Feature Decisions,"The Computer Journal Advance Access published February 1, 2012 +© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. +For Permissions, please email: +doi:10.1093/comjnl/bxs001 +Nearest Neighbor Classifier Based +on Nearest Feature Decisions +Alex Pappachen James1,∗ and Sima Dimitrijev2 +Machine Intelligence Group, School of Computer Science, Indian Institute of Information Technology and +Queensland Micro- and Nanotechnology Centre and Griffith School of Engineering, Griffith University, +Management, Kerala, India +Nathan, Australia +Corresponding author: +High feature dimensionality of realistic datasets adversely affects the recognition accuracy of nearest +neighbor (NN) classifiers. To address this issue, we introduce a nearest feature classifier that shifts +the NN concept from the global-decision level to the level of individual features. Performance +omparisons with 12 instance-based classifiers on 13 benchmark University of California Irvine +lassification datasets show average improvements of 6 and 3.5% in recognition accuracy and +rea under curve performance measures, respectively. The statistical significance of the observed +performance improvements is verified by the Friedman test and by the post hoc Bonferroni–Dunn +test. In addition, the application of the classifier is demonstrated on face recognition databases, a"
+f997a71f1e54d044184240b38d9dc680b3bbbbc0,Deep Cross Modal Learning for Caricature Verification and Identification(CaVINet),"Deep Cross Modal Learning for Caricature Verification and +Identification(CaVINet) +https://lsaiml.github.io/CaVINet/ +Jatin Garg∗ +Indian Institute of Technology Ropar +Himanshu Tolani∗ +Indian Institute of Technology Ropar +Skand Vishwanath Peri∗ +Indian Institute of Technology Ropar +Narayanan C Krishnan +Indian Institute of Technology Ropar"
+f9d1f12070e5267afc60828002137af949ff1544,Maximum Entropy Binary Encoding for Face Template Protection,"Maximum Entropy Binary Encoding for Face Template Protection +Rohit Kumar Pandey +Yingbo Zhou +Bhargava Urala Kota +Venu Govindaraju +University at Buffalo, SUNY +{rpandey, yingbozh, buralako,"
+f0cee87e9ecedeb927664b8da44b8649050e1c86,Image Ordinal Classification and Understanding: Grid Dropout with Masking Label,"label:(1, 0, 1, 0, 1, 1, 1, 1, 1)Masking label:(0, 1, 1, 1, 0, 1, 1, 1, 1)Entire imageInput imageNeuron dropout’s gradCAMGrid dropout’s gradCAMFig.1.Above:imageordinalclassificationwithrandomlyblackoutpatches.Itiseasyforhumantorecognizetheageregardlessofthemissingpatches.Themaskinglabelisalsousefultoimageclassification.Bottom:griddropout’sgrad-CAMisbetterthanthatofneurondropout.Thatistosay,griddropoutcanhelplearningfeaturerepresentation.problem[1].Withtheproliferationofconvolutionalneuralnetwork(CNN),workshavebeencarriedoutonordinalclas-sificationwithCNN[1][2][3].Thoughgoodperformanceshavebeenloggedwithmoderndeeplearningapproaches,therearetwoproblemsinimageordinalclassification.Ononehand,theamountofordinaltrainingdataisverylim-itedwhichprohibitstrainingcomplexmodelsproperly,andtomakemattersworse,collectinglargetrainingdatasetwithordinallabelisdifficult,evenharderthanlabellinggenericdataset.Therefore,insufficienttrainingdataincreasestheriskofoverfitting.Ontheotherhand,lessstudiesareconductedtounderstandwhatdeepmodelshavelearnedonordinaldata978-1-5386-1737-3/18/$31.00c(cid:13)2018IEEE"
+f0f4f16d5b5f9efe304369120651fa688a03d495,Temporal Generative Adversarial Nets,"Temporal Generative Adversarial Nets +Masaki Saito∗ +Eiichi Matsumoto∗ +Preferred Networks inc., Japan +{msaito,"
+f0ae807627f81acb63eb5837c75a1e895a92c376,Facial Landmark Detection using Ensemble of Cascaded Regressions,"International Journal of Emerging Engineering Research and Technology +Volume 3, Issue 12, December 2015, PP 128-133 +ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) +Facial Landmark Detection using Ensemble of Cascaded +Regressions +Martin Penev1*, Ognian Boumbarov2 +Faculty of Telecommunications, Technical University, Sofia, Bulgaria +Faculty of Telecommunications, Technical University, Sofia, Bulgaria"
+f0a3f12469fa55ad0d40c21212d18c02be0d1264,Sparsity Sharing Embedding for Face Verification,"Sparsity Sharing Embedding for Face +Verification +Donghoon Lee, Hyunsin Park, Junyoung Chung, +Youngook Song, and Chang D. Yoo +Department of Electrical Engineering, KAIST, Daejeon, Korea"
+f7b422df567ce9813926461251517761e3e6cda0,Face aging with conditional generative adversarial networks,"FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS +Grigory Antipov(cid:63)† +Moez Baccouche(cid:63) +Jean-Luc Dugelay† +(cid:63) Orange Labs, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +Eurecom, 450 route des Chappes, 06410 Biot, France"
+f79c97e7c3f9a98cf6f4a5d2431f149ffacae48f,Title On color texture normalization for active appearance models,"Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published +version when available. +Title +On color texture normalization for active appearance models +Author(s) +Ionita, Mircea C.; Corcoran, Peter M.; Buzuloiu, Vasile +Publication +009-05-12 +Publication +Information +Ionita, M. C., Corcoran, P., & Buzuloiu, V. (2009). On Color +Texture Normalization for Active Appearance Models. Image +Processing, IEEE Transactions on, 18(6), 1372-1378. +Publisher +Link to +publisher's +version +http://dx.doi.org/10.1109/TIP.2009.2017163 +Item record +http://hdl.handle.net/10379/1350"
+f7dcadc5288653ec6764600c7c1e2b49c305dfaa,Interactive Image Search with Attributes by,"Copyright +Adriana Ivanova Kovashka"
+f7de943aa75406fe5568fdbb08133ce0f9a765d4,Biometric Identification and Surveillance1,"Project 1.5: Human Identification at a Distance - Hornak, Adjeroh, Cukic, Gautum, & Ross +Project 1.5 +Biometric Identification and Surveillance1 +Don Adjeroh, Bojan Cukic, Arun Ross – West Virginia University +Year 5 Deliverable +Technical Report: +Research Challenges in Biometrics +Indexed biography of relevant biometric research literature +Donald Adjeroh, Bojan Cukic, Arun Ross +April, 2014 +""This research was supported by the United States Department of Homeland Security through the National Center for Border Security +nd Immigration (BORDERS) under grant number 2008-ST-061-BS0002. However, any opinions, findings, and conclusions or +recommendations in this document are those of the authors and do not necessarily reflect views of the United States Department of +Homeland Security."""
+f75852386e563ca580a48b18420e446be45fcf8d,Illumination Invariant Face Recognition,"ILLUMINATION INVARIANT FACE RECOGNITION +Raghuraman Gopalan +ENEE 631: Digital Image and Video Processing +Instructor: Dr. K. J. Ray Liu +Term Project - Spring 2006 +INTRODUCTION +The performance of the Face Recognition algorithms is severely affected by two +important factors: the change in Pose and Illumination conditions of the subjects. The +hanges in Illumination conditions of the subjects can be so drastic that, the variation in +lighting will be of the similar order as that of the variation due to the change in subjects +[1] and this can result in misclassification. +For example, in the acquisition of the face of a person from a real time video, the +mbient conditions will cause different lighting variations on the tracked face. Some +examples of images with different illumination conditions are shown in Fig. 1. In this +project, we study some algorithms that are capable of performing Illumination Invariant +Face Recognition. The performances of these algorithms were compared on the CMU- +Illumination dataset [13], by using the entire face as the input to the algorithms. Then, a +model of dividing the face into four regions is proposed and the performance of the +lgorithms on these new features is analyzed."
+f77c9bf5beec7c975584e8087aae8d679664a1eb,Local Deep Neural Networks for Age and Gender Classification,"Local Deep Neural Networks for Age and Gender Classification +Zukang Liao, Stavros Petridis, Maja Pantic +March 27, 2017"
+e8686663aec64f4414eba6a0f821ab9eb9f93e38,Improving shape-based face recognition by means of a supervised discriminant Hausdorff distance,"IMPROVING SHAPE-BASED FACE RECOGNITION BY MEANS OF A SUPERVISED +DISCRIMINANT HAUSDORFF DISTANCE +J.L. Alba +, A. Pujol +, A. L´opez +nd J.J. Villanueva +Signal Theory and Communications Department, University of Vigo, Spain +Centre de Visio per Computador, Universitat Autonoma de Barcelona, Spain +Digital Pointer MVT"
+e8fdacbd708feb60fd6e7843b048bf3c4387c6db,Deep Learning,"Deep Learning +Andreas Eilschou +Hinnerup Net A/S +www.hinnerup.net +July 4, 2014 +Introduction +Deep learning is a topic in the field of artificial intelligence (AI) and is a relatively +new research area although based on the popular artificial neural networks (supposedly +mirroring brain function). With the development of the perceptron in the 1950s and +960s by Frank RosenBlatt, research began on artificial neural networks. To further +mimic the architectural depth of the brain, researchers wanted to train a deep multi- +layer neural network – this, however, did not happen until Geoffrey Hinton in 2006 +introduced Deep Belief Networks [1]. +Recently, the topic of deep learning has gained public interest. Large web companies such +s Google and Facebook have a focused research on AI and an ever increasing amount +of compute power, which has led to researchers finally being able to produce results +that are of interest to the general public. In July 2012 Google trained a deep learning +network on YouTube videos with the remarkable result that the network learned to +recognize humans as well as cats [6], and in January this year Google successfully used +deep learning on Street View images to automatically recognize house numbers with"
+e8b2a98f87b7b2593b4a046464c1ec63bfd13b51,CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection,"CMS-RCNN: Contextual Multi-Scale +Region-based CNN for Unconstrained Face +Detection +Chenchen Zhu*, Student, IEEE, Yutong Zheng*, Student, IEEE, +Khoa Luu, Member, IEEE, Marios Savvides, Senior Member, IEEE"
+e85a255a970ee4c1eecc3e3d110e157f3e0a4629,Fusing Hierarchical Convolutional Features for Human Body Segmentation and Clothing Fashion Classification,"Fusing Hierarchical Convolutional Features for Human Body Segmentation and +Clothing Fashion Classification +Zheng Zhang, Chengfang Song, Qin Zou∗ +School of Computer Science, Wuhan University, P.R. China +E-mails: {zhangzheng, songchf,"
+e8d1b134d48eb0928bc999923a4e092537e106f6,Weighted Multi-region Convolutional Neural Network for Action Recognition with Low-latency Online Prediction,"WEIGHTED MULTI-REGION CONVOLUTIONAL NEURAL NETWORK FOR ACTION +RECOGNITION WITH LOW-LATENCY ONLINE PREDICTION +Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63) +(cid:63)University of Science and Technology of China, Hefei, Anhui, China +HERE Technologies, Chicago, Illinois, USA"
+e8c6c3fc9b52dffb15fe115702c6f159d955d308,Linear Subspace Learning for Facial Expression Analysis,"Linear Subspace Learning for +Facial Expression Analysis +Caifeng Shan +Philips Research +The Netherlands +. Introduction +Facial expression, resulting from movements of the facial muscles, is one of the most +powerful, natural, and immediate means for human beings to communicate their emotions +nd intentions. Some examples of facial expressions are shown in Fig. 1. Darwin (1872) was +the first to describe in detail the specific facial expressions associated with emotions in +nimals and humans; he argued that all mammals show emotions reliably in their faces. +Psychological studies (Mehrabian, 1968; Ambady & Rosenthal, 1992) indicate that facial +expressions, with other non-verbal cues, play a major and fundamental role in face-to-face +ommunication. +Fig. 1. Facial expressions of George W. Bush. +Machine analysis of facial expressions, enabling computers to analyze and interpret facial +expressions as humans do, has many important applications including intelligent human- +omputer interaction, computer animation, surveillance and security, medical diagnosis, +law enforcement, and awareness system (Shan, 2007). Driven by its potential applications +nd theoretical interests of cognitive and psychological scientists, automatic facial"
+fab83bf8d7cab8fe069796b33d2a6bd70c8cefc6,Draft: Evaluation Guidelines for Gender Classification and Age Estimation,"Draft: Evaluation Guidelines for Gender +Classification and Age Estimation +Tobias Gehrig, Matthias Steiner, Hazım Kemal Ekenel +{tobias.gehrig, +July 1, 2011 +Introduction +In previous research on gender classification and age estimation did not use a +standardised evaluation procedure. This makes comparison the different ap- +proaches difficult. +Thus we propose here a benchmarking and evaluation protocol for gender +lassification as well as age estimation to set a common ground for future re- +search in these two areas. +The evaluations are designed such that there is one scenario under controlled +labratory conditions and one under uncontrolled real life conditions. +The datasets were selected with the criteria of being publicly available for +research purposes. +File lists for the folds corresponding to the individual benchmarking proto- +ols will be provided over our website at http://face.cs.kit.edu/befit. We +will provide two kinds of folds for each of the tasks and conditions: one set of +folds using the whole dataset and one set of folds using a reduced dataset, which"
+fa08a4da5f2fa39632d90ce3a2e1688d147ece61,Supplementary material for “ Unsupervised Creation of Parameterized Avatars ” 1 Summary of Notations,"Supplementary material for +“Unsupervised Creation of Parameterized Avatars” +Summary of Notations +Tab. 1 itemizes the symbols used in the submission. Fig. 2,3,4 of the main text illustrate many of these +symbols. +DANN results +Fig. 1 shows side by side samples of the original image and the emoji generated by the method of [1]. +As can be seen, these results do not preserve the identity very well, despite considerable effort invested in +finding suitable architectures. +Multiple Images Per Person +Following [4], we evaluate the visual quality that is obtained per person and not just per image, by testing +TOS on the Facescrub dataset [3]. For each person p, we considered the set of their images Xp, and selected +the emoji that was most similar to their source image, i.e., the one for which: +||f (x) − f (e(c(G(x))))||. +rgmin +Fig. 2 depicts the results obtained by this selection method on sample images form the Facescrub dataset +(it is an extension of Fig. 7 of the main text). The figure also shows, for comparison, the DTN [4] result for +the same image. +Detailed Architecture of the Various Networks +In this section we describe the architectures of the networks used in for the emoji and avatar experiments."
+fa24bf887d3b3f6f58f8305dcd076f0ccc30272a,Interval Insensitive Loss for Ordinal Classification,"JMLR: Workshop and Conference Proceedings 39:189–204, 2014 +ACML 2014 +Interval Insensitive Loss for Ordinal Classification +Kostiantyn Antoniuk +Vojtˇech Franc +V´aclav Hlav´aˇc +Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech +Technical University in Prague, Technick´a 2, 166 27 Prague 6 Czech Republic +Editor: Dinh Phung and Hang Li"
+fafe69a00565895c7d57ad09ef44ce9ddd5a6caa,Gaussian Mixture Models for Human Face Recognition under Illumination Variations,"Applied Mathematics, 2012, 3, 2071-2079 +http://dx.doi.org/10.4236/am.2012.312A286 Published Online December 2012 (http://www.SciRP.org/journal/am) +Gaussian Mixture Models for Human Face Recognition +under Illumination Variations +Information Systems and Decision Sciences Department, Mihaylo College of Business and Economics, +California State University, Fullerton, USA +Email: +Sinjini Mitra +Received August 18, 2012; revised September 18, 2012; accepted September 25, 2012"
+faca1c97ac2df9d972c0766a296efcf101aaf969,Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition,"Sympathy for the Details: Dense Trajectories and Hybrid +Classification Architectures for Action Recognition +C´esar Roberto de Souza1,2, Adrien Gaidon1, Eleonora Vig3, Antonio Manuel L´opez2 +Computer Vision Group, Xerox Research Center Europe, Meylan, France +Centre de Visi´o per Computador, Universitat Aut`onoma de Barcelona, Bellaterra, Spain +German Aerospace Center, Wessling, Germany +{cesar.desouza,"
+fab60b3db164327be8588bce6ce5e45d5b882db6,Maximum A Posteriori Estimation of Distances Between Deep Features in Still-to-Video Face Recognition,"Maximum A Posteriori Estimation of Distances +Between Deep Features in Still-to-Video Face +Recognition +Andrey V. Savchenko +National Research University Higher School of Economics +Laboratory of Algorithms and Technologies for Network Analysis, +6 Rodionova St., Nizhny Novgorod, Russia +Natalya S. Belova +National Research University Higher School of Economics +0 Myasnitskaya St., Moscow, Russia +September 2, 2018"
+fad895771260048f58d12158a4d4d6d0623f4158,Audio-visual emotion recognition for natural human-robot interaction,"Audio-Visual Emotion +Recognition For Natural +Human-Robot Interaction +Dissertation zur Erlangung des akademischen Grades +Doktor der Ingenieurwissenschaften (Dr.-Ing.) +vorgelegt von +Ahmad Rabie +n der Technischen Fakultät der Universität Bielefeld +5. März 2010"
+ff8315c1a0587563510195356c9153729b533c5b,Zapping Index:Using Smile to Measure Advertisement Zapping Likelihood,"Zapping Index:Using Smile to Measure +Advertisement Zapping Likelihood +Songfan Yang, Member, IEEE, Mehran Kafai, Member, IEEE, +Le An, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE"
+ff44d8938c52cfdca48c80f8e1618bbcbf91cb2a,Towards Video Captioning with Naming: A Novel Dataset and a Multi-modal Approach,"Towards Video Captioning with Naming: a +Novel Dataset and a Multi-Modal Approach +Stefano Pini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara +Dipartimento di Ingegneria “Enzo Ferrari” +Universit`a degli Studi di Modena e Reggio Emilia"
+fffefc1fb840da63e17428fd5de6e79feb726894,Fine-Grained Age Estimation in the wild with Attention LSTM Networks,"Fine-Grained Age Estimation in the wild with +Attention LSTM Networks +Ke Zhang, Member, IEEE, Na Liu, Xingfang Yuan, Student Member, IEEE, Xinyao Guo, Ce Gao, +nd Zhenbing Zhao Member, IEEE,"
+ff398e7b6584d9a692e70c2170b4eecaddd78357,Title of dissertation : FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS,
+ffd81d784549ee51a9b0b7b8aaf20d5581031b74,Performance Analysis of Retina and DoG Filtering Applied to Face Images for Training Correlation Filters,"Performance Analysis of Retina and DoG +Filtering Applied to Face Images for Training +Correlation Filters +Everardo Santiago Ram(cid:19)(cid:16)rez1, Jos(cid:19)e (cid:19)Angel Gonz(cid:19)alez Fraga1, Omar (cid:19)Alvarez +Xochihua1, Everardo Gutierrez L(cid:19)opez1, and Sergio Omar Infante Prieto2 +Facultad de Ciencias, Universidad Aut(cid:19)onoma de Baja California, +Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia Playitas, +Ensenada, Baja California, C.P. 22860 +{everardo.santiagoramirez,angel_fraga, +Facultad de Ingenier(cid:19)(cid:16)a, Arquitectura y Dise~no, Universidad Aut(cid:19)onoma de Baja +California, Carretera Transpeninsular Tijuana-Ensenada, N(cid:19)um. 3917, Colonia +Playitas, Ensenada, Baja California, C.P. 22860"
+ff01bc3f49130d436fca24b987b7e3beedfa404d,Fuzzy System-Based Face Detection Robust to In-Plane Rotation Based on Symmetrical Characteristics of a Face,"Article +Fuzzy System-Based Face Detection Robust to +In-Plane Rotation Based on Symmetrical +Characteristics of a Face +Hyung Gil Hong, Won Oh Lee, Yeong Gon Kim, Ki Wan Kim, Dat Tien Nguyen and +Kang Ryoung Park * +Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, +Seoul 100-715, Korea; (H.G.H.); (W.O.L.); (Y.G.K.); +(K.W.K.); (D.T.N.) +* Correspondence: Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735 +Academic Editor: Angel Garrido +Received: 15 June 2016; Accepted: 29 July 2016; Published: 3 August 2016"
+ffc9d6a5f353e5aec3116a10cf685294979c63d9,Eigenphase-based face recognition: a comparison of phase- information extraction methods,"Eigenphase-based face recognition: a comparison of phase- +information extraction methods +Slobodan Ribarić, Marijo Maračić +Faculty of Electrical Engineering and Computing, +University of Zagreb, Unska 3, 10 000 Zagreb +E-mail:"
+ff8ef43168b9c8dd467208a0b1b02e223b731254,BreakingNews: Article Annotation by Image and Text Processing,"BreakingNews: Article Annotation by +Image and Text Processing +Arnau Ramisa*, Fei Yan*, Francesc Moreno-Noguer, +nd Krystian Mikolajczyk"
+ffcbedb92e76fbab083bb2c57d846a2a96b5ae30,Sparse Dictionary Learning and Domain Adaptation for Face and Action Recognition,
+ff7bc7a6d493e01ec8fa2b889bcaf6349101676e,Facial expression recognition with spatiotemporal local descriptors_v3.rtf,"Facial expression recognition with spatiotemporal local +descriptors +Guoying Zhao, Matti Pietikäinen +Machine Vision Group, Infotech Oulu and Department of Electrical and +Information Engineering, P. O. Box 4500 FI-90014 University of Oulu, Finland +{gyzhao,"
+ff46c41e9ea139d499dd349e78d7cc8be19f936c,A Novel Method for Movie Character Identification and its Facial Expression Recognition,"International Journal of Modern Engineering Research (IJMER) +www.ijmer.com Vol.3, Issue.3, May-June. 2013 pp-1339-1342 ISSN: 2249-6645 +A Novel Method for Movie Character Identification and its +Facial Expression Recognition +M. Dharmateja Purna, 1 N. Praveen2 +M.Tech, Sri Sunflower College of Engineering & Technology, Lankapalli +Asst. Professor, Dept. of ECE, Sri Sunflower College of Engineering & Technology, Lankapalli"
+ff5dd6f96e108d8233220cc262bc282229c1a582,Robust Facial Marks Detection Method Using AAM And SURF,"Ziaul Haque Choudhury, K.M. Mehata / International Journal of Engineering Research and +Applications (IJERA) ISSN: 2248-9622 www.ijera.com +Vol. 2, Issue 6, November- December 2012, pp.708-715 +Robust Facial Marks Detection Method Using AAM And SURF +Ziaul Haque Choudhury, K.M. Mehata +Dept. of Information Technology, B.S. Abdur Rahman University, Chennai-48, India +Dept. of Computer Science & Engineering, B.S. Abdur Rahman University, Chennai-48, India"
+c588c89a72f89eed29d42f34bfa5d4cffa530732,Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning,"Attributes2Classname: A discriminative model for attribute-based +unsupervised zero-shot learning +Berkan Demirel1,3, Ramazan Gokberk Cinbis2, Nazli Ikizler-Cinbis3 +HAVELSAN Inc., 2Bilkent University, 3Hacettepe University"
+c50d73557be96907f88b59cfbd1ab1b2fd696d41,Semiconductor sidewall shape estimation,"JournalofElectronicImaging13(3),474–485(July2004). +Semiconductor sidewall shape estimation +Philip R. Bingham +Jeffery R. Price +Kenneth W. Tobin +Thomas P. Karnowski +Oak Ridge National Laboratory +Oak Ridge, Tennessee 37831-6010 +E-mail:"
+c574c72b5ef1759b7fd41cf19a9dcd67e5473739,"COGNIMUSE: a multimodal video database annotated with saliency, events, semantics and emotion with application to summarization","Zlatintsi et al. EURASIP Journal on Image and Video Processing (2017) 2017:54 +DOI 10.1186/s13640-017-0194-1 +EURASIP Journal on Image +nd Video Processing +RESEARCH +Open Access +COGNIMUSE: a multimodal video +database annotated with saliency, events, +semantics and emotion with application to +summarization +Athanasia Zlatintsi1* +Niki Efthymiou1, Katerina Pastra4, Alexandros Potamianos1 and Petros Maragos1 +, Petros Koutras1, Georgios Evangelopoulos2, Nikolaos Malandrakis3,"
+c5a561c662fc2b195ff80d2655cc5a13a44ffd2d,Using Language to Learn Structured Appearance Models for Image Annotation,"Using Language to Learn Structured Appearance +Models for Image Annotation +Michael Jamieson, Student Member, IEEE, Afsaneh Fazly, Suzanne Stevenson, Sven Dickinson, Member, IEEE, +Sven Wachsmuth, Member, IEEE"
+c5c379a807e02cab2e57de45699ababe8d13fb6d,Facial Expression Recognition Using Sparse Representation,"Facial Expression Recognition Using Sparse Representation +SHIQING ZHANG 1, XIAOMING ZHAO 2, BICHENG LEI 1 +School of Physics and Electronic Engineering +Taizhou University +Taizhou 318000 +CHINA +2Department of Computer Science +Taizhou University +Taizhou 318000 +CHINA"
+c5ea084531212284ce3f1ca86a6209f0001de9d1,Audio-visual speech processing for multimedia localisation,"Audio-Visual Speech Processing for +Multimedia Localisation +Matthew Aaron Benatan +Submitted in accordance with the requirements +for the degree of Doctor of Philosophy +The University of Leeds +School of Computing +September 2016"
+c5844de3fdf5e0069d08e235514863c8ef900eb7,A Study on Similarity Computations in Template Matching Technique for Identity Verification,"Lam S K et al. / (IJCSE) International Journal on Computer Science and Engineering +Vol. 02, No. 08, 2010, 2659-2665 +A Study on Similarity Computations in Template +Matching Technique for Identity Verification +Lam, S. K., Yeong, C. Y., Yew, C. T., Chai, W. S., Suandi, S. A. +Intelligent Biometric Group, School of Electrical and Electronic Engineering +Engineering Campus, Universiti Sains Malaysia +4300 Nibong Tebal, Pulau Pinang, MALAYSIA +Email:"
+c590c6c171392e9f66aab1bce337470c43b48f39,Emotion Recognition by Machine Learning Algorithms using Psychophysiological Signals,"Emotion Recognition by Machine Learning Algorithms using +Psychophysiological Signals +Eun-Hye Jang, 2Byoung-Jun Park, 3Sang-Hyeob Kim, 4Jin-Hun Sohn +, 2, 3 BT Convergence Technology Research Department, Electronics and Telecommunications +Research Institute, 138 Gajeongno, Yuseong-gu, Daejeon, 305-700, Republic of Korea, +*4Department of Psychology/Brain Research Institute, Chungnam National University 220, +Gung-dong, Yuseong-gu, Daejeon, 305-765, Republic of Korea,"
+c2c3ff1778ed9c33c6e613417832505d33513c55,"Multimodal Biometric Person Authentication Using Fingerprint, Face Features","Multimodal Biometric Person Authentication +Using Fingerprint, Face Features +Tran Binh Long1, Le Hoang Thai2, and Tran Hanh1 +Department of Computer Science, University of Lac Hong 10 Huynh Van Nghe, +DongNai 71000, Viet Nam +Department of Computer Science, Ho Chi Minh City University of Science +27 Nguyen Van Cu, HoChiMinh 70000, Viet Nam"
+c27f64eaf48e88758f650e38fa4e043c16580d26,Title of the proposed research project: Subspace analysis using Locality Preserving Projection and its applications for image recognition,"Title of the proposed research project: Subspace analysis using Locality Preserving +Projection and its applications for image recognition +Research area: Data manifold learning for pattern recognition +Contact Details: +Name: Gitam C Shikkenawis +Email Address: +University: Dhirubhai Ambani Institute of Information and Communication Technology +(DA-IICT), Gandhinagar."
+c220f457ad0b28886f8b3ef41f012dd0236cd91a,Crystal Loss and Quality Pooling for Unconstrained Face Verification and Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Crystal Loss and Quality Pooling for +Unconstrained Face Verification and Recognition +Rajeev Ranjan, Member, IEEE, Ankan Bansal, Hongyu Xu, Member, IEEE, +Swami Sankaranarayanan, Member, IEEE, Jun-Cheng Chen, Member, IEEE, +Carlos D Castillo, Member, IEEE, and Rama Chellappa, Fellow, IEEE"
+c254b4c0f6d5a5a45680eb3742907ec93c3a222b,A Fusion-based Gender Recognition Method Using Facial Images,"A Fusion-based Gender Recognition Method +Using Facial Images +Benyamin Ghojogh, Saeed Bagheri Shouraki, Hoda Mohammadzade*, Ensieh Iranmehr"
+c2e6daebb95c9dfc741af67464c98f1039127627,Efficient Measuring of Facial Action Unit Activation Intensities using Active Appearance Models,"MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN +Efficient Measuring of Facial Action Unit Activation Intensities +using Active Appearance Models +Daniel Haase1, Michael Kemmler1, Orlando Guntinas-Lichius2, Joachim Denzler1 +Computer Vision Group, Friedrich Schiller University of Jena, Germany +Department of Otolaryngology, University Hospital Jena, Germany"
+f6f06be05981689b94809130e251f9e4bf932660,An Approach to Illumination and Expression Invariant Multiple Classifier Face Recognition,"An Approach to Illumination and Expression Invariant +International Journal of Computer Applications (0975 – 8887) +Volume 91 – No.15, April 2014 +Multiple Classifier Face Recognition +Dalton Meitei Thounaojam +National Institute of Technology +Silchar +Assam: 788010 +India +Hidangmayum Saxena Devi +National Institute of Technology +Silchar +Assam: 788010 +India +Romesh Laishram +Manipur Institute of Technology +Imphal West: 795001 +India"
+f6ca29516cce3fa346673a2aec550d8e671929a6,Algorithm for Face Matching Using Normalized Cross - Correlation,"International Journal of Engineering and Advanced Technology (IJEAT) +ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 +Algorithm for Face Matching Using Normalized +Cross-Correlation +C. Saravanan, M. Surender"
+f67a73c9dd1e05bfc51219e70536dbb49158f7bc,A Gaussian Mixture Model for Classifying the Human Age using DWT and Sammon Map,"Journal of Computer Science 10 (11): 2292-2298, 2014 +ISSN: 1549-3636 +© 2014 Nithyashri and Kulanthaivel, This open access article is distributed under a Creative Commons Attribution +(CC-BY) 3.0 license +A GAUSSIAN MIXTURE MODEL FOR CLASSIFYING THE +HUMAN AGE USING DWT AND SAMMON MAP +J. Nithyashri and 2G. Kulanthaivel +Department of Computer Science and Engineering, Sathyabama University, Chennai, India +Department of Electronics Engineering, NITTTR, Chennai, India +Received 2014-05-08; Revised 2014-05-23; Accepted 2014-11-28"
+f6c70635241968a6d5fd5e03cde6907022091d64,Measuring Deformations and Illumination Changes in Images with Applications to Face Recognition,
+f6ce34d6e4e445cc2c8a9b8ba624e971dd4144ca,Cross-Label Suppression: A Discriminative and Fast Dictionary Learning With Group Regularization,"Cross-label Suppression: A Discriminative and Fast +Dictionary Learning with Group Regularization +Xiudong Wang and Yuantao Gu∗ +April 24, 2017"
+f6fa97fbfa07691bc9ff28caf93d0998a767a5c1,K2-means for Fast and Accurate Large Scale Clustering,"k2-means for fast and accurate large scale clustering +Eirikur Agustsson +Computer Vision Lab +D-ITET +ETH Zurich +Radu Timofte +Computer Vision Lab +D-ITET +ETH Zurich +Luc Van Gool +ESAT, KU Leuven +D-ITET, ETH Zurich"
+f6cf2108ec9d0f59124454d88045173aa328bd2e,Robust User Identification Based on Facial Action Units Unaffected by Users' Emotions,"Robust user identification based on facial action units +unaffected by users’ emotions +Ricardo Buettner +Aalen University, Germany"
+f68f20868a6c46c2150ca70f412dc4b53e6a03c2,Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition,"Differential Evolution to Optimize +Hidden Markov Models Training: +Application to Facial Expression +Recognition +Khadoudja Ghanem, Amer Draa, Elvis Vyumvuhore and +Ars`ene Simbabawe +MISC Laboratory, Constantine 2 University, Constantine, Algeria +The base system in this paper uses Hidden Markov +Models (HMMs) to model dynamic relationships among +facial features in facial behavior interpretation and un- +derstanding field. The input of HMMs is a new set +of derived features from geometrical distances obtained +from detected and automatically tracked facial points. +Numerical data representation which is in the form of +multi-time series is transformed to a symbolic repre- +sentation in order to reduce dimensionality, extract the +most pertinent information and give a meaningful repre- +sentation to humans. The main problem of the use of +HMMs is that the training is generally trapped in local +minima, so we used the Differential Evolution (DE)"
+e9ed17fd8bf1f3d343198e206a4a7e0561ad7e66,Cognitive Learning for Social Robot through Facial Expression from Video Input,"International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 +Vol. 3 Issue 1, January-2014, pp: (362-365), Impact Factor: 1.252, Available online at: www.erpublications.com +Cognitive Learning for Social Robot through +Facial Expression from Video Input +Neeraj Rai1, Deepak Rai2 +Department of Automation & Robotics, 2Department of Computer Science & Engg. +,2Ajay Kumar Garg Engineering College, Ghaziabad, UP, India"
+e988be047b28ba3b2f1e4cdba3e8c94026139fcf,Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition,"Multi-Task Convolutional Neural Network for +Pose-Invariant Face Recognition +Xi Yin and Xiaoming Liu Member, IEEE,"
+e9d43231a403b4409633594fa6ccc518f035a135,Deformable Part Models with CNN Features,"Deformable Part Models with CNN Features +Pierre-Andr´e Savalle1, Stavros Tsogkas1,2, George Papandreou3, Iasonas +Kokkinos1,2 +Ecole Centrale Paris,2 INRIA, 3TTI-Chicago (cid:63)"
+e9fcd15bcb0f65565138dda292e0c71ef25ea8bb,Analysing Facial Regions for Face Recognition Using Forensic Protocols,"Repositorio Institucional de la Universidad Autónoma de Madrid +https://repositorio.uam.es +Esta es la versión de autor de la comunicación de congreso publicada en: +This is an author produced version of a paper published in: +Highlights on Practical Applications of Agents and Multi-Agent Systems: +International Workshops of PAAMS. Communications in Computer and +Information Science, Volumen 365. Springer, 2013. 223-230 +DOI: http://dx.doi.org/10.1007/978-3-642-38061-7_22 +Copyright: © 2013 Springer-Verlag +El acceso a la versión del editor puede requerir la suscripción del recurso +Access to the published version may require subscription"
+e9363f4368b04aeaa6d6617db0a574844fc59338,BenchIP: Benchmarking Intelligence Processors,"BENCHIP: Benchmarking Intelligence +Processors +Jinhua Tao1, Zidong Du1,2, Qi Guo1,2, Huiying Lan1, Lei Zhang1 +Shengyuan Zhou1, Lingjie Xu3, Cong Liu4, Haifeng Liu5, Shan Tang6 +Allen Rush7,Willian Chen7, Shaoli Liu1,2, Yunji Chen1, Tianshi Chen1,2 +ICT CAS,2Cambricon,3Alibaba Infrastructure Service, Alibaba Group +IFLYTEK,5JD,6RDA Microelectronics,7AMD"
+f16a605abb5857c39a10709bd9f9d14cdaa7918f,Fast greyscale road sign model matching and recognition,"Fast greyscale road sign model matching +nd recognition +Sergio Escalera and Petia Radeva +Centre de Visió per Computador +Edifici O – Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain"
+f1aa120fb720f6cfaab13aea4b8379275e6d40a2,InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image,"InverseFaceNet: Deep Single-Shot Inverse Face Rendering From A Single Image +Hyeongwoo Kim1 +Justus Thies2 +Max-Planck-Institute for Informatics +Michael Zollhöfer1 +Christian Richardt3 +University of Erlangen-Nuremberg 3 University of Bath +Christian Theobalt1 +Ayush Tewari1 +Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate +from just a single input image. We jointly recover the face pose, shape, expression, reflectance and incident scene illumination. From left to +right: input photo, our estimated face model, its geometry, and the pointwise Euclidean error compared to Garrido et al. [14]."
+f1ba2fe3491c715ded9677862fea966b32ca81f0,Face Tracking and Recognition in Videos : HMM Vs KNN,"ISSN: 2321-7782 (Online) +Volume 1, Issue 7, December 2013 +International Journal of Advance Research in +Computer Science and Management Studies +Research Paper +Available online at: www.ijarcsms.com +Face Tracking and Recognition in Videos: +HMM Vs KNN +Madhumita R. Baviskar +Assistant Professor +Department of Computer Engineering +MIT College of Engineering (Pune University) +Pune - India"
+f1d090fcea63d9f9e835c49352a3cd576ec899c1,Single-hidden Layer Feedforward Neual network training using class geometric information,"Iosifidis, A., Tefas, A., & Pitas, I. (2015). Single-Hidden Layer Feedforward +Neual Network Training Using Class Geometric Information. In . J. J. +Merelo, A. Rosa, J. M. Cadenas, A. Dourado, K. Madani, & J. Filipe (Eds.), +Computational Intelligence: International Joint Conference, IJCCI 2014 +Rome, Italy, October 22-24, 2014 Revised Selected Papers. (Vol. III, pp. +51-364). (Studies in Computational Intelligence; Vol. 620). Springer. DOI: +0.1007/978-3-319-26393-9_21 +Peer reviewed version +Link to published version (if available): +0.1007/978-3-319-26393-9_21 +Link to publication record in Explore Bristol Research +PDF-document +University of Bristol - Explore Bristol Research +General rights +This document is made available in accordance with publisher policies. Please cite only the published +version using the reference above. Full terms of use are available: +http://www.bristol.ac.uk/pure/about/ebr-terms.html"
+f113aed343bcac1021dc3e57ba6cc0647a8f5ce1,A Survey on Mining of Weakly Labeled Web Facial Images and Annotation,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +A Survey on Mining of Weakly Labeled Web Facial +Images and Annotation +Tarang Boharupi1, Pranjali Joshi2 +Pune Institute of Computer Technology, Pune, India +Professor, Pune Institute of Computer Technology, Pune, India +the proposed system which"
+f19777e37321f79e34462fc4c416bd56772031bf,Literature Review of Image Compression Algorithm,"International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 +ISSN 2229-5518 +Literature Review of Image Compression Algorithm +Dr. B. Chandrasekhar +Padmaja.V.K +email: email:: +Jawaharlal Technological University, Anantapur"
+f19ab817dd1ef64ee94e94689b0daae0f686e849,Blickrichtungsunabhängige Erkennung von Personen in Bild- und Tiefendaten,"TECHNISCHE UNIVERSIT¨AT M ¨UNCHEN +Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +Blickrichtungsunabh¨angige Erkennung von +Personen in Bild- und Tiefendaten +Andre St¨ormer +Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs (Dr.-Ing.) +genehmigten Dissertation. +Vorsitzender: +Univ.-Prof. Dr.-Ing. Thomas Eibert +Pr¨ufer der Dissertation: +. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +. Univ.-Prof. Dr.-Ing. Horst-Michael Groß, +Technische Universit¨at Ilmenau +Die Dissertation wurde am 16.06.2009 bei der Technischen Universit¨at M¨unchen einge- +reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 30.10.2009 +ngenommen."
+e76798bddd0f12ae03de26b7c7743c008d505215,Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes,
+e7cac91da51b78eb4a28e194d3f599f95742e2a2,"Positive Feeling, Negative Meaning: Visualizing the Mental Representations of In-Group and Out-Group Smiles","RESEARCH ARTICLE +Positive Feeling, Negative Meaning: +Visualizing the Mental Representations of In- +Group and Out-Group Smiles +Andrea Paulus1☯*, Michaela Rohr1☯, Ron Dotsch2,3, Dirk Wentura1 +Saarland University, Saarbrücken, Germany, 2 Utrecht University, Utrecht, the Netherlands, +Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands +☯ These authors contributed equally to this work."
+e78394213ae07b682ce40dc600352f674aa4cb05,Expression-invariant three-dimensional face recognition,"Expression-invariant three-dimensional face recognition +Alexander M. Bronstein +Email: +Michael M. Bronstein +Ron Kimmel +Computer Science Department, +Technion – Israel Institute of Technology, +Haifa 32000, Israel +One of the hardest problems in face recognition is dealing with facial expressions. Finding an +expression-invariant representation of the face could be a remedy for this problem. We suggest +treating faces as deformable surfaces in the context of Riemannian geometry, and propose to ap- +proximate facial expressions as isometries of the facial surface. This way, we can define geometric +invariants of a given face under different expressions. One such invariant is constructed by iso- +metrically embedding the facial surface structure into a low-dimensional flat space. Based on this +pproach, we built an accurate three-dimensional face recognition system that is able to distinguish +etween identical twins under various facial expressions. In this chapter we show how under the +near-isometric model assumption, the difficult problem of face recognition in the presence of facial +expressions can be solved in a relatively simple way. +0.1 Introduction +It is well-known that some characteristics or behavior patterns of the human body are strictly"
+e7b6887cd06d0c1aa4902335f7893d7640aef823,Modelling of Facial Aging and Kinship: A Survey,"Modelling of Facial Aging and Kinship: A Survey +Markos Georgopoulos, Yannis Panagakis, and Maja Pantic,"
+cbca355c5467f501d37b919d8b2a17dcb39d3ef9,Super-resolution of Very Low Resolution Faces from Videos,"CANSIZOGLU, JONES: SUPER-RESOLUTION OF VERY LR FACES FROM VIDEOS +Super-resolution of Very Low-Resolution +Faces from Videos +Esra Ataer-Cansizoglu +Michael Jones +Mitsubishi Electric Research Labs +(MERL) +Cambridge, MA, USA"
+cbcf5da9f09b12f53d656446fd43bc6df4b2fa48,Face Recognition using Gray level Co-occurrence Matrix and Snap Shot Method of the Eigen Face,"ISSN: 2277-3754 +ISO 9001:2008 Certified +International Journal of Engineering and Innovative Technology (IJEIT) +Volume 2, Issue 6, December 2012 +Face Recognition using Gray level Co-occurrence +Matrix and Snap Shot Method of the Eigen Face +Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India +M. Madhu, R. Amutha +SSN College of Engineering, Chennai, India"
+cb004e9706f12d1de83b88c209ac948b137caae0,Face Aging Effect Simulation Using Hidden Factor Analysis Joint Sparse Representation,"Face Aging Effect Simulation using Hidden Factor +Analysis Joint Sparse Representation +Hongyu Yang, Student Member, IEEE, Di Huang, Member, IEEE, Yunhong Wang, Member, IEEE, Heng Wang, +nd Yuanyan Tang, Fellow, IEEE"
+cb08f679f2cb29c7aa972d66fe9e9996c8dfae00,Action Understanding with Multiple Classes of Actors,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +Action Understanding +with Multiple Classes of Actors +Chenliang Xu, Member, IEEE, Caiming Xiong, and Jason J. Corso, Senior Member, IEEE"
+cb84229e005645e8623a866d3d7956c197f85e11,Disambiguating Visual Verbs,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MONTH 201X +Disambiguating Visual Verbs +Spandana Gella, Frank Keller, and Mirella Lapata"
+cbe859d151466315a050a6925d54a8d3dbad591f,Gaze shifts as dynamical random sampling,"GAZE SHIFTS AS DYNAMICAL RANDOM SAMPLING +Giuseppe Boccignone +Mario Ferraro +Dipartimento di Scienze dell’Informazione +Universit´a di Milano +Via Comelico 39/41 +0135 Milano, Italy"
+f842b13bd494be1bbc1161dc6df244340b28a47f,An Improved Face Recognition Technique Based on Modular Multi-directional Two-dimensional Principle Component Analysis Approach,"An Improved Face Recognition Technique Based +on Modular Multi-directional Two-dimensional +Principle Component Analysis Approach +Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China +Xiaoqing Dong +Department of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, 521041, China +Email: +Hongcai Chen +Email:"
+f8c94afd478821681a1565d463fc305337b02779,Design and Implementation of Robust Face Recognition System for Uncontrolled Pose and Illumination Changes,"www.semargroup.org, +www.ijsetr.com +ISSN 2319-8885 +Vol.03,Issue.25 +September-2014, +Pages:5079-5085 +Design and Implementation of Robust Face Recognition System for +Uncontrolled Pose and Illumination Changes +VIJAYA BHASKAR TALARI +, VENKATESWARLU PRATTI +PG Scholar, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email: +Assistant Professor, Dept of ECE, LITAM, JNTUK, Andhrapradesh, India, Email:"
+f8ec92f6d009b588ddfbb47a518dd5e73855547d,Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition,"J Inf Process Syst, Vol.10, No.3, pp.443~458, September 2014 +ISSN 1976-913X (Print) +ISSN 2092-805X (Electronic) +Extreme Learning Machine Ensemble Using +Bagging for Facial Expression Recognition +Deepak Ghimire* and Joonwhoan Lee*"
+f8ed5f2c71e1a647a82677df24e70cc46d2f12a8,Artificial Neural Network Design and Parameter Optimization for Facial Expressions Recognition,"International Journal of Scientific & Engineering Research, Volume 2, Issue 12, December-2011 1 +ISSN 2229-5518 +Artificial Neural Network Design and Parameter +Optimization for Facial Expressions Recognition +Ammar A. Alzaydi"
+f8f872044be2918de442ba26a30336d80d200c42,Facial Emotion Recognition Techniques : A Survey,"IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 03, 2015 | ISSN (online): 2321-0613 +Facial Emotion Recognition Techniques: A Survey +Namita Rathore1 Rohit Miri2 +,2Department of Computer Science and Engineering +,2Dr C V Raman Institute of Science and Technology +defense +systems, +surveillance"
+f8a5bc2bd26790d474a1f6cc246b2ba0bcde9464,"KDEF-PT: Valence, Emotional Intensity, Familiarity and Attractiveness Ratings of Angry, Neutral, and Happy Faces","ORIGINAL RESEARCH +published: 19 December 2017 +doi: 10.3389/fpsyg.2017.02181 +KDEF-PT: Valence, Emotional +Intensity, Familiarity and +Attractiveness Ratings of Angry, +Neutral, and Happy Faces +Margarida V. Garrido* and Marília Prada +Instituto Universitário de Lisboa (ISCTE-IUL), CIS – IUL, Lisboa, Portugal +The Karolinska Directed Emotional Faces (KDEF) +is one of the most widely used +human facial expressions database. Almost a decade after the original validation study +(Goeleven et al., 2008), we present subjective rating norms for a sub-set of 210 pictures +which depict 70 models (half female) each displaying an angry, happy and neutral facial +expressions. Our main goals were to provide an additional and updated validation +to this database, using a sample from a different nationality (N = 155 Portuguese +students, M = 23.73 years old, SD = 7.24) and to extend the number of subjective +dimensions used to evaluate each image. Specifically, participants reported emotional +labeling (forced-choice task) and evaluated the emotional intensity and valence of the +expression, as well as the attractiveness and familiarity of the model (7-points rating"
+ce85d953086294d989c09ae5c41af795d098d5b2,Bilinear Analysis for Kernel Selection and Nonlinear Feature Extraction,"This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. +Bilinear Analysis for Kernel Selection and +Nonlinear Feature Extraction +Shu Yang, Shuicheng Yan, Member, IEEE, Chao Zhang, and Xiaoou Tang, Senior Member, IEEE"
+ce9a61bcba6decba72f91497085807bface02daf,Eigen-harmonics faces: face recognition under generic lighting,"Eigen-Harmonics Faces: Face Recognition under Generic Lighting +Laiyun Qing1,2, Shiguang Shan2, Wen Gao1,2 +Graduate School, CAS, Beijing, China, 100080 +ICT-ISVISION Joint R&D Laboratory for Face Recognition, CAS, Beijing, China, 100080 +Emails: {lyqing, sgshan, wgao}jdl.ac.cn"
+cef6cffd7ad15e7fa5632269ef154d32eaf057af,Emotion Detection Through Facial Feature Recognition,"Emotion Detection Through Facial Feature +Recognition +James Pao +through consistent"
+cebfafea92ed51b74a8d27c730efdacd65572c40,Matching 2.5D face scans to 3D models,"JANUARY 2006 +Matching 2.5D Face Scans to 3D Models +Xiaoguang Lu, Student Member, IEEE, Anil K. Jain, Fellow, IEEE, and +Dirk Colbry, Student Member, IEEE"
+ce54e891e956d5b502a834ad131616786897dc91,Face Recognition Using LTP Algorithm,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +Face Recognition Using LTP Algorithm +Richa Sharma1, Rohit Arora2 +ECE & KUK +Assistant Professor (ECE) +Volume 4 Issue 12, December 2015 +Licensed Under Creative Commons Attribution CC BY +www.ijsr.net + Variation in luminance: Third main challenge that +ppears in face recognition process is the luminance. Due +to variation in the luminance the representation get varied +from the original image. The person with same poses +expression and seen from same viewpoint can be appear +very different due to variation in lightening."
+ce6f459462ea9419ca5adcc549d1d10e616c0213,A Survey on Face Identification Methodologies in Videos,"A Survey on Face Identification Methodologies in +Videos +Student, M.Tech CSE ,Department of Computer Science +& Engineering ,G.H.Raisoni College of Engineering & +Technology for Women, Nagpur, Maharashtra, India. +Deepti Yadav"
+ce933821661a0139a329e6c8243e335bfa1022b1,Temporal Modeling Approaches for Large-scale Youtube-8M Video Understanding,"Temporal Modeling Approaches for Large-scale +Youtube-8M Video Understanding +Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xiang Long, Yandong Li, Zhichao Li, Jie Zhou, Shilei Wen +Baidu IDL & Tsinghua University"
+e0dedb6fc4d370f4399bf7d67e234dc44deb4333,Supplementary Material: Multi-Task Video Captioning with Video and Entailment Generation,"Supplementary Material: Multi-Task Video Captioning with Video and +Entailment Generation +Ramakanth Pasunuru and Mohit Bansal +UNC Chapel Hill +{ram, +Experimental Setup +.1 Datasets +.1.1 Video Captioning Datasets +YouTube2Text or MSVD The Microsoft Re- +search Video Description Corpus (MSVD) or +YouTube2Text (Chen and Dolan, 2011) is used +for our primary video captioning experiments. It +has 1970 YouTube videos in the wild with many +diverse captions in multiple languages for each +video. Caption annotations to these videos are +ollected using Amazon Mechanical Turk (AMT). +All our experiments use only English captions. On +verage, each video has 40 captions, and the over- +ll dataset has about 80, 000 unique video-caption +pairs. The average clip duration is roughly 10 sec-"
+e096b11b3988441c0995c13742ad188a80f2b461,DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers,"Noname manuscript No. +(will be inserted by the editor) +DeepProposals: Hunting Objects and Actions by Cascading +Deep Convolutional Layers +Amir Ghodrati · Ali Diba · Marco Pedersoli · Tinne Tuytelaars · Luc +Van Gool +Received: date / Accepted: date"
+e0939b4518a5ad649ba04194f74f3413c793f28e,Mind-reading machines : automated inference of complex mental states Rana,"Technical Report +UCAM-CL-TR-636 +ISSN 1476-2986 +Number 636 +Computer Laboratory +Mind-reading machines: +utomated inference +of complex mental states +Rana Ayman el Kaliouby +July 2005 +5 JJ Thomson Avenue +Cambridge CB3 0FD +United Kingdom +phone +44 1223 763500 +http://www.cl.cam.ac.uk/"
+e0ed0e2d189ff73701ec72e167d44df4eb6e864d,Recognition of static and dynamic facial expressions: a study review,"Recognition of static and dynamic facial expressions: a study review +Estudos de Psicologia, 18(1), janeiro-março/2013, 125-130 +Nelson Torro Alves +Federal University of Paraíba"
+e065a2cb4534492ccf46d0afc81b9ad8b420c5ec,SFace: An Efficient Network for Face Detection in Large Scale Variations,"SFace: An Efficient Network for Face Detection +in Large Scale Variations +Jianfeng Wang12∗, Ye Yuan 1†, Boxun Li†, Gang Yu† and Sun Jian† +College of Software, Beihang University∗ +Megvii Inc. (Face++)†"
+e013c650c7c6b480a1b692bedb663947cd9d260f,Robust Image Analysis With Sparse Representation on Quantized Visual Features,"Robust Image Analysis With Sparse Representation +on Quantized Visual Features +Bing-Kun Bao, Guangyu Zhu, Jialie Shen, and Shuicheng Yan, Senior Member, IEEE"
+46a4551a6d53a3cd10474ef3945f546f45ef76ee,Robust and continuous estimation of driver gaze zone by dynamic analysis of multiple face videos,"014 IEEE Intelligent Vehicles Symposium (IV) +June 8-11, 2014. Dearborn, Michigan, USA +978-1-4799-3637-3/14/$31.00 ©2014 IEEE"
+4686bdcee01520ed6a769943f112b2471e436208,Fast search based on generalized similarity measure,"Utsumi et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:11 +DOI 10.1186/s41074-017-0024-5 +IPSJ Transactions on Computer +Vision and Applications +EXPRESS PAPER +Open Access +Fast search based on generalized +similarity measure +Yuzuko Utsumi*†, Tomoya Mizuno†, Masakazu Iwamura and Koichi Kise"
+4688787d064e59023a304f7c9af950d192ddd33e,Investigating the Discriminative Power of Keystroke Sound,"Investigating the Discriminative Power of Keystroke +Sound +Joseph Roth Student Member, IEEE,, Xiaoming Liu, Member, IEEE, Arun Ross, Senior Member, IEEE, +nd Dimitris Metaxas, Member, IEEE"
+46f2611dc4a9302e0ac00a79456fa162461a8c80,Spatio-Temporal Channel Correlation Networks for Action Classification,"for Action Classification +Ali Diba1,4,(cid:63), Mohsen Fayyaz3,(cid:63), Vivek Sharma2, M.Mahdi Arzani4, Rahman +Yousefzadeh4, Juergen Gall3, Luc Van Gool1,4 +ESAT-PSI, KU Leuven, 2CV:HCI, KIT, Karlsruhe, 3University of Bonn, 4Sensifai"
+466a5add15bb5f91e0cfd29a55f5fb159a7980e5,Video Repeat Recognition and Mining by Visual Features,"Video Repeat Recognition and Mining by Visual +Features +Xianfeng Yang1and Qi Tian"
+46f3b113838e4680caa5fc8bda6e9ae0d35a038c,Automated Dermoscopy Image Analysis of Pigmented Skin Lesions,"Cancers 2010, 2, 262-273; doi:10.3390/cancers2020262 +OPEN ACCESS +ancers +ISSN 2072-6694 +www.mdpi.com/journal/cancers +Review +Automated Dermoscopy Image Analysis of Pigmented Skin +Lesions +Alfonso Baldi 1,2,*, Marco Quartulli 3, Raffaele Murace 2, Emanuele Dragonetti 2, +Mario Manganaro 3, Oscar Guerra 3 and Stefano Bizzi 3 +Department of Biochemistry, Section of Pathology, Second University of Naples, Via L. Armanni +5, 80138 Naples, Italy +Futura-onlus, Via Pordenone 2, 00182 Rome, Italy; E-Mail: +ACS, Advanced Computer Systems, Via della Bufalotta 378, 00139 Rome, Italy +* Author to whom correspondence should be addressed; E-Mail: +Fax: +390815569693. +Received: 23 February 2010; in revised form: 15 March 2010 / Accepted: 25 March 2010 / +Published: 26 March 2010"
+46538b0d841654a0934e4c75ccd659f6c5309b72,A Novel Approach to Generate Face Biometric Template Using Binary Discriminating Analysis,"Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.1, February 2014 +A NOVEL APPROACH TO GENERATE FACE +BIOMETRIC TEMPLATE USING BINARY +DISCRIMINATING ANALYSIS +Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2 +P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +Associate Professor, Department of Computer Engineering, +MCERC, Nashik (M.S.), India"
+469ee1b00f7bbfe17c698ccded6f48be398f2a44,SURVEy: Techniques for Aging Problems in Face Recognition,"MIT International Journal of Computer Science and Information Technology, Vol. 4, No. 2, August 2014, pp. 82-88 +ISSN 2230-7621©MIT Publications +SURVEy: Techniques for +Aging Problems in Face Recognition +Aashmi +Sakshi Sahni +Sakshi Saxena +Scholar, Computer Science Engg. Dept. +Moradabad Institute of Technology +Scholar, Computer Science Engg. Dept. +Moradabad Institute of Technology +Scholar, Computer Science Engg. Dept. +Moradabad Institute of Technology +Moradabad, U.P., INDIA +Moradabad, U.P., INDIA +Moradabad, U.P., INDIA +E-mail: +E-mail: +E-mail:"
+4682fee7dc045aea7177d7f3bfe344aabf153bd5,Tabula rasa: Model transfer for object category detection,"Tabula Rasa: Model Transfer for +Object Category Detection +Yusuf Aytar & Andrew Zisserman, +Department of Engineering Science +Oxford +(Presented by Elad Liebman)"
+2c8743089d9c7df04883405a31b5fbe494f175b4,Real-time full-body human gender recognition in (RGB)-D data,"Washington State Convention Center +Seattle, Washington, May 26-30, 2015 +978-1-4799-6922-7/15/$31.00 ©2015 IEEE"
+2c93c8da5dfe5c50119949881f90ac5a0a4f39fe,Advanced local motion patterns for macro and micro facial expression recognition,"Advanced local motion patterns for macro and micro facial +expression recognition +B. Allaerta,∗, IM. Bilascoa, C. Djerabaa +Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - +Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France"
+2c34bf897bad780e124d5539099405c28f3279ac,Robust Face Recognition via Block Sparse Bayesian Learning,"Robust Face Recognition via Block Sparse Bayesian Learning +Taiyong Li1,2, Zhilin Zhang3,4,∗ +School of Financial Information Engineering, Southwestern University of Finance and Economics, Chengdu 610074, +China +Institute of Chinese Payment System, Southwestern University of Finance and Economics, Chengdu 610074, China +Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407, +Samsung R&D Institute America - Dallas, 1301 East Lookout Drive, Richardson, TX 75082, USA"
+2cc4ae2e864321cdab13c90144d4810464b24275,Face Recognition Using Optimized 3D Information from Stereo Images,"Face Recognition Using Optimized 3D +Information from Stereo Images +Changhan Park1 and Joonki Paik2 +Advanced Technology R&D Center, Samsung Thales Co., Ltd., 2Graduate School of +Advanced Imaging Science, Multimedia, and Film Chung-Ang University, Seoul +Korea +. Introduction +Human biometric characteristics are unique, so it can not be easily duplicated [1]. Such +information +includes; facial, hands, torso, fingerprints, etc. Potential applications, +economical efficiency, and user convenience make the face detection and recognition +technique an important commodity compared to other biometric features [2], [3]. It can also +use a low-cost personal computer (PC) camera instead of expensive equipments, and require +minimal user interface. Recently, extensive research using 3D face data has been carried out +in order to overcome the limits of 2D face detection and feature extraction [2], which +includes PCA [3], neural networks (NN) [4], support vector machines (SVM) [5], hidden +markov models (HMM) [6], and linear discriminant analysis (LDA) [7]. Among them, PCA +nd LDA methods with self-learning method are most widely used [3]. The frontal face +image database provides fairly high recognition rate. However, if the view data of facial +rotation, illumination and pose change is not acquired, the correct recognition rate"
+2cac8ab4088e2bdd32dcb276b86459427355085c,A Face-to-Face Neural Conversation Model,"A Face-to-Face Neural Conversation Model +Hang Chu1 +Daiqing Li1 Sanja Fidler1 +University of Toronto 2Vector Institute +{chuhang1122, daiqing,"
+2c2786ea6386f2d611fc9dbf209362699b104f83,1)local Feature Representations for Facial Expression Recognition Based on Differences of Gray Color Values of Neighboring Pixels,1)LOCAL FEATURE REPRESENTATIONS FOR FACIAL EXPRESSION RECOGNITION BASED ON DIFFERENCES OF GRAY COLOR VALUES OF NEIGHBORING PIXELS Mohammad Shahidul Islam A Dissertation Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy (Computer Science and Information Systems) School of Applied Statistics National Institute of Development Administration 2013
+2c92839418a64728438c351a42f6dc5ad0c6e686,Pose-Aware Face Recognition in the Wild,"Pose-Aware Face Recognition in the Wild +Iacopo Masi1 +Prem Natarajan2 +USC Institute for Robotics and Intelligent Systems (IRIS), Los Angeles, CA +G´erard Medioni1 +Stephen Rawls2 +USC Information Sciences Institute (ISI), Marina Del Rey, CA"
+2c848cc514293414d916c0e5931baf1e8583eabc,An automatic facial expression recognition system evaluated by different classifiers,"An automatic facial expression recognition system +evaluated by different classifiers +Caroline Silva∗, Andrews Sobral∗ and Raissa Tavares Vieira† +Programa de P´os-Graduac¸˜ao em Mecatrˆonica +Universidade Federal da Bahia, +Email: +Email: +Department of Electrical Engineering - EESC/USP +Email:"
+2c883977e4292806739041cf8409b2f6df171aee,Are Haar-Like Rectangular Features for Biometric Recognition Reducible?,"Aalborg Universitet +Are Haar-like Rectangular Features for Biometric Recognition Reducible? +Nasrollahi, Kamal; Moeslund, Thomas B. +Published in: +Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications +DOI (link to publication from Publisher): +0.1007/978-3-642-41827-3_42 +Publication date: +Document Version +Early version, also known as pre-print +Link to publication from Aalborg University +Citation for published version (APA): +Nasrollahi, K., & Moeslund, T. B. (2013). Are Haar-like Rectangular Features for Biometric Recognition +Reducible? In J. Ruiz-Shulcloper, & G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis, +Computer Vision, and Applications (Vol. 8259, pp. 334-341). Springer Berlin Heidelberg: Springer Publishing +Company. Lecture Notes in Computer Science, DOI: 10.1007/978-3-642-41827-3_42 +General rights +Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +? Users may download and print one copy of any publication from the public portal for the purpose of private study or research."
+2cdd9e445e7259117b995516025fcfc02fa7eebb,Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition,"Title +Temporal Exemplar-based Bayesian Networks for facial +expression recognition +Author(s) +Shang, L; Chan, KP +Citation +Proceedings - 7Th International Conference On Machine +Learning And Applications, Icmla 2008, 2008, p. 16-22 +Issued Date +http://hdl.handle.net/10722/61208 +Rights +This work is licensed under a Creative Commons Attribution- +NonCommercial-NoDerivatives 4.0 International License.; +International Conference on Machine Learning and Applications +Proceedings. Copyright © IEEE.; ©2008 IEEE. Personal use of +this material is permitted. However, permission to +reprint/republish this material for advertising or promotional +purposes or for creating new collective works for resale or +redistribution to servers or lists, or to reuse any copyrighted +omponent of this work in other works must be obtained from"
+2c5d1e0719f3ad7f66e1763685ae536806f0c23b,AENet: Learning Deep Audio Features for Video Analysis,"AENet: Learning Deep Audio Features for Video +Analysis +Naoya Takahashi, Member, IEEE, Michael Gygli, Member, IEEE, and Luc Van Gool, Member, IEEE"
+2c8f24f859bbbc4193d4d83645ef467bcf25adc2,Classification in the Presence of Label Noise: A Survey,"Classification in the Presence of +Label Noise: a Survey +Benoît Frénay and Michel Verleysen, Member, IEEE"
+2cdde47c27a8ecd391cbb6b2dea64b73282c7491,Order-aware Convolutional Pooling for Video Based Action Recognition,"ORDER-AWARE CONVOLUTIONAL POOLING FOR VIDEO BASED ACTION RECOGNITION +Order-aware Convolutional Pooling for Video Based +Action Recognition +Peng Wang, Lingqiao Liu, Chunhua Shen, and Heng Tao Shen"
+2cf5f2091f9c2d9ab97086756c47cd11522a6ef3,MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation,"MPIIGaze: Real-World Dataset and Deep +Appearance-Based Gaze Estimation +Xucong Zhang, Yusuke Sugano∗, Mario Fritz, Andreas Bulling"
+2c4b96f6c1a520e75eb37c6ee8b844332bc0435c,Automatic Emotion Recognition in Robot-Children Interaction for ASD Treatment,"Automatic Emotion Recognition in Robot-Children Interaction for ASD +Treatment +Marco Leo, Marco Del Coco, Pierluigi Carcagn`ı, Cosimo Distante +ISASI UOS Lecce +Campus Universitario via Monteroni sn, 73100 Lecce Italy +Massimo Bernava, Giovanni Pioggia +ISASI UOS Messina +Giuseppe Palestra +Univerisita’ di Bari +Marine Institute, via Torre Bianca, 98164 Messina Italy +Via Orabona 4, 70126 Bari, Italy"
+790aa543151312aef3f7102d64ea699a1d15cb29,Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection,"Confidence-Weighted Local Expression Predictions for +Occlusion Handling in Expression Recognition and Action +Unit detection +Arnaud Dapogny1 +Kevin Bailly1 +Séverine Dubuisson1 +Sorbonne Universités, UPMC Univ Paris 06, CNRS, ISIR UMR 7222 +place Jussieu 75005 Paris"
+79f6a8f777a11fd626185ab549079236629431ac,Pradeep RavikumarDiscriminative Object Categorization with External Semantic Knowledge,"Copyright +Sung Ju Hwang"
+79b669abf65c2ca323098cf3f19fa7bdd837ff31,Efficient tensor based face recognition,"Deakin Research Online +This is the published version: +Rana, Santu, Liu, Wanquan, Lazarescu, Mihai and Venkatesh, Svetha 2008, Efficient tensor +ased face recognition, in ICPR 2008 : Proceedings of the 19th International Conference on +Pattern Recognition, IEEE, Washington, D. C., pp. 1-4. +Available from Deakin Research Online: +http://hdl.handle.net/10536/DRO/DU:30044585 +Reproduced with the kind permissions of the copyright owner. +Personal use of this material is permitted. However, permission to reprint/republish this +material for advertising or promotional purposes or for creating new collective works for +resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +in other works must be obtained from the IEEE. +Copyright : 2008, IEEE"
+79dd787b2877cf9ce08762d702589543bda373be,Face detection using SURF cascade,"Face Detection Using SURF Cascade +Jianguo Li, Tao Wang, Yimin Zhang +Intel Labs China"
+2d294c58b2afb529b26c49d3c92293431f5f98d0,Maximum Margin Projection Subspace Learning for Visual Data Analysis,"Maximum Margin Projection Subspace Learning +for Visual Data Analysis +Symeon Nikitidis, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE"
+2d05e768c64628c034db858b7154c6cbd580b2d5,FACIAL EXPRESSION RECOGNITION : Machine Learning using C #,"Neda Firoz et al, International Journal of Computer Science and Mobile Computing, Vol.4 Issue.8, August- 2015, pg. 431-446 +Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +IJCSMC, Vol. 4, Issue. 8, August 2015, pg.431 – 446 +RESEARCH ARTICLE +ISSN 2320–088X +FACIAL EXPRESSION RECOGNITION: +Machine Learning using C# +Author: Neda Firoz +Advisor: Dr. Prashant Ankur Jain"
+2d072cd43de8d17ce3198fae4469c498f97c6277,Random Cascaded-Regression Copse for Robust Facial Landmark Detection,"Random Cascaded-Regression Copse for Robust +Facial Landmark Detection +Zhen-Hua Feng, Student Member, IEEE, Patrik Huber, Josef Kittler, Life Member, IEEE, William Christmas, +nd Xiao-Jun Wu"
+2d71e0464a55ef2f424017ce91a6bcc6fd83f6c3,A Survey on:Image Process using Two-Stage Crawler,"International Journal of Computer Applications (0975 – 8887) +National Conference on Advancements in Computer & Information Technology (NCACIT-2016) +A Survey on: Image Process using Two- Stage Crawler +Nilesh Wani +Assistant Professor +SPPU, Pune +Department of Computer Engg +Department of Computer Engg +Department of Computer Engg +Dipak Bodade +BE Student +SPPU, Pune +Savita Gunjal +BE Student +SPPU, Pune +Varsha Mahadik +BE Student +Department of Computer Engg +SPPU, Pune +dditional"
+2d8d089d368f2982748fde93a959cf5944873673,Visually Guided Spatial Relation Extraction from Text,"Proceedings of NAACL-HLT 2018, pages 788–794 +New Orleans, Louisiana, June 1 - 6, 2018. c(cid:13)2018 Association for Computational Linguistics"
+2df4d05119fe3fbf1f8112b3ad901c33728b498a,Multi-task Learning for Structured Output Prediction,"Facial landmark detection using structured output deep +neural networks +Soufiane Belharbi ∗1, Cl´ement Chatelain∗1, Romain H´erault∗1, and S´ebastien +Adam∗2 +LITIS EA 4108, INSA de Rouen, Saint ´Etienne du Rouvray 76800, France +LITIS EA 4108, UFR des Sciences, Universit´e de Rouen, France. +September 24, 2015"
+4188bd3ef976ea0dec24a2512b44d7673fd4ad26,Nonlinear Non-Negative Component Analysis Algorithms,"Nonlinear Non-Negative Component +Analysis Algorithms +Stefanos Zafeiriou, Member, IEEE, and Maria Petrou, Senior Member, IEEE"
+41000c3a3344676513ef4bfcd392d14c7a9a7599,A Novel Approach For Generating Face Template Using Bda,"A NOVEL APPROACH FOR GENERATING FACE +TEMPLATE USING BDA +Shraddha S. Shinde1 and Prof. Anagha P. Khedkar2 +P.G. Student, Department of Computer Engineering, MCERC, Nashik (M.S.), India. +Associate Professor, Department of Computer Engineering, MCERC, Nashik (M.S.), +India"
+414715421e01e8c8b5743c5330e6d2553a08c16d,PoTion : Pose MoTion Representation for Action Recognition,"PoTion: Pose MoTion Representation for Action Recognition +Philippe Weinzaepfel2 +Inria∗ +NAVER LABS Europe +J´erˆome Revaud2 Cordelia Schmid1 +Vasileios Choutas1,2"
+41ab4939db641fa4d327071ae9bb0df4a612dc89,Interpreting Face Images by Fitting a Fast Illumination-Based 3D Active Appearance Model,"Interpreting Face Images by Fitting a Fast +Illumination-Based 3D Active Appearance +Model +Salvador E. Ayala-Raggi, Leopoldo Altamirano-Robles, Janeth Cruz-Enriquez +Instituto Nacional de Astrof´ısica, ´Optica y Electr´onica, +Luis Enrique Erro #1, 72840 Sta Ma. Tonantzintla. Pue., M´exico +Coordinaci´on de Ciencias Computacionales +{saraggi, robles,"
+41a6196f88beced105d8bc48dd54d5494cc156fb,Using facial images for the diagnosis of genetic syndromes: A survey,"015 International Conference on +Communications, Signal +Processing, and their Applications +(ICCSPA 2015) +Sharjah, United Arab Emirates +7-19 February 2015 +IEEE Catalog Number: +ISBN: +CFP1574T-POD +978-1-4799-6533-5"
+41de109bca9343691f1d5720df864cdbeeecd9d0,Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality,"Article +Facial Emotion Recognition: A Survey and +Real-World User Experiences in Mixed Reality +Dhwani Mehta, Mohammad Faridul Haque Siddiqui and Ahmad Y. Javaid * ID +EECS Department, The University of Toledo, Toledo, OH 43606, USA; (D.M.); +(M.F.H.S.) +* Correspondence: Tel.: +1-419-530-8260 +Received: 10 December 2017; Accepted: 26 January 2018; Published: 1 Febuary 2018"
+41d9a240b711ff76c5448d4bf4df840cc5dad5fc,Image Similarity Using Sparse Representation and Compression Distance,"JOURNAL DRAFT, VOL. X, NO. X, APR 2013 +Image Similarity Using Sparse Representation +nd Compression Distance +Tanaya Guha, Student Member, IEEE, and Rabab K Ward, Fellow, IEEE"
+419a6fca4c8d73a1e43003edc3f6b610174c41d2,A component based approach improves classification of discrete facial expressions over a holistic approach,"A Component Based Approach Improves Classification of Discrete +Facial Expressions Over a Holistic Approach +Kenny Hong, and Stephan K. Chalup, Senior Member, IEEE and Robert A.R. King"
+4180978dbcd09162d166f7449136cb0b320adf1f,Real-time head pose classification in uncontrolled environments with Spatio-Temporal Active Appearance Models,"Real-time head pose classification in uncontrolled environments +with Spatio-Temporal Active Appearance Models +Miguel Reyes∗ and Sergio Escalera+ and Petia Radeva + +Matematica Aplicada i Analisi ,Universitat de Barcelona, Barcelona, Spain ++ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain ++ Matematica Aplicada i Analisi, Universitat de Barcelona, Barcelona, Spain"
+413a184b584dc2b669fbe731ace1e48b22945443,Human Pose Co-Estimation and Applications,"Human Pose Co-Estimation and Applications +Marcin Eichner and Vittorio Ferrari"
+83b7578e2d9fa60d33d9336be334f6f2cc4f218f,The S-HOCK dataset: Analyzing crowds at the stadium,"The S-HOCK Dataset: Analyzing Crowds at the Stadium +Davide Conigliaro1,3, Paolo Rota2, Francesco Setti3, Chiara Bassetti3, Nicola Conci4, Nicu Sebe4, Marco Cristani1, +University of Verona. 2Vienna Institute of Technology. 3ISTC–CNR (Trento). 4University of Trento. +The topic of crowd modeling in computer vision usually assumes a sin- +gle generic typology of crowd, which is very simplistic. In this paper we +dopt a taxonomy that is widely accepted in sociology, focusing on a partic- +ular category, the spectator crowd, which is formed by people “interested in +watching something specific that they came to see” [1]. This can be found +t the stadiums, amphitheaters, cinema, etc. +In particular, we propose a +novel dataset, the Spectators Hockey (S-HOCK), which deals with 4 hockey +matches during an international tournament. +The dataset is unique in the crowd literature, and in general in the +surveillance realm. The dataset analyzes the crowd at different levels of +detail. At the highest level, it models the network of social connections +mong the public (who knows whom in the neighborhood), what is the sup- +ported team and what has been the best action in the match; all of this has +een obtained by interviews at the stadium. At a medium level, spectators +re localized, and information regarding the pose of their heads and body is +given. Finally, at a lowest level, a fine grained specification of all the actions"
+83ca4cca9b28ae58f461b5a192e08dffdc1c76f3,Detecting emotional stress from facial expressions for driving safety,"DETECTING EMOTIONAL STRESS FROM FACIAL EXPRESSIONS FOR DRIVING SAFETY +Hua Gao, Anil Y¨uce, Jean-Philippe Thiran +Signal Processing Laboratory (LTS5), +´Ecole Polytechnique F´ed´erale de Lausanne, Switzerland"
+831fbef657cc5e1bbf298ce6aad6b62f00a5b5d9,Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning,
+832e1d128059dd5ed5fa5a0b0f021a025903f9d5,Pairwise Conditional Random Forests for Facial Expression Recognition,"Pairwise Conditional Random Forests for Facial Expression Recognition +Arnaud Dapogny1 +Kevin Bailly1 +S´everine Dubuisson1 +Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, ISIR UMR 7222, 4 place Jussieu 75005 Paris"
+83e093a07efcf795db5e3aa3576531d61557dd0d,Facial Landmark Localization Using Robust Relationship Priors and Approximative Gibbs Sampling,"Facial Landmark Localization using Robust +Relationship Priors and Approximative Gibbs +Sampling +Karsten Vogt, Oliver M¨uller and J¨orn Ostermann +Institut f¨ur Informationsverarbeitung (tnt) +Leibniz Universit¨at Hannover, Germany +{vogt, omueller,"
+83b4899d2899dd6a8d956eda3c4b89f27f1cd308,A Robust Approach for Eye Localization Under Variable Illuminations,"-4244-1437-7/07/$20.00 ©2007 IEEE +I - 377 +ICIP 2007"
+8323af714efe9a3cadb31b309fcc2c36c8acba8f,Automatic Real-Time Facial Expression Recognition for Signed Language Translation,"Automatic Real-Time +Facial Expression Recognition +for Signed Language Translation +Jacob Richard Whitehill +A thesis submitted in partial fulfillment of the requirements for the de- +gree of Magister Scientiae in the Department of Computer Science, +University of the Western Cape. +May 2006"
+83fd5c23204147844a0528c21e645b757edd7af9,USDOT number localization and recognition from vehicle side-view NIR images,"USDOT Number Localization and Recognition From Vehicle Side-View NIR +Images +Orhan Bulan, Safwan Wshah, Ramesh Palghat, Vladimir Kozitsky and Aaron Burry +Palo Alto Research Center (PARC) +800 Phillips Rd. Webster NY 14580"
+8323529cf37f955fb3fc6674af6e708374006a28,Evaluation of Face Resolution for Expression Analysis,"Evaluation of Face Resolution for Expression Analysis +Ying-li Tian +IBM T. J. Watson Research Center, +PO Box 704, Yorktown Heights, NY 10598 +Email:"
+8395cf3535a6628c3bdc9b8d0171568d551f5ff0,Entropy Non-increasing Games for the Improvement of Dataflow Programming,"Entropy Non-increasing Games for the +Improvement of Dataflow Programming +Norbert B´atfai, Ren´at´o Besenczi, Gerg˝o Bogacsovics, +Fanny Monori∗ +February 16, 2017"
+834f5ab0cb374b13a6e19198d550e7a32901a4b2,Face Translation between Images and Videos using Identity-aware CycleGAN,"Face Translation between Images and Videos using Identity-aware CycleGAN +Zhiwu Huang†, Bernhard Kratzwald†, Danda Pani Paudel†, Jiqing Wu†, Luc Van Gool†‡ +Computer Vision Lab, ETH Zurich, Switzerland +VISICS, KU Leuven, Belgium +{zhiwu.huang, paudel, jwu,"
+8320dbdd3e4712cca813451cd94a909527652d63,Ear Biometrics,"EAR BIOMETRICS +Mark Burge +nd Wilhelm Burger +Johannes Kepler University(cid:1) Institute of Systems Science(cid:1) A(cid:2) +urge(cid:1)cast(cid:2)uni(cid:3)linz(cid:2)ac(cid:2)at"
+837e99301e00c2244023a8a48ff98d7b521c93ac,Local Feature Evaluation for a Constrained Local Model Framework,"Local Feature Evaluation for a Constrained +Local Model Framework +Maiya Hori(B), Shogo Kawai, Hiroki Yoshimura, and Yoshio Iwai +Graduate School of Engineering, Tottori University, +01 Minami 4-chome, Koyama-cho, Tottori 680-8550, Japan"
+834b15762f97b4da11a2d851840123dbeee51d33,Landmark-free smile intensity estimation,"Landmark-free smile intensity estimation +J´ulio C´esar Batista, Olga R. P. Bellon and Luciano Silva +IMAGO Research Group - Universidade Federal do Paran´a +Fig. 1. Overview of our method for smile intensity estimation"
+833f6ab858f26b848f0d747de502127406f06417,Learning weighted similarity measurements for unconstrained face recognition,"978-1-4244-5654-3/09/$26.00 ©2009 IEEE +ICIP 2009"
+8309e8f27f3fb6f2ac1b4343a4ad7db09fb8f0ff,Generic versus Salient Region-Based Partitioning for Local Appearance Face Recognition,"Generic versus Salient Region-based Partitioning +for Local Appearance Face Recognition +Hazım Kemal Ekenel and Rainer Stiefelhagen +Computer Science Depatment, Universit¨at Karlsruhe (TH) +Am Fasanengarten 5, Karlsruhe 76131, Germany +http://isl.ira.uka.de/cvhci"
+1b02b9413b730b96b91d16dcd61b2420aef97414,Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction avec un robot. (Audio-visual detection of emotional (laugh and smile) and attentional markers for elderly people in social interaction with a robot),"Détection de marqueurs affectifs et attentionnels de +personnes âgées en interaction avec un robot +Fan Yang +To cite this version: +Fan Yang. Détection de marqueurs affectifs et attentionnels de personnes âgées en interaction +vec un robot. +Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2015. Français. <NNT : +015SACLS081>. <tel-01280505> +HAL Id: tel-01280505 +https://tel.archives-ouvertes.fr/tel-01280505 +Submitted on 29 Feb 2016 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non,"
+1b55c4e804d1298cbbb9c507497177014a923d22,Incremental Class Representation Learning for Face Recognition,"Incremental Class Representation +Learning for Face Recognition +Degree’s Thesis +Audiovisual Systems Engineering +Author: +Advisors: Elisa Sayrol, Josep Ramon Morros +Eric Presas Valga +Universitat Politècnica de Catalunya (UPC) +016 - 2017"
+1b6394178dbc31d0867f0b44686d224a19d61cf4,EPML: Expanded Parts Based Metric Learning for Occlusion Robust Face Verification,"EPML: Expanded Parts based Metric Learning for +Occlusion Robust Face Verification +Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez +To cite this version: +Gaurav Sharma, Fr´ed´eric Jurie, Patrick P´erez. EPML: Expanded Parts based Metric Learning +for Occlusion Robust Face Verification. Asian Conference on Computer Vision, Nov 2014, -, +Singapore. pp.1-15, 2014. <hal-01070657> +HAL Id: hal-01070657 +https://hal.archives-ouvertes.fr/hal-01070657 +Submitted on 2 Oct 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+1bdef21f093c41df2682a07f05f3548717c7a3d1,Towards Automated Classification of Emotional Facial Expressions,"Towards Automated Classification of Emotional Facial Expressions +Lewis J. Baker Vanessa LoBue +Elizabeth Bonawitz & Patrick Shafto +Department of Mathematics and Computer Science, 2Department of Psychology +Rutgers University – Newark, 101 Warren St., Newark, NJ, 07102 USA"
+1b150248d856f95da8316da868532a4286b9d58e,Analyzing 3D Objects in Cluttered Images,"Analyzing 3D Objects in Cluttered Images +Mohsen Hejrati +UC Irvine +Deva Ramanan +UC Irvine"
+1be498d4bbc30c3bfd0029114c784bc2114d67c0,Age and Gender Estimation of Unfiltered Faces,"Age and Gender Estimation of Unfiltered Faces +Eran Eidinger, Roee Enbar, Tal Hassner*"
+1bbec7190ac3ba34ca91d28f145e356a11418b67,Explorer Action Recognition with Dynamic Image Networks,"Action Recognition with Dynamic Image Networks +Citation for published version: +Bilen, H, Fernando, B, Gravves, E & Vedaldi, A 2017, 'Action Recognition with Dynamic Image Networks' +IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2017.2769085 +Digital Object Identifier (DOI): +0.1109/TPAMI.2017.2769085 +Link: +Link to publication record in Edinburgh Research Explorer +Document Version: +Peer reviewed version +Published In: +IEEE Transactions on Pattern Analysis and Machine Intelligence +General rights +Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) +nd / or other copyright owners and it is a condition of accessing these publications that users recognise and +bide by the legal requirements associated with these rights. +Take down policy +The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer +ontent complies with UK legislation. If you believe that the public display of this file breaches copyright please +ontact providing details, and we will remove access to the work immediately and"
+1b3587363d37dd197b6adbcfa79d49b5486f27d8,Multimodal Grounding for Language Processing,"Multimodal Grounding for Language Processing +Lisa Beinborn◦∗3 +Teresa Botschen∗(cid:52) +Iryna Gurevych (cid:52) +Language Technology Lab, University of Duisburg-Essen +(cid:52) Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES +Department of Computer Science, Technische Universit¨at Darmstadt +www.ukp.tu-darmstadt.de"
+1b300a7858ab7870d36622a51b0549b1936572d4,Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2537215, IEEE +Transactions on Image Processing +Dynamic Facial Expression Recognition with Atlas +Construction and Sparse Representation +Yimo Guo, Guoying Zhao, Senior Member, IEEE, and Matti Pietik¨ainen, Fellow, IEEE"
+1b90507f02967ff143fce993a5abbfba173b1ed0,Gradient-DCT (G-DCT) descriptors,"Image Processing Theory, Tools and Applications +Gradient-DCT (G-DCT) Descriptors +Radovan Fusek, Eduard Sojka +Technical University of Ostrava, FEECS, Department of Computer Science, +7. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic +e-mail:"
+1b1173a3fb33f9dfaf8d8cc36eb0bf35e364913d,Registration Invariant Representations for Expression Detection,"DICTA +DICTA 2010 Submission #147. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +Registration Invariant Representations for Expression Detection +Anonymous DICTA submission +Paper ID 147"
+1b0a071450c419138432c033f722027ec88846ea,Looking at faces in a vehicle: A deep CNN based approach and evaluation,"Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016 +978-1-5090-1889-5/16/$31.00 ©2016 IEEE"
+1b3b01513f99d13973e631c87ffa43904cd8a821,HMM recognition of expressions in unrestrained video intervals,"HMM RECOGNITION OF EXPRESSIONS IN UNRESTRAINED VIDEO INTERVALS +José Luis Landabaso, Montse Pardàs, Antonio Bonafonte +Universitat Politècnica de Catalunya, Barcelona, Spain"
+1be18a701d5af2d8088db3e6aaa5b9b1d54b6fd3,Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees,"ENHANCEMENT OF FAST FACE DETECTION ALGORITHM BASED ON A CASCADE OF +DECISION TREES +V. V. Khryashchev a, *, A. A. Lebedev a, A. L. Priorov a +YSU, Yaroslavl, Russia - (vhr, +Commission II, WG II/5 +KEY WORDS: Face Detection, Cascade Algorithm, Decision Trees."
+1b70bbf7cdfc692873ce98dd3c0e191580a1b041,Enhancing Performance of Face Recognition System Using Independent Component Analysis,"International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 +Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072 +Enhancing Performance of Face Recognition +System Using Independent Component Analysis +Dipti Rane1, Prof. Uday Bhave2, and Asst Prof. Manimala Mahato3 +Student, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 1 +Guide, HOD, Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 2 +Co-Guide, Assistant Prof., Computer Science, Shah and Anchor Kuttchi Engineering College, Mumbai, India 3 +---------------------------------------------------------------------***--------------------------------------------------------------------- +ards, tokens and keys. Biometric based methods examine"
+1b71d3f30238cb6621021a95543cce3aab96a21b,Fine-grained Video Classification and Captioning,"Fine-grained Video Classification and Captioning +Farzaneh Mahdisoltani1,2, Guillaume Berger2, Waseem Gharbieh2 +David Fleet1, Roland Memisevic2 +{farzaneh, +University of Toronto1, Twenty Billion Neurons2"
+1b4f6f73c70353869026e5eec1dd903f9e26d43f,Robust Subjective Visual Property Prediction from Crowdsourced Pairwise Labels,"Robust Subjective Visual Property Prediction +from Crowdsourced Pairwise Labels +Yanwei Fu, Timothy M. Hospedales, Tao Xiang, Jiechao Xiong, +Shaogang Gong, Yizhou Wang, and Yuan Yao"
+1bc23c771688109bed9fd295ce82d7e702726327,Sparse Modeling of High - Dimensional Data for Learning and Vision,(cid:13) 2011 Jianchao Yang
+7711a7404f1f1ac3a0107203936e6332f50ac30c,Action Classification and Highlighting in Videos,"Action Classification and Highlighting in Videos +Atousa Torabi +Disney Research Pittsburgh +Leonid Sigal +Disney Research Pittsburgh"
+778c9f88839eb26129427e1b8633caa4bd4d275e,Pose pooling kernels for sub-category recognition,"Pose Pooling Kernels for Sub-category Recognition +Ning Zhang +ICSI & UC Berkeley +Ryan Farrell +ICSI & UC Berkeley +Trever Darrell +ICSI & UC Berkeley"
+7789a5d87884f8bafec8a82085292e87d4e2866f,A Unified Tensor-based Active Appearance Face Model,"A Unified Tensor-based Active Appearance Face +Model +Zhen-Hua Feng, Member, IEEE, Josef Kittler, Life Member, IEEE, William Christmas, and Xiao-Jun Wu, +Member, IEEE"
+778bff335ae1b77fd7ec67404f71a1446624331b,Hough Forest-Based Facial Expression Recognition from Video Sequences,"Hough Forest-based Facial Expression Recognition from +Video Sequences +Gabriele Fanelli, Angela Yao, Pierre-Luc Noel, Juergen Gall, and Luc Van Gool +BIWI, ETH Zurich http://www.vision.ee.ethz.ch +VISICS, K.U. Leuven http://www.esat.kuleuven.be/psi/visics"
+7726a6ab26a1654d34ec04c0b7b3dd80c5f84e0d,Content-aware compression using saliency-driven image retargeting,"CONTENT-AWARE COMPRESSION USING SALIENCY-DRIVEN IMAGE RETARGETING +Fabio Z¨und*†, Yael Pritch*, Alexander Sorkine-Hornung*, Stefan Mangold*, Thomas Gross† +*Disney Research Zurich +ETH Zurich"
+7754b708d6258fb8279aa5667ce805e9f925dfd0,Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships,"Facial Action Unit Recognition by Exploiting +Their Dynamic and Semantic Relationships +Yan Tong, Student Member, IEEE, Wenhui Liao, Member, IEEE, and Qiang Ji, Senior Member, IEEE"
+77db171a523fc3d08c91cea94c9562f3edce56e1,Gauss-Laguerre wavelet textural feature fusion with geometrical information for facial expression identification,"Poursaberi et al. EURASIP Journal on Image and Video Processing 2012, 2012:17 +http://jivp.eurasipjournals.com/content/2012/1/17 +R ES EAR CH +Open Access +Gauss–Laguerre wavelet textural feature fusion +with geometrical information for facial expression +identification +Ahmad Poursaberi1*, Hossein Ahmadi Noubari2, Marina Gavrilova1 and Svetlana N Yanushkevich1"
+77037a22c9b8169930d74d2ce6f50f1a999c1221,Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation,"Robust Face Recognition With Kernelized +Locality-Sensitive Group Sparsity Representation +Shoubiao Tan, Xi Sun, Wentao Chan, Lei Qu, and Ling Shao"
+779ad364cae60ca57af593c83851360c0f52c7bf,Steerable Pyramids Feature Based Classification Using Fisher Linear Discriminant for Face Recognition,"Steerable Pyramids Feature Based Classification Using Fisher +Linear Discriminant for Face Recognition +EL AROUSSI MOHAMED1 +EL HASSOUNI MOHAMMED12 +GHOUZALI SANAA1 +RZIZA MOHAMMED1 +ABOUTAJDINE DRISS1 +GSCM-LRIT, Faculty of Sciences, Mohammed V University-Agdal, Rabat, Morocco +DESTEC, FLSHR Mohammed V University-Agdal, Rabat, Morocco +PO.Box 1014, Rabat, Morocco"
+77d31d2ec25df44781d999d6ff980183093fb3de,The Multiverse Loss for Robust Transfer Learning,"The Multiverse Loss for Robust Transfer Learning +Supplementary +. Omitted proofs +for which the joint loss: +m(cid:88) +L(F r, br, D, y) +J(F 1, b1...F m, bm, D, y) = +is bounded by: +mL∗(D, y) ≤ J(F 1, b1...F m, bm, D, y) +m−1(cid:88) +≤ mL∗(D, y) + +Alλd−j+1 +where [A1 . . . Am−1] are bounded parameters. +We provide proofs that were omitted from the paper for +lack of space. We follow the same theorem numbering as in +the paper. +Lemma 1. The minimizers F ∗, b∗ of L are not unique, and +it holds that for any vector v ∈ Rc and scalar s, the solu- +tions F ∗ + v1(cid:62) +Proof. denoting V = v1(cid:62)"
+486840f4f524e97f692a7f6b42cd19019ee71533,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,"DeepVisage: Making face recognition simple yet with powerful generalization +skills +Abul Hasnat1, Julien Bohn´e2, Jonathan Milgram2, St´ephane Gentric2, and Liming Chen1 +Laboratoire LIRIS, ´Ecole centrale de Lyon, 69134 Ecully, France. +Safran Identity & Security, 92130 Issy-les-Moulineaux, France. +{julien.bohne, stephane.gentric,"
+48186494fc7c0cc664edec16ce582b3fcb5249c0,P-CNN: Pose-Based CNN Features for Action Recognition,"P-CNN: Pose-based CNN Features for Action Recognition +Guilhem Ch´eron∗ † +Ivan Laptev∗ +INRIA +Cordelia Schmid†"
+48499deeaa1e31ac22c901d115b8b9867f89f952,Interim Report of Final Year Project HKU-Face : A Large Scale Dataset for Deep Face Recognition,"Interim Report of Final Year Project +HKU-Face: A Large Scale Dataset for +Deep Face Recognition +Haicheng Wang +035140108 +Haoyu Li +035141841 +COMP4801 Final Year Project +Project Code: 17007"
+486a82f50835ea888fbc5c6babf3cf8e8b9807bc,Face Search at Scale: 80 Million Gallery,"MSU TECHNICAL REPORT MSU-CSE-15-11, JULY 24, 2015 +Face Search at Scale: 80 Million Gallery +Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE"
+4850af6b54391fc33c8028a0b7fafe05855a96ff,Discovering useful parts for pose estimation in sparsely annotated datasets,"Discovering Useful Parts for Pose Estimation in Sparsely Annotated Datasets +Mikhail Breslav1, Tyson L. Hedrick2, Stan Sclaroff1, and Margrit Betke1 +Department of Computer Science and 2Department of Biology +Boston University and 2University of North Carolina"
+48a5b6ee60475b18411a910c6084b3a32147b8cd,Pedestrian Attribute Recognition with Part-based CNN and Combined Feature Representations,"Pedestrian attribute recognition with part-based CNN +nd combined feature representations +Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla +Baskurt +To cite this version: +Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, Atilla Baskurt. Pedestrian attribute +recognition with part-based CNN and combined feature representations. VISAPP2018, Jan 2018, +Funchal, Portugal. <hal-01625470> +HAL Id: hal-01625470 +https://hal.archives-ouvertes.fr/hal-01625470 +Submitted on 21 Jun 2018 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destinée au dépôt et à la diffusion de documents +scientifiques de niveau recherche, publiés ou non,"
+487df616e981557c8e1201829a1d0ec1ecb7d275,Acoustic Echo Cancellation Using a Vector-Space-Based Adaptive Filtering Algorithm,"Acoustic Echo Cancellation Using a Vector-Space-Based +Adaptive Filtering Algorithm +Yu Tsao, Member IEEE, Shih-Hau Fang*, Senior Member IEEE, and Yao Shiao"
+48cfc5789c246c6ad88ff841701204fc9d6577ed,Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis,"J Inf Process Syst, Vol.12, No.3, pp.392~409, September 2016 +ISSN 1976-913X (Print) +ISSN 2092-805X (Electronic) +Age Invariant Face Recognition Based on DCT +Feature Extraction and Kernel Fisher Analysis +Leila Boussaad*, Mohamed Benmohammed**, and Redha Benzid***"
+70f189798c8b9f2b31c8b5566a5cf3107050b349,The challenge of face recognition from digital point-and-shoot cameras,"The Challenge of Face Recognition from Digital Point-and-Shoot Cameras +J. Ross Beveridge∗ +Geof H. Givens§ +W. Todd Scruggs¶ +P. Jonathon Phillips† +Yui Man Lui∗ +Kevin W. Bowyer(cid:107) +David Bolme‡ +Mohammad Nayeem Teli∗ +Patrick J. Flynn(cid:107) +Bruce A. Draper∗, +Hao Zhang∗ +Su Cheng†"
+70109c670471db2e0ede3842cbb58ba6be804561,Zero-Shot Visual Recognition via Bidirectional Latent Embedding,"Noname manuscript No. +(will be inserted by the editor) +Zero-Shot Visual Recognition via Bidirectional Latent Embedding +Qian Wang · Ke Chen +Received: date / Accepted: date"
+706236308e1c8d8b8ba7749869c6b9c25fa9f957,Crowdsourced data collection of facial responses,"Crowdsourced Data Collection of Facial Responses +Daniel McDuff +MIT Media Lab +Cambridge +02139, USA +Rosalind Picard +MIT Media Lab +Cambridge +02139, USA +Rana el Kaliouby +MIT Media Lab +Cambridge +02139, USA"
+706b9767a444de4fe153b2f3bff29df7674c3161,Fast Metric Learning For Deep Neural Networks,"Fast Metric Learning For Deep Neural Networks +Henry Gouk1, Bernhard Pfahringer1, and Michael Cree2 +Department of Computer Science, University of Waikato, Hamilton, New Zealand +School of Engineering, University of Waikato, Hamilton, New Zealand"
+70569810e46f476515fce80a602a210f8d9a2b95,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,"Apparent Age Estimation from Face Images Combining General and +Children-Specialized Deep Learning Models +Grigory Antipov1 +, Moez Baccouche1, Sid-Ahmed Berrani1, Jean-Luc Dugelay2 +Orange Labs – France Telecom, 4 rue Clos Courtel, 35512 Cesson-S´evign´e, France +Eurecom, 450 route des Chappes, 06410 Biot, France"
+70e79d7b64f5540d309465620b0dab19d9520df1,Facial Expression Recognition System Using Extreme Learning Machine,"International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 +ISSN 2229-5518 +Facial Expression Recognition System +Using Extreme Learning Machine +Firoz Mahmud, Dr. Md. Al Mamun"
+7003d903d5e88351d649b90d378f3fc5f211282b,Facial Expression Recognition using Gabor Wavelet,"International Journal of Computer Applications (0975 – 8887) +Volume 68– No.23, April 2013 +Facial Expression Recognition using Gabor Wavelet +Mahesh Kumbhar +ENTC SVERI’S COE (Poly), +Pandharpur, +Solapur, India +Manasi Patil +ENTC SVERI’S COE, +Pandharpur, +Solapur, India +Ashish Jadhav +ENTC SVERI’S COE (Poly), +Pandharpur, +Solapur, India"
+70bf1769d2d5737fc82de72c24adbb7882d2effd,Face Detection in Intelligent Ambiences with Colored Illumination,"Face detection in intelligent ambiences with colored illumination +Christina Katsimerou, Judith A. Redi, Ingrid Heynderickx +Department of Intelligent Systems +TU Delft +Delft, The Netherlands"
+1e058b3af90d475bf53b3f977bab6f4d9269e6e8,Manifold Relevance Determination,"Manifold Relevance Determination +Andreas C. Damianou +Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK +Carl Henrik Ek +KTH – Royal Institute of Technology, CVAP Lab, Stockholm, Sweden +Michalis K. Titsias +Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK +Neil D. Lawrence +Dept. of Computer Science & Sheffield Institute for Translational Neuroscience, University of Sheffield, UK"
+1e799047e294267087ec1e2c385fac67074ee5c8,Automatic Classification of Single Facial Images,"IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 12, DECEMBER 1999 +Short Papers___________________________________________________________________________________________________ +Automatic Classification of +Single Facial Images +Michael J. Lyons, Julien Budynek, and +Shigeru Akamatsu"
+1eb4ea011a3122dc7ef3447e10c1dad5b69b0642,Contextual Visual Recognition from Images and Videos,"Contextual Visual Recognition from Images and Videos +Georgia Gkioxari +Jitendra Malik +Electrical Engineering and Computer Sciences +University of California at Berkeley +Technical Report No. UCB/EECS-2016-132 +http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-132.html +July 19, 2016"
+1e7ae86a78a9b4860aa720fb0fd0bdc199b092c3,A Brief Review of Facial Emotion Recognition Based on Visual Information,"Article +A Brief Review of Facial Emotion Recognition Based +on Visual Information +Byoung Chul Ko ID +Department of Computer Engineering, Keimyung University, Daegu 42601, Korea; +Tel.: +82-10-3559-4564 +Received: 6 December 2017; Accepted: 25 January 2018; Published: 30 January 2018"
+1e8eee51fd3bf7a9570d6ee6aa9a09454254689d,Face Search at Scale,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE +Transactions on Pattern Analysis and Machine Intelligence +Face Search at Scale +Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE"
+1eec03527703114d15e98ef9e55bee5d6eeba736,Automatic identification of persons in TV series,"UNIVERSITÄT KARLSRUHE (TH) +FAKULTÄT FÜR INFORMATIK +INTERACTIVE SYSTEMS LABS +Prof. Dr. A. Waibel +DIPLOMA THESIS +Automatic identification +of persons in TV series +SUBMITTED BY +Mika Fischer +MAY 2008 +ADVISORS +M.Sc. Hazım Kemal Ekenel +Dr.-Ing. Rainer Stiefelhagen"
+1e07500b00fcd0f65cf30a11f9023f74fe8ce65c,Whole space subclass discriminant analysis for face recognition,"WHOLE SPACE SUBCLASS DISCRIMINANT ANALYSIS FOR FACE RECOGNITION +Bappaditya Mandal, Liyuan Li, Vijay Chandrasekhar and Joo Hwee Lim +Email: {bmandal, lyli, vijay, +Institute for Infocomm Research, A*STAR, Singapore"
+1ef1f33c48bc159881c5c8536cbbd533d31b0e9a,Identity-based Adversarial Training of Deep CNNs for Facial Action Unit Recognition,"Z. ZHANG ET AL.: ADVERSARIAL TRAINING FOR ACTION UNIT RECOGNITION +Identity-based Adversarial Training of Deep +CNNs for Facial Action Unit Recognition +Zheng Zhang +Shuangfei Zhai +Lijun Yin +Department of Computer Science +State University of New York at +Binghamton +NY, USA."
+1e8394cc9fe7c2392aa36fb4878faf7e78bbf2de,Zero-Shot Object Recognition System Based on Topic Model,"TO APPEAR IN IEEE THMS +Zero-Shot Object Recognition System +ased on Topic Model +Wai Lam Hoo and Chee Seng Chan"
+1ecb56e7c06a380b3ce582af3a629f6ef0104457,"A New Way of Discovery of Belief, Desire and Intention in the BDI Agent-Based Software Modeling","List of Contents Vol.8 +Contents of +Journal of Advanced Computational +Intelligence and Intelligent Informatics +Volume 8 +Vol.8 No.1, January 2004 +Editorial: +o Special Issue on Selected Papers from Humanoid, +Papers: +o Dynamic Color Object Recognition Using Fuzzy +Nano-technology, Information Technology, +Communication and Control, Environment, and +Management (HNICEM’03). +Elmer P. Dadios +Papers: +o A New Way of Discovery of Belief, Desire and +Intention in the BDI Agent-Based Software +Modeling . +Chang-Hyun Jo +o Integration of Distributed Robotic Systems"
+1e64b2d2f0a8a608d0d9d913c4baee6973995952,Dominant and Complementary Multi-Emotional Facial Expression Recognition Using C-Support Vector Classification,"DOMINANT AND +COMPLEMENTARY MULTI- +EMOTIONAL FACIAL +EXPRESSION RECOGNITION +USING C-SUPPORT VECTOR +CLASSIFICATION +Christer Loob, Pejman Rasti, Iiris Lusi, Julio C. S. Jacques +Junior, Xavier Baro, Sergio Escalera, Tomasz Sapinski, +Dorota Kaminska and Gholamreza Anbarjafari"
+1e21b925b65303ef0299af65e018ec1e1b9b8d60,Unsupervised Cross-Domain Image Generation,"Under review as a conference paper at ICLR 2017 +UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION +Yaniv Taigman, Adam Polyak & Lior Wolf +Facebook AI Research +Tel-Aviv, Israel"
+1ee27c66fabde8ffe90bd2f4ccee5835f8dedbb9,9 Entropy Regularization,"Entropy Regularization +Yves Grandvalet +Yoshua Bengio +The problem of semi-supervised induction consists in learning a decision rule from +labeled and unlabeled data. This task can be undertaken by discriminative methods, +provided that learning criteria are adapted consequently. In this chapter, we moti- +vate the use of entropy regularization as a means to bene(cid:12)t from unlabeled data in +the framework of maximum a posteriori estimation. The learning criterion is derived +from clearly stated assumptions and can be applied to any smoothly parametrized +model of posterior probabilities. The regularization scheme favors low density sep- +ration, without any modeling of the density of input features. The contribution +of unlabeled data to the learning criterion induces local optima, but this problem +an be alleviated by deterministic annealing. For well-behaved models of posterior +probabilities, deterministic annealing EM provides a decomposition of the learning +problem in a series of concave subproblems. Other approaches to the semi-supervised +problem are shown to be close relatives or limiting cases of entropy regularization. +A series of experiments illustrates the good behavior of the algorithm in terms of +performance and robustness with respect to the violation of the postulated low den- +sity separation assumption. The minimum entropy solution bene(cid:12)ts from unlabeled +data and is able to challenge mixture models and manifold learning in a number of"
+1ee3b4ba04e54bfbacba94d54bf8d05fd202931d,Celebrity Face Recognition using Deep Learning,"Indonesian Journal of Electrical Engineering and Computer Science +Vol. 12, No. 2, November 2018, pp. 476~481 +ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i2.pp476-481 + 476 +Celebrity Face Recognition using Deep Learning +Nur Ateqah Binti Mat Kasim1, Nur Hidayah Binti Abd Rahman2, Zaidah Ibrahim3, +Nur Nabilah Abu Mangshor4 +,2,3Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA (UiTM), +Shah Alam, Selangor, Malaysia +Campus Jasin, Melaka, Malaysia +Article Info +Article history: +Received May 29, 2018 +Revised Jul 30, 2018 +Accepted Aug 3, 2018 +Keywords: +AlexNet +Convolutional neural network +Deep learning"
+1e41a3fdaac9f306c0ef0a978ae050d884d77d2a,Robust Object Recognition with Cortex-Like Mechanisms,"Robust Object Recognition with +Cortex-Like Mechanisms +Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and +Tomaso Poggio, Member, IEEE"
+1e1e66783f51a206509b0a427e68b3f6e40a27c8,Semi-supervised Estimation of Perceived Age from Face Images,"SEMI-SUPERVISED ESTIMATION OF PERCEIVED AGE +FROM FACE IMAGES +VALWAY Technology Center, NEC Soft, Ltd., Tokyo, Japan +Kazuya Ueki +Masashi Sugiyama +Keywords:"
+1efaa128378f988965841eb3f49d1319a102dc36,Hierarchical binary CNNs for landmark localization with limited resources,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 +Hierarchical binary CNNs for landmark +localization with limited resources +Adrian Bulat and Georgios Tzimiropoulos"
+8451bf3dd6bcd946be14b1a75af8bbb65a42d4b2,Consensual and Privacy-Preserving Sharing of Multi-Subject and Interdependent Data,"Consensual and Privacy-Preserving Sharing of +Multi-Subject and Interdependent Data +Alexandra-Mihaela Olteanu +EPFL, UNIL–HEC Lausanne +K´evin Huguenin +UNIL–HEC Lausanne +Italo Dacosta +Jean-Pierre Hubaux"
+84e4b7469f9c4b6c9e73733fa28788730fd30379,Projective complex matrix factorization for facial expression recognition,"Duong et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:10 +DOI 10.1186/s13634-017-0521-9 +EURASIP Journal on Advances +in Signal Processing +R ES EAR CH +Projective complex matrix factorization for +facial expression recognition +Viet-Hang Duong1, Yuan-Shan Lee1, Jian-Jiun Ding2, Bach-Tung Pham1, Manh-Quan Bui1, Pham The Bao2 +nd Jia-Ching Wang1,3* +Open Access"
+84fa126cb19d569d2f0147bf6f9e26b54c9ad4f1,Improved Boosting Performance by Explicit Handling of Ambiguous Positive Examples,"Improved Boosting Performance by Explicit +Handling of Ambiguous Positive Examples +Miroslav Kobetski and Josephine Sullivan"
+84508e846af3ac509f7e1d74b37709107ba48bde,Use of the Septum as a Reference Point in a Neurophysiologic Approach to Facial Expression Recognition,"Use of the Septum as a Reference Point in a Neurophysiologic Approach to +Facial Expression Recognition +Igor Stankovic and Montri Karnjanadecha +Department of Computer Engineering, Faculty of Engineering, +Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand +Telephone: (66)080-7045015, (66)074-287-357 +E-mail:"
+841a5de1d71a0b51957d9be9d9bebed33fb5d9fa,PCANet: A Simple Deep Learning Baseline for Image Classification?,"PCANet: A Simple Deep Learning Baseline for +Image Classification? +Tsung-Han Chan, Member, IEEE, Kui Jia, Shenghua Gao, Jiwen Lu, Senior Member, IEEE, +Zinan Zeng, and Yi Ma, Fellow, IEEE"
+8411fe1142935a86b819f065cd1f879f16e77401,Facial Recognition using Modified Local Binary Pattern and Random Forest,"International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 6, November 2013 +Facial Recognition using Modified Local Binary +Pattern and Random Forest +Brian O’Connor and Kaushik Roy +Department of Computer Science, +North Carolina A&T State University, +Greensboro, NC 27411"
+849f891973ad2b6c6f70d7d43d9ac5805f1a1a5b,ResNet Backbone Proposals Classification Loss Regression Loss Classification Loss Regression Loss RPN Classification Branch Box Regression Branch Conv Conv,"Detecting Faces Using Region-based Fully +Convolutional Networks +Yitong Wang Xing Ji Zheng Zhou Hao Wang Zhifeng Li∗ +Tencent AI Lab, China"
+4adca62f888226d3a16654ca499bf2a7d3d11b71,Models of Semantic Representation with Visual Attributes,"Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 572–582, +Sofia, Bulgaria, August 4-9 2013. c(cid:13)2013 Association for Computational Linguistics"
+4a2d54ea1da851151d43b38652b7ea30cdb6dfb2,Direct recognition of motion-blurred faces,"Direct Recognition of Motion Blurred Faces +Kaushik Mitra, Priyanka Vageeswaran and Rama Chellappa"
+4ab84f203b0e752be83f7f213d7495b04b1c4c79,Concave Losses for Robust Dictionary Learning,"CONCAVE LOSSES FOR ROBUST DICTIONARY LEARNING +Rafael Will M. de Araujo, R. Hirata Jr ∗ +Alain Rakotomamonjy † +University of S˜ao Paulo +Institute of Mathematics and Statistics +Rua do Mat˜ao, 1010 – 05508-090 – S˜ao Paulo-SP, Brazil +Universit´e de Rouen Normandie +LITIS EA 4108 +76800 Saint- ´Etienne-du-Rouvray, France"
+4a3758f283b7c484d3f164528d73bc8667eb1591,Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial Networks,"Attribute Enhanced Face Aging with Wavelet-based Generative Adversarial +Networks +Yunfan Liu, Qi Li, and Zhenan Sun∗ +Center for Research on Intelligent Perception and Computing, CASIA +National Laboratory of Pattern Recognition, CASIA +{qli,"
+4a4da3d1bbf10f15b448577e75112bac4861620a,"Face , Expression , and Iris Recognition","FACE, EXPRESSION, AND IRIS RECOGNITION +USING LEARNING-BASED APPROACHES +Guodong Guo +A dissertation submitted in partial fulfillment of +the requirements for the degree of +Doctor of Philosophy +(Computer Sciences) +t the +UNIVERSITY OF WISCONSIN–MADISON"
+4abd49538d04ea5c7e6d31701b57ea17bc349412,Recognizing Fine-Grained and Composite Activities Using Hand-Centric Features and Script Data,"Recognizing Fine-Grained and Composite Activities +using Hand-Centric Features and Script Data +Marcus Rohrbach · Anna Rohrbach · Michaela Regneri · +Sikandar Amin · Mykhaylo Andriluka · Manfred Pinkal · Bernt Schiele"
+4a0f98d7dbc31497106d4f652968c708f7da6692,Real-time eye gaze direction classification using convolutional neural network,"Real-time Eye Gaze Direction Classification Using +Convolutional Neural Network +Anjith George, Member, IEEE, and Aurobinda Routray, Member, IEEE"
+4a1a5316e85528f4ff7a5f76699dfa8c70f6cc5c,Face Recognition using Local Features based on Two-layer Block Model,"MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan +Face Recognition using Local Features based on Two-layer Block M odel +W onjun Hwang1 Ji-Yeun Kim Seokcheol Kee +Computing Lab., +Samsung Advanced Institute of Technology +ombined by Yang and etc [7]. The sparsification of LFA +helps the reduction of dimension of image in LDA scheme +nd local topological property is more useful than holistic +property of PCA in recognition, but there is still structural +problem because the method to select the features is +designed for minimization of reconstruction error, not for +increasing discriminability in face model. +In this paper, we proposed the novel recognition +lgorithm to merge LFA and LDA method. We do not use +the existing sparsification method for selecting features but +dopt the two-layer block model to make several groups +with topographic local features in similar position. Each +local block, flocked local features, can represent its own +local property and at +time holistic face"
+4a2062ba576ca9e9a73b6aa6e8aac07f4d9344b9,Fusing Deep Convolutional Networks for Large Scale Visual Concept Classification,"Fusing Deep Convolutional Networks for Large +Scale Visual Concept Classification +Hilal Ergun and Mustafa SertB +Department of Computer Engineering +Bas¸kent University +06810 Ankara, TURKEY"
+4ac3cd8b6c50f7a26f27eefc64855134932b39be,Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network,"Robust Facial Landmark Detection +via a Fully-Convolutional Local-Global Context Network +Daniel Merget +Matthias Rock +Gerhard Rigoll +Technical University of Munich"
+4abaebe5137d40c9fcb72711cdefdf13d9fc3e62,Dimension Reduction for Regression with Bottleneck Neural Networks,"Dimension Reduction for Regression +with Bottleneck Neural Networks +Elina Parviainen +BECS, Aalto University School of Science and Technology, Finland"
+4aeb87c11fb3a8ad603311c4650040fd3c088832,Self-paced Mixture of Regressions,"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) +SamplesSelected SamplesOutliersMoRSPMoR (ours)6361242024Figure1:Inter-componentimbalanceandintra-componentoutliersinMixtureofRegression(MoR)approaches.StandardMoRcannotlearnaccurateregressors(denotedbythedashedlines).Byintroduc-inganovelself-pacedscheme,ourSPMoRapproach(denotedbythesolidlines)selectsbalancedandconfidenttrainingsamplesfromeachcomponent,whilepreventlearningfromtheoutliersthroughoutthetrainingprocedure.theywillbeinevitablybiasedbydatadistribution:lowre-gressionerrorindenselysampledspacewhilehigherrorineverywhereelse.Foraddressingtheissuesofthedatadiscontinuityandheterogeneity,thedivide-and-conquerapproacheswerepro-posedlately.Thecoreideaistolearntocombinemultiplelocalregressors.Forinstance,thehierarchical-based[Hanetal.,2015]andtree-basedregression[HaraandChellappa,2014]makehardpartitionsrecursively,andthesubsetsofsam-plesmaynotbehomogeneousforlearninglocalregressors.WhileMixtureofRegressions(MoR)[Jacobsetal.,1991;JordanandXu,1995]distributesregressionerroramonglocalregressorsbymaximizinglikelihoodinthejointinput-outputspace.Theseapproachesreduceoverallerrorbyfittingre-gressionlocallyandreliefsthebiasbydiscontinuousdatadistribution.Unfortunately,theaforementionedapproachesstillcannotachievesatisfactoryperformancewhenapplyinginsomereal-worldapplications.Themainreasonisthattheseapproachestendtobesensitivetotheintra-componentoutliers(i.e.,thenoisytrainingdataresidingincertaincomponents)andtheinter-componentimbalance(i.e.,thedifferentamountsoftrain-"
+4a3d96b2a53114da4be3880f652a6eef3f3cc035,A Dictionary Learning-Based 3D Morphable Shape Model,"A Dictionary Learning-Based +D Morphable Shape Model +Claudio Ferrari +, Giuseppe Lisanti, Stefano Berretti +, Senior Member, IEEE, and Alberto Del Bimbo"
+4a6fcf714f663618657effc341ae5961784504c7,Scaling Up Class-Specific Kernel Discriminant Analysis for Large-Scale Face Verification,"Scaling up Class-Specific Kernel Discriminant +Analysis for large-scale Face Verification +Alexandros Iosifidis, Senior Member, IEEE, and Moncef Gabbouj, Fellow, IEEE"
+24115d209e0733e319e39badc5411bbfd82c5133,Long-Term Recurrent Convolutional Networks for Visual Recognition and Description,"Long-term Recurrent Convolutional Networks for +Visual Recognition and Description +Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadarrama, +Kate Saenko, Trevor Darrell"
+24c442ac3f6802296d71b1a1914b5d44e48b4f29,Pose and Expression-Coherent Face Recovery in the Wild,"Pose and expression-coherent face recovery in the wild +Xavier P. Burgos-Artizzu +Joaquin Zepeda +Technicolor, Cesson-S´evign´e, France +Franc¸ois Le Clerc +Patrick P´erez"
+245f8ec4373e0a6c1cae36cd6fed5a2babed1386,Lucas Kanade Optical Flow Computation from Superpixel based Intensity Region for Facial Expression Feature Extraction,"J. Appl. Environ. Biol. Sci., 7(3S)1-10, 2017 +© 2017, TextRoad Publication +ISSN: 2090-4274 +Journal of Applied Environmental +nd Biological Sciences +www.textroad.com +Lucas Kanade Optical Flow Computation from Superpixel based Intensity +Region for Facial Expression Feature Extraction +Halina Hassan1,2, Abduljalil Radman1, Shahrel Azmin Suandi1, Sazali Yaacob2 +Intelligent Biometric Group, School of Electrical and Electronics Engineering, Universiti Sains Malaysia, +Electrical, Electronics and Automation Section, Universiti Kuala Lumpur Malaysian Spanish Institute, 09000 +Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia +Kulim Hi-Tech Park, Kedah, Malaysia +Received: February 21, 2017 +Accepted: May 14, 2017"
+24e099e77ae7bae3df2bebdc0ee4e00acca71250,Robust Face Alignment Under Occlusion via Regional Predictive Power Estimation,"Robust face alignment under occlusion via regional predictive power +estimation. +Heng Yang; Xuming He; Xuhui Jia; Patras, I +© 2015 IEEE +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/22467 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact"
+2450c618cca4cbd9b8cdbdb05bb57d67e63069b1,A connexionist approach for robust and precise facial feature detection in complex scenes,"A Connexionist Approach for Robust and Precise Facial Feature Detection in +Complex Scenes +Stefan Duffner and Christophe Garcia +France Telecom Research & Development +, rue du Clos Courtel +5512 Cesson-S´evign´e, France +fstefan.duffner,"
+244b57cc4a00076efd5f913cc2833138087e1258,Warped Convolutions: Efficient Invariance to Spatial Transformations,"Warped Convolutions: Efficient Invariance to Spatial Transformations +Jo˜ao F. Henriques 1 Andrea Vedaldi 1"
+24869258fef8f47623b5ef43bd978a525f0af60e,Données multimodales pour l ’ analyse d ’ image,"UNIVERSITÉDEGRENOBLENoattribuéparlabibliothèqueTHÈSEpourobtenirlegradedeDOCTEURDEL’UNIVERSITÉDEGRENOBLESpécialité:MathématiquesetInformatiquepréparéeauLaboratoireJeanKuntzmanndanslecadredel’ÉcoleDoctoraleMathématiques,SciencesetTechnologiesdel’Information,InformatiqueprésentéeetsoutenuepubliquementparMatthieuGuillauminle27septembre2010ExploitingMultimodalDataforImageUnderstandingDonnéesmultimodalespourl’analysed’imageDirecteursdethèse:CordeliaSchmidetJakobVerbeekJURYM.ÉricGaussierUniversitéJosephFourierPrésidentM.AntonioTorralbaMassachusettsInstituteofTechnologyRapporteurMmeTinneTuytelaarsKatholiekeUniversiteitLeuvenRapporteurM.MarkEveringhamUniversityofLeedsExaminateurMmeCordeliaSchmidINRIAGrenobleExaminatriceM.JakobVerbeekINRIAGrenobleExaminateur"
+2465fc22e03faf030e5a319479a95ef1dfc46e14,Influence of different feature selection approaches on the performance of emotion recognition methods based on SVM,"______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION +Influence of Different Feature Selection Approaches +on the Performance of Emotion Recognition +Methods Based on SVM +Daniil Belkov, Konstantin Purtov, Vladimir Kublanov +Ural Federal University (UrFU) +Yekaterinburg, Russia +d.d.belkov,"
+24ff832171cb774087a614152c21f54589bf7523,Beat-Event Detection in Action Movie Franchises,"Beat-Event Detection in Action Movie Franchises +Danila Potapov +Matthijs Douze +Jerome Revaud +Zaid Harchaoui +Cordelia Schmid"
+247a6b0e97b9447850780fe8dbc4f94252251133,Facial action unit detection: 3D versus 2D modality,"Facial Action Unit Detection: 3D versus 2D Modality +Arman Savran +Electrical and Electronics Engineering +Bo˘gazic¸i University, Istanbul, Turkey +B¨ulent Sankur +Electrical and Electronics Engineering +Bo˘gazic¸i University, Istanbul, Turkey +M. Taha Bilge +Department of Psychology +Bo˘gazic¸i University, Istanbul, Turkey"
+230527d37421c28b7387c54e203deda64564e1b7,Person Re-identification: System Design and Evaluation Overview,"Person Re-identification: System Design and +Evaluation Overview +Xiaogang Wang and Rui Zhao"
+23172f9a397f13ae1ecb5793efd81b6aba9b4537,Defining Visually Descriptive Language,"Proceedings of the 2015 Workshop on Vision and Language (VL’15), pages 10–17, +Lisbon, Portugal, 18 September 2015. c(cid:13)2015 Association for Computational Linguistics."
+236a4f38f79a4dcc2183e99b568f472cf45d27f4,Randomized Clustering Forests for Image Classification,"Randomized Clustering Forests +for Image Classification +Frank Moosmann, Student Member, IEEE, Eric Nowak, Student Member, IEEE, and +Frederic Jurie, Member, IEEE Computer Society"
+230c4a30f439700355b268e5f57d15851bcbf41f,EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis,"EM Algorithms for Weighted-Data Clustering +with Application to Audio-Visual Scene Analysis +Israel D. Gebru, Xavier Alameda-Pineda, Florence Forbes and Radu Horaud"
+237fa91c8e8098a0d44f32ce259ff0487aec02cf,Bidirectional PCA with assembled matrix distance metric for image recognition,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006 +Bidirectional PCA With Assembled Matrix +Distance Metric for Image Recognition +Wangmeng Zuo, David Zhang, Senior Member, IEEE, and Kuanquan Wang, Member, IEEE"
+2331df8ca9f29320dd3a33ce68a539953fa87ff5,Extended Isomap for Pattern Classification,"Extended Isomap for Pattern Classification +Ming-Hsuan Yang +Honda Fundamental Research Labs +Mountain View, CA 94041"
+23ba9e462151a4bf9dfc3be5d8b12dbcfb7fe4c3,Determining Mood from Facial Expressions,"CS 229 Project, Fall 2014 +Matthew Wang +Spencer Yee +Determining Mood from Facial Expressions +Introduction +Facial expressions play an extremely important role in human communication. As +society continues to make greater use of human-machine interactions, it is important for +machines to be able to interpret facial expressions in order to improve their +uthenticity. If machines can be trained to determine mood to a better extent than +humans can, especially for more subtle moods, then this could be useful in fields such as +ounseling. This could also be useful for gauging reactions of large audiences in various +ontexts, such as political talks. +The results of this project could also be applied to recognizing other features of facial +expressions, such as determining when people are purposefully suppressing emotions or +lying. The ability to recognize different facial expressions could also improve technology +that recognizes to whom specific faces belong. This could in turn be used to search a +large number of pictures for a specific photo, which is becoming increasingly difficult, as +storing photos digitally has been extremely common in the past decade. The possibilities +re endless. +II Data and Features"
+238fc68b2e0ef9f5ec043d081451902573992a03,Enhanced Local Gradient Order Features and Discriminant Analysis for Face Recognition,"Enhanced Local Gradient Order Features and +Discriminant Analysis for Face Recognition +Chuan-Xian Ren, Zhen Lei, Member, IEEE, Dao-Qing Dai, Member, IEEE, and Stan Z. Li, Fellow, IEEE +role in robust face recognition [5]. Many algorithms have +een proposed to deal with the effectiveness of feature design +nd extraction [6], [7]; however, the performance of many +existing methods is still highly sensitive to variations of +imaging conditions, such as outdoor illumination, exaggerated +expression, and continuous occlusion. These complex varia- +tions are significantly affecting the recognition accuracy in +recent years [8]–[10]. +Appearance-based subspace learning is one of the sim- +plest approach for feature extraction, and many methods +re usually based on linear correlation of pixel intensities. +For example, Eigenface [11] uses eigen system of pixel +intensities to estimate the lower rank linear subspace of +set of training face images by minimizing the (cid:2)2 dis- +tance metric. The solution enjoys optimality properties when +noise is independent +identically distributed Gaussian only."
+2322ec2f3571e0ddc593c4e2237a6a794c61251d,Four not six: Revealing culturally common facial expressions of emotion.,"Jack, R. E. , Sun, W., Delis, I., Garrod, O. G. B. and Schyns, P. G. (2016) +Four not six: revealing culturally common facial expressions of +emotion.Journal of Experimental Psychology: General, 145(6), pp. 708- +730. (doi:10.1037/xge0000162) +This is the author’s final accepted version. +There may be differences between this version and the published version. +You are advised to consult the publisher’s version if you wish to cite from +http://eprints.gla.ac.uk/116592/ +Deposited on: 20 April 2016 +Enlighten – Research publications by members of the University of Glasgow +http://eprints.gla.ac.uk"
+23120f9b39e59bbac4438bf4a8a7889431ae8adb,Improved RGB-D-T based face recognition,"Aalborg Universitet +Improved RGB-D-T based Face Recognition +Oliu Simon, Marc; Corneanu, Ciprian; Nasrollahi, Kamal; Guerrero, Sergio Escalera; +Nikisins, Olegs; Sun, Yunlian; Li, Haiqing; Sun, Zhenan; Moeslund, Thomas B.; Greitans, +Modris +Published in: +DOI (link to publication from Publisher): +0.1049/iet-bmt.2015.0057 +Publication date: +Document Version +Accepted manuscript, peer reviewed version +Link to publication from Aalborg University +Citation for published version (APA): +Oliu Simon, M., Corneanu, C., Nasrollahi, K., Guerrero, S. E., Nikisins, O., Sun, Y., ... Greitans, M. (2016). +General rights +Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners +nd it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. +? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. +? You may not further distribute the material or use it for any profit-making activity or commercial gain +? You may freely distribute the URL identifying the publication in the public portal ?"
+23d55061f7baf2ffa1c847d356d8f76d78ebc8c1,Generic and attribute-specific deep representations for maritime vessels,"Solmaz et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:22 +DOI 10.1186/s41074-017-0033-4 +IPSJ Transactions on Computer +Vision and Applications +RESEARCH PAPER +Open Access +Generic and attribute-specific deep +representations for maritime vessels +Berkan Solmaz*† +, Erhan Gundogdu†, Veysel Yucesoy and Aykut Koc"
+23a8d02389805854cf41c9e5fa56c66ee4160ce3,Influence of low resolution of images on reliability of face detection and recognition,"Multimed Tools Appl +DOI 10.1007/s11042-013-1568-8 +Influence of low resolution of images on reliability +of face detection and recognition +Tomasz Marciniak· Agata Chmielewska· +Radoslaw Weychan· Marianna Parzych· +Adam Dabrowski +© The Author(s) 2013. This article is published with open access at SpringerLink.com"
+23b37c2f803a2d4b701e2f39c5f623b2f3e14d8e,Modified Approaches on Face Recognition By using Multisensory Image,"Available Online at www.ijcsmc.com +International Journal of Computer Science and Mobile Computing +A Monthly Journal of Computer Science and Information Technology +ISSN 2320–088X +IJCSMC, Vol. 2, Issue. 4, April 2013, pg.646 – 649 +RESEARCH ARTICLE +Modified Approaches on Face Recognition +By using Multisensory Image +S. Dhanarajan1, G. Michael2 +Computer Science Department, Bharath University, India +Computer Science Department, Bharath University, India"
+4f051022de100241e5a4ba8a7514db9167eabf6e,Face Parsing via a Fully-Convolutional Continuous CRF Neural Network,"Face Parsing via a Fully-Convolutional Continuous +CRF Neural Network +Lei Zhou, Zhi Liu, Senior Member, IEEE, Xiangjian He, Senior Member, IEEE"
+4faded442b506ad0f200a608a69c039e92eaff11,İstanbul Technical University Institute of Science and Technology Face Recognition under Varying Illumination,"İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY +FACE RECOGNITION UNDER VARYING +ILLUMINATION +Master Thesis by +Erald VUÇINI, B.Sc. +Department : Computer Engineering +Programme: Computer Engineering +Supervisor: Prof. Dr. Muhittin GÖKMEN +JUNE 2006"
+4fc936102e2b5247473ea2dd94c514e320375abb,Guess Where? Actor-Supervision for Spatiotemporal Action Localization,"Guess Where? Actor-Supervision for Spatiotemporal Action Localization +Victor Escorcia1∗ +Cuong D. Dao1 +Mihir Jain3 +KAUST1, University of Amsterdam2, Qualcomm Technologies, Inc.3 +Bernard Ghanem1 +Cees Snoek2∗"
+4f6adc53798d9da26369bea5a0d91ed5e1314df2,Online Nonnegative Matrix Factorization with General Divergences,"IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. , NO. , 2016 +Online Nonnegative Matrix Factorization with +General Divergences +Renbo Zhao, Member, IEEE, Vincent Y. F. Tan, Senior Member, IEEE, Huan Xu"
+4f591e243a8f38ee3152300bbf42899ac5aae0a5,Understanding Higher-Order Shape via 3D Shape Attributes,"SUBMITTED TO TPAMI +Understanding Higher-Order Shape +via 3D Shape Attributes +David F. Fouhey, Abhinav Gupta, Andrew Zisserman"
+4f9958946ad9fc71c2299847e9ff16741401c591,Facial Expression Recognition with Recurrent Neural Networks,"Facial Expression Recognition with Recurrent Neural Networks +Alex Graves, J¨urgen Schmidhuber +Robotics and Embedded Systems Lab, Department of Computer Science +Image Understanding and Knowledge-Based Systems, Department of Computer Science +Christoph Mayer, Matthias Wimmer, Bernd Radig +Technische Universit¨at M¨unchen, Germany"
+4f4f920eb43399d8d05b42808e45b56bdd36a929,A Novel Method for 3 D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887) +Volume 123 – No.4, August 2015 +A Novel Method for 3D Image Segmentation with Fusion +of Two Images using Color K-means Algorithm +Neelam Kushwah +Dept. of CSE +ITM Universe +Gwalior +Priusha Narwariya +Dept. of CSE +ITM Universe +Gwalior"
+4f77a37753c03886ca9c9349723ec3bbfe4ee967,"Localizing Facial Keypoints with Global Descriptor Search, Neighbour Alignment and Locally Linear Models","Localizing Facial Keypoints with Global Descriptor Search, +Neighbour Alignment and Locally Linear Models +Md. Kamrul Hasan1, Christopher Pal1 and Sharon Moalem2 +´Ecole Polytechnique de Montr´eal, Universit´e de Montr´eal +University of Toronto and Recognyz Systems Technologies +lso focused on emotion recognition in the wild [9]."
+8de06a584955f04f399c10f09f2eed77722f6b1c,Facial Landmarks Localization Estimation by Cascaded Boosted Regression,"Author manuscript, published in ""International Conference on Computer Vision Theory and Applications (VISAPP 2013) (2013)"""
+8d4f0517eae232913bf27f516101a75da3249d15,Event-based Dynamic Face Detection and Tracking Based on Activity,"ARXIV SUBMISSION, MARCH 2018 +Event-based Dynamic Face Detection and +Tracking Based on Activity +Gregor Lenz, Sio-Hoi Ieng and Ryad Benosman"
+8de2dbe2b03be8a99628ffa000ac78f8b66a1028,Action Recognition in Videos,"´Ecole Nationale Sup´erieure dInformatique et de Math´ematiques Appliqu´ees de Grenoble +INP Grenoble – ENSIMAG +UFR Informatique et Math´ematiques Appliqu´ees de Grenoble +Rapport de stage de Master 2 et de projet de fin d’´etudes +Effectu´e au sein de l’´equipe LEAR, I.N.R.I.A., Grenoble +Action Recognition in Videos +Gaidon Adrien +e ann´ee ENSIMAG – Option I.I.I. +M2R Informatique – sp´ecialit´e I.A. +04 f´evrier 2008 – 04 juillet 2008 +LEAR, +I.N.R.I.A., Grenoble +655 avenue de l’Europe +8 334 Montbonnot +France +Responsable de stage +Mme. Cordelia Schmid +Tuteur ´ecole +M. Augustin Lux +M. Roger Mohr"
+8d3fbdb9783716c1832a0b7ab1da6390c2869c14,Discriminant Subspace Analysis for Uncertain Situation in Facial Recognition,"Discriminant Subspace Analysis for Uncertain +Situation in Facial Recognition +Pohsiang Tsai, Tich Phuoc Tran, Tom Hintz and Tony Jan +School of Computing and Communications – University of Technology, Sydney +Australia +. Introduction +Facial analysis and recognition have received substential attention from researchers in +iometrics, pattern recognition, and computer vision communities. They have a large +number of applications, such as security, communication, and entertainment. Although a +great deal of efforts has been devoted to automated face recognition systems, it still remains +challenging uncertainty problem. This is because human facial appearance has potentially +of very large intra-subject variations of head pose, illumination, facial expression, occlusion +due to other objects or accessories, facial hair and aging. These misleading variations may +ause classifiers to degrade generalization performance. +It is important for face recognition systems to employ an effective feature extraction scheme +to enhance separability between pattern classes which should maintain and enhance +features of the input data that make distinct pattern classes separable (Jan, 2004). In general, +there exist a number of different feature extraction methods. The most common feature +extraction methods are subspace analysis methods such as principle component analysis +(PCA) (Kirby & Sirovich, 1990) (Jolliffe, 1986) (Turk & Pentland, 1991b), kernel principle"
+8d42a24d570ad8f1e869a665da855628fcb1378f,An Empirical Study of Context in Object Detection,"CVPR 2009 Submission #987. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. +An Empirical Study of Context in Object Detection +Anonymous CVPR submission +Paper ID 987"
+8d8461ed57b81e05cc46be8e83260cd68a2ebb4d,Age identification of Facial Images using Neural Network,"Age identification of Facial Images using Neural +Network +Sneha Thakur, Ligendra Verma +CSE Department,CSVTU +RIT, Raipur, Chhattisgarh , INDIA"
+8d384e8c45a429f5c5f6628e8ba0d73c60a51a89,Temporal Dynamic Graph LSTM for Action-Driven Video Object Detection,"Temporal Dynamic Graph LSTM for Action-driven Video Object Detection +Yuan Yuan1 Xiaodan Liang2 Xiaolong Wang2 Dit-Yan Yeung1 Abhinav Gupta2 +The Hong Kong University of Science and Technology 2 Carneige Mellon University"
+8d1adf0ac74e901a94f05eca2f684528129a630a,Facial Expression Recognition Using Facial Movement Features,"Facial Expression Recognition Using Facial +Movement Features"
+8d646ac6e5473398d668c1e35e3daa964d9eb0f6,Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment,"MEMORY-EFFICIENT GLOBAL REFINEMENT OF DECISION-TREE ENSEMBLES AND +ITS APPLICATION TO FACE ALIGNMENT +Nenad Markuˇs† +Ivan Gogi´c† +Igor S. Pandˇzi´c† +J¨orgen Ahlberg‡ +University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia +Computer Vision Laboratory, Dept. of Electrical Engineering, Link¨oping University, SE-581 83 Link¨oping, Sweden"
+8dffbb6d75877d7d9b4dcde7665888b5675deee1,Emotion Recognition with Deep-Belief Networks,"Emotion Recognition with Deep-Belief +Networks +Tom McLaughlin, Mai Le, Naran Bayanbat +Introduction +For our CS229 project, we studied the problem of +reliable computerized emotion recognition in images of +human +faces. First, we performed a preliminary +exploration using SVM classifiers, and then developed an +pproach based on Deep Belief Nets. Deep Belief Nets, or +DBNs, are probabilistic generative models composed of +multiple layers of stochastic latent variables, where each +“building block” layer is a Restricted Boltzmann Machine +(RBM). DBNs have a greedy layer-wise unsupervised +learning algorithm as well as a discriminative fine-tuning +procedure for optimizing performance on classification +tasks. [1]. +We trained our classifier on three databases: the +Cohn-Kanade Extended Database (CK+) [2], the Japanese +Female Facial Expression Database (JAFFE) [3], and the"
+8d5998cd984e7cce307da7d46f155f9db99c6590,ChaLearn looking at people: A review of events and resources,"ChaLearn Looking at People: +A Review of Events and Resources +Sergio Escalera1,2, Xavier Bar´o2,3, Hugo Jair Escalante4,5, Isabelle Guyon4,6, +Dept. Mathematics and Computer Science, UB, Spain, +Computer Vision Center, UAB, Barcelona, Spain, +EIMT, Open University of Catalonia, Barcelona, Spain, +ChaLearn, California, USA, 5 INAOE, Puebla, Mexico, +6 Universit´e Paris-Saclay, Paris, France, +http://chalearnlap.cvc.uab.es"
+8dce38840e6cf5ab3e0d1b26e401f8143d2a6bff,Towards large scale multimedia indexing: A case study on person discovery in broadcast news,"Towards large scale multimedia indexing: +A case study on person discovery in broadcast news +Nam Le1, Hervé Bredin2, Gabriel Sargent3, Miquel India5, Paula Lopez-Otero6, +Claude Barras2, Camille Guinaudeau2, Guillaume Gravier3, Gabriel Barbosa da Fonseca4, +Izabela Lyon Freire4, Zenilton Patrocínio Jr4, Silvio Jamil F. Guimarães4, Gerard Martí5, +Josep Ramon Morros5, Javier Hernando5, Laura Docio-Fernandez6, Carmen Garcia-Mateo6, +Sylvain Meignier7, Jean-Marc Odobez1 +Idiap Research Institute & EPFL, 2 LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, +CNRS, Irisa & Inria Rennes, 4 PUC de Minas Gerais, Belo Horizonte, +5 Universitat Politècnica de Catalunya, 6 University of Vigo, 7 LIUM, University of Maine"
+153f5ad54dd101f7f9c2ae17e96c69fe84aa9de4,Overview of algorithms for face detection and tracking,"Overview of algorithms for face detection and +tracking +Nenad Markuˇs"
+15cd05baa849ab058b99a966c54d2f0bf82e7885,Structured Sparse Subspace Clustering: A unified optimization framework,"Structured Sparse Subspace Clustering: A Unified Optimization Framework +Chun-Guang Li1, René Vidal2 +SICE, Beijing University of Posts and Telecommunications. 2Center for Imaging Science, Johns Hopkins University. +In many real-world applications, we need to deal with high-dimensional +datasets, such as images, videos, text, and more. In practice, such high- +dimensional datasets can be well approximated by multiple low-dimensional +subspaces corresponding to multiple classes or categories. For example, the +feature point trajectories associated with a rigidly moving object in a video +lie in an affine subspace (of dimension up to 4), and face images of a subject +under varying illumination lie in a linear subspace (of dimension up to 9). +Therefore, the task, known in the literature as subspace clustering [6], is +to segment the data into the corresponding subspaces and finds multiple +pplications in computer vision. +State of the art approaches [1, 2, 3, 4, 5, 7] for solving this problem fol- +low a two-stage approach: a) Construct an affinity matrix between points by +exploiting the ‘self-expressiveness’ property of the data, which allows any +data point to be represented as a linear (or affine) combination of the other +data points; b) Apply spectral clustering on the affinity matrix to recover +the data segmentation. Dividing the problem in two steps is, on the one +hand, appealing because the first step can be solved using convex optimiza-"
+15136c2f94fd29fc1cb6bedc8c1831b7002930a6,Deep Learning Architectures for Face Recognition in Video Surveillance,"Deep Learning Architectures for Face +Recognition in Video Surveillance +Saman Bashbaghi, Eric Granger, Robert Sabourin and Mostafa Parchami"
+153e5cddb79ac31154737b3e025b4fb639b3c9e7,Active Dictionary Learning in Sparse Representation Based Classification,"PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS +Active Dictionary Learning in Sparse +Representation Based Classification +Jin Xu, Haibo He, Senior Member, IEEE, and Hong Man, Senior Member, IEEE"
+157eb982da8fe1da4c9e07b4d89f2e806ae4ceb6,Connecting the dots in multi-class classification: From nearest subspace to collaborative representation,"MITSUBISHI ELECTRIC RESEARCH LABORATORIES +http://www.merl.com +Connecting the Dots in Multi-Class Classification: From +Nearest Subspace to Collaborative Representation +Chi, Y.; Porikli, F. +TR2012-043 +June 2012"
+15e0b9ba3389a7394c6a1d267b6e06f8758ab82b,The OU-ISIR Gait Database comprising the Large Population Dataset with Age and performance evaluation of age estimation,"Xu et al. IPSJ Transactions on Computer Vision and +Applications (2017) 9:24 +DOI 10.1186/s41074-017-0035-2 +IPSJ Transactions on Computer +Vision and Applications +TECHNICAL NOTE +Open Access +The OU-ISIR Gait Database comprising the +Large Population Dataset with Age and +performance evaluation of age estimation +Chi Xu1,2, Yasushi Makihara2*, Gakuto Ogi2, Xiang Li1,2, Yasushi Yagi2 and Jianfeng Lu1"
+15aa6c457678e25f6bc0e818e5fc39e42dd8e533,Conditional Image Generation for Learning the Structure of Visual Objects,
+15cf1f17aeba62cd834116b770f173b0aa614bf4,Facial Expression Recognition using Neural Network with Regularized Backpropagation Algorithm,"International Journal of Computer Applications (0975 – 8887) +Volume 77 – No.5, September 2013 +Facial Expression Recognition using Neural Network with +Regularized Back-propagation Algorithm +Ashish Kumar Dogra +Research Scholar +Department of ECE, +Lovely Professional University, +Phagwara, India +Nikesh Bajaj +Assistant Professor +Department of ECE, +Lovely Professional University, +Phagwara, India +Harish Kumar Dogra +Research Scholar +Department of ECE, +Gyan Ganga Institute of +Technology & Sciences, +Jabalpur, India"
+15f3d47b48a7bcbe877f596cb2cfa76e798c6452,Automatic face analysis tools for interactive digital games,"Automatic face analysis tools for interactive digital games +Anonymised for blind review +Anonymous +Anonymous +Anonymous"
+15728d6fd5c9fc20b40364b733228caf63558c31,Expanding the Breadth and Detail of Object Recognition By,(cid:13) 2013 Ian N. Endres
+153c8715f491272b06dc93add038fae62846f498,On Clustering Images of Objects,"(cid:13) Copyright by Jongwoo Lim, 2005"
+122ee00cc25c0137cab2c510494cee98bd504e9f,The Application of Active Appearance Models to Comprehensive Face Analysis Technical Report,"The Application of +Active Appearance Models to +Comprehensive Face Analysis +Technical Report +Simon Kriegel +TU M¨unchen +April 5, 2007"
+12cb3bf6abf63d190f849880b1703ccc183692fe,Guess Who?: A game to crowdsource the labeling of affective facial expressions is comparable to expert ratings,"Guess Who?: A game to crowdsource the labeling of affective facial +expressions is comparable to expert ratings. +Barry Borsboom +Graduation research project, june 2012 +Supervised by: Dr. Joost Broekens +Leiden University Media Technology Department,"
+12cd96a419b1bd14cc40942b94d9c4dffe5094d2,Leveraging Captions in the Wild to Improve Object Detection,"Proceedings of the 5th Workshop on Vision and Language, pages 29–38, +Berlin, Germany, August 12 2016. c(cid:13)2016 Association for Computational Linguistics"
+1275852f2e78ed9afd189e8b845fdb5393413614,A Transfer Learning based Feature-Weak-Relevant Method for Image Clustering,"A Transfer Learning based Feature-Weak-Relevant Method for +Image Clustering +Bo Dong, Xinnian Wang +Dalian Maritime University +Dalian, China"
+12055b8f82d5411f9ad196b60698d76fbd07ac1e,Multiview Facial Landmark Localization in RGB-D Images via Hierarchical Regression With Binary Patterns,"Multiview Facial Landmark Localization in RGB-D +Images via Hierarchical Regression +With Binary Patterns +Zhanpeng Zhang, Student Member, IEEE, Wei Zhang, Member, IEEE, Jianzhuang Liu, Senior Member, IEEE, +nd Xiaoou Tang, Fellow, IEEE"
+120785f9b4952734818245cc305148676563a99b,Diagnostic automatique de l'état dépressif(Classification of depressive moods),"Diagnostic automatique de l’état dépressif +S. Cholet +H. Paugam-Moisy +Laboratoire de Mathématiques Informatique et Applications (LAMIA - EA 4540) +Université des Antilles, Campus de Fouillole - Guadeloupe +Résumé +Les troubles psychosociaux sont un problème de santé pu- +lique majeur, pouvant avoir des conséquences graves sur +le court ou le long terme, tant sur le plan professionnel que +personnel ou familial. Le diagnostic de ces troubles doit +être établi par un professionnel. Toutefois, l’IA (l’Intelli- +gence Artificielle) peut apporter une contribution en four- +nissant au praticien une aide au diagnostic, et au patient +un suivi permanent rapide et peu coûteux. Nous proposons +une approche vers une méthode de diagnostic automatique +de l’état dépressif à partir d’observations du visage en +temps réel, au moyen d’une simple webcam. A partir de +vidéos du challenge AVEC’2014, nous avons entraîné un +lassifieur neuronal à extraire des prototypes de visages +selon différentes valeurs du score de dépression de Beck"
+12ebeb2176a5043ad57bc5f3218e48a96254e3e9,Traffic Road Sign Detection and Recognition for Automotive Vehicles,"International Journal of Computer Applications (0975 – 8887) +Volume 120 – No.24, June 2015 +Traffic Road Sign Detection and Recognition for +Automotive Vehicles +Md. Safaet Hossain +Zakir Hyder +Department of Electrical Engineering and +Department of Electrical Engineering and +Computer Science North South University, Dhaka +Computer Science North South University, Dhaka +Bangladesh +Bangladesh"
+12150d8b51a2158e574e006d4fbdd3f3d01edc93,Deep End2End Voxel2Voxel Prediction,"Deep End2End Voxel2Voxel Prediction +Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo +Torresani, Manohar Paluri +Presented by: Ahmed Osman +Ahmed Osman"
+12d8730da5aab242795bdff17b30b6e0bac82998,Persistent Evidence of Local Image Properties in Generic ConvNets,"Persistent Evidence of Local Image Properties in Generic ConvNets +Ali Sharif Razavian, Hossein Azizpour, +Atsuto Maki, Josephine Sullivan, Carl Henrik Ek, and Stefan Carlsson +CVAP, KTH (Royal Institute of Technology), Stockholm, SE-10044"
+8c13f2900264b5cf65591e65f11e3f4a35408b48,A Generic Face Representation Approach for Local Appearance Based Face Verification,"A GENERIC FACE REPRESENTATION APPROACH FOR +LOCAL APPEARANCE BASED FACE VERIFICATION +Hazim Kemal Ekenel, Rainer Stiefelhagen +Interactive Systems Labs, Universität Karlsruhe (TH) +76131 Karlsruhe, Germany +{ekenel, +web: http://isl.ira.uka.de/face_recognition/"
+8c955f3827a27e92b6858497284a9559d2d0623a,Facial Expression Recognition under Noisy Environment Using Gabor Filters,"Buletinul Ştiinţific al Universităţii ""Politehnica"" din Timişoara +Seria ELECTRONICĂ şi TELECOMUNICAŢII +TRANSACTIONS on ELECTRONICS and COMMUNICATIONS +Tom 53(67), Fascicola 1-2, 2008 +Facial Expression Recognition under Noisy Environment +Using Gabor Filters +Ioan Buciu1, I. Nafornita2, I. Pitas3"
+8c7f4c11b0c9e8edf62a0f5e6cf0dd9d2da431fa,Dataset Augmentation for Pose and Lighting Invariant Face Recognition,"Dataset Augmentation for Pose and Lighting +Invariant Face Recognition +Daniel Crispell∗, Octavian Biris∗, Nate Crosswhite†, Jeffrey Byrne†, Joseph L. Mundy∗ +Vision Systems, Inc. +Systems and Technology Research"
+8ce9b7b52d05701d5ef4a573095db66ce60a7e1c,Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework,"Structured Sparse Subspace Clustering: A Joint +Affinity Learning and Subspace Clustering +Framework +Chun-Guang Li, Chong You, and Ren´e Vidal"
+8cb6daba2cb1e208e809633133adfee0183b8dd2,Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models,"Know Before You Do: Anticipating Maneuvers +via Learning Temporal Driving Models +Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, Ashutosh Saxena +Cornell University and Stanford University"
+8c6c0783d90e4591a407a239bf6684960b72f34e,SESSION KNOWLEDGE ENGINEERING AND MANAGEMENT + KNOWLEDGE ACQUISITION Chair(s),"SESSION +KNOWLEDGE ENGINEERING AND +MANAGEMENT + KNOWLEDGE ACQUISITION +Chair(s) +Int'l Conf. Information and Knowledge Engineering | IKE'13 |1"
+8cc07ae9510854ec6e79190cc150f9f1fe98a238,Using Deep Learning to Challenge Safety Standard for Highly Autonomous Machines in Agriculture,"Article +Using Deep Learning to Challenge Safety Standard +for Highly Autonomous Machines in Agriculture +Kim Arild Steen *,†, Peter Christiansen †, Henrik Karstoft and Rasmus Nyholm Jørgensen +Department of Engineering, Aarhus University, Finlandsgade 22 8200 Aarhus N, Denmark; +(P.C.); (H.K.); (R.N.J.) +* Correspondence: Tel.: +45-3116-8628 +These authors contributed equally to this work. +Academic Editors: Francisco Rovira-Más and Gonzalo Pajares Martinsanz +Received: 18 December 2015; Accepted: 2 February 2016; Published: 15 February 2016"
+8509abbde2f4b42dc26a45cafddcccb2d370712f,A way to improve precision of face recognition in SIPP without retrain of the deep neural network model,"Improving precision and recall of face recognition in SIPP with combination of +modified mean search and LSH +Xihua.Li"
+858ddff549ae0a3094c747fb1f26aa72821374ec,"Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications","Survey on RGB, 3D, Thermal, and Multimodal +Approaches for Facial Expression Recognition: +History, Trends, and Affect-related Applications +Ciprian A. Corneanu, Marc Oliu, Jeffrey F. Cohn, and Sergio Escalera"
+858901405086056361f8f1839c2f3d65fc86a748,On Tensor Tucker Decomposition: the Case for an Adjustable Core Size,"ON TENSOR TUCKER DECOMPOSITION: THE CASE FOR AN +ADJUSTABLE CORE SIZE +BILIAN CHEN ∗, ZHENING LI † , AND SHUZHONG ZHANG ‡"
+85188c77f3b2de3a45f7d4f709b6ea79e36bd0d9,"Combined model for detecting, localizing, interpreting and recognizing faces","Author manuscript, published in ""Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille : +France (2008)"""
+8518b501425f2975ea6dcbf1e693d41e73d0b0af,Relative Hidden Markov Models for Evaluating Motion Skill,"Relative Hidden Markov Models for Evaluating Motion Skills +Qiang Zhang and Baoxin Li +Computer Science and Engineering +Arizona State Univerisity, Tempe, AZ 85281"
+854dbb4a0048007a49df84e3f56124d387588d99,Spatial-Temporal Recurrent Neural Network for Emotion Recognition,"JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 +Spatial-Temporal Recurrent Neural Network for +Emotion Recognition +Tong Zhang, Wenming Zheng*, Member, IEEE, Zhen Cui*, Yuan Zong and Yang Li"
+1d7ecdcb63b20efb68bcc6fd99b1c24aa6508de9,The Hidden Sides of Names—Face Modeling with First Name Attributes,"The Hidden Sides of Names—Face Modeling +with First Name Attributes +Huizhong Chen, Student Member, IEEE, Andrew C. Gallagher, Senior Member, IEEE, and +Bernd Girod, Fellow, IEEE"
+1d1a7ef193b958f9074f4f236060a5f5e7642fc1,Ensemble of Patterns of Oriented Edge Magnitudes Descriptors For Face Recognition,"Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 \ +Ensemble of Patterns of Oriented Edge Magnitudes +Descriptors For Face Recognition +Loris Nanni,1 Alessandra Lumini,2 Sheryl Brahnam,3 Mauro M igliardi1 +*DEI, University o f Padua, viale Gradenigo 6, Padua, Italy, {loris.nanni, +DEI, Universita di Bologna, Via Venezia 52, 47521 Cesena, Italy, unibo.it; +Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA. +faces; and 3) face tagging, which is a particular case of face +identification."
+1d0dd20b9220d5c2e697888e23a8d9163c7c814b,Boosted Metric Learning for Efficient Identity-Based Face Retrieval,"NEGREL ET AL.: BOOSTED METRIC LEARNING FOR FACE RETRIEVAL +Boosted Metric Learning for Efficient +Identity-Based Face Retrieval +Romain Negrel +Alexis Lechervy +Frederic Jurie +GREYC, CNRS UMR 6072, ENSICAEN +Université de Caen Basse-Normandie +France"
+1d776bfe627f1a051099997114ba04678c45f0f5,Deployment of Customized Deep Learning based Video Analytics On Surveillance Cameras,"Deployment of Customized Deep Learning based +Video Analytics On Surveillance Cameras +Pratik Dubal(cid:63), Rohan Mahadev(cid:63), Suraj Kothawade(cid:63), +Kunal Dargan, and Rishabh Iyer +AitoeLabs (www.aitoelabs.com)"
+1dff919e51c262c22630955972968f38ba385d8a,Toward an Affect-Sensitive Multimodal Human–Computer Interaction,"Toward an Affect-Sensitive Multimodal +Human–Computer Interaction +MAJA PANTIC, MEMBER, IEEE, AND LEON J. M. ROTHKRANTZ +Invited Paper +The ability to recognize affective states of a person we are com- +municating with is the core of emotional intelligence. Emotional +intelligenceisa facet of human intelligence thathas been argued to be +indispensable and perhaps the most important for successful inter- +personal social interaction. This paper argues that next-generation +human–computer interaction (HCI) designs need to include the +essence of emotional intelligence—the ability to recognize a user’s +ffective states—in order to become more human-like, more effec- +tive, and more efficient. Affective arousal modulates all nonverbal +ommunicative cues (facial expressions, body movements, and vocal +nd physiological reactions). In a face-to-face interaction, humans +detect and interpret those interactive signals of their communicator +with little or no effort. Yet design and development of an automated +system that accomplishes these tasks is rather difficult. This paper +surveys the past work in solving these problems by a computer +nd provides a set of recommendations for developing the first"
+1de8f38c35f14a27831130060810cf9471a62b45,A Branch-and-Bound Framework for Unsupervised Common Event Discovery,"Int J Comput Vis +DOI 10.1007/s11263-017-0989-7 +A Branch-and-Bound Framework for Unsupervised Common +Event Discovery +Wen-Sheng Chu1 +Jeffrey F. Cohn1,2 · Daniel S. Messinger3 +· Fernando De la Torre1 · +Received: 3 June 2016 / Accepted: 12 January 2017 +© Springer Science+Business Media New York 2017"
+1da83903c8d476c64c14d6851c85060411830129,Iterated Support Vector Machines for Distance Metric Learning,"Iterated Support Vector Machines for Distance +Metric Learning +Wangmeng Zuo, Member, IEEE, Faqiang Wang, David Zhang, Fellow, IEEE, Liang Lin, Member, IEEE, +Yuchi Huang, Member, IEEE, Deyu Meng, and Lei Zhang, Senior Member, IEEE"
+1d58d83ee4f57351b6f3624ac7e727c944c0eb8d,Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions,"Enhanced Local Texture +Feature Sets for Face +Recognition under Difficult +Lighting Conditions +Xiaoyang Tan and Bill Triggs +INRIA & Laboratoire Jean +Kuntzmann, +655 avenue de l'Europe, Montbonnot 38330, France"
+1d729693a888a460ee855040f62bdde39ae273af,Photorealistic Face De-Identification by Aggregating Donors' Face Components,"Photorealistic Face de-Identification by Aggregating +Donors’ Face Components +Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie +To cite this version: +Saleh Mosaddegh, Lo¨ıc Simon, Fr´ed´eric Jurie. Photorealistic Face de-Identification by Aggre- +gating Donors’ Face Components. Asian Conference on Computer Vision, Nov 2014, Singapore. +pp.1-16, 2014. <hal-01070658> +HAL Id: hal-01070658 +https://hal.archives-ouvertes.fr/hal-01070658 +Submitted on 2 Oct 2014 +HAL is a multi-disciplinary open access +rchive for the deposit and dissemination of sci- +entific research documents, whether they are pub- +lished or not. The documents may come from +teaching and research institutions in France or +broad, or from public or private research centers. +L’archive ouverte pluridisciplinaire HAL, est +destin´ee au d´epˆot et `a la diffusion de documents +scientifiques de niveau recherche, publi´es ou non, +´emanant des ´etablissements d’enseignement et de"
+1d4c25f9f8f08f5a756d6f472778ab54a7e6129d,An Innovative Mean Approach for Plastic Surgery Face Recognition,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2014): 6.14 | Impact Factor (2014): 4.438 +An Innovative Mean Approach for Plastic Surgery +Face Recognition +Mahendra P. Randive1, Umesh W. Hore2 +Student of M.E., Department of Electronics & Telecommunication Engineering, +P. R. Patil College of Engineering, Amravati Maharashtra – India +Assistant Professor, Department of Electronics & Telecommunication Engineering, +P. R. Patil College of Engineering, Amravati Maharashtra – India"
+71b376dbfa43a62d19ae614c87dd0b5f1312c966,The temporal connection between smiles and blinks,"The Temporal Connection Between Smiles and Blinks +Laura C. Trutoiu, Jessica K. Hodgins, and Jeffrey F. Cohn"
+718824256b4461d62d192ab9399cfc477d3660b4,Selecting Training Data for Cross-Corpus Speech Emotion Recognition: Prototypicality vs. Generalization,"Selecting Training Data for Cross-Corpus Speech Emotion Recognition: +Prototypicality vs. Generalization +Bj¨orn Schuller, Zixing Zhang, Felix Weninger, and Gerhard Rigoll +Institute for Human-Machine Communication, Technische Universit¨at M¨unchen, Germany"
+714d487571ca0d676bad75c8fa622d6f50df953b,eBear: An expressive Bear-Like robot,"eBear: An Expressive Bear-Like Robot +Xiao Zhang, Ali Mollahosseini, Amir H. Kargar B., Evan Boucher, +Richard M. Voyles, Rodney Nielsen and Mohammd H. Mahoor"
+710011644006c18291ad512456b7580095d628a2,Learning Residual Images for Face Attribute Manipulation,"Learning Residual Images for Face Attribute Manipulation +Wei Shen +Rujie Liu +Fujitsu Research & Development Center, Beijing, China. +{shenwei,"
+711bb5f63139ee7a9b9aef21533f959671a7d80e,Objects extraction and recognition for camera-based interaction : heuristic and statistical approaches,"Helsinki University of Technology Laboratory of Computational Engineering Publications +Teknillisen korkeakoulun Laskennallisen tekniikan laboratorion julkaisuja +Espoo 2007 +REPORT B68 +OBJECTS EXTRACTION AND RECOGNITION FOR +CAMERA-BASED INTERACTION: HEURISTIC AND +STATISTICAL APPROACHES +Hao Wang +TEKNILLINEN KORKEAKOULU +TEKNILLINEN KORKEAKOULU +TEKNISKA HÖGSKOLAN +TEKNISKA HÖGSKOLAN +HELSINKI UNIVERSITY OF TECHNOLOGY +HELSINKI UNIVERSITY OF TECHNOLOGY +TECHNISCHE UNIVERSITÄT HELSINKI +TECHNISCHE UNIVERSITÄT HELSINKI +UNIVERSITE DE TECHNOLOGIE D'HELSINKI +UNIVERSITE DE TECHNOLOGIE D'HELSINKI"
+76fd801981fd69ff1b18319c450cb80c4bc78959,Alignment of Eye Movements and Spoken Language for Semantic Image Understanding,"Proceedings of the 11th International Conference on Computational Semantics, pages 76–81, +London, UK, April 15-17 2015. c(cid:13)2015 Association for Computational Linguistics"
+76dc11b2f141314343d1601635f721fdeef86fdb,Weighted Decoding ECOC for Facial Action Unit Classification,"Weighted Decoding ECOC for Facial +Action Unit Classification +Terry Windeatt"
+76673de6d81bedd6b6be68953858c5f1aa467e61,Discovering a Lexicon of Parts and Attributes,"Discovering a Lexicon of Parts and Attributes +Subhransu Maji +Toyota Technological Institute at Chicago, +Chicago, IL 60637, USA"
+76cd5e43df44e389483f23cb578a9015d1483d70,Face Verification from Depth using Privileged Information,"BORGHI ET AL.: FACE VERIFICATION FROM DEPTH +Face Verification from Depth using +Privileged Information +Department of Engineering +""Enzo Ferrari"" +University of Modena and Reggio +Emilia +Modena, Italy +Guido Borghi +Stefano Pini +Filippo Grazioli +Roberto Vezzani +Rita Cucchiara"
+76b11c281ac47fe6d95e124673a408ee9eb568e3,Real-time Multi View Face Detection and Pose Estimation Aishwarya,"International Journal of Latest Engineering and Management Research (IJLEMR) +ISSN: 2455-4847 +www.ijlemr.com || Volume 02 - Issue 03 || March 2017 || PP. 59-71 +REAL-TIME MULTI VIEW FACE DETECTION AND POSE +ESTIMATION +AISHWARYA.S1 , RATHNAPRIYA.K1, SUKANYA SARGUNAR.V2 +U. G STUDENTS, DEPT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI, +ASST PROF.DEPARTMENT OF CSE, ALPHA COLLEGE OF ENGINEERING, CHENNAI"
+76d9f5623d3a478677d3f519c6e061813e58e833,Fast Algorithms for the Generalized Foley-Sammon Discriminant Analysis,"FAST ALGORITHMS FOR THE GENERALIZED FOLEY-SAMMON +DISCRIMINANT ANALYSIS +LEI-HONG ZHANG∗, LI-ZHI LIAO† , AND MICHAEL K. NG‡"
+76e2d7621019bd45a5851740bd2742afdcf62837,Real-Time Detection and Measurement of Eye Features from Color Images,"Article +Real-Time Detection and Measurement of Eye +Features from Color Images +Diana Borza 1, Adrian Sergiu Darabant 2 and Radu Danescu 1,* +Computer Science Department, Technical University of Cluj Napoca, 28 Memorandumului Street, +Cluj Napoca 400114, Romania; +Computer Science Department, Babes Bolyai University, 58-60 Teodor Mihali, C333, Cluj Napoca 400591, +Romania; +* Correspondence: Tel.: +40-740-502-223 +Academic Editors: Changzhi Li, Roberto Gómez-García and José-María Muñoz-Ferreras +Received: 28 April 2016; Accepted: 14 July 2016; Published: 16 July 2016"
+765b2cb322646c52e20417c3b44b81f89860ff71,PoseShop: Human Image Database Construction and Personalized Content Synthesis,"PoseShop: Human Image Database +Construction and Personalized +Content Synthesis +Tao Chen, Ping Tan, Member, IEEE, Li-Qian Ma, Ming-Ming Cheng, Member, IEEE, +Ariel Shamir, and Shi-Min Hu, Member, IEEE"
+763158cef9d1e4041f24fce4cf9d6a3b7a7f08ff,Hierarchical Modeling and Applications to Recognition Tasks,"Hierarchical Modeling and +Applications to Recognition Tasks +Thesis submitted for the degree of +”Doctor of Philosophy” +Alon Zweig +Submitted to the Senate of the Hebrew University +August / 2013"
+760ba44792a383acd9ca8bef45765d11c55b48d4,Class-specific classifier: avoiding the curse of dimensionality,"INTRODUCTION AND BACKGROUND +The purpose of this article is to introduce the +reader to the basic principles of classification with +lass-specific features. It is written both for readers +interested in only the basic concepts as well as those +interested in getting started in applying the method. +For in-depth coverage, the reader is referred to a more +detailed article [l]. +Class-Specific Classifier: +Avoiding the Curse of +Dimensionality +PAUL M. BAGGENSTOSS, Member. lEEE +US. Naval Undersea Warfare Center +This article describes a new probabilistic method called the +“class-specific method” (CSM). CSM has the potential to avoid +the “curse of dimensionality” which plagues most clmiiiers +which attempt to determine the decision boundaries in a +highdimensional featue space. In contrast, in CSM, it is possible +to build classifiers without a ” n o n feature space. Separate +Law-dimensional features seta may be de6ned for each class, while"
+766728bac030b169fcbc2fbafe24c6e22a58ef3c,A survey of deep facial landmark detection,"A survey of deep facial landmark detection +Yongzhe Yan1,2 +Xavier Naturel2 +Christophe Garcia3 +Thierry Chateau1 +Christophe Blanc1 +Stefan Duffner3 +Université Clermont Auvergne, France +Wisimage, France +Université de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, Lyon, France +Résumé +La détection de landmarks joue un rôle crucial dans de +nombreuses applications d’analyse du visage comme la +reconnaissance de l’identité, des expressions, l’animation +d’avatar, la reconstruction 3D du visage, ainsi que pour +les applications de réalité augmentée comme la pose de +masque ou de maquillage virtuel. L’avènement de l’ap- +prentissage profond a permis des progrès très importants +dans ce domaine, y compris sur les corpus non contraints +(in-the-wild). Nous présentons ici un état de l’art cen-"
+7697295ee6fc817296bed816ac5cae97644c2d5b,Detecting and Recognizing Human-Object Interactions,"Detecting and Recognizing Human-Object Interactions +Georgia Gkioxari Ross Girshick +Piotr Doll´ar Kaiming He +Facebook AI Research (FAIR)"
+7636f94ddce79f3dea375c56fbdaaa0f4d9854aa,Robust Facial Expression Recognition Using a Smartphone Working against Illumination Variation,"Appl. Math. Inf. Sci. 6 No. 2S pp. 403S-408S (2012) +An International Journal +© 2012 NSP +Applied Mathematics & Information Sciences +Robust Facial Expression Recognition Using +Smartphone Working against Illumination Variation +2012 NSP +Natural Sciences Publishing Cor. +Kyoung-Sic Cho1, In-Ho Choi1 and Yong-Guk Kim1 +Department of Computer Engineering, Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul, Korea +Corresponding author: Email: +Received June 22, 2010; Revised March 21, 2011; Accepted 11 June 2011 +Published online: 1 January 2012"
+1c80bc91c74d4984e6422e7b0856cf3cf28df1fb,Hierarchical Adaptive Structural SVM for Domain Adaptation,"Noname manuscript No. +(will be inserted by the editor) +Hierarchical Adaptive Structural SVM for Domain Adaptation +Jiaolong Xu · Sebastian Ramos · David V´azquez · Antonio M. L´opez +Received: date / Accepted: date"
+1ce3a91214c94ed05f15343490981ec7cc810016,Exploring photobios,"Exploring Photobios +Ira Kemelmacher-Shlizerman1 +Eli Shechtman2 +Rahul Garg1,3 +Steven M. Seitz1,3 +University of Washington∗ +Adobe Systems† +Google Inc."
+1cfe3533759bf95be1fce8ce1d1aa2aeb5bfb4cc,Recognition of Facial Gestures Based on Support Vector Machines,"Recognition of Facial Gestures based on Support +Vector Machines +Attila Fazekas and Istv(cid:19)an S(cid:19)anta +Faculty of Informatics, University of Debrecen, Hungary +H-4010 Debrecen P.O.Box 12."
+1ce4587e27e2cf8ba5947d3be7a37b4d1317fbee,Deep fusion of visual signatures for client-server facial analysis,"Deep fusion of visual signatures +for client-server facial analysis +Binod Bhattarai +Normandie Univ, UNICAEN, +ENSICAEN, CNRS, GREYC +Gaurav Sharma +Computer Sc. & Engg. +IIT Kanpur, India +Frederic Jurie +Normandie Univ, UNICAEN, +ENSICAEN, CNRS, GREYC +Facial analysis is a key technology for enabling human- +machine interaction. +In this context, we present a client- +server framework, where a client transmits the signature of +face to be analyzed to the server, and, in return, the server +sends back various information describing the face e.g. is the +person male or female, is she/he bald, does he have a mus- +tache, etc. We assume that a client can compute one (or a +ombination) of visual features; from very simple and effi-"
+1c30bb689a40a895bd089e55e0cad746e343d1e2,Learning Spatiotemporal Features with 3D Convolutional Networks,"Learning Spatiotemporal Features with 3D Convolutional Networks +Du Tran1 +, Lubomir Bourdev1, Rob Fergus1, Lorenzo Torresani2, Manohar Paluri1 +Facebook AI Research, 2Dartmouth College"
+1c3073b57000f9b6dbf1c5681c52d17c55d60fd7,Direction de thèse:,"THÈSEprésentéepourl’obtentiondutitredeDOCTEURDEL’ÉCOLENATIONALEDESPONTSETCHAUSSÉESSpécialité:InformatiqueparCharlotteGHYSAnalyse,Reconstruction3D,&AnimationduVisageAnalysis,3DReconstruction,&AnimationofFacesSoutenancele19mai2010devantlejurycomposéde:Rapporteurs:MajaPANTICDimitrisSAMARASExaminateurs:MichelBARLAUDRenaudKERIVENDirectiondethèse:NikosPARAGIOSBénédicteBASCLE"
+1c93b48abdd3ef1021599095a1a5ab5e0e020dd5,A Compositional and Dynamic Model for Face Aging,"JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009 +A Compositional and Dynamic Model for Face Aging +Jinli Suo , Song-Chun Zhu , Shiguang Shan and Xilin Chen"
+1c6e22516ceb5c97c3caf07a9bd5df357988ceda,Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data,"NetworkCNNimageslabelsFakeDatasetimages24132labelsTarget NetworkCNNimageslabelsOriginalDatasetFakeDatasetFig.1:Ontheleft,thetargetnetworkistrainedwithanoriginal(confidential)datasetandisservedpubliclyasanAPI,receivingimagesasinputandprovidingclasslabelsasoutput.Ontheright,itispresentedtheprocesstogetstolenlabelsandtocreateafakedataset:randomnaturalimagesaresenttotheAPIandthelabelsareobtained.Afterthat,thecopycatnetworkistrainedusingthisfakedataset.cloud-basedservicestocustomersallowingthemtooffertheirownmodelsasanAPI.Becauseoftheresourcesandmoneyinvestedincreatingthesemodels,itisinthebestinterestofthesecompaniestoprotectthem,i.e.,toavoidthatsomeoneelsecopythem.Someworkshavealreadyinvestigatedthepossibilityofcopyingmodelsbyqueryingthemasablack-box.In[1],forexample,theauthorsshowedhowtoperformmodelextractionattackstocopyanequivalentornear-equivalentmachinelearningmodel(decisiontree,logisticregression,SVM,andmultilayerperceptron),i.e.,onethatachievescloseto100%agreementonaninputspaceofinterest.In[2],theauthorsevaluatedtheprocessofcopyingaNaiveBayesandSVMclassifierinthecontextoftextclassification.Bothworksfocusedongeneralclassifiersandnotondeepneuralnetworksthatrequirelargeamountsofdatatobetrainedleavingthequestionofwhetherdeepmodelscanbeeasilycopied.Althoughthesecondusesdeeplearningtostealtheclassifiers,itdoesnottrytouseDNNstostealfromdeepmodels.Additionally,theseworksfocusoncopyingbyqueryingwithproblemdomaindata.Inrecentyears,researchershavebeenexploringsomeintriguingpropertiesofdeepneuralnetworks[3],[4].More©2018IEEE.Personaluseofthismaterialispermitted.PermissionfromIEEEmustbeobtainedforallotheruses,inanycurrentorfuturemedia,includingreprinting/republishingthismaterialforadvertisingorpromotionalpurposes,creatingnewcollectiveworks,forresaleorredistributiontoserversorlists,orreuseofanycopyrightedcomponentofthisworkinotherworks."
+825f56ff489cdd3bcc41e76426d0070754eab1a8,Making Convolutional Networks Recurrent for Visual Sequence Learning,"Making Convolutional Networks Recurrent for Visual Sequence Learning +Xiaodong Yang Pavlo Molchanov Jan Kautz +NVIDIA"
+82d2af2ffa106160a183371946e466021876870d,A Novel Space-Time Representation on the Positive Semidefinite Con for Facial Expression Recognition,"A Novel Space-Time Representation on the Positive Semidefinite Cone +for Facial Expression Recognition +Anis Kacem1, Mohamed Daoudi1, Boulbaba Ben Amor1, and Juan Carlos Alvarez-Paiva2 +IMT Lille Douai, Univ. Lille, CNRS, UMR 9189 – CRIStAL – +Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France +Univ. Lille, CNRS, UMR 8524, Laboratoire Paul Painlev´e, F-59000 Lille, France."
+82eff71af91df2ca18aebb7f1153a7aed16ae7cc,MSU-AVIS dataset : Fusing Face and Voice Modalities for Biometric Recognition in Indoor Surveillance Videos,"MSU-AVIS dataset: +Fusing Face and Voice Modalities for Biometric +Recognition in Indoor Surveillance Videos +Anurag Chowdhury*, Yousef Atoum+, Luan Tran*, Xiaoming Liu*, Arun Ross* +*Michigan State University, USA ++Yarmouk University, Jordan"
+82c303cf4852ad18116a2eea31e2291325bc19c3,Fusion Based FastICA Method: Facial Expression Recognition,"Journal of Image and Graphics, Volume 2, No.1, June, 2014 +Fusion Based FastICA Method: Facial Expression +Recognition +Humayra B. Ali and David M W Powers +Computer Science, Engineering and Mathematics School, Flinders University, Australia +Email: {ali0041,"
+8210fd10ef1de44265632589f8fc28bc439a57e6,Single Sample Face Recognition via Learning Deep Supervised Autoencoders,"Single Sample Face Recognition via Learning Deep +Supervised Auto-Encoders +Shenghua Gao, Yuting Zhang, Kui Jia, Jiwen Lu, Yingying Zhang"
+82a4a35b2bae3e5c51f4d24ea5908c52973bd5be,Real-time emotion recognition for gaming using deep convolutional network features,"Real-time emotion recognition for gaming using +deep convolutional network features +S´ebastien Ouellet"
+829f390b3f8ad5856e7ba5ae8568f10cee0c7e6a,A Robust Rotation Invariant Multiview Face Detection in Erratic Illumination Condition,"International Journal of Computer Applications (0975 – 8887) +Volume 57– No.20, November 2012 +A Robust Rotation Invariant Multiview Face Detection in +Erratic Illumination Condition +G.Nirmala Priya +Associate Professor, Department of ECE +Sona College of Technology +Salem"
+82f4e8f053d20be64d9318529af9fadd2e3547ef,Technical Report: Multibiometric Cryptosystems,"Technical Report: +Multibiometric Cryptosystems +Abhishek Nagar, Student Member, IEEE, Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE"
+82d781b7b6b7c8c992e0cb13f7ec3989c8eafb3d,Robust Facial Expression Recognition Using a State-based Model of Spatially-localized Facial,"REFERENCES +Adler A., Youmaran R. and Loyka S., “Towards a Measure of +Biometric Information”, Canadian Conference on Electrical and +Computer Engineering, pp. 210-213, 2006. +Ahmed A.A.E. and Traore I., “Anomaly Intrusion Detection Based on +Biometrics”, IEEE Workshop on Information Assurance, United States +Military Academy, West Point, New York, pp. 452-458, 2005. +Ahmed A.A.E. and Traore I., “Detecting Computer Intrusions using +Behavioural Biometrics”, Third Annual Conference on Privacy, +Security and Trust, St. Andrews, New Brunswick, Canada, pp. 1-8, +005. +Al-Zubi S., Bromme A. and Tonnies K., “Using an Active Shape +Structural Model for Biometric Sketch Recognition”, Proceedings of +DAGM, Magdeburg, Germany, Vol. 2781, pp. 187-195, 2003. +Angle S., Bhagtani R. and Chheda H., “Biometrics: a Further Echelon +of Security”, The First UAE International Conference on Biological +nd Medical Physics, pp. 1-4, 2005. +Avraam Kasapis., “MLPs and Pose, Expression Classification”, +Proceedings of UNiS Report, pp. 1-87, 2003. +Banikazemi M., Poff D. and Abali B., “Storage-based Intrusion"
+82417d8ec8ac6406f2d55774a35af2a1b3f4b66e,Some Faces are More Equal than Others: Hierarchical Organization for Accurate and Efficient Large-Scale Identity-Based Face Retrieval,"Some faces are more equal than others: +Hierarchical organization for accurate and +efficient large-scale identity-based face retrieval +Binod Bhattarai1, Gaurav Sharma2, Fr´ed´eric Jurie1, Patrick P´erez2 +GREYC, CNRS UMR 6072, Universit´e de Caen Basse-Normandie, France1 +Technicolor, Rennes, France2"
+826c66bd182b54fea3617192a242de1e4f16d020,Action-vectors: Unsupervised movement modeling for action recognition,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+4919663c62174a9bc0cc7f60da8f96974b397ad2,Human age estimation using enhanced bio-inspired features (EBIF),"HUMAN AGE ESTIMATION USING ENHANCED BIO-INSPIRED FEATURES (EBIF) +Mohamed Y.El Dib and Motaz El-Saban +Faculty of Computers and Information, Cairo University, Cairo, Egypt"
+4967b0acc50995aa4b28e576c404dc85fefb0601,An Automatic Face Detection and Gender Classification from Color Images using Support Vector Machine,"Vol. 4, No. 1 Jan 2013 ISSN 2079-8407 +Journal of Emerging Trends in Computing and Information Sciences +©2009-2013 CIS Journal. All rights reserved. +An Automatic Face Detection and Gender Classification from +http://www.cisjournal.org +Color Images using Support Vector Machine +Md. Hafizur Rahman, 2 Suman Chowdhury, 3 Md. Abul Bashar +, 2, 3 Department of Electrical & Electronic Engineering, International +University of Business Agriculture and Technology, Dhaka-1230, Bangladesh"
+4972aadcce369a8c0029e6dc2f288dfd0241e144,Multi-target Unsupervised Domain Adaptation without Exactly Shared Categories,"Multi-target Unsupervised Domain Adaptation +without Exactly Shared Categories +Huanhuan Yu, Menglei Hu and Songcan Chen"
+49e85869fa2cbb31e2fd761951d0cdfa741d95f3,Adaptive Manifold Learning,"Adaptive Manifold Learning +Zhenyue Zhang, Jing Wang, and Hongyuan Zha"
+49a7949fabcdf01bbae1c2eb38946ee99f491857,A concatenating framework of shortcut convolutional neural networks,"A CONCATENATING FRAMEWORK OF SHORTCUT +CONVOLUTIONAL NEURAL NETWORKS +Yujian Li Ting Zhang, Zhaoying Liu, Haihe Hu"
+499343a2fd9421dca608d206e25e53be84489f44,Face Recognition with Name Using Local Weber‟s Law Descriptor,"Anil Kumar.C, et.al, International Journal of Technology and Engineering Science [IJTES]TM +Volume 1[9], pp: 1371-1375, December 2013 +Face Recognition with Name Using Local Weber‟s +Law Descriptor +C.Anil kumar,2A.Rajani,3I.Suneetha +M.Tech Student,2Assistant Professor,3Associate Professor +Department of ECE, Annamacharya Institute of Technology and Sciences, Tirupati, India-517520 +on FERET"
+498fd231d7983433dac37f3c97fb1eafcf065268,Linear Disentangled Representation Learning for Facial Actions,"LINEAR DISENTANGLED REPRESENTATION LEARNING FOR FACIAL ACTIONS +Xiang Xiang1 and Trac D. Tran2 +Dept. of Computer Science +Dept. of Electrical & Computer Engineering +Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA +Fig. 1. The separability of the neutral face yn and expression +omponent ye. We find yn is better for identity recognition +than y and ye is better for expression recognition than y."
+49e1aa3ecda55465641b2c2acc6583b32f3f1fc6,Support Vector Machine for age classification,"International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, Volume 2, Issue 5, May 2012) +Support Vector Machine for age classification +Sangeeta Agrawal1, Rohit Raja2, Sonu Agrawal3 +Assistant Professor, CSE, RSR RCET, Kohka Bhilai +,3 Sr. Assistant Professor, CSE, SSCET, Junwani Bhilai"
+49df381ea2a1e7f4059346311f1f9f45dd997164,Client-Specific Anomaly Detection for Face Presentation Attack Detection,"On the Use of Client-Specific Information for Face +Presentation Attack Detection Based on Anomaly +Detection +Shervin Rahimzadeh Arashloo and Josef Kittler,"
+496074fcbeefd88664b7bd945012ca22615d812e,Driver Distraction Using Visual-Based Sensors and Algorithms,"Review +Driver Distraction Using Visual-Based Sensors +nd Algorithms +Alberto Fernández 1,*, Rubén Usamentiaga 2, Juan Luis Carús 1 and Rubén Casado 2 +Grupo TSK, Technological Scientific Park of Gijón, 33203 Gijón, Asturias, Spain; +Department of Computer Science and Engineering, University of Oviedo, Campus de Viesques, 33204 Gijón, +Asturias, Spain; (R.U.); (R.C.) +* Corrospondence: Tel.: +34-984-29-12-12; Fax: +34-984-39-06-12 +Academic Editor: Gonzalo Pajares Martinsanz +Received: 14 July 2016; Accepted: 24 October 2016; Published: 28 October 2016"
+40205181ed1406a6f101c5e38c5b4b9b583d06bc,Using Context to Recognize People in Consumer Images,"Using Context to Recognize People in Consumer Images +Andrew C. Gallagher and Tsuhan Chen"
+40dab43abef32deaf875c2652133ea1e2c089223,Facial Communicative Signals: valence recognition in task-oriented human-robot Interaction,"Noname manuscript No. +(will be inserted by the editor) +Facial Communicative Signals +Valence Recognition in Task-Oriented Human-Robot Interaction +Christian Lang · Sven Wachsmuth · Marc Hanheide · Heiko Wersing +Received: date / Accepted: date"
+40b0fced8bc45f548ca7f79922e62478d2043220,Do Convnets Learn Correspondence?,"Do Convnets Learn Correspondence? +Trevor Darrell +Jonathan Long +{jonlong, nzhang, +University of California – Berkeley +Ning Zhang"
+405b43f4a52f70336ac1db36d5fa654600e9e643,What can we learn about CNNs from a large scale controlled object dataset?,"What can we learn about CNNs from a large scale controlled object dataset? +Ali Borji +Saeed Izadi +Laurent Itti"
+40b86ce698be51e36884edcc8937998979cd02ec,Finding Faces in News Photos Using Both Face and Name Information,"Yüz ve İsim İlişkisi kullanarak Haberlerdeki Kişilerin Bulunması +Finding Faces in News Photos Using Both Face and Name Information +Derya Ozkan, Pınar Duygulu +Bilgisayar Mühendisliği Bölümü, Bilkent Üniversitesi, 06800, Ankara +Özetçe +Bu çalışmada, haber fotoğraflarından oluşan geniş veri +kümelerinde kişilerin sorgulanmasını sağlayan bir yöntem +sunulmuştur. Yöntem isim ve yüzlerin ilişkilendirilmesine +dayanmaktadır. Haber başlığında kişinin ismi geçiyor ise +fotoğrafta da o kişinin yüzünün bulunacağı varsayımıyla, ilk +olarak sorgulanan isim ile ilişkilendirilmiş, fotoğraflardaki +tüm yüzler seçilir. Bu yüzler arasında sorgu kişisine ait farklı +koşul, poz ve zamanlarda çekilmiş pek çok resmin yanında, +haberde ismi geçen başka kişilere ait yüzler ya da kullanılan +yüz bulma yönteminin hatasından kaynaklanan yüz olmayan +resimler de bulunabilir. Yine de, çoğu zaman, sorgu kişisine +it resimler daha çok olup, bu resimler birbirine diğerlerine +olduğundan daha çok benzeyeceklerdir. Bu nedenle, yüzler +rasındaki benzerlikler çizgesel olarak betimlendiğinde , +irbirine en çok benzeyen yüzler bu çizgede en yoğun bileşen"
+402f6db00251a15d1d92507887b17e1c50feebca,3D Facial Action Units Recognition for Emotional Expression,"D Facial Action Units Recognition for Emotional +Expression +Norhaida Hussain1, Hamimah Ujir, Irwandi Hipiny and Jacey-Lynn Minoi2 +Department of Information Technology and Communication, Politeknik Kuching, Sarawak, Malaysia +Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia +The muscular activities caused the activation of certain AUs for every facial expression at the certain duration of time +throughout the facial expression. This paper presents the methods to recognise facial Action Unit (AU) using facial distance +of the facial features which activates the muscles. The seven facial action units involved are AU1, AU4, AU6, AU12, AU15, +AU17 and AU25 that characterises happy and sad expression. The recognition is performed on each AU according to rules +defined based on the distance of each facial points. The facial distances chosen are extracted from twelve facial features. +Then the facial distances are trained using Support Vector Machine (SVM) and Neural Network (NN). Classification result +using SVM is presented with several different SVM kernels while result using NN is presented for each training, validation +nd testing phase. +Keywords: Facial action units recognition, 3D AU recognition, facial expression"
+40fb4e8932fb6a8fef0dddfdda57a3e142c3e823,A mixed generative-discriminative framework for pedestrian classification,"A Mixed Generative-Discriminative Framework for Pedestrian Classification +Markus Enzweiler1 +Dariu M. Gavrila2,3 +Image & Pattern Analysis Group, Dept. of Math. and Comp. Sc., Univ. of Heidelberg, Germany +Environment Perception, Group Research, Daimler AG, Ulm, Germany +Intelligent Systems Lab, Faculty of Science, Univ. of Amsterdam, The Netherlands"
+40dd2b9aace337467c6e1e269d0cb813442313d7,Localizing spatially and temporally objects and actions in videos. (Localiser spatio-temporallement des objets et des actions dans des vidéos),"This thesis has been submitted in fulfilment of the requirements for a postgraduate degree +(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following +terms and conditions of use: +This work is protected by copyright and other intellectual property rights, which are +retained by the thesis author, unless otherwise stated. +A copy can be downloaded for personal non-commercial research or study, without +prior permission or charge. +This thesis cannot be reproduced or quoted extensively from without first obtaining +permission in writing from the author. +The content must not be changed in any way or sold commercially in any format or +medium without the formal permission of the author. +When referring to this work, full bibliographic details including the author, title, +warding institution and date of the thesis must be given."
+40a34d4eea5e32dfbcef420ffe2ce7c1ee0f23cd,Bridging Heterogeneous Domains With Parallel Transport For Vision and Multimedia Applications,"Bridging Heterogeneous Domains With Parallel Transport For Vision and +Multimedia Applications +Raghuraman Gopalan +Dept. of Video and Multimedia Technologies Research +AT&T Labs-Research +San Francisco, CA 94108"
+40389b941a6901c190fb74e95dc170166fd7639d,Automatic Facial Expression Recognition,"Automatic Facial Expression Recognition +Jacob Whitehill, Marian Stewart Bartlett, and Javier R. Movellan +Emotient +http://emotient.com +February 12, 2014 +Imago animi vultus est, indices oculi. (Cicero) +Introduction +The face is innervated by two different brain systems that compete for control of its muscles: +cortical brain system related to voluntary and controllable behavior, and a sub-cortical +system responsible for involuntary expressions. The interplay between these two systems +generates a wealth of information that humans constantly use to read the emotions, inten- +tions, and interests [25] of others. +Given the critical role that facial expressions play in our daily life, technologies that can +interpret and respond to facial expressions automatically are likely to find a wide range of +pplications. For example, in pharmacology, the effect of new anti-depression drugs could +e assessed more accurately based on daily records of the patients’ facial expressions than +sking the patients to fill out a questionnaire, as it is currently done [7]. Facial expression +recognition may enable a new generation of teaching systems to adapt to the expression +of their students in the way good teachers do [61]. Expression recognition could be used +to assess the fatigue of drivers and air-pilots [58, 59]. Daily-life robots with automatic"
+40273657e6919455373455bd9a5355bb46a7d614,Anonymizing k Facial Attributes via Adversarial Perturbations,"Anonymizing k-Facial Attributes via Adversarial Perturbations +Saheb Chhabra1, Richa Singh1, Mayank Vatsa1 and Gaurav Gupta2 +IIIT Delhi, New Delhi, India +Ministry of Electronics and Information Technology, New Delhi, India +{sahebc, rsingh,"
+40b10e330a5511a6a45f42c8b86da222504c717f,Implementing the Viola-Jones Face Detection Algorithm,"Implementing the Viola-Jones +Face Detection Algorithm +Ole Helvig Jensen +Kongens Lyngby 2008 +IMM-M.Sc.-2008-93"
+40ca925befa1f7e039f0cd40d57dbef6007b4416,Sampling Matters in Deep Embedding Learning,"Sampling Matters in Deep Embedding Learning +Chao-Yuan Wu∗ +UT Austin +R. Manmatha +A9/Amazon +Alexander J. Smola +Amazon +Philipp Kr¨ahenb¨uhl +UT Austin"
+4026dc62475d2ff2876557fc2b0445be898cd380,An Affective User Interface Based on Facial Expression Recognition and Eye-Gaze Tracking,"An Affective User Interface Based on Facial Expression +Recognition and Eye-Gaze Tracking +Soo-Mi Choi and Yong-Guk Kim +School of Computer Engineering, Sejong University, Seoul, Korea"
+40f127fa4459a69a9a21884ee93d286e99b54c5f,Optimizing Apparent Display Resolution Enhancement for Arbitrary Videos,"Optimizing Apparent Display Resolution +Enhancement for Arbitrary Videos +Michael Stengel*, Member, IEEE, Martin Eisemann, Stephan Wenger, +Benjamin Hell, Marcus Magnor, Member, IEEE"
+401e6b9ada571603b67377b336786801f5b54eee,Active Image Clustering: Seeking Constraints from Humans to Complement Algorithms,"Active Image Clustering: Seeking Constraints from +Humans to Complement Algorithms +November 22, 2011"
+2e8e6b835e5a8f55f3b0bdd7a1ff765a0b7e1b87,Pointly-Supervised Action Localization,"International Journal of Computer Vision manuscript No. +(will be inserted by the editor) +Pointly-Supervised Action Localization +Pascal Mettes · Cees G. M. Snoek +Received: date / Accepted: date"
+2eb37a3f362cffdcf5882a94a20a1212dfed25d9,Local Feature Based Face Recognition,"Local Feature Based Face Recognition +Sanjay A. Pardeshi and Sanjay N. Talbar +R.I.T., Rajaramnagar and S.G.G.S. COE &T, Nanded +India +. Introduction +A reliable automatic face recognition (AFR) system is a need of time because in today's +networked world, maintaining the security of private information or physical property is +ecoming increasingly important and difficult as well. Most of the time criminals have been +taking the advantage of fundamental flaws in the conventional access control systems i.e. +the systems operating on credit card, ATM etc. do not grant access by ""who we are"", but by +""what we have”. The biometric based access control systems have a potential to overcome +most of the deficiencies of conventional access control systems and has been gaining the +importance in recent years. These systems can be designed with biometric traits such as +fingerprint, face, iris, signature, hand geometry etc. But comparison of different biometric +traits shows that face is very attractive biometric because of its non-intrusiveness and social +cceptability. It provides automated methods of verifying or recognizing the identity of a +living person based on its facial characteristics. +In last decade, major advances occurred in face recognition, with many systems capable of +chieving recognition rates greater than 90%. However real-world scenarios remain a +hallenge, because face acquisition process can undergo to a wide range of variations. Hence"
+2e5cfa97f3ecc10ae8f54c1862433285281e6a7c,Generative Adversarial Networks for Improving Face Classification,"Generative Adversarial Networks for Improving Face Classification JONAS NATTEN SUPERVISOR Morten Goodwin, PhD University of Agder, 2017 Faculty of Engineering and Science Department of ICT"
+2e091b311ac48c18aaedbb5117e94213f1dbb529,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,"Collaborative Facial Landmark Localization +for Transferring Annotations Across Datasets +Brandon M. Smith and Li Zhang +University of Wisconsin – Madison +http://www.cs.wisc.edu/~lizhang/projects/collab-face-landmarks/"
+2e1415a814ae9abace5550e4893e13bd988c7ba1,Dictionary Based Face Recognition in Video Using Fuzzy Clustering and Fusion,"International Journal of Engineering Trends and Technology (IJETT) – Volume 21 Number 3 – March 2015 +Dictionary Based Face Recognition in Video Using +Fuzzy Clustering and Fusion +Neeraja K.C.#1, RameshMarivendan E.#2, +#1IInd year M.E. Student, #2Assistant Professor +#1#2ECE Department, Dhanalakshmi Srinivasan College of Engineering, +Coimbatore,Tamilnadu,India. +Anna University."
+2e68190ebda2db8fb690e378fa213319ca915cf8,Generating Videos with Scene Dynamics,"Generating Videos with Scene Dynamics +Carl Vondrick +Hamed Pirsiavash +Antonio Torralba"
+2e0d56794379c436b2d1be63e71a215dd67eb2ca,Improving precision and recall of face recognition in SIPP with combination of modified mean search and LSH,"Improving precision and recall of face recognition in SIPP with combination of +modified mean search and LSH +Xihua.Li"
+2e475f1d496456831599ce86d8bbbdada8ee57ed,Groupsourcing: Team Competition Designs for Crowdsourcing,"Groupsourcing: Team Competition Designs for +Crowdsourcing +Markus Rokicki, Sergej Zerr, Stefan Siersdorfer +L3S Research Center, Hannover, Germany"
+2ef51b57c4a3743ac33e47e0dc6a40b0afcdd522,Leveraging Billions of Faces to Overcome Performance Barriers in Unconstrained Face Recognition,"Leveraging Billions of Faces to Overcome +Performance Barriers in Unconstrained Face +Recognition +Yaniv Taigman and Lior Wolf +face.com +{yaniv,"
+2ed4973984b254be5cba3129371506275fe8a8eb,Victoria Ovsyannikova THE EFFECTS OF MOOD ON EMOTION RECOGNITION AND ITS RELATIONSHIP WITH THE GLOBAL VS LOCAL INFORMATION PROCESSING,"Victoria Ovsyannikova +THE EFFECTS OF MOOD ON +EMOTION RECOGNITION AND +ITS RELATIONSHIP WITH THE +GLOBAL VS LOCAL +INFORMATION PROCESSING +STYLES +BASIC RESEARCH PROGRAM +WORKING PAPERS +SERIES: PSYCHOLOGY +WP BRP 60/PSY/2016 +This Working Paper is an output of a research project implemented at the National Research +University Higher School of Economics (HSE). Any opinions or claims contained in this +Working Paper do not necessarily reflect the views of HSE"
+2e9c780ee8145f29bd1a000585dd99b14d1f5894,Simultaneous Adversarial Training - Learn from Others Mistakes,"Simultaneous Adversarial Training - Learn from +Others’ Mistakes +Zukang Liao +Lite-On Singapore Pte. Ltd, 2Imperial College London"
+2ebc35d196cd975e1ccbc8e98694f20d7f52faf3,Towards Wide-angle Micro Vision Sensors,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. +IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE +Towards Wide-angle Micro Vision Sensors +Sanjeev J. Koppal* +Ioannis Gkioulekas* Travis Young+ Hyunsung Park* +Kenneth B. Crozier* Geoffrey L. Barrows+ Todd Zickler*"
+2ea78e128bec30fb1a623c55ad5d55bb99190bd2,Residual vs. Inception vs. Classical Networks for Low-Resolution Face Recognition,"Residual vs. Inception vs. Classical Networks for +Low-Resolution Face Recognition +Christian Herrmann1,2, Dieter Willersinn2, and J¨urgen Beyerer1,2 +Vision and Fusion Lab, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany +Fraunhofer IOSB, Karlsruhe, Germany +{christian.herrmann,dieter.willersinn,"
+2e0f5e72ad893b049f971bc99b67ebf254e194f7,Apparel Classification with Style,"Apparel Classification with Style +Lukas Bossard1, Matthias Dantone1, Christian Leistner1,2, +Christian Wengert1,3, Till Quack3, Luc Van Gool1,4 +ETH Z¨urich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland +KU Leuven, Belgium"
+2ec7d6a04c8c72cc194d7eab7456f73dfa501c8c,A R Eview on T Exture B Ased E Motion R Ecognition from F Acial E Xpression,"International Journal of Scientific Research and Management Studies (IJSRMS) +ISSN: 2349-3771 +Volume 3 Issue 4, pg: 164-169 +A REVIEW ON TEXTURE BASED EMOTION RECOGNITION +FROM FACIAL EXPRESSION +Rishabh Bhardwaj, 2Amit Kumar Chanchal, 3 Shubham Kashyap, +3 Pankaj Pandey, 3Prashant Kumar +U.G. Scholars, 2Assistant Professor, +Dept. of E & C Engg., MIT Moradabad, Ram Ganga Vihar, Phase II, Moradabad, India."
+2e832d5657bf9e5678fd45b118fc74db07dac9da,"Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative Evaluation","Running head: RECOGNITION OF FACIAL EXPRESSIONS OF EMOTION +Recognition of Facial Expressions of Emotion: The Effects of Anxiety, Depression, and Fear of Negative +Evaluation +Rachel Merchak +Wittenberg University +Rachel Merchak, Psychology Department, Wittenberg University. +Author Note +This research was conducted in collaboration with Dr. Stephanie Little, Psychology Department, +Wittenberg University, and Dr. Michael Anes, Psychology Department, Wittenberg University. +Correspondence concerning this article should be addressed to Rachel Merchak, 10063 Fox +Chase Drive, Loveland, OH 45140. +E‐mail:"
+2b4d092d70efc13790d0c737c916b89952d4d8c7,Robust Facial Expression Recognition using Local Haar Mean Binary Pattern,"JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 32, XXXX-XXXX (2016) +Robust Facial Expression Recognition using Local Haar +Mean Binary Pattern +MAHESH GOYANI1, NARENDRA PATEL2 +,2 Department of Computer Engineering +Charotar University of Science and Technology, Changa, India +Gujarat Technological University, V.V.Nagar, India +E-mail: +In this paper, we propose a hybrid statistical feature extractor, Local Haar Mean Bina- +ry Pattern (LHMBP). It extracts level-1 haar approximation coefficients and computes Local +Mean Binary Pattern (LMBP) of it. LMBP code of pixel is obtained by weighting the +thresholded neighbor value of 3 3 patch on its mean. LHMBP produces highly discrimina- +tive code compared to other state of the art methods. To localize appearance features, ap- +proximation subband is divided into M N regions. LHMBP feature descriptor is derived +y concatenating LMBP distribution of each region. We also propose a novel template +matching strategy called Histogram Normalized Absolute Difference (HNAD) for histogram +ased feature comparison. Experiments prove the superiority of HNAD over well-known +template matching techniques such as L2 norm and Chi-Square. We also investigated +LHMBP for expression recognition in low resolution. The performance of the proposed ap- +proach is tested on well-known CK, JAFFE, and SFEW facial expression datasets in diverse"
+2b0ff4b82bac85c4f980c40b3dc4fde05d3cc23f,An Effective Approach for Facial Expression Recognition with Local Binary Pattern and Support Vector Machine,"An Effective Approach for Facial Expression Recognition with Local Binary +Pattern and Support Vector Machine +Cao Thi Nhan, 2Ton That Hoa An, 3Hyung Il Choi +*1School of Media, Soongsil University, +School of Media, Soongsil University, +School of Media, Soongsil University,"
+2bab44d3a4c5ca79fb8f87abfef4456d326a0445,Player identification in soccer videos,"Player Identification in Soccer Videos +Marco Bertini, Alberto Del Bimbo, and Walter Nunziati +Dipartimento di Sistemi e Informatica, University of Florence +Via S. Marta, 3 - 50139 Florence, Italy"
+2b1327a51412646fcf96aa16329f6f74b42aba89,Improving performance of recurrent neural network with relu nonlinearity,"Under review as a conference paper at ICLR 2016 +IMPROVING PERFORMANCE OF RECURRENT NEURAL +NETWORK WITH RELU NONLINEARITY +Sachin S. Talathi & Aniket Vartak +Qualcomm Research +San Diego, CA 92121, USA"
+2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,A comparative study of active appearance model annotation schemes for the face,"A Comparative Study of Active Appearance Model +Annotation Schemes for the Face +Amrutha Sethuram +Face Aging Group +UNCW, USA +Karl Ricanek +Face Aging Group +UNCW, USA +Eric Patterson +Face Aging Group +UNCW, USA"
+2b632f090c09435d089ff76220fd31fd314838ae,Early Adaptation of Deep Priors in Age Prediction from Face Images,"Early Adaptation of Deep Priors in Age Prediction from Face Images +Mahdi Hajibabaei +Computer Vision Lab +D-ITET, ETH Zurich +Anna Volokitin +Computer Vision Lab +D-ITET, ETH Zurich +Radu Timofte +CVL, D-ITET, ETH Zurich +Merantix GmbH"
+2b507f659b341ed0f23106446de8e4322f4a3f7e,Deep Identity-aware Transfer of Facial Attributes,"Deep Identity-aware Transfer of Facial Attributes +Mu Li1, Wangmeng Zuo2, David Zhang1 +The Hong Kong Polytechnic University 2Harbin Institute of Technology"
+2b8dfbd7cae8f412c6c943ab48c795514d53c4a7,Polynomial based texture representation for facial expression recognition,"014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) +978-1-4799-2893-4/14/$31.00 ©2014 IEEE +e-mail: +e-mail: +RECOGNITION +. INTRODUCTION +(d1,d2)∈[0;d]2 +d1+d2≤d"
+2bae810500388dd595f4ebe992c36e1443b048d2,Analysis of Facial Expression Recognition by Event-related Potentials,"International Journal of Bioelectromagnetism +Vol. 18, No. 1, pp. 13 - 18, 2016 +www.ijbem.org +Analysis of Facial Expression Recognition +y Event-related Potentials +Taichi Hayasaka and Ayumi Miyachi +Department of Information and Computer Engineering, +National Institute of Technology, Toyota College, Japan +Correspondence: Taichi Hayasaka, Department of Information and Computer Engineering, National Institute of Technology, +Toyota College, 2-1 Eisei, Toyota-shi, Aichi, 471-8525 Japan, +E-mail: phone +81 565 36 5861, fax +81 565 36 5926"
+2bbbbe1873ad2800954058c749a00f30fe61ab17,Face Verification across Ages Using Self Organizing Map,"ISSN(Online): 2320-9801 +ISSN (Print): 2320-9798 +International Journal of Innovative Research in Computer and Communication Engineering +(An ISO 3297: 2007 Certified Organization) +Vol.2, Special Issue 1, March 2014 +Proceedings of International Conference On Global Innovations In Computing Technology (ICGICT’14) +Organized by +Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6th & 7th March 2014 +Face Verification across Ages Using Self +Organizing Map +B.Mahalakshmi1, K.Duraiswamy2, P.Gnanasuganya3, P.Aruldhevi4, R.Sundarapandiyan5 +Associate Professor, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India1 +Dean, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India2 +B.E, Department of CSE, K.S.Rangasamy College of Technology, Namakkal, TamilNadu, India3, 4, 5"
+477236563c6a6c6db922045453b74d3f9535bfa1,Attribute Based Image Search Re-Ranking Snehal,"International Journal of Science and Research (IJSR) +ISSN (Online): 2319-7064 +Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 +Attribute Based Image Search Re-Ranking +Snehal S Patil1, Ajay Dani2 +Master of Computer Engg, Savitribai Phule Pune University, G. H. Raisoni Collage of Engg and Technology, Wagholi, Pune +2Professor, Computer and Science Dept, Savitribai Phule Pune University, G. H .Raisoni Collage of Engg and Technology, Wagholi, Pune +integrating +images by"
+4793f11fbca4a7dba898b9fff68f70d868e2497c,Kinship Verification through Transfer Learning,"Kinship Verification through Transfer Learning +Siyu Xia∗ +CSE, SUNY at Buffalo, USA +nd Southeast University, China +Ming Shao∗ +Yun Fu +SUNY at Buffalo, USA +SUNY at Buffalo, USA"
+470dbd3238b857f349ebf0efab0d2d6e9779073a,Unsupervised Simultaneous Orthogonal basis Clustering Feature Selection,"Unsupervised Simultaneous Orthogonal Basis Clustering Feature Selection +Dongyoon Han and Junmo Kim +School of Electrical Engineering, KAIST, South Korea +In this paper, we propose a novel unsupervised feature selection method: Si- +multaneous Orthogonal basis Clustering Feature Selection (SOCFS). To per- +form feature selection on unlabeled data effectively, a regularized regression- +ased formulation with a new type of target matrix is designed. The target +matrix captures latent cluster centers of the projected data points by per- +forming the orthogonal basis clustering, and then guides the projection ma- +trix to select discriminative features. Unlike the recent unsupervised feature +selection methods, SOCFS does not explicitly use the pre-computed local +structure information for data points represented as additional terms of their +objective functions, but directly computes latent cluster information by the +target matrix conducting orthogonal basis clustering in a single unified term +of the proposed objective function. +Since the target matrix is put in a single unified term for regression of +the proposed objective function, feature selection and clustering are simul- +taneously performed. In this way, the projection matrix for feature selection +is more properly computed by the estimated latent cluster centers of the +projected data points. To the best of our knowledge, this is the first valid"
+47541d04ec24662c0be438531527323d983e958e,British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008xxxxxx,Affective Information Processing
+474b461cd12c6d1a2fbd67184362631681defa9e,Multi-resolution fusion of DTCWT and DCT for shift invariant face recognition,"014 IEEE International +Conference on Systems, Man +nd Cybernetics +(SMC 2014) +San Diego, California, USA +5-8 October 2014 +Pages 1-789 +IEEE Catalog Number: +ISBN: +CFP14SMC-POD +978-1-4799-3841-4"
+47d4838087a7ac2b995f3c5eba02ecdd2c28ba14,Automatic Recognition of Deceptive Facial Expressions of Emotion,"JOURNAL OF IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, XXX 2017 +Automatic Recognition of Facial Displays of +Unfelt Emotions +Kaustubh Kulkarni*, Ciprian Adrian Corneanu*, Ikechukwu Ofodile*, Student Member, IEEE, Sergio +Escalera, Xavier Bar´o, Sylwia Hyniewska, Member, IEEE, J¨uri Allik, +nd Gholamreza Anbarjafari, Senior Member, IEEE"
+47a2727bd60e43f3253247b6d6f63faf2b67c54b,Semi-supervised Vocabulary-Informed Learning,"Semi-supervised Vocabulary-informed Learning +Yanwei Fu and Leonid Sigal +Disney Research"
+47d3b923730746bfaabaab29a35634c5f72c3f04,Real-Time Facial Expression Recognition App Development on Smart Phones,"Humaid Alshamsi.et.al. Int. Journal of Engineering Research and Application www.ijera.com +ISSN : 2248-9622, Vol. 7, Issue 7, ( Part -3) July 2017, pp.30-38 +RESEARCH ARTICLE +OPEN ACCESS +Real-Time Facial Expression Recognition App Development on +Smart Phones +Humaid Alshamsi, Veton Kupuska +Electrical And Computer Engineering Department, Florida Institute Of Technology, Melbourne Fl,"
+47e3029a3d4cf0a9b0e96252c3dc1f646e750b14,Facial expression recognition in still pictures and videos using active appearance models: a comparison approach,"International Conference on Computer Systems and Technologies - CompSysTech’07 +Facial Expression Recognition in still pictures and videos using Active +Appearance Models. A comparison approach. +Drago(cid:1) Datcu +Léon Rothkrantz"
+475e16577be1bfc0dd1f74f67bb651abd6d63524,DAiSEE: Towards User Engagement Recognition in the Wild,"DAiSEE: Towards User Engagement Recognition in the Wild +Abhay Gupta +Microsoft +Vineeth N Balasubramanian +Indian Institution of Technology Hyderabad"
+471befc1b5167fcfbf5280aa7f908eff0489c72b,Class-Specific Kernel-Discriminant Analysis for Face Verification,"Class-Specific Kernel-Discriminant +Analysis for Face Verification +Georgios Goudelis, Stefanos Zafeiriou, Anastasios Tefas, Member, IEEE, and Ioannis Pitas, Fellow, IEEE +lass problems ("
+47e8db3d9adb79a87c8c02b88f432f911eb45dc5,MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization,"MAGMA: Multi-level accelerated gradient mirror descent algorithm for +large-scale convex composite minimization +Vahan Hovhannisyan +Panos Parpas +Stefanos Zafeiriou +July 15, 2016"
+47bf7a8779c68009ea56a7c20e455ccdf0e3a8fa,Automatic Face Recognition System using Pattern Recognition Techniques: A Survey,"International Journal of Computer Applications (0975 – 8887) +Volume 83 – No 5, December 2013 +Automatic Face Recognition System using Pattern +Recognition Techniques: A Survey +Ningthoujam Sunita Devi Prof.K.Hemachandran +Department of Computer Science Department of Computer Science +Assam University, Silchar-788011 Assam University, Silchar-788011"
+47b508abdaa5661fe14c13e8eb21935b8940126b,An Efficient Method for Feature Extraction of Face Recognition Using PCA,"Volume 4, Issue 12, December 2014 ISSN: 2277 128X +International Journal of Advanced Research in +Computer Science and Software Engineering +Research Paper +Available online at: www.ijarcsse.com +An Efficient Method for Feature Extraction of Face +Recognition Using PCA +Tara Prasad Singh +(M.Tech. Student) +Computer Science & Engineering +Iftm University,Moradabad-244001 U.P."
+782188821963304fb78791e01665590f0cd869e8,Automatic Spatially-Aware Fashion Concept Discovery,"sleevelengthincreasing dress length+ mini =(b) Structured product browsing(c) Attribute-feedback product retrieval(a) Concept discoveryminimidimaxisleevelessshort-sleevelong-sleeveblueblackredyellowFigure1.(a)Weproposeaconceptdiscoveryapproachtoauto-maticallyclusterspatially-awareattributesintomeaningfulcon-cepts.Thediscoveredspatially-awareconceptsarefurtherutilizedfor(b)structuredproductbrowsing(visualizingimagesaccordingtoselectedconcepts)and(c)attribute-feedbackproductretrieval(refiningsearchresultsbyprovidingadesiredattribute).variousfeedback,includingtherelevanceofdisplayedim-ages[20,4],ortuningparameterslikecolorandtexture,andthenresultsareupdatedcorrespondingly.However,rel-evancefeedbackislimitedduetoitsslowconvergencetomeetthecustomerrequirements.Inadditiontocolorandtexture,customersoftenwishtoexploithigher-levelfea-tures,suchasneckline,sleevelength,dresslength,etc.Semanticattributes[13],whichhavebeenappliedef-fectivelytoobjectcategorization[15,27]andfine-grainedrecognition[12]couldpotentiallyaddresssuchchallenges.Theyaremid-levelrepresentationsthatdescribesemanticproperties.Recently,researchershaveannotatedclotheswithsemanticattributes[9,2,8,16,11](e.g.,material,pat-tern)asintermediaterepresentationsorsupervisorysignalstobridgethesemanticgap.However,annotatingsemanticattributesiscostly.Further,attributesconditionedonob-jectpartshaveachievedgoodperformanceinfine-grainedrecognition[3,33],confirmingthatspatialinformationiscriticalforattributes.Thisalsoholdsforclothingimages.Forexample,thenecklineattributeusuallycorrespondstothetoppartinimageswhilethesleeveattributeordinarily1"
+78f08cc9f845dc112f892a67e279a8366663e26d,Semi-Autonomous Data Enrichment and Optimisation for Intelligent Speech Analysis,"TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +Semi-Autonomous Data Enrichment and +Optimisation for Intelligent Speech Analysis +Zixing Zhang +Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs (Dr.-Ing.) +genehmigten Dissertation. +Vorsitzender: +Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Alexander W. Koch +Pr¨ufer der Dissertation: +Univ.-Prof. Dr.-Ing. habil. Bj¨orn W. Schuller, +Universit¨at Passau +. Univ.-Prof. Gordon Cheng, Ph.D. +Die Dissertation wurde am 30.09.2014 bei der Technischen Universit¨at M¨unchen einge- +reicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am 07.04.2015 +ngenommen."
+783f3fccde99931bb900dce91357a6268afecc52,Adapted Active Appearance Models,"Hindawi Publishing Corporation +EURASIP Journal on Image and Video Processing +Volume 2009, Article ID 945717, 14 pages +doi:10.1155/2009/945717 +Research Article +Adapted Active Appearance Models +Renaud S´eguier,1 Sylvain Le Gallou,2 Gaspard Breton,2 and Christophe Garcia2 +SUP ´ELEC/IETR, Avenue de la Boulaie, 35511 Cesson-S´evign´e, France +Orange Labs—TECH/IRIS, 4 rue du clos courtel, 35 512 Cesson S´evign´e, France +Correspondence should be addressed to Renaud S´eguier, +Received 5 January 2009; Revised 2 September 2009; Accepted 20 October 2009 +Recommended by Kenneth M. Lam +Active Appearance Models (AAMs) are able to align efficiently known faces under duress, when face pose and illumination are +ontrolled. We propose Adapted Active Appearance Models to align unknown faces in unknown poses and illuminations. Our +proposal is based on the one hand on a specific transformation of the active model texture in an oriented map, which changes the +AAM normalization process; on the other hand on the research made in a set of different precomputed models related to the most +dapted AAM for an unknown face. Tests on public and private databases show the interest of our approach. It becomes possible +to align unknown faces in real-time situations, in which light and pose are not controlled. +Copyright © 2009 Renaud S´eguier et al. This is an open access article distributed under the Creative Commons Attribution +License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly"
+78f438ed17f08bfe71dfb205ac447ce0561250c6,Bridging the Semantic Gap : Image and video Understanding by Exploiting Attributes,
+781c2553c4ed2a3147bbf78ad57ef9d0aeb6c7ed,Tubelets: Unsupervised Action Proposals from Spatiotemporal Super-Voxels,"Int J Comput Vis +DOI 10.1007/s11263-017-1023-9 +Tubelets: Unsupervised Action Proposals from Spatiotemporal +Super-Voxels +Mihir Jain1 +Cees G. M. Snoek1 +· Jan van Gemert2 · Hervé Jégou3 · Patrick Bouthemy3 · +Received: 25 June 2016 / Accepted: 18 May 2017 +© The Author(s) 2017. This article is an open access publication"
+78df7d3fdd5c32f037fb5cc2a7c104ac1743d74e,Temporal Pyramid Pooling-Based Convolutional Neural Network for Action Recognition,"TEMPORAL PYRAMID POOLING CNN FOR ACTION RECOGNITION +Temporal Pyramid Pooling Based Convolutional +Neural Network for Action Recognition +Peng Wang, Yuanzhouhan Cao, Chunhua Shen, Lingqiao Liu, and Heng Tao Shen"
+78fdf2b98cf6380623b0e20b0005a452e736181e,Dense Wide-Baseline Stereo with Varying Illumination and its Application to Face Recognition,
+787c1bb6d1f2341c5909a0d6d7314bced96f4681,"Face Detection and Verification in Unconstrained Videos: Challenges, Detection, and Benchmark Evaluation","Face Detection and Verification in Unconstrained +Videos: Challenges, Detection, and Benchmark +Evaluation +Mahek Shah +IIIT-D-MTech-CS-GEN-13-106 +July 16, 2015 +Indraprastha Institute of Information Technology, Delhi +Thesis Advisors +Dr. Mayank Vatsa +Dr. Richa Singh +Submitted in partial fulfillment of the requirements +for the Degree of M.Tech. in Computer Science +(cid:13) Shah, 2015 +Keywords: face recognition, face detection, face verification"
+7808937b46acad36e43c30ae4e9f3fd57462853d,Describing people: A poselet-based approach to attribute classification,"Describing People: A Poselet-Based Approach to Attribute Classification ∗ +Lubomir Bourdev1,2, Subhransu Maji1 and Jitendra Malik1 +EECS, U.C. Berkeley, Berkeley, CA 94720 +Adobe Systems, Inc., 345 Park Ave, San Jose, CA 95110"
+8b2c090d9007e147b8c660f9282f357336358061,Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks,"Lake Forest College +Lake Forest College Publications +Senior Theses +-23-2018 +Student Publications +Emotion Classification based on Expressions and +Body Language using Convolutional Neural +Networks +Aasimah S. Tanveer +Lake Forest College, +Follow this and additional works at: https://publications.lakeforest.edu/seniortheses +Part of the Neuroscience and Neurobiology Commons +Recommended Citation +Tanveer, Aasimah S., ""Emotion Classification based on Expressions and Body Language using Convolutional Neural Networks"" +(2018). Senior Theses. +This Thesis is brought to you for free and open access by the Student Publications at Lake Forest College Publications. It has been accepted for +inclusion in Senior Theses by an authorized administrator of Lake Forest College Publications. For more information, please contact"
+8bed7ff2f75d956652320270eaf331e1f73efb35,Emotion Recognition in the Wild using Deep Neural Networks and Bayesian Classifiers,"Emotion Recognition in the Wild using +Deep Neural Networks and Bayesian Classifiers +Luca Surace +Elena Ba(cid:138)ini S¨onmez +University of Calabria - DeMACS +Via Pietro Bucci +Rende (CS), Italy +Massimiliano Patacchiola +Plymouth University - CRNS +Portland Square PL4 8AA +Plymouth, United Kingdom +c.uk +Istanbul Bilgi University - DCE +Eski Silahtaraa Elektrik Santral Kazm +Karabekir Cad. No: 2/13 34060 Eyp +Istanbul, Turkey +William Spataro +University of Calabria - DeMACS +Via Pietro Bucci +Rende (CS), Italy"
+8b7191a2b8ab3ba97423b979da6ffc39cb53f46b,Search pruning in video surveillance systems: Efficiency-reliability tradeoff,"Search Pruning in Video Surveillance Systems: Efficiency-Reliability Tradeoff +Antitza Dantcheva, Arun Singh, Petros Elia, Jean-Luc Dugelay +EURECOM +Sophia Antipolis, France +{Antitza.Dantcheva, Arun.Singh, Petros.Elia,"
+8bf57dc0dd45ed969ad9690033d44af24fd18e05,Subject-Independent Emotion Recognition from Facial Expressions using a Gabor Feature RBF Neural Classifier Trained with Virtual Samples Generated by Concurrent Self-Organizing Maps,"Subject-Independent Emotion Recognition from Facial Expressions +using a Gabor Feature RBF Neural Classifier Trained with Virtual +Samples Generated by Concurrent Self-Organizing Maps +VICTOR-EMIL NEAGOE, ADRIAN-DUMITRU CIOTEC +Depart. Electronics, Telecommunications & Information Technology +Polytechnic University of Bucharest +Splaiul Independentei No. 313, Sector 6, Bucharest, +ROMANIA"
+8b744786137cf6be766778344d9f13abf4ec0683,And Summarization by Sub-modular Inference,"978-1-4799-9988-0/16/$31.00 ©2016 IEEE +ICASSP 2016"
+8bf647fed40bdc9e35560021636dfb892a46720e,Learning to hash-tag videos with Tag2Vec,"Learning to Hash-tag Videos with Tag2Vec +Aditya Singh +Saurabh Saini +Rajvi Shah +CVIT, KCIS, IIIT Hyderabad, India +P J Narayanan +http://cvit.iiit.ac.in/research/projects/tag2vec +Figure 1. Learning a direct mapping from videos to hash-tags : sample frames from short video clips with user-given hash-tags +(left); a sample frame from a query video and hash-tags suggested by our system for this query (right)."
+8bb21b1f8d6952d77cae95b4e0b8964c9e0201b0,Multimodal Interaction on a Social Robotic Platform,"Methoden +t 11/2013 +(cid:2)(cid:2)(cid:2) +Multimodale Interaktion +uf einer sozialen Roboterplattform +Multimodal Interaction on a Social Robotic Platform +Jürgen Blume +Korrespondenzautor: +, Tobias Rehrl, Gerhard Rigoll, Technische Universität München +Zusammenfassung Dieser Beitrag beschreibt die multimo- +dalen Interaktionsmöglichkeiten mit der Forschungsroboter- +plattform ELIAS. Zunächst wird ein Überblick über die Ro- +oterplattform sowie die entwickelten Verarbeitungskompo- +nenten gegeben, die Einteilung dieser Komponenten erfolgt +nach dem Konzept von wahrnehmenden und agierenden Mo- +dalitäten. Anschließend wird das Zusammenspiel der Kom- +ponenten in einem multimodalen Spieleszenario näher be- +trachtet. (cid:2)(cid:2)(cid:2) Summary +This paper presents the mul- +timodal"
+8b1db0894a23c4d6535b5adf28692f795559be90,How Reliable are Your Visual Attributes?,"Biometric and Surveillance Technology for Human and Activity Identification X, edited by Ioannis Kakadiaris, +Walter J. Scheirer, Laurence G. Hassebrook, Proc. of SPIE Vol. 8712, 87120Q · © 2013 SPIE +CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2018974 +Proc. of SPIE Vol. 8712 87120Q-1 +From: http://proceedings.spiedigitallibrary.org/ on 06/07/2013 Terms of Use: http://spiedl.org/terms"
+134db6ca13f808a848321d3998e4fe4cdc52fbc2,Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences,"IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 +Dynamics of Facial Expression: Recognition of +Facial Actions and Their Temporal Segments +From Face Profile Image Sequences +Maja Pantic, Member, IEEE, and Ioannis Patras, Member, IEEE"
+133dd0f23e52c4e7bf254e8849ac6f8b17fcd22d,Active Clustering with Model-Based Uncertainty Reduction,"This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI +Active Clustering with Model-Based +Uncertainty Reduction +Caiming Xiong, David M. Johnson, and Jason J. Corso Senior Member, IEEE"
+1369e9f174760ea592a94177dbcab9ed29be1649,Geometrical facial modeling for emotion recognition,"Geometrical Facial Modeling for Emotion Recognition +Giampaolo L. Libralon and Roseli A. F. Romero"
+133900a0e7450979c9491951a5f1c2a403a180f0,Social Grouping for Multi-Target Tracking and Head Pose Estimation in Video,"JOURNAL OF LATEX CLASS FILES +Social Grouping for Multi-target Tracking and +Head Pose Estimation in Video +Zhen Qin and Christian R. Shelton"
+13db9466d2ddf3c30b0fd66db8bfe6289e880802,Transfer Subspace Learning Model for Face Recognition at a Distance,"I.J. Image, Graphics and Signal Processing, 2017, 1, 27-32 +Published Online January 2017 in MECS (http://www.mecs-press.org/) +DOI: 10.5815/ijigsp.2017.01.04 +Transfer Subspace Learning Model for Face +Recognition at a Distance +Alwin Anuse +MIT, Pune ,India +Email: +Nilima Deshmukh +AISSM’S IOT,India +Email: +Vibha Vyas +College of Engineering Pune,India +Email: +learning algorithms work"
+13141284f1a7e1fe255f5c2b22c09e32f0a4d465,Object Tracking by Oversampling Local Features,"Object Tracking by +Oversampling Local Features +Federico Pernici and Alberto Del Bimbo"
+1394ca71fc52db972366602a6643dc3e65ee8726,EmoReact: a multimodal approach and dataset for recognizing emotional responses in children,"See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308407783 +EmoReact: A Multimodal Approach and Dataset +for Recognizing Emotional Responses in Children +Conference Paper · November 2016 +DOI: 10.1145/2993148.2993168 +CITATIONS +READS +authors, including: +Behnaz Nojavanasghari +University of Central Florida +PUBLICATIONS 20 CITATIONS +Tadas Baltrusaitis +Carnegie Mellon University +0 PUBLICATIONS 247 CITATIONS +SEE PROFILE +SEE PROFILE +Charles E. Hughes +University of Central Florida +85 PUBLICATIONS 1,248 CITATIONS +SEE PROFILE"
+133da0d8c7719a219537f4a11c915bf74c320da7,A Novel Method for 3D Image Segmentation with Fusion of Two Images using Color K-means Algorithm,"International Journal of Computer Applications (0975 – 8887) +Volume 123 – No.4, August 2015 +A Novel Method for 3D Image Segmentation with Fusion +of Two Images using Color K-means Algorithm +Neelam Kushwah +Dept. of CSE +ITM Universe +Gwalior +Priusha Narwariya +Dept. of CSE +ITM Universe +Gwalior"
+133f01aec1534604d184d56de866a4bd531dac87,Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics,"Effective Unconstrained Face Recognition by +Combining Multiple Descriptors and Learned +Background Statistics +Lior Wolf, Member, IEEE, Tal Hassner, and Yaniv Taigman"
+13841d54c55bd74964d877b4b517fa94650d9b65,Generalised ambient reflection models for Lambertian and Phong surfaces,"Generalised Ambient Reflection Models for Lambertian and +Phong Surfaces +Author +Zhang, Paul, Gao, Yongsheng +Published +Conference Title +Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009) +https://doi.org/10.1109/ICIP.2009.5413812 +Copyright Statement +© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/ +republish this material for advertising or promotional purposes or for creating new collective +works for resale or redistribution to servers or lists, or to reuse any copyrighted component of +this work in other works must be obtained from the IEEE. +Downloaded from +http://hdl.handle.net/10072/30001 +Griffith Research Online +https://research-repository.griffith.edu.au"
+13f6ab2f245b4a871720b95045c41a4204626814,Cortex commands the performance of skilled movement,"RESEARCH ARTICLE +Cortex commands the performance of +skilled movement +Jian-Zhong Guo, Austin R Graves, Wendy W Guo, Jihong Zheng, Allen Lee, +Juan Rodrı´guez-Gonza´ lez, Nuo Li, John J Macklin, James W Phillips, +Brett D Mensh, Kristin Branson, Adam W Hantman* +Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United +States"
+13afc4f8d08f766479577db2083f9632544c7ea6,Multiple kernel learning for emotion recognition in the wild,"Multiple Kernel Learning for +Emotion Recognition in the Wild +Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, +Gwen Littlewort and Marian S. Bartlett +Machine Perception Laboratory +EmotiW Challenge, ICMI, 2013"
+13188a88bbf83a18dd4964e3f89d0bc0a4d3a0bd,Image Normalization Robust using Histogram Equalization and Logarithm Transform Frequency DCT Coefficients for Illumination in Facial Images,"Dr. V. S. Manjula +HOD, Department of Computer Science, St. Joseph College of Information Technology, Songea, Tanzania"
+13d9da779138af990d761ef84556e3e5c1e0eb94,Learning to Locate Informative Features for Visual Identification,"Int J Comput Vis (2008) 77: 3–24 +DOI 10.1007/s11263-007-0093-5 +Learning to Locate Informative Features for Visual Identification +Andras Ferencz · Erik G. Learned-Miller · +Jitendra Malik +Received: 18 August 2005 / Accepted: 11 September 2007 / Published online: 9 November 2007 +© Springer Science+Business Media, LLC 2007"
+7f511a6a2b38a26f077a5aec4baf5dffc981d881,Low-Latency Human Action Recognition with Weighted Multi-Region Convolutional Neural Network,"LOW-LATENCY HUMAN ACTION RECOGNITION WITH WEIGHTED MULTI-REGION +CONVOLUTIONAL NEURAL NETWORK +Yunfeng Wang(cid:63), Wengang Zhou(cid:63), Qilin Zhang†, Xiaotian Zhu(cid:63), Houqiang Li(cid:63) +(cid:63)University of Science and Technology of China, Hefei, Anhui, China +HERE Technologies, Chicago, Illinois, USA"
+7ff42ee09c9b1a508080837a3dc2ea780a1a839b,Data Fusion for Real-time Multimodal Emotion Recognition through Webcams and Microphones in E-Learning,"Data Fusion for Real-time Multimodal Emotion Recognition through Webcams +nd Microphones in E-Learning +Kiavash Bahreini*, Rob Nadolski*, Wim Westera* +*Welten Institute, Research Centre for Learning, Teaching and Technology, Faculty of +Psychology and Educational Sciences, Open University of the Netherlands, Valkenburgerweg +77, 6419 AT Heerlen, The Netherlands +{kiavash.bahreini, rob.nadolski,"
+7f533bd8f32525e2934a66a5b57d9143d7a89ee1,Audio-Visual Identity Grounding for Enabling Cross Media Search,"Audio-Visual Identity Grounding for Enabling Cross Media Search +Kevin Brady, MIT Lincoln Laboratory +Paper ID 22"
+7f44f8a5fd48b2d70cc2f344b4d1e7095f4f1fe5,Sparse Output Coding for Scalable Visual Recognition,"Int J Comput Vis (2016) 119:60–75 +DOI 10.1007/s11263-015-0839-4 +Sparse Output Coding for Scalable Visual Recognition +Bin Zhao1 · Eric P. Xing1 +Received: 15 May 2013 / Accepted: 16 June 2015 / Published online: 26 June 2015 +© Springer Science+Business Media New York 2015"
+7f4bc8883c3b9872408cc391bcd294017848d0cf,The Multimodal Focused Attribute Model : A Nonparametric Bayesian Approach to Simultaneous Object Classification and Attribute Discovery,"Computer +Sciences +Department +The Multimodal Focused Attribute Model: A Nonparametric +Bayesian Approach to Simultaneous Object Classification and +Attribute Discovery +Jake Rosin +Charles R. Dyer +Xiaojin Zhu +Technical Report #1697 +January 2012"
+7f6061c83dc36633911e4d726a497cdc1f31e58a,YouTube-8M: A Large-Scale Video Classification Benchmark,"YouTube-8M: A Large-Scale Video Classification +Benchmark +Sami Abu-El-Haija +George Toderici +Nisarg Kothari +Joonseok Lee +Paul Natsev +Balakrishnan Varadarajan +Sudheendra Vijayanarasimhan +Google Research"
+7f36dd9ead29649ed389306790faf3b390dc0aa2,Movement Differences between Deliberate and Spontaneous Facial Expressions: Zygomaticus Major Action in Smiling.,"MOVEMENT DIFFERENCES BETWEEN DELIBERATE +AND SPONTANEOUS FACIAL EXPRESSIONS: +ZYGOMATICUS MAJOR ACTION IN SMILING +Karen L. Schmidt, Zara Ambadar, Jeffrey F. Cohn, and L. Ian Reed"
+7f6cd03e3b7b63fca7170e317b3bb072ec9889e0,A Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes,"A Face Recognition Signature Combining Patch-based +Features with Soft Facial Attributes +L. Zhang, P. Dou, I.A. Kakadiaris +Computational Biomedicine Lab, 4849 Calhoun Rd, Rm 373, Houston, TX 77204"
+7f97a36a5a634c30de5a8e8b2d1c812ca9f971ae,Incremental Classifier Learning with Generative Adversarial Networks,"Incremental Classifier Learning with Generative Adversarial Networks +Yue Wu1 Yinpeng Chen2 Lijuan Wang2 Yuancheng Ye3 +Zicheng Liu2 Yandong Guo2 Zhengyou Zhang2 Yun Fu1 +Northeastern University 2Microsoft Research 3City University of New York"
+7f268f29d2c8f58cea4946536f5e2325777fa8fa,Facial Emotion Recognition in Curvelet Domain,"Facial Emotion Recognition in Curvelet Domain +Gyanendra K Verma and Bhupesh Kumar Singh +Indian Institute of Informaiton Technology, Allahabad, India +Allahabad, India - 211012"
+7f3a73babe733520112c0199ff8d26ddfc7038a0,Robust Face Identification with Small Sample Sizes using Bag of Words and Histogram of Oriented Gradients,
+7af38f6dcfbe1cd89f2307776bcaa09c54c30a8b,Learning in Computer Vision and Beyond: Development,"eaig i C e Vii ad Beyd: +Deve +h . Weg +Deae f C e Sciece +ichiga Sae Uiveiy +Ea aig 48824 +Abac +Thi chae id ce wha i ca +aic +ve +y h a cgiive deve +ih i deeied befe he \bih"" f he ye. Afe he \bih"" i eab + +ach i ea +deve +way aia + ea whi +de deve +7a81967598c2c0b3b3771c1af943efb1defd4482,Do We Need More Training Data?,"Do We Need More Training Data? +Xiangxin Zhu · Carl Vondrick · Charless C. Fowlkes · Deva Ramanan"
+7ae0212d6bf8a067b468f2a78054c64ea6a577ce,Human Face Processing Techniques With Application To Large Scale Video Indexing,"Human Face Processing Techniques +With Application To +Large Scale Video Indexing +LE DINH DUY +DOCTOR OF +PHILOSOPHY +Department of Informatics, +School of Multidisciplinary Sciences, +The Graduate University for Advanced Studies (SOKENDAI) +006 (School Year) +September 2006"
+7a0fb972e524cb9115cae655e24f2ae0cfe448e0,Facial Expression Classification Using RBF AND Back-Propagation Neural Networks,"Facial Expression Classification Using RBF AND Back-Propagation Neural Networks +R.Q.Feitosa1,2, +M.M.B.Vellasco1,2, +D.T.Oliveira1, +D.V.Andrade1, +S.A.R.S.Maffra1 +– Catholic University of Rio de Janeiro, Brazil +Department of Electric Engineering +– State University of Rio de Janeiro, Brazil +Department of Computer Engineering +e-mail: [raul, -rio.br, [diogo,"
+7ad77b6e727795a12fdacd1f328f4f904471233f,Supervised Local Descriptor Learning for Human Action Recognition,"Supervised Local Descriptor Learning +for Human Action Recognition +Xiantong Zhen, Feng Zheng, Ling Shao, Senior Member, IEEE, Xianbin Cao, Senior Member, IEEE, and Dan Xu"
+7a97de9460d679efa5a5b4c6f0b0a5ef68b56b3b,Constrained Joint Cascade Regression Framework for Simultaneous Facial Action Unit Recognition and Facial Landmark Detection,"nd Face shape relationship2)AU relationship3)Face shape patternUpdate facial landmark locationsUpdate AU activation probabilitiesAU activation probabilitiesCurrent landmark locationsFigure1.Constrainedjointcascaderegressionframeworkforsi-multaneousfacialactionunitrecognitionandlandmarkdetection.wouldenablethemachineunderstandingofhumanfacialbehavior,intent,emotionetc.Facialactionunitrecognitionandfaciallandmarkdetec-tionarerelatedtasks,buttheyareseldomlyexploitedjointlyintheliteratures.Forexample,thefaceshapedefinedbythelandmarklocationsareconsideredaseffectivefeaturesforAUrecognition.But,thelandmarklocationinforma-tionisusuallyextractedbeforehandwithfaciallandmarkdetectionalgorithms.Ontheotherhand,theActionUnitinformationisrarelyutilizedintheliteraturetohelpfaciallandmarkdetection,eventhoughthefacialmusclemove-mentsandtheactivationofspecificfacialactionunitcancausetheappearanceandshapechangesofthefacewhichsignificantlyaffectfaciallandmarkdetection.Themutualinformationandintertwinedrelationshipamongfacialac-tionunitrecognitionandfaciallandmarkdetectionshouldbeutilizedtoboosttheperformancesofbothtasks.Cascaderegressionframeworkhasbeenshowntobeaneffectivemethodforfacealignmentrecently[19][13].Itstartsfromaninitialfaceshape(e.g.meanface)anditit-erativelyupdatesthefaciallandmarklocationsbasedonthelocalappearancefeaturesuntilconvergence.Severalregres-sionmodelshavebeenappliedtolearnthemappingfromthelocalappearancefeaturestothefaceshapeupdate.Toleveragethesuccessofthecascaderegressionframe-workandtoachievethegoalofjointfacialactionunit13400"
+7aa4c16a8e1481629f16167dea313fe9256abb42,Multi-task learning for face identification and attribute estimation,"978-1-5090-4117-6/17/$31.00 ©2017 IEEE +ICASSP 2017"
+7ad7897740e701eae455457ea74ac10f8b307bed,Random Subspace Two-dimensional LDA for Face Recognition,"Random Subspace Two-dimensional LDA for Face Recognition* +Garrett Bingham1"
+7a7b1352d97913ba7b5d9318d4c3d0d53d6fb697,Attend and Rectify: a Gated Attention Mechanism for Fine-Grained Recovery,"Attend and Rectify: a Gated Attention +Mechanism for Fine-Grained Recovery +Pau Rodr´ıguez†, Josep M. Gonfaus‡, Guillem Cucurull†, +F. Xavier Roca†, Jordi Gonz`alez† +Computer Vision Center and Universitat Aut`onoma de Barcelona (UAB), +Campus UAB, 08193 Bellaterra, Catalonia Spain +Visual Tagging Services, Parc de Recerca, Campus UAB"
+7aa062c6c90dba866273f5edd413075b90077b51,Minimizing Separability : A Comparative Analysis of Illumination Compensation Techniques in Face Recognition,"I.J. Information Technology and Computer Science, 2017, 5, 40-51 +Published Online May 2017 in MECS (http://www.mecs-press.org/) +DOI: 10.5815/ijitcs.2017.05.06 +Minimizing Separability: A Comparative Analysis +of Illumination Compensation Techniques in Face +Recognition +Chollette C. Olisah +Department of Computer Science and IT, Baze University, Abuja, Nigeria +E-mail:"
+1451e7b11e66c86104f9391b80d9fb422fb11c01,Image privacy protection with secure JPEG transmorphing,"IET Signal Processing +Research Article +Image privacy protection with secure JPEG +transmorphing +ISSN 1751-9675 +Received on 30th December 2016 +Revised 13th July 2017 +Accepted on 11th August 2017 +doi: 10.1049/iet-spr.2016.0756 +www.ietdl.org +Lin Yuan1 , Touradj Ebrahimi1 +Multimedia Signal Processing Group, Electrical Engineering Department, EPFL, Station 11, Lausanne, Switzerland +E-mail:"
+14761b89152aa1fc280a33ea4d77b723df4e3864,Zero-Shot Learning via Visual Abstraction,
+14fdec563788af3202ce71c021dd8b300ae33051,Social Influence Analysis based on Facial Emotions,"Social Influence Analysis based on Facial Emotions +Pankaj Mishra, Rafik Hadfi, and Takayuki Ito +Department of Computer Science and Engineering +Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555 Japan +{pankaj.mishra,"
+1459d4d16088379c3748322ab0835f50300d9a38,Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning,"Cross-Domain Visual Matching via Generalized +Similarity Measure and Feature Learning +Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang"
+1450296fb936d666f2f11454cc8f0108e2306741,Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,"Learning to Discover Cross-Domain Relations +with Generative Adversarial Networks +Taeksoo Kim 1 Moonsu Cha 1 Hyunsoo Kim 1 Jung Kwon Lee 1 Jiwon Kim 1"
+1442319de86d171ce9595b20866ec865003e66fc,Vision-Based Fall Detection with Convolutional Neural Networks,"Vision-Based Fall Detection with Convolutional +Neural Networks +Adri´an Nu˜nez-Marcos1, Gorka Azkune1, Ignacio Arganda-Carreras234 +DeustoTech - University of Deusto +Avenida de las Universidades, 24 - 48007, Bilbao, Spain +Dept. of Computer Science and Artificial Intelligence, Basque +Country University, San Sebastian, Spain +P. Manuel Lardizabal, 1 - 20018, San Sebastian, Spain +Ikerbasque, Basque Foundation for Science, Bilbao, Spain +Maria Diaz de Haro, 3 - 48013 Bilbao, Spain +Donostia International Physics Center (DIPC), San Sebastian, Spain +P. Manuel Lardizabal, 4 - 20018, San Sebastian, Spain"
+1462bc73834e070201acd6e3eaddd23ce3c1a114,Face Authentication /recognition System for Forensic Application Using Sketch Based on the Sift Features Approach,"International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 4, April 2014 +FACE AUTHENTICATION /RECOGNITION +SYSTEM FOR FORENSIC APPLICATION +USING SKETCH BASED ON THE SIFT +FEATURES APPROACH +Poonam A. Katre +Department of Electronics Engineering KITS, +RTMNU Nagpur University, India"
+140c95e53c619eac594d70f6369f518adfea12ef,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,"Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A +Brendan F. Klare, Emma Taborsky , Austin Blanton , Jordan Cheney , Kristen Allen , Patrick Grother , Alan Mah , Anil K. Jain +The development of accurate and scalable unconstrained face recogni- +tion algorithms is a long term goal of the biometrics and computer vision +ommunities. The term “unconstrained” implies a system can perform suc- +essful identifications regardless of face image capture presentation (illumi- +nation, sensor, compression) or subject conditions (facial pose, expression, +occlusion). While automatic, as well as human, face identification in certain +scenarios may forever be elusive, such as when a face is heavily occluded or +aptured at very low resolutions, there still remains a large gap between au- +tomated systems and human performance on familiar faces. In order to close +this gap, large annotated sets of imagery are needed that are representative +of the end goals of unconstrained face recognition. This will help continue +to push the frontiers of unconstrained face detection and recognition, which +re the primary goals of the IARPA Janus program. +The current state of the art in unconstrained face recognition is high +ccuracy (roughly 99% true accept rate at a false accept rate of 1.0%) on +faces that can be detected with a commodity face detectors, but unknown +ccuracy on other faces. Despite the fact that face detection and recognition +research generally has advanced somewhat independently, the frontal face"
+1467c4ab821c3b340abe05a1b13a19318ebbce98,Multitask and transfer learning for multi-aspect data,"Multitask and Transfer Learning for +Multi-Aspect Data +Bernardino Romera Paredes +A dissertation submitted in partial fulfillment +of the requirements for the degree of +Doctor of Philosophy of University College London."
+142dcfc3c62b1f30a13f1f49c608be3e62033042,Adaptive region pooling for object detection,"Adaptive Region Pooling for Object Detection +Yi-Hsuan Tsai +UC Merced +Onur C. Hamsici +Qualcomm Research, San Diego +Ming-Hsuan Yang +UC Merced"
+14e428f2ff3dc5cf96e5742eedb156c1ea12ece1,Facial Expression Recognition Using Neural Network Trained with Zernike Moments,"Facial Expression Recognition Using Neural Network Trained with Zernike +Moments +Mohammed Saaidia +Dept. Génie-Electrique +Université M.C.M Souk-Ahras +Souk-Ahras, Algeria"
+14a5feadd4209d21fa308e7a942967ea7c13b7b6,Content-based vehicle retrieval using 3D model and part information,"978-1-4673-0046-9/12/$26.00 ©2012 IEEE +ICASSP 2012"
+14fee990a372bcc4cb6dc024ab7fc4ecf09dba2b,Modeling Spatio-Temporal Human Track Structure for Action Localization,"Modeling Spatio-Temporal Human Track Structure for Action +Localization +Guilhem Ch´eron · Anton Osokin · Ivan Laptev · Cordelia Schmid"
+14ee4948be56caeb30aa3b94968ce663e7496ce4,SmileNet: Registration-Free Smiling Face Detection,"SmileNet: Registration-Free Smiling Face Detection In The Wild. +Jang, Y; Gunes, H; Patras, I +© Copyright 2018 IEEE +For additional information about this publication click this link. +http://qmro.qmul.ac.uk/xmlui/handle/123456789/36405 +Information about this research object was correct at the time of download; we occasionally +make corrections to records, please therefore check the published record when citing. For +more information contact"
+8ee62f7d59aa949b4a943453824e03f4ce19e500,Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions,"Robust Head-Pose Estimation Based on +Partially-Latent Mixture of Linear Regression +Vincent Drouard∗, Radu Horaud∗, Antoine Deleforge†, Sil`eye Ba∗ and Georgios Evangelidis∗ +INRIA Grenoble Rhˆone-Alpes, Montbonnot Saint-Martin, France +INRIA Rennes Bretagne Atlantique, Rennes, France"
+8e33183a0ed7141aa4fa9d87ef3be334727c76c0,Robustness of Face Recognition to Image Manipulations,"– COS429 Written Report, Fall 2017 – +Robustness of Face Recognition to Image Manipulations +Cathy Chen (cc27), Zachary Liu (zsliu), and Lindy Zeng (lindy) +. Motivation +We can often recognize pictures of people we know even if the image has low resolution or obscures +part of the face, if the camera angle resulted in a distorted image of the subject’s face, or if the +subject has aged or put on makeup since we last saw them. Although this is a simple recognition task +for a human, when we think about how we accomplish this task, it seems non-trivial for computer +lgorithms to recognize faces despite visual changes. +Computer facial recognition is relied upon for many application where accuracy is important. +Facial recognition systems have applications ranging from airport security and suspect identification +to personal device authentication and face tagging [7]. In these real-world applications, the system +must continue to recognize images of a person who looks slightly different due to the passage of +time, a change in environment, or a difference in clothing. +Therefore, we are interested in investigating face recognition algorithms and their robustness to +image changes resulting from realistically plausible manipulations. Furthermore, we are curious +bout whether the impact of image manipulations on computer algorithms’ face recognition ability +mirrors related insights from neuroscience about humans’ face recognition abilities. +. Goal +In this project, we implement both face recognition algorithms and image manipulations. We then"
+8e3d0b401dec8818cd0245c540c6bc032f169a1d,McGan: Mean and Covariance Feature Matching GAN,"McGan: Mean and Covariance Feature Matching GAN +Youssef Mroueh * 1 2 Tom Sercu * 1 2 Vaibhava Goel 2"
+8e94ed0d7606408a0833e69c3185d6dcbe22bbbe,For your eyes only,"© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE +must be obtained for all other uses, in any current or future media, including +reprinting/republishing this material for advertising or promotional purposes, +reating new collective works, for resale or redistribution to servers or lists, or +reuse of any copyrighted component of this work in other works. +Pre-print of article that will appear at WACV 2012."
+8e461978359b056d1b4770508e7a567dbed49776,LOMo: Latent Ordinal Model for Facial Analysis in Videos,"LOMo: Latent Ordinal Model for Facial Analysis in Videos +Karan Sikka1,∗ +Gaurav Sharma2,3,† +Marian Bartlett1,∗,‡ +UCSD, USA +MPI for Informatics, Germany +IIT Kanpur, India"
+8ea30ade85880b94b74b56a9bac013585cb4c34b,From turbo hidden Markov models to turbo state-space models [face recognition applications],"FROM TURBO HIDDEN MARKOV MODELS TO TURBO STATE-SPACE MODELS +Florent Perronnin and Jean-Luc Dugelay +Institut Eur´ecom +Multimedia Communications Department +BP 193, 06904 Sophia Antipolis Cedex, France +fflorent.perronnin,"
+8e8e3f2e66494b9b6782fb9e3f52aeb8e1b0d125,"Detecting and classifying scars, marks, and tattoos found in the wild","in any current or +future media, +for all other uses, + 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be +obtained +including +reprinting/republishing this material for advertising or promotional purposes, creating +new collective works, for resale or redistribution to servers or lists, or reuse of any +opyrighted component of this work in other works. +Pre-print of article that will appear at BTAS 2012.!!"
+8e378ef01171b33c59c17ff5798f30293fe30686,A system for automatic face analysis based on statistical shape and texture models,"Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +der Technischen Universit¨at M¨unchen +A System for Automatic Face Analysis +Based on +Statistical Shape and Texture Models +Ronald M¨uller +Vollst¨andiger Abdruck der von der Fakult¨at +f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen +zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs +genehmigten Dissertation +Vorsitzender: Prof. Dr. rer. nat. Bernhard Wolf +Pr¨ufer der Dissertation: +. Prof. Dr.-Ing. habil. Gerhard Rigoll +. Prof. Dr.-Ing. habil. Alexander W. Koch +Die Dissertation wurde am 28.02.2008 bei der Technischen Universit¨at M¨unchen +eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik +m 18.09.2008 angenommen."
+8ed051be31309a71b75e584bc812b71a0344a019,Class-Based Feature Matching Across Unrestricted Transformations,"Class-based feature matching across unrestricted +transformations +Evgeniy Bart and Shimon Ullman"
+8e36100cb144685c26e46ad034c524b830b8b2f2,Modeling Facial Geometry using Compositional VAEs,"Modeling Facial Geometry using Compositional VAEs +Timur Bagautdinov∗1, Chenglei Wu2, Jason Saragih2, Pascal Fua1, Yaser Sheikh2 +´Ecole Polytechnique F´ed´erale de Lausanne +Facebook Reality Labs, Pittsburgh"
+8e0becfc5fe3ecdd2ac93fabe34634827b21ef2b,Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse Reinforcement Learning,"International Journal of Computer Vision manuscript No. +(will be inserted by the editor) +Learning from Longitudinal Face Demonstration - +Where Tractable Deep Modeling Meets Inverse Reinforcement Learning +Chi Nhan Duong · Kha Gia Quach · Khoa Luu · T. Hoang Ngan Le · Marios +Savvides · Tien D. Bui +Received: date / Accepted: date"
+22043cbd2b70cb8195d8d0500460ddc00ddb1a62,Separability-Oriented Subclass Discriminant Analysis,"Separability-Oriented Subclass Discriminant +Analysis +Huan Wan, Hui Wang, Gongde Guo, Xin Wei"
+22137ce9c01a8fdebf92ef35407a5a5d18730dde,Recognition of Faces from single and Multi-View Videos,
+22264e60f1dfbc7d0b52549d1de560993dd96e46,UnitBox: An Advanced Object Detection Network,"UnitBox: An Advanced Object Detection Network +Jiahui Yu1,2 +Yuning Jiang2 +Zhangyang Wang1 +Zhimin Cao2 +Thomas Huang1 +University of Illinois at Urbana−Champaign +Megvii Inc +{jyu79, zwang119, {jyn,"
+223ec77652c268b98c298327d42aacea8f3ce23f,Acted Facial Expressions In The Wild Database,"TR-CS-11-02 +Acted Facial Expressions In The Wild +Database +Abhinav Dhall, Roland Goecke, Simon +Lucey, Tom Gedeon +September 2011 +ANU Computer Science Technical Report Series"
+228558a2a38a6937e3c7b1775144fea290d65d6c,Nonparametric Context Modeling of Local Appearance for Pose- and Expression-Robust Facial Landmark Localization,"Nonparametric Context Modeling of Local Appearance +for Pose- and Expression-Robust Facial Landmark Localization +Brandon M. Smith1 +Jonathan Brandt2 +University of Wisconsin–Madison +Zhe Lin2 +Adobe Research +Li Zhang1 +http://www.cs.wisc.edu/~lizhang/projects/face-landmark-localization/"
+22fdd8d65463f520f054bf4f6d2d216b54fc5677,Efficient Small and Capital Handwritten Character Recognition with Noise Reduction,"International Journal of Emerging Technology and Advanced Engineering +Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 8, August 2013) +Efficient Small and Capital Handwritten Character +Recognition with Noise Reduction +Beerendra Kumar Pal, Prof. Shailendra Tiwari, Prof. Sandeep Kumar +Department of Computer Science Engg., IES College of Technology, Bhopal"
+2251a88fbccb0228d6d846b60ac3eeabe468e0f1,Matrix-Based Kernel Subspace Methods,"Matrix-Based Kernel Subspace Methods +S. Kevin Zhou +Integrated Data Systems Department +Siemens Corporate Research +755 College Road East, Princeton, NJ 08540 +Email:"
+227b18fab568472bf14f9665cedfb95ed33e5fce,Compositional Dictionaries for Domain Adaptive Face Recognition,"Compositional Dictionaries for Domain Adaptive +Face Recognition +Qiang Qiu, and Rama Chellappa, Fellow, IEEE."
+227b1a09b942eaf130d1d84cdcabf98921780a22,Multi-feature shape regression for face alignment,"Yang et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:51 +https://doi.org/10.1186/s13634-018-0572-6 +EURASIP Journal on Advances +in Signal Processing +R ES EAR CH +Multi-feature shape regression for face +lignment +Wei-Jong Yang, Yi-Chen Chen, Pau-Choo Chung and Jar-Ferr Yang* +Open Access"
+22dabd4f092e7f3bdaf352edd925ecc59821e168,Exploiting side information in locality preserving projection,"Deakin Research Online +This is the published version: +An, Senjian, Liu, Wanquan and Venkatesh, Svetha 2008, Exploiting side information in +locality preserving projection, in CVPR 2008 : Proceedings of the 26th IEEE Conference on +Computer Vision and Pattern Recognition, IEEE, Washington, D. C., pp. 1-8. +Available from Deakin Research Online: +http://hdl.handle.net/10536/DRO/DU:30044576 +Reproduced with the kind permissions of the copyright owner. +Personal use of this material is permitted. However, permission to reprint/republish this +material for advertising or promotional purposes or for creating new collective works for +resale or redistribution to servers or lists, or to reuse any copyrighted component of this work +in other works must be obtained from the IEEE. +Copyright : 2008, IEEE"
+2271d554787fdad561fafc6e9f742eea94d35518,Multimodale Mensch-Roboter-Interaktion für Ambient Assisted Living,"TECHNISCHE UNIVERSIT ¨AT M ¨UNCHEN +Lehrstuhl f¨ur Mensch-Maschine-Kommunikation +Multimodale Mensch-Roboter-Interaktion +f¨ur Ambient Assisted Living +Tobias F. Rehrl +Vollst¨andiger Abdruck der von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik +der Technischen Universit¨at M¨unchen zur Erlangung des akademischen Grades eines +Doktor-Ingenieurs (Dr.-Ing.) +genehmigten Dissertation. +Vorsitzende: +Pr¨ufer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll +. Univ.-Prof. Dr.-Ing. Horst-Michael Groß +Univ.-Prof. Dr.-Ing. Sandra Hirche +(Technische Universit¨at Ilmenau) +Die Dissertation wurde am 17. April 2013 bei der Technischen Universit¨at M¨unchen +eingereicht und durch die Fakult¨at f¨ur Elektrotechnik und Informationstechnik am +8. Oktober 2013 angenommen."
+22e189a813529a8f43ad76b318207d9a4b6de71a,What will Happen Next? Forecasting Player Moves in Sports Videos,"What will Happen Next? +Forecasting Player Moves in Sports Videos +Panna Felsen +UC Berkeley, STATS +Pulkit Agrawal +UC Berkeley +Jitendra Malik +UC Berkeley"
+25c19d8c85462b3b0926820ee5a92fc55b81c35a,Pose-Invariant Facial Expression Recognition Using Variable-Intensity Templates,"Noname manuscript No. +(will be inserted by the editor) +Pose-Invariant Facial Expression Recognition +Using Variable-Intensity Templates +Shiro Kumano · Kazuhiro Otsuka · Junji Yamato · +Eisaku Maeda · Yoichi Sato +Received: date / Accepted: date"
+258a8c6710a9b0c2dc3818333ec035730062b1a5,Benelearn 2005 Annual Machine Learning Conference of Belgium and the Netherlands CTIT P ROCEEDINGS OF THE FOURTEENTH,"Benelearn 2005 +Annual Machine Learning Conference of +Belgium and the Netherlands +CTIT PROCEEDINGS OF THE FOURTEENTH +ANNUAL MACHINE LEARNING CONFERENCE +OF BELGIUM AND THE NETHERLANDS +Martijn van Otterlo, Mannes Poel and Anton Nijholt (eds.)"
+25695abfe51209798f3b68fb42cfad7a96356f1f,An Investigation into Combining Both Facial Detection and Landmark Localisation into a Unified Procedure Using Gpu Computing,"AN INVESTIGATION INTO COMBINING +BOTH FACIAL DETECTION AND +LANDMARK LOCALISATION INTO A +UNIFIED PROCEDURE USING GPU +COMPUTING +J M McDonagh +MSc by Research"
+250ebcd1a8da31f0071d07954eea4426bb80644c,DenseBox: Unifying Landmark Localization with End to End Object Detection,"DenseBox: Unifying Landmark Localization with +End to End Object Detection +Lichao Huang1 +Yi Yang2 +Yafeng Deng2 +Institute of Deep Learning +Baidu Research +Yinan Yu3"
+25337690fed69033ef1ce6944e5b78c4f06ffb81,Strategic Engagement Regulation: an Integration of Self-enhancement and Engagement,"STRATEGIC ENGAGEMENT REGULATION: +AN INTEGRATION OF SELF-ENHANCEMENT AND ENGAGEMENT +Jordan B. Leitner +A dissertation submitted to the Faculty of the University of Delaware in partial +fulfillment of the requirements for the degree of Doctor of Philosophy in Psychology +Spring 2014 +© 2014 Jordan B. Leitner +All Rights Reserved"
+25d3e122fec578a14226dc7c007fb1f05ddf97f7,The first facial expression recognition and analysis challenge,"The First Facial Expression Recognition and Analysis Challenge +Michel F. Valstar, Bihan Jiang, Marc Mehu, Maja Pantic, and Klaus Scherer"
+2597b0dccdf3d89eaffd32e202570b1fbbedd1d6,Towards Predicting the Likeability of Fashion Images,"Towards predicting the likeability of fashion images +Jinghua Wang, Abrar Abdul Nabi, Gang Wang, Member, IEEE, Chengde Wan, Tian-Tsong Ng, Member, IEEE,"
+25982e2bef817ebde7be5bb80b22a9864b979fb0,Facial Feature Tracking Under Varying Facial Expressions and Face Poses Based on Restricted Boltzmann Machines,"(a)26facialfeaturepointsthatwetrack(b)oneexamplesequenceFigure1.Facialfeaturepointtrackingunderexpressionvariationandocclusion.Inrecentyears,thesemodelshavebeenusedexplicitlytohandletheshapevariations[17][5].Thenonlinearityem-beddedinRBManditsvariantsmakesthemmoreeffectiveandefficienttorepresentthenonrigiddeformationsofob-jectscomparedtothelinearmethods.Theirlargenumberofhiddennodesanddeeparchitecturesalsocanimposesuffi-cientconstraintsaswellasenoughdegreesoffreedomsintotherepresentationsofthetargetobjects.Inthispaper,wepresentaworkthatcaneffectivelytrackfacialfeaturepointsusingfaceshapepriormodelsthatareconstructedbasedonRBM.Thefacialfeaturetrackercantrack26facialfeaturepoints(Fig.1(a))eveniffaceshavedifferentfacialexpressions,varyingposes,orocclu-sion(Fig.1(b)).Unlikethepreviousworksthattrackfacialfeaturepointsindependentlyorbuildashapemodeltocap-turethevariationsoffaceshapeorappearanceregardlessofthefacialexpressionsandfaceposes,theproposedmodelcouldcapturethedistinctionsaswellasthevariationsoffaceshapesduetofacialexpressionandposechangeinaunifiedframework.Specifically,wefirstconstructamodel1"
+25c108a56e4cb757b62911639a40e9caf07f1b4f,Recurrent Scale Approximation for Object Detection in CNN,"Recurrent Scale Approximation for Object Detection in CNN +Yu Liu1,2, Hongyang Li2, Junjie Yan1, Fangyin Wei1, Xiaogang Wang2, Xiaoou Tang2 +Multimedia Laboratory at The Chinese University of Hong Kong +SenseTime Group Limited"
+25e05a1ea19d5baf5e642c2a43cca19c5cbb60f8,Label Distribution Learning,"Label Distribution Learning +Xin Geng*, Member, IEEE"
+2559b15f8d4a57694a0a33bdc4ac95c479a3c79a,Contextual Object Localization With Multiple Kernel Nearest Neighbor,"Contextual Object Localization With Multiple +Kernel Nearest Neighbor +Brian McFee, Student Member, IEEE, Carolina Galleguillos, Student Member, IEEE, and +Gert Lanckriet, Member, IEEE"
+25f1f195c0efd84c221b62d1256a8625cb4b450c,Experiments with Facial Expression Recognition using Spatiotemporal Local Binary Patterns,"-4244-1017-7/07/$25.00 ©2007 IEEE +ICME 2007"
+25885e9292957feb89dcb4a30e77218ffe7b9868,Analyzing the Affect of a Group of People Using Multi-modal Framework,"JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2016 +Analyzing the Affect of a Group of People Using +Multi-modal Framework +Xiaohua Huang, Abhinav Dhall, Xin Liu, Guoying Zhao, Jingang Shi, Roland Goecke and Matti Pietik¨ainen"
+259706f1fd85e2e900e757d2656ca289363e74aa,Improving People Search Using Query Expansions: How Friends Help To Find People,"Improving People Search Using Query Expansions +How Friends Help To Find People +Thomas Mensink and Jakob Verbeek +LEAR - INRIA Rhˆone Alpes - Grenoble, France"
+258a2dad71cb47c71f408fa0611a4864532f5eba,Discriminative Optimization of Local Features for Face Recognition,"Discriminative Optimization +of Local Features for Face Recognition +H O S S E I N A Z I Z P O U R +Master of Science Thesis +Stockholm, Sweden 2011"
+25127c2d9f14d36f03d200a65de8446f6a0e3bd6,Evaluating the Performance of Deep Supervised Auto Encoder in Single Sample Face Recognition Problem Using Kullback-leibler Divergence Sparsity Regularizer,"Journal of Theoretical and Applied Information Technology +20th May 2016. Vol.87. No.2 +© 2005 - 2016 JATIT & LLS. All rights reserved. +ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195 +EVALUATING THE PERFORMANCE OF DEEP SUPERVISED +AUTO ENCODER IN SINGLE SAMPLE FACE RECOGNITION +PROBLEM USING KULLBACK-LEIBLER DIVERGENCE +SPARSITY REGULARIZER +OTNIEL Y. VIKTORISA, 2ITO WASITO, 2ARIDA F. SYAFIANDINI +Faculty of Computer of Computer Science, Universitas Indonesia, Kampus UI Depok, Indonesia +E-mail: ,"
|
