summaryrefslogtreecommitdiff
path: root/megapixels/notebooks/_local_scratch.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/notebooks/_local_scratch.ipynb')
-rw-r--r--megapixels/notebooks/_local_scratch.ipynb202
1 files changed, 0 insertions, 202 deletions
diff --git a/megapixels/notebooks/_local_scratch.ipynb b/megapixels/notebooks/_local_scratch.ipynb
deleted file mode 100644
index cee17cba..00000000
--- a/megapixels/notebooks/_local_scratch.ipynb
+++ /dev/null
@@ -1,202 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Scratch pad"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "from glob import glob\n",
- "from os.path import join\n",
- "from pathlib import Path\n",
- "import random\n",
- "\n",
- "import pandas as pd\n",
- "import cv2 as cv\n",
- "import numpy as np\n",
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "import sys\n",
- "sys.path.append('/work/megapixels_dev/megapixels')\n",
- "from app.models.bbox import BBox\n",
- "from app.utils import im_utils, file_utils"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "a= [1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "1"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "a[-1]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [],
- "source": [
- "fp_filepath = '/data_store_ssd/datasets/people/lfw/metadata/filepath.csv'\n",
- "df_filepath = pd.read_csv(fp_filepath)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {},
- "outputs": [],
- "source": [
- "image_index = 12467"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 55,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "12474\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "index 12851\n",
- "ext jpg\n",
- "fn Vladimir_Putin_0029\n",
- "subdir Vladimir_Putin\n",
- "Name: 12474, dtype: object"
- ]
- },
- "execution_count": 55,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "image_index += 1\n",
- "print(image_index)\n",
- "df_filepath.iloc[image_index]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 56,
- "metadata": {},
- "outputs": [],
- "source": [
- "import imutils"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 57,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Help on function build_montages in module imutils.convenience:\n",
- "\n",
- "build_montages(image_list, image_shape, montage_shape)\n",
- " ---------------------------------------------------------------------------------------------\n",
- " author: Kyle Hounslow\n",
- " ---------------------------------------------------------------------------------------------\n",
- " Converts a list of single images into a list of 'montage' images of specified rows and columns.\n",
- " A new montage image is started once rows and columns of montage image is filled.\n",
- " Empty space of incomplete montage images are filled with black pixels\n",
- " ---------------------------------------------------------------------------------------------\n",
- " :param image_list: python list of input images\n",
- " :param image_shape: tuple, size each image will be resized to for display (width, height)\n",
- " :param montage_shape: tuple, shape of image montage (width, height)\n",
- " :return: list of montage images in numpy array format\n",
- " ---------------------------------------------------------------------------------------------\n",
- " \n",
- " example usage:\n",
- " \n",
- " # load single image\n",
- " img = cv2.imread('lena.jpg')\n",
- " # duplicate image 25 times\n",
- " num_imgs = 25\n",
- " img_list = []\n",
- " for i in xrange(num_imgs):\n",
- " img_list.append(img)\n",
- " # convert image list into a montage of 256x256 images tiled in a 5x5 montage\n",
- " montages = make_montages_of_images(img_list, (256, 256), (5, 5))\n",
- " # iterate through montages and display\n",
- " for montage in montages:\n",
- " cv2.imshow('montage image', montage)\n",
- " cv2.waitKey(0)\n",
- " \n",
- " ----------------------------------------------------------------------------------------------\n",
- "\n"
- ]
- }
- ],
- "source": [
- "help(imutils.build_montages)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python [conda env:megapixels]",
- "language": "python",
- "name": "conda-env-megapixels-py"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}