summaryrefslogtreecommitdiff
path: root/megapixels/commands/demo/all.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/demo/all.py')
-rw-r--r--megapixels/commands/demo/all.py219
1 files changed, 219 insertions, 0 deletions
diff --git a/megapixels/commands/demo/all.py b/megapixels/commands/demo/all.py
new file mode 100644
index 00000000..e447492b
--- /dev/null
+++ b/megapixels/commands/demo/all.py
@@ -0,0 +1,219 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('--gif-size', 'opt_gif_size',
+ type=(int, int), default=(480, 480),
+ help='GIF output size')
+@click.option('--gif-frames', 'opt_gif_frames', default=15,
+ help='GIF frames')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
+ opt_size, opt_gif_size, opt_force, opt_display):
+ """Generates 3D landmark animations from CSV files"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TOOD add selective testing
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+
+
+ # -------------------------------------------------
+ # init here
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # load image
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ log.info('detecting face...')
+ st = time.time()
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ log.info('generating 3D animation...')
+ if not opt_fp_out:
+ fpp_im = Path(opt_fp_in)
+ fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ else:
+ fp_out = opt_fp_out
+ st = time.time()
+ plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ size=opt_gif_size, num_frames=opt_gif_frames)
+ log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ log.info(f'Saved to: {fp_out}')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ log.info('initialize face recognition model...')
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ st = time.time()
+ log.info('generating face vector...')
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ log.info('initializing face landmarks 68 dlib...')
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ log.info('generating 2D 68PT landmarks...')
+ st = time.time()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ if opt_run_pose:
+ log.info('initialize pose...')
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ log.info('generating pose...')
+ st = time.time()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+ log.info(f'generated pose {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # x
+
+
+
+ # display
+ if opt_display:
+
+ # draw bbox
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ if opt_run_pose:
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+ # draw animated GIF
+ im = Image.open(fp_out)
+ im_frames = []
+ duration = im.info['duration']
+ try:
+ while True:
+ im.seek(len(im_frames))
+ mypalette = im.getpalette()
+ im.putpalette(mypalette)
+ im_jpg = Image.new("RGB", im.size)
+ im_jpg.paste(im)
+ im_np = im_utils.pil2np(im_jpg.copy())
+ im_frames.append(im_np)
+ except EOFError:
+ pass # end of GIF sequence
+
+ n_frames = len(im_frames)
+ frame_number = 0
+
+ while True:
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ cv.imshow('Pose', im_pose)
+ cv.imshow('3D 68pt GIF', im_frames[frame_number])
+ frame_number = (frame_number + 1) % n_frames
+ k = cv.waitKey(duration) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break \ No newline at end of file