summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv')
-rw-r--r--megapixels/commands/cv/cluster.py22
-rw-r--r--megapixels/commands/cv/face_pose.py (renamed from megapixels/commands/cv/rois_to_pose.py)75
-rw-r--r--megapixels/commands/cv/face_roi.py (renamed from megapixels/commands/cv/files_to_rois.py)61
-rw-r--r--megapixels/commands/cv/face_vector.py (renamed from megapixels/commands/cv/rois_to_vecs.py)58
4 files changed, 130 insertions, 86 deletions
diff --git a/megapixels/commands/cv/cluster.py b/megapixels/commands/cv/cluster.py
index 94334133..419091a0 100644
--- a/megapixels/commands/cv/cluster.py
+++ b/megapixels/commands/cv/cluster.py
@@ -23,20 +23,20 @@ from app.utils.logger_utils import Logger
@click.pass_context
def cli(ctx, opt_data_store, opt_dataset, opt_metadata):
"""Display image info"""
-
- # cluster the embeddings
-print("[INFO] clustering...")
-clt = DBSCAN(metric="euclidean", n_jobs=args["jobs"])
-clt.fit(encodings)
-
-# determine the total number of unique faces found in the dataset
-labelIDs = np.unique(clt.labels_)
-numUniqueFaces = len(np.where(labelIDs > -1)[0])
-print("[INFO] # unique faces: {}".format(numUniqueFaces))
+
+ # cluster the embeddings
+ print("[INFO] clustering...")
+ clt = DBSCAN(metric="euclidean", n_jobs=args["jobs"])
+ clt.fit(encodings)
+
+ # determine the total number of unique faces found in the dataset
+ labelIDs = np.unique(clt.labels_)
+ numUniqueFaces = len(np.where(labelIDs > -1)[0])
+ print("[INFO] # unique faces: {}".format(numUniqueFaces))
# load and display image
im = cv.imread(fp_im)
cv.imshow('', im)
-
+
while True:
k = cv.waitKey(1) & 0xFF
if k == 27 or k == ord('q'): # ESC
diff --git a/megapixels/commands/cv/rois_to_pose.py b/megapixels/commands/cv/face_pose.py
index 3877cecf..e7ffb7ac 100644
--- a/megapixels/commands/cv/rois_to_pose.py
+++ b/megapixels/commands/cv/face_pose.py
@@ -9,14 +9,22 @@ from app.utils import click_utils
from app.settings import app_cfg as cfg
@click.command()
-@click.option('-i', '--input', 'opt_fp_files', required=True,
- help='Input ROI CSV')
-@click.option('-r', '--rois', 'opt_fp_rois', required=True,
- help='Input ROI CSV')
-@click.option('-m', '--media', 'opt_dir_media', required=True,
- help='Input media directory')
-@click.option('-o', '--output', 'opt_fp_out', required=True,
- help='Output CSV')
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--data_store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.SSD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size',
type=(int, int), default=(300, 300),
help='Output image size')
@@ -27,7 +35,7 @@ from app.settings import app_cfg as cfg
@click.option('-d', '--display', 'opt_display', is_flag=True,
help='Display image for debugging')
@click.pass_context
-def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
+def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
opt_slice, opt_force, opt_display):
"""Converts ROIs to pose: roll, yaw, pitch"""
@@ -47,42 +55,47 @@ def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
from app.utils import logger_utils, file_utils, im_utils
from app.processors.face_landmarks import LandmarksDLIB
from app.processors.face_pose import FacePoseDLIB
+ from app.models.data_store import DataStore
# -------------------------------------------------
# init here
log = logger_utils.Logger.getLogger()
+
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_POSE) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
# init face processors
face_pose = FacePoseDLIB()
face_landmarks = LandmarksDLIB()
- # load datra
- df_files = pd.read_csv(opt_fp_files)
- df_rois = pd.read_csv(opt_fp_rois)
-
- if not opt_force and Path(opt_fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
- return
-
+ # load filepath data
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
+ df_record = pd.read_csv(fp_record).set_index('index')
+ # load ROI data
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
+ df_roi = pd.read_csv(fp_roi).set_index('index')
+ # slice if you want
if opt_slice:
- df_rois = df_rois[opt_slice[0]:opt_slice[1]]
-
- # -------------------------------------------------
- # process here
- df_img_groups = df_rois.groupby('image_index')
+ df_roi = df_roi[opt_slice[0]:opt_slice[1]]
+ # group by image index (speedup if multiple faces per image)
+ df_img_groups = df_roi.groupby('record_index')
log.debug('processing {:,} groups'.format(len(df_img_groups)))
-
+ # store poses and convert to DataFrame
poses = []
# iterate
- #for df_roi_group_idx, df_roi_group in tqdm(df_roi_groups):
- for image_index, df_img_group in tqdm(df_img_groups):
+ for record_index, df_img_group in tqdm(df_img_groups):
# make fp
- #image_index = df_roi_group.image_index.values[0]
- pds_file = df_files.iloc[image_index]
- fp_im = join(opt_dir_media, pds_file.subdir, '{}.{}'.format(pds_file.fn, pds_file.ext))
+ ds_record = df_record.iloc[record_index]
+ fp_im = data_store.face_image(ds_record.subdir, ds_record.fn, ds_record.ext)
im = cv.imread(fp_im)
# get bbox
x = df_img_group.x.values[0]
@@ -116,12 +129,12 @@ def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
break
# add image index and append to result CSV data
- pose_degrees['image_index'] = image_index
+ pose_degrees['record_index'] = record_index
poses.append(pose_degrees)
# save date
- file_utils.mkdirs(opt_fp_out)
+ file_utils.mkdirs(fp_out)
df = pd.DataFrame.from_dict(poses)
df.index.name = 'index'
- df.to_csv(opt_fp_out) \ No newline at end of file
+ df.to_csv(fp_out) \ No newline at end of file
diff --git a/megapixels/commands/cv/files_to_rois.py b/megapixels/commands/cv/face_roi.py
index 1aaf991c..d7248aee 100644
--- a/megapixels/commands/cv/files_to_rois.py
+++ b/megapixels/commands/cv/face_roi.py
@@ -12,12 +12,22 @@ from app.settings import app_cfg as cfg
color_filters = {'color': 1, 'gray': 2, 'all': 3}
@click.command()
-@click.option('-i', '--input', 'opt_fp_in', required=True,
- help='Input CSV (eg image_files.csv)')
-@click.option('-m', '--media', 'opt_dir_media', required=True,
- help='Input media directory')
-@click.option('-o', '--output', 'opt_fp_out', required=True,
- help='Output CSV')
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--data_store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.SSD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size',
type=(int, int), default=(300, 300),
help='Output image size')
@@ -40,10 +50,10 @@ color_filters = {'color': 1, 'gray': 2, 'all': 3}
@click.option('--color', 'opt_color_filter',
type=click.Choice(color_filters.keys()), default='all',
help='Filter to keep color or grayscale images (color = keep color')
-@click.option('--largest', 'opt_largest', is_flag=True,
+@click.option('--largest/--all-faces', 'opt_largest', is_flag=True, default=True,
help='Only keep largest face')
@click.pass_context
-def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_size, opt_detector_type,
+def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, opt_size, opt_detector_type,
opt_gpu, opt_conf_thresh, opt_pyramids, opt_slice, opt_display, opt_force, opt_color_filter,
opt_largest):
"""Converts frames with faces to CSV of ROIs"""
@@ -61,17 +71,24 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_size, opt_detector_type,
import pandas as pd
from app.utils import logger_utils, file_utils, im_utils
- from app.processors import face_detector
+ from app.processors import face_detector
+ from app.models.data_store import DataStore
# -------------------------------------------------
# init here
log = logger_utils.Logger.getLogger()
- if not opt_force and Path(opt_fp_out).exists():
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_ROI) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
log.error('File exists. Use "-f / --force" to overwite')
return
+ # set detector
if opt_detector_type == types.FaceDetectNet.CVDNN:
detector = face_detector.DetectorCVDNN()
elif opt_detector_type == types.FaceDetectNet.DLIB_CNN:
@@ -85,22 +102,20 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_size, opt_detector_type,
return
- # -------------------------------------------------
- # process here
- color_filter = color_filters[opt_color_filter]
-
# get list of files to process
- df_files = pd.read_csv(opt_fp_in).set_index('index')
-
+ fp_in = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_in is None else opt_fp_in
+ df_records = pd.read_csv(fp_in).set_index('index')
if opt_slice:
- df_files = df_files[opt_slice[0]:opt_slice[1]]
- log.debug('processing {:,} files'.format(len(df_files)))
+ df_records = df_records[opt_slice[0]:opt_slice[1]]
+ log.debug('processing {:,} files'.format(len(df_records)))
+ # filter out grayscale
+ color_filter = color_filters[opt_color_filter]
data = []
- for df_file in tqdm(df_files.itertuples(), total=len(df_files)):
- fp_im = join(opt_dir_media, str(df_file.subdir), f'{df_file.fn}.{df_file.ext}')
+ for df_record in tqdm(df_records.itertuples(), total=len(df_records)):
+ fp_im = data_store.face_image(str(df_record.subdir), str(df_record.fn), str(df_record.ext))
im = cv.imread(fp_im)
# filter out color or grayscale iamges
@@ -123,7 +138,7 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_size, opt_detector_type,
for bbox in bboxes:
roi = {
- 'image_index': int(df_file.Index),
+ 'record_index': int(df_record.Index),
'x': bbox.x,
'y': bbox.y,
'w': bbox.w,
@@ -150,7 +165,7 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_size, opt_detector_type,
break
# save date
- file_utils.mkdirs(opt_fp_out)
+ file_utils.mkdirs(fp_out)
df = pd.DataFrame.from_dict(data)
df.index.name = 'index'
- df.to_csv(opt_fp_out) \ No newline at end of file
+ df.to_csv(fp_out) \ No newline at end of file
diff --git a/megapixels/commands/cv/rois_to_vecs.py b/megapixels/commands/cv/face_vector.py
index 525f4404..203f73eb 100644
--- a/megapixels/commands/cv/rois_to_vecs.py
+++ b/megapixels/commands/cv/face_vector.py
@@ -9,14 +9,20 @@ from app.utils import click_utils
from app.settings import app_cfg as cfg
@click.command()
-@click.option('-i', '--input', 'opt_fp_files', required=True,
- help='Input file meta CSV')
-@click.option('-r', '--rois', 'opt_fp_rois', required=True,
- help='Input ROI CSV')
-@click.option('-m', '--media', 'opt_dir_media', required=True,
- help='Input media directory')
-@click.option('-o', '--output', 'opt_fp_out', required=True,
- help='Output CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--data_store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.SSD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size',
type=(int, int), default=(300, 300),
help='Output image size')
@@ -31,7 +37,7 @@ from app.settings import app_cfg as cfg
@click.option('-g', '--gpu', 'opt_gpu', default=0,
help='GPU index')
@click.pass_context
-def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
+def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
"""Converts face ROIs to vectors"""
@@ -48,6 +54,7 @@ def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
import pandas as pd
from app.models.bbox import BBox
+ from app.models.data_store import DataStore
from app.utils import logger_utils, file_utils, im_utils
from app.processors import face_recognition
@@ -56,24 +63,30 @@ def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
# init here
log = logger_utils.Logger.getLogger()
+ # set data_store
+ data_store = DataStore(opt_data_store, opt_dataset)
+
+ # get filepath out
+ fp_out = data_store.metadata(types.Metadata.FACE_VECTOR) if opt_fp_out is None else opt_fp_out
+ if not opt_force and Path(fp_out).exists():
+ log.error('File exists. Use "-f / --force" to overwite')
+ return
# init face processors
facerec = face_recognition.RecognitionDLIB()
# load data
- df_file_meta = pd.read_csv(opt_fp_files)
- df_rois = pd.read_csv(opt_fp_rois)
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
+ df_record = pd.read_csv(fp_record).set_index('index')
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
+ df_roi = pd.read_csv(fp_roi).set_index('index')
- if not opt_force and Path(opt_fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
- return
-
if opt_slice:
- df_rois = df_rois[opt_slice[0]:opt_slice[1]]
+ df_roi = df_roi[opt_slice[0]:opt_slice[1]]
# -------------------------------------------------
# process here
- df_img_groups = df_rois.groupby('image_index')
+ df_img_groups = df_roi.groupby('record_index')
log.debug('processing {:,} groups'.format(len(df_img_groups)))
vecs = []
@@ -81,8 +94,11 @@ def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
for image_index, df_img_group in tqdm(df_img_groups):
# make fp
roi_index = df_img_group.index.values[0]
- file_meta = df_file_meta.iloc[image_index] # locate image meta
- fp_im = join(opt_dir_media, file_meta.subdir, '{}.{}'.format(file_meta.fn, file_meta.ext))
+ # log.debug(f'roi_index: {roi_index}, image_index: {image_index}')
+ ds_file = df_record.loc[roi_index] # locate image meta
+ #ds_file = df_record.loc['index', image_index] # locate image meta
+
+ fp_im = data_store.face_image(str(ds_file.subdir), str(ds_file.fn), str(ds_file.ext))
im = cv.imread(fp_im)
# get bbox
x = df_img_group.x.values[0]
@@ -103,7 +119,7 @@ def cli(ctx, opt_fp_files, opt_fp_rois, opt_dir_media, opt_fp_out, opt_size,
# save date
- file_utils.mkdirs(opt_fp_out)
df = pd.DataFrame.from_dict(vecs)
df.index.name = 'index'
- df.to_csv(opt_fp_out) \ No newline at end of file
+ file_utils.mkdirs(fp_out)
+ df.to_csv(fp_out) \ No newline at end of file