diff options
Diffstat (limited to 'megapixels/commands/cv/face_3ddfa.py')
| -rw-r--r-- | megapixels/commands/cv/face_3ddfa.py | 331 |
1 files changed, 331 insertions, 0 deletions
diff --git a/megapixels/commands/cv/face_3ddfa.py b/megapixels/commands/cv/face_3ddfa.py new file mode 100644 index 00000000..ffc74180 --- /dev/null +++ b/megapixels/commands/cv/face_3ddfa.py @@ -0,0 +1,331 @@ +import click + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + + +@click.command() +@click.option('-i', '--input', 'opt_fp_in', default=None, required=True, + help='Image filepath') +@click.option('-o', '--output', 'opt_fp_out', default=None, + help='GIF output path') +@click.option('--size', 'opt_size', + type=(int, int), default=(300, 300), + help='Output image size') +@click.option('-g', '--gpu', 'opt_gpu', default=0, + help='GPU index') +@click.option('-f', '--force', 'opt_force', is_flag=True, + help='Force overwrite file') +@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False, + help='Display detections to debug') +@click.pass_context +def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display): + """Face detector demo""" + + import sys + import os + from os.path import join + from pathlib import Path + import time + + from tqdm import tqdm + import numpy as np + import pandas as pd + import cv2 as cv + import dlib + + from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils + from app.utils import plot_utils + from app.processors import face_detector, face_age + from app.models.data_store import DataStore + + # 3DDFA + # git clone https://github.com/cleardusk/3DDFA/ 3rdparty/ + + import torch + import torchvision.transforms as transforms + import mobilenet_v1 + from utils.ddfa import ToTensorGjz, NormalizeGjz, str2bool + import scipy.io as sio + from utils.inference import get_suffix, parse_roi_box_from_landmark, crop_img, predict_68pts, dump_to_ply, dump_vertex, \ + draw_landmarks, predict_dense, parse_roi_box_from_bbox, get_colors, write_obj_with_colors + from utils.cv_plot import plot_pose_box + from utils.estimate_pose import parse_pose + from utils.render import get_depths_image, cget_depths_image, cpncc + from utils.paf import gen_img_paf + import argparse + import torch.backends.cudnn as cudnn + + + log = logger_utils.Logger.getLogger() + + + # ------------------------------------------------- + # load image + + im = cv.imread(opt_fp_in) + im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + + # ---------------------------------------------------------------------------- + # detect face + + face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU + bboxes = face_detector.detect(im_resized, largest=True) + bbox = bboxes[0] + dim = im_resized.shape[:2][::-1] + bbox_dim = bbox.to_dim(dim) + if not bbox: + log.error('no face detected') + return + else: + log.info(f'face detected: {bbox_dim.to_xyxy()}') + + + # ---------------------------------------------------------------------------- + # age + + age_apparent_predictor = face_age.FaceAgeApparent() + age_real_predictor = face_age.FaceAgeReal() + + st = time.time() + age_real = age_real_predictor.age(im_resized, bbox_dim) + log.info(f'age real took: {(time.time()-st)/1000:.5f}s') + st = time.time() + age_apparent = age_apparent_predictor.age(im_resized, bbox_dim) + log.info(f'age apparent took: {(time.time()-st)/1000:.5f}s') + + + # ---------------------------------------------------------------------------- + # output + + log.info(f'Face coords: {bbox_dim} face') + log.info(f'Age (real): {(age_real):.2f}') + log.info(f'Age (apparent): {(age_apparent):.2f}') + + + # ---------------------------------------------------------------------------- + # draw + + # draw real age + im_age_real = im_resized.copy() + draw_utils.draw_bbox(im_age_real, bbox_dim) + txt = f'{(age_real):.2f}' + draw_utils.draw_text(im_age_real, bbox_dim.pt_tl, txt) + + # apparent + im_age_apparent = im_resized.copy() + draw_utils.draw_bbox(im_age_apparent, bbox_dim) + txt = f'{(age_apparent):.2f}' + draw_utils.draw_text(im_age_apparent, bbox_dim.pt_tl, txt) + + + # ---------------------------------------------------------------------------- + # save + + if opt_fp_out: + # save pose only + fpp_out = Path(opt_fp_out) + + fp_out = join(fpp_out.parent, f'{fpp_out.stem}_real{fpp_out.suffix}') + cv.imwrite(fp_out, im_age_real) + + fp_out = join(fpp_out.parent, f'{fpp_out.stem}_apparent{fpp_out.suffix}') + cv.imwrite(fp_out, im_age_apparent) + + + # ---------------------------------------------------------------------------- + # display + + if opt_display: + # show all images here + cv.imshow('real', im_age_real) + cv.imshow('apparent', im_age_apparent) + display_utils.handle_keyboard() + + + + + +STD_SIZE = 120 + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='3DDFA inference pipeline') + parser.add_argument('-f', '--files', nargs='+', + help='image files paths fed into network, single or multiple images') + parser.add_argument('-m', '--mode', default='cpu', type=str, help='gpu or cpu mode') + parser.add_argument('--show_flg', default='true', type=str2bool, help='whether show the visualization result') + parser.add_argument('--bbox_init', default='one', type=str, + help='one|two: one-step bbox initialization or two-step') + parser.add_argument('--dump_res', default='true', type=str2bool, help='whether write out the visualization image') + parser.add_argument('--dump_vertex', default='true', type=str2bool, + help='whether write out the dense face vertices to mat') + parser.add_argument('--dump_ply', default='true', type=str2bool) + parser.add_argument('--dump_pts', default='true', type=str2bool) + parser.add_argument('--dump_roi_box', default='true', type=str2bool) + parser.add_argument('--dump_pose', default='true', type=str2bool) + parser.add_argument('--dump_depth', default='true', type=str2bool) + parser.add_argument('--dump_pncc', default='true', type=str2bool) + parser.add_argument('--dump_paf', default='true', type=str2bool) + parser.add_argument('--paf_size', default=3, type=int, help='PAF feature kernel size') + parser.add_argument('--dump_obj', default='true', type=str2bool) + parser.add_argument('--dlib_bbox', default='true', type=str2bool, help='whether use dlib to predict bbox') + parser.add_argument('--dlib_landmark', default='true', type=str2bool, + help='whether use dlib landmark to crop image') + + args = parser.parse_args() + main(args) + + + +def main(args): + # 1. load pre-tained model + checkpoint_fp = 'models/phase1_wpdc_vdc_v2.pth.tar' + arch = 'mobilenet_1' + + checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict'] + model = getattr(mobilenet_v1, arch)(num_classes=62) # 62 = 12(pose) + 40(shape) +10(expression) + model_dict = model.state_dict() + # because the model is trained by multiple gpus, prefix module should be removed + for k in checkpoint.keys(): + model_dict[k.replace('module.', '')] = checkpoint[k] + model.load_state_dict(model_dict, strict=False) + if args.mode == 'gpu': + cudnn.benchmark = True + model = model.cuda() + model.eval() + + # 2. load dlib model for face detection and landmark used for face cropping + if args.dlib_landmark: + dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat' + face_regressor = dlib.shape_predictor(dlib_landmark_model) + if args.dlib_bbox: + face_detector = dlib.get_frontal_face_detector() + + # 3. forward + tri = sio.loadmat('visualize/tri.mat')['tri'] + transform = transforms.Compose([ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)]) + for img_fp in args.files: + img_ori = cv2.imread(img_fp) + if args.dlib_bbox: + rects = face_detector(img_ori, 1) + else: + rects = [] + + if len(rects) == 0: + rects = dlib.rectangles() + rect_fp = img_fp + '.bbox' + lines = open(rect_fp).read().strip().split('\n')[1:] + for l in lines: + l, r, t, b = [int(_) for _ in l.split(' ')[1:]] + rect = dlib.rectangle(l, r, t, b) + rects.append(rect) + + pts_res = [] + Ps = [] # Camera matrix collection + poses = [] # pose collection, [todo: validate it] + vertices_lst = [] # store multiple face vertices + ind = 0 + suffix = get_suffix(img_fp) + for rect in rects: + # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping + if args.dlib_landmark: + # - use landmark for cropping + pts = face_regressor(img_ori, rect).parts() + pts = np.array([[pt.x, pt.y] for pt in pts]).T + roi_box = parse_roi_box_from_landmark(pts) + else: + # - use detected face bbox + bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()] + roi_box = parse_roi_box_from_bbox(bbox) + + img = crop_img(img_ori, roi_box) + + # forward: one step + img = cv2.resize(img, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR) + input = transform(img).unsqueeze(0) + with torch.no_grad(): + if args.mode == 'gpu': + input = input.cuda() + param = model(input) + param = param.squeeze().cpu().numpy().flatten().astype(np.float32) + + # 68 pts + pts68 = predict_68pts(param, roi_box) + + # two-step for more accurate bbox to crop face + if args.bbox_init == 'two': + roi_box = parse_roi_box_from_landmark(pts68) + img_step2 = crop_img(img_ori, roi_box) + img_step2 = cv2.resize(img_step2, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR) + input = transform(img_step2).unsqueeze(0) + with torch.no_grad(): + if args.mode == 'gpu': + input = input.cuda() + param = model(input) + param = param.squeeze().cpu().numpy().flatten().astype(np.float32) + + pts68 = predict_68pts(param, roi_box) + + pts_res.append(pts68) + P, pose = parse_pose(param) + Ps.append(P) + poses.append(pose) + + # dense face 3d vertices + if args.dump_ply or args.dump_vertex or args.dump_depth or args.dump_pncc or args.dump_obj: + vertices = predict_dense(param, roi_box) + vertices_lst.append(vertices) + if args.dump_ply: + dump_to_ply(vertices, tri, '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind)) + if args.dump_vertex: + dump_vertex(vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''), ind)) + + # save .mat for 3d Face + wfp = '{}_{}_face3d.mat'.format(img_fp.replace(suffix, ''), ind) + colors = get_colors(img_ori, vertices) + sio.savemat(wfp, {'vertices': vertices, 'colors': colors, 'triangles': tri}) + + if args.dump_pts: + wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind) + np.savetxt(wfp, pts68, fmt='%.3f') + print('Save 68 3d landmarks to {}'.format(wfp)) + if args.dump_roi_box: + wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind) + np.savetxt(wfp, roi_box, fmt='%.3f') + print('Save roi box to {}'.format(wfp)) + if args.dump_paf: + wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''), ind) + wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''), ind) + paf_feature = gen_img_paf(img_crop=img, param=param, kernel_size=args.paf_size) + + cv2.imwrite(wfp_paf, paf_feature) + cv2.imwrite(wfp_crop, img) + print('Dump to {} and {}'.format(wfp_crop, wfp_paf)) + if args.dump_obj: + wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind) + colors = get_colors(img_ori, vertices) + write_obj_with_colors(wfp, vertices, tri, colors) + print('Dump obj with sampled texture to {}'.format(wfp)) + ind += 1 + + if args.dump_pose: + # P, pose = parse_pose(param) # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify) + img_pose = plot_pose_box(img_ori, Ps, pts_res) + wfp = img_fp.replace(suffix, '_pose.jpg') + cv2.imwrite(wfp, img_pose) + print('Dump to {}'.format(wfp)) + if args.dump_depth: + wfp = img_fp.replace(suffix, '_depth.png') + # depths_img = get_depths_image(img_ori, vertices_lst, tri-1) # python version + depths_img = cget_depths_image(img_ori, vertices_lst, tri - 1) # cython version + cv2.imwrite(wfp, depths_img) + print('Dump to {}'.format(wfp)) + if args.dump_pncc: + wfp = img_fp.replace(suffix, '_pncc.png') + pncc_feature = cpncc(img_ori, vertices_lst, tri - 1) # cython version + cv2.imwrite(wfp, pncc_feature[:, :, ::-1]) # cv2.imwrite will swap RGB -> BGR + print('Dump to {}'.format(wfp)) + if args.dump_res: + draw_landmarks(img_ori, pts_res, wfp=img_fp.replace(suffix, '_3DDFA.jpg'), show_flg=args.show_flg) |
