summaryrefslogtreecommitdiff
path: root/megapixels/app
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app')
-rw-r--r--megapixels/app/processors/face_age.py8
-rw-r--r--megapixels/app/processors/face_beauty.py6
-rw-r--r--megapixels/app/processors/face_detector.py11
-rw-r--r--megapixels/app/processors/face_emotion.py10
-rw-r--r--megapixels/app/processors/face_gender.py9
-rw-r--r--megapixels/app/processors/face_landmarks_3d.py99
-rw-r--r--megapixels/app/processors/face_recognition.py9
-rw-r--r--megapixels/app/settings/app_cfg.py1
-rw-r--r--megapixels/app/utils/draw_utils.py8
9 files changed, 42 insertions, 119 deletions
diff --git a/megapixels/app/processors/face_age.py b/megapixels/app/processors/face_age.py
index 222858a5..35174628 100644
--- a/megapixels/app/processors/face_age.py
+++ b/megapixels/app/processors/face_age.py
@@ -18,11 +18,11 @@ class FaceAge:
# Estimates face age
- def __init__(self):
+ def __init__(self, gpu=0):
self.log = logger_utils.Logger.getLogger()
pass
- def age(self):
- # use enum typed emotions
- return {'age': types.Age.ADULT, 'confidence': 0.5} \ No newline at end of file
+ def age(self, im, bbox_dim):
+ self.log.warn('not yet implemented')
+ return 0.0 \ No newline at end of file
diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py
index 2e8221b7..a01c6834 100644
--- a/megapixels/app/processors/face_beauty.py
+++ b/megapixels/app/processors/face_beauty.py
@@ -9,12 +9,10 @@ import numpy as np
import imutils
import pickle
-os.environ['CUDA_VISIBLE_DEVICES'] = ''
import keras
from keras.layers import Conv2D, Input, MaxPool2D,Flatten, Dense, Permute, GlobalAveragePooling2D
from keras.models import Model
from keras.optimizers import adam
-import os.path
from keras.models import Sequential
from keras.applications.resnet50 import ResNet50
#from keras.applications.resnet50 import Dense
@@ -33,7 +31,9 @@ class FaceBeauty:
# Estimates beauty using CNN
- def __init__(self, gpu=-1):
+ def __init__(self):
+ # ensure Keras uses CPU (no GPU, it takes up all memory)
+ os.environ['CUDA_VISIBLE_DEVICES'] = ''
# don't really need GPU, CPU is quick enough
self.log = logger_utils.Logger.getLogger()
resnet = ResNet50(include_top=False, pooling='avg')
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py
index c0762564..0e194f7d 100644
--- a/megapixels/app/processors/face_detector.py
+++ b/megapixels/app/processors/face_detector.py
@@ -21,9 +21,14 @@ class DetectorMTCNN:
dnn_size = (300, 300)
- def __init__(self, size=(400,400)):
+ def __init__(self, size=(400,400), gpu=0):
+ self.log = logger_utils.Logger.getLogger()
+ device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '')
+ self.log.info(f'Change CUDA_VISIBLE_DEVICES from "{device_cur}" to "{gpu}"')
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
from mtcnn.mtcnn import MTCNN
self.detector = MTCNN()
+ os.environ['CUDA_VISIBLE_DEVICES'] = device_cur # reset
def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False, zone=None):
'''Detects face using MTCNN and returns (list) of BBox
@@ -70,14 +75,14 @@ class DetectorDLIBCNN:
def __init__(self, gpu=0):
import dlib
self.log = logger_utils.Logger.getLogger()
- cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
+ device_cur = os.getenv('CUDA_VISIBLE_DEVICES', '')
if dlib.DLIB_USE_CUDA and gpu < 0:
self.log.error('dlib was compiled with CUDA but you selected CPU. Use GPU >= 0 if dlib.DLIB_USE_CUDA')
sys.exit()
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
self.log.info('load model: {}'.format(cfg.DIR_MODELS_DLIB_CNN))
self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN)
- os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset
+ os.environ['CUDA_VISIBLE_DEVICES'] = device_cur # reset
def detect(self, im, conf_thresh=None, pyramids=None, largest=False, zone=None):
bboxes = []
diff --git a/megapixels/app/processors/face_emotion.py b/megapixels/app/processors/face_emotion.py
index c45da9ba..a04d7afd 100644
--- a/megapixels/app/processors/face_emotion.py
+++ b/megapixels/app/processors/face_emotion.py
@@ -16,13 +16,13 @@ from app.settings import types
class FaceEmotion:
- # Estimates face emotion
+ # Estimates face age
- def __init__(self):
+ def __init__(self, gpu=0):
self.log = logger_utils.Logger.getLogger()
pass
- def emotion(self):
- # use enum typed emotions
- return {'emotion': types.Emotion.NEUTRAL, 'confidence': 0.5} \ No newline at end of file
+ def emotion(self, im, bbox_dim):
+ self.log.warn('not yet implemented')
+ return 0.0 \ No newline at end of file
diff --git a/megapixels/app/processors/face_gender.py b/megapixels/app/processors/face_gender.py
index ee152098..ea64b828 100644
--- a/megapixels/app/processors/face_gender.py
+++ b/megapixels/app/processors/face_gender.py
@@ -16,12 +16,13 @@ from app.settings import types
class FaceGender:
- # Estimates gender using CNN
+ # Estimates face age
- def __init__(self):
+ def __init__(self, gpu=0):
self.log = logger_utils.Logger.getLogger()
pass
- def gender(self):
- return 'm' \ No newline at end of file
+ def gender(self, im, bbox_dim):
+ self.log.warn('not yet implemented')
+ return 0.0 \ No newline at end of file
diff --git a/megapixels/app/processors/face_landmarks_3d.py b/megapixels/app/processors/face_landmarks_3d.py
deleted file mode 100644
index 5a0d6097..00000000
--- a/megapixels/app/processors/face_landmarks_3d.py
+++ /dev/null
@@ -1,99 +0,0 @@
-import os
-from os.path import join
-from pathlib import Path
-import math
-
-import cv2 as cv
-import numpy as np
-import imutils
-
-from app.utils import im_utils, logger_utils
-from app.models.bbox import BBox
-from app.settings import app_cfg as cfg
-from app.settings import types
-
-class Landmarks3D:
-
- def __init__(self):
- self.log = logger_utils.Logger.getLogger()
-
- def landmarks(self, im, bbox):
- pass
-
-
-class FaceAlignment3D(Landmarks3D):
-
- # Estimates 3D facial landmarks
- import face_alignment
-
- def __init__(self, gpu=0, flip_input=True):
- super().__init__()
- device = f'cuda:{gpu}' if gpu > -1 else 'cpu'
- self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device=device, flip_input=flip_input)
-
- def landmarks(self, im, bbox, as_type=str):
- '''Calculates the 3D facial landmarks
- :param im: (numpy.ndarray) image
- :param bbox: (BBox) dimensioned to real (int) sizes
- :param as_type: (str) or (list) type to return data
- '''
- preds = self.fa.get_landmarks(im)
- # convert to comma separated ints
- # storing data as "[1,2], [3,4]" is larger file size than storing as "1,2,3,4"
- # storing a list object in Pandas seems to result in 30% larger CSV files
- # TODO optimize this
- preds_int = [list(map(int, x)) for x in preds[0]] # list of ints
- if as_type is str:
- return ','.join([','.join(list(map(str,[x,y]))) for x,y in preds_int])
- else
- return preds_int
-
-
- def draw(self, im):
- '''draws landmarks in 3d scene'''
-
- # TODO
- '''
- import face_alignment
- import numpy as np
- from mpl_toolkits.mplot3d import Axes3D
- import matplotlib.pyplot as plt
- from skimage import io
-
- # Run the 3D face alignment on a test image, without CUDA.
- fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda:0', flip_input=True)
-
- input = io.imread('../test/assets/aflw-test.jpg')
- preds = fa.get_landmarks(input)[-1]
-
- #TODO: Make this nice
- fig = plt.figure(figsize=plt.figaspect(.5))
- ax = fig.add_subplot(1, 2, 1)
- ax.imshow(input)
- ax.plot(preds[0:17,0],preds[0:17,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[17:22,0],preds[17:22,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[22:27,0],preds[22:27,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[27:31,0],preds[27:31,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[31:36,0],preds[31:36,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[36:42,0],preds[36:42,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[42:48,0],preds[42:48,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[48:60,0],preds[48:60,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.plot(preds[60:68,0],preds[60:68,1],marker='o',markersize=6,linestyle='-',color='w',lw=2)
- ax.axis('off')
-
- ax = fig.add_subplot(1, 2, 2, projection='3d')
- surf = ax.scatter(preds[:,0]*1.2,preds[:,1],preds[:,2],c="cyan", alpha=1.0, edgecolor='b')
- ax.plot3D(preds[:17,0]*1.2,preds[:17,1], preds[:17,2], color='blue' )
- ax.plot3D(preds[17:22,0]*1.2,preds[17:22,1],preds[17:22,2], color='blue')
- ax.plot3D(preds[22:27,0]*1.2,preds[22:27,1],preds[22:27,2], color='blue')
- ax.plot3D(preds[27:31,0]*1.2,preds[27:31,1],preds[27:31,2], color='blue')
- ax.plot3D(preds[31:36,0]*1.2,preds[31:36,1],preds[31:36,2], color='blue')
- ax.plot3D(preds[36:42,0]*1.2,preds[36:42,1],preds[36:42,2], color='blue')
- ax.plot3D(preds[42:48,0]*1.2,preds[42:48,1],preds[42:48,2], color='blue')
- ax.plot3D(preds[48:,0]*1.2,preds[48:,1],preds[48:,2], color='blue' )
-
- ax.view_init(elev=90., azim=90.)
- ax.set_xlim(ax.get_xlim()[::-1])
- plt.show()
- '''
- return im \ No newline at end of file
diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py
index a56b1634..76f00aa1 100644
--- a/megapixels/app/processors/face_recognition.py
+++ b/megapixels/app/processors/face_recognition.py
@@ -54,6 +54,15 @@ class RecognitionDLIB:
#vec = self.facerec.compute_face_descriptor(im, face_shape)
return vec
+ def flatten(self, vec):
+ '''Converts 128D vector into a flattened list for CSV
+ :param points: (list) a feature vector as list of floats
+ :returns dict item for each point (eg {'d1':0.28442156, 'd1': 0.1868632})
+ '''
+ vec_flat = {}
+ for idx, val in enumerate(vec, 1):
+ vec_flat[f'd{idx}'] = val
+ return vec_flat
def similarity(self, query_enc, known_enc):
return np.linalg.norm(query_enc - known_enc, axis=1)
diff --git a/megapixels/app/settings/app_cfg.py b/megapixels/app/settings/app_cfg.py
index d206f40b..2d51a607 100644
--- a/megapixels/app/settings/app_cfg.py
+++ b/megapixels/app/settings/app_cfg.py
@@ -44,6 +44,7 @@ DIR_MODELS_DARKNET_PJREDDIE = join(DIR_MODELS_DARKNET, 'pjreddie')
DIR_MODELS_PYTORCH = join(DIR_MODELS,'pytorch')
DIR_MODELS_TORCH = join(DIR_MODELS,'torch')
DIR_MODELS_MXNET = join(DIR_MODELS,'mxnet')
+DIR_MODELS_KERAS = join(DIR_MODELS,'keras')
DIR_MODELS_TF = join(DIR_MODELS,'tensorflow')
DIR_MODELS_DLIB = join(DIR_MODELS,'dlib')
DIR_MODELS_DLIB_CNN = join(DIR_MODELS_DLIB, 'mmod_human_face_detector.dat')
diff --git a/megapixels/app/utils/draw_utils.py b/megapixels/app/utils/draw_utils.py
index 47bb7978..cafac5a5 100644
--- a/megapixels/app/utils/draw_utils.py
+++ b/megapixels/app/utils/draw_utils.py
@@ -34,12 +34,18 @@ def draw_bbox(im, bbox, color=(0,255,0), stroke_weight=2):
def draw_pose(im, pt_nose, image_pts):
'''Draws 3-axis pose over image
- '''
+ '''
cv.line(im, pt_nose, tuple(image_pts['pitch'].ravel()), pose_types['pitch'], 3)
cv.line(im, pt_nose, tuple(image_pts['yaw'].ravel()), pose_types['yaw'], 3)
cv.line(im, pt_nose, tuple(image_pts['roll'].ravel()), pose_types['roll'], 3)
+def draw_text(im, pt, text, color=(0,255,0)):
+ '''Draws degrees as text over image
+ '''
+ cv.putText(im, text, pt, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2)
+
+
def draw_degrees(im, pose_data, color=(0,255,0)):
'''Draws degrees as text over image
'''