diff options
Diffstat (limited to 'megapixels/app/utils')
| -rw-r--r-- | megapixels/app/utils/__init__.py | 0 | ||||
| -rw-r--r-- | megapixels/app/utils/click_utils.py | 62 | ||||
| -rw-r--r-- | megapixels/app/utils/file_utils.py | 400 | ||||
| -rw-r--r-- | megapixels/app/utils/im_utils.py | 506 | ||||
| -rw-r--r-- | megapixels/app/utils/logger_utils.py | 68 |
5 files changed, 1036 insertions, 0 deletions
diff --git a/megapixels/app/utils/__init__.py b/megapixels/app/utils/__init__.py new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/megapixels/app/utils/__init__.py diff --git a/megapixels/app/utils/click_utils.py b/megapixels/app/utils/click_utils.py new file mode 100644 index 00000000..dc00f58c --- /dev/null +++ b/megapixels/app/utils/click_utils.py @@ -0,0 +1,62 @@ +""" +Custom Click parameter types +""" +import click + +from app.settings import app_cfg as cfg +from app.settings import types + + +# -------------------------------------------------------- +# Click command helpers +# -------------------------------------------------------- +def enum_to_names(enum_type): + return {x.name.lower(): x for x in enum_type} + +def show_help(enum_type): + names = enum_to_names(enum_type) + return 'Options: "{}"'.format(', '.join(list(names.keys()))) + +def get_default(opt): + return opt.name.lower() + + +# -------------------------------------------------------- +# Custom Click parameter class +# -------------------------------------------------------- + + +class ParamVar(click.ParamType): + + name = 'default_type' + + def __init__(self, param_type): + # self.name = '{}'.format(param_type.name.lower()) + # sealf. + self.ops = {x.name.lower(): x for x in param_type} + + def convert(self, value, param, ctx): + """converts (str) repr to Enum hash""" + try: + return self.ops[value.lower()] + except: + self.fail('{} is not a valid option'.format(value, param, ctx)) + + + + + + + + + + + + + + + + + + + diff --git a/megapixels/app/utils/file_utils.py b/megapixels/app/utils/file_utils.py new file mode 100644 index 00000000..773667b1 --- /dev/null +++ b/megapixels/app/utils/file_utils.py @@ -0,0 +1,400 @@ +""" +File utilities +""" +import sys +import os +from os.path import join +import stat + +from glob import glob +from pprint import pprint +import shutil +import distutils +import pathlib +from pathlib import Path +import json +import csv +import pickle +import threading +from queue import Queue +import time +import logging +import itertools +import collections + +import hashlib +import pymediainfo +import click +from tqdm import tqdm +import cv2 as cv +from PIL import Image +import imutils + +from app.settings import app_cfg as cfg +from app.settings import types + +log = logging.getLogger(cfg.LOGGER_NAME) + + +# ------------------------------------------ +# File I/O read/write little helpers +# ------------------------------------------ + +def glob_multi(dir_in, exts): + files = [] + for e in exts: + files.append(glob(join(dir_in, '*.{}'.format(e)))) + return files + + +def zpad(x, zeros=cfg.ZERO_PADDING): + return str(x).zfill(zeros) + +def get_ext(fpp, lower=True): + """Retuns the file extension w/o dot + :param fpp: (Pathlib.path) filepath + :param lower: (bool) force lowercase + :returns: (str) file extension (ie 'jpg') + """ + fpp = ensure_posixpath(fpp) + ext = fpp.suffix.replace('.', '') + return ext.lower() if lower else ext + + +def convert(fp_in, fp_out): + """Converts between JSON and Pickle formats + Pickle files are about 30-40% smaller filesize + """ + if get_ext(fp_in) == get_ext(fp_out): + log.error('Input: {} and output: {} are the same. Use this to convert.') + + lazywrite(lazyload(fp_in), fp_out) + + +def load_csv(fp_in, as_list=True): + """Loads CSV and retuns list of items + :param fp_in: string filepath to CSV + :returns: list of all CSV data + """ + if not Path(fp_in).exists(): + log.info('loading {}'.format(fp_in)) + log.info('loading: {}'.format(fp_in)) + with open(fp_in, 'r') as fp: + items = csv.DictReader(fp) + if as_list: + items = [x for x in items] + log.info('returning {:,} items'.format(len(items))) + return items + + +def lazywrite(data, fp_out, sort_keys=True): + """Writes JSON or Pickle data""" + ext = get_ext(fp_out) + if ext == 'json': + return write_json(data, fp_out, sort_keys=sort_keys) + elif ext == 'pkl': + return write_pickle(data, fp_out) + else: + raise NotImplementedError('[!] {} is not yet supported. Use .pkl or .json'.format(ext)) + + +def lazyload(fp_in, ordered=True): + """Loads JSON or Pickle serialized data""" + if not Path(fp_in).exists(): + log.error('file does not exist: {}'.format(fp_in)) + return {} + ext = get_ext(fp_in) + if ext == 'json': + items = load_json(fp_in) + elif ext == 'pkl': + items = load_pickle(fp_in) + else: + raise NotImplementedError('[!] {} is not yet supported. Use .pkl or .json'.format(ext)) + + if ordered: + return collections.OrderedDict(sorted(items.items(), key=lambda t: t[0])) + else: + return items + + +def load_text(fp_in): + with open(fp_in, 'rt') as fp: + lines = fp.read().rstrip('\n').split('\n') + return lines + +def load_json(fp_in): + """Loads JSON and returns items + :param fp_in: (str) filepath + :returns: data from JSON + """ + if not Path(fp_in).exists(): + log.error('file does not exist: {}'.format(fp_in)) + return {} + with open(str(fp_in), 'r') as fp: + data = json.load(fp) + return data + + +def load_pickle(fp_in): + """Loads Pickle and returns items + :param fp_in: (str) filepath + :returns: data from JSON + """ + if not Path(fp_in).exists(): + log.error('file does not exist: {}'.format(fp_in)) + return {} + with open(str(fp_in), 'rb') as fp: + data = pickle.load(fp) + return data + + +def order_items(records): + """Orders records by ASC SHA256""" + return collections.OrderedDict(sorted(records.items(), key=lambda t: t[0])) + +def write_text(data, fp_out, ensure_path=True): + if not data: + log.error('no data') + return + + if ensure_path: + mkdirs(fp_out) + with open(fp_out, 'w') as fp: + if type(data) == list: + fp.write('\n'.join(data)) + else: + fp.write(data) + + +def write_pickle(data, fp_out, ensure_path=True): + """ + """ + if ensure_path: + mkdirs(fp_out) # mkdir + with open(fp_out, 'wb') as fp: + pickle.dump(data, fp) + + +def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True): + """ + """ + if ensure_path: + mkdirs(fp_out) + with open(fp_out, 'w') as fp: + if minify: + json.dump(data, fp, separators=(',',':'), sort_keys=sort_keys) + else: + json.dump(data, fp, indent=2, sort_keys=sort_keys) + +def write_csv(data, fp_out, header=None): + """ """ + with open(fp_out, 'w') as fp: + writer = csv.DictWriter(fp, fieldnames=header) + writer.writeheader() + if type(data) is dict: + for k, v in data.items(): + fp.writerow('{},{}'.format(k, v)) + + +def write_serialized_items(items, fp_out, ensure_path=True, minify=True, sort_keys=True): + """Writes serialized data + :param items: (dict) a sha256 dict of MappingItems + :param serialize: (bool) serialize the data + :param ensure_path: ensure the parent directories exist + :param minify: reduces JSON file size + """ + log.info('Writing serialized data...') + fpp_out = ensure_posixpath(fp_out) + serialized_items = {k: v.serialize() for k, v in tqdm(items.items()) } + # write data + ext = get_ext(fpp_out) + if ext == 'json': + write_json(serialized_items, fp_out, ensure_path=ensure_path, minify=minify, sort_keys=sort_keys) + elif ext == 'pkl': + write_pickle(serialized_items, fp_out) + else: + raise NotImplementedError('[!] {} is not yet supported. Use .pkl or .json'.format(ext)) + log.info('Wrote {:,} items to {}'.format(len(items), fp_out)) + + +def write_modeled_data(data, fp_out, ensure_path=False): + """ + """ + fpp_out = ensure_posixpath(fp_out) + if ensure_path: + mkdirs(fpp_out) + ext = get_ext(fpp_out) + if ext == 'pkl': + write_pickle(data, str(fp_out)) + else: + raise NotImplementedError('[!] {} is not yet supported. Use .pkl or .json'.format(ext)) + + +# --------------------------------------------------------------------- +# Filepath utilities +# --------------------------------------------------------------------- + +def ensure_posixpath(fp): + """Ensures filepath is pathlib.Path + :param fp: a (str, LazyFile, PosixPath) + :returns: a PosixPath filepath object + """ + if type(fp) == str: + fpp = Path(fp) + elif type(fp) == click.utils.LazyFile: + fpp = Path(fp.name) + elif type(fp) == pathlib.PosixPath: + fpp = fp + else: + raise TypeError('{} is not a valid filepath type'.format(type(fp))) + return fpp + + +def mkdirs(fp): + """Ensure parent directories exist for a filepath + :param fp: string, Path, or click.File + """ + fpp = ensure_posixpath(fp) + fpp = fpp.parent if fpp.suffix else fpp + fpp.mkdir(parents=True, exist_ok=True) + + +def ext_media_format(ext): + """Converts file extension into Enum MediaType + param ext: str of file extension" + """ + for media_format, exts in cfg.VALID_MEDIA_EXTS.items(): + if ext in exts: + return media_format + raise ValueError('{} is not a valid option'.format(ext)) + + +def sha256(fp_in, block_size=65536): + """Generates SHA256 hash for a file + :param fp_in: (str) filepath + :param block_size: (int) byte size of block + :returns: (str) hash + """ + sha256 = hashlib.sha256() + with open(fp_in, 'rb') as fp: + for block in iter(lambda: f.read(block_size), b''): + sha256.update(block) + return sha256.hexdigest() + + +def sha256_tree(sha256): + """Split hash into branches with tree-depth for faster file indexing + :param sha256: str of a sha256 hash + :returns: str with sha256 tree with '/' delimeter + """ + branch_size = cfg.HASH_BRANCH_SIZE + tree_size = cfg.HASH_TREE_DEPTH * branch_size + sha256_tree = [sha256[i:(i+branch_size)] for i in range(0, tree_size, branch_size)] + return '/'.join(sha256_tree) + + +def migrate(fmaps, threads=1, action='copy', force=False): + """Copy/move/symlink files form src to dst directory + :param fmaps: (dict) with 'src' and 'dst' filepaths + :param threads: (int) number of threads + :param action: (str) copy/move/symlink + :param force: (bool) force overwrite existing files + """ + log = log + num_items = len(fmaps) + + def copytree(src, dst, symlinks = False, ignore = None): + # ozxyqk: https://stackoverflow.com/questions/22588225/how-do-you-merge-two-directories-or-move-with-replace-from-the-windows-command + if not os.path.exists(dst): + mkdirs(dst) + # os.makedirs(dst) + shutil.copystat(src, dst) + lst = os.listdir(src) + if ignore: + excl = ignore(src, lst) + lst = [x for x in lst if x not in excl] + for item in lst: + s = os.path.join(src, item) + d = os.path.join(dst, item) + if symlinks and os.path.islink(s): + if os.path.exists(d): + os.remove(d) + os.symlink(os.readlink(s), d) + try: + st = os.lstat(s) + mode = stat.S_IMODE(st.st_mode) + os.lchmod(d, mode) + except: + pass # lchmod not available + elif os.path.isdir(s): + copytree(s, d, symlinks, ignore) + else: + shutil.copy(s, d) + + assert(action in ['copy','move','symlink']) + + if threads > 1: + # threaded + task_queue = Queue() + print_lock = threading.Lock() + + def migrate_action(fmap): + data_local = threading.local() + data_local.src, data_local.dst = (fmap['src'], fmap['dst']) + data_local.src_path = Path(data_local.src) + data_local.dst_path = Path(data_local.dst) + + if force or not data_local.dst_path.exists(): + if action == 'copy': + shutil.copy(data_local.src, data_local.dst) + #if data_local.src_path.is_dir(): + # copytree(data_local.src, data_local.dst) + #else: + elif action == 'move': + shutil.move(data_local.src, data_local.dst) + elif action == 'symlink': + if force: + data_local.dst_path.unlink() + Path(data_local.src).symlink_to(data_local.dst) + + def process_queue(num_items): + # TODO: progress bar + while True: + fmap = task_queue.get() + migrate_action(fmap) + log.info('migrate: {:.2f} {:,}/{:,}'.format( + (task_queue.qsize() / num_items)*100, task_queue.qsize(), num_items)) + task_queue.task_done() + + # avoid race conditions by creating dir structure here + log.info('create directory structure') + for fmap in tqdm(fmaps): + mkdirs(fmap['dst']) + + # init threads + for i in range(threads): + t = threading.Thread(target=process_queue, args=(num_items,)) + t.daemon = True + t.start() + + # process threads + start = time.time() + for fmap in fmaps: + task_queue.put(fmap) + + task_queue.join() + + else: + # non-threaded + for fmap in tqdm(fmaps): + mkdirs(fmap['dst']) + if action == 'copy': + shutil.copy(fmap['src'], fmap['dst']) + elif action == 'move': + shutil.move(fmap['src'], fmap['dst']) + elif action == 'symlink': + if force: + Path(fmap['dst'].unlink()) + Path(fp_src).symlink_to(fp_dst) + return + diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py new file mode 100644 index 00000000..a0f23cd2 --- /dev/null +++ b/megapixels/app/utils/im_utils.py @@ -0,0 +1,506 @@ +import sys +import os +from os.path import join +import cv2 as cv +import imagehash +from PIL import Image, ImageDraw, ImageFilter, ImageOps +from skimage.filters.rank import entropy +from skimage.morphology import disk +from skimage import feature +# import matplotlib.pyplot as plt +import imutils +import time +import numpy as np +import torch +import torch.nn as nn +import torchvision.models as models +import torchvision.transforms as transforms +from torch.autograd import Variable +from sklearn.metrics.pairwise import cosine_similarity +import datetime + + + + +def compute_features(fe,frames,phashes,phash_thresh=1): + """ + Get vector embedding using FeatureExtractor + :param fe: FeatureExtractor class + :param frames: list of frame images as numpy.ndarray + :param phash_thresh: perceptual hash threshold + :returns: list of feature vectors + """ + vals = [] + phash_pre = phashes[0] + for i,im in enumerate(frames): + if i == 0 or (phashes[i] - phashes[i-1]) > phash_thresh: + vals.append(fe.extract(im)) + else: + vals.append(vals[i-1]) + return vals + + +def ensure_pil(im, bgr2rgb=False): + """Ensure image is Pillow format + :param im: image in numpy or PIL.Image format + :returns: image in Pillow RGB format + """ + try: + im.verify() + return im + except: + if bgr2rgb: + im = cv.cvtColor(im,cv.COLOR_BGR2RGB) + return Image.fromarray(im.astype('uint8'), 'RGB') + +def ensure_np(im): + """Ensure image is Numpy.ndarry format + :param im: image in numpy or PIL.Image format + :returns: image in Numpy uint8 format + """ + if type(im) == np.ndarray: + return im + return np.asarray(im, np.uint8) + + +def resize(im,width=0,height=0): + """resize image using imutils. Use w/h=[0 || None] to prioritize other edge size + :param im: a Numpy.ndarray image + :param wh: a tuple of (width, height) + """ + w = width + h = height + if w is 0 and h is 0: + return im + elif w > 0 and h > 0: + return imutils.resize(im,width=w,height=h) + elif w > 0 and h is 0: + return imutils.resize(im,width=w) + elif w is 0 and h > 0: + return imutils.resize(im,height=h) + else: + return im + +def filter_pixellate(im,num_cells): + """Pixellate image by downsample then upsample + :param im: PIL.Image + :returns: PIL.Image + """ + w,h = im.size + im = im.resize((num_cells,num_cells), Image.NEAREST) + im = im.resize((w,h), Image.NEAREST) + return im + +# Plot images inline using Matplotlib +# def pltimg(im,title=None,mode='rgb',figsize=(8,12),dpi=160,output=None): +# plt.figure(figsize=figsize) +# plt.xticks([]),plt.yticks([]) +# if title is not None: +# plt.title(title) +# if mode.lower() == 'bgr': +# im = cv.cvtColor(im,cv.COLOR_BGR2RGB) + +# f = plt.gcf() +# if mode.lower() =='grey' or mode.lower() == 'gray': +# plt.imshow(im,cmap='gray') +# else: +# plt.imshow(im) +# plt.show() +# plt.draw() +# if output is not None: +# bbox_inches='tight' +# ext=osp.splitext(output)[1].replace('.','') +# f.savefig(output,dpi=dpi,format=ext) +# print('Image saved to: {}'.format(output)) + + + +# Utilities for analyzing frames + +def compute_gray(im): + im = cv.cvtColor(im,cv.COLOR_BGR2GRAY) + n_vals = float(im.shape[0] * im.shape[1]) + avg = np.sum(im[:]) / n_vals + return avg + +def compute_rgb(im): + im = cv.cvtColor(im,cv.COLOR_BGR2RGB) + n_vals = float(im.shape[0] * im.shape[1]) + avg_r = np.sum(im[:,:,0]) / n_vals + avg_g = np.sum(im[:,:,1]) / n_vals + avg_b = np.sum(im[:,:,2]) / n_vals + avg_rgb = np.sum(im[:,:,:]) / (n_vals * 3.0) + return avg_r, avg_b, avg_g, avg_rgb + +def compute_hsv(im): + im = cv.cvtColor(im,cv.COLOR_BGR2HSV) + n_vals = float(im.shape[0] * im.shape[1]) + avg_h = np.sum(frame[:,:,0]) / n_vals + avg_s = np.sum(frame[:,:,1]) / n_vals + avg_v = np.sum(frame[:,:,2]) / n_vals + avg_hsv = np.sum(frame[:,:,:]) / (n_vals * 3.0) + return avg_h, avg_s, avg_v, avg_hsv + +def pys_dhash(im, hashSize=8): + # resize the input image, adding a single column (width) so we + # can compute the horizontal gradient + resized = cv.resize(im, (hashSize + 1, hashSize)) + # compute the (relative) horizontal gradient between adjacent + # column pixels + diff = resized[:, 1:] > resized[:, :-1] + # convert the difference image to a hash + return sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v]) + + +############################################ +# ImageHash +# pip install imagehash +############################################ + + +def compute_ahash(im): + """Compute average hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.average_hash(ensure_pil(im_pil)) + +def compute_phash(im): + """Compute perceptual hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.phash(ensure_pil(im)) + +def compute_dhash(im): + """Compute difference hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.dhash(ensure_pil(im)) + +def compute_whash(im): + """Compute wavelet hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.whash(ensure_pil(im)) + +def compute_whash_b64(im): + """Compute wavelest hash base64 using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return lambda im: imagehash.whash(ensure_pil(im), mode='db4') + + +############################################ +# Pillow +############################################ + +def sharpen(im): + """Sharpen image using PIL.ImageFilter + param: im: PIL.Image + returns: PIL.Image + """ + im = ensure_pil(im) + im.filter(ImageFilter.SHARPEN) + return ensure_np(im) + +def fit_image(im,targ_size): + """Force fit image by cropping + param: im: PIL.Image + param: targ_size: a tuple of target (width, height) + returns: PIL.Image + """ + im_pil = ensure_pil(im) + frame_pil = ImageOps.fit(im_pil, targ_size, + method=Image.BICUBIC, centering=(0.5, 0.5)) + return ensure_np(frame_pil) + + +def compute_entropy(im): + entr_img = entropy(im, disk(10)) + + +############################################ +# scikit-learn +############################################ + +def compute_entropy(im): + # im is grayscale numpy + return entropy(im, disk(10)) + +############################################ +# OpenCV +############################################ + +def bgr2gray(im): + """Wrapper for cv2.cvtColor transform + :param im: Numpy.ndarray (BGR) + :returns: Numpy.ndarray (Gray) + """ + return cv.cvtColor(im,cv.COLOR_BGR2GRAY) + +def gray2bgr(im): + """Wrapper for cv2.cvtColor transform + :param im: Numpy.ndarray (Gray) + :returns: Numpy.ndarray (BGR) + """ + return cv.cvtColor(im,cv.COLOR_GRAY2BGR) + +def bgr2rgb(im): + """Wrapper for cv2.cvtColor transform + :param im: Numpy.ndarray (BGR) + :returns: Numpy.ndarray (RGB) + """ + return cv.cvtColor(im,cv.COLOR_BGR2RGB) + +def compute_laplacian(im): + # below 100 is usually blurry + return cv.Laplacian(im, cv.CV_64F).var() + + +# http://radjkarl.github.io/imgProcessor/index.html# + +def modifiedLaplacian(img): + ''''LAPM' algorithm (Nayar89)''' + M = np.array([-1, 2, -1]) + G = cv.getGaussianKernel(ksize=3, sigma=-1) + Lx = cv.sepFilter2D(src=img, ddepth=cv.CV_64F, kernelX=M, kernelY=G) + Ly = cv.sepFilter2D(src=img, ddepth=cv.CV_64F, kernelX=G, kernelY=M) + FM = np.abs(Lx) + np.abs(Ly) + return cv.mean(FM)[0] + +def varianceOfLaplacian(img): + ''''LAPV' algorithm (Pech2000)''' + lap = cv.Laplacian(img, ddepth=-1)#cv.cv.CV_64F) + stdev = cv.meanStdDev(lap)[1] + s = stdev[0]**2 + return s[0] + +def tenengrad(img, ksize=3): + ''''TENG' algorithm (Krotkov86)''' + Gx = cv.Sobel(img, ddepth=cv.CV_64F, dx=1, dy=0, ksize=ksize) + Gy = cv.Sobel(img, ddepth=cv.CV_64F, dx=0, dy=1, ksize=ksize) + FM = Gx**2 + Gy**2 + return cv.mean(FM)[0] + +def normalizedGraylevelVariance(img): + ''''GLVN' algorithm (Santos97)''' + mean, stdev = cv.meanStdDev(img) + s = stdev[0]**2 / mean[0] + return s[0] + +def compute_if_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None): + # im is graysacale np + #im = imutils.resize(im,width=width) + #mask = imutils.resize(mask,width=width) + if mask is not None: + im_canny = feature.canny(im,sigma=sigma,mask=mask) + total = len(np.where(mask > 0)[0]) + else: + im_canny = feature.canny(im,sigma=sigma) + total = (im.shape[0]*im.shape[1]) + n_white = len(np.where(im_canny > 0)[0]) + per = n_white/total + if np.mean(im) < thresh_mean or per < thresh_canny: + return 1 + else: + return 0 + + +def print_timing(t,n): + t = time.time()-t + print('Elapsed time: {:.2f}'.format(t)) + print('FPS: {:.2f}'.format(n/t)) + +def vid2frames(fpath, limit=5000, width=None, idxs=None): + """Convert a video file into list of frames + :param fpath: filepath to the video file + :param limit: maximum number of frames to read + :param fpath: the indices of frames to keep (rest are skipped) + :returns: (fps, number of frames, list of Numpy.ndarray frames) + """ + frames = [] + try: + cap = cv.VideoCapture(fpath) + except: + print('[-] Error. Could not read video file: {}'.format(fpath)) + try: + cap.release() + except: + pass + return frames + + fps = cap.get(cv.CAP_PROP_FPS) + nframes = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) + + if idxs is not None: + # read sample indices by seeking to frame index + for idx in idxs: + cap.set(cv.CAP_PROP_POS_FRAMES, idx) + res, frame = cap.read() + if width is not None: + frame = imutils.resize(frame, width=width) + frames.append(frame) + else: + while(True and len(frames) < limit): + res, frame = cap.read() + if not res: + break + if width is not None: + frame = imutils.resize(frame, width=width) + frames.append(frame) + + cap.release() + del cap + #return fps,nframes,frames + return frames + +def convolve_filter(vals,filters=[1]): + for k in filters: + vals_tmp = np.zeros_like(vals) + t = len(vals_tmp) + for i,v in enumerate(vals): + sum_vals = vals[max(0,i-k):min(t-1,i+k)] + vals_tmp[i] = np.mean(sum_vals) + vals = vals_tmp.copy() + return vals + +def cosine_delta(v1,v2): + return 1.0 - cosine_similarity(v1.reshape((1, -1)), v2.reshape((1, -1)))[0][0] + + + +def compute_edges(vals): + # find edges (1 = rising, -1 = falling) + edges = np.zeros_like(vals) + for i in range(len(vals[1:])): + delta = vals[i] - vals[i-1] + if delta == -1: + edges[i] = 1 # rising edge 0 --> 1 + elif delta == 1: + edges[i+1] = 2 # falling edge 1 --> 0 + # get index for rise fall + rising = np.where(np.array(edges) == 1)[0] + falling = np.where(np.array(edges) == 2)[0] + return rising, falling + + +############################################ +# Point, Rect +############################################ + +class Point(object): + def __init__(self, x, y): + self.x = x + self.y = y + +class Rect(object): + def __init__(self, p1, p2): + '''Store the top, bottom, left and right values for points + p1 and p2 are the (corners) in either order + ''' + self.left = min(p1.x, p2.x) + self.right = max(p1.x, p2.x) + self.top = min(p1.y, p2.y) + self.bottom = max(p1.y, p2.y) + +def overlap(r1, r2): + '''Overlapping rectangles overlap both horizontally & vertically + ''' + return range_overlap(r1.left, r1.right, r2.left, r2.right) and \ + range_overlap(r1.top, r1.bottom, r2.top, r2.bottom) + +def range_overlap(a_min, a_max, b_min, b_max): + '''Neither range is completely greater than the other + ''' + return (a_min <= b_max) and (b_min <= a_max) + +def merge_rects(r1,r2): + p1 = Point(min(r1.left,r2.left),min(r1.top,r2.top)) + p2 = Point(max(r1.right,r2.right),max(r1.bottom,r2.bottom)) + return Rect(p1,p2) + +def is_overlapping(r1,r2): + """r1,r2 as [x1,y1,x2,y2] list""" + r1x = Rect(Point(r1[0],r1[1]),Point(r1[2],r1[3])) + r2x = Rect(Point(r2[0],r2[1]),Point(r2[2],r2[3])) + return overlap(r1x,r2x) + +def get_rects_merged(rects,bounds,expand=0): + """rects: list of points in [x1,y1,x2,y2] format""" + rects_expanded = [] + bx,by = bounds + # expand + for x1,y1,x2,y2 in rects: + x1 = max(0,x1-expand) + y1 = max(0,y1-expand) + x2 = min(bx,x2+expand) + y2 = min(by,y2+expand) + rects_expanded.append(Rect(Point(x1,y1),Point(x2,y2))) + + #rects_expanded = [Rect(Point(x1,y1),Point(x2,y2)) for x1,y1,x2,y2 in rects_expanded] + rects_merged = [] + for i,r in enumerate(rects_expanded): + found = False + for j,rm in enumerate(rects_merged): + if overlap(r,rm): + rects_merged[j] = merge_rects(r,rm) #expand + found = True + if not found: + rects_merged.append(r) + # convert back to [x1,y1,x2,y2] format + rects_merged = [(r.left,r.top,r.right,r.bottom) for r in rects_merged] + # contract + rects_contracted = [] + for x1,y1,x2,y2 in rects_merged: + x1 = min(bx,x1+expand) + y1 = min(by,y1+expand) + x2 = max(0,x2-expand) + y2 = max(0,y2-expand) + rects_contracted.append((x1,y1,x2,y2)) + + return rects_contracted + + +############################################ +# Image display +############################################ + + +def montage(frames,ncols=4,nrows=None,width=None): + """Convert list of frames into a grid montage + param: frames: list of frames as Numpy.ndarray + param: ncols: number of columns + param: width: resize images to this width before adding to grid + returns: Numpy.ndarray grid of all images + """ + + # expand image size if not enough frames + if nrows is not None and len(frames) < ncols * nrows: + blank = np.zeros_like(frames[0]) + n = ncols * nrows - len(frames) + for i in range(n): frames.append(blank) + + rows = [] + for i,im in enumerate(frames): + if width is not None: + im = imutils.resize(im,width=width) + h,w = im.shape[:2] + if i % ncols == 0: + if i > 0: + rows.append(ims) + ims = [] + ims.append(im) + if len(ims) > 0: + for j in range(ncols-len(ims)): + ims.append(np.zeros_like(im)) + rows.append(ims) + row_ims = [] + for row in rows: + row_im = np.hstack(np.array(row)) + row_ims.append(row_im) + contact_sheet = np.vstack(np.array(row_ims)) + return contact_sheet diff --git a/megapixels/app/utils/logger_utils.py b/megapixels/app/utils/logger_utils.py new file mode 100644 index 00000000..d4f962eb --- /dev/null +++ b/megapixels/app/utils/logger_utils.py @@ -0,0 +1,68 @@ +""" +Logger instantiator for use with Click utlity scripts +""" +import sys +import os +import logging + +import colorlog + +from app.settings import app_cfg as cfg + + +class Logger: + + logger_name = 'app' + + def __init__(self): + pass + + @staticmethod + def create(verbosity=4, logfile=None): + """Configures a logger from click params + :param verbosity: (int) between 0 and 5 + :param logfile: (str) path to logfile + :returns: logging root object + """ + + loglevel = (5 - (max(0, min(verbosity, 5)))) * 10 # where logging.DEBUG = 10 + date_format = '%Y-%m-%d %H:%M:%S' + if 'colorlog' in sys.modules and os.isatty(2): + cformat = '%(log_color)s' + cfg.LOGFILE_FORMAT + f = colorlog.ColoredFormatter(cformat, date_format, + log_colors = { 'DEBUG' : 'yellow', 'INFO' : 'white', + 'WARNING' : 'bold_yellow', 'ERROR': 'bold_red', + 'CRITICAL': 'bold_red' }) + else: + f = logging.Formatter(cfg.LOGFILE_FORMAT, date_format) + + # logger = logging.getLogger(Logger.logger_name) + logger = logging.getLogger(cfg.LOGGER_NAME) + logger.setLevel(loglevel) + + if logfile: + # create file handler which logs even debug messages + fh = logging.FileHandler(logfile) + fh.setLevel(loglevel) + logger.addHandler(fh) + + # add colored handler + ch = logging.StreamHandler() + ch.setFormatter(f) + logger.addHandler(ch) + + if verbosity == 0: + logger.disabled = True + + # test + # logger.debug('Hello Debug') + # logger.info('Hello Info') + # logger.warn('Hello Warn') + # logger.error('Hello Error') + # logger.critical('Hello Critical') + + return logger + + @staticmethod + def getLogger(): + return logging.getLogger(cfg.LOGGER_NAME)
\ No newline at end of file |
