diff options
Diffstat (limited to 'megapixels/app/utils/im_utils.py')
| -rw-r--r-- | megapixels/app/utils/im_utils.py | 506 |
1 files changed, 506 insertions, 0 deletions
diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py new file mode 100644 index 00000000..a0f23cd2 --- /dev/null +++ b/megapixels/app/utils/im_utils.py @@ -0,0 +1,506 @@ +import sys +import os +from os.path import join +import cv2 as cv +import imagehash +from PIL import Image, ImageDraw, ImageFilter, ImageOps +from skimage.filters.rank import entropy +from skimage.morphology import disk +from skimage import feature +# import matplotlib.pyplot as plt +import imutils +import time +import numpy as np +import torch +import torch.nn as nn +import torchvision.models as models +import torchvision.transforms as transforms +from torch.autograd import Variable +from sklearn.metrics.pairwise import cosine_similarity +import datetime + + + + +def compute_features(fe,frames,phashes,phash_thresh=1): + """ + Get vector embedding using FeatureExtractor + :param fe: FeatureExtractor class + :param frames: list of frame images as numpy.ndarray + :param phash_thresh: perceptual hash threshold + :returns: list of feature vectors + """ + vals = [] + phash_pre = phashes[0] + for i,im in enumerate(frames): + if i == 0 or (phashes[i] - phashes[i-1]) > phash_thresh: + vals.append(fe.extract(im)) + else: + vals.append(vals[i-1]) + return vals + + +def ensure_pil(im, bgr2rgb=False): + """Ensure image is Pillow format + :param im: image in numpy or PIL.Image format + :returns: image in Pillow RGB format + """ + try: + im.verify() + return im + except: + if bgr2rgb: + im = cv.cvtColor(im,cv.COLOR_BGR2RGB) + return Image.fromarray(im.astype('uint8'), 'RGB') + +def ensure_np(im): + """Ensure image is Numpy.ndarry format + :param im: image in numpy or PIL.Image format + :returns: image in Numpy uint8 format + """ + if type(im) == np.ndarray: + return im + return np.asarray(im, np.uint8) + + +def resize(im,width=0,height=0): + """resize image using imutils. Use w/h=[0 || None] to prioritize other edge size + :param im: a Numpy.ndarray image + :param wh: a tuple of (width, height) + """ + w = width + h = height + if w is 0 and h is 0: + return im + elif w > 0 and h > 0: + return imutils.resize(im,width=w,height=h) + elif w > 0 and h is 0: + return imutils.resize(im,width=w) + elif w is 0 and h > 0: + return imutils.resize(im,height=h) + else: + return im + +def filter_pixellate(im,num_cells): + """Pixellate image by downsample then upsample + :param im: PIL.Image + :returns: PIL.Image + """ + w,h = im.size + im = im.resize((num_cells,num_cells), Image.NEAREST) + im = im.resize((w,h), Image.NEAREST) + return im + +# Plot images inline using Matplotlib +# def pltimg(im,title=None,mode='rgb',figsize=(8,12),dpi=160,output=None): +# plt.figure(figsize=figsize) +# plt.xticks([]),plt.yticks([]) +# if title is not None: +# plt.title(title) +# if mode.lower() == 'bgr': +# im = cv.cvtColor(im,cv.COLOR_BGR2RGB) + +# f = plt.gcf() +# if mode.lower() =='grey' or mode.lower() == 'gray': +# plt.imshow(im,cmap='gray') +# else: +# plt.imshow(im) +# plt.show() +# plt.draw() +# if output is not None: +# bbox_inches='tight' +# ext=osp.splitext(output)[1].replace('.','') +# f.savefig(output,dpi=dpi,format=ext) +# print('Image saved to: {}'.format(output)) + + + +# Utilities for analyzing frames + +def compute_gray(im): + im = cv.cvtColor(im,cv.COLOR_BGR2GRAY) + n_vals = float(im.shape[0] * im.shape[1]) + avg = np.sum(im[:]) / n_vals + return avg + +def compute_rgb(im): + im = cv.cvtColor(im,cv.COLOR_BGR2RGB) + n_vals = float(im.shape[0] * im.shape[1]) + avg_r = np.sum(im[:,:,0]) / n_vals + avg_g = np.sum(im[:,:,1]) / n_vals + avg_b = np.sum(im[:,:,2]) / n_vals + avg_rgb = np.sum(im[:,:,:]) / (n_vals * 3.0) + return avg_r, avg_b, avg_g, avg_rgb + +def compute_hsv(im): + im = cv.cvtColor(im,cv.COLOR_BGR2HSV) + n_vals = float(im.shape[0] * im.shape[1]) + avg_h = np.sum(frame[:,:,0]) / n_vals + avg_s = np.sum(frame[:,:,1]) / n_vals + avg_v = np.sum(frame[:,:,2]) / n_vals + avg_hsv = np.sum(frame[:,:,:]) / (n_vals * 3.0) + return avg_h, avg_s, avg_v, avg_hsv + +def pys_dhash(im, hashSize=8): + # resize the input image, adding a single column (width) so we + # can compute the horizontal gradient + resized = cv.resize(im, (hashSize + 1, hashSize)) + # compute the (relative) horizontal gradient between adjacent + # column pixels + diff = resized[:, 1:] > resized[:, :-1] + # convert the difference image to a hash + return sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v]) + + +############################################ +# ImageHash +# pip install imagehash +############################################ + + +def compute_ahash(im): + """Compute average hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.average_hash(ensure_pil(im_pil)) + +def compute_phash(im): + """Compute perceptual hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.phash(ensure_pil(im)) + +def compute_dhash(im): + """Compute difference hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.dhash(ensure_pil(im)) + +def compute_whash(im): + """Compute wavelet hash using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return imagehash.whash(ensure_pil(im)) + +def compute_whash_b64(im): + """Compute wavelest hash base64 using ImageHash library + :param im: Numpy.ndarray + :returns: Imagehash.ImageHash + """ + return lambda im: imagehash.whash(ensure_pil(im), mode='db4') + + +############################################ +# Pillow +############################################ + +def sharpen(im): + """Sharpen image using PIL.ImageFilter + param: im: PIL.Image + returns: PIL.Image + """ + im = ensure_pil(im) + im.filter(ImageFilter.SHARPEN) + return ensure_np(im) + +def fit_image(im,targ_size): + """Force fit image by cropping + param: im: PIL.Image + param: targ_size: a tuple of target (width, height) + returns: PIL.Image + """ + im_pil = ensure_pil(im) + frame_pil = ImageOps.fit(im_pil, targ_size, + method=Image.BICUBIC, centering=(0.5, 0.5)) + return ensure_np(frame_pil) + + +def compute_entropy(im): + entr_img = entropy(im, disk(10)) + + +############################################ +# scikit-learn +############################################ + +def compute_entropy(im): + # im is grayscale numpy + return entropy(im, disk(10)) + +############################################ +# OpenCV +############################################ + +def bgr2gray(im): + """Wrapper for cv2.cvtColor transform + :param im: Numpy.ndarray (BGR) + :returns: Numpy.ndarray (Gray) + """ + return cv.cvtColor(im,cv.COLOR_BGR2GRAY) + +def gray2bgr(im): + """Wrapper for cv2.cvtColor transform + :param im: Numpy.ndarray (Gray) + :returns: Numpy.ndarray (BGR) + """ + return cv.cvtColor(im,cv.COLOR_GRAY2BGR) + +def bgr2rgb(im): + """Wrapper for cv2.cvtColor transform + :param im: Numpy.ndarray (BGR) + :returns: Numpy.ndarray (RGB) + """ + return cv.cvtColor(im,cv.COLOR_BGR2RGB) + +def compute_laplacian(im): + # below 100 is usually blurry + return cv.Laplacian(im, cv.CV_64F).var() + + +# http://radjkarl.github.io/imgProcessor/index.html# + +def modifiedLaplacian(img): + ''''LAPM' algorithm (Nayar89)''' + M = np.array([-1, 2, -1]) + G = cv.getGaussianKernel(ksize=3, sigma=-1) + Lx = cv.sepFilter2D(src=img, ddepth=cv.CV_64F, kernelX=M, kernelY=G) + Ly = cv.sepFilter2D(src=img, ddepth=cv.CV_64F, kernelX=G, kernelY=M) + FM = np.abs(Lx) + np.abs(Ly) + return cv.mean(FM)[0] + +def varianceOfLaplacian(img): + ''''LAPV' algorithm (Pech2000)''' + lap = cv.Laplacian(img, ddepth=-1)#cv.cv.CV_64F) + stdev = cv.meanStdDev(lap)[1] + s = stdev[0]**2 + return s[0] + +def tenengrad(img, ksize=3): + ''''TENG' algorithm (Krotkov86)''' + Gx = cv.Sobel(img, ddepth=cv.CV_64F, dx=1, dy=0, ksize=ksize) + Gy = cv.Sobel(img, ddepth=cv.CV_64F, dx=0, dy=1, ksize=ksize) + FM = Gx**2 + Gy**2 + return cv.mean(FM)[0] + +def normalizedGraylevelVariance(img): + ''''GLVN' algorithm (Santos97)''' + mean, stdev = cv.meanStdDev(img) + s = stdev[0]**2 / mean[0] + return s[0] + +def compute_if_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None): + # im is graysacale np + #im = imutils.resize(im,width=width) + #mask = imutils.resize(mask,width=width) + if mask is not None: + im_canny = feature.canny(im,sigma=sigma,mask=mask) + total = len(np.where(mask > 0)[0]) + else: + im_canny = feature.canny(im,sigma=sigma) + total = (im.shape[0]*im.shape[1]) + n_white = len(np.where(im_canny > 0)[0]) + per = n_white/total + if np.mean(im) < thresh_mean or per < thresh_canny: + return 1 + else: + return 0 + + +def print_timing(t,n): + t = time.time()-t + print('Elapsed time: {:.2f}'.format(t)) + print('FPS: {:.2f}'.format(n/t)) + +def vid2frames(fpath, limit=5000, width=None, idxs=None): + """Convert a video file into list of frames + :param fpath: filepath to the video file + :param limit: maximum number of frames to read + :param fpath: the indices of frames to keep (rest are skipped) + :returns: (fps, number of frames, list of Numpy.ndarray frames) + """ + frames = [] + try: + cap = cv.VideoCapture(fpath) + except: + print('[-] Error. Could not read video file: {}'.format(fpath)) + try: + cap.release() + except: + pass + return frames + + fps = cap.get(cv.CAP_PROP_FPS) + nframes = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) + + if idxs is not None: + # read sample indices by seeking to frame index + for idx in idxs: + cap.set(cv.CAP_PROP_POS_FRAMES, idx) + res, frame = cap.read() + if width is not None: + frame = imutils.resize(frame, width=width) + frames.append(frame) + else: + while(True and len(frames) < limit): + res, frame = cap.read() + if not res: + break + if width is not None: + frame = imutils.resize(frame, width=width) + frames.append(frame) + + cap.release() + del cap + #return fps,nframes,frames + return frames + +def convolve_filter(vals,filters=[1]): + for k in filters: + vals_tmp = np.zeros_like(vals) + t = len(vals_tmp) + for i,v in enumerate(vals): + sum_vals = vals[max(0,i-k):min(t-1,i+k)] + vals_tmp[i] = np.mean(sum_vals) + vals = vals_tmp.copy() + return vals + +def cosine_delta(v1,v2): + return 1.0 - cosine_similarity(v1.reshape((1, -1)), v2.reshape((1, -1)))[0][0] + + + +def compute_edges(vals): + # find edges (1 = rising, -1 = falling) + edges = np.zeros_like(vals) + for i in range(len(vals[1:])): + delta = vals[i] - vals[i-1] + if delta == -1: + edges[i] = 1 # rising edge 0 --> 1 + elif delta == 1: + edges[i+1] = 2 # falling edge 1 --> 0 + # get index for rise fall + rising = np.where(np.array(edges) == 1)[0] + falling = np.where(np.array(edges) == 2)[0] + return rising, falling + + +############################################ +# Point, Rect +############################################ + +class Point(object): + def __init__(self, x, y): + self.x = x + self.y = y + +class Rect(object): + def __init__(self, p1, p2): + '''Store the top, bottom, left and right values for points + p1 and p2 are the (corners) in either order + ''' + self.left = min(p1.x, p2.x) + self.right = max(p1.x, p2.x) + self.top = min(p1.y, p2.y) + self.bottom = max(p1.y, p2.y) + +def overlap(r1, r2): + '''Overlapping rectangles overlap both horizontally & vertically + ''' + return range_overlap(r1.left, r1.right, r2.left, r2.right) and \ + range_overlap(r1.top, r1.bottom, r2.top, r2.bottom) + +def range_overlap(a_min, a_max, b_min, b_max): + '''Neither range is completely greater than the other + ''' + return (a_min <= b_max) and (b_min <= a_max) + +def merge_rects(r1,r2): + p1 = Point(min(r1.left,r2.left),min(r1.top,r2.top)) + p2 = Point(max(r1.right,r2.right),max(r1.bottom,r2.bottom)) + return Rect(p1,p2) + +def is_overlapping(r1,r2): + """r1,r2 as [x1,y1,x2,y2] list""" + r1x = Rect(Point(r1[0],r1[1]),Point(r1[2],r1[3])) + r2x = Rect(Point(r2[0],r2[1]),Point(r2[2],r2[3])) + return overlap(r1x,r2x) + +def get_rects_merged(rects,bounds,expand=0): + """rects: list of points in [x1,y1,x2,y2] format""" + rects_expanded = [] + bx,by = bounds + # expand + for x1,y1,x2,y2 in rects: + x1 = max(0,x1-expand) + y1 = max(0,y1-expand) + x2 = min(bx,x2+expand) + y2 = min(by,y2+expand) + rects_expanded.append(Rect(Point(x1,y1),Point(x2,y2))) + + #rects_expanded = [Rect(Point(x1,y1),Point(x2,y2)) for x1,y1,x2,y2 in rects_expanded] + rects_merged = [] + for i,r in enumerate(rects_expanded): + found = False + for j,rm in enumerate(rects_merged): + if overlap(r,rm): + rects_merged[j] = merge_rects(r,rm) #expand + found = True + if not found: + rects_merged.append(r) + # convert back to [x1,y1,x2,y2] format + rects_merged = [(r.left,r.top,r.right,r.bottom) for r in rects_merged] + # contract + rects_contracted = [] + for x1,y1,x2,y2 in rects_merged: + x1 = min(bx,x1+expand) + y1 = min(by,y1+expand) + x2 = max(0,x2-expand) + y2 = max(0,y2-expand) + rects_contracted.append((x1,y1,x2,y2)) + + return rects_contracted + + +############################################ +# Image display +############################################ + + +def montage(frames,ncols=4,nrows=None,width=None): + """Convert list of frames into a grid montage + param: frames: list of frames as Numpy.ndarray + param: ncols: number of columns + param: width: resize images to this width before adding to grid + returns: Numpy.ndarray grid of all images + """ + + # expand image size if not enough frames + if nrows is not None and len(frames) < ncols * nrows: + blank = np.zeros_like(frames[0]) + n = ncols * nrows - len(frames) + for i in range(n): frames.append(blank) + + rows = [] + for i,im in enumerate(frames): + if width is not None: + im = imutils.resize(im,width=width) + h,w = im.shape[:2] + if i % ncols == 0: + if i > 0: + rows.append(ims) + ims = [] + ims.append(im) + if len(ims) > 0: + for j in range(ncols-len(ims)): + ims.append(np.zeros_like(im)) + rows.append(ims) + row_ims = [] + for row in rows: + row_im = np.hstack(np.array(row)) + row_ims.append(row_im) + contact_sheet = np.vstack(np.array(row_ims)) + return contact_sheet |
