diff options
Diffstat (limited to 'megapixels/app/models/dataset.py')
| -rw-r--r-- | megapixels/app/models/dataset.py | 107 |
1 files changed, 70 insertions, 37 deletions
diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py index eb0109a7..88986873 100644 --- a/megapixels/app/models/dataset.py +++ b/megapixels/app/models/dataset.py @@ -32,7 +32,7 @@ class Dataset: self.data_store = DataStore(opt_data_store, self._dataset_type) self.data_store_s3 = DataStoreS3(self._dataset_type) - def load_face_vectors(self): + def _load_face_vectors(self): metadata_type = types.Metadata.FACE_VECTOR fp_csv = self.data_store.metadata(metadata_type) self.log.info(f'loading: {fp_csv}') @@ -44,22 +44,24 @@ class Dataset: self.log.info(f'build face vector dict: {len(self._face_vectors)}') # remove the face vector column, it can be several GB of memory self._metadata[metadata_type].drop('vec', axis=1, inplace=True) + #n_dims = len(self._metadata[metadata_type].keys()) - 2 + #drop_keys = [f'd{i}' for i in range(1,n_dims+1)] + #self._metadata[metadata_type].drop(drop_keys, axis=1, inplace=True) else: self.log.error(f'File not found: {fp_csv}. Exiting.') sys.exit() - def load_records(self): + def _load_file_records(self): metadata_type = types.Metadata.FILE_RECORD fp_csv = self.data_store.metadata(metadata_type) self.log.info(f'loading: {fp_csv}') if Path(fp_csv).is_file(): - self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index') + self._metadata[metadata_type] = pd.read_csv(fp_csv, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') else: self.log.error(f'File not found: {fp_csv}. Exiting.') sys.exit() - def load_identities(self): - metadata_type = types.Metadata.IDENTITY + def _load_metadata(self, metadata_type): fp_csv = self.data_store.metadata(metadata_type) self.log.info(f'loading: {fp_csv}') if Path(fp_csv).is_file(): @@ -67,6 +69,14 @@ class Dataset: else: self.log.error(f'File not found: {fp_csv}. Exiting.') sys.exit() + + def load_metadata(self, metadata_type): + if metadata_type == types.Metadata.FILE_RECORD: + self._load_file_records() + elif metadata_type == types.Metadata.FACE_VECTOR: + self._load_face_vectors() + else: + self._load_metadata(metadata_type) def metadata(self, opt_metadata_type): return self._metadata.get(opt_metadata_type, None) @@ -79,11 +89,11 @@ class Dataset: # get identity meta df_identity = self._metadata[types.Metadata.IDENTITY] # future datasets can have multiple identities per images - ds_identities = df_identity.iloc[identity_index] + #ds_identities = df_identity.iloc[identity_index] # get filepath and S3 url fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) s3_url = self.data_store_s3.face(ds_record.uuid) - image_record = ImageRecord(ds_record, fp_im, s3_url, ds_identities=ds_identities) + image_record = ImageRecord(ds_record, fp_im, s3_url) return image_record def vector_to_record(self, record_index): @@ -142,33 +152,61 @@ class Dataset: # find most similar feature vectors indexes #match_idxs = self.similar(query_vec, n_results, threshold) sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1) - match_idxs = np.argpartition(sim_scores, n_results)[:n_results] + match_idxs = np.argpartition(sim_scores, range(n_results))[:n_results] + + df_record = self._metadata[types.Metadata.FILE_RECORD] + df_vector = self._metadata[types.Metadata.FACE_VECTOR] + df_roi = self._metadata[types.Metadata.FACE_ROI] + if types.Metadata.IDENTITY in self._metadata.keys(): + df_identity = self._metadata[types.Metadata.IDENTITY] + else: + df_identity = None + + identities = [] for match_idx in match_idxs: # get the corresponding face vector row roi_index = self._face_vector_roi_idxs[match_idx] - df_record = self._metadata[types.Metadata.FILE_RECORD] - ds_record = df_record.iloc[roi_index] + ds_roi = df_roi.iloc[roi_index] + record_idx = int(ds_roi.record_index) + ds_record = df_record.iloc[record_idx] + self.log.debug(f'find match index: {match_idx}, --> roi_index: {roi_index}') fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) s3_url = self.data_store_s3.face(ds_record.uuid) - image_record = ImageRecord(ds_record, fp_im, s3_url) - #roi_index = self._face_vector_roi_idxs[match_idx] - #image_record = self.roi_idx_to_record(roi_index) + identities = [] + + bbox_norm = BBox.from_xywh_norm(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.w) + + if types.Metadata.IDENTITY in self._metadata.keys(): + ds_id = df_identity.loc[df_identity['identity_key'] == ds_record.identity_key].iloc[0] + identity = Identity(record_idx, + name_display=ds_id.name_display, + description=ds_id.description, + gender=ds_id.gender, + roi_index=roi_index, + identity_key=ds_id.identity_key, + num_images=ds_id.num_images) + else: + identity = None + image_record = ImageRecord(ds_record, fp_im, s3_url, bbox_norm, identity=identity) image_records.append(image_record) return image_records # ---------------------------------------------------------------------- # utilities - def df_vecs_to_dict(self, df): + def df_vecs_to_dict(self, df_vec): # convert the DataFrame CSV to float list of vecs - return [list(map(float,x.vec.split(','))) for x in df.itertuples()] + # n_dims = len(df_vec.keys()) - 2 # number of columns with 'd1, d2,...d256' + #return [[df[f'd{i}'] for i in range(1,n_dims+1)] for df_idx, df in df_vec.iterrows()] + # return [[df[f'd{i}'] for i in range(1,n_dims+1)] for df_idx, df in df_vec.iterrows()] + return [list(map(float, x.vec.split(','))) for x in df_vec.itertuples()] def df_vec_roi_idxs_to_dict(self, df): # convert the DataFrame CSV to float list of vecs #return [x.roi_index for x in df.itertuples()] - return [x.roi_index for x in df.itertuples()] + return [int(x.roi_index) for i,x in df.iterrows()] def similar(self, query_vec, n_results): '''Finds most similar N indices of query face vector @@ -184,23 +222,20 @@ class Dataset: class ImageRecord: - def __init__(self, ds_record, fp, url, ds_rois=None, ds_identities=None): + def __init__(self, ds_record, fp, url, bbox_norm, identity=None): # maybe more other meta will go there self.image_index = ds_record.index self.sha256 = ds_record.sha256 self.uuid = ds_record.uuid self.filepath = fp + self.width = ds_record.width + self.height = ds_record.height self.url = url - self._identities = [] + self.bbox = bbox_norm + self.identity = identity # image records contain ROIs # ROIs are linked to identities - #self._identities = [Identity(x) for x in ds_identities] - - @property - def identity(self, index): - return self._identity - def summarize(self): '''Summarizes data for debugging''' log = Logger.getLogger() @@ -208,22 +243,20 @@ class ImageRecord: log.info(f'sha256: {self.sha256}') log.info(f'UUID: {self.uuid}') log.info(f'S3 url: {self.url}') - for identity in self._identities: - log.info(f'fullname: {identity.fullname}') - log.info(f'description: {identity.description}') - log.info(f'gender: {identity.gender}') - log.info(f'images: {identity.n_images}') + if self.identity: + log.info(f'name: {self.identity.name_display}') + log.info(f'description: {self.identity.description}') + log.info(f'gender: {self.identity.gender}') + log.info(f'images: {self.identity.num_images}') class Identity: - def __init__(self, idx, name='NA', desc='NA', gender='NA', n_images=1, - url='NA', age='NA', nationality='NA'): + def __init__(self, idx, identity_key=None, name_display=None, num_images=None, + description=None, gender=None, roi_index=None): self.index = idx - self.name = name - self.description = desc + self.name_display = name_display + self.description = description self.gender = gender - self.n_images = n_images - self.url = url - self.age = age - self.nationality = nationality + self.roi_index = roi_index + self.num_images = num_images |
