1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
import os
import numpy as np
import cv2
import math
from PIL import Image, ImageOps
from skimage.transform import resize
from scipy.misc import imresize
def clamp(n,a,b):
return max(a, min(n, b))
def lerp(n,a,b):
return (b-a)*n+a
def process_image(opt, data_opt, im):
img = im[:, :, ::-1].copy()
processed = False
if data_opt.process_frac == 0:
return img
if data_opt.hsl is True:
processed = True
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
cv2.add(h, data_opt.hue, h)
cv2.add(s, data_opt.saturation, s)
cv2.add(v, data_opt.luminosity, v)
hslimg = cv2.merge((h,s,v))
img = cv2.cvtColor(hslimg, cv2.COLOR_HSV2BGR)
if data_opt.clahe is True:
processed = True
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
l = clahe.apply(l)
limg = cv2.merge((l,a,b))
img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
if data_opt.posterize is True:
processed = True
img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
if data_opt.grayscale is True:
processed = True
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if data_opt.blur is True:
processed = True
img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
if data_opt.canny is True:
processed = True
img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if processed is False:
return img
src_img = im[:, :, ::-1].copy()
frac_a = data_opt.process_frac
frac_b = 1.0 - frac_a
array_a = np.multiply(src_img.astype('float64'), frac_a)
array_b = np.multiply(img.astype('float64'), frac_b)
img = np.add(array_a, array_b).astype('uint8')
return img
last_im = None
def mix_next_image(opt, data_opt, rpc_client, im, i, sequence, sequence_i):
global last_im
if (i % 100) == 0:
print('%04d: process image...' % (i))
last_path = opt.render_dir + "frame_{:05d}.png".format(i)
tmp_path = opt.render_dir + "frame_{:05d}_tmp.png".format(i+1)
next_path = opt.render_dir + "frame_{:05d}.png".format(i+1)
current_path = opt.render_dir + "ren_{:05d}.png".format(i+1)
meta = { 'i': i, 'sequence_i': sequence_i, 'sequence_len': len(sequence) }
if data_opt.sequence and len(sequence):
sequence_path = sequence[sequence_i]
if sequence_i >= len(sequence)-1:
print('(((( sequence looped ))))')
sequence_i = 1
else:
sequence_i += 1
if data_opt.store_a is not True:
os.remove(last_path)
if data_opt.store_b is True:
image_pil = Image.fromarray(im, mode='RGB')
image_pil.save(tmp_path)
os.rename(tmp_path, current_path)
if data_opt.recursive and last_im is not None:
if data_opt.sequence and len(sequence):
A_img = Image.open(sequence_path).convert('RGB')
A_im = np.asarray(A_img)
frac_a = data_opt.recursive_frac
frac_b = data_opt.sequence_frac
frac_sum = frac_a + frac_b
if frac_sum > 1.0:
frac_a = frac_a / frac_sum
frac_b = frac_b / frac_sum
if data_opt.transition:
t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2.0 ) / 2.0 + 0.5, data_opt.transition_min, data_opt.transition_max)
frac_a *= 1.0 - t
frac_b *= 1.0 - t
frac_c = 1.0 - frac_a - frac_b
array_a = np.multiply(last_im.astype('float64'), frac_a)
array_b = np.multiply(A_im.astype('float64'), frac_b)
array_c = np.multiply(im.astype('float64'), frac_c)
array_ab = np.add(array_a, array_b)
array_abc = np.add(array_ab, array_c)
next_im = array_abc.astype('uint8')
else:
frac_a = data_opt.recursive_frac
frac_b = 1.0 - frac_a
array_a = np.multiply(last_im.astype('float64'), frac_a)
array_b = np.multiply(im.astype('float64'), frac_b)
next_im = np.add(array_a, array_b).astype('uint8')
if data_opt.recurse_roll != 0:
last_im = np.roll(im, data_opt.recurse_roll, axis=data_opt.recurse_roll_axis)
else:
last_im = next_im.copy().astype('uint8')
elif data_opt.sequence and len(sequence):
A_img = Image.open(sequence_path).convert('RGB')
A_im = np.asarray(A_img)
frac_b = data_opt.sequence_frac
if data_opt.transition:
t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2.0 ) / 2.0 + 0.5, data_opt.transition_min, data_opt.transition_max)
frac_b *= 1.0 - t
frac_c = 1.0 - frac_b
array_b = np.multiply(A_im.astype('float64'), frac_b)
array_c = np.multiply(im.astype('float64'), frac_c)
array_bc = np.add(array_b, array_c)
next_im = array_bc.astype('uint8')
else:
last_im = im.copy().astype('uint8')
next_im = im
next_img = process_image(opt, data_opt, next_im)
img_to_send = None
if data_opt.send_image == 'a':
rgb_im = cv2.cvtColor(next_img, cv2.COLOR_BGR2RGB)
img_to_send = Image.fromarray(rgb_im)
if data_opt.send_image == 'b':
img_to_send = Image.fromarray(im, mode='RGB')
if data_opt.send_image == 'sequence':
img_to_send = A_img
if data_opt.send_image == 'recursive':
img_to_send = Image.fromarray(next_im)
if img_to_send is not None:
if data_opt.resize_before_sending:
img_to_send.resize((256, 256), Image.BICUBIC)
rpc_client.send_pil_image("frame_{:05d}.png".format(i+1), meta, img_to_send, data_opt.output_format)
cv2.imwrite(tmp_path, next_img)
os.rename(tmp_path, next_path)
if (i % 20) == 0:
print("created {}".format(next_path))
return sequence_i
|