summaryrefslogtreecommitdiff
path: root/rpc/img_ops.py
blob: 0451d3bbdbd76637a01a663ca8a8f6a22cc60541 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import numpy as np
import cv2
import math
from PIL import Image, ImageOps
from skimage.transform import resize
from scipy.misc import imresize

def clamp(n,a,b):
  return max(a, min(n, b))

def lerp(n,a,b):
  return (b-a)*n+a

def process_image(opt, data_opt, im):
  img = im[:, :, ::-1].copy()
  processed = False

  if data_opt.process_frac == 1.0:
    return img

  if data_opt.transform != False:
    (h, w) = img.shape[:2]
    center = (w / 2, h / 2)
    M = cv2.getRotationMatrix2D(center, data_opt.rotate, data_opt.scale)
    img = cv2.warpAffine(img, M, (w, h))
  if data_opt.hsl is True:
    processed = True
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    h, s, v = cv2.split(hsv)
    cv2.add(h, data_opt.hue, h)
    cv2.add(s, data_opt.saturation, s)
    cv2.add(v, data_opt.luminosity, v)
    hslimg = cv2.merge((h,s,v))
    img = cv2.cvtColor(hslimg, cv2.COLOR_HSV2BGR)
  if data_opt.clahe is True:
    processed = True
    lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
    l, a, b = cv2.split(lab)
    clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8))
    l = clahe.apply(l)
    limg = cv2.merge((l,a,b))
    img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
  if data_opt.posterize is True:
    processed = True
    img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window)
  if data_opt.grayscale is True:
    processed = True
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  if data_opt.blur is True:
    processed = True
    img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma)
  if data_opt.canny is True:
    processed = True
    img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi)
    img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

  if processed is False:
    return img

  src_img = im[:, :, ::-1].copy()
  frac_a = data_opt.process_frac
  frac_b = 1.0 - frac_a
  array_a = np.multiply(src_img.astype('float64'), frac_a)
  array_b = np.multiply(img.astype('float64'), frac_b)
  img = np.add(array_a, array_b).astype('uint8')
  return img

last_im = None
def mix_next_image(opt, data_opt, rpc_client, im, i, sequence, sequence_i):
  global last_im

  if (i % 100) == 0:
    print('%04d: process image...' % (i))

  last_path = opt.render_dir + "frame_{:05d}.png".format(i)
  tmp_path = opt.render_dir + "frame_{:05d}_tmp.png".format(i+1)
  next_path = opt.render_dir + "frame_{:05d}.png".format(i+1)
  current_path = opt.render_dir + "ren_{:05d}.png".format(i+1)
  meta = { 'i': i, 'sequence_i': math.floor(sequence_i), 'sequence_len': len(sequence) }
  if data_opt.sequence and len(sequence):
    sequence_path = sequence[math.floor(sequence_i)]
    if not data_opt.sequence_paused and data_opt.sequence_step != 0:
      sequence_i += data_opt.sequence_step
    if sequence_i >= len(sequence):
      print('(((( sequence looped ))))')
      sequence_i = sequence_i % len(sequence)
    if sequence_i < 0:
      print('(((( sequence looped ))))')
      sequence_i += len(sequence)

  if data_opt.store_a is not True:
    os.remove(last_path)

  if data_opt.store_b is True:
    image_pil = Image.fromarray(im, mode='RGB')
    image_pil.save(tmp_path)
    os.rename(tmp_path, current_path)

  if data_opt.recursive and last_im is not None:
    if data_opt.sequence and len(sequence):
      A_img = Image.open(sequence_path).convert('RGB')
      A_im = np.asarray(A_img)
      frac_a = data_opt.recursive_frac
      frac_b = data_opt.sequence_frac
      frac_sum = frac_a + frac_b
      if frac_sum > 1.0:
        frac_a = frac_a / frac_sum
        frac_b = frac_b / frac_sum
      if data_opt.transition:
        t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2.0 ) / 2.0 + 0.5, data_opt.transition_min, data_opt.transition_max)
        frac_a *= 1.0 - t
        frac_b *= 1.0 - t
      frac_c = 1.0 - frac_a - frac_b
      array_a = np.multiply(last_im.astype('float64'), frac_a)
      array_b = np.multiply(A_im.astype('float64'), frac_b)
      array_c = np.multiply(im.astype('float64'), frac_c)
      array_ab = np.add(array_a, array_b)
      array_abc = np.add(array_ab, array_c)
      next_im = array_abc.astype('uint8')

    else:
      frac_a = data_opt.recursive_frac
      frac_b = 1.0 - frac_a
      array_a = np.multiply(last_im.astype('float64'), frac_a)
      array_b = np.multiply(im.astype('float64'), frac_b)
      next_im = np.add(array_a, array_b).astype('uint8')

    if data_opt.recurse_roll != 0:
      last_im = np.roll(im, data_opt.recurse_roll, axis=data_opt.recurse_roll_axis)
    else:
      last_im = next_im.copy().astype('uint8')

  elif data_opt.sequence and len(sequence):
    A_img = Image.open(sequence_path).convert('RGB')
    A_im = np.asarray(A_img)
    frac_b = data_opt.sequence_frac
    if data_opt.transition:
      t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2.0 ) / 2.0 + 0.5, data_opt.transition_min, data_opt.transition_max)
      frac_b *= 1.0 - t
    frac_c = 1.0 - frac_b
    array_b = np.multiply(A_im.astype('float64'), frac_b)
    array_c = np.multiply(im.astype('float64'), frac_c)
    array_bc = np.add(array_b, array_c)
    next_im = array_bc.astype('uint8')

  else:
    last_im = im.copy().astype('uint8')
    next_im = im

  next_img = process_image(opt, data_opt, next_im)

  img_to_send = None
  if data_opt.send_image == 'a':
    rgb_im = cv2.cvtColor(next_img, cv2.COLOR_BGR2RGB)
    img_to_send = Image.fromarray(rgb_im)
  if data_opt.send_image == 'b':
    img_to_send = Image.fromarray(im, mode='RGB')
  if data_opt.send_image == 'sequence':
    img_to_send = A_img
  if data_opt.send_image == 'recursive':
    img_to_send = Image.fromarray(next_im)

  if img_to_send is not None:
    if data_opt.resize_before_sending:
      img_to_send.resize((256, 256), Image.BICUBIC)
    rpc_client.send_pil_image("frame_{:05d}.png".format(i+1), meta, img_to_send, data_opt.output_format)

  cv2.imwrite(tmp_path, next_img)
  os.rename(tmp_path, next_path)

  if (i % 20) == 0:
    print("created {}".format(next_path))

  return sequence_i