1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
import { h, Component } from 'preact'
import { bindActionCreators } from 'redux'
import { connect } from 'react-redux'
import { lerp, norm, randint, randrange } from '../../util'
import * as samplernnActions from './samplernn.actions'
import Group from '../../common/group.component'
import Slider from '../../common/slider.component'
import Select from '../../common/select.component'
import Button from '../../common/button.component'
import { FileList } from '../../common/fileList.component'
import TextInput from '../../common/textInput.component'
class SampleRNNLoss extends Component {
constructor(props){
super()
props.actions.load_loss()
}
render(){
this.refs = {}
return (
<div className='app lossGraph'>
<div className='heading'>
<h3>SampleRNN Loss</h3>
<canvas ref={(ref) => this.refs['canvas'] = ref} />
</div>
</div>
)
}
componentDidUpdate(){
const { lossReport } = this.props.samplernn
if (! lossReport) return
const canvas = this.refs.canvas
canvas.width = window.innerWidth
canvas.height = window.innerHeight
canvas.style.width = canvas.width + 'px'
canvas.style.height = canvas.height + 'px'
const ctx = canvas.getContext('2d')
const w = canvas.width = canvas.width * devicePixelRatio
const h = canvas.height = canvas.height * devicePixelRatio
const keys = Object.keys(lossReport).sort().filter(k => !!lossReport[k].length)
let scaleMax = 0
let scaleMin = Infinity
let epochsMax = 0
keys.forEach(key => {
const loss = lossReport[key]
epochsMax = Math.max(loss.length, epochsMax)
loss.forEach((a) => {
const v = parseFloat(a.training_loss)
if (! v) return
scaleMax = Math.max(v, scaleMax)
scaleMin = Math.min(v, scaleMin)
})
})
// scaleMax *= 10
console.log(scaleMax, scaleMin, epochsMax)
scaleMax = 3
scaleMin = 0
const margin = 0
const wmin = 0
const wmax = w
const hmin = 0
const hmax = h
const epochsScaleFactor = 1 // 3/2
let X, Y
for (var ii = 0; ii < epochsMax; ii++) {
X = lerp((ii)/(epochsMax/(epochsScaleFactor))*(epochsScaleFactor), wmin, wmax)
ctx.strokeStyle = 'rgba(0,0,0,0.3)'
ctx.beginPath(0, 0)
ctx.moveTo(X, 0)
ctx.lineTo(X, h)
ctx.lineWidth = 1
// ctx.stroke()
if ( (ii % 5) === 0 ) {
ctx.lineWidth = 2
ctx.stroke()
const fontSize = 12
ctx.font = 'italic ' + (fontSize * devicePixelRatio) + 'px "Georgia"'
ctx.fillStyle = 'rgba(0,12,28,0.6)'
ctx.fillText(ii/5*6, X + (8 * devicePixelRatio), h - ((fontSize + 4) * devicePixelRatio))
}
}
for (var ii = scaleMin; ii < scaleMax; ii += 1) {
Y = lerp(ii/scaleMax, hmin, hmax)
// ctx.strokeStyle = 'rgba(255,255,255,1.0)'
ctx.beginPath(0, 0)
ctx.moveTo(0, (h-Y))
ctx.lineTo(w, (h-Y))
ctx.lineWidth = 1
// ctx.stroke()
// if ( (ii % 1) < 0.1) {
// ctx.strokeStyle = 'rgba(255,255,255,1.0)'
ctx.lineWidth = 2
ctx.setLineDash([4, 4])
ctx.stroke()
ctx.stroke()
ctx.stroke()
ctx.setLineDash([0,0])
const fontSize = 12
ctx.font = 'italic ' + (fontSize * devicePixelRatio) + 'px "Georgia"'
ctx.fillStyle = 'rgba(0,12,28,0.6)'
ctx.fillText(ii.toFixed(1), w-50, (h-Y) + fontSize + (10 * devicePixelRatio))
// }
}
ctx.lineWidth = 1
keys.forEach(key => {
const loss = lossReport[key]
const vf = parseFloat(loss[loss.length-1].training_loss) || 0
const vg = parseFloat(loss[0].training_loss) || 5
// console.log(vf)
const vv = 1 - norm(vf, scaleMin, scaleMax/2)
ctx.lineWidth = (1-norm(vf, scaleMin, scaleMax)) * 5
ctx.strokeStyle = 'rgba(' + [randrange(30,190), randrange(30,150), randrange(60,120)].join(',') + ',' + 0.8+ ')'
let begun = false
loss.forEach((a, i) => {
const v = parseFloat(a.training_loss)
if (! v) return
const x = lerp((i-2)/(epochsMax/(epochsScaleFactor))*(epochsScaleFactor), wmin, wmax)
const y = lerp(norm(v, scaleMin, scaleMax), hmax, hmin)
if (i === 0) {
return
}
if (! begun) {
begun = true
ctx.beginPath(x,y)
} else {
ctx.lineTo(x,y)
// ctx.stroke()
}
})
ctx.stroke()
})
}
}
const mapStateToProps = state => ({
samplernn: state.module.samplernn,
})
const mapDispatchToProps = (dispatch, ownProps) => ({
actions: bindActionCreators(samplernnActions, dispatch),
})
export default connect(mapStateToProps, mapDispatchToProps)(SampleRNNLoss)
|