import os import numpy as np import cv2 import math from PIL import Image, ImageOps from skimage.transform import resize from scipy.misc import imresize def clamp(n,a,b): return max(a, min(n, b)) def lerp(n,a,b): return (b-a)*n+a def process_image(opt, data_opt, im): img = im[:, :, ::-1].copy() processed = False if data_opt.process_frac == 0: return img if data_opt.clahe is True: processed = True lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=data_opt.clip_limit, tileGridSize=(8,8)) l = clahe.apply(l) limg = cv2.merge((l,a,b)) img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) if data_opt.posterize is True: processed = True img = cv2.pyrMeanShiftFiltering(img, data_opt.spatial_window, data_opt.color_window) if data_opt.grayscale is True: processed = True img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if data_opt.blur is True: processed = True img = cv2.GaussianBlur(img, (data_opt.blur_radius, data_opt.blur_radius), data_opt.blur_sigma) if data_opt.canny is True: processed = True img = cv2.Canny(img, data_opt.canny_lo, data_opt.canny_hi) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if processed is False: return img src_img = im[:, :, ::-1].copy() frac_a = data_opt.process_frac frac_b = 1.0 - frac_a array_a = np.multiply(src_img.astype('float64'), frac_a) array_b = np.multiply(img.astype('float64'), frac_b) img = np.add(array_a, array_b).astype('uint8') return img last_im = None def mix_next_image(opt, data_opt, rpc_client, im, i, sequence, sequence_i): global last_im if (i % 100) == 0: print('%04d: process image...' % (i)) last_path = opt.render_dir + "frame_{:05d}.png".format(i) tmp_path = opt.render_dir + "frame_{:05d}_tmp.png".format(i+1) next_path = opt.render_dir + "frame_{:05d}.png".format(i+1) current_path = opt.render_dir + "ren_{:05d}.png".format(i+1) meta = { 'i': i, 'sequence_i': sequence_i, 'sequence_len': len(sequence) } if data_opt.sequence and len(sequence): sequence_path = sequence[sequence_i] if sequence_i >= len(sequence)-1: print('(((( sequence looped ))))') sequence_i = 1 else: sequence_i += 1 if data_opt.store_a is not True: os.remove(last_path) if data_opt.store_b is True: image_pil = Image.fromarray(im, mode='RGB') image_pil.save(tmp_path) os.rename(tmp_path, current_path) if data_opt.recursive and last_im is not None: if data_opt.sequence and len(sequence): A_img = Image.open(sequence_path).convert('RGB') A_im = np.asarray(A_img) frac_a = data_opt.recursive_frac frac_b = data_opt.sequence_frac frac_sum = frac_a + frac_b if frac_sum > 1.0: frac_a = frac_a / frac_sum frac_b = frac_b / frac_sum if data_opt.transition: t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2.0 ) / 2.0 + 0.5, data_opt.transition_min, data_opt.transition_max) frac_a *= 1.0 - t frac_b *= 1.0 - t frac_c = 1.0 - frac_a - frac_b array_a = np.multiply(last_im.astype('float64'), frac_a) array_b = np.multiply(A_im.astype('float64'), frac_b) array_c = np.multiply(im.astype('float64'), frac_c) array_ab = np.add(array_a, array_b) array_abc = np.add(array_ab, array_c) next_im = array_abc.astype('uint8') else: frac_a = data_opt.recursive_frac frac_b = 1.0 - frac_a array_a = np.multiply(last_im.astype('float64'), frac_a) array_b = np.multiply(im.astype('float64'), frac_b) next_im = np.add(array_a, array_b).astype('uint8') if data_opt.recurse_roll != 0: last_im = np.roll(im, data_opt.recurse_roll, axis=data_opt.recurse_roll_axis) else: last_im = next_im.copy().astype('uint8') elif data_opt.sequence and len(sequence): A_img = Image.open(sequence_path).convert('RGB') A_im = np.asarray(A_img) frac_b = data_opt.sequence_frac if data_opt.transition: t = lerp(math.sin(i / data_opt.transition_period * math.pi * 2.0 ) / 2.0 + 0.5, data_opt.transition_min, data_opt.transition_max) frac_b *= 1.0 - t frac_c = 1.0 - frac_b array_b = np.multiply(A_im.astype('float64'), frac_b) array_c = np.multiply(im.astype('float64'), frac_c) array_bc = np.add(array_b, array_c) next_im = array_bc.astype('uint8') else: last_im = im.copy().astype('uint8') next_im = im next_img = process_image(opt, data_opt, next_im) img_to_send = None if data_opt.send_image == 'a': rgb_im = cv2.cvtColor(next_img, cv2.COLOR_BGR2RGB) img_to_send = Image.fromarray(rgb_im) if data_opt.send_image == 'b': img_to_send = Image.fromarray(im, mode='RGB') if data_opt.send_image == 'sequence': img_to_send = A_img if data_opt.send_image == 'recursive': img_to_send = Image.fromarray(next_im) if img_to_send is not None: if data_opt.resize_before_sending: img_to_send.resize((256, 256), Image.BICUBIC) rpc_client.send_pil_image("frame_{:05d}.png".format(i+1), meta, img_to_send, data_opt.output_format) cv2.imwrite(tmp_path, next_img) os.rename(tmp_path, next_path) if (i % 20) == 0: print("created {}".format(next_path)) return sequence_i