import path from 'path' const name = 'samplernn' const cwd = process.env.SAMPLERNN_CWD || path.join(process.env.HOME, 'code/' + name + '/') const fetch = { type: 'perl', script: 'get.pl', params: (task) => { console.log(task) return [ task.opt.url ] }, listen: (task, line, i) => { // here i need to bridge again... get the filename that comes back from youtube-dl // and tell the cortex that URL -> fn and add the filename! if ( line.match(/^youtube-dl got fn, /) ) { let filename = line.split(' => ')[1].trim() task.dataset = filename.split('.')[0] task.opt.filename = filename return { type: 'progress', action: 'resolve_dataset', task, } } return null } } const train = { type: 'pytorch_samplernn', script: 'train.py', params: (task) => { return [ '--exp', task.dataset, '--dataset', task.dataset, '--frame_sizes', '8', '2', '--n_rnn', '2', '--epoch_limit', task.epochs || 4, '--sample_length', task.opt.sample_length || (44100 * 5), '--n_samples', task.opt.n_samples || 6, '--keep_old_checkpoints', task.opt.keep_old_checkpoints ? 'True' : 'False', ] }, listen: (task, line, i) => { // ################################################################################ // Epoch summary: // training_loss: 1.4509 validation_loss: 1.4260 test_loss: 1.4316 // ################################################################################ // if ( line.match(/Epoch summary/) ) { task.epoch += 1 return { type: 'progress', action: 'epoch', task, } } return null }, after: 'publish', } const generate = { type: 'pytorch_samplernn', script: 'generate.py', params: (task) => { return [ '--exp', task.dataset, '--dataset', task.dataset, '--frame_sizes', '8', '2', '--n_rnn', '2', '--epoch_limit', 1, '--sample_length', task.opt.sample_length || (44100 * 5), '--n_samples', task.opt.n_samples || 6, ] }, after: 'publish', } const publish = { type: 'perl', script: 'latest.pl', params: (task) => { const params = [ '-l', '-e', process.env.API_REMOTE + '/api/folder/' + task.folder_id + '/upload/', ] if (task.activity === 'generate') { const tag = [ task.id, Math.round((task.opt.sample_length || (44100 * 5)) / 44100) + 's', task.opt.n_samples + 'x', ].join('_') params.push('-n') // tag the generated ones params.push(tag) } params.push(task.dataset) return params } } const clear_cache = { type: 'perl', script: 'clear_cache.pl', params: (task) => { return ['-l', task.dataset] } } const report = { type: 'perl', script: 'latest.pl', params: ['-v'], isScript: true, } export default { name, cwd, activities: { fetch, train, generate, publish, clear_cache, report, }, }