import path from 'path' const name = 'samplernn' const cwd = process.env.TEST_CWD || path.join(process.env.HOME, 'code/' + name + '/') const fetch = { type: 'perl', script: 'get.pl', params: (task) => { } // perl get.pl url } const dataset = { type: 'perl', script: 'dataset.pl', params: (task) => { } // perl dataset.pl filename.flac } const train = { type: 'pytorch', script: 'train.py', params: (task) => { }, onComplete: publish, // python train.py \ // --exp $checkpoint_name --dataset $dataset_name \ // --frame_sizes 8 2 --n_rnn 2 \ // --sample_length $sample_length \ // --n_samples $n_samples \ // --keep_old_checkpoints False \ // --epoch_limit $epoch_limit \ } const generate = { type: 'pytorch', script: 'generate.py', params: (task) => { }, onComplete: publish, // python generate.py \ // --exp $checkpoint_name --dataset $dataset_name \ // --frame_sizes 8 2 --n_rnn 2 \ // --sample_length $sample_length \ // --n_samples $n_samples \ // --keep_old_checkpoints False \ // --epoch_limit $epoch_limit \ } const publish = { type: 'perl', script: 'latest.pl', params: (task) => { } } // after train and generate, run perl latest.pl -l $checkpoint_name export default { name, cwd, activities: { dataset, train, generate, } }