import path from 'path' const name = 'pix2pix' const cwd = process.env.PIX2PIX_CWD || path.join(process.env.HOME, 'code/' + name + '/') const dataset = { type: 'pytorch', script: 'datasets/combine_A_and_B.py', params: (task) => { } // python datasets/combine_A_and_B.py \ // --fold_A /home/lens/Desktop/thumbs/woodscaled_4/A \ // --fold_B /home/lens/Desktop/thumbs/woodscaled_4/B \ // --fold_AB datasets/woodscaled_4/ } const train = { type: 'pytorch', script: 'train.py', params: (task) => { }, // python train.py \ // --dataroot "./datasets/$dataset" \ // --name "$dataset" \ // --model pix2pix \ // --loadSize 264 \ // --fineSize 256 \ // --which_model_netG unet_256 \ // --which_direction AtoB \ // --lambda_B 100 \ // --dataset_mode aligned \ // --epoch_count $epochs \ // --which_epoch latest \ // --continue_train \ // --no_lsgan --norm batch --pool_size 0 } const generate = { type: 'pytorch', script: 'generate.py', params: (task) => { }, } const live = { type: 'pytorch', script: 'live-mogrify.py', params: (task) => { }, // python live-mogrify.py \ // --dataroot "./sequences/$sequence" \ // --start_img "./sequences/$sequence/frame_00001.png" \ // --experiment "$checkpoint" \ // --name "$checkpoint" \ // --recursive --recursive-frac 0.1 \ // --sequence --sequence-frac 0.3 \ // --process-frac 0.5 \ // --transition \ // --transition-min 0.05 \ // --how_many 100000 --transition-period 1000 \ // --loadSize 256 --fineSize 256 \ // --just-copy --poll_delay 0.09 \ // --model test --which_model_netG unet_256 \ // --which_direction AtoB --dataset_mode recursive \ // --which_epoch latest \ // --norm batch } export default { name, cwd, activities: { dataset, train, generate, live, } }