/** * This class lets you encode animated GIF files * Base class : http://www.java2s.com/Code/Java/2D-Graphics-GUI/AnimatedGifEncoder.htm * @author Kevin Weiner (original Java version - kweiner@fmsware.com) * @author Thibault Imbert (AS3 version - bytearray.org) * @version 0.1 AS3 implementation */ //import flash.utils.ByteArray; //import flash.display.BitmapData; //import flash.display.Bitmap; //import org.bytearray.gif.encoder.NeuQuant //import flash.net.URLRequestHeader; //import flash.net.URLRequestMethod; //import flash.net.URLRequest; //import flash.net.navigateToURL; GIFEncoder = function() { for(var i = 0, chr = {}; i < 256; i++) { chr[i] = String.fromCharCode(i); } function ByteArray(){ this.bin = []; } ByteArray.prototype.getData = function(){ for(var v = '', l = this.bin.length, i = 0; i < l; i++) { v += chr[this.bin[i]]; } return v; } ByteArray.prototype.writeByte = function(val){ this.bin.push(val); } ByteArray.prototype.writeUTFBytes = function(string) { for(var l = string.length, i = 0; i < l; i++) { this.writeByte(string.charCodeAt(i)); } } ByteArray.prototype.writeBytes = function(array, offset, length) { for(var l = length || array.length, i = offset||0; i < l; i++) { this.writeByte(array[i]); } } var exports = {}; var width/*int*/ // image size var height/*int*/; var transparent/***/ = null; // transparent color if given var transIndex/*int*/; // transparent index in color table var repeat/*int*/ = -1; // no repeat var delay/*int*/ = 0; // frame delay (hundredths) var started/*Boolean*/ = false; // ready to output frames var out/*ByteArray*/; var image/*Bitmap*/; // current frame var pixels/*ByteArray*/; // BGR byte array from frame var indexedPixels/*ByteArray*/ // converted frame indexed to palette var colorDepth/*int*/; // number of bit planes var colorTab/*ByteArray*/; // RGB palette var usedEntry/*Array*/ = new Array; // active palette entries var palSize/*int*/ = 7; // color table size (bits-1) var dispose/*int*/ = -1; // disposal code (-1 = use default) var closeStream/*Boolean*/ = false; // close stream when finished var firstFrame/*Boolean*/ = true; var sizeSet/*Boolean*/ = false; // if false, get size from first frame var sample/*int*/ = 1; // default sample interval for quantizer var neuquantBrain = null; // allow loading in a prefab neural net /** * Sets the delay time between each frame, or changes it for subsequent frames * (applies to last frame added) * int delay time in milliseconds * @param ms */ var setDelay = exports.setDelay = function setDelay(ms/*int*/) { delay = Math.round(ms / 10); } /** * Sets the GIF frame disposal code for the last added frame and any * * subsequent frames. Default is 0 if no transparent color has been set, * otherwise 2. * @param code * int disposal code. */ var setDispose = exports.setDispose = function setDispose(code/*int*/) { if (code >= 0) dispose = code; } /** * Sets the number of times the set of GIF frames should be played. Default is * 1; 0 means play indefinitely. Must be invoked before the first image is * added. * * @param iter * int number of iterations. * @return */ var setRepeat = exports.setRepeat = function setRepeat(iter/*int*/) { if (iter >= 0) repeat = iter; } /** * Sets the transparent color for the last added frame and any subsequent * frames. Since all colors are subject to modification in the quantization * process, the color in the final palette for each frame closest to the given * color becomes the transparent color for that frame. May be set to null to * indicate no transparent color. * @param * Color to be treated as transparent on display. */ var setTransparent = exports.setTransparent = function setTransparent(c/*Number*/) { transparent = c; } /** * The addFrame method takes an incoming BitmapData object to create each frames * @param * BitmapData object to be treated as a GIF's frame */ /*Boolean*/ var addFrame = exports.addFrame = function addFrame(im/*BitmapData*/, is_imageData) { if ((im == null) || ! started || out == null) { throw new Error ("Please call start method before calling addFrame"); return false; } var ok/*Boolean*/ = true; try { if ( ! is_imageData) { image = im.getImageData(0,0, im.canvas.width, im.canvas.height).data; if ( ! sizeSet) { setSize(im.canvas.width, im.canvas.height); } } else { image = im; } getImagePixels(); // convert to correct format if necessary analyzePixels(); // build color table & map pixels if (firstFrame) { writeLSD(); // logical screen descriptior writePalette(); // global color table if (repeat >= 0) { // use NS app extension to indicate reps writeNetscapeExt(); } } writeGraphicCtrlExt(); // write graphic control extension writeImageDesc(); // image descriptor if (!firstFrame) { writePalette(); // local color table } writePixels(); // encode and write pixel data firstFrame = false; } catch (e/*Error*/) { ok = false; } return ok; } /** * Adds final trailer to the GIF stream, if you don't call the finish method * the GIF stream will not be valid. */ /*Boolean*/ var finish = exports.finish = function finish() { if ( ! started) { return false; } var ok/*Boolean*/ = true; started = false; try { out.writeByte(0x3b); // gif trailer } catch (e/*Error*/) { ok = false; } return ok; } /** * Resets some members so that a new stream can be started. * This method is actually called by the start method */ var reset = function reset () { // reset for subsequent use transIndex = 0; image = null; pixels = null; indexedPixels = null; colorTab = null; closeStream = false; firstFrame = true; } /** * * Sets frame rate in frames per second. Equivalent to * setDelay(1000/fps). * @param fps * float frame rate (frames per second) */ var setFrameRate = exports.setFrameRate = function setFrameRate(fps/*Number*/) { if (fps != 0xf) { delay = Math.round(100/fps); } } /** * Sets quality of color quantization (conversion of images to the maximum 256 * colors allowed by the GIF specification). Lower values (minimum = 1) * produce better colors, but slow processing significantly. 10 is the * default, and produces good color mapping at reasonable speeds. Values * greater than 20 do not yield significant improvements in speed. * @param quality * int greater than 0. * @return */ var setQuality = exports.setQuality = function setQuality(quality/*int*/) { sample = Math.max(1, quality); } /** * Sets the GIF frame size. The default size is the size of the first frame * added if this method is not invoked. * @param w * int frame width. * @param h * int frame width. */ var setSize = exports.setSize = function setSize(w/*int*/, h/*int*/) { if (started && !firstFrame) { return; } width = w; height = h; if (width < 1) width = 320; if (height < 1) height = 240; sizeSet = true; } /** * After running the Neuquant on some test frames, it can be exported and then loaded * into an uninitialized NQ instance on another worker and used accordingly. */ var setNeuquant = exports.setNeuquant = function setNeuquant(neuquant, colors){ neuquantBrain = neuquant; colorTab = colors; } /** * Initiates GIF file creation on the given stream. * @param os * OutputStream on which GIF images are written. * @return false if initial write failed. */ var start = exports.start = function start() { reset(); var ok/*Boolean*/ = true; closeStream = false; out = new ByteArray; try { out.writeUTFBytes("GIF89a"); // header } catch (e/*Error*/) { ok = false; } return started = ok; } var cont = exports.cont = function cont() { reset(); var ok = true; closeStream = false; out = new ByteArray (); return started = ok; } /** * Analyzes image colors and creates color map. */ var analyzePixels = function analyzePixels() { var len = pixels.length; var nPix = len / 3; indexedPixels = []; // initialize quantizer var nq; if (neuquantBrain && colorTab) { nq = new NeuQuant(); nq.load(neuquantBrain); } else { nq = new NeuQuant (pixels, len, sample); colorTab = nq.process(); // create reduced palette } // map image pixels to new palette var k = 0; for (var j = 0; j < nPix; j++) { var index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff); usedEntry[index] = true; indexedPixels[j] = index; } pixels = null; colorDepth = 8; palSize = 7; // get closest match to transparent color if specified if (transparent != null) { transIndex = findClosest(transparent); } } /** * Returns index of palette color closest to c */ var findClosest = function findClosest(c/*Number*/) { if (colorTab == null) return -1; var r = (c & 0xFF0000) >> 16; var g = (c & 0x00FF00) >> 8; var b = (c & 0x0000FF); var minpos = 0; var dmin = 256 * 256 * 256; var len = colorTab.length; for (var i = 0; i < len;) { var dr = r - (colorTab[i++] & 0xff); var dg = g - (colorTab[i++] & 0xff); var db = b - (colorTab[i] & 0xff); var d = dr * dr + dg * dg + db * db; var index = i / 3; if (usedEntry[index] && (d < dmin)) { dmin = d; minpos = index; } i++; } return minpos; } /** * Extracts image pixels into byte array "pixels */ var getImagePixels = function getImagePixels() { var w = width; var h = height; pixels = []; var data = image; var count/*int*/ = 0; for ( var i/*int*/ = 0; i < h; i++ ) { for (var j/*int*/ = 0; j < w; j++ ) { var b = (i*w*4)+j*4; pixels[count++] = data[b]; pixels[count++] = data[b+1]; pixels[count++] = data[b+2]; } } } /** * Writes Graphic Control Extension */ var writeGraphicCtrlExt = function writeGraphicCtrlExt() { out.writeByte(0x21); // extension introducer out.writeByte(0xf9); // GCE label out.writeByte(4); // data block size var transp/*int*/ var disp/*int*/; if (transparent == null) { transp = 0; disp = 0; // dispose = no action } else { transp = 1; disp = 2; // force clear if using transparent color } if (dispose >= 0) { disp = dispose & 7; // user override } disp <<= 2; // packed fields out.writeByte(0 | // 1:3 reserved disp | // 4:6 disposal 0 | // 7 user input - 0 = none transp); // 8 transparency flag WriteShort(delay); // delay x 1/100 sec out.writeByte(transIndex); // transparent color index out.writeByte(0); // block terminator } /** * Writes Image Descriptor */ var writeImageDesc = function writeImageDesc() { out.writeByte(0x2c); // image separator WriteShort(0); // image position x,y = 0,0 WriteShort(0); WriteShort(width); // image size WriteShort(height); // packed fields if (firstFrame) { // no LCT - GCT is used for first (or only) frame out.writeByte(0); } else { // specify normal LCT out.writeByte(0x80 | // 1 local color table 1=yes 0 | // 2 interlace - 0=no 0 | // 3 sorted - 0=no 0 | // 4-5 reserved palSize); // 6-8 size of color table } } /** * Writes Logical Screen Descriptor */ var writeLSD = function writeLSD() { // logical screen size WriteShort(width); WriteShort(height); // packed fields out.writeByte((0x80 | // 1 : global color table flag = 1 (gct used) 0x70 | // 2-4 : color resolution = 7 0x00 | // 5 : gct sort flag = 0 palSize)); // 6-8 : gct size out.writeByte(0); // background color index out.writeByte(0); // pixel aspect ratio - assume 1:1 } /** * Writes Netscape application extension to define repeat count. */ var writeNetscapeExt = function writeNetscapeExt() { out.writeByte(0x21); // extension introducer out.writeByte(0xff); // app extension label out.writeByte(11); // block size out.writeUTFBytes("NETSCAPE" + "2.0"); // app id + auth code out.writeByte(3); // sub-block size out.writeByte(1); // loop sub-block id WriteShort(repeat); // loop count (extra iterations, 0=repeat forever) out.writeByte(0); // block terminator } /** * Writes color table */ var writePalette = function writePalette() { out.writeBytes(colorTab); var n/*int*/ = (3 * 256) - colorTab.length; for (var i/*int*/ = 0; i < n; i++) { out.writeByte(0); } } var WriteShort = function WriteShort (pValue/*int*/) { out.writeByte( pValue & 0xFF ); out.writeByte( (pValue >> 8) & 0xFF); } /** * Encodes and writes pixel data */ var writePixels = function writePixels() { var myencoder = new LZWEncoder(width, height, indexedPixels, colorDepth); myencoder.encode(out); } /** * retrieves the GIF stream */ var stream = exports.stream = function stream () { return out; } var setProperties = exports.setProperties = function setProperties(has_start, is_first) { started = has_start; firstFrame = is_first; } return exports; } ;/** * This class handles LZW encoding * Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott. * @author Kevin Weiner (original Java version - kweiner@fmsware.com) * @author Thibault Imbert (AS3 version - bytearray.org) * @version 0.1 AS3 implementation */ //import flash.utils.ByteArray; LZWEncoder = function() { var exports = {}; /*private_static*/ var EOF/*int*/ = -1; /*private*/ var imgW/*int*/; /*private*/ var imgH/*int*/ /*private*/ var pixAry/*ByteArray*/; /*private*/ var initCodeSize/*int*/; /*private*/ var remaining/*int*/; /*private*/ var curPixel/*int*/; // GIFCOMPR.C - GIF Image compression routines // Lempel-Ziv compression based on 'compress'. GIF modifications by // David Rowley (mgardi@watdcsu.waterloo.edu) // General DEFINEs /*private_static*/ var BITS/*int*/ = 12; /*private_static*/ var HSIZE/*int*/ = 5003; // 80% occupancy // GIF Image compression - modified 'compress' // Based on: compress.c - File compression ala IEEE Computer, June 1984. // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) // Jim McKie (decvax!mcvax!jim) // Steve Davies (decvax!vax135!petsd!peora!srd) // Ken Turkowski (decvax!decwrl!turtlevax!ken) // James A. Woods (decvax!ihnp4!ames!jaw) // Joe Orost (decvax!vax135!petsd!joe) /*private*/ var n_bits/*int*/ // number of bits/code /*private*/ var maxbits/*int*/ = BITS; // user settable max # bits/code /*private*/ var maxcode/*int*/ // maximum code, given n_bits /*private*/ var maxmaxcode/*int*/ = 1 << BITS; // should NEVER generate this code /*private*/ var htab/*Array*/ = new Array; /*private*/ var codetab/*Array*/ = new Array; /*private*/ var hsize/*int*/ = HSIZE; // for dynamic table sizing /*private*/ var free_ent/*int*/ = 0; // first unused entry // block compression parameters -- after all codes are used up, // and compression rate changes, start over. /*private*/ var clear_flg/*Boolean*/ = false; // Algorithm: use open addressing double hashing (no chaining) on the // prefix code / next character combination. We do a variant of Knuth's // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime // secondary probe. Here, the modular division first probe is gives way // to a faster exclusive-or manipulation. Also do block compression with // an adaptive reset, whereby the code table is cleared when the compression // ratio decreases, but after the table fills. The variable-length output // codes are re-sized at this point, and a special CLEAR code is generated // for the decompressor. Late addition: construct the table according to // file size for noticeable speed improvement on small files. Please direct // questions about this implementation to ames!jaw. /*private*/ var g_init_bits/*int*/; /*private*/ var ClearCode/*int*/; /*private*/ var EOFCode/*int*/; // output // Output the given code. // Inputs: // code: A n_bits-bit integer. If == -1, then EOF. This assumes // that n_bits =< wordsize - 1. // Outputs: // Outputs code to the file. // Assumptions: // Chars are 8 bits long. // Algorithm: // Maintain a BITS character long buffer (so that 8 codes will // fit in it exactly). Use the VAX insv instruction to insert each // code in turn. When the buffer fills up empty it and start over. /*private*/ var cur_accum/*int*/ = 0; /*private*/ var cur_bits/*int*/ = 0; /*private*/ var masks/*Array*/ = [ 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF ]; // Number of characters so far in this 'packet' /*private*/ var a_count/*int*/; // Define the storage for the packet accumulator /*private*/ var accum/*ByteArray*/ = []; var LZWEncoder = exports.LZWEncoder = function LZWEncoder (width/*int*/, height/*int*/, pixels/*ByteArray*/, color_depth/*int*/) { imgW = width; imgH = height; pixAry = pixels; initCodeSize = Math.max(2, color_depth); } // Add a character to the end of the current packet, and if it is 254 // characters, flush the packet to disk. var char_out = function char_out(c/*Number*/, outs/*ByteArray*/)/*void*/ { accum[a_count++] = c; if (a_count >= 254) flush_char(outs); } // Clear out the hash table // table clear for block compress var cl_block = function cl_block(outs/*ByteArray*/)/*void*/ { cl_hash(hsize); free_ent = ClearCode + 2; clear_flg = true; output(ClearCode, outs); } // reset code table var cl_hash = function cl_hash(hsize/*int*/)/*void*/ { for (var i/*int*/ = 0; i < hsize; ++i) htab[i] = -1; } var compress = exports.compress = function compress(init_bits/*int*/, outs/*ByteArray*/)/*void*/ { var fcode/*int*/; var i/*int*/ /* = 0 */; var c/*int*/; var ent/*int*/; var disp/*int*/; var hsize_reg/*int*/; var hshift/*int*/; // Set up the globals: g_init_bits - initial number of bits g_init_bits = init_bits; // Set up the necessary values clear_flg = false; n_bits = g_init_bits; maxcode = MAXCODE(n_bits); ClearCode = 1 << (init_bits - 1); EOFCode = ClearCode + 1; free_ent = ClearCode + 2; a_count = 0; // clear packet ent = nextPixel(); hshift = 0; for (fcode = hsize; fcode < 65536; fcode *= 2) ++hshift; hshift = 8 - hshift; // set hash code range bound hsize_reg = hsize; cl_hash(hsize_reg); // clear hash table output(ClearCode, outs); outer_loop: while ((c = nextPixel()) != EOF) { fcode = (c << maxbits) + ent; i = (c << hshift) ^ ent; // xor hashing if (htab[i] == fcode) { ent = codetab[i]; continue; } else if (htab[i] >= 0) // non-empty slot { disp = hsize_reg - i; // secondary hash (after G. Knott) if (i == 0) disp = 1; do { if ((i -= disp) < 0) i += hsize_reg; if (htab[i] == fcode) { ent = codetab[i]; continue outer_loop; } } while (htab[i] >= 0); } output(ent, outs); ent = c; if (free_ent < maxmaxcode) { codetab[i] = free_ent++; // code -> hashtable htab[i] = fcode; } else cl_block(outs); } // Put out the final code. output(ent, outs); output(EOFCode, outs); } // ---------------------------------------------------------------------------- var encode = exports.encode = function encode(os/*ByteArray*/)/*void*/ { os.writeByte(initCodeSize); // write "initial code size" byte remaining = imgW * imgH; // reset navigation variables curPixel = 0; compress(initCodeSize + 1, os); // compress and write the pixel data os.writeByte(0); // write block terminator } // Flush the packet to disk, and reset the accumulator var flush_char = function flush_char(outs/*ByteArray*/)/*void*/ { if (a_count > 0) { outs.writeByte(a_count); outs.writeBytes(accum, 0, a_count); a_count = 0; } } var MAXCODE = function MAXCODE(n_bits/*int*/)/*int*/ { return (1 << n_bits) - 1; } // ---------------------------------------------------------------------------- // Return the next pixel from the image // ---------------------------------------------------------------------------- var nextPixel = function nextPixel()/*int*/ { if (remaining == 0) return EOF; --remaining; var pix/*Number*/ = pixAry[curPixel++]; return pix & 0xff; } var output = function output(code/*int*/, outs/*ByteArray*/)/*void*/ { cur_accum &= masks[cur_bits]; if (cur_bits > 0) cur_accum |= (code << cur_bits); else cur_accum = code; cur_bits += n_bits; while (cur_bits >= 8) { char_out((cur_accum & 0xff), outs); cur_accum >>= 8; cur_bits -= 8; } // If the next entry is going to be too big for the code size, // then increase it, if possible. if (free_ent > maxcode || clear_flg) { if (clear_flg) { maxcode = MAXCODE(n_bits = g_init_bits); clear_flg = false; } else { ++n_bits; if (n_bits == maxbits) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } if (code == EOFCode) { // At EOF, write the rest of the buffer. while (cur_bits > 0) { char_out((cur_accum & 0xff), outs); cur_accum >>= 8; cur_bits -= 8; } flush_char(outs); } } LZWEncoder.apply(this, arguments); return exports; } ;/* * NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See * "Kohonen neural networks for optimal colour quantization" in "Network: * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of * the algorithm. * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal in * this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons who * receive copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. */ /* * This class handles Neural-Net quantization algorithm * @author Kevin Weiner (original Java version - kweiner@fmsware.com) * @author Thibault Imbert (AS3 version - bytearray.org) * @version 0.1 AS3 implementation */ //import flash.utils.ByteArray; NeuQuant = function() { var exports = {}; var netsize = 128; /* number of colours used */ /* four primes near 500 - assume no image has a length so large */ /* that it is divisible by all four primes */ var prime1 = 499; var prime2 = 491; var prime3 = 487; var prime4 = 503; var minpicturebytes = (3 * prime4); /* minimum size for input image */ /* * Program Skeleton ---------------- [select samplefac in range 1..30] [read * image from input file] pic = (unsigned char*) malloc(3*width*height); * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output * image header, using writecolourmap(f)] inxbuild(); write output image using * inxsearch(b,g,r) */ /* * Network Definitions ------------------- */ var maxnetpos = (netsize - 1); var netbiasshift = 4; /* bias for colour values */ var ncycles = 100; /* no. of learning cycles */ /* defs for freq and bias */ var intbiasshift = 16; /* bias for fractions */ var intbias = (1 << intbiasshift); var gammashift = 10; /* gamma = 1024 */ var gamma = (1 << gammashift); var betashift = 10; var beta = (intbias >> betashift); /* beta = 1/1024 */ var betagamma = (intbias << (gammashift - betashift)); /* defs for decreasing radius factor */ var initrad = (netsize >> 3); /* for 256 cols, radius starts */ var radiusbiasshift = 6; /* at 32.0 biased by 6 bits */ var radiusbias = (1 << radiusbiasshift); var initradius = (initrad * radiusbias); /* and decreases by a */ var radiusdec = 30; /* factor of 1/30 each cycle */ /* defs for decreasing alpha factor */ var alphabiasshift = 10; /* alpha starts at 1.0 */ var initalpha = (1 << alphabiasshift); var alphadec /* biased by 10 bits */ /* radbias and alpharadbias used for radpower calculation */ var radbiasshift = 8; var radbias = (1 << radbiasshift); var alpharadbshift = (alphabiasshift + radbiasshift); var alpharadbias = (1 << alpharadbshift); /* * Types and Global Variables -------------------------- */ var thepicture/*ByteArray*//* the input image itself */ var lengthcount; /* lengthcount = H*W*3 */ var samplefac; /* sampling factor 1..30 */ // typedef int pixel[4]; /* BGRc */ var network; /* the network itself - [netsize][4] */ var netindex = new Array(); /* for network lookup - really 256 */ var bias = new Array(); /* bias and freq arrays for learning */ var freq = new Array(); var radpower = new Array(); var NeuQuant = exports.NeuQuant = function NeuQuant(thepic, len, sample) { // with no input, assume we'll load in a lobotomized neuquant later. // otherwise, initialize the neural net stuff if (thepic && len && sample) { var i; var p; thepicture = thepic; lengthcount = len; samplefac = sample; network = new Array(netsize); for (i = 0; i < netsize; i++) { network[i] = new Array(4); p = network[i]; p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize; freq[i] = intbias / netsize; /* 1/netsize */ bias[i] = 0; } } } var colorMap = function colorMap() { var map/*ByteArray*/ = []; var index = new Array(netsize); for (var i = 0; i < netsize; i++) { index[network[i][3]] = i; } var k = 0; for (var l = 0; l < netsize; l++) { var j = index[l]; map[k++] = (network[j][0]); map[k++] = (network[j][1]); map[k++] = (network[j][2]); } return map; } /* * Insertion sort of network and building of netindex[0..255] (to do after * unbias) * ------------------------------------------------------------------------------- */ var inxbuild = function inxbuild() { var i; var j; var smallpos; var smallval; var p; var q; var previouscol var startpos previouscol = 0; startpos = 0; for (i = 0; i < netsize; i++) { p = network[i]; smallpos = i; smallval = p[1]; /* index on g */ /* find smallest in i..netsize-1 */ for (j = i + 1; j < netsize; j++) { q = network[j]; if (q[1] < smallval) { /* index on g */ smallpos = j; smallval = q[1]; /* index on g */ } } q = network[smallpos]; /* swap p (i) and q (smallpos) entries */ if (i != smallpos) { j = q[0]; q[0] = p[0]; p[0] = j; j = q[1]; q[1] = p[1]; p[1] = j; j = q[2]; q[2] = p[2]; p[2] = j; j = q[3]; q[3] = p[3]; p[3] = j; } /* smallval entry is now in position i */ if (smallval != previouscol) { netindex[previouscol] = (startpos + i) >> 1; for (j = previouscol + 1; j < smallval; j++) netindex[j] = i; previouscol = smallval; startpos = i; } } netindex[previouscol] = (startpos + maxnetpos) >> 1; for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */ } /* * Main Learning Loop ------------------ */ var learn = function learn() { var i; var j; var b; var g var r; var radius; var rad; var alpha; var step; var delta; var samplepixels; var p/*ByteArray*/; var pix; var lim; if (lengthcount < minpicturebytes) samplefac = 1; alphadec = 30 + ((samplefac - 1) / 3); p = thepicture; pix = 0; lim = lengthcount; samplepixels = lengthcount / (3 * samplefac); delta = samplepixels / ncycles; alpha = initalpha; radius = initradius; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad)); if (lengthcount < minpicturebytes) step = 3; else if ((lengthcount % prime1) != 0) step = 3 * prime1; else if ((lengthcount % prime2) != 0) step = 3 * prime2; else if ((lengthcount % prime3) != 0) step = 3 * prime3; else step = 3 * prime4; i = 0; while (i < samplepixels) { b = (p[pix + 0] & 0xff) << netbiasshift; g = (p[pix + 1] & 0xff) << netbiasshift; r = (p[pix + 2] & 0xff) << netbiasshift; j = contest(b, g, r); altersingle(alpha, j, b, g, r); if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */ pix += step; if (pix >= lim) pix -= lengthcount; i++; if (delta == 0) delta = 1; if (i % delta == 0) { alpha -= alpha / alphadec; radius -= radius / radiusdec; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad)); } } } /* Save the neural network so we can load it back in on another worker. */ var save = exports.save = function(){ var data = { netindex: netindex, netsize: netsize, network: network }; return data; } var load = exports.load = function(data){ netindex = data.netindex; netsize = data.netsize; network = data.network; } /* ** Search for BGR values 0..255 (after net is unbiased) and return colour * index * ---------------------------------------------------------------------------- */ var map = exports.map = function map(b, g, r) { var i; var j; var dist var a; var bestd; var p; var best; bestd = 1000; /* biggest possible dist is 256*3 */ best = -1; i = netindex[g]; /* index on g */ j = i - 1; /* start at netindex[g] and work outwards */ while ((i < netsize) || (j >= 0)) { if (i < netsize) { p = network[i]; dist = p[1] - g; /* inx key */ if (dist >= bestd) i = netsize; /* stop iter */ else { i++; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } if (j >= 0) { p = network[j]; dist = g - p[1]; /* inx key - reverse dif */ if (dist >= bestd) j = -1; /* stop iter */ else { j--; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0)a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } } return best; } var process = exports.process = function process() { learn(); unbiasnet(); inxbuild(); return colorMap(); } /* * Unbias network to give byte values 0..255 and record position i to prepare * for sort * ----------------------------------------------------------------------------------- */ var unbiasnet = function unbiasnet() { var i; var j; for (i = 0; i < netsize; i++) { network[i][0] >>= netbiasshift; network[i][1] >>= netbiasshift; network[i][2] >>= netbiasshift; network[i][3] = i; /* record colour no */ } } /* * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in * radpower[|i-j|] * --------------------------------------------------------------------------------- */ var alterneigh = function alterneigh(rad, i, b, g, r) { var j; var k; var lo; var hi; var a; var m; var p; lo = i - rad; if (lo < -1) lo = -1; hi = i + rad; if (hi > netsize) hi = netsize; j = i + 1; k = i - 1; m = 1; while ((j < hi) || (k > lo)) { a = radpower[m++]; if (j < hi) { p = network[j++]; try { p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } catch (e/*Error*/) {} // prevents 1.3 miscompilation } if (k > lo) { p = network[k--]; try { p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } catch (e/*Error*/) {} } } } /* * Move neuron i towards biased (b,g,r) by factor alpha * ---------------------------------------------------- */ var altersingle = function altersingle(alpha, i, b, g, r) { /* alter hit neuron */ var n = network[i]; n[0] -= (alpha * (n[0] - b)) / initalpha; n[1] -= (alpha * (n[1] - g)) / initalpha; n[2] -= (alpha * (n[2] - r)) / initalpha; } /* * Search for biased BGR values ---------------------------- */ var contest = function contest(b, g, r) { /* finds closest neuron (min dist) and updates freq */ /* finds best neuron (min dist-bias) and returns position */ /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */ /* bias[i] = gamma*((1/netsize)-freq[i]) */ var i; var dist; var a; var biasdist; var betafreq; var bestpos; var bestbiaspos; var bestd; var bestbiasd; var n; bestd = ~(1 << 31); bestbiasd = bestd; bestpos = -1; bestbiaspos = bestpos; for (i = 0; i < netsize; i++) { n = network[i]; dist = n[0] - b; if (dist < 0) dist = -dist; a = n[1] - g; if (a < 0) a = -a; dist += a; a = n[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; bestpos = i; } biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } betafreq = (freq[i] >> betashift); freq[i] -= betafreq; bias[i] += (betafreq << gammashift); } freq[bestpos] += beta; bias[bestpos] -= betagamma; return (bestbiaspos); } NeuQuant.apply(this, arguments); return exports; } ;// importScripts('LZWEncoder.js', 'NeuQuant.js', 'GIFEncoder.js'); self.onmessage = function(event) { var data = event.data; var task = data['task']; switch (task) { case 'encode': encode (data); break; case 'quantize': quantize(data); break; case 'close': self.close(); break; } } function log(msg) { self.postMessage({ task: 'message', message: msg }); } function quantize (data) { var imageData = data["imageData"]; var pixels = discardAlphaChannel( imageData.data ); var nq = new NeuQuant (pixels, pixels.length, 1); var colortab = nq.process(); self.postMessage({ task: 'quantize', neuquant: nq.save(), colortab: colortab }); } function discardAlphaChannel( imageData ) { var pixels = []; for ( var i = 0, b = 0, _len = imageData.length; i < _len; b += 4 ) { pixels[i++] = imageData[b]; pixels[i++] = imageData[b+1]; pixels[i++] = imageData[b+2]; } return pixels; } function encode (data) { var frame_index = data["frame_index"]; var frame_length = data["frame_length"]; var height = data["height"]; var width = data["width"]; var imageData = data["imageData"]; var delay = data["delay"]; var neuquant = data["neuquant"]; var colortab = data["colortab"]; // Create a new GIFEncoder for every new worker var encoder = new GIFEncoder(); encoder.setRepeat(0); // loop forever encoder.setQuality(1); encoder.setSize(width, height); encoder.setDelay(delay); if (frame_index == 0) { encoder.start(); } else { encoder.cont(); encoder.setProperties(true, false); //started, firstFrame } // Load the neural net here because the color table gets clobbered by encoder.start(); encoder.setNeuquant(neuquant, colortab); encoder.addFrame(imageData, true); if(frame_length == frame_index) { encoder.finish(); } self.postMessage({ task: 'encode', frame_index: frame_index, frame_data: encoder.stream().getData() }); // on the page, search for the GIF89a to see the frame_index delete encoder; delete data; };