import os from os.path import join import requests import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) from app.settings import app_cfg def api_url(path): """Generate a base API path""" return "https://lens.neural.garden/api/{}/".format(path) def cortex_folder(opt_folder_id): return fetch_json(os.path.join(api_url('folder'), str(opt_folder_id) + "/")) def download_cortex_files(opt_folder_id): """Fetch all new, non-generated files in a Cortex folder""" rows = fetch_json(api_url('file'), folder_id=opt_folder_id) fp_out_dir = join(app_cfg.DIR_INPUTS, "cortex", str(opt_folder_id)) os.makedirs(fp_out_dir, exist_ok=True) for row in rows: if row['generated'] == 0 and row['processed'] != 1: fn, ext = os.path.splitext(row['name']) fp_out_image = join(fp_out_dir, row['name']) row['path'] = fp_out_image if not os.path.exists(fp_out_image): fetch_file(row['url'], fp_out_image) return rows def find_unprocessed_files(files, reprocess=False): """Find files that haven't been processed yet. This is implied if no matching generated file is found. """ datasets = {} unprocessed_files = [] for file in files: if file['generated'] == 1 and file['datatype'] == 'image': fn, ext = os.path.splitext(file['name']) dataset = fn.split('-')[0] datasets[dataset] = file['id'] for file in files: if file['generated'] == 0 and file['processed'] == 0 and file['datatype'] == 'image': fn, ext = os.path.splitext(file['name']) dataset = fn.split('-')[0] if dataset not in datasets or reprocess == True: unprocessed_files.append(file) return unprocessed_files def fetch_json(url, **kwargs): """HTTP GET some JSON""" resp = requests.get(url, params=kwargs, verify=False, timeout=10) return None if resp.status_code != 200 else resp.json() def fetch_file(url, fn, **kwargs): """HTTP GET a binary file and write it to disk""" print("Fetch {} => {}".format(url, fn)) try: resp = requests.get(url, params=kwargs, verify=False, timeout=10) if resp.status_code != 200: return None except: return None size = 0 with open(fn, 'wb') as f: for chunk in resp.iter_content(chunk_size=1024): if chunk: size += len(chunk) f.write(chunk) return size def upload_fp_to_cortex(opt_folder_id, fp): """Upload a open file/BytesIO object""" files = { 'file': fp } data = { 'folder_id': opt_folder_id, 'generated': 'true', 'module': 'biggan', 'activity': 'invert', 'datatype': 'image', } url = os.path.join(api_url('folder'), opt_folder_id, 'upload/') r = requests.post(url, files=files, data=data) return None if resp.status_code != 200 else resp.json() def upload_bytes_to_cortex(opt_folder_id, fn, fp, mimetype): """Upload a BytesIO object""" return upload_fp_to_cortex(opt_folder_id, (fn, fp.getvalue(), mimetype,)) def upload_file_to_cortex(opt_folder_id, fn): """Upload a file from disk""" with open(fn, 'rb') as fp: return upload_fp_to_cortex(opt_folder_id, fp)