import os from os.path import join import requests import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) from app.settings import app_cfg def api_url(path): return "https://lens.neural.garden/api/{}/".format(path) def fetch_cortex_folder(opt_folder_id): rows = fetch_json(api_url('file'), folder_id=opt_folder_id) fp_out_dir = join(app_cfg.DIR_INPUTS, "cortex", str(opt_folder_id)) os.makedirs(fp_out_dir, exist_ok=True) for row in rows: if row['generated'] == 0 and row['processed'] != 1: fn, ext = os.path.splitext(row['name']) fp_out_image = join(fp_out_dir, "{}{}".format(row['id'], ext)) if not os.path.exists(fp_out_image): fetch_file(row['url'], fp_out_image) def fetch_json(url, **kwargs): resp = requests.get(url, params=kwargs, verify=False, timeout=10) return None if resp.status_code != 200 else resp.json() def fetch_file(url, fn, **kwargs): print("Fetch {} => {}".format(url, fn)) try: resp = requests.get(url, params=kwargs, verify=False, timeout=10) if resp.status_code != 200: return None except: return None size = 0 with open(fn, 'wb') as f: for chunk in resp.iter_content(chunk_size=1024): if chunk: size += len(chunk) f.write(chunk) return size def upload_fp_to_cortex(opt_folder_id, fp): files = { 'file': fp } data = { 'folder_id': opt_folder_id, 'generated': 'true', 'module': 'biggan', 'activity': 'invert', 'datatype': 'image', } url = os.path.join(api_url('folder'), opt_folder_id, 'upload/') print(url) r = requests.post(url, files=files, data=data) print(r.json()) def upload_bytes_to_cortex(opt_folder_id, fn, fp, mimetype): upload_fp_to_cortex(opt_folder_id, (fn, fp.getvalue(), mimetype,)) def upload_file_to_cortex(opt_folder_id, fn): with open(fn, 'rb') as fp: upload_fp_to_cortex(opt_folder_id, fp)