import click from app.utils import click_utils from app.settings import app_cfg from os.path import join import time from PIL import Image @click.command('') # @click.option('-i', '--input', 'opt_dir_in', required=True, # help='Path to input image glob directory') # @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) @click.pass_context def cli(ctx): """ """ import tensorflow as tf import tensorflow_hub as hub module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1') # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then # call the generator on the latent samples to generate a batch of images with # shape [8, 128, 128, 3] and range [-1, 1]. z = tf.random.normal([8, 120]) # latent samples gen_samples = module(z, signature='generate', as_dict=True)['upsampled'] for sample in gen_samples: img = Image.fromarray(sample, "RGB") fp_img_out = int(time.time() * 1000) + '.png' img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out)) # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to # # compute predicted latents z and other features (e.g. for use in downstream # # recognition tasks). # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3]) # features = module(images, signature='encode', as_dict=True) # # Get the predicted latent sample `z_sample` from the dict of features. # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in # # the representation learning results. # z_sample = features['z_sample'] # shape [?, 120] # # Compute reconstructions of the input `images` by passing the encoder's output # # `z_sample` back through the generator. Note that raw generator outputs are # # half the resolution of encoder inputs (128x128). To get upsampled generator # # outputs matching the encoder input resolution (256x256), instead use: # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled'] # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3]