import click from app.utils import click_utils from app.settings import app_cfg from os.path import join import time import numpy as np from PIL import Image def image_to_uint8(x): """Converts [-1, 1] float array to [0, 255] uint8.""" x = np.asarray(x) x = (256. / 2.) * (x + 1.) x = np.clip(x, 0, 255) x = x.astype(np.uint8) return x @click.command('') # @click.option('-i', '--input', 'opt_dir_in', required=True, # help='Path to input image glob directory') # @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) @click.pass_context def cli(ctx): """ """ print("Loading Tensorflow....") import tensorflow as tf import tensorflow_hub as hub #tf.compat.v1.disable_eager_execution() #g = tf.compat.v1.get_default_graph() # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then # call the generator on the latent samples to generate a batch of images with # shape [8, 128, 128, 3] and range [-1, 1]. #recons = module(z, signature='generate', as_dict=True)['upsampled'] #info = module.get_input_info_dict('encode')['x'] #enc_ph = tf.placeholder(dtype=info.dtype, shape=info.get_shape()) #z = bigbigan.encode(enc_ph, return_all_features=True)['z_mean'] #recons = bigbigan.generate(z, upsample=True) #recons = outputs['upsampled'] #if return_all_features else outputs['z_sample'] #fp_img_out = "{}.png".format(int(time.time() * 1000)) print("Loading module...") module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1') z = tf.random.normal([8, 120]) # latent samples outputs = module(z, signature='generate', as_dict=True) with tf.Session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) sess.run(tf.compat.v1.tables_initializer()) results = sess.run(outputs) for sample in results['upsampled']: sample = image_to_uint8(sample) img = Image.fromarray(sample, "RGB") fp_img_out = "{}.png".format(int(time.time() * 1000)) img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out)) #print(result) #tf.keras.preprocessing.image.save_img( # join(app_cfg.DIR_OUTPUTS, fp_img_out), # gen_samples, #) #with tf.Session() as sess: # gen_samples = gen_samples.eval() # print(gen_samples) # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to # # compute predicted latents z and other features (e.g. for use in downstream # # recognition tasks). # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3]) # features = module(images, signature='encode', as_dict=True) # # Get the predicted latent sample `z_sample` from the dict of features. # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in # # the representation learning results. # z_sample = features['z_sample'] # shape [?, 120] # # Compute reconstructions of the input `images` by passing the encoder's output # # `z_sample` back through the generator. Note that raw generator outputs are # # half the resolution of encoder inputs (128x128). To get upsampled generator # # outputs matching the encoder input resolution (256x256), instead use: # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled'] # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3]