import click from app.search.params import Params, timestamp from app.search.search_dense import find_dense_embedding_for_images @click.command('') @click.option('-i', '--input', 'opt_fp_in', required=True, help='Path to input image') @click.option('-t', '--tag', 'opt_tag', default="inverse_" + timestamp(), help='Tag this build') @click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,4a,7a", help='Feature layers used for loss') @click.option('-s', '--save_progress', 'opt_save_progress', is_flag=True, help='Save example images every 500 frames') @click.pass_context def cli(ctx, opt_fp_in, opt_tag, opt_feature_layers, opt_save_progress): """ Search for an image (class vector) in BigGAN using gradient descent """ params = Params(opt_fp_in) opt_feature_layers = opt_feature_layers.split(',') find_dense_embedding_for_images(params, opt_tag=opt_tag, opt_feature_layers=opt_feature_layers, opt_save_progress=opt_save_progress)