import click from app.utils import click_utils from app.settings import app_cfg from os.path import join import time import numpy as np import random from scipy.stats import truncnorm from PIL import Image z_dim = { 128: 120, 256: 140, 512: 128, } def image_to_uint8(x): """Converts [-1, 1] float array to [0, 255] uint8.""" x = np.asarray(x) x = (256. / 2.) * (x + 1.) x = np.clip(x, 0, 255) x = x.astype(np.uint8) return x def truncated_z_sample(batch_size, z_dim, truncation): values = truncnorm.rvs(-2, 2, size=(batch_size, z_dim)) return truncation * values def create_labels(batch_size, vocab_size, num_classes): label = np.zeros((batch_size, vocab_size)) for i in range(batch_size): for _ in range(random.randint(1, num_classes)): j = random.randint(0, vocab_size-1) label[i, j] = random.random() label[i] /= label[i].sum() return label @click.command('') @click.option('-s', '--dims', 'opt_dims', default=256, type=int, help='Dimensions of BigGAN network (128, 256, 512)') # @click.option('-i', '--input', 'opt_dir_in', required=True, # help='Path to input image glob directory') # @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) @click.pass_context def cli(ctx, opt_dims): """ Generate a random BigGAN image """ import tensorflow as tf import tensorflow_hub as hub print("Loading module...") module = hub.Module('https://tfhub.dev/deepmind/biggan-' + str(opt_dims) + '/2') # module = hub.Module('https://tfhub.dev/deepmind/biggan-256/2') # module = hub.Module('https://tfhub.dev/deepmind/biggan-512/2') inputs = {k: tf.compat.v1.placeholder(v.dtype, v.get_shape().as_list(), k) for k, v in module.get_input_info_dict().items()} input_z = inputs['z'] input_y = inputs['y'] input_trunc = inputs['truncation'] output = module(inputs) z_dim = input_z.shape.as_list()[1] vocab_size = input_y.shape.as_list()[1] sess = tf.compat.v1.Session() sess.run(tf.compat.v1.global_variables_initializer()) sess.run(tf.compat.v1.tables_initializer()) # scalar truncation value in [0.02, 1.0] batch_size = 8 truncation = 0.5 #z = truncation * tf.random.truncated_normal([batch_size, z_dim]) # noise sample z = truncated_z_sample(batch_size, z_dim, truncation) for num_classes in [1, 2, 3, 5, 10, 20, 100]: print(num_classes) #y = tf.random.gamma([batch_size, 1000], gamma[0], gamma[1]) #y = np.random.gamma(gamma[0], gamma[1], (batch_size, 1000,)) y = create_labels(batch_size, vocab_size, num_classes) results = sess.run(output, feed_dict={input_z: z, input_y: y, input_trunc: truncation}) for sample in results: sample = image_to_uint8(sample) img = Image.fromarray(sample, "RGB") fp_img_out = "{}.png".format(int(time.time() * 1000)) img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out))