From fb70ab05768fa4a54358dc1f304b68bc7aff6dae Mon Sep 17 00:00:00 2001 From: Jules Laplace Date: Sun, 8 Dec 2019 21:43:30 +0100 Subject: inversion json files --- inversion/README.md | 43 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 inversion/README.md (limited to 'inversion/README.md') diff --git a/inversion/README.md b/inversion/README.md new file mode 100644 index 0000000..3be7b8d --- /dev/null +++ b/inversion/README.md @@ -0,0 +1,43 @@ +Exploiting GAN Internal Capacity for High-Quality Reconstruction of Natural Images +================================================================================== + +Code for reproducing experiments in ["Exploiting GAN Internal Capacity for High-Quality Reconstruction of Natural Images"](https://arxiv.org/abs/1911.05630) + +This directory contains associated source code to invert BigGAN generator for +128x128 resolution. Requires Tensorflow. + +## Generation of Random Samples: +Generate 1000 random samples of BigGAN generator: +```console + $> python random_sample.py random_sample.json +``` + +## Inversion of the Generator: +The optimization is split into two steps according to the paper: +First step, invesion to the latent space: +```console + $> python inversion.py params_latent.json +``` + +Second step, inversion to the dense layer: +```console + $> python inversion.py params_dense.json +``` + +## Interpolation: +Generate interpolations between the inverted images and generated images: +```console + $> python interpolation.py params_dense.json +``` + +## Segmentation: +Segment inverted images by clustering the attention map: +```console + $> python segmentation.py params_dense.json +``` + +Note: to replicate the experiments on real images from ImageNet, first +a hdf5 file must be created with random images from the dataset, similar to the +procedure in "random_sample.py". Then, the two step of optimization must be +executed (modify the "dataset:" parameter in params_latent.json to consider +custom datasets). -- cgit v1.2.3-70-g09d2