summaryrefslogtreecommitdiff
path: root/cli
diff options
context:
space:
mode:
Diffstat (limited to 'cli')
-rw-r--r--cli/app/search/search_dense.py33
1 files changed, 17 insertions, 16 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index e5769ab..b2e05a4 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -566,8 +566,8 @@ def feature_loss_tfhub(feature_extractor, opt_feature_layers, BATCH_SIZE, img_a,
img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
return feat_loss / len(opt_feature_layers), img_feat_err / len(opt_feature_layers)
-scope_index = 0
-vgg_model = tf.make_template('vgg16', nets.vgg.vgg_16, is_training=False)
+# scope_index = 0
+# vgg_model = tf.make_template('vgg16', nets.vgg.vgg_16, is_training=False)
def feature_loss_vgg(feature_extractor, opt_feature_layers, BATCH_SIZE, img_a, img_b, y, x, height, width, resize_height=None, resize_width=None):
height = int(height)
width = int(width)
@@ -585,26 +585,27 @@ def feature_loss_vgg(feature_extractor, opt_feature_layers, BATCH_SIZE, img_a, i
img_b = tf.image.resize_images(img_b, [resize_height, resize_width])
global scope_index
- scope_index += 1
+ # scope_index += 1
# scope_a = 'vgg_16_{}_a'.format(scope_index)
# scope_b = 'vgg_16_{}_b'.format(scope_index)
- scope_a = 'vgg_16'
- scope_b = 'vgg_16'
+ # scope_a = 'vgg_16'
+ # scope_b = 'vgg_16'
# gen_fc, gen_feat_ex = nets.vgg.vgg_16(img_a, scope=scope_a) #, reuse=True)
# target_fc, target_feat_ex = nets.vgg.vgg_16(img_b, scope=scope_b) #, reuse=True)
- gen_fc, gen_feat_ex = vgg_model(img_a) #, reuse=True)
- target_fc, target_feat_ex = vgg_model(img_b) #, reuse=True)
+ with slim.arg_scope(nets.vgg.vgg_arg_scope()):
+ gen_fc, gen_feat_ex = vgg.vgg_16(img_a) #, reuse=True)
+ target_fc, target_feat_ex = vgg.vgg_16(img_b) #, reuse=True)
# gen_feat_ex = feature_extractor(dict(images=img_a), as_dict=True, signature='image_feature_vector')
# target_feat_ex = feature_extractor(dict(images=img_b), as_dict=True, signature='image_feature_vector')
- feat_loss = tf.constant(0.0)
- img_feat_err = tf.constant(0.0)
+ feat_loss = tf.constant(0.0)
+ img_feat_err = tf.constant(0.0)
- for layer_name in opt_feature_layers:
- gen_feat = gen_feat_ex[scope_a + '/' + layer_name]
- target_feat = target_feat_ex[scope_b + '/' + layer_name]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff)
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
- return feat_loss / len(opt_feature_layers), img_feat_err / len(opt_feature_layers)
+ for layer_name in opt_feature_layers:
+ gen_feat = gen_feat_ex[scope_a + '/' + layer_name]
+ target_feat = target_feat_ex[scope_b + '/' + layer_name]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff)
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ return feat_loss / len(opt_feature_layers), img_feat_err / len(opt_feature_layers)