summaryrefslogtreecommitdiff
path: root/cli/app/search/live.py
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/search/live.py')
-rw-r--r--cli/app/search/live.py21
1 files changed, 11 insertions, 10 deletions
diff --git a/cli/app/search/live.py b/cli/app/search/live.py
index 22441e2..57d5df4 100644
--- a/cli/app/search/live.py
+++ b/cli/app/search/live.py
@@ -267,16 +267,17 @@ class Interpolator:
# Label
lerp_label = LerpParam('label', shape=[BATCH_SIZE, N_CLASS], datatype="label")
- # Latent - stored vector
+ # Latent - stored vector - now that we have deep labels, we don't need this
# label_stored = InterpolatorParam(name='label_stored', shape=[BATCH_SIZE, N_CLASS], datatype="label")
- label_stored = LerpParam(name='label_stored', shape=[BATCH_SIZE, N_CLASS], datatype="label")
- label_stored_mix = LerpParam('label_stored_mix', a_in=lerp_label.output, b_in=label_stored.output, shape=[BATCH_SIZE, Z_DIM], datatype="input")
+ # label_stored = LerpParam(name='label_stored', shape=[BATCH_SIZE, N_CLASS], datatype="label")
+ # label_stored_mix = LerpParam('label_stored_mix', a_in=lerp_label.output, b_in=label_stored.output, shape=[BATCH_SIZE, Z_DIM], datatype="input")
+ # gen_in['y'] = label_stored_mix.output
# Generator
gen_in = {}
gen_in['truncation'] = 1.0 # self.opts['truncation'].variable
gen_in['z'] = latent_stored_mix.output
- gen_in['y'] = label_stored_mix.output
+ gen_in['y'] = lerp_label.output
self.gen_img = generator(gen_in, signature=gen_signature)
# Encoding - first hidden layer
@@ -301,8 +302,8 @@ class Interpolator:
# Make all the stored lerps use the same interpolation amount.
tf.contrib.graph_editor.reroute_ts(encoding_stored.n.variable, latent_stored.n.variable)
- tf.contrib.graph_editor.reroute_ts(encoding_stored.n.variable, label_stored.n.variable)
- # tf.contrib.graph_editor.reroute_ts(encoding_stored_mix.n.variable, latent_stored_mix.n.variable)
+ # tf.contrib.graph_editor.reroute_ts(encoding_stored.n.variable, label_stored.n.variable)
+ tf.contrib.graph_editor.reroute_ts(encoding_stored_mix.n.variable, latent_stored_mix.n.variable)
# tf.contrib.graph_editor.reroute_ts(encoding_stored_mix.n.variable, label_stored_mix.n.variable)
layer_op_names = [
@@ -401,7 +402,7 @@ class Interpolator:
new_encoding = np.expand_dims(data['encoding'], axis=0)
latent_stored = self.lerp_params['latent_stored']
- label_stored = self.lerp_params['label_stored']
+ # label_stored = self.lerp_params['label_stored']
encoding_stored = self.lerp_params['encoding_stored']
encoding_stored_mix = self.lerp_params['encoding_stored_mix']
@@ -415,7 +416,7 @@ class Interpolator:
# if we're showing an encoding already, lerp to the next one
if encoding_stored_mix.n.value > 0:
encoding_stored.switch(target_value=new_encoding)
- label_stored.switch(target_value=new_label)
+ # label_stored.switch(target_value=new_label)
latent_stored.switch(target_value=new_latent)
for layer, value in zip(layer_labels_stored, new_layer_labels):
layer.switch(target_value=value)
@@ -426,14 +427,14 @@ class Interpolator:
encoding_stored.n.assign(0)
encoding_stored.a.assign(new_encoding)
latent_stored.a.assign(new_latent)
- label_stored.a.assign(new_label)
+ # label_stored.a.assign(new_label)
for layer, value in zip(layer_labels_stored, new_layer_labels):
layer.a.assign(value)
else:
encoding_stored.n.assign(1)
encoding_stored.b.assign(new_encoding)
latent_stored.b.assign(new_latent)
- label_stored.b.assign(new_label)
+ # label_stored.b.assign(new_label)
for layer, value in zip(layer_labels_stored, new_layer_labels):
layer.b.assign(value)
encoding_stored_mix.switch()