summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--inversion/image_inversion_inception.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index bb883e7..f9d1c79 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -229,14 +229,14 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Mixed_6b"]
target_feat = target_feat_ex["InceptionV3/Mixed_6b"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.3
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.3
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.16
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.16
- # gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
- # target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
- # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- # feat_loss += tf.reduce_mean(feat_square_diff)
- # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.16
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.16
# gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
# target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
@@ -247,8 +247,8 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.17
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.17
else:
feat_loss = tf.constant(0.0)