summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--cli/app/commands/process/fetch.py47
-rw-r--r--cli/app/commands/process/random.py47
-rw-r--r--cli/app/settings/app_cfg.py11
-rw-r--r--data_store/outputs/.gitkeep0
4 files changed, 99 insertions, 6 deletions
diff --git a/cli/app/commands/process/fetch.py b/cli/app/commands/process/fetch.py
index a558d94..5b6c102 100644
--- a/cli/app/commands/process/fetch.py
+++ b/cli/app/commands/process/fetch.py
@@ -3,6 +3,9 @@ import click
from app.utils import click_utils
from app.settings import app_cfg
+from os.path import join
+from subprocess import call
+
@click.command('')
# @click.option('-i', '--input', 'opt_dir_in', required=True,
# help='Path to input image glob directory')
@@ -10,11 +13,45 @@ from app.settings import app_cfg
@click.pass_context
def cli(ctx):
"""
- Converts directory of images to BigGAN* vectors
"""
- # ------------------------------------------------
- # imports
-
# app_cfg.MODELZOO_CFG
- pass
+ import gensim
+
+ # from nltk.corpus import wordnet as wn
+ # synsets = wordnet.synsets("fir_tree")
+ # synonyms = [ lemma.name() for lemma in synsets[0].lemmas() ]
+
+ imagenet = Imagenet()
+
+ sentence = "The quick brown fox jumps over the lazy dog"
+ tokens = gensim.utils.simple_preprocess(sentence)
+
+class Imagenet:
+ def __init__():
+ tokens = {}
+ with open(app_cfg.FP_IMAGENET_WORDS, "r") as fp:
+ for line in fp.readlines():
+ wordnet_id, word_list = line.split('\t')
+ words = [word.trim() for word in word_list.split(',')]
+ for word in words:
+ tokens[word] = wordnet_id
+ self.tokens = tokens
+
+ def get_wordnet_ids_for_words(tokens):
+ # for token in tokens:
+ # if token in tokens:
+ pass
+
+ def images_from_wordnet_id(wordnet_id):
+ """
+ Given a Wordnet ID, download images for this class
+ """
+ call([
+ "python",
+ join(app_cfg.DIR_APP, "../ImageNet-Datasets-Downloader/downloader.py"),
+ '-data_root', app_cfg.FP_IMAGENET,
+ '-use_class_list', 'True',
+ '-class_list', wordnet_id,
+ '-images_per_class', app_cfg.IMAGENET_IMAGES_PER_CLASS
+ ])
diff --git a/cli/app/commands/process/random.py b/cli/app/commands/process/random.py
new file mode 100644
index 0000000..77551aa
--- /dev/null
+++ b/cli/app/commands/process/random.py
@@ -0,0 +1,47 @@
+import click
+
+from app.utils import click_utils
+from app.settings import app_cfg
+
+from os.path import join
+import time
+
+from PIL import Image
+
+@click.command('')
+# @click.option('-i', '--input', 'opt_dir_in', required=True,
+# help='Path to input image glob directory')
+# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True)
+@click.pass_context
+def cli(ctx):
+ """
+ """
+ module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1')
+
+ # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then
+ # call the generator on the latent samples to generate a batch of images with
+ # shape [8, 128, 128, 3] and range [-1, 1].
+ z = tf.random.normal([8, 120]) # latent samples
+ gen_samples = module(z, signature='generate', as_dict=True)['upsampled']
+
+ for sample in gen_samples:
+ img = Image.fromarray(sample, "RGB")
+ fp_img_out = int(time.time() * 1000) + '.png'
+ img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out))
+ # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to
+ # # compute predicted latents z and other features (e.g. for use in downstream
+ # # recognition tasks).
+ # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3])
+ # features = module(images, signature='encode', as_dict=True)
+
+ # # Get the predicted latent sample `z_sample` from the dict of features.
+ # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in
+ # # the representation learning results.
+ # z_sample = features['z_sample'] # shape [?, 120]
+
+ # # Compute reconstructions of the input `images` by passing the encoder's output
+ # # `z_sample` back through the generator. Note that raw generator outputs are
+ # # half the resolution of encoder inputs (128x128). To get upsampled generator
+ # # outputs matching the encoder input resolution (256x256), instead use:
+ # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled']
+ # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3]
diff --git a/cli/app/settings/app_cfg.py b/cli/app/settings/app_cfg.py
index fe65458..6f99fd0 100644
--- a/cli/app/settings/app_cfg.py
+++ b/cli/app/settings/app_cfg.py
@@ -26,7 +26,8 @@ CLICK_GROUPS = {
SELF_CWD = os.path.dirname(os.path.realpath(__file__)) # Script CWD
DIR_APP = str(Path(SELF_CWD).parent.parent.parent)
-
+DIR_IMAGENET = join(DIR_APP, 'data_store/imagenet')
+DIR_OUTPUTS = join(DIR_APP, 'data_store/outputs')
FP_MODELZOO = join(DIR_APP, 'modelzoo/modelzoo.yaml')
# -----------------------------------------------------------------------------
@@ -35,3 +36,11 @@ FP_MODELZOO = join(DIR_APP, 'modelzoo/modelzoo.yaml')
with open(FP_MODELZOO, 'r') as fp:
MODELZOO_CFG = yaml.load(fp, Loader=yaml.Loader)
+
+# -----------------------------------------------------------------------------
+# Imagenet
+# -----------------------------------------------------------------------------
+
+IMAGENET_IMAGES_PER_CLASS = 200
+FP_IMAGENET_WORDS = join(DIR_IMAGENET, 'words.txt')
+FP_IMAGENET_CLASSES = join(DIR_IMAGENET, 'classes_in_imagenet.csv')
diff --git a/data_store/outputs/.gitkeep b/data_store/outputs/.gitkeep
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/data_store/outputs/.gitkeep