import argparse import glob import multiprocessing import re from functools import partial from pathlib import Path import librosa import numpy from become_yukarin import AcousticConverter from become_yukarin.config.config import create_from_json as create_config parser = argparse.ArgumentParser() parser.add_argument('model_names', nargs='+') parser.add_argument('-md', '--model_directory', type=Path, default=Path('/mnt/dwango/hiroshiba/become-yukarin/')) parser.add_argument('-iwd', '--input_wave_directory', type=Path, default=Path('/mnt/dwango/hiroshiba/become-yukarin/dataset/hiho-wave/hiho-pause-atr503-subset/')) parser.add_argument('-it', '--iteration', type=int) parser.add_argument('-g', '--gpu', type=int) args = parser.parse_args() model_directory = args.model_directory # type: Path input_wave_directory = args.input_wave_directory # type: Path it = args.iteration gpu = args.gpu paths_test = list(Path('./test_data/').glob('*.wav')) def extract_number(f): s = re.findall("\d+", str(f)) return int(s[-1]) if s else -1 def process(p: Path, acoustic_converter: AcousticConverter): try: if p.suffix in ['.npy', '.npz']: fn = glob.glob(str(input_wave_directory / p.stem) + '.*')[0] p = Path(fn) wave = acoustic_converter(p) librosa.output.write_wav(str(output / p.stem) + '.wav', wave.wave, wave.sampling_rate, norm=True) except: import traceback print('error!', str(p)) print(traceback.format_exc()) for model_name in args.model_names: base_model = model_directory / model_name config = create_config(base_model / 'config.json') input_paths = list(sorted([Path(p) for p in glob.glob(str(config.dataset.input_glob))])) numpy.random.RandomState(config.dataset.seed).shuffle(input_paths) path_train = input_paths[0] path_test = input_paths[-1] if it is not None: model_path = base_model / 'predictor_{}.npz'.format(it) else: model_paths = base_model.glob('predictor_*.npz') model_path = list(sorted(model_paths, key=extract_number))[-1] print(model_path) acoustic_converter = AcousticConverter(config, model_path, gpu=gpu) output = Path('./output').absolute() / base_model.name output.mkdir(exist_ok=True) paths = [path_train, path_test] + paths_test process_partial = partial(process, acoustic_converter=acoustic_converter) if gpu is None: pool = multiprocessing.Pool() pool.map(process_partial, paths) else: list(map(process_partial, paths))