import chainer import chainer.functions as F import chainer.links as L from become_yukarin.config.config import ModelConfig class Convolution1D(chainer.links.ConvolutionND): def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False) -> None: super().__init__( ndim=1, in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=nobias, initialW=initialW, initial_bias=initial_bias, cover_all=cover_all, ) class Deconvolution1D(chainer.links.DeconvolutionND): def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, outsize=None, initialW=None, initial_bias=None) -> None: super().__init__( ndim=1, in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=nobias, outsize=outsize, initialW=initialW, initial_bias=initial_bias, ) class CBR(chainer.Chain): def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False) -> None: super().__init__() self.bn = bn self.activation = activation self.dropout = dropout w = chainer.initializers.Normal(0.02) with self.init_scope(): if sample == 'down': self.c = Convolution1D(ch0, ch1, 4, 2, 1, initialW=w) elif sample == 'up': self.c = Deconvolution1D(ch0, ch1, 4, 2, 1, initialW=w) else: self.c = Convolution1D(ch0, ch1, 1, 1, 0, initialW=w) if bn: self.batchnorm = L.BatchNormalization(ch1) def __call__(self, x): h = self.c(x) if self.bn: h = self.batchnorm(h) if self.dropout: h = F.dropout(h) if self.activation is not None: h = self.activation(h) return h class Encoder(chainer.Chain): def __init__(self, in_ch, base=64, extensive_layers=8) -> None: super().__init__() w = chainer.initializers.Normal(0.02) with self.init_scope(): if extensive_layers > 0: self.c0 = Convolution1D(in_ch, base * 1, 3, 1, 1, initialW=w) else: self.c0 = Convolution1D(in_ch, base * 1, 1, 1, 0, initialW=w) _choose = lambda i: 'down' if i < extensive_layers else 'same' self.c1 = CBR(base * 1, base * 2, bn=True, sample=_choose(1), activation=F.leaky_relu, dropout=False) self.c2 = CBR(base * 2, base * 4, bn=True, sample=_choose(2), activation=F.leaky_relu, dropout=False) self.c3 = CBR(base * 4, base * 8, bn=True, sample=_choose(3), activation=F.leaky_relu, dropout=False) self.c4 = CBR(base * 8, base * 8, bn=True, sample=_choose(4), activation=F.leaky_relu, dropout=False) self.c5 = CBR(base * 8, base * 8, bn=True, sample=_choose(5), activation=F.leaky_relu, dropout=False) self.c6 = CBR(base * 8, base * 8, bn=True, sample=_choose(6), activation=F.leaky_relu, dropout=False) self.c7 = CBR(base * 8, base * 8, bn=True, sample=_choose(7), activation=F.leaky_relu, dropout=False) def __call__(self, x): hs = [F.leaky_relu(self.c0(x))] for i in range(1, 8): hs.append(self['c%d' % i](hs[i - 1])) return hs class Decoder(chainer.Chain): def __init__(self, out_ch, base=64, extensive_layers=8) -> None: super().__init__() w = chainer.initializers.Normal(0.02) with self.init_scope(): _choose = lambda i: 'up' if i >= 8 - extensive_layers else 'same' self.c0 = CBR(base * 8, base * 8, bn=True, sample=_choose(0), activation=F.relu, dropout=True) self.c1 = CBR(base * 16, base * 8, bn=True, sample=_choose(1), activation=F.relu, dropout=True) self.c2 = CBR(base * 16, base * 8, bn=True, sample=_choose(2), activation=F.relu, dropout=True) self.c3 = CBR(base * 16, base * 8, bn=True, sample=_choose(3), activation=F.relu, dropout=False) self.c4 = CBR(base * 16, base * 4, bn=True, sample=_choose(4), activation=F.relu, dropout=False) self.c5 = CBR(base * 8, base * 2, bn=True, sample=_choose(5), activation=F.relu, dropout=False) self.c6 = CBR(base * 4, base * 1, bn=True, sample=_choose(6), activation=F.relu, dropout=False) if extensive_layers > 0: self.c7 = Convolution1D(base * 2, out_ch, 3, 1, 1, initialW=w) else: self.c7 = Convolution1D(base * 2, out_ch, 1, 1, 0, initialW=w) def __call__(self, hs): h = self.c0(hs[-1]) for i in range(1, 8): h = F.concat([h, hs[-i - 1]]) if i < 7: h = self['c%d' % i](h) else: h = self.c7(h) return h class Predictor(chainer.Chain): def __init__(self, in_ch, out_ch, base=64, extensive_layers=8) -> None: super().__init__() with self.init_scope(): self.encoder = Encoder(in_ch, base=base, extensive_layers=extensive_layers) self.decoder = Decoder(out_ch, base=base, extensive_layers=extensive_layers) def __call__(self, x): return self.decoder(self.encoder(x)) class Discriminator(chainer.Chain): def __init__(self, in_ch, out_ch, base=32, extensive_layers=5, is_weak=False) -> None: super().__init__() w = chainer.initializers.Normal(0.02) with self.init_scope(): _choose = lambda i: 'down' if i < extensive_layers else 'same' self.c0_0 = CBR(in_ch, base * 1, bn=False, sample=_choose(0), activation=F.leaky_relu, dropout=is_weak) self.c0_1 = CBR(out_ch, base * 1, bn=False, sample=_choose(0), activation=F.leaky_relu, dropout=is_weak) self.c1 = CBR(base * 2, base * 4, bn=True, sample=_choose(1), activation=F.leaky_relu, dropout=is_weak) self.c2 = CBR(base * 4, base * 8, bn=True, sample=_choose(2), activation=F.leaky_relu, dropout=is_weak) self.c3 = CBR(base * 8, base * 16, bn=True, sample=_choose(3), activation=F.leaky_relu, dropout=is_weak) if extensive_layers > 4: self.c4 = Convolution1D(base * 16, 1, 3, 1, 1, initialW=w) else: self.c4 = Convolution1D(base * 16, 1, 1, 1, 0, initialW=w) def __call__(self, x_0, x_1): h = F.concat([self.c0_0(x_0), self.c0_1(x_1)]) h = self.c1(h) h = self.c2(h) h = self.c3(h) h = self.c4(h) # h = F.average_pooling_2d(h, h.data.shape[2], 1, 0) return h def create_predictor(config: ModelConfig): return Predictor( in_ch=config.in_channels, out_ch=config.out_channels, base=config.generator_base_channels, extensive_layers=config.generator_extensive_layers, ) def create_discriminator(config: ModelConfig): return Discriminator( in_ch=config.in_channels, out_ch=config.out_channels, base=config.discriminator_base_channels, extensive_layers=config.discriminator_extensive_layers, is_weak=config.weak_discriminator, ) def create(config: ModelConfig): predictor = create_predictor(config) discriminator = create_discriminator(config) return predictor, discriminator